3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 # Make certain that the script is running in an internationalized
25 LC_ALL=c ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
79 if eval test \"\${${r}}\" = \"\ \"
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
120 case "${invalid_p}" in
122 if test -n "${predefault}" -a "${predefault}" != "0"
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
132 echo "Predicate function ${function} with invalid_p." 1>&2
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
146 if [ -n "${postdefault}" ]
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
151 fallbackdefault="${predefault}"
156 #NOT YET: See gdbarch.log for basic verification of
171 fallback_default_p ()
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
177 class_is_variable_p ()
185 class_is_function_p ()
188 *f* | *F* | *m* | *M* ) true ;;
193 class_is_multiarch_p ()
201 class_is_predicate_p ()
204 *F* | *V* | *M* ) true ;;
218 # dump out/verify the doco
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
249 # The name of the MACRO that this method is to be accessed by.
253 # For functions, the return type; for variables, the data type
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
344 # See also PREDEFAULT and POSTDEFAULT.
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
352 # If FMT is empty, ``%ld'' is used.
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
359 # If PRINT is empty, ``(long)'' is used.
363 # An optional indicator for any predicte to wrap around the
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
370 # If PRINT_P is empty, ``1'' is always used.
377 echo "Bad field ${field}"
385 # See below (DOCO) for description of each field
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
435 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
436 # The dummy call frame SP should be set by push_dummy_call.
437 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
438 # Function for getting target's idea of a frame pointer. FIXME: GDB's
439 # whole scheme for dealing with "frames" and "frame pointers" needs a
441 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
443 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
444 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
446 v:2:NUM_REGS:int:num_regs::::0:-1
447 # This macro gives the number of pseudo-registers that live in the
448 # register namespace but do not get fetched or stored on the target.
449 # These pseudo-registers may be aliases for other registers,
450 # combinations of other registers, or they may be computed by GDB.
451 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
453 # GDB's standard (or well known) register numbers. These can map onto
454 # a real register or a pseudo (computed) register or not be defined at
456 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
457 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
458 # This is simply not needed. See value_of_builtin_frame_fp_reg and
459 # call_function_by_hand.
460 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
461 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
462 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
463 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
464 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
465 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
466 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
468 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
470 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
471 # Convert from an sdb register number to an internal gdb register number.
472 # This should be defined in tm.h, if REGISTER_NAMES is not set up
473 # to map one to one onto the sdb register numbers.
474 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
475 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
476 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
477 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
478 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
479 # NOTE: cagney/2002-05-02: This function with predicate has a valid
480 # (callable) initial value. As a consequence, even when the predicate
481 # is false, the corresponding function works. This simplifies the
482 # migration process - old code, calling REGISTER_BYTE, doesn't need to
484 F::REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
486 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
487 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
489 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
490 # MAX_REGISTER_SIZE (a constant).
491 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
492 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
493 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
494 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
495 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
496 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
497 # MAX_REGISTER_SIZE (a constant).
498 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
499 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
500 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
501 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
502 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
504 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
505 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
506 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
507 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
508 # MAP a GDB RAW register number onto a simulator register number. See
509 # also include/...-sim.h.
510 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
511 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
512 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
513 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
514 # setjmp/longjmp support.
515 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
517 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
518 # much better but at least they are vaguely consistent). The headers
519 # and body contain convoluted #if/#else sequences for determine how
520 # things should be compiled. Instead of trying to mimic that
521 # behaviour here (and hence entrench it further) gdbarch simply
522 # reqires that these methods be set up from the word go. This also
523 # avoids any potential problems with moving beyond multi-arch partial.
524 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
525 # Replaced by push_dummy_code.
526 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
527 # Replaced by push_dummy_code.
528 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
529 # Replaced by push_dummy_code.
530 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
531 # Replaced by push_dummy_code.
532 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
533 # Replaced by push_dummy_code.
534 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
535 # NOTE: cagney/2002-11-24: This function with predicate has a valid
536 # (callable) initial value. As a consequence, even when the predicate
537 # is false, the corresponding function works. This simplifies the
538 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
539 # doesn't need to be modified.
540 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
541 # Replaced by push_dummy_code.
542 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
543 # Replaced by push_dummy_code.
544 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
545 # Replaced by push_dummy_code.
546 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
547 # Replaced by push_dummy_code.
