1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
27 FIXME: Do we need to generate dependencies in partial symtabs?
28 (Perhaps we don't need to).
30 FIXME: Resolve minor differences between what information we put in the
31 partial symbol table and what dbxread puts in. For example, we don't yet
32 put enum constants there. And dbxread seems to invent a lot of typedefs
33 we never see. Use the new printpsym command to see the partial symbol table
36 FIXME: Figure out a better way to tell gdb about the name of the function
37 contain the user's entry point (I.E. main())
39 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
40 other things to work on, if you get bored. :-)
50 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
51 #include "elf/dwarf.h"
54 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
56 #include "complaints.h"
60 #include <sys/types.h>
66 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
71 /* Some macros to provide DIE info for complaints. */
73 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
74 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
76 /* Complaints that can be issued during DWARF debug info reading. */
78 struct complaint no_bfd_get_N =
80 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
83 struct complaint malformed_die =
85 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
88 struct complaint bad_die_ref =
90 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
93 struct complaint unknown_attribute_form =
95 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
98 struct complaint unknown_attribute_length =
100 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
103 struct complaint unexpected_fund_type =
105 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
108 struct complaint unknown_type_modifier =
110 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
113 struct complaint volatile_ignored =
115 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
118 struct complaint const_ignored =
120 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
123 struct complaint botched_modified_type =
125 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
128 struct complaint op_deref2 =
130 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
133 struct complaint op_deref4 =
135 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
138 struct complaint basereg_not_handled =
140 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
143 struct complaint dup_user_type_allocation =
145 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
148 struct complaint dup_user_type_definition =
150 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
153 struct complaint missing_tag =
155 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
158 struct complaint bad_array_element_type =
160 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
163 struct complaint subscript_data_items =
165 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
168 struct complaint unhandled_array_subscript_format =
170 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
173 struct complaint unknown_array_subscript_format =
175 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
178 struct complaint not_row_major =
180 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
183 #ifndef R_FP /* FIXME */
184 #define R_FP 14 /* Kludge to get frame pointer register number */
187 typedef unsigned int DIE_REF; /* Reference to a DIE */
190 #define GCC_PRODUCER "GNU C "
193 #ifndef GPLUS_PRODUCER
194 #define GPLUS_PRODUCER "GNU C++ "
198 #define LCC_PRODUCER "NCR C/C++"
201 #ifndef CHILL_PRODUCER
202 #define CHILL_PRODUCER "GNU Chill "
205 /* Flags to target_to_host() that tell whether or not the data object is
206 expected to be signed. Used, for example, when fetching a signed
207 integer in the target environment which is used as a signed integer
208 in the host environment, and the two environments have different sized
209 ints. In this case, *somebody* has to sign extend the smaller sized
212 #define GET_UNSIGNED 0 /* No sign extension required */
213 #define GET_SIGNED 1 /* Sign extension required */
215 /* Defines for things which are specified in the document "DWARF Debugging
216 Information Format" published by UNIX International, Programming Languages
217 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
219 #define SIZEOF_DIE_LENGTH 4
220 #define SIZEOF_DIE_TAG 2
221 #define SIZEOF_ATTRIBUTE 2
222 #define SIZEOF_FORMAT_SPECIFIER 1
223 #define SIZEOF_FMT_FT 2
224 #define SIZEOF_LINETBL_LENGTH 4
225 #define SIZEOF_LINETBL_LINENO 4
226 #define SIZEOF_LINETBL_STMT 2
227 #define SIZEOF_LINETBL_DELTA 4
228 #define SIZEOF_LOC_ATOM_CODE 1
230 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
232 /* Macros that return the sizes of various types of data in the target
235 FIXME: Currently these are just compile time constants (as they are in
236 other parts of gdb as well). They need to be able to get the right size
237 either from the bfd or possibly from the DWARF info. It would be nice if
238 the DWARF producer inserted DIES that describe the fundamental types in
239 the target environment into the DWARF info, similar to the way dbx stabs
240 producers produce information about their fundamental types. */
242 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
243 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
245 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
246 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
247 However, the Issue 2 DWARF specification from AT&T defines it as
248 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
249 For backwards compatibility with the AT&T compiler produced executables
250 we define AT_short_element_list for this variant. */
252 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
254 /* External variables referenced. */
256 extern int info_verbose; /* From main.c; nonzero => verbose */
257 extern char *warning_pre_print; /* From utils.c */
259 /* The DWARF debugging information consists of two major pieces,
260 one is a block of DWARF Information Entries (DIE's) and the other
261 is a line number table. The "struct dieinfo" structure contains
262 the information for a single DIE, the one currently being processed.
264 In order to make it easier to randomly access the attribute fields
265 of the current DIE, which are specifically unordered within the DIE,
266 each DIE is scanned and an instance of the "struct dieinfo"
267 structure is initialized.
269 Initialization is done in two levels. The first, done by basicdieinfo(),
270 just initializes those fields that are vital to deciding whether or not
271 to use this DIE, how to skip past it, etc. The second, done by the
272 function completedieinfo(), fills in the rest of the information.
274 Attributes which have block forms are not interpreted at the time
275 the DIE is scanned, instead we just save pointers to the start
276 of their value fields.
278 Some fields have a flag <name>_p that is set when the value of the
279 field is valid (I.E. we found a matching attribute in the DIE). Since
280 we may want to test for the presence of some attributes in the DIE,
281 such as AT_low_pc, without restricting the values of the field,
282 we need someway to note that we found such an attribute.
289 char * die; /* Pointer to the raw DIE data */
290 unsigned long die_length; /* Length of the raw DIE data */
291 DIE_REF die_ref; /* Offset of this DIE */
292 unsigned short die_tag; /* Tag for this DIE */
293 unsigned long at_padding;
294 unsigned long at_sibling;
297 unsigned short at_fund_type;
298 BLOCK * at_mod_fund_type;
299 unsigned long at_user_def_type;
300 BLOCK * at_mod_u_d_type;
301 unsigned short at_ordering;
302 BLOCK * at_subscr_data;
303 unsigned long at_byte_size;
304 unsigned short at_bit_offset;
305 unsigned long at_bit_size;
306 BLOCK * at_element_list;
307 unsigned long at_stmt_list;
308 unsigned long at_low_pc;
309 unsigned long at_high_pc;
310 unsigned long at_language;
311 unsigned long at_member;
312 unsigned long at_discr;
313 BLOCK * at_discr_value;
314 BLOCK * at_string_length;
317 unsigned long at_start_scope;
318 unsigned long at_stride_size;
319 unsigned long at_src_info;
320 char * at_prototyped;
321 unsigned int has_at_low_pc:1;
322 unsigned int has_at_stmt_list:1;
323 unsigned int has_at_byte_size:1;
324 unsigned int short_element_list:1;
327 static int diecount; /* Approximate count of dies for compilation unit */
328 static struct dieinfo *curdie; /* For warnings and such */
330 static char *dbbase; /* Base pointer to dwarf info */
331 static int dbsize; /* Size of dwarf info in bytes */
332 static int dbroff; /* Relative offset from start of .debug section */
333 static char *lnbase; /* Base pointer to line section */
334 static int isreg; /* Kludge to identify register variables */
335 static int offreg; /* Kludge to identify basereg references */
337 /* This value is added to each symbol value. FIXME: Generalize to
338 the section_offsets structure used by dbxread (once this is done,
339 pass the appropriate section number to end_symtab). */
340 static CORE_ADDR baseaddr; /* Add to each symbol value */
342 /* The section offsets used in the current psymtab or symtab. FIXME,
343 only used to pass one value (baseaddr) at the moment. */
344 static struct section_offsets *base_section_offsets;
346 /* Each partial symbol table entry contains a pointer to private data for the
347 read_symtab() function to use when expanding a partial symbol table entry
348 to a full symbol table entry. For DWARF debugging info, this data is
349 contained in the following structure and macros are provided for easy
350 access to the members given a pointer to a partial symbol table entry.
352 dbfoff Always the absolute file offset to the start of the ".debug"
353 section for the file containing the DIE's being accessed.
355 dbroff Relative offset from the start of the ".debug" access to the
356 first DIE to be accessed. When building the partial symbol
357 table, this value will be zero since we are accessing the
358 entire ".debug" section. When expanding a partial symbol
359 table entry, this value will be the offset to the first
360 DIE for the compilation unit containing the symbol that
361 triggers the expansion.
363 dblength The size of the chunk of DIE's being examined, in bytes.
365 lnfoff The absolute file offset to the line table fragment. Ignored
366 when building partial symbol tables, but used when expanding
367 them, and contains the absolute file offset to the fragment
368 of the ".line" section containing the line numbers for the
369 current compilation unit.
373 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
374 int dbroff; /* Relative offset from start of .debug section */
375 int dblength; /* Size of the chunk of DIE's being examined */
376 file_ptr lnfoff; /* Absolute file offset to line table fragment */
379 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
380 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
381 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
382 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384 /* The generic symbol table building routines have separate lists for
385 file scope symbols and all all other scopes (local scopes). So
386 we need to select the right one to pass to add_symbol_to_list().
387 We do it by keeping a pointer to the correct list in list_in_scope.
389 FIXME: The original dwarf code just treated the file scope as the first
390 local scope, and all other local scopes as nested local scopes, and worked
391 fine. Check to see if we really need to distinguish these in buildsym.c */
393 struct pending **list_in_scope = &file_symbols;
395 /* DIES which have user defined types or modified user defined types refer to
396 other DIES for the type information. Thus we need to associate the offset
397 of a DIE for a user defined type with a pointer to the type information.
399 Originally this was done using a simple but expensive algorithm, with an
400 array of unsorted structures, each containing an offset/type-pointer pair.
401 This array was scanned linearly each time a lookup was done. The result
402 was that gdb was spending over half it's startup time munging through this
403 array of pointers looking for a structure that had the right offset member.
