1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
46 #include "elf/dwarf.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "complaints.h"
54 #include "gdb_string.h"
60 /* Some macros to provide DIE info for complaints. */
62 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
63 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
65 /* Complaints that can be issued during DWARF debug info reading. */
67 struct complaint no_bfd_get_N =
69 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
72 struct complaint malformed_die =
74 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
77 struct complaint bad_die_ref =
79 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
82 struct complaint unknown_attribute_form =
84 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
87 struct complaint unknown_attribute_length =
89 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
92 struct complaint unexpected_fund_type =
94 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
97 struct complaint unknown_type_modifier =
99 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
102 struct complaint volatile_ignored =
104 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
107 struct complaint const_ignored =
109 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
112 struct complaint botched_modified_type =
114 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
117 struct complaint op_deref2 =
119 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
122 struct complaint op_deref4 =
124 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
127 struct complaint basereg_not_handled =
129 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
132 struct complaint dup_user_type_allocation =
134 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
137 struct complaint dup_user_type_definition =
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
142 struct complaint missing_tag =
144 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
147 struct complaint bad_array_element_type =
149 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
152 struct complaint subscript_data_items =
154 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
157 struct complaint unhandled_array_subscript_format =
159 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
162 struct complaint unknown_array_subscript_format =
164 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
167 struct complaint not_row_major =
169 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
172 typedef unsigned int DIE_REF; /* Reference to a DIE */
175 #define GCC_PRODUCER "GNU C "
178 #ifndef GPLUS_PRODUCER
179 #define GPLUS_PRODUCER "GNU C++ "
183 #define LCC_PRODUCER "NCR C/C++"
186 #ifndef CHILL_PRODUCER
187 #define CHILL_PRODUCER "GNU Chill "
190 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
191 #ifndef DWARF_REG_TO_REGNUM
192 #define DWARF_REG_TO_REGNUM(num) (num)
195 /* Flags to target_to_host() that tell whether or not the data object is
196 expected to be signed. Used, for example, when fetching a signed
197 integer in the target environment which is used as a signed integer
198 in the host environment, and the two environments have different sized
199 ints. In this case, *somebody* has to sign extend the smaller sized
202 #define GET_UNSIGNED 0 /* No sign extension required */
203 #define GET_SIGNED 1 /* Sign extension required */
205 /* Defines for things which are specified in the document "DWARF Debugging
206 Information Format" published by UNIX International, Programming Languages
207 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
209 #define SIZEOF_DIE_LENGTH 4
210 #define SIZEOF_DIE_TAG 2
211 #define SIZEOF_ATTRIBUTE 2
212 #define SIZEOF_FORMAT_SPECIFIER 1
213 #define SIZEOF_FMT_FT 2
214 #define SIZEOF_LINETBL_LENGTH 4
215 #define SIZEOF_LINETBL_LINENO 4
216 #define SIZEOF_LINETBL_STMT 2
217 #define SIZEOF_LINETBL_DELTA 4
218 #define SIZEOF_LOC_ATOM_CODE 1
220 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
222 /* Macros that return the sizes of various types of data in the target
225 FIXME: Currently these are just compile time constants (as they are in
226 other parts of gdb as well). They need to be able to get the right size
227 either from the bfd or possibly from the DWARF info. It would be nice if
228 the DWARF producer inserted DIES that describe the fundamental types in
229 the target environment into the DWARF info, similar to the way dbx stabs
230 producers produce information about their fundamental types. */
232 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
233 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
235 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
236 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
237 However, the Issue 2 DWARF specification from AT&T defines it as
238 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
239 For backwards compatibility with the AT&T compiler produced executables
240 we define AT_short_element_list for this variant. */
242 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
244 /* External variables referenced. */
246 extern int info_verbose; /* From main.c; nonzero => verbose */
247 extern char *warning_pre_print; /* From utils.c */
249 /* The DWARF debugging information consists of two major pieces,
250 one is a block of DWARF Information Entries (DIE's) and the other
251 is a line number table. The "struct dieinfo" structure contains
252 the information for a single DIE, the one currently being processed.
254 In order to make it easier to randomly access the attribute fields
255 of the current DIE, which are specifically unordered within the DIE,
256 each DIE is scanned and an instance of the "struct dieinfo"
257 structure is initialized.
259 Initialization is done in two levels. The first, done by basicdieinfo(),
260 just initializes those fields that are vital to deciding whether or not
261 to use this DIE, how to skip past it, etc. The second, done by the
262 function completedieinfo(), fills in the rest of the information.
264 Attributes which have block forms are not interpreted at the time
265 the DIE is scanned, instead we just save pointers to the start
266 of their value fields.
268 Some fields have a flag <name>_p that is set when the value of the
269 field is valid (I.E. we found a matching attribute in the DIE). Since
270 we may want to test for the presence of some attributes in the DIE,
271 such as AT_low_pc, without restricting the values of the field,
272 we need someway to note that we found such an attribute.
279 char * die; /* Pointer to the raw DIE data */
280 unsigned long die_length; /* Length of the raw DIE data */
281 DIE_REF die_ref; /* Offset of this DIE */
282 unsigned short die_tag; /* Tag for this DIE */
283 unsigned long at_padding;
284 unsigned long at_sibling;
287 unsigned short at_fund_type;
288 BLOCK * at_mod_fund_type;
289 unsigned long at_user_def_type;
290 BLOCK * at_mod_u_d_type;
291 unsigned short at_ordering;
292 BLOCK * at_subscr_data;
293 unsigned long at_byte_size;
294 unsigned short at_bit_offset;
295 unsigned long at_bit_size;
296 BLOCK * at_element_list;
297 unsigned long at_stmt_list;
299 CORE_ADDR at_high_pc;
300 unsigned long at_language;
301 unsigned long at_member;
302 unsigned long at_discr;
303 BLOCK * at_discr_value;
304 BLOCK * at_string_length;
307 unsigned long at_start_scope;
308 unsigned long at_stride_size;
309 unsigned long at_src_info;
310 char * at_prototyped;
311 unsigned int has_at_low_pc:1;
312 unsigned int has_at_stmt_list:1;
313 unsigned int has_at_byte_size:1;
314 unsigned int short_element_list:1;
317 static int diecount; /* Approximate count of dies for compilation unit */
318 static struct dieinfo *curdie; /* For warnings and such */
320 static char *dbbase; /* Base pointer to dwarf info */
321 static int dbsize; /* Size of dwarf info in bytes */
322 static int dbroff; /* Relative offset from start of .debug section */
323 static char *lnbase; /* Base pointer to line section */
324 static int isreg; /* Kludge to identify register variables */
325 static int optimized_out; /* Kludge to identify optimized out variables */
326 /* Kludge to identify basereg references. Nonzero if we have an offset
327 relative to a basereg. */
329 /* Which base register is it relative to? */
332 /* This value is added to each symbol value. FIXME: Generalize to
333 the section_offsets structure used by dbxread (once this is done,
334 pass the appropriate section number to end_symtab). */
335 static CORE_ADDR baseaddr; /* Add to each symbol value */
337 /* The section offsets used in the current psymtab or symtab. FIXME,
338 only used to pass one value (baseaddr) at the moment. */
339 static struct section_offsets *base_section_offsets;
341 /* We put a pointer to this structure in the read_symtab_private field
345 /* Always the absolute file offset to the start of the ".debug"
346 section for the file containing the DIE's being accessed. */
348 /* Relative offset from the start of the ".debug" section to the
349 first DIE to be accessed. When building the partial symbol
350 table, this value will be zero since we are accessing the
351 entire ".debug" section. When expanding a partial symbol
352 table entry, this value will be the offset to the first
353 DIE for the compilation unit containing the symbol that
354 triggers the expansion. */
356 /* The size of the chunk of DIE's being examined, in bytes. */
358 /* The absolute file offset to the line table fragment. Ignored
359 when building partial symbol tables, but used when expanding
360 them, and contains the absolute file offset to the fragment
361 of the ".line" section containing the line numbers for the
362 current compilation unit. */
366 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
367 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
368 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
369 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
371 /* The generic symbol table building routines have separate lists for
372 file scope symbols and all all other scopes (local scopes). So
373 we need to select the right one to pass to add_symbol_to_list().
374 We do it by keeping a pointer to the correct list in list_in_scope.
376 FIXME: The original dwarf code just treated the file scope as the first
377 local scope, and all other local scopes as nested local scopes, and worked
378 fine. Check to see if we really need to distinguish these in buildsym.c */
380 struct pending **list_in_scope = &file_symbols;
382 /* DIES which have user defined types or modified user defined types refer to
383 other DIES for the type information. Thus we need to associate the offset
384 of a DIE for a user defined type with a pointer to the type information.
386 Originally this was done using a simple but expensive algorithm, with an
387 array of unsorted structures, each containing an offset/type-pointer pair.
388 This array was scanned linearly each time a lookup was done. The result
389 was that gdb was spending over half it's startup time munging through this
390 array of pointers looking for a structure that had the right offset member.
392 The second attempt used the same array of structures, but the array was
393 sorted using qsort each time a new offset/type was recorded, and a binary
394 search was used to find the type pointer for a given DIE offset. This was
395 even slower, due to the overhead of sorting the array each time a new
396 offset/type pair was entered.
398 The third attempt uses a fixed size array of type pointers, indexed by a
399 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
400 we can divide any DIE offset by 4 to obtain a unique index into this fixed
401 size array. Since each element is a 4 byte pointer, it takes exactly as
402 much memory to hold this array as to hold the DWARF info for a given
403 compilation unit. But it gets freed as soon as we are done with it.