548 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
549 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
550 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
551 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
552 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
554 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
555 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
556 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
558 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
559 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
560 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
562 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
563 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
564 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
566 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
567 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
568 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
570 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
571 # Replaced by PUSH_DUMMY_CALL
572 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
573 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
574 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
575 # NOTE: This can be handled directly in push_dummy_call.
576 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
577 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
578 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
579 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
581 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
582 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
583 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
584 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
586 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
587 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
588 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
590 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
591 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
593 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
594 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
595 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
596 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
597 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
598 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
599 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
600 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
601 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
603 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
605 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
606 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
607 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
608 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
609 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
610 # note, per UNWIND_PC's doco, that while the two have similar
611 # interfaces they have very different underlying implementations.
612 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
613 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
614 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
615 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
616 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
617 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
618 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
620 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
621 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
622 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
623 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
624 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
625 # FIXME: kettenis/2003-03-08: This should be replaced by a function
626 # parametrized with (at least) the regcache.
627 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
628 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
629 v:2:PARM_BOUNDARY:int:parm_boundary
631 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
632 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
633 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
634 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
635 # On some machines there are bits in addresses which are not really
636 # part of the address, but are used by the kernel, the hardware, etc.
637 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
638 # we get a "real" address such as one would find in a symbol table.
639 # This is used only for addresses of instructions, and even then I'm
640 # not sure it's used in all contexts. It exists to deal with there
641 # being a few stray bits in the PC which would mislead us, not as some
642 # sort of generic thing to handle alignment or segmentation (it's
643 # possible it should be in TARGET_READ_PC instead).
644 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
645 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
647 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
648 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
649 # the target needs software single step. An ISA method to implement it.
651 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
652 # using the breakpoint system instead of blatting memory directly (as with rs6000).
654 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
655 # single step. If not, then implement single step using breakpoints.
656 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
657 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
658 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
661 # For SVR4 shared libraries, each call goes through a small piece of
662 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
663 # to nonzero if we are currently stopped in one of these.
664 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
666 # Some systems also have trampoline code for returning from shared libs.
667 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
669 # Sigtramp is a routine that the kernel calls (which then calls the
670 # signal handler). On most machines it is a library routine that is
671 # linked into the executable.
673 # This macro, given a program counter value and the name of the
674 # function in which that PC resides (which can be null if the name is
675 # not known), returns nonzero if the PC and name show that we are in
678 # On most machines just see if the name is sigtramp (and if we have
679 # no name, assume we are not in sigtramp).
681 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
682 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
683 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
684 # own local NAME lookup.
686 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
687 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
689 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
690 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
691 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
692 # A target might have problems with watchpoints as soon as the stack
693 # frame of the current function has been destroyed. This mostly happens
694 # as the first action in a funtion's epilogue. in_function_epilogue_p()
695 # is defined to return a non-zero value if either the given addr is one
696 # instruction after the stack destroying instruction up to the trailing
697 # return instruction or if we can figure out that the stack frame has
698 # already been invalidated regardless of the value of addr. Targets
699 # which don't suffer from that problem could just let this functionality
701 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
702 # Given a vector of command-line arguments, return a newly allocated
703 # string which, when passed to the create_inferior function, will be
704 # parsed (on Unix systems, by the shell) to yield the same vector.
705 # This function should call error() if the argument vector is not
706 # representable for this target or if this target does not support
707 # command-line arguments.
708 # ARGC is the number of elements in the vector.
709 # ARGV is an array of strings, one per argument.
710 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
711 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
712 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
713 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
714 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
715 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
716 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
717 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
718 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
719 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
720 # Is a register in a group
721 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
722 # Fetch the pointer to the ith function argument.
723 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
730 exec > new-gdbarch.log
731 function_list | while do_read
734 ${class} ${macro}(${actual})
735 ${returntype} ${function} ($formal)${attrib}
739 eval echo \"\ \ \ \ ${r}=\${${r}}\"
741 if class_is_predicate_p && fallback_default_p
743 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
747 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
749 echo "Error: postdefault is useless when invalid_p=0" 1>&2
753 if class_is_multiarch_p
755 if class_is_predicate_p ; then :
756 elif test "x${predefault}" = "x"
758 echo "Error: pure multi-arch function must have a predefault" 1>&2
767 compare_new gdbarch.log
773 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
775 /* Dynamic architecture support for GDB, the GNU debugger.