405 The second attempt used the same array of structures, but the array was
406 sorted using qsort each time a new offset/type was recorded, and a binary
407 search was used to find the type pointer for a given DIE offset. This was
408 even slower, due to the overhead of sorting the array each time a new
409 offset/type pair was entered.
411 The third attempt uses a fixed size array of type pointers, indexed by a
412 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
413 we can divide any DIE offset by 4 to obtain a unique index into this fixed
414 size array. Since each element is a 4 byte pointer, it takes exactly as
415 much memory to hold this array as to hold the DWARF info for a given
416 compilation unit. But it gets freed as soon as we are done with it.
417 This has worked well in practice, as a reasonable tradeoff between memory
418 consumption and speed, without having to resort to much more complicated
421 static struct type **utypes; /* Pointer to array of user type pointers */
422 static int numutypes; /* Max number of user type pointers */
424 /* Maintain an array of referenced fundamental types for the current
425 compilation unit being read. For DWARF version 1, we have to construct
426 the fundamental types on the fly, since no information about the
427 fundamental types is supplied. Each such fundamental type is created by
428 calling a language dependent routine to create the type, and then a
429 pointer to that type is then placed in the array at the index specified
430 by it's FT_<TYPENAME> value. The array has a fixed size set by the
431 FT_NUM_MEMBERS compile time constant, which is the number of predefined
432 fundamental types gdb knows how to construct. */
434 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
436 /* Record the language for the compilation unit which is currently being
437 processed. We know it once we have seen the TAG_compile_unit DIE,
438 and we need it while processing the DIE's for that compilation unit.
439 It is eventually saved in the symtab structure, but we don't finalize
440 the symtab struct until we have processed all the DIE's for the
441 compilation unit. We also need to get and save a pointer to the
442 language struct for this language, so we can call the language
443 dependent routines for doing things such as creating fundamental
446 static enum language cu_language;
447 static const struct language_defn *cu_language_defn;
449 /* Forward declarations of static functions so we don't have to worry
450 about ordering within this file. */
453 attribute_size PARAMS ((unsigned int));
456 target_to_host PARAMS ((char *, int, int, struct objfile *));
459 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
462 handle_producer PARAMS ((char *));
465 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
471 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
475 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
478 scan_compilation_units PARAMS ((char *, char *, file_ptr,
479 file_ptr, struct objfile *));
482 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
485 init_psymbol_list PARAMS ((struct objfile *, int));
488 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
491 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
494 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
497 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
500 read_ofile_symtab PARAMS ((struct partial_symtab *));
503 process_dies PARAMS ((char *, char *, struct objfile *));
506 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
510 decode_array_element_type PARAMS ((char *));
513 decode_subscript_data_item PARAMS ((char *, char *));
516 dwarf_read_array_type PARAMS ((struct dieinfo *));
519 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
522 read_tag_string_type PARAMS ((struct dieinfo *dip));
525 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
528 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
534 enum_type PARAMS ((struct dieinfo *, struct objfile *));
537 decode_line_numbers PARAMS ((char *));
540 decode_die_type PARAMS ((struct dieinfo *));
543 decode_mod_fund_type PARAMS ((char *));
546 decode_mod_u_d_type PARAMS ((char *));
549 decode_modified_type PARAMS ((char *, unsigned int, int));
552 decode_fund_type PARAMS ((unsigned int));
555 create_name PARAMS ((char *, struct obstack *));
558 lookup_utype PARAMS ((DIE_REF));
561 alloc_utype PARAMS ((DIE_REF, struct type *));
563 static struct symbol *
564 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
567 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
571 locval PARAMS ((char *));
574 record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
578 set_cu_language PARAMS ((struct dieinfo *));
581 dwarf_fundamental_type PARAMS ((struct objfile *, int));
588 dwarf_fundamental_type -- lookup or create a fundamental type
593 dwarf_fundamental_type (struct objfile *objfile, int typeid)
597 DWARF version 1 doesn't supply any fundamental type information,
598 so gdb has to construct such types. It has a fixed number of
599 fundamental types that it knows how to construct, which is the
600 union of all types that it knows how to construct for all languages
601 that it knows about. These are enumerated in gdbtypes.h.
603 As an example, assume we find a DIE that references a DWARF
604 fundamental type of FT_integer. We first look in the ftypes
605 array to see if we already have such a type, indexed by the
606 gdb internal value of FT_INTEGER. If so, we simply return a
607 pointer to that type. If not, then we ask an appropriate
608 language dependent routine to create a type FT_INTEGER, using
609 defaults reasonable for the current target machine, and install
610 that type in ftypes for future reference.
614 Pointer to a fundamental type.
619 dwarf_fundamental_type (objfile, typeid)
620 struct objfile *objfile;
623 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
625 error ("internal error - invalid fundamental type id %d", typeid);
628 /* Look for this particular type in the fundamental type vector. If one is
629 not found, create and install one appropriate for the current language
630 and the current target machine. */
632 if (ftypes[typeid] == NULL)
634 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
637 return (ftypes[typeid]);
644 set_cu_language -- set local copy of language for compilation unit
649 set_cu_language (struct dieinfo *dip)
653 Decode the language attribute for a compilation unit DIE and
654 remember what the language was. We use this at various times
655 when processing DIE's for a given compilation unit.
664 set_cu_language (dip)
667 switch (dip -> at_language)
671 cu_language = language_c;
673 case LANG_C_PLUS_PLUS:
674 cu_language = language_cplus;
677 cu_language = language_chill;
680 cu_language = language_m2;
688 /* We don't know anything special about these yet. */
689 cu_language = language_unknown;
692 /* If no at_language, try to deduce one from the filename */
693 cu_language = deduce_language_from_filename (dip -> at_name);
696 cu_language_defn = language_def (cu_language);
703 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
707 void dwarf_build_psymtabs (struct objfile *objfile,
708 struct section_offsets *section_offsets,
709 int mainline, file_ptr dbfoff, unsigned int dbfsize,
710 file_ptr lnoffset, unsigned int lnsize)
714 This function is called upon to build partial symtabs from files
715 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
717 It is passed a bfd* containing the DIES
718 and line number information, the corresponding filename for that
719 file, a base address for relocating the symbols, a flag indicating
720 whether or not this debugging information is from a "main symbol
721 table" rather than a shared library or dynamically linked file,
722 and file offset/size pairs for the DIE information and line number
732 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
734 struct objfile *objfile;
735 struct section_offsets *section_offsets;
738 unsigned int dbfsize;
742 bfd *abfd = objfile->obfd;
743 struct cleanup *back_to;
745 current_objfile = objfile;
747 dbbase = xmalloc (dbsize);
749 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
750 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
753 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
755 back_to = make_cleanup (free, dbbase);
757 /* If we are reinitializing, or if we have never loaded syms yet, init.
758 Since we have no idea how many DIES we are looking at, we just guess
759 some arbitrary value. */
761 if (mainline || objfile -> global_psymbols.size == 0 ||
762 objfile -> static_psymbols.size == 0)
764 init_psymbol_list (objfile, 1024);
767 /* Save the relocation factor where everybody can see it. */
769 base_section_offsets = section_offsets;
770 baseaddr = ANOFFSET (section_offsets, 0);
772 /* Follow the compilation unit sibling chain, building a partial symbol
773 table entry for each one. Save enough information about each compilation
774 unit to locate the full DWARF information later. */
776 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
778 do_cleanups (back_to);
779 current_objfile = NULL;
787 record_minimal_symbol -- add entry to gdb's minimal symbol table
791 static void record_minimal_symbol (char *name, CORE_ADDR address,
792 enum minimal_symbol_type ms_type,
793 struct objfile *objfile)
797 Given a pointer to the name of a symbol that should be added to the
798 minimal symbol table, and the address associated with that
799 symbol, records this information for later use in building the
800 minimal symbol table.
805 record_minimal_symbol (name, address, ms_type, objfile)
808 enum minimal_symbol_type ms_type;
809 struct objfile *objfile;
811 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
812 prim_record_minimal_symbol (name, address, ms_type);
819 read_lexical_block_scope -- process all dies in a lexical block
823 static void read_lexical_block_scope (struct dieinfo *dip,
824 char *thisdie, char *enddie)
828 Process all the DIES contained within a lexical block scope.
829 Start a new scope, process the dies, and then close the scope.
834 read_lexical_block_scope (dip, thisdie, enddie, objfile)
838 struct objfile *objfile;
840 register struct context_stack *new;
842 push_context (0, dip -> at_low_pc);
843 process_dies (thisdie + dip -> die_length, enddie, objfile);
844 new = pop_context ();
845 if (local_symbols != NULL)
847 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
848 dip -> at_high_pc, objfile);
850 local_symbols = new -> locals;
857 lookup_utype -- look up a user defined type from die reference
861 static type *lookup_utype (DIE_REF die_ref)
865 Given a DIE reference, lookup the user defined type associated with
866 that DIE, if it has been registered already. If not registered, then
867 return NULL. Alloc_utype() can be called to register an empty
868 type for this reference, which will be filled in later when the
869 actual referenced DIE is processed.
873 lookup_utype (die_ref)
876 struct type *type = NULL;
879 utypeidx = (die_ref - dbroff) / 4;
880 if ((utypeidx < 0) || (utypeidx >= numutypes))
882 complain (&bad_die_ref, DIE_ID, DIE_NAME);
886 type = *(utypes + utypeidx);
896 alloc_utype -- add a user defined type for die reference
900 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
904 Given a die reference DIE_REF, and a possible pointer to a user
905 defined type UTYPEP, register that this reference has a user
906 defined type and either use the specified type in UTYPEP or
907 make a new empty type that will be filled in later.
909 We should only be called after calling lookup_utype() to verify that
910 there is not currently a type registered for DIE_REF.