404 This has worked well in practice, as a reasonable tradeoff between memory
405 consumption and speed, without having to resort to much more complicated
408 static struct type **utypes; /* Pointer to array of user type pointers */
409 static int numutypes; /* Max number of user type pointers */
411 /* Maintain an array of referenced fundamental types for the current
412 compilation unit being read. For DWARF version 1, we have to construct
413 the fundamental types on the fly, since no information about the
414 fundamental types is supplied. Each such fundamental type is created by
415 calling a language dependent routine to create the type, and then a
416 pointer to that type is then placed in the array at the index specified
417 by it's FT_<TYPENAME> value. The array has a fixed size set by the
418 FT_NUM_MEMBERS compile time constant, which is the number of predefined
419 fundamental types gdb knows how to construct. */
421 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
423 /* Record the language for the compilation unit which is currently being
424 processed. We know it once we have seen the TAG_compile_unit DIE,
425 and we need it while processing the DIE's for that compilation unit.
426 It is eventually saved in the symtab structure, but we don't finalize
427 the symtab struct until we have processed all the DIE's for the
428 compilation unit. We also need to get and save a pointer to the
429 language struct for this language, so we can call the language
430 dependent routines for doing things such as creating fundamental
433 static enum language cu_language;
434 static const struct language_defn *cu_language_defn;
436 /* Forward declarations of static functions so we don't have to worry
437 about ordering within this file. */
440 attribute_size PARAMS ((unsigned int));
443 target_to_host PARAMS ((char *, int, int, struct objfile *));
446 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
449 handle_producer PARAMS ((char *));
452 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
455 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
458 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
462 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
465 scan_compilation_units PARAMS ((char *, char *, file_ptr,
466 file_ptr, struct objfile *));
469 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
472 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
475 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
478 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
481 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
484 read_ofile_symtab PARAMS ((struct partial_symtab *));
487 process_dies PARAMS ((char *, char *, struct objfile *));
490 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
494 decode_array_element_type PARAMS ((char *));
497 decode_subscript_data_item PARAMS ((char *, char *));
500 dwarf_read_array_type PARAMS ((struct dieinfo *));
503 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
506 read_tag_string_type PARAMS ((struct dieinfo *dip));
509 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
512 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
515 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
518 enum_type PARAMS ((struct dieinfo *, struct objfile *));
521 decode_line_numbers PARAMS ((char *));
524 decode_die_type PARAMS ((struct dieinfo *));
527 decode_mod_fund_type PARAMS ((char *));
530 decode_mod_u_d_type PARAMS ((char *));
533 decode_modified_type PARAMS ((char *, unsigned int, int));
536 decode_fund_type PARAMS ((unsigned int));
539 create_name PARAMS ((char *, struct obstack *));
542 lookup_utype PARAMS ((DIE_REF));
545 alloc_utype PARAMS ((DIE_REF, struct type *));
547 static struct symbol *
548 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
551 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
555 locval PARAMS ((char *));
558 set_cu_language PARAMS ((struct dieinfo *));
561 dwarf_fundamental_type PARAMS ((struct objfile *, int));
568 dwarf_fundamental_type -- lookup or create a fundamental type
573 dwarf_fundamental_type (struct objfile *objfile, int typeid)
577 DWARF version 1 doesn't supply any fundamental type information,
578 so gdb has to construct such types. It has a fixed number of
579 fundamental types that it knows how to construct, which is the
580 union of all types that it knows how to construct for all languages
581 that it knows about. These are enumerated in gdbtypes.h.
583 As an example, assume we find a DIE that references a DWARF
584 fundamental type of FT_integer. We first look in the ftypes
585 array to see if we already have such a type, indexed by the
586 gdb internal value of FT_INTEGER. If so, we simply return a
587 pointer to that type. If not, then we ask an appropriate
588 language dependent routine to create a type FT_INTEGER, using
589 defaults reasonable for the current target machine, and install
590 that type in ftypes for future reference.
594 Pointer to a fundamental type.
599 dwarf_fundamental_type (objfile, typeid)
600 struct objfile *objfile;
603 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
605 error ("internal error - invalid fundamental type id %d", typeid);
608 /* Look for this particular type in the fundamental type vector. If one is
609 not found, create and install one appropriate for the current language
610 and the current target machine. */
612 if (ftypes[typeid] == NULL)
614 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
617 return (ftypes[typeid]);
624 set_cu_language -- set local copy of language for compilation unit
629 set_cu_language (struct dieinfo *dip)
633 Decode the language attribute for a compilation unit DIE and
634 remember what the language was. We use this at various times
635 when processing DIE's for a given compilation unit.
644 set_cu_language (dip)
647 switch (dip -> at_language)
651 cu_language = language_c;
653 case LANG_C_PLUS_PLUS:
654 cu_language = language_cplus;
657 cu_language = language_chill;
660 cu_language = language_m2;
668 /* We don't know anything special about these yet. */
669 cu_language = language_unknown;
672 /* If no at_language, try to deduce one from the filename */
673 cu_language = deduce_language_from_filename (dip -> at_name);
676 cu_language_defn = language_def (cu_language);
683 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
687 void dwarf_build_psymtabs (struct objfile *objfile,
688 struct section_offsets *section_offsets,
689 int mainline, file_ptr dbfoff, unsigned int dbfsize,
690 file_ptr lnoffset, unsigned int lnsize)
694 This function is called upon to build partial symtabs from files
695 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
697 It is passed a bfd* containing the DIES
698 and line number information, the corresponding filename for that
699 file, a base address for relocating the symbols, a flag indicating
700 whether or not this debugging information is from a "main symbol
701 table" rather than a shared library or dynamically linked file,
702 and file offset/size pairs for the DIE information and line number
712 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
714 struct objfile *objfile;
715 struct section_offsets *section_offsets;
718 unsigned int dbfsize;
722 bfd *abfd = objfile->obfd;
723 struct cleanup *back_to;
725 current_objfile = objfile;
727 dbbase = xmalloc (dbsize);
729 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
730 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
733 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
735 back_to = make_cleanup (free, dbbase);
737 /* If we are reinitializing, or if we have never loaded syms yet, init.
738 Since we have no idea how many DIES we are looking at, we just guess
739 some arbitrary value. */
741 if (mainline || objfile -> global_psymbols.size == 0 ||
742 objfile -> static_psymbols.size == 0)
744 init_psymbol_list (objfile, 1024);
747 /* Save the relocation factor where everybody can see it. */
749 base_section_offsets = section_offsets;
750 baseaddr = ANOFFSET (section_offsets, 0);
752 /* Follow the compilation unit sibling chain, building a partial symbol
753 table entry for each one. Save enough information about each compilation
754 unit to locate the full DWARF information later. */
756 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
758 do_cleanups (back_to);
759 current_objfile = NULL;
766 read_lexical_block_scope -- process all dies in a lexical block
770 static void read_lexical_block_scope (struct dieinfo *dip,
771 char *thisdie, char *enddie)
775 Process all the DIES contained within a lexical block scope.
776 Start a new scope, process the dies, and then close the scope.
781 read_lexical_block_scope (dip, thisdie, enddie, objfile)
785 struct objfile *objfile;
787 register struct context_stack *new;
789 push_context (0, dip -> at_low_pc);
790 process_dies (thisdie + dip -> die_length, enddie, objfile);
791 new = pop_context ();
792 if (local_symbols != NULL)
794 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
795 dip -> at_high_pc, objfile);
797 local_symbols = new -> locals;
804 lookup_utype -- look up a user defined type from die reference
808 static type *lookup_utype (DIE_REF die_ref)
812 Given a DIE reference, lookup the user defined type associated with
813 that DIE, if it has been registered already. If not registered, then
814 return NULL. Alloc_utype() can be called to register an empty
815 type for this reference, which will be filled in later when the
816 actual referenced DIE is processed.
820 lookup_utype (die_ref)
823 struct type *type = NULL;
826 utypeidx = (die_ref - dbroff) / 4;
827 if ((utypeidx < 0) || (utypeidx >= numutypes))
829 complain (&bad_die_ref, DIE_ID, DIE_NAME);
833 type = *(utypes + utypeidx);
843 alloc_utype -- add a user defined type for die reference
847 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
851 Given a die reference DIE_REF, and a possible pointer to a user
852 defined type UTYPEP, register that this reference has a user
853 defined type and either use the specified type in UTYPEP or
854 make a new empty type that will be filled in later.
856 We should only be called after calling lookup_utype() to verify that
857 there is not currently a type registered for DIE_REF.
861 alloc_utype (die_ref, utypep)
868 utypeidx = (die_ref - dbroff) / 4;
869 typep = utypes + utypeidx;
870 if ((utypeidx < 0) || (utypeidx >= numutypes))
872 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
873 complain (&bad_die_ref, DIE_ID, DIE_NAME);
875 else if (*typep != NULL)
878 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
884 utypep = alloc_type (current_objfile);
895 decode_die_type -- return a type for a specified die
899 static struct type *decode_die_type (struct dieinfo *dip)
903 Given a pointer to a die information structure DIP, decode the
904 type of the die and return a pointer to the decoded type. All
905 dies without specific types default to type int.