776 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
778 This file is part of GDB.
780 This program is free software; you can redistribute it and/or modify
781 it under the terms of the GNU General Public License as published by
782 the Free Software Foundation; either version 2 of the License, or
783 (at your option) any later version.
785 This program is distributed in the hope that it will be useful,
786 but WITHOUT ANY WARRANTY; without even the implied warranty of
787 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
788 GNU General Public License for more details.
790 You should have received a copy of the GNU General Public License
791 along with this program; if not, write to the Free Software
792 Foundation, Inc., 59 Temple Place - Suite 330,
793 Boston, MA 02111-1307, USA. */
795 /* This file was created with the aid of \`\`gdbarch.sh''.
797 The Bourne shell script \`\`gdbarch.sh'' creates the files
798 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
799 against the existing \`\`gdbarch.[hc]''. Any differences found
802 If editing this file, please also run gdbarch.sh and merge any
803 changes into that script. Conversely, when making sweeping changes
804 to this file, modifying gdbarch.sh and using its output may prove
820 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
822 /* Pull in function declarations refered to, indirectly, via macros. */
823 #include "inferior.h" /* For unsigned_address_to_pointer(). */
824 #include "symfile.h" /* For entry_point_address(). */
832 struct minimal_symbol;
836 extern struct gdbarch *current_gdbarch;
839 /* If any of the following are defined, the target wasn't correctly
842 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
843 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
850 printf "/* The following are pre-initialized by GDBARCH. */\n"
851 function_list | while do_read
856 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
857 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
858 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
859 printf "#error \"Non multi-arch definition of ${macro}\"\n"
861 printf "#if !defined (${macro})\n"
862 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
870 printf "/* The following are initialized by the target dependent code. */\n"
871 function_list | while do_read
873 if [ -n "${comment}" ]
875 echo "${comment}" | sed \
880 if class_is_multiarch_p
882 if class_is_predicate_p
885 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
888 if class_is_predicate_p
891 printf "#if defined (${macro})\n"
892 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
893 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
894 printf "#if !defined (${macro}_P)\n"
895 printf "#define ${macro}_P() (1)\n"
899 printf "/* Default predicate for non- multi-arch targets. */\n"
900 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
901 printf "#define ${macro}_P() (0)\n"
904 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
905 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
906 printf "#error \"Non multi-arch definition of ${macro}\"\n"
908 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
909 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
913 if class_is_variable_p
915 if fallback_default_p || class_is_predicate_p
918 printf "/* Default (value) for non- multi-arch platforms. */\n"
919 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
920 echo "#define ${macro} (${fallbackdefault})" \
921 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
927 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
928 printf "#error \"Non multi-arch definition of ${macro}\"\n"
930 printf "#if !defined (${macro})\n"
931 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
934 if class_is_function_p
936 if class_is_multiarch_p ; then :
937 elif fallback_default_p || class_is_predicate_p
940 printf "/* Default (function) for non- multi-arch platforms. */\n"
941 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
942 if [ "x${fallbackdefault}" = "x0" ]
944 if [ "x${actual}" = "x-" ]
946 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
948 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
951 # FIXME: Should be passing current_gdbarch through!
952 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
953 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
958 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
960 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
961 elif class_is_multiarch_p
963 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
965 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
967 if [ "x${formal}" = "xvoid" ]
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
971 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
973 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
974 if class_is_multiarch_p ; then :
976 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
977 printf "#error \"Non multi-arch definition of ${macro}\"\n"
979 if [ "x${actual}" = "x" ]
981 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
982 elif [ "x${actual}" = "x-" ]
984 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
986 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
988 printf "#if !defined (${macro})\n"
989 if [ "x${actual}" = "x" ]
991 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
992 elif [ "x${actual}" = "x-" ]
994 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
996 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1006 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1009 /* Mechanism for co-ordinating the selection of a specific
1012 GDB targets (*-tdep.c) can register an interest in a specific
1013 architecture. Other GDB components can register a need to maintain
1014 per-architecture data.
1016 The mechanisms below ensures that there is only a loose connection
1017 between the set-architecture command and the various GDB
1018 components. Each component can independently register their need
1019 to maintain architecture specific data with gdbarch.