914 alloc_utype (die_ref, utypep)
921 utypeidx = (die_ref - dbroff) / 4;
922 typep = utypes + utypeidx;
923 if ((utypeidx < 0) || (utypeidx >= numutypes))
925 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
926 complain (&bad_die_ref, DIE_ID, DIE_NAME);
928 else if (*typep != NULL)
931 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
937 utypep = alloc_type (current_objfile);
948 decode_die_type -- return a type for a specified die
952 static struct type *decode_die_type (struct dieinfo *dip)
956 Given a pointer to a die information structure DIP, decode the
957 type of the die and return a pointer to the decoded type. All
958 dies without specific types default to type int.
962 decode_die_type (dip)
965 struct type *type = NULL;
967 if (dip -> at_fund_type != 0)
969 type = decode_fund_type (dip -> at_fund_type);
971 else if (dip -> at_mod_fund_type != NULL)
973 type = decode_mod_fund_type (dip -> at_mod_fund_type);
975 else if (dip -> at_user_def_type)
977 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
979 type = alloc_utype (dip -> at_user_def_type, NULL);
982 else if (dip -> at_mod_u_d_type)
984 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
988 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
997 struct_type -- compute and return the type for a struct or union
1001 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
1002 char *enddie, struct objfile *objfile)
1006 Given pointer to a die information structure for a die which
1007 defines a union or structure (and MUST define one or the other),
1008 and pointers to the raw die data that define the range of dies which
1009 define the members, compute and return the user defined type for the
1013 static struct type *
1014 struct_type (dip, thisdie, enddie, objfile)
1015 struct dieinfo *dip;
1018 struct objfile *objfile;
1022 struct nextfield *next;
1025 struct nextfield *list = NULL;
1026 struct nextfield *new;
1032 #if !BITS_BIG_ENDIAN
1036 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1038 /* No forward references created an empty type, so install one now */
1039 type = alloc_utype (dip -> die_ref, NULL);
1041 INIT_CPLUS_SPECIFIC(type);
1042 switch (dip -> die_tag)
1044 case TAG_class_type:
1045 TYPE_CODE (type) = TYPE_CODE_CLASS;
1048 case TAG_structure_type:
1049 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1052 case TAG_union_type:
1053 TYPE_CODE (type) = TYPE_CODE_UNION;
1057 /* Should never happen */
1058 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1060 complain (&missing_tag, DIE_ID, DIE_NAME);
1063 /* Some compilers try to be helpful by inventing "fake" names for
1064 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1065 Thanks, but no thanks... */
1066 if (dip -> at_name != NULL
1067 && *dip -> at_name != '~'
1068 && *dip -> at_name != '.')
1070 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1071 tpart1, " ", dip -> at_name);
1073 /* Use whatever size is known. Zero is a valid size. We might however
1074 wish to check has_at_byte_size to make sure that some byte size was
1075 given explicitly, but DWARF doesn't specify that explicit sizes of
1076 zero have to present, so complaining about missing sizes should
1077 probably not be the default. */
1078 TYPE_LENGTH (type) = dip -> at_byte_size;
1079 thisdie += dip -> die_length;
1080 while (thisdie < enddie)
1082 basicdieinfo (&mbr, thisdie, objfile);
1083 completedieinfo (&mbr, objfile);
1084 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1088 else if (mbr.at_sibling != 0)
1090 nextdie = dbbase + mbr.at_sibling - dbroff;
1094 nextdie = thisdie + mbr.die_length;
1096 switch (mbr.die_tag)
1099 /* Get space to record the next field's data. */
1100 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1103 /* Save the data. */
1104 list -> field.name =
1105 obsavestring (mbr.at_name, strlen (mbr.at_name),
1106 &objfile -> type_obstack);
1107 list -> field.type = decode_die_type (&mbr);
1108 list -> field.bitpos = 8 * locval (mbr.at_location);
1109 /* Handle bit fields. */
1110 list -> field.bitsize = mbr.at_bit_size;
1112 /* For big endian bits, the at_bit_offset gives the additional
1113 bit offset from the MSB of the containing anonymous object to
1114 the MSB of the field. We don't have to do anything special
1115 since we don't need to know the size of the anonymous object. */
1116 list -> field.bitpos += mbr.at_bit_offset;
1118 /* For little endian bits, we need to have a non-zero at_bit_size,
1119 so that we know we are in fact dealing with a bitfield. Compute
1120 the bit offset to the MSB of the anonymous object, subtract off
1121 the number of bits from the MSB of the field to the MSB of the
1122 object, and then subtract off the number of bits of the field
1123 itself. The result is the bit offset of the LSB of the field. */
1124 if (mbr.at_bit_size > 0)
1126 if (mbr.has_at_byte_size)
1128 /* The size of the anonymous object containing the bit field
1129 is explicit, so use the indicated size (in bytes). */
1130 anonymous_size = mbr.at_byte_size;
1134 /* The size of the anonymous object containing the bit field
1135 matches the size of an object of the bit field's type.
1136 DWARF allows at_byte_size to be left out in such cases,
1137 as a debug information size optimization. */
1138 anonymous_size = TYPE_LENGTH (list -> field.type);
1140 list -> field.bitpos +=
1141 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1147 process_dies (thisdie, nextdie, objfile);
1152 /* Now create the vector of fields, and record how big it is. We may
1153 not even have any fields, if this DIE was generated due to a reference
1154 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1155 set, which clues gdb in to the fact that it needs to search elsewhere
1156 for the full structure definition. */
1159 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1163 TYPE_NFIELDS (type) = nfields;
1164 TYPE_FIELDS (type) = (struct field *)
1165 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1166 /* Copy the saved-up fields into the field vector. */
1167 for (n = nfields; list; list = list -> next)
1169 TYPE_FIELD (type, --n) = list -> field;
1179 read_structure_scope -- process all dies within struct or union
1183 static void read_structure_scope (struct dieinfo *dip,
1184 char *thisdie, char *enddie, struct objfile *objfile)
1188 Called when we find the DIE that starts a structure or union
1189 scope (definition) to process all dies that define the members
1190 of the structure or union. DIP is a pointer to the die info
1191 struct for the DIE that names the structure or union.
1195 Note that we need to call struct_type regardless of whether or not
1196 the DIE has an at_name attribute, since it might be an anonymous
1197 structure or union. This gets the type entered into our set of
1200 However, if the structure is incomplete (an opaque struct/union)
1201 then suppress creating a symbol table entry for it since gdb only
1202 wants to find the one with the complete definition. Note that if
1203 it is complete, we just call new_symbol, which does it's own
1204 checking about whether the struct/union is anonymous or not (and
1205 suppresses creating a symbol table entry itself).
1210 read_structure_scope (dip, thisdie, enddie, objfile)
1211 struct dieinfo *dip;
1214 struct objfile *objfile;
1219 type = struct_type (dip, thisdie, enddie, objfile);
1220 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1222 sym = new_symbol (dip, objfile);
1225 SYMBOL_TYPE (sym) = type;
1226 if (cu_language == language_cplus)
1228 synthesize_typedef (dip, objfile, type);
1238 decode_array_element_type -- decode type of the array elements
1242 static struct type *decode_array_element_type (char *scan, char *end)
1246 As the last step in decoding the array subscript information for an
1247 array DIE, we need to decode the type of the array elements. We are
1248 passed a pointer to this last part of the subscript information and
1249 must return the appropriate type. If the type attribute is not
1250 recognized, just warn about the problem and return type int.
1253 static struct type *
1254 decode_array_element_type (scan)
1259 unsigned short attribute;
1260 unsigned short fundtype;
1263 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1265 scan += SIZEOF_ATTRIBUTE;
1266 if ((nbytes = attribute_size (attribute)) == -1)
1268 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1269 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1276 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1278 typep = decode_fund_type (fundtype);
1280 case AT_mod_fund_type:
1281 typep = decode_mod_fund_type (scan);
1283 case AT_user_def_type:
1284 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1286 if ((typep = lookup_utype (die_ref)) == NULL)
1288 typep = alloc_utype (die_ref, NULL);
1291 case AT_mod_u_d_type:
1292 typep = decode_mod_u_d_type (scan);
1295 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1296 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1307 decode_subscript_data_item -- decode array subscript item
1311 static struct type *
1312 decode_subscript_data_item (char *scan, char *end)
1316 The array subscripts and the data type of the elements of an
1317 array are described by a list of data items, stored as a block
1318 of contiguous bytes. There is a data item describing each array
1319 dimension, and a final data item describing the element type.
1320 The data items are ordered the same as their appearance in the
1321 source (I.E. leftmost dimension first, next to leftmost second,
1324 The data items describing each array dimension consist of four
1325 parts: (1) a format specifier, (2) type type of the subscript
1326 index, (3) a description of the low bound of the array dimension,
1327 and (4) a description of the high bound of the array dimension.
1329 The last data item is the description of the type of each of
1332 We are passed a pointer to the start of the block of bytes
1333 containing the remaining data items, and a pointer to the first
1334 byte past the data. This function recursively decodes the
1335 remaining data items and returns a type.
1337 If we somehow fail to decode some data, we complain about it
1338 and return a type "array of int".
1341 FIXME: This code only implements the forms currently used
1342 by the AT&T and GNU C compilers.
1344 The end pointer is supplied for error checking, maybe we should
1348 static struct type *
1349 decode_subscript_data_item (scan, end)
1353 struct type *typep = NULL; /* Array type we are building */
1354 struct type *nexttype; /* Type of each element (may be array) */
1355 struct type *indextype; /* Type of this index */
1356 struct type *rangetype;
1357 unsigned int format;
1358 unsigned short fundtype;
1359 unsigned long lowbound;
1360 unsigned long highbound;
1363 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1365 scan += SIZEOF_FORMAT_SPECIFIER;
1369 typep = decode_array_element_type (scan);
1372 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1374 indextype = decode_fund_type (fundtype);
1375 scan += SIZEOF_FMT_FT;
1376 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1377 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1379 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1381 nexttype = decode_subscript_data_item (scan, end);
1382 if (nexttype == NULL)
1384 /* Munged subscript data or other problem, fake it. */
1385 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1386 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1388 rangetype = create_range_type ((struct type *) NULL, indextype,
1389 lowbound, highbound);
1390 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1399 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1400 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1401 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1402 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1405 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1406 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1407 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1408 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1418 dwarf_read_array_type -- read TAG_array_type DIE
1422 static void dwarf_read_array_type (struct dieinfo *dip)
1426 Extract all information from a TAG_array_type DIE and add to
1427 the user defined type vector.