909 decode_die_type (dip)
912 struct type *type = NULL;
914 if (dip -> at_fund_type != 0)
916 type = decode_fund_type (dip -> at_fund_type);
918 else if (dip -> at_mod_fund_type != NULL)
920 type = decode_mod_fund_type (dip -> at_mod_fund_type);
922 else if (dip -> at_user_def_type)
924 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
926 type = alloc_utype (dip -> at_user_def_type, NULL);
929 else if (dip -> at_mod_u_d_type)
931 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
935 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
944 struct_type -- compute and return the type for a struct or union
948 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
949 char *enddie, struct objfile *objfile)
953 Given pointer to a die information structure for a die which
954 defines a union or structure (and MUST define one or the other),
955 and pointers to the raw die data that define the range of dies which
956 define the members, compute and return the user defined type for the
961 struct_type (dip, thisdie, enddie, objfile)
965 struct objfile *objfile;
969 struct nextfield *next;
972 struct nextfield *list = NULL;
973 struct nextfield *new;
980 if ((type = lookup_utype (dip -> die_ref)) == NULL)
982 /* No forward references created an empty type, so install one now */
983 type = alloc_utype (dip -> die_ref, NULL);
985 INIT_CPLUS_SPECIFIC(type);
986 switch (dip -> die_tag)
989 TYPE_CODE (type) = TYPE_CODE_CLASS;
991 case TAG_structure_type:
992 TYPE_CODE (type) = TYPE_CODE_STRUCT;
995 TYPE_CODE (type) = TYPE_CODE_UNION;
998 /* Should never happen */
999 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1000 complain (&missing_tag, DIE_ID, DIE_NAME);
1003 /* Some compilers try to be helpful by inventing "fake" names for
1004 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1005 Thanks, but no thanks... */
1006 if (dip -> at_name != NULL
1007 && *dip -> at_name != '~'
1008 && *dip -> at_name != '.')
1010 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1011 "", "", dip -> at_name);
1013 /* Use whatever size is known. Zero is a valid size. We might however
1014 wish to check has_at_byte_size to make sure that some byte size was
1015 given explicitly, but DWARF doesn't specify that explicit sizes of
1016 zero have to present, so complaining about missing sizes should
1017 probably not be the default. */
1018 TYPE_LENGTH (type) = dip -> at_byte_size;
1019 thisdie += dip -> die_length;
1020 while (thisdie < enddie)
1022 basicdieinfo (&mbr, thisdie, objfile);
1023 completedieinfo (&mbr, objfile);
1024 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1028 else if (mbr.at_sibling != 0)
1030 nextdie = dbbase + mbr.at_sibling - dbroff;
1034 nextdie = thisdie + mbr.die_length;
1036 switch (mbr.die_tag)
1039 /* Get space to record the next field's data. */
1040 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1043 /* Save the data. */
1044 list -> field.name =
1045 obsavestring (mbr.at_name, strlen (mbr.at_name),
1046 &objfile -> type_obstack);
1047 list -> field.type = decode_die_type (&mbr);
1048 list -> field.bitpos = 8 * locval (mbr.at_location);
1049 /* Handle bit fields. */
1050 list -> field.bitsize = mbr.at_bit_size;
1051 if (BITS_BIG_ENDIAN)
1053 /* For big endian bits, the at_bit_offset gives the
1054 additional bit offset from the MSB of the containing
1055 anonymous object to the MSB of the field. We don't
1056 have to do anything special since we don't need to
1057 know the size of the anonymous object. */
1058 list -> field.bitpos += mbr.at_bit_offset;
1062 /* For little endian bits, we need to have a non-zero
1063 at_bit_size, so that we know we are in fact dealing
1064 with a bitfield. Compute the bit offset to the MSB
1065 of the anonymous object, subtract off the number of
1066 bits from the MSB of the field to the MSB of the
1067 object, and then subtract off the number of bits of
1068 the field itself. The result is the bit offset of
1069 the LSB of the field. */
1070 if (mbr.at_bit_size > 0)
1072 if (mbr.has_at_byte_size)
1074 /* The size of the anonymous object containing
1075 the bit field is explicit, so use the
1076 indicated size (in bytes). */
1077 anonymous_size = mbr.at_byte_size;
1081 /* The size of the anonymous object containing
1082 the bit field matches the size of an object
1083 of the bit field's type. DWARF allows
1084 at_byte_size to be left out in such cases, as
1085 a debug information size optimization. */
1086 anonymous_size = TYPE_LENGTH (list -> field.type);
1088 list -> field.bitpos +=
1089 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1095 process_dies (thisdie, nextdie, objfile);
1100 /* Now create the vector of fields, and record how big it is. We may
1101 not even have any fields, if this DIE was generated due to a reference
1102 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1103 set, which clues gdb in to the fact that it needs to search elsewhere
1104 for the full structure definition. */
1107 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1111 TYPE_NFIELDS (type) = nfields;
1112 TYPE_FIELDS (type) = (struct field *)
1113 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1114 /* Copy the saved-up fields into the field vector. */
1115 for (n = nfields; list; list = list -> next)
1117 TYPE_FIELD (type, --n) = list -> field;
1127 read_structure_scope -- process all dies within struct or union
1131 static void read_structure_scope (struct dieinfo *dip,
1132 char *thisdie, char *enddie, struct objfile *objfile)
1136 Called when we find the DIE that starts a structure or union
1137 scope (definition) to process all dies that define the members
1138 of the structure or union. DIP is a pointer to the die info
1139 struct for the DIE that names the structure or union.
1143 Note that we need to call struct_type regardless of whether or not
1144 the DIE has an at_name attribute, since it might be an anonymous
1145 structure or union. This gets the type entered into our set of
1148 However, if the structure is incomplete (an opaque struct/union)
1149 then suppress creating a symbol table entry for it since gdb only
1150 wants to find the one with the complete definition. Note that if
1151 it is complete, we just call new_symbol, which does it's own
1152 checking about whether the struct/union is anonymous or not (and
1153 suppresses creating a symbol table entry itself).
1158 read_structure_scope (dip, thisdie, enddie, objfile)
1159 struct dieinfo *dip;
1162 struct objfile *objfile;
1167 type = struct_type (dip, thisdie, enddie, objfile);
1168 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1170 sym = new_symbol (dip, objfile);
1173 SYMBOL_TYPE (sym) = type;
1174 if (cu_language == language_cplus)
1176 synthesize_typedef (dip, objfile, type);
1186 decode_array_element_type -- decode type of the array elements
1190 static struct type *decode_array_element_type (char *scan, char *end)
1194 As the last step in decoding the array subscript information for an
1195 array DIE, we need to decode the type of the array elements. We are
1196 passed a pointer to this last part of the subscript information and
1197 must return the appropriate type. If the type attribute is not
1198 recognized, just warn about the problem and return type int.
1201 static struct type *
1202 decode_array_element_type (scan)
1207 unsigned short attribute;
1208 unsigned short fundtype;
1211 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1213 scan += SIZEOF_ATTRIBUTE;
1214 if ((nbytes = attribute_size (attribute)) == -1)
1216 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1217 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1224 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1226 typep = decode_fund_type (fundtype);
1228 case AT_mod_fund_type:
1229 typep = decode_mod_fund_type (scan);
1231 case AT_user_def_type:
1232 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1234 if ((typep = lookup_utype (die_ref)) == NULL)
1236 typep = alloc_utype (die_ref, NULL);
1239 case AT_mod_u_d_type:
1240 typep = decode_mod_u_d_type (scan);
1243 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1244 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1255 decode_subscript_data_item -- decode array subscript item
1259 static struct type *
1260 decode_subscript_data_item (char *scan, char *end)
1264 The array subscripts and the data type of the elements of an
1265 array are described by a list of data items, stored as a block
1266 of contiguous bytes. There is a data item describing each array
1267 dimension, and a final data item describing the element type.
1268 The data items are ordered the same as their appearance in the
1269 source (I.E. leftmost dimension first, next to leftmost second,
1272 The data items describing each array dimension consist of four
1273 parts: (1) a format specifier, (2) type type of the subscript
1274 index, (3) a description of the low bound of the array dimension,
1275 and (4) a description of the high bound of the array dimension.
1277 The last data item is the description of the type of each of
1280 We are passed a pointer to the start of the block of bytes
1281 containing the remaining data items, and a pointer to the first
1282 byte past the data. This function recursively decodes the
1283 remaining data items and returns a type.
1285 If we somehow fail to decode some data, we complain about it
1286 and return a type "array of int".
1289 FIXME: This code only implements the forms currently used
1290 by the AT&T and GNU C compilers.
1292 The end pointer is supplied for error checking, maybe we should
1296 static struct type *
1297 decode_subscript_data_item (scan, end)
1301 struct type *typep = NULL; /* Array type we are building */
1302 struct type *nexttype; /* Type of each element (may be array) */
1303 struct type *indextype; /* Type of this index */
1304 struct type *rangetype;
1305 unsigned int format;
1306 unsigned short fundtype;
1307 unsigned long lowbound;
1308 unsigned long highbound;
1311 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1313 scan += SIZEOF_FORMAT_SPECIFIER;
1317 typep = decode_array_element_type (scan);
1320 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1322 indextype = decode_fund_type (fundtype);
1323 scan += SIZEOF_FMT_FT;
1324 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1325 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1327 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1329 nexttype = decode_subscript_data_item (scan, end);
1330 if (nexttype == NULL)
1332 /* Munged subscript data or other problem, fake it. */
1333 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1334 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1336 rangetype = create_range_type ((struct type *) NULL, indextype,
1337 lowbound, highbound);
1338 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1347 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1348 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1349 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1350 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1353 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1354 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1355 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1356 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1366 dwarf_read_array_type -- read TAG_array_type DIE
1370 static void dwarf_read_array_type (struct dieinfo *dip)
1374 Extract all information from a TAG_array_type DIE and add to
1375 the user defined type vector.
1379 dwarf_read_array_type (dip)
1380 struct dieinfo *dip;
1386 unsigned short blocksz;
1389 if (dip -> at_ordering != ORD_row_major)
1391 /* FIXME: Can gdb even handle column major arrays? */
1392 complain (¬_row_major, DIE_ID, DIE_NAME);
1394 if ((sub = dip -> at_subscr_data) != NULL)
1396 nbytes = attribute_size (AT_subscr_data);
1397 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1398 subend = sub + nbytes + blocksz;
1400 type = decode_subscript_data_item (sub, subend);
1401 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1403 /* Install user defined type that has not been referenced yet. */
1404 alloc_utype (dip -> die_ref, type);
1406 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1408 /* Ick! A forward ref has already generated a blank type in our
1409 slot, and this type probably already has things pointing to it
1410 (which is what caused it to be created in the first place).