1023 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1026 The more traditional mega-struct containing architecture specific
1027 data for all the various GDB components was also considered. Since
1028 GDB is built from a variable number of (fairly independent)
1029 components it was determined that the global aproach was not
1033 /* Register a new architectural family with GDB.
1035 Register support for the specified ARCHITECTURE with GDB. When
1036 gdbarch determines that the specified architecture has been
1037 selected, the corresponding INIT function is called.
1041 The INIT function takes two parameters: INFO which contains the
1042 information available to gdbarch about the (possibly new)
1043 architecture; ARCHES which is a list of the previously created
1044 \`\`struct gdbarch'' for this architecture.
1046 The INFO parameter is, as far as possible, be pre-initialized with
1047 information obtained from INFO.ABFD or the previously selected
1050 The ARCHES parameter is a linked list (sorted most recently used)
1051 of all the previously created architures for this architecture
1052 family. The (possibly NULL) ARCHES->gdbarch can used to access
1053 values from the previously selected architecture for this
1054 architecture family. The global \`\`current_gdbarch'' shall not be
1057 The INIT function shall return any of: NULL - indicating that it
1058 doesn't recognize the selected architecture; an existing \`\`struct
1059 gdbarch'' from the ARCHES list - indicating that the new
1060 architecture is just a synonym for an earlier architecture (see
1061 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1062 - that describes the selected architecture (see gdbarch_alloc()).
1064 The DUMP_TDEP function shall print out all target specific values.
1065 Care should be taken to ensure that the function works in both the
1066 multi-arch and non- multi-arch cases. */
1070 struct gdbarch *gdbarch;
1071 struct gdbarch_list *next;
1076 /* Use default: NULL (ZERO). */
1077 const struct bfd_arch_info *bfd_arch_info;
1079 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1082 /* Use default: NULL (ZERO). */
1085 /* Use default: NULL (ZERO). */
1086 struct gdbarch_tdep_info *tdep_info;
1088 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1089 enum gdb_osabi osabi;
1092 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1093 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1095 /* DEPRECATED - use gdbarch_register() */
1096 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1098 extern void gdbarch_register (enum bfd_architecture architecture,
1099 gdbarch_init_ftype *,
1100 gdbarch_dump_tdep_ftype *);
1103 /* Return a freshly allocated, NULL terminated, array of the valid
1104 architecture names. Since architectures are registered during the
1105 _initialize phase this function only returns useful information
1106 once initialization has been completed. */
1108 extern const char **gdbarch_printable_names (void);
1111 /* Helper function. Search the list of ARCHES for a GDBARCH that
1112 matches the information provided by INFO. */
1114 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1117 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1118 basic initialization using values obtained from the INFO andTDEP
1119 parameters. set_gdbarch_*() functions are called to complete the
1120 initialization of the object. */
1122 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1125 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1126 It is assumed that the caller freeds the \`\`struct
1129 extern void gdbarch_free (struct gdbarch *);
1132 /* Helper function. Force an update of the current architecture.
1134 The actual architecture selected is determined by INFO, \`\`(gdb) set
1135 architecture'' et.al., the existing architecture and BFD's default
1136 architecture. INFO should be initialized to zero and then selected
1137 fields should be updated.
1139 Returns non-zero if the update succeeds */
1141 extern int gdbarch_update_p (struct gdbarch_info info);
1145 /* Register per-architecture data-pointer.
1147 Reserve space for a per-architecture data-pointer. An identifier
1148 for the reserved data-pointer is returned. That identifer should
1149 be saved in a local static variable.
1151 The per-architecture data-pointer is either initialized explicitly
1152 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1153 gdbarch_data()). FREE() is called to delete either an existing
1154 data-pointer overridden by set_gdbarch_data() or when the
1155 architecture object is being deleted.
1157 When a previously created architecture is re-selected, the
1158 per-architecture data-pointer for that previous architecture is
1159 restored. INIT() is not re-called.
1161 Multiple registrarants for any architecture are allowed (and
1162 strongly encouraged). */
1164 struct gdbarch_data;
1166 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1167 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1169 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1170 gdbarch_data_free_ftype *free);
1171 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1172 struct gdbarch_data *data,
1175 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1178 /* Register per-architecture memory region.