1431 dwarf_read_array_type (dip)
1432 struct dieinfo *dip;
1438 unsigned short blocksz;
1441 if (dip -> at_ordering != ORD_row_major)
1443 /* FIXME: Can gdb even handle column major arrays? */
1444 complain (¬_row_major, DIE_ID, DIE_NAME);
1446 if ((sub = dip -> at_subscr_data) != NULL)
1448 nbytes = attribute_size (AT_subscr_data);
1449 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1450 subend = sub + nbytes + blocksz;
1452 type = decode_subscript_data_item (sub, subend);
1453 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1455 /* Install user defined type that has not been referenced yet. */
1456 alloc_utype (dip -> die_ref, type);
1458 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1460 /* Ick! A forward ref has already generated a blank type in our
1461 slot, and this type probably already has things pointing to it
1462 (which is what caused it to be created in the first place).
1463 If it's just a place holder we can plop our fully defined type
1464 on top of it. We can't recover the space allocated for our
1465 new type since it might be on an obstack, but we could reuse
1466 it if we kept a list of them, but it might not be worth it
1472 /* Double ick! Not only is a type already in our slot, but
1473 someone has decorated it. Complain and leave it alone. */
1474 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1483 read_tag_pointer_type -- read TAG_pointer_type DIE
1487 static void read_tag_pointer_type (struct dieinfo *dip)
1491 Extract all information from a TAG_pointer_type DIE and add to
1492 the user defined type vector.
1496 read_tag_pointer_type (dip)
1497 struct dieinfo *dip;
1502 type = decode_die_type (dip);
1503 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1505 utype = lookup_pointer_type (type);
1506 alloc_utype (dip -> die_ref, utype);
1510 TYPE_TARGET_TYPE (utype) = type;
1511 TYPE_POINTER_TYPE (type) = utype;
1513 /* We assume the machine has only one representation for pointers! */
1514 /* FIXME: This confuses host<->target data representations, and is a
1515 poor assumption besides. */
1517 TYPE_LENGTH (utype) = sizeof (char *);
1518 TYPE_CODE (utype) = TYPE_CODE_PTR;
1526 read_tag_string_type -- read TAG_string_type DIE
1530 static void read_tag_string_type (struct dieinfo *dip)
1534 Extract all information from a TAG_string_type DIE and add to
1535 the user defined type vector. It isn't really a user defined
1536 type, but it behaves like one, with other DIE's using an
1537 AT_user_def_type attribute to reference it.
1541 read_tag_string_type (dip)
1542 struct dieinfo *dip;
1545 struct type *indextype;
1546 struct type *rangetype;
1547 unsigned long lowbound = 0;
1548 unsigned long highbound;
1550 if (dip -> has_at_byte_size)
1552 /* A fixed bounds string */
1553 highbound = dip -> at_byte_size - 1;
1557 /* A varying length string. Stub for now. (FIXME) */
1560 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1561 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1564 utype = lookup_utype (dip -> die_ref);
1567 /* No type defined, go ahead and create a blank one to use. */
1568 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1572 /* Already a type in our slot due to a forward reference. Make sure it
1573 is a blank one. If not, complain and leave it alone. */
1574 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1576 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1581 /* Create the string type using the blank type we either found or created. */
1582 utype = create_string_type (utype, rangetype);
1589 read_subroutine_type -- process TAG_subroutine_type dies
1593 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1598 Handle DIES due to C code like:
1601 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1607 The parameter DIES are currently ignored. See if gdb has a way to
1608 include this info in it's type system, and decode them if so. Is
1609 this what the type structure's "arg_types" field is for? (FIXME)
1613 read_subroutine_type (dip, thisdie, enddie)
1614 struct dieinfo *dip;
1618 struct type *type; /* Type that this function returns */
1619 struct type *ftype; /* Function that returns above type */
1621 /* Decode the type that this subroutine returns */
1623 type = decode_die_type (dip);
1625 /* Check to see if we already have a partially constructed user
1626 defined type for this DIE, from a forward reference. */
1628 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1630 /* This is the first reference to one of these types. Make
1631 a new one and place it in the user defined types. */
1632 ftype = lookup_function_type (type);
1633 alloc_utype (dip -> die_ref, ftype);
1635 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1637 /* We have an existing partially constructed type, so bash it
1638 into the correct type. */
1639 TYPE_TARGET_TYPE (ftype) = type;
1640 TYPE_FUNCTION_TYPE (type) = ftype;
1641 TYPE_LENGTH (ftype) = 1;
1642 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1646 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1654 read_enumeration -- process dies which define an enumeration
1658 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1659 char *enddie, struct objfile *objfile)
1663 Given a pointer to a die which begins an enumeration, process all
1664 the dies that define the members of the enumeration.
1668 Note that we need to call enum_type regardless of whether or not we
1669 have a symbol, since we might have an enum without a tag name (thus
1670 no symbol for the tagname).
1674 read_enumeration (dip, thisdie, enddie, objfile)
1675 struct dieinfo *dip;
1678 struct objfile *objfile;
1683 type = enum_type (dip, objfile);
1684 sym = new_symbol (dip, objfile);
1687 SYMBOL_TYPE (sym) = type;
1688 if (cu_language == language_cplus)
1690 synthesize_typedef (dip, objfile, type);
1699 enum_type -- decode and return a type for an enumeration
1703 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1707 Given a pointer to a die information structure for the die which
1708 starts an enumeration, process all the dies that define the members
1709 of the enumeration and return a type pointer for the enumeration.
1711 At the same time, for each member of the enumeration, create a
1712 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1713 and give it the type of the enumeration itself.
1717 Note that the DWARF specification explicitly mandates that enum
1718 constants occur in reverse order from the source program order,
1719 for "consistency" and because this ordering is easier for many
1720 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1721 Entries). Because gdb wants to see the enum members in program
1722 source order, we have to ensure that the order gets reversed while
1723 we are processing them.
1726 static struct type *
1727 enum_type (dip, objfile)
1728 struct dieinfo *dip;
1729 struct objfile *objfile;
1733 struct nextfield *next;
1736 struct nextfield *list = NULL;
1737 struct nextfield *new;
1742 unsigned short blocksz;
1746 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1748 /* No forward references created an empty type, so install one now */
1749 type = alloc_utype (dip -> die_ref, NULL);
1751 TYPE_CODE (type) = TYPE_CODE_ENUM;
1752 /* Some compilers try to be helpful by inventing "fake" names for
1753 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1754 Thanks, but no thanks... */
1755 if (dip -> at_name != NULL
1756 && *dip -> at_name != '~'
1757 && *dip -> at_name != '.')
1759 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1760 " ", dip -> at_name);
1762 if (dip -> at_byte_size != 0)
1764 TYPE_LENGTH (type) = dip -> at_byte_size;
1766 if ((scan = dip -> at_element_list) != NULL)
1768 if (dip -> short_element_list)
1770 nbytes = attribute_size (AT_short_element_list);
1774 nbytes = attribute_size (AT_element_list);
1776 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1777 listend = scan + nbytes + blocksz;
1779 while (scan < listend)
1781 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1784 list -> field.type = NULL;
1785 list -> field.bitsize = 0;
1786 list -> field.bitpos =
1787 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1789 scan += TARGET_FT_LONG_SIZE (objfile);
1790 list -> field.name = obsavestring (scan, strlen (scan),
1791 &objfile -> type_obstack);
1792 scan += strlen (scan) + 1;
1794 /* Handcraft a new symbol for this enum member. */
1795 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1796 sizeof (struct symbol));
1797 memset (sym, 0, sizeof (struct symbol));
1798 SYMBOL_NAME (sym) = create_name (list -> field.name,
1799 &objfile->symbol_obstack);
1800 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1801 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1802 SYMBOL_CLASS (sym) = LOC_CONST;
1803 SYMBOL_TYPE (sym) = type;
1804 SYMBOL_VALUE (sym) = list -> field.bitpos;
1805 add_symbol_to_list (sym, list_in_scope);
1807 /* Now create the vector of fields, and record how big it is. This is
1808 where we reverse the order, by pulling the members off the list in
1809 reverse order from how they were inserted. If we have no fields
1810 (this is apparently possible in C++) then skip building a field
1814 TYPE_NFIELDS (type) = nfields;
1815 TYPE_FIELDS (type) = (struct field *)
1816 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1817 /* Copy the saved-up fields into the field vector. */
1818 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1820 TYPE_FIELD (type, n++) = list -> field;
1831 read_func_scope -- process all dies within a function scope
1835 Process all dies within a given function scope. We are passed
1836 a die information structure pointer DIP for the die which
1837 starts the function scope, and pointers into the raw die data
1838 that define the dies within the function scope.
1840 For now, we ignore lexical block scopes within the function.
1841 The problem is that AT&T cc does not define a DWARF lexical
1842 block scope for the function itself, while gcc defines a
1843 lexical block scope for the function. We need to think about
1844 how to handle this difference, or if it is even a problem.