1411 If it's just a place holder we can plop our fully defined type
1412 on top of it. We can't recover the space allocated for our
1413 new type since it might be on an obstack, but we could reuse
1414 it if we kept a list of them, but it might not be worth it
1420 /* Double ick! Not only is a type already in our slot, but
1421 someone has decorated it. Complain and leave it alone. */
1422 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1431 read_tag_pointer_type -- read TAG_pointer_type DIE
1435 static void read_tag_pointer_type (struct dieinfo *dip)
1439 Extract all information from a TAG_pointer_type DIE and add to
1440 the user defined type vector.
1444 read_tag_pointer_type (dip)
1445 struct dieinfo *dip;
1450 type = decode_die_type (dip);
1451 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1453 utype = lookup_pointer_type (type);
1454 alloc_utype (dip -> die_ref, utype);
1458 TYPE_TARGET_TYPE (utype) = type;
1459 TYPE_POINTER_TYPE (type) = utype;
1461 /* We assume the machine has only one representation for pointers! */
1462 /* FIXME: This confuses host<->target data representations, and is a
1463 poor assumption besides. */
1465 TYPE_LENGTH (utype) = sizeof (char *);
1466 TYPE_CODE (utype) = TYPE_CODE_PTR;
1474 read_tag_string_type -- read TAG_string_type DIE
1478 static void read_tag_string_type (struct dieinfo *dip)
1482 Extract all information from a TAG_string_type DIE and add to
1483 the user defined type vector. It isn't really a user defined
1484 type, but it behaves like one, with other DIE's using an
1485 AT_user_def_type attribute to reference it.
1489 read_tag_string_type (dip)
1490 struct dieinfo *dip;
1493 struct type *indextype;
1494 struct type *rangetype;
1495 unsigned long lowbound = 0;
1496 unsigned long highbound;
1498 if (dip -> has_at_byte_size)
1500 /* A fixed bounds string */
1501 highbound = dip -> at_byte_size - 1;
1505 /* A varying length string. Stub for now. (FIXME) */
1508 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1509 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1512 utype = lookup_utype (dip -> die_ref);
1515 /* No type defined, go ahead and create a blank one to use. */
1516 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1520 /* Already a type in our slot due to a forward reference. Make sure it
1521 is a blank one. If not, complain and leave it alone. */
1522 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1524 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1529 /* Create the string type using the blank type we either found or created. */
1530 utype = create_string_type (utype, rangetype);
1537 read_subroutine_type -- process TAG_subroutine_type dies
1541 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1546 Handle DIES due to C code like:
1549 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1555 The parameter DIES are currently ignored. See if gdb has a way to
1556 include this info in it's type system, and decode them if so. Is
1557 this what the type structure's "arg_types" field is for? (FIXME)
1561 read_subroutine_type (dip, thisdie, enddie)
1562 struct dieinfo *dip;
1566 struct type *type; /* Type that this function returns */
1567 struct type *ftype; /* Function that returns above type */
1569 /* Decode the type that this subroutine returns */
1571 type = decode_die_type (dip);
1573 /* Check to see if we already have a partially constructed user
1574 defined type for this DIE, from a forward reference. */
1576 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1578 /* This is the first reference to one of these types. Make
1579 a new one and place it in the user defined types. */
1580 ftype = lookup_function_type (type);
1581 alloc_utype (dip -> die_ref, ftype);
1583 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1585 /* We have an existing partially constructed type, so bash it
1586 into the correct type. */
1587 TYPE_TARGET_TYPE (ftype) = type;
1588 TYPE_LENGTH (ftype) = 1;
1589 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1593 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1601 read_enumeration -- process dies which define an enumeration
1605 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1606 char *enddie, struct objfile *objfile)
1610 Given a pointer to a die which begins an enumeration, process all
1611 the dies that define the members of the enumeration.
1615 Note that we need to call enum_type regardless of whether or not we
1616 have a symbol, since we might have an enum without a tag name (thus
1617 no symbol for the tagname).
1621 read_enumeration (dip, thisdie, enddie, objfile)
1622 struct dieinfo *dip;
1625 struct objfile *objfile;
1630 type = enum_type (dip, objfile);
1631 sym = new_symbol (dip, objfile);
1634 SYMBOL_TYPE (sym) = type;
1635 if (cu_language == language_cplus)
1637 synthesize_typedef (dip, objfile, type);
1646 enum_type -- decode and return a type for an enumeration
1650 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1654 Given a pointer to a die information structure for the die which
1655 starts an enumeration, process all the dies that define the members
1656 of the enumeration and return a type pointer for the enumeration.
1658 At the same time, for each member of the enumeration, create a
1659 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1660 and give it the type of the enumeration itself.
1664 Note that the DWARF specification explicitly mandates that enum
1665 constants occur in reverse order from the source program order,
1666 for "consistency" and because this ordering is easier for many
1667 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1668 Entries). Because gdb wants to see the enum members in program
1669 source order, we have to ensure that the order gets reversed while
1670 we are processing them.
1673 static struct type *
1674 enum_type (dip, objfile)
1675 struct dieinfo *dip;
1676 struct objfile *objfile;
1680 struct nextfield *next;
1683 struct nextfield *list = NULL;
1684 struct nextfield *new;
1689 unsigned short blocksz;
1693 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1695 /* No forward references created an empty type, so install one now */
1696 type = alloc_utype (dip -> die_ref, NULL);
1698 TYPE_CODE (type) = TYPE_CODE_ENUM;
1699 /* Some compilers try to be helpful by inventing "fake" names for
1700 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1701 Thanks, but no thanks... */
1702 if (dip -> at_name != NULL
1703 && *dip -> at_name != '~'
1704 && *dip -> at_name != '.')
1706 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1707 "", "", dip -> at_name);
1709 if (dip -> at_byte_size != 0)
1711 TYPE_LENGTH (type) = dip -> at_byte_size;
1713 if ((scan = dip -> at_element_list) != NULL)
1715 if (dip -> short_element_list)
1717 nbytes = attribute_size (AT_short_element_list);
1721 nbytes = attribute_size (AT_element_list);
1723 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1724 listend = scan + nbytes + blocksz;
1726 while (scan < listend)
1728 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1731 list -> field.type = NULL;
1732 list -> field.bitsize = 0;
1733 list -> field.bitpos =
1734 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1736 scan += TARGET_FT_LONG_SIZE (objfile);
1737 list -> field.name = obsavestring (scan, strlen (scan),
1738 &objfile -> type_obstack);
1739 scan += strlen (scan) + 1;
1741 /* Handcraft a new symbol for this enum member. */
1742 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1743 sizeof (struct symbol));
1744 memset (sym, 0, sizeof (struct symbol));
1745 SYMBOL_NAME (sym) = create_name (list -> field.name,
1746 &objfile->symbol_obstack);
1747 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1748 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1749 SYMBOL_CLASS (sym) = LOC_CONST;
1750 SYMBOL_TYPE (sym) = type;
1751 SYMBOL_VALUE (sym) = list -> field.bitpos;
1752 add_symbol_to_list (sym, list_in_scope);
1754 /* Now create the vector of fields, and record how big it is. This is
1755 where we reverse the order, by pulling the members off the list in
1756 reverse order from how they were inserted. If we have no fields
1757 (this is apparently possible in C++) then skip building a field
1761 TYPE_NFIELDS (type) = nfields;
1762 TYPE_FIELDS (type) = (struct field *)
1763 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1764 /* Copy the saved-up fields into the field vector. */
1765 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1767 TYPE_FIELD (type, n++) = list -> field;
1778 read_func_scope -- process all dies within a function scope
1782 Process all dies within a given function scope. We are passed
1783 a die information structure pointer DIP for the die which
1784 starts the function scope, and pointers into the raw die data
1785 that define the dies within the function scope.
1787 For now, we ignore lexical block scopes within the function.
1788 The problem is that AT&T cc does not define a DWARF lexical
1789 block scope for the function itself, while gcc defines a
1790 lexical block scope for the function. We need to think about
1791 how to handle this difference, or if it is even a problem.
1796 read_func_scope (dip, thisdie, enddie, objfile)
1797 struct dieinfo *dip;
1800 struct objfile *objfile;
1802 register struct context_stack *new;
1804 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1805 objfile -> ei.entry_point < dip -> at_high_pc)
1807 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1808 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1810 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1812 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1815 new = push_context (0, dip -> at_low_pc);
1816 new -> name = new_symbol (dip, objfile);
1817 list_in_scope = &local_symbols;
1818 process_dies (thisdie + dip -> die_length, enddie, objfile);
1819 new = pop_context ();
1820 /* Make a block for the local symbols within. */
1821 finish_block (new -> name, &local_symbols, new -> old_blocks,
1822 new -> start_addr, dip -> at_high_pc, objfile);
1823 list_in_scope = &file_symbols;
1831 handle_producer -- process the AT_producer attribute
1835 Perform any operations that depend on finding a particular
1836 AT_producer attribute.
1841 handle_producer (producer)
1845 /* If this compilation unit was compiled with g++ or gcc, then set the
1846 processing_gcc_compilation flag. */
1848 processing_gcc_compilation =
1849 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1850 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1851 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1853 /* Select a demangling style if we can identify the producer and if
1854 the current style is auto. We leave the current style alone if it
1855 is not auto. We also leave the demangling style alone if we find a
1856 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1858 if (AUTO_DEMANGLING)
1860 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1862 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1864 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1866 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1876 read_file_scope -- process all dies within a file scope
1880 Process all dies within a given file scope. We are passed a
1881 pointer to the die information structure for the die which
1882 starts the file scope, and pointers into the raw die data which
1883 mark the range of dies within the file scope.