1180 Provide a memory-region swap mechanism. Per-architecture memory
1181 region are created. These memory regions are swapped whenever the
1182 architecture is changed. For a new architecture, the memory region
1183 is initialized with zero (0) and the INIT function is called.
1185 Memory regions are swapped / initialized in the order that they are
1186 registered. NULL DATA and/or INIT values can be specified.
1188 New code should use register_gdbarch_data(). */
1190 typedef void (gdbarch_swap_ftype) (void);
1191 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1192 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1196 /* The target-system-dependent byte order is dynamic */
1198 extern int target_byte_order;
1199 #ifndef TARGET_BYTE_ORDER
1200 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1203 extern int target_byte_order_auto;
1204 #ifndef TARGET_BYTE_ORDER_AUTO
1205 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1210 /* The target-system-dependent BFD architecture is dynamic */
1212 extern int target_architecture_auto;
1213 #ifndef TARGET_ARCHITECTURE_AUTO
1214 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1217 extern const struct bfd_arch_info *target_architecture;
1218 #ifndef TARGET_ARCHITECTURE
1219 #define TARGET_ARCHITECTURE (target_architecture + 0)
1223 /* The target-system-dependent disassembler is semi-dynamic */
1225 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1226 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1228 /* Use set_gdbarch_print_insn instead. */
1229 extern disassemble_info deprecated_tm_print_insn_info;
1231 /* Set the dynamic target-system-dependent parameters (architecture,
1232 byte-order, ...) using information found in the BFD */
1234 extern void set_gdbarch_from_file (bfd *);
1237 /* Initialize the current architecture to the "first" one we find on
1240 extern void initialize_current_architecture (void);
1242 /* For non-multiarched targets, do any initialization of the default
1243 gdbarch object necessary after the _initialize_MODULE functions
1245 extern void initialize_non_multiarch (void);
1247 /* gdbarch trace variable */
1248 extern int gdbarch_debug;
1250 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1255 #../move-if-change new-gdbarch.h gdbarch.h
1256 compare_new gdbarch.h
1263 exec > new-gdbarch.c
1268 #include "arch-utils.h"
1272 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1274 /* Just include everything in sight so that the every old definition
1275 of macro is visible. */
1276 #include "gdb_string.h"
1280 #include "inferior.h"
1281 #include "breakpoint.h"
1282 #include "gdb_wait.h"
1283 #include "gdbcore.h"
1286 #include "gdbthread.h"
1287 #include "annotate.h"
1288 #include "symfile.h" /* for overlay functions */
1289 #include "value.h" /* For old tm.h/nm.h macros. */
1293 #include "floatformat.h"
1295 #include "gdb_assert.h"
1296 #include "gdb_string.h"
1297 #include "gdb-events.h"
1298 #include "reggroups.h"
1300 #include "symfile.h" /* For entry_point_address. */
1302 /* Static function declarations */
1304 static void verify_gdbarch (struct gdbarch *gdbarch);
1305 static void alloc_gdbarch_data (struct gdbarch *);
1306 static void free_gdbarch_data (struct gdbarch *);
1307 static void init_gdbarch_swap (struct gdbarch *);
1308 static void clear_gdbarch_swap (struct gdbarch *);
1309 static void swapout_gdbarch_swap (struct gdbarch *);
1310 static void swapin_gdbarch_swap (struct gdbarch *);
1312 /* Non-zero if we want to trace architecture code. */
1314 #ifndef GDBARCH_DEBUG
1315 #define GDBARCH_DEBUG 0
1317 int gdbarch_debug = GDBARCH_DEBUG;
1321 # gdbarch open the gdbarch object
1323 printf "/* Maintain the struct gdbarch object */\n"
1325 printf "struct gdbarch\n"
1327 printf " /* Has this architecture been fully initialized? */\n"
1328 printf " int initialized_p;\n"
1329 printf " /* basic architectural information */\n"
1330 function_list | while do_read
1334 printf " ${returntype} ${function};\n"
1338 printf " /* target specific vector. */\n"
1339 printf " struct gdbarch_tdep *tdep;\n"
1340 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1342 printf " /* per-architecture data-pointers */\n"
1343 printf " unsigned nr_data;\n"
1344 printf " void **data;\n"
1346 printf " /* per-architecture swap-regions */\n"
1347 printf " struct gdbarch_swap *swap;\n"
1350 /* Multi-arch values.