1849 read_func_scope (dip, thisdie, enddie, objfile)
1850 struct dieinfo *dip;
1853 struct objfile *objfile;
1855 register struct context_stack *new;
1857 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1858 objfile -> ei.entry_point < dip -> at_high_pc)
1860 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1861 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1863 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1865 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1866 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1868 new = push_context (0, dip -> at_low_pc);
1869 new -> name = new_symbol (dip, objfile);
1870 list_in_scope = &local_symbols;
1871 process_dies (thisdie + dip -> die_length, enddie, objfile);
1872 new = pop_context ();
1873 /* Make a block for the local symbols within. */
1874 finish_block (new -> name, &local_symbols, new -> old_blocks,
1875 new -> start_addr, dip -> at_high_pc, objfile);
1876 list_in_scope = &file_symbols;
1884 handle_producer -- process the AT_producer attribute
1888 Perform any operations that depend on finding a particular
1889 AT_producer attribute.
1894 handle_producer (producer)
1898 /* If this compilation unit was compiled with g++ or gcc, then set the
1899 processing_gcc_compilation flag. */
1901 processing_gcc_compilation =
1902 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1903 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1904 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1906 /* Select a demangling style if we can identify the producer and if
1907 the current style is auto. We leave the current style alone if it
1908 is not auto. We also leave the demangling style alone if we find a
1909 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1911 if (AUTO_DEMANGLING)
1913 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1915 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1917 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1919 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1929 read_file_scope -- process all dies within a file scope
1933 Process all dies within a given file scope. We are passed a
1934 pointer to the die information structure for the die which
1935 starts the file scope, and pointers into the raw die data which
1936 mark the range of dies within the file scope.
1938 When the partial symbol table is built, the file offset for the line
1939 number table for each compilation unit is saved in the partial symbol
1940 table entry for that compilation unit. As the symbols for each
1941 compilation unit are read, the line number table is read into memory
1942 and the variable lnbase is set to point to it. Thus all we have to
1943 do is use lnbase to access the line number table for the current
1948 read_file_scope (dip, thisdie, enddie, objfile)
1949 struct dieinfo *dip;
1952 struct objfile *objfile;
1954 struct cleanup *back_to;
1955 struct symtab *symtab;
1957 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1958 objfile -> ei.entry_point < dip -> at_high_pc)
1960 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1961 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1963 set_cu_language (dip);
1964 if (dip -> at_producer != NULL)
1966 handle_producer (dip -> at_producer);
1968 numutypes = (enddie - thisdie) / 4;
1969 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1970 back_to = make_cleanup (free, utypes);
1971 memset (utypes, 0, numutypes * sizeof (struct type *));
1972 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1973 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1974 decode_line_numbers (lnbase);
1975 process_dies (thisdie + dip -> die_length, enddie, objfile);
1977 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1980 symtab -> language = cu_language;
1982 do_cleanups (back_to);
1991 process_dies -- process a range of DWARF Information Entries
1995 static void process_dies (char *thisdie, char *enddie,
1996 struct objfile *objfile)
2000 Process all DIE's in a specified range. May be (and almost
2001 certainly will be) called recursively.
2005 process_dies (thisdie, enddie, objfile)
2008 struct objfile *objfile;
2013 while (thisdie < enddie)
2015 basicdieinfo (&di, thisdie, objfile);
2016 if (di.die_length < SIZEOF_DIE_LENGTH)
2020 else if (di.die_tag == TAG_padding)
2022 nextdie = thisdie + di.die_length;
2026 completedieinfo (&di, objfile);
2027 if (di.at_sibling != 0)
2029 nextdie = dbbase + di.at_sibling - dbroff;
2033 nextdie = thisdie + di.die_length;
2037 case TAG_compile_unit:
2038 read_file_scope (&di, thisdie, nextdie, objfile);
2040 case TAG_global_subroutine:
2041 case TAG_subroutine:
2042 if (di.has_at_low_pc)
2044 read_func_scope (&di, thisdie, nextdie, objfile);
2047 case TAG_lexical_block:
2048 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2050 case TAG_class_type:
2051 case TAG_structure_type:
2052 case TAG_union_type:
2053 read_structure_scope (&di, thisdie, nextdie, objfile);
2055 case TAG_enumeration_type:
2056 read_enumeration (&di, thisdie, nextdie, objfile);
2058 case TAG_subroutine_type:
2059 read_subroutine_type (&di, thisdie, nextdie);
2061 case TAG_array_type:
2062 dwarf_read_array_type (&di);
2064 case TAG_pointer_type:
2065 read_tag_pointer_type (&di);
2067 case TAG_string_type:
2068 read_tag_string_type (&di);
2071 new_symbol (&di, objfile);
2083 decode_line_numbers -- decode a line number table fragment
2087 static void decode_line_numbers (char *tblscan, char *tblend,
2088 long length, long base, long line, long pc)
2092 Translate the DWARF line number information to gdb form.
2094 The ".line" section contains one or more line number tables, one for
2095 each ".line" section from the objects that were linked.
2097 The AT_stmt_list attribute for each TAG_source_file entry in the
2098 ".debug" section contains the offset into the ".line" section for the
2099 start of the table for that file.
2101 The table itself has the following structure:
2103 <table length><base address><source statement entry>
2104 4 bytes 4 bytes 10 bytes
2106 The table length is the total size of the table, including the 4 bytes
2107 for the length information.
2109 The base address is the address of the first instruction generated
2110 for the source file.
2112 Each source statement entry has the following structure:
2114 <line number><statement position><address delta>
2115 4 bytes 2 bytes 4 bytes
2117 The line number is relative to the start of the file, starting with
2120 The statement position either -1 (0xFFFF) or the number of characters
2121 from the beginning of the line to the beginning of the statement.
2123 The address delta is the difference between the base address and
2124 the address of the first instruction for the statement.
2126 Note that we must copy the bytes from the packed table to our local
2127 variables before attempting to use them, to avoid alignment problems
2128 on some machines, particularly RISC processors.
2132 Does gdb expect the line numbers to be sorted? They are now by
2133 chance/luck, but are not required to be. (FIXME)
2135 The line with number 0 is unused, gdb apparently can discover the
2136 span of the last line some other way. How? (FIXME)
2140 decode_line_numbers (linetable)
2145 unsigned long length;
2150 if (linetable != NULL)
2152 tblscan = tblend = linetable;
2153 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2155 tblscan += SIZEOF_LINETBL_LENGTH;
2157 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2158 GET_UNSIGNED, current_objfile);
2159 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2161 while (tblscan < tblend)
2163 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2165 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2166 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2168 tblscan += SIZEOF_LINETBL_DELTA;
2172 record_line (current_subfile, line, pc);
2182 locval -- compute the value of a location attribute
2186 static int locval (char *loc)
2190 Given pointer to a string of bytes that define a location, compute
2191 the location and return the value.
2193 When computing values involving the current value of the frame pointer,
2194 the value zero is used, which results in a value relative to the frame
2195 pointer, rather than the absolute value. This is what GDB wants
2198 When the result is a register number, the global isreg flag is set,
2199 otherwise it is cleared. This is a kludge until we figure out a better
2200 way to handle the problem. Gdb's design does not mesh well with the
2201 DWARF notion of a location computing interpreter, which is a shame
2202 because the flexibility goes unused.
2206 Note that stack[0] is unused except as a default error return.
2207 Note that stack overflow is not yet handled.
2214 unsigned short nbytes;
2215 unsigned short locsize;
2216 auto long stack[64];
2223 nbytes = attribute_size (AT_location);
2224 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2226 end = loc + locsize;
2231 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2234 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2236 loc += SIZEOF_LOC_ATOM_CODE;
2237 switch (loc_atom_code)
2244 /* push register (number) */
2245 stack[++stacki] = target_to_host (loc, loc_value_size,
2246 GET_UNSIGNED, current_objfile);
2247 loc += loc_value_size;
2251 /* push value of register (number) */
2252 /* Actually, we compute the value as if register has 0 */
2254 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2256 loc += loc_value_size;
2259 stack[++stacki] = 0;
2263 stack[++stacki] = 0;
2265 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
2269 /* push address (relocated address) */
2270 stack[++stacki] = target_to_host (loc, loc_value_size,
2271 GET_UNSIGNED, current_objfile);
2272 loc += loc_value_size;
2275 /* push constant (number) FIXME: signed or unsigned! */
2276 stack[++stacki] = target_to_host (loc, loc_value_size,
2277 GET_SIGNED, current_objfile);
2278 loc += loc_value_size;
2281 /* pop, deref and push 2 bytes (as a long) */
2282 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2284 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2285 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2287 case OP_ADD: /* pop top 2 items, add, push result */
2288 stack[stacki - 1] += stack[stacki];
2293 return (stack[stacki]);
2300 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2304 static void read_ofile_symtab (struct partial_symtab *pst)
2308 When expanding a partial symbol table entry to a full symbol table
2309 entry, this is the function that gets called to read in the symbols
2310 for the compilation unit. A pointer to the newly constructed symtab,
2311 which is now the new first one on the objfile's symtab list, is
2312 stashed in the partial symbol table entry.
2316 read_ofile_symtab (pst)
2317 struct partial_symtab *pst;
2319 struct cleanup *back_to;
2320 unsigned long lnsize;
2323 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2325 abfd = pst -> objfile -> obfd;
2326 current_objfile = pst -> objfile;
2328 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2329 unit, seek to the location in the file, and read in all the DIE's. */
2332 dbsize = DBLENGTH (pst);
2333 dbbase = xmalloc (dbsize);
2334 dbroff = DBROFF(pst);
2335 foffset = DBFOFF(pst) + dbroff;
2336 base_section_offsets = pst->section_offsets;
2337 baseaddr = ANOFFSET (pst->section_offsets, 0);
2338 if (bfd_seek (abfd, foffset, L_SET) ||
2339 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2342 error ("can't read DWARF data");
2344 back_to = make_cleanup (free, dbbase);
2346 /* If there is a line number table associated with this compilation unit
2347 then read the size of this fragment in bytes, from the fragment itself.
2348 Allocate a buffer for the fragment and read it in for future
2354 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2355 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2356 sizeof (lnsizedata)))
2358 error ("can't read DWARF line number table size");
2360 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2361 GET_UNSIGNED, pst -> objfile);
2362 lnbase = xmalloc (lnsize);
2363 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2364 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2367 error ("can't read DWARF line numbers");
2369 make_cleanup (free, lnbase);
2372 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2373 do_cleanups (back_to);
2374 current_objfile = NULL;
2375 pst -> symtab = pst -> objfile -> symtabs;
2382 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2386 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2390 Called once for each partial symbol table entry that needs to be
2391 expanded into a full symbol table entry.