1885 When the partial symbol table is built, the file offset for the line
1886 number table for each compilation unit is saved in the partial symbol
1887 table entry for that compilation unit. As the symbols for each
1888 compilation unit are read, the line number table is read into memory
1889 and the variable lnbase is set to point to it. Thus all we have to
1890 do is use lnbase to access the line number table for the current
1895 read_file_scope (dip, thisdie, enddie, objfile)
1896 struct dieinfo *dip;
1899 struct objfile *objfile;
1901 struct cleanup *back_to;
1902 struct symtab *symtab;
1904 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1905 objfile -> ei.entry_point < dip -> at_high_pc)
1907 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1908 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1910 set_cu_language (dip);
1911 if (dip -> at_producer != NULL)
1913 handle_producer (dip -> at_producer);
1915 numutypes = (enddie - thisdie) / 4;
1916 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1917 back_to = make_cleanup (free, utypes);
1918 memset (utypes, 0, numutypes * sizeof (struct type *));
1919 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1920 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1921 decode_line_numbers (lnbase);
1922 process_dies (thisdie + dip -> die_length, enddie, objfile);
1924 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1927 symtab -> language = cu_language;
1929 do_cleanups (back_to);
1938 process_dies -- process a range of DWARF Information Entries
1942 static void process_dies (char *thisdie, char *enddie,
1943 struct objfile *objfile)
1947 Process all DIE's in a specified range. May be (and almost
1948 certainly will be) called recursively.
1952 process_dies (thisdie, enddie, objfile)
1955 struct objfile *objfile;
1960 while (thisdie < enddie)
1962 basicdieinfo (&di, thisdie, objfile);
1963 if (di.die_length < SIZEOF_DIE_LENGTH)
1967 else if (di.die_tag == TAG_padding)
1969 nextdie = thisdie + di.die_length;
1973 completedieinfo (&di, objfile);
1974 if (di.at_sibling != 0)
1976 nextdie = dbbase + di.at_sibling - dbroff;
1980 nextdie = thisdie + di.die_length;
1982 #ifdef SMASH_TEXT_ADDRESS
1983 /* I think that these are always text, not data, addresses. */
1984 SMASH_TEXT_ADDRESS (di.at_low_pc);
1985 SMASH_TEXT_ADDRESS (di.at_high_pc);
1989 case TAG_compile_unit:
1990 /* Skip Tag_compile_unit if we are already inside a compilation
1991 unit, we are unable to handle nested compilation units
1992 properly (FIXME). */
1993 if (current_subfile == NULL)
1994 read_file_scope (&di, thisdie, nextdie, objfile);
1996 nextdie = thisdie + di.die_length;
1998 case TAG_global_subroutine:
1999 case TAG_subroutine:
2000 if (di.has_at_low_pc)
2002 read_func_scope (&di, thisdie, nextdie, objfile);
2005 case TAG_lexical_block:
2006 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2008 case TAG_class_type:
2009 case TAG_structure_type:
2010 case TAG_union_type:
2011 read_structure_scope (&di, thisdie, nextdie, objfile);
2013 case TAG_enumeration_type:
2014 read_enumeration (&di, thisdie, nextdie, objfile);
2016 case TAG_subroutine_type:
2017 read_subroutine_type (&di, thisdie, nextdie);
2019 case TAG_array_type:
2020 dwarf_read_array_type (&di);
2022 case TAG_pointer_type:
2023 read_tag_pointer_type (&di);
2025 case TAG_string_type:
2026 read_tag_string_type (&di);
2029 new_symbol (&di, objfile);
2041 decode_line_numbers -- decode a line number table fragment
2045 static void decode_line_numbers (char *tblscan, char *tblend,
2046 long length, long base, long line, long pc)
2050 Translate the DWARF line number information to gdb form.
2052 The ".line" section contains one or more line number tables, one for
2053 each ".line" section from the objects that were linked.
2055 The AT_stmt_list attribute for each TAG_source_file entry in the
2056 ".debug" section contains the offset into the ".line" section for the
2057 start of the table for that file.
2059 The table itself has the following structure:
2061 <table length><base address><source statement entry>
2062 4 bytes 4 bytes 10 bytes
2064 The table length is the total size of the table, including the 4 bytes
2065 for the length information.
2067 The base address is the address of the first instruction generated
2068 for the source file.
2070 Each source statement entry has the following structure:
2072 <line number><statement position><address delta>
2073 4 bytes 2 bytes 4 bytes
2075 The line number is relative to the start of the file, starting with
2078 The statement position either -1 (0xFFFF) or the number of characters
2079 from the beginning of the line to the beginning of the statement.
2081 The address delta is the difference between the base address and
2082 the address of the first instruction for the statement.
2084 Note that we must copy the bytes from the packed table to our local
2085 variables before attempting to use them, to avoid alignment problems
2086 on some machines, particularly RISC processors.
2090 Does gdb expect the line numbers to be sorted? They are now by
2091 chance/luck, but are not required to be. (FIXME)
2093 The line with number 0 is unused, gdb apparently can discover the
2094 span of the last line some other way. How? (FIXME)
2098 decode_line_numbers (linetable)
2103 unsigned long length;
2108 if (linetable != NULL)
2110 tblscan = tblend = linetable;
2111 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2113 tblscan += SIZEOF_LINETBL_LENGTH;
2115 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2116 GET_UNSIGNED, current_objfile);
2117 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2119 while (tblscan < tblend)
2121 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2123 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2124 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2126 tblscan += SIZEOF_LINETBL_DELTA;
2130 record_line (current_subfile, line, pc);
2140 locval -- compute the value of a location attribute
2144 static int locval (char *loc)
2148 Given pointer to a string of bytes that define a location, compute
2149 the location and return the value.
2150 A location description containing no atoms indicates that the
2151 object is optimized out. The global optimized_out flag is set for
2152 those, the return value is meaningless.
2154 When computing values involving the current value of the frame pointer,
2155 the value zero is used, which results in a value relative to the frame
2156 pointer, rather than the absolute value. This is what GDB wants
2159 When the result is a register number, the global isreg flag is set,
2160 otherwise it is cleared. This is a kludge until we figure out a better
2161 way to handle the problem. Gdb's design does not mesh well with the
2162 DWARF notion of a location computing interpreter, which is a shame
2163 because the flexibility goes unused.
2167 Note that stack[0] is unused except as a default error return.
2168 Note that stack overflow is not yet handled.
2175 unsigned short nbytes;
2176 unsigned short locsize;
2177 auto long stack[64];
2183 nbytes = attribute_size (AT_location);
2184 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2186 end = loc + locsize;
2192 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2196 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2198 loc += SIZEOF_LOC_ATOM_CODE;
2199 switch (loc_atom_code)
2206 /* push register (number) */
2208 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2211 loc += loc_value_size;
2215 /* push value of register (number) */
2216 /* Actually, we compute the value as if register has 0, so the
2217 value ends up being the offset from that register. */
2219 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2221 loc += loc_value_size;
2222 stack[++stacki] = 0;
2225 /* push address (relocated address) */
2226 stack[++stacki] = target_to_host (loc, loc_value_size,
2227 GET_UNSIGNED, current_objfile);
2228 loc += loc_value_size;
2231 /* push constant (number) FIXME: signed or unsigned! */
2232 stack[++stacki] = target_to_host (loc, loc_value_size,
2233 GET_SIGNED, current_objfile);
2234 loc += loc_value_size;
2237 /* pop, deref and push 2 bytes (as a long) */
2238 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2240 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2241 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2243 case OP_ADD: /* pop top 2 items, add, push result */
2244 stack[stacki - 1] += stack[stacki];
2249 return (stack[stacki]);
2256 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2260 static void read_ofile_symtab (struct partial_symtab *pst)
2264 When expanding a partial symbol table entry to a full symbol table
2265 entry, this is the function that gets called to read in the symbols
2266 for the compilation unit. A pointer to the newly constructed symtab,
2267 which is now the new first one on the objfile's symtab list, is
2268 stashed in the partial symbol table entry.
2272 read_ofile_symtab (pst)
2273 struct partial_symtab *pst;
2275 struct cleanup *back_to;
2276 unsigned long lnsize;
2279 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2281 abfd = pst -> objfile -> obfd;
2282 current_objfile = pst -> objfile;
2284 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2285 unit, seek to the location in the file, and read in all the DIE's. */
2288 dbsize = DBLENGTH (pst);
2289 dbbase = xmalloc (dbsize);
2290 dbroff = DBROFF(pst);
2291 foffset = DBFOFF(pst) + dbroff;
2292 base_section_offsets = pst->section_offsets;
2293 baseaddr = ANOFFSET (pst->section_offsets, 0);
2294 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2295 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2298 error ("can't read DWARF data");
2300 back_to = make_cleanup (free, dbbase);
2302 /* If there is a line number table associated with this compilation unit
2303 then read the size of this fragment in bytes, from the fragment itself.
2304 Allocate a buffer for the fragment and read it in for future
2310 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2311 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2312 sizeof (lnsizedata)))
2314 error ("can't read DWARF line number table size");
2316 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2317 GET_UNSIGNED, pst -> objfile);
2318 lnbase = xmalloc (lnsize);
2319 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2320 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2323 error ("can't read DWARF line numbers");
2325 make_cleanup (free, lnbase);
2328 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2329 do_cleanups (back_to);
2330 current_objfile = NULL;
2331 pst -> symtab = pst -> objfile -> symtabs;
2338 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2342 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2346 Called once for each partial symbol table entry that needs to be
2347 expanded into a full symbol table entry.
2352 psymtab_to_symtab_1 (pst)
2353 struct partial_symtab *pst;
2356 struct cleanup *old_chain;
2362 warning ("psymtab for %s already read in. Shouldn't happen.",
2367 /* Read in all partial symtabs on which this one is dependent */
2368 for (i = 0; i < pst -> number_of_dependencies; i++)
2370 if (!pst -> dependencies[i] -> readin)
2372 /* Inform about additional files that need to be read in. */
2375 fputs_filtered (" ", gdb_stdout);
2377 fputs_filtered ("and ", gdb_stdout);
2379 printf_filtered ("%s...",
2380 pst -> dependencies[i] -> filename);
2382 gdb_flush (gdb_stdout); /* Flush output */
2384 psymtab_to_symtab_1 (pst -> dependencies[i]);
2387 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2390 old_chain = make_cleanup (really_free_pendings, 0);
2391 read_ofile_symtab (pst);
2394 printf_filtered ("%d DIE's, sorting...", diecount);
2396 gdb_flush (gdb_stdout);
2398 sort_symtab_syms (pst -> symtab);
2399 do_cleanups (old_chain);
2410 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2414 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2418 This is the DWARF support entry point for building a full symbol
2419 table entry from a partial symbol table entry. We are passed a
2420 pointer to the partial symbol table entry that needs to be expanded.
2425 dwarf_psymtab_to_symtab (pst)
2426 struct partial_symtab *pst;
2433 warning ("psymtab for %s already read in. Shouldn't happen.",
2438 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2440 /* Print the message now, before starting serious work, to avoid
2441 disconcerting pauses. */
2444 printf_filtered ("Reading in symbols for %s...",
2446 gdb_flush (gdb_stdout);
2449 psymtab_to_symtab_1 (pst);
2451 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2452 we need to do an equivalent or is this something peculiar to
2454 Match with global symbols. This only needs to be done once,
2455 after all of the symtabs and dependencies have been read in.
2457 scan_file_globals (pst -> objfile);
2460 /* Finish up the verbose info message. */
2463 printf_filtered ("done.\n");
2464 gdb_flush (gdb_stdout);
2475 add_enum_psymbol -- add enumeration members to partial symbol table
2479 Given pointer to a DIE that is known to be for an enumeration,
2480 extract the symbolic names of the enumeration members and add
2481 partial symbols for them.
2485 add_enum_psymbol (dip, objfile)
2486 struct dieinfo *dip;
2487 struct objfile *objfile;
2491 unsigned short blocksz;
2494 if ((scan = dip -> at_element_list) != NULL)
2496 if (dip -> short_element_list)
2498 nbytes = attribute_size (AT_short_element_list);
2502 nbytes = attribute_size (AT_element_list);
2504 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2506 listend = scan + blocksz;
2507 while (scan < listend)
2509 scan += TARGET_FT_LONG_SIZE (objfile);
2510 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2511 objfile -> static_psymbols, 0, cu_language,
2513 scan += strlen (scan) + 1;
2522 add_partial_symbol -- add symbol to partial symbol table
2526 Given a DIE, if it is one of the types that we want to
2527 add to a partial symbol table, finish filling in the die info
2528 and then add a partial symbol table entry for it.
2532 The caller must ensure that the DIE has a valid name attribute.
2536 add_partial_symbol (dip, objfile)
2537 struct dieinfo *dip;
2538 struct objfile *objfile;
2540 switch (dip -> die_tag)
2542 case TAG_global_subroutine:
2543 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2544 VAR_NAMESPACE, LOC_BLOCK,
2545 objfile -> global_psymbols,
2546 dip -> at_low_pc, cu_language, objfile);
2548 case TAG_global_variable:
2549 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2550 VAR_NAMESPACE, LOC_STATIC,
2551 objfile -> global_psymbols,
2552 0, cu_language, objfile);
2554 case TAG_subroutine:
2555 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2556 VAR_NAMESPACE, LOC_BLOCK,
2557 objfile -> static_psymbols,
2558 dip -> at_low_pc, cu_language, objfile);
2560 case TAG_local_variable:
2561 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2562 VAR_NAMESPACE, LOC_STATIC,
2563 objfile -> static_psymbols,
2564 0, cu_language, objfile);
2567 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2568 VAR_NAMESPACE, LOC_TYPEDEF,
2569 objfile -> static_psymbols,
2570 0, cu_language, objfile);
2572 case TAG_class_type:
2573 case TAG_structure_type:
2574 case TAG_union_type:
2575 case TAG_enumeration_type:
2576 /* Do not add opaque aggregate definitions to the psymtab. */
2577 if (!dip -> has_at_byte_size)
2579 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2580 STRUCT_NAMESPACE, LOC_TYPEDEF,
2581 objfile -> static_psymbols,
2582 0, cu_language, objfile);
2583 if (cu_language == language_cplus)
2585 /* For C++, these implicitly act as typedefs as well. */
2586 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2587 VAR_NAMESPACE, LOC_TYPEDEF,
2588 objfile -> static_psymbols,
2589 0, cu_language, objfile);
2599 scan_partial_symbols -- scan DIE's within a single compilation unit
2603 Process the DIE's within a single compilation unit, looking for
2604 interesting DIE's that contribute to the partial symbol table entry
2605 for this compilation unit.
2609 There are some DIE's that may appear both at file scope and within
2610 the scope of a function. We are only interested in the ones at file
2611 scope, and the only way to tell them apart is to keep track of the
2612 scope. For example, consider the test case:
2617 for which the relevant DWARF segment has the structure:
2620 0x23 global subrtn sibling 0x9b
2622 fund_type FT_integer
2627 0x23 local var sibling 0x97
2629 fund_type FT_integer
2630 location OP_BASEREG 0xe
2637 0x1d local var sibling 0xb8
2639 fund_type FT_integer
2640 location OP_ADDR 0x800025dc
2645 We want to include the symbol 'i' in the partial symbol table, but
2646 not the symbol 'j'. In essence, we want to skip all the dies within
2647 the scope of a TAG_global_subroutine DIE.
2649 Don't attempt to add anonymous structures or unions since they have
2650 no name. Anonymous enumerations however are processed, because we
2651 want to extract their member names (the check for a tag name is
2654 Also, for variables and subroutines, check that this is the place
2655 where the actual definition occurs, rather than just a reference
2660 scan_partial_symbols (thisdie, enddie, objfile)
2663 struct objfile *objfile;
2669 while (thisdie < enddie)
2671 basicdieinfo (&di, thisdie, objfile);
2672 if (di.die_length < SIZEOF_DIE_LENGTH)
2678 nextdie = thisdie + di.die_length;
2679 /* To avoid getting complete die information for every die, we
2680 only do it (below) for the cases we are interested in. */
2683 case TAG_global_subroutine:
2684 case TAG_subroutine:
2685 completedieinfo (&di, objfile);
2686 if (di.at_name && (di.has_at_low_pc || di.at_location))
2688 add_partial_symbol (&di, objfile);
2689 /* If there is a sibling attribute, adjust the nextdie
2690 pointer to skip the entire scope of the subroutine.
2691 Apply some sanity checking to make sure we don't
2692 overrun or underrun the range of remaining DIE's */
2693 if (di.at_sibling != 0)
2695 temp = dbbase + di.at_sibling - dbroff;
2696 if ((temp < thisdie) || (temp >= enddie))
2698 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2708 case TAG_global_variable:
2709 case TAG_local_variable:
2710 completedieinfo (&di, objfile);
2711 if (di.at_name && (di.has_at_low_pc || di.at_location))
2713 add_partial_symbol (&di, objfile);
2717 case TAG_class_type:
2718 case TAG_structure_type:
2719 case TAG_union_type:
2720 completedieinfo (&di, objfile);
2723 add_partial_symbol (&di, objfile);
2726 case TAG_enumeration_type:
2727 completedieinfo (&di, objfile);
2730 add_partial_symbol (&di, objfile);
2732 add_enum_psymbol (&di, objfile);
2744 scan_compilation_units -- build a psymtab entry for each compilation
2748 This is the top level dwarf parsing routine for building partial
2751 It scans from the beginning of the DWARF table looking for the first
2752 TAG_compile_unit DIE, and then follows the sibling chain to locate
2753 each additional TAG_compile_unit DIE.
2755 For each TAG_compile_unit DIE it creates a partial symtab structure,
2756 calls a subordinate routine to collect all the compilation unit's
2757 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2758 new partial symtab structure into the partial symbol table. It also
2759 records the appropriate information in the partial symbol table entry
2760 to allow the chunk of DIE's and line number table for this compilation
2761 unit to be located and re-read later, to generate a complete symbol
2762 table entry for the compilation unit.
2764 Thus it effectively partitions up a chunk of DIE's for multiple
2765 compilation units into smaller DIE chunks and line number tables,
2766 and associates them with a partial symbol table entry.