2396 psymtab_to_symtab_1 (pst)
2397 struct partial_symtab *pst;
2400 struct cleanup *old_chain;
2406 warning ("psymtab for %s already read in. Shouldn't happen.",
2411 /* Read in all partial symtabs on which this one is dependent */
2412 for (i = 0; i < pst -> number_of_dependencies; i++)
2414 if (!pst -> dependencies[i] -> readin)
2416 /* Inform about additional files that need to be read in. */
2419 fputs_filtered (" ", stdout);
2421 fputs_filtered ("and ", stdout);
2423 printf_filtered ("%s...",
2424 pst -> dependencies[i] -> filename);
2426 fflush (stdout); /* Flush output */
2428 psymtab_to_symtab_1 (pst -> dependencies[i]);
2431 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2434 old_chain = make_cleanup (really_free_pendings, 0);
2435 read_ofile_symtab (pst);
2438 printf_filtered ("%d DIE's, sorting...", diecount);
2442 sort_symtab_syms (pst -> symtab);
2443 do_cleanups (old_chain);
2454 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2458 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2462 This is the DWARF support entry point for building a full symbol
2463 table entry from a partial symbol table entry. We are passed a
2464 pointer to the partial symbol table entry that needs to be expanded.
2469 dwarf_psymtab_to_symtab (pst)
2470 struct partial_symtab *pst;
2477 warning ("psymtab for %s already read in. Shouldn't happen.",
2482 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2484 /* Print the message now, before starting serious work, to avoid
2485 disconcerting pauses. */
2488 printf_filtered ("Reading in symbols for %s...",
2493 psymtab_to_symtab_1 (pst);
2495 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2496 we need to do an equivalent or is this something peculiar to
2498 Match with global symbols. This only needs to be done once,
2499 after all of the symtabs and dependencies have been read in.
2501 scan_file_globals (pst -> objfile);
2504 /* Finish up the verbose info message. */
2507 printf_filtered ("done.\n");
2519 init_psymbol_list -- initialize storage for partial symbols
2523 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2527 Initializes storage for all of the partial symbols that will be
2528 created by dwarf_build_psymtabs and subsidiaries.
2532 init_psymbol_list (objfile, total_symbols)
2533 struct objfile *objfile;
2536 /* Free any previously allocated psymbol lists. */
2538 if (objfile -> global_psymbols.list)
2540 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2542 if (objfile -> static_psymbols.list)
2544 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2547 /* Current best guess is that there are approximately a twentieth
2548 of the total symbols (in a debugging file) are global or static
2551 objfile -> global_psymbols.size = total_symbols / 10;
2552 objfile -> static_psymbols.size = total_symbols / 10;
2553 objfile -> global_psymbols.next =
2554 objfile -> global_psymbols.list = (struct partial_symbol *)
2555 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2556 * sizeof (struct partial_symbol));
2557 objfile -> static_psymbols.next =
2558 objfile -> static_psymbols.list = (struct partial_symbol *)
2559 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2560 * sizeof (struct partial_symbol));
2567 add_enum_psymbol -- add enumeration members to partial symbol table
2571 Given pointer to a DIE that is known to be for an enumeration,
2572 extract the symbolic names of the enumeration members and add
2573 partial symbols for them.
2577 add_enum_psymbol (dip, objfile)
2578 struct dieinfo *dip;
2579 struct objfile *objfile;
2583 unsigned short blocksz;
2586 if ((scan = dip -> at_element_list) != NULL)
2588 if (dip -> short_element_list)
2590 nbytes = attribute_size (AT_short_element_list);
2594 nbytes = attribute_size (AT_element_list);
2596 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2598 listend = scan + blocksz;
2599 while (scan < listend)
2601 scan += TARGET_FT_LONG_SIZE (objfile);
2602 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2603 objfile -> static_psymbols, 0, cu_language,
2605 scan += strlen (scan) + 1;
2614 add_partial_symbol -- add symbol to partial symbol table
2618 Given a DIE, if it is one of the types that we want to
2619 add to a partial symbol table, finish filling in the die info
2620 and then add a partial symbol table entry for it.
2624 The caller must ensure that the DIE has a valid name attribute.
2628 add_partial_symbol (dip, objfile)
2629 struct dieinfo *dip;
2630 struct objfile *objfile;
2632 switch (dip -> die_tag)
2634 case TAG_global_subroutine:
2635 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2637 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2638 VAR_NAMESPACE, LOC_BLOCK,
2639 objfile -> global_psymbols,
2640 dip -> at_low_pc, cu_language, objfile);
2642 case TAG_global_variable:
2643 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2645 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2646 VAR_NAMESPACE, LOC_STATIC,
2647 objfile -> global_psymbols,
2648 0, cu_language, objfile);
2650 case TAG_subroutine:
2651 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2652 VAR_NAMESPACE, LOC_BLOCK,
2653 objfile -> static_psymbols,
2654 dip -> at_low_pc, cu_language, objfile);
2656 case TAG_local_variable:
2657 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2658 VAR_NAMESPACE, LOC_STATIC,
2659 objfile -> static_psymbols,
2660 0, cu_language, objfile);
2663 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2664 VAR_NAMESPACE, LOC_TYPEDEF,
2665 objfile -> static_psymbols,
2666 0, cu_language, objfile);
2668 case TAG_class_type:
2669 case TAG_structure_type:
2670 case TAG_union_type:
2671 case TAG_enumeration_type:
2672 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2673 STRUCT_NAMESPACE, LOC_TYPEDEF,
2674 objfile -> static_psymbols,
2675 0, cu_language, objfile);
2676 if (cu_language == language_cplus)
2678 /* For C++, these implicitly act as typedefs as well. */
2679 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2680 VAR_NAMESPACE, LOC_TYPEDEF,
2681 objfile -> static_psymbols,
2682 0, cu_language, objfile);
2692 scan_partial_symbols -- scan DIE's within a single compilation unit
2696 Process the DIE's within a single compilation unit, looking for
2697 interesting DIE's that contribute to the partial symbol table entry
2698 for this compilation unit.
2702 There are some DIE's that may appear both at file scope and within
2703 the scope of a function. We are only interested in the ones at file
2704 scope, and the only way to tell them apart is to keep track of the
2705 scope. For example, consider the test case:
2710 for which the relevant DWARF segment has the structure:
2713 0x23 global subrtn sibling 0x9b
2715 fund_type FT_integer
2720 0x23 local var sibling 0x97
2722 fund_type FT_integer
2723 location OP_BASEREG 0xe
2730 0x1d local var sibling 0xb8
2732 fund_type FT_integer
2733 location OP_ADDR 0x800025dc
2738 We want to include the symbol 'i' in the partial symbol table, but
2739 not the symbol 'j'. In essence, we want to skip all the dies within
2740 the scope of a TAG_global_subroutine DIE.
2742 Don't attempt to add anonymous structures or unions since they have
2743 no name. Anonymous enumerations however are processed, because we
2744 want to extract their member names (the check for a tag name is
2747 Also, for variables and subroutines, check that this is the place
2748 where the actual definition occurs, rather than just a reference
2753 scan_partial_symbols (thisdie, enddie, objfile)
2756 struct objfile *objfile;
2762 while (thisdie < enddie)
2764 basicdieinfo (&di, thisdie, objfile);
2765 if (di.die_length < SIZEOF_DIE_LENGTH)
2771 nextdie = thisdie + di.die_length;
2772 /* To avoid getting complete die information for every die, we
2773 only do it (below) for the cases we are interested in. */
2776 case TAG_global_subroutine:
2777 case TAG_subroutine:
2778 completedieinfo (&di, objfile);
2779 if (di.at_name && (di.has_at_low_pc || di.at_location))
2781 add_partial_symbol (&di, objfile);
2782 /* If there is a sibling attribute, adjust the nextdie
2783 pointer to skip the entire scope of the subroutine.
2784 Apply some sanity checking to make sure we don't
2785 overrun or underrun the range of remaining DIE's */
2786 if (di.at_sibling != 0)
2788 temp = dbbase + di.at_sibling - dbroff;
2789 if ((temp < thisdie) || (temp >= enddie))
2791 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2801 case TAG_global_variable:
2802 case TAG_local_variable:
2803 completedieinfo (&di, objfile);
2804 if (di.at_name && (di.has_at_low_pc || di.at_location))
2806 add_partial_symbol (&di, objfile);
2810 case TAG_class_type:
2811 case TAG_structure_type:
2812 case TAG_union_type:
2813 completedieinfo (&di, objfile);
2816 add_partial_symbol (&di, objfile);
2819 case TAG_enumeration_type:
2820 completedieinfo (&di, objfile);
2823 add_partial_symbol (&di, objfile);
2825 add_enum_psymbol (&di, objfile);
2837 scan_compilation_units -- build a psymtab entry for each compilation
2841 This is the top level dwarf parsing routine for building partial
2844 It scans from the beginning of the DWARF table looking for the first
2845 TAG_compile_unit DIE, and then follows the sibling chain to locate
2846 each additional TAG_compile_unit DIE.
2848 For each TAG_compile_unit DIE it creates a partial symtab structure,
2849 calls a subordinate routine to collect all the compilation unit's
2850 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2851 new partial symtab structure into the partial symbol table. It also
2852 records the appropriate information in the partial symbol table entry
2853 to allow the chunk of DIE's and line number table for this compilation
2854 unit to be located and re-read later, to generate a complete symbol
2855 table entry for the compilation unit.
2857 Thus it effectively partitions up a chunk of DIE's for multiple
2858 compilation units into smaller DIE chunks and line number tables,
2859 and associates them with a partial symbol table entry.