2770 If any compilation unit has no line number table associated with
2771 it for some reason (a missing at_stmt_list attribute, rather than
2772 just one with a value of zero, which is valid) then we ensure that
2773 the recorded file offset is zero so that the routine which later
2774 reads line number table fragments knows that there is no fragment
2784 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2789 struct objfile *objfile;
2793 struct partial_symtab *pst;
2796 file_ptr curlnoffset;
2798 while (thisdie < enddie)
2800 basicdieinfo (&di, thisdie, objfile);
2801 if (di.die_length < SIZEOF_DIE_LENGTH)
2805 else if (di.die_tag != TAG_compile_unit)
2807 nextdie = thisdie + di.die_length;
2811 completedieinfo (&di, objfile);
2812 set_cu_language (&di);
2813 if (di.at_sibling != 0)
2815 nextdie = dbbase + di.at_sibling - dbroff;
2819 nextdie = thisdie + di.die_length;
2821 curoff = thisdie - dbbase;
2822 culength = nextdie - thisdie;
2823 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2825 /* First allocate a new partial symbol table structure */
2827 pst = start_psymtab_common (objfile, base_section_offsets,
2828 di.at_name, di.at_low_pc,
2829 objfile -> global_psymbols.next,
2830 objfile -> static_psymbols.next);
2832 pst -> texthigh = di.at_high_pc;
2833 pst -> read_symtab_private = (char *)
2834 obstack_alloc (&objfile -> psymbol_obstack,
2835 sizeof (struct dwfinfo));
2836 DBFOFF (pst) = dbfoff;
2837 DBROFF (pst) = curoff;
2838 DBLENGTH (pst) = culength;
2839 LNFOFF (pst) = curlnoffset;
2840 pst -> read_symtab = dwarf_psymtab_to_symtab;
2842 /* Now look for partial symbols */
2844 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2846 pst -> n_global_syms = objfile -> global_psymbols.next -
2847 (objfile -> global_psymbols.list + pst -> globals_offset);
2848 pst -> n_static_syms = objfile -> static_psymbols.next -
2849 (objfile -> static_psymbols.list + pst -> statics_offset);
2850 sort_pst_symbols (pst);
2851 /* If there is already a psymtab or symtab for a file of this name,
2852 remove it. (If there is a symtab, more drastic things also
2853 happen.) This happens in VxWorks. */
2854 free_named_symtabs (pst -> filename);
2864 new_symbol -- make a symbol table entry for a new symbol
2868 static struct symbol *new_symbol (struct dieinfo *dip,
2869 struct objfile *objfile)
2873 Given a pointer to a DWARF information entry, figure out if we need
2874 to make a symbol table entry for it, and if so, create a new entry
2875 and return a pointer to it.
2878 static struct symbol *
2879 new_symbol (dip, objfile)
2880 struct dieinfo *dip;
2881 struct objfile *objfile;
2883 struct symbol *sym = NULL;
2885 if (dip -> at_name != NULL)
2887 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2888 sizeof (struct symbol));
2889 memset (sym, 0, sizeof (struct symbol));
2890 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2891 &objfile->symbol_obstack);
2892 /* default assumptions */
2893 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2894 SYMBOL_CLASS (sym) = LOC_STATIC;
2895 SYMBOL_TYPE (sym) = decode_die_type (dip);
2897 /* If this symbol is from a C++ compilation, then attempt to cache the
2898 demangled form for future reference. This is a typical time versus
2899 space tradeoff, that was decided in favor of time because it sped up
2900 C++ symbol lookups by a factor of about 20. */
2902 SYMBOL_LANGUAGE (sym) = cu_language;
2903 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2904 switch (dip -> die_tag)
2907 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2908 SYMBOL_CLASS (sym) = LOC_LABEL;
2910 case TAG_global_subroutine:
2911 case TAG_subroutine:
2912 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2913 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2914 SYMBOL_CLASS (sym) = LOC_BLOCK;
2915 if (dip -> die_tag == TAG_global_subroutine)
2917 add_symbol_to_list (sym, &global_symbols);
2921 add_symbol_to_list (sym, list_in_scope);
2924 case TAG_global_variable:
2925 if (dip -> at_location != NULL)
2927 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2928 add_symbol_to_list (sym, &global_symbols);
2929 SYMBOL_CLASS (sym) = LOC_STATIC;
2930 SYMBOL_VALUE (sym) += baseaddr;
2933 case TAG_local_variable:
2934 if (dip -> at_location != NULL)
2936 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2937 add_symbol_to_list (sym, list_in_scope);
2940 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2944 SYMBOL_CLASS (sym) = LOC_REGISTER;
2948 SYMBOL_CLASS (sym) = LOC_BASEREG;
2949 SYMBOL_BASEREG (sym) = basereg;
2953 SYMBOL_CLASS (sym) = LOC_STATIC;
2954 SYMBOL_VALUE (sym) += baseaddr;
2958 case TAG_formal_parameter:
2959 if (dip -> at_location != NULL)
2961 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2963 add_symbol_to_list (sym, list_in_scope);
2966 SYMBOL_CLASS (sym) = LOC_REGPARM;
2970 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2971 SYMBOL_BASEREG (sym) = basereg;
2975 SYMBOL_CLASS (sym) = LOC_ARG;
2978 case TAG_unspecified_parameters:
2979 /* From varargs functions; gdb doesn't seem to have any interest in
2980 this information, so just ignore it for now. (FIXME?) */
2982 case TAG_class_type:
2983 case TAG_structure_type:
2984 case TAG_union_type:
2985 case TAG_enumeration_type:
2986 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2987 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2988 add_symbol_to_list (sym, list_in_scope);
2991 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2992 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2993 add_symbol_to_list (sym, list_in_scope);
2996 /* Not a tag we recognize. Hopefully we aren't processing trash
2997 data, but since we must specifically ignore things we don't
2998 recognize, there is nothing else we should do at this point. */
3009 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3013 static void synthesize_typedef (struct dieinfo *dip,
3014 struct objfile *objfile,
3019 Given a pointer to a DWARF information entry, synthesize a typedef
3020 for the name in the DIE, using the specified type.
3022 This is used for C++ class, structs, unions, and enumerations to
3023 set up the tag name as a type.
3028 synthesize_typedef (dip, objfile, type)
3029 struct dieinfo *dip;
3030 struct objfile *objfile;
3033 struct symbol *sym = NULL;
3035 if (dip -> at_name != NULL)
3037 sym = (struct symbol *)
3038 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3039 memset (sym, 0, sizeof (struct symbol));
3040 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3041 &objfile->symbol_obstack);
3042 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3043 SYMBOL_TYPE (sym) = type;
3044 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3045 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3046 add_symbol_to_list (sym, list_in_scope);
3054 decode_mod_fund_type -- decode a modified fundamental type
3058 static struct type *decode_mod_fund_type (char *typedata)
3062 Decode a block of data containing a modified fundamental
3063 type specification. TYPEDATA is a pointer to the block,
3064 which starts with a length containing the size of the rest
3065 of the block. At the end of the block is a fundmental type
3066 code value that gives the fundamental type. Everything
3067 in between are type modifiers.
3069 We simply compute the number of modifiers and call the general
3070 function decode_modified_type to do the actual work.
3073 static struct type *
3074 decode_mod_fund_type (typedata)
3077 struct type *typep = NULL;
3078 unsigned short modcount;
3081 /* Get the total size of the block, exclusive of the size itself */
3083 nbytes = attribute_size (AT_mod_fund_type);
3084 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3087 /* Deduct the size of the fundamental type bytes at the end of the block. */
3089 modcount -= attribute_size (AT_fund_type);
3091 /* Now do the actual decoding */
3093 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3101 decode_mod_u_d_type -- decode a modified user defined type
3105 static struct type *decode_mod_u_d_type (char *typedata)
3109 Decode a block of data containing a modified user defined
3110 type specification. TYPEDATA is a pointer to the block,
3111 which consists of a two byte length, containing the size
3112 of the rest of the block. At the end of the block is a
3113 four byte value that gives a reference to a user defined type.
3114 Everything in between are type modifiers.
3116 We simply compute the number of modifiers and call the general
3117 function decode_modified_type to do the actual work.
3120 static struct type *
3121 decode_mod_u_d_type (typedata)
3124 struct type *typep = NULL;
3125 unsigned short modcount;
3128 /* Get the total size of the block, exclusive of the size itself */
3130 nbytes = attribute_size (AT_mod_u_d_type);
3131 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3134 /* Deduct the size of the reference type bytes at the end of the block. */
3136 modcount -= attribute_size (AT_user_def_type);
3138 /* Now do the actual decoding */
3140 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3148 decode_modified_type -- decode modified user or fundamental type
3152 static struct type *decode_modified_type (char *modifiers,
3153 unsigned short modcount, int mtype)
3157 Decode a modified type, either a modified fundamental type or
3158 a modified user defined type. MODIFIERS is a pointer to the
3159 block of bytes that define MODCOUNT modifiers. Immediately
3160 following the last modifier is a short containing the fundamental
3161 type or a long containing the reference to the user defined
3162 type. Which one is determined by MTYPE, which is either
3163 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3164 type we are generating.
3166 We call ourself recursively to generate each modified type,`
3167 until MODCOUNT reaches zero, at which point we have consumed
3168 all the modifiers and generate either the fundamental type or
3169 user defined type. When the recursion unwinds, each modifier
3170 is applied in turn to generate the full modified type.
3174 If we find a modifier that we don't recognize, and it is not one
3175 of those reserved for application specific use, then we issue a
3176 warning and simply ignore the modifier.
3180 We currently ignore MOD_const and MOD_volatile. (FIXME)
3184 static struct type *
3185 decode_modified_type (modifiers, modcount, mtype)
3187 unsigned int modcount;
3190 struct type *typep = NULL;
3191 unsigned short fundtype;
3200 case AT_mod_fund_type:
3201 nbytes = attribute_size (AT_fund_type);
3202 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3204 typep = decode_fund_type (fundtype);
3206 case AT_mod_u_d_type:
3207 nbytes = attribute_size (AT_user_def_type);
3208 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3210 if ((typep = lookup_utype (die_ref)) == NULL)
3212 typep = alloc_utype (die_ref, NULL);
3216 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3217 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3223 modifier = *modifiers++;
3224 typep = decode_modified_type (modifiers, --modcount, mtype);
3227 case MOD_pointer_to:
3228 typep = lookup_pointer_type (typep);
3230 case MOD_reference_to:
3231 typep = lookup_reference_type (typep);
3234 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3237 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3240 if (!(MOD_lo_user <= (unsigned char) modifier
3241 && (unsigned char) modifier <= MOD_hi_user))
3243 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3255 decode_fund_type -- translate basic DWARF type to gdb base type
3259 Given an integer that is one of the fundamental DWARF types,
3260 translate it to one of the basic internal gdb types and return
3261 a pointer to the appropriate gdb type (a "struct type *").