2863 If any compilation unit has no line number table associated with
2864 it for some reason (a missing at_stmt_list attribute, rather than
2865 just one with a value of zero, which is valid) then we ensure that
2866 the recorded file offset is zero so that the routine which later
2867 reads line number table fragments knows that there is no fragment
2877 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2882 struct objfile *objfile;
2886 struct partial_symtab *pst;
2889 file_ptr curlnoffset;
2891 while (thisdie < enddie)
2893 basicdieinfo (&di, thisdie, objfile);
2894 if (di.die_length < SIZEOF_DIE_LENGTH)
2898 else if (di.die_tag != TAG_compile_unit)
2900 nextdie = thisdie + di.die_length;
2904 completedieinfo (&di, objfile);
2905 set_cu_language (&di);
2906 if (di.at_sibling != 0)
2908 nextdie = dbbase + di.at_sibling - dbroff;
2912 nextdie = thisdie + di.die_length;
2914 curoff = thisdie - dbbase;
2915 culength = nextdie - thisdie;
2916 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2918 /* First allocate a new partial symbol table structure */
2920 pst = start_psymtab_common (objfile, base_section_offsets,
2921 di.at_name, di.at_low_pc,
2922 objfile -> global_psymbols.next,
2923 objfile -> static_psymbols.next);
2925 pst -> texthigh = di.at_high_pc;
2926 pst -> read_symtab_private = (char *)
2927 obstack_alloc (&objfile -> psymbol_obstack,
2928 sizeof (struct dwfinfo));
2929 DBFOFF (pst) = dbfoff;
2930 DBROFF (pst) = curoff;
2931 DBLENGTH (pst) = culength;
2932 LNFOFF (pst) = curlnoffset;
2933 pst -> read_symtab = dwarf_psymtab_to_symtab;
2935 /* Now look for partial symbols */
2937 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2939 pst -> n_global_syms = objfile -> global_psymbols.next -
2940 (objfile -> global_psymbols.list + pst -> globals_offset);
2941 pst -> n_static_syms = objfile -> static_psymbols.next -
2942 (objfile -> static_psymbols.list + pst -> statics_offset);
2943 sort_pst_symbols (pst);
2944 /* If there is already a psymtab or symtab for a file of this name,
2945 remove it. (If there is a symtab, more drastic things also
2946 happen.) This happens in VxWorks. */
2947 free_named_symtabs (pst -> filename);
2957 new_symbol -- make a symbol table entry for a new symbol
2961 static struct symbol *new_symbol (struct dieinfo *dip,
2962 struct objfile *objfile)
2966 Given a pointer to a DWARF information entry, figure out if we need
2967 to make a symbol table entry for it, and if so, create a new entry
2968 and return a pointer to it.
2971 static struct symbol *
2972 new_symbol (dip, objfile)
2973 struct dieinfo *dip;
2974 struct objfile *objfile;
2976 struct symbol *sym = NULL;
2978 if (dip -> at_name != NULL)
2980 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2981 sizeof (struct symbol));
2982 memset (sym, 0, sizeof (struct symbol));
2983 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2984 &objfile->symbol_obstack);
2985 /* default assumptions */
2986 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2987 SYMBOL_CLASS (sym) = LOC_STATIC;
2988 SYMBOL_TYPE (sym) = decode_die_type (dip);
2990 /* If this symbol is from a C++ compilation, then attempt to cache the
2991 demangled form for future reference. This is a typical time versus
2992 space tradeoff, that was decided in favor of time because it sped up
2993 C++ symbol lookups by a factor of about 20. */
2995 SYMBOL_LANGUAGE (sym) = cu_language;
2996 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2997 switch (dip -> die_tag)
3000 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3001 SYMBOL_CLASS (sym) = LOC_LABEL;
3003 case TAG_global_subroutine:
3004 case TAG_subroutine:
3005 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3006 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
3007 SYMBOL_CLASS (sym) = LOC_BLOCK;
3008 if (dip -> die_tag == TAG_global_subroutine)
3010 add_symbol_to_list (sym, &global_symbols);
3014 add_symbol_to_list (sym, list_in_scope);
3017 case TAG_global_variable:
3018 if (dip -> at_location != NULL)
3020 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3021 add_symbol_to_list (sym, &global_symbols);
3022 SYMBOL_CLASS (sym) = LOC_STATIC;
3023 SYMBOL_VALUE (sym) += baseaddr;
3026 case TAG_local_variable:
3027 if (dip -> at_location != NULL)
3029 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3030 add_symbol_to_list (sym, list_in_scope);
3033 SYMBOL_CLASS (sym) = LOC_REGISTER;
3037 SYMBOL_CLASS (sym) = LOC_LOCAL;
3041 SYMBOL_CLASS (sym) = LOC_STATIC;
3042 SYMBOL_VALUE (sym) += baseaddr;
3046 case TAG_formal_parameter:
3047 if (dip -> at_location != NULL)
3049 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3051 add_symbol_to_list (sym, list_in_scope);
3054 SYMBOL_CLASS (sym) = LOC_REGPARM;
3058 SYMBOL_CLASS (sym) = LOC_ARG;
3061 case TAG_unspecified_parameters:
3062 /* From varargs functions; gdb doesn't seem to have any interest in
3063 this information, so just ignore it for now. (FIXME?) */
3065 case TAG_class_type:
3066 case TAG_structure_type:
3067 case TAG_union_type:
3068 case TAG_enumeration_type:
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3071 add_symbol_to_list (sym, list_in_scope);
3074 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3075 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3076 add_symbol_to_list (sym, list_in_scope);
3079 /* Not a tag we recognize. Hopefully we aren't processing trash
3080 data, but since we must specifically ignore things we don't
3081 recognize, there is nothing else we should do at this point. */
3092 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3096 static void synthesize_typedef (struct dieinfo *dip,
3097 struct objfile *objfile,
3102 Given a pointer to a DWARF information entry, synthesize a typedef
3103 for the name in the DIE, using the specified type.
3105 This is used for C++ class, structs, unions, and enumerations to
3106 set up the tag name as a type.
3111 synthesize_typedef (dip, objfile, type)
3112 struct dieinfo *dip;
3113 struct objfile *objfile;
3116 struct symbol *sym = NULL;
3118 if (dip -> at_name != NULL)
3120 sym = (struct symbol *)
3121 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3122 memset (sym, 0, sizeof (struct symbol));
3123 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3124 &objfile->symbol_obstack);
3125 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3126 SYMBOL_TYPE (sym) = type;
3127 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3128 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3129 add_symbol_to_list (sym, list_in_scope);
3137 decode_mod_fund_type -- decode a modified fundamental type
3141 static struct type *decode_mod_fund_type (char *typedata)
3145 Decode a block of data containing a modified fundamental
3146 type specification. TYPEDATA is a pointer to the block,
3147 which starts with a length containing the size of the rest
3148 of the block. At the end of the block is a fundmental type
3149 code value that gives the fundamental type. Everything
3150 in between are type modifiers.
3152 We simply compute the number of modifiers and call the general
3153 function decode_modified_type to do the actual work.
3156 static struct type *
3157 decode_mod_fund_type (typedata)
3160 struct type *typep = NULL;
3161 unsigned short modcount;
3164 /* Get the total size of the block, exclusive of the size itself */
3166 nbytes = attribute_size (AT_mod_fund_type);
3167 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3170 /* Deduct the size of the fundamental type bytes at the end of the block. */
3172 modcount -= attribute_size (AT_fund_type);
3174 /* Now do the actual decoding */
3176 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3184 decode_mod_u_d_type -- decode a modified user defined type
3188 static struct type *decode_mod_u_d_type (char *typedata)
3192 Decode a block of data containing a modified user defined
3193 type specification. TYPEDATA is a pointer to the block,
3194 which consists of a two byte length, containing the size
3195 of the rest of the block. At the end of the block is a
3196 four byte value that gives a reference to a user defined type.
3197 Everything in between are type modifiers.
3199 We simply compute the number of modifiers and call the general
3200 function decode_modified_type to do the actual work.
3203 static struct type *
3204 decode_mod_u_d_type (typedata)
3207 struct type *typep = NULL;
3208 unsigned short modcount;
3211 /* Get the total size of the block, exclusive of the size itself */
3213 nbytes = attribute_size (AT_mod_u_d_type);
3214 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3217 /* Deduct the size of the reference type bytes at the end of the block. */
3219 modcount -= attribute_size (AT_user_def_type);
3221 /* Now do the actual decoding */
3223 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3231 decode_modified_type -- decode modified user or fundamental type
3235 static struct type *decode_modified_type (char *modifiers,
3236 unsigned short modcount, int mtype)
3240 Decode a modified type, either a modified fundamental type or
3241 a modified user defined type. MODIFIERS is a pointer to the
3242 block of bytes that define MODCOUNT modifiers. Immediately
3243 following the last modifier is a short containing the fundamental
3244 type or a long containing the reference to the user defined
3245 type. Which one is determined by MTYPE, which is either
3246 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3247 type we are generating.
3249 We call ourself recursively to generate each modified type,`
3250 until MODCOUNT reaches zero, at which point we have consumed
3251 all the modifiers and generate either the fundamental type or
3252 user defined type. When the recursion unwinds, each modifier
3253 is applied in turn to generate the full modified type.
3257 If we find a modifier that we don't recognize, and it is not one
3258 of those reserved for application specific use, then we issue a
3259 warning and simply ignore the modifier.
3263 We currently ignore MOD_const and MOD_volatile. (FIXME)
3267 static struct type *
3268 decode_modified_type (modifiers, modcount, mtype)
3270 unsigned int modcount;
3273 struct type *typep = NULL;
3274 unsigned short fundtype;
3283 case AT_mod_fund_type:
3284 nbytes = attribute_size (AT_fund_type);
3285 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3287 typep = decode_fund_type (fundtype);
3289 case AT_mod_u_d_type:
3290 nbytes = attribute_size (AT_user_def_type);
3291 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3293 if ((typep = lookup_utype (die_ref)) == NULL)
3295 typep = alloc_utype (die_ref, NULL);
3299 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3300 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3306 modifier = *modifiers++;
3307 typep = decode_modified_type (modifiers, --modcount, mtype);
3310 case MOD_pointer_to:
3311 typep = lookup_pointer_type (typep);
3313 case MOD_reference_to:
3314 typep = lookup_reference_type (typep);
3317 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3320 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3323 if (!(MOD_lo_user <= (unsigned char) modifier
3324 && (unsigned char) modifier <= MOD_hi_user))
3326 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3338 decode_fund_type -- translate basic DWARF type to gdb base type
3342 Given an integer that is one of the fundamental DWARF types,
3343 translate it to one of the basic internal gdb types and return
3344 a pointer to the appropriate gdb type (a "struct type *").
3348 For robustness, if we are asked to translate a fundamental
3349 type that we are unprepared to deal with, we return int so
3350 callers can always depend upon a valid type being returned,
3351 and so gdb may at least do something reasonable by default.
3352 If the type is not in the range of those types defined as
3353 application specific types, we also issue a warning.
3356 static struct type *
3357 decode_fund_type (fundtype)
3358 unsigned int fundtype;
3360 struct type *typep = NULL;
3366 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3369 case FT_boolean: /* Was FT_set in AT&T version */
3370 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3373 case FT_pointer: /* (void *) */
3374 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3375 typep = lookup_pointer_type (typep);
3379 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3382 case FT_signed_char:
3383 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3386 case FT_unsigned_char:
3387 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3391 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3394 case FT_signed_short:
3395 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3398 case FT_unsigned_short:
3399 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3403 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3406 case FT_signed_integer:
3407 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3410 case FT_unsigned_integer:
3411 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3415 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3418 case FT_signed_long:
3419 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3422 case FT_unsigned_long:
3423 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3427 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3430 case FT_signed_long_long:
3431 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3434 case FT_unsigned_long_long:
3435 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3439 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3442 case FT_dbl_prec_float:
3443 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3446 case FT_ext_prec_float:
3447 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3451 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3454 case FT_dbl_prec_complex:
3455 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3458 case FT_ext_prec_complex:
3459 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3466 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3467 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3469 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3480 create_name -- allocate a fresh copy of a string on an obstack
3484 Given a pointer to a string and a pointer to an obstack, allocates
3485 a fresh copy of the string on the specified obstack.
3490 create_name (name, obstackp)
3492 struct obstack *obstackp;
3497 length = strlen (name) + 1;
3498 newname = (char *) obstack_alloc (obstackp, length);
3499 strcpy (newname, name);
3507 basicdieinfo -- extract the minimal die info from raw die data
3511 void basicdieinfo (char *diep, struct dieinfo *dip,
3512 struct objfile *objfile)
3516 Given a pointer to raw DIE data, and a pointer to an instance of a
3517 die info structure, this function extracts the basic information
3518 from the DIE data required to continue processing this DIE, along
3519 with some bookkeeping information about the DIE.
3521 The information we absolutely must have includes the DIE tag,
3522 and the DIE length. If we need the sibling reference, then we
3523 will have to call completedieinfo() to process all the remaining
3526 Note that since there is no guarantee that the data is properly
3527 aligned in memory for the type of access required (indirection
3528 through anything other than a char pointer), and there is no
3529 guarantee that it is in the same byte order as the gdb host,
3530 we call a function which deals with both alignment and byte
3531 swapping issues. Possibly inefficient, but quite portable.
3533 We also take care of some other basic things at this point, such
3534 as ensuring that the instance of the die info structure starts
3535 out completely zero'd and that curdie is initialized for use
3536 in error reporting if we have a problem with the current die.
3540 All DIE's must have at least a valid length, thus the minimum
3541 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3542 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3543 are forced to be TAG_padding DIES.
3545 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3546 that if a padding DIE is used for alignment and the amount needed is
3547 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3548 enough to align to the next alignment boundry.
3550 We do some basic sanity checking here, such as verifying that the
3551 length of the die would not cause it to overrun the recorded end of
3552 the buffer holding the DIE info. If we find a DIE that is either
3553 too small or too large, we force it's length to zero which should
3554 cause the caller to take appropriate action.
3558 basicdieinfo (dip, diep, objfile)
3559 struct dieinfo *dip;
3561 struct objfile *objfile;
3564 memset (dip, 0, sizeof (struct dieinfo));
3566 dip -> die_ref = dbroff + (diep - dbbase);
3567 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3569 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3570 ((diep + dip -> die_length) > (dbbase + dbsize)))
3572 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3573 dip -> die_length = 0;
3575 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3577 dip -> die_tag = TAG_padding;
3581 diep += SIZEOF_DIE_LENGTH;
3582 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3591 completedieinfo -- finish reading the information for a given DIE
3595 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3599 Given a pointer to an already partially initialized die info structure,
3600 scan the raw DIE data and finish filling in the die info structure
3601 from the various attributes found.
3603 Note that since there is no guarantee that the data is properly
3604 aligned in memory for the type of access required (indirection
3605 through anything other than a char pointer), and there is no
3606 guarantee that it is in the same byte order as the gdb host,
3607 we call a function which deals with both alignment and byte
3608 swapping issues. Possibly inefficient, but quite portable.
3612 Each time we are called, we increment the diecount variable, which
3613 keeps an approximate count of the number of dies processed for
3614 each compilation unit. This information is presented to the user
3615 if the info_verbose flag is set.
3620 completedieinfo (dip, objfile)
3621 struct dieinfo *dip;
3622 struct objfile *objfile;
3624 char *diep; /* Current pointer into raw DIE data */
3625 char *end; /* Terminate DIE scan here */
3626 unsigned short attr; /* Current attribute being scanned */
3627 unsigned short form; /* Form of the attribute */
3628 int nbytes; /* Size of next field to read */
3632 end = diep + dip -> die_length;
3633 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3636 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3637 diep += SIZEOF_ATTRIBUTE;
3638 if ((nbytes = attribute_size (attr)) == -1)
3640 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3647 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3663 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 dip -> has_at_stmt_list = 1;
3668 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3670 dip -> at_low_pc += baseaddr;
3671 dip -> has_at_low_pc = 1;
3674 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3676 dip -> at_high_pc += baseaddr;
3679 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3682 case AT_user_def_type:
3683 dip -> at_user_def_type = target_to_host (diep, nbytes,
3684 GET_UNSIGNED, objfile);
3687 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3689 dip -> has_at_byte_size = 1;
3692 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3696 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3700 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3704 dip -> at_location = diep;
3706 case AT_mod_fund_type:
3707 dip -> at_mod_fund_type = diep;
3709 case AT_subscr_data:
3710 dip -> at_subscr_data = diep;
3712 case AT_mod_u_d_type:
3713 dip -> at_mod_u_d_type = diep;
3715 case AT_element_list:
3716 dip -> at_element_list = diep;
3717 dip -> short_element_list = 0;
3719 case AT_short_element_list:
3720 dip -> at_element_list = diep;
3721 dip -> short_element_list = 1;
3723 case AT_discr_value:
3724 dip -> at_discr_value = diep;
3726 case AT_string_length:
3727 dip -> at_string_length = diep;
3730 dip -> at_name = diep;
3733 /* For now, ignore any "hostname:" portion, since gdb doesn't
3734 know how to deal with it. (FIXME). */
3735 dip -> at_comp_dir = strrchr (diep, ':');
3736 if (dip -> at_comp_dir != NULL)
3738 dip -> at_comp_dir++;
3742 dip -> at_comp_dir = diep;
3746 dip -> at_producer = diep;
3748 case AT_start_scope:
3749 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3752 case AT_stride_size:
3753 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3757 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3761 dip -> at_prototyped = diep;
3764 /* Found an attribute that we are unprepared to handle. However
3765 it is specifically one of the design goals of DWARF that
3766 consumers should ignore unknown attributes. As long as the
3767 form is one that we recognize (so we know how to skip it),
3768 we can just ignore the unknown attribute. */
3771 form = FORM_FROM_ATTR (attr);
3785 diep += TARGET_FT_POINTER_SIZE (objfile);
3788 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3791 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3794 diep += strlen (diep) + 1;
3797 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3808 target_to_host -- swap in target data to host
3812 target_to_host (char *from, int nbytes, int signextend,
3813 struct objfile *objfile)
3817 Given pointer to data in target format in FROM, a byte count for
3818 the size of the data in NBYTES, a flag indicating whether or not
3819 the data is signed in SIGNEXTEND, and a pointer to the current
3820 objfile in OBJFILE, convert the data to host format and return
3821 the converted value.
3825 FIXME: If we read data that is known to be signed, and expect to
3826 use it as signed data, then we need to explicitly sign extend the
3827 result until the bfd library is able to do this for us.
3831 static unsigned long
3832 target_to_host (from, nbytes, signextend, objfile)
3835 int signextend; /* FIXME: Unused */
3836 struct objfile *objfile;
3838 unsigned long rtnval;
3843 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3846 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3849 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3852 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3855 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3866 attribute_size -- compute size of data for a DWARF attribute
3870 static int attribute_size (unsigned int attr)
3874 Given a DWARF attribute in ATTR, compute the size of the first
3875 piece of data associated with this attribute and return that
3878 Returns -1 for unrecognized attributes.
3883 attribute_size (attr)
3886 int nbytes; /* Size of next data for this attribute */
3887 unsigned short form; /* Form of the attribute */
3889 form = FORM_FROM_ATTR (attr);
3892 case FORM_STRING: /* A variable length field is next */
3895 case FORM_DATA2: /* Next 2 byte field is the data itself */
3896 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3899 case FORM_DATA4: /* Next 4 byte field is the data itself */
3900 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3901 case FORM_REF: /* Next 4 byte field is a DIE offset */
3904 case FORM_DATA8: /* Next 8 byte field is the data itself */
3907 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3908 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3911 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);