3265 For robustness, if we are asked to translate a fundamental
3266 type that we are unprepared to deal with, we return int so
3267 callers can always depend upon a valid type being returned,
3268 and so gdb may at least do something reasonable by default.
3269 If the type is not in the range of those types defined as
3270 application specific types, we also issue a warning.
3273 static struct type *
3274 decode_fund_type (fundtype)
3275 unsigned int fundtype;
3277 struct type *typep = NULL;
3283 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3286 case FT_boolean: /* Was FT_set in AT&T version */
3287 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3290 case FT_pointer: /* (void *) */
3291 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3292 typep = lookup_pointer_type (typep);
3296 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3299 case FT_signed_char:
3300 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3303 case FT_unsigned_char:
3304 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3308 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3311 case FT_signed_short:
3312 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3315 case FT_unsigned_short:
3316 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3320 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3323 case FT_signed_integer:
3324 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3327 case FT_unsigned_integer:
3328 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3332 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3335 case FT_signed_long:
3336 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3339 case FT_unsigned_long:
3340 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3344 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3347 case FT_signed_long_long:
3348 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3351 case FT_unsigned_long_long:
3352 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3356 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3359 case FT_dbl_prec_float:
3360 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3363 case FT_ext_prec_float:
3364 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3368 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3371 case FT_dbl_prec_complex:
3372 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3375 case FT_ext_prec_complex:
3376 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3383 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3384 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3386 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3397 create_name -- allocate a fresh copy of a string on an obstack
3401 Given a pointer to a string and a pointer to an obstack, allocates
3402 a fresh copy of the string on the specified obstack.
3407 create_name (name, obstackp)
3409 struct obstack *obstackp;
3414 length = strlen (name) + 1;
3415 newname = (char *) obstack_alloc (obstackp, length);
3416 strcpy (newname, name);
3424 basicdieinfo -- extract the minimal die info from raw die data
3428 void basicdieinfo (char *diep, struct dieinfo *dip,
3429 struct objfile *objfile)
3433 Given a pointer to raw DIE data, and a pointer to an instance of a
3434 die info structure, this function extracts the basic information
3435 from the DIE data required to continue processing this DIE, along
3436 with some bookkeeping information about the DIE.
3438 The information we absolutely must have includes the DIE tag,
3439 and the DIE length. If we need the sibling reference, then we
3440 will have to call completedieinfo() to process all the remaining
3443 Note that since there is no guarantee that the data is properly
3444 aligned in memory for the type of access required (indirection
3445 through anything other than a char pointer), and there is no
3446 guarantee that it is in the same byte order as the gdb host,
3447 we call a function which deals with both alignment and byte
3448 swapping issues. Possibly inefficient, but quite portable.
3450 We also take care of some other basic things at this point, such
3451 as ensuring that the instance of the die info structure starts
3452 out completely zero'd and that curdie is initialized for use
3453 in error reporting if we have a problem with the current die.
3457 All DIE's must have at least a valid length, thus the minimum
3458 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3459 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3460 are forced to be TAG_padding DIES.
3462 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3463 that if a padding DIE is used for alignment and the amount needed is
3464 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3465 enough to align to the next alignment boundry.
3467 We do some basic sanity checking here, such as verifying that the
3468 length of the die would not cause it to overrun the recorded end of
3469 the buffer holding the DIE info. If we find a DIE that is either
3470 too small or too large, we force it's length to zero which should
3471 cause the caller to take appropriate action.
3475 basicdieinfo (dip, diep, objfile)
3476 struct dieinfo *dip;
3478 struct objfile *objfile;
3481 memset (dip, 0, sizeof (struct dieinfo));
3483 dip -> die_ref = dbroff + (diep - dbbase);
3484 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3486 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3487 ((diep + dip -> die_length) > (dbbase + dbsize)))
3489 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3490 dip -> die_length = 0;
3492 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3494 dip -> die_tag = TAG_padding;
3498 diep += SIZEOF_DIE_LENGTH;
3499 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3508 completedieinfo -- finish reading the information for a given DIE
3512 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3516 Given a pointer to an already partially initialized die info structure,
3517 scan the raw DIE data and finish filling in the die info structure
3518 from the various attributes found.
3520 Note that since there is no guarantee that the data is properly
3521 aligned in memory for the type of access required (indirection
3522 through anything other than a char pointer), and there is no
3523 guarantee that it is in the same byte order as the gdb host,
3524 we call a function which deals with both alignment and byte
3525 swapping issues. Possibly inefficient, but quite portable.
3529 Each time we are called, we increment the diecount variable, which
3530 keeps an approximate count of the number of dies processed for
3531 each compilation unit. This information is presented to the user
3532 if the info_verbose flag is set.
3537 completedieinfo (dip, objfile)
3538 struct dieinfo *dip;
3539 struct objfile *objfile;
3541 char *diep; /* Current pointer into raw DIE data */
3542 char *end; /* Terminate DIE scan here */
3543 unsigned short attr; /* Current attribute being scanned */
3544 unsigned short form; /* Form of the attribute */
3545 int nbytes; /* Size of next field to read */
3549 end = diep + dip -> die_length;
3550 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3553 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3554 diep += SIZEOF_ATTRIBUTE;
3555 if ((nbytes = attribute_size (attr)) == -1)
3557 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3564 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3568 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3572 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3582 dip -> has_at_stmt_list = 1;
3585 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3587 dip -> at_low_pc += baseaddr;
3588 dip -> has_at_low_pc = 1;
3591 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3593 dip -> at_high_pc += baseaddr;
3596 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3599 case AT_user_def_type:
3600 dip -> at_user_def_type = target_to_host (diep, nbytes,
3601 GET_UNSIGNED, objfile);
3604 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3606 dip -> has_at_byte_size = 1;
3609 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3617 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3621 dip -> at_location = diep;
3623 case AT_mod_fund_type:
3624 dip -> at_mod_fund_type = diep;
3626 case AT_subscr_data:
3627 dip -> at_subscr_data = diep;
3629 case AT_mod_u_d_type:
3630 dip -> at_mod_u_d_type = diep;
3632 case AT_element_list:
3633 dip -> at_element_list = diep;
3634 dip -> short_element_list = 0;
3636 case AT_short_element_list:
3637 dip -> at_element_list = diep;
3638 dip -> short_element_list = 1;
3640 case AT_discr_value:
3641 dip -> at_discr_value = diep;
3643 case AT_string_length:
3644 dip -> at_string_length = diep;
3647 dip -> at_name = diep;
3650 /* For now, ignore any "hostname:" portion, since gdb doesn't
3651 know how to deal with it. (FIXME). */
3652 dip -> at_comp_dir = strrchr (diep, ':');
3653 if (dip -> at_comp_dir != NULL)
3655 dip -> at_comp_dir++;
3659 dip -> at_comp_dir = diep;
3663 dip -> at_producer = diep;
3665 case AT_start_scope:
3666 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 case AT_stride_size:
3670 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3674 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3678 dip -> at_prototyped = diep;
3681 /* Found an attribute that we are unprepared to handle. However
3682 it is specifically one of the design goals of DWARF that
3683 consumers should ignore unknown attributes. As long as the
3684 form is one that we recognize (so we know how to skip it),
3685 we can just ignore the unknown attribute. */
3688 form = FORM_FROM_ATTR (attr);
3702 diep += TARGET_FT_POINTER_SIZE (objfile);
3705 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3708 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3711 diep += strlen (diep) + 1;
3714 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3725 target_to_host -- swap in target data to host
3729 target_to_host (char *from, int nbytes, int signextend,
3730 struct objfile *objfile)
3734 Given pointer to data in target format in FROM, a byte count for
3735 the size of the data in NBYTES, a flag indicating whether or not
3736 the data is signed in SIGNEXTEND, and a pointer to the current
3737 objfile in OBJFILE, convert the data to host format and return
3738 the converted value.
3742 FIXME: If we read data that is known to be signed, and expect to
3743 use it as signed data, then we need to explicitly sign extend the
3744 result until the bfd library is able to do this for us.
3746 FIXME: Would a 32 bit target ever need an 8 byte result?
3751 target_to_host (from, nbytes, signextend, objfile)
3754 int signextend; /* FIXME: Unused */
3755 struct objfile *objfile;
3762 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3765 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3768 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3771 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3774 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3785 attribute_size -- compute size of data for a DWARF attribute
3789 static int attribute_size (unsigned int attr)
3793 Given a DWARF attribute in ATTR, compute the size of the first
3794 piece of data associated with this attribute and return that
3797 Returns -1 for unrecognized attributes.
3802 attribute_size (attr)
3805 int nbytes; /* Size of next data for this attribute */
3806 unsigned short form; /* Form of the attribute */
3808 form = FORM_FROM_ATTR (attr);
3811 case FORM_STRING: /* A variable length field is next */
3814 case FORM_DATA2: /* Next 2 byte field is the data itself */
3815 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3818 case FORM_DATA4: /* Next 4 byte field is the data itself */
3819 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3820 case FORM_REF: /* Next 4 byte field is a DIE offset */
3823 case FORM_DATA8: /* Next 8 byte field is the data itself */
3826 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3827 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3830 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);