1352 When extending this structure you must:
1354 Add the field below.
1356 Declare set/get functions and define the corresponding
1359 gdbarch_alloc(): If zero/NULL is not a suitable default,
1360 initialize the new field.
1362 verify_gdbarch(): Confirm that the target updated the field
1365 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1368 \`\`startup_gdbarch()'': Append an initial value to the static
1369 variable (base values on the host's c-type system).
1371 get_gdbarch(): Implement the set/get functions (probably using
1372 the macro's as shortcuts).
1377 function_list | while do_read
1379 if class_is_variable_p
1381 printf " ${returntype} ${function};\n"
1382 elif class_is_function_p
1384 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1389 # A pre-initialized vector
1393 /* The default architecture uses host values (for want of a better
1397 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1399 printf "struct gdbarch startup_gdbarch =\n"
1401 printf " 1, /* Always initialized. */\n"
1402 printf " /* basic architecture information */\n"
1403 function_list | while do_read
1407 printf " ${staticdefault}, /* ${function} */\n"
1411 /* target specific vector and its dump routine */
1413 /*per-architecture data-pointers and swap regions */
1415 /* Multi-arch values */
1417 function_list | while do_read
1419 if class_is_function_p || class_is_variable_p
1421 printf " ${staticdefault}, /* ${function} */\n"
1425 /* startup_gdbarch() */
1428 struct gdbarch *current_gdbarch = &startup_gdbarch;
1430 /* Do any initialization needed for a non-multiarch configuration
1431 after the _initialize_MODULE functions have been run. */
1433 initialize_non_multiarch (void)
1435 alloc_gdbarch_data (&startup_gdbarch);
1436 /* Ensure that all swap areas are zeroed so that they again think
1437 they are starting from scratch. */
1438 clear_gdbarch_swap (&startup_gdbarch);
1439 init_gdbarch_swap (&startup_gdbarch);
1443 # Create a new gdbarch struct
1447 /* Create a new \`\`struct gdbarch'' based on information provided by
1448 \`\`struct gdbarch_info''. */
1453 gdbarch_alloc (const struct gdbarch_info *info,
1454 struct gdbarch_tdep *tdep)
1456 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1457 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1458 the current local architecture and not the previous global
1459 architecture. This ensures that the new architectures initial
1460 values are not influenced by the previous architecture. Once
1461 everything is parameterised with gdbarch, this will go away. */
1462 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1463 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1465 alloc_gdbarch_data (current_gdbarch);
1467 current_gdbarch->tdep = tdep;
1470 function_list | while do_read
1474 printf " current_gdbarch->${function} = info->${function};\n"
1478 printf " /* Force the explicit initialization of these. */\n"
1479 function_list | while do_read
1481 if class_is_function_p || class_is_variable_p
1483 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1485 printf " current_gdbarch->${function} = ${predefault};\n"
1490 /* gdbarch_alloc() */
1492 return current_gdbarch;
1496 # Free a gdbarch struct.
1500 /* Free a gdbarch struct. This should never happen in normal
1501 operation --- once you've created a gdbarch, you keep it around.
1502 However, if an architecture's init function encounters an error
1503 building the structure, it may need to clean up a partially
1504 constructed gdbarch. */
1507 gdbarch_free (struct gdbarch *arch)
1509 gdb_assert (arch != NULL);
1510 free_gdbarch_data (arch);
1515 # verify a new architecture
1518 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1522 verify_gdbarch (struct gdbarch *gdbarch)
1524 struct ui_file *log;
1525 struct cleanup *cleanups;
1528 /* Only perform sanity checks on a multi-arch target. */
1529 if (!GDB_MULTI_ARCH)
1531 log = mem_fileopen ();
1532 cleanups = make_cleanup_ui_file_delete (log);
1534 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1535 fprintf_unfiltered (log, "\n\tbyte-order");
1536 if (gdbarch->bfd_arch_info == NULL)
1537 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1538 /* Check those that need to be defined for the given multi-arch level. */
1540 function_list | while do_read
1542 if class_is_function_p || class_is_variable_p
1544 if [ "x${invalid_p}" = "x0" ]
1546 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1547 elif class_is_predicate_p
1549 printf " /* Skip verify of ${function}, has predicate */\n"
1550 # FIXME: See do_read for potential simplification
1551 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1553 printf " if (${invalid_p})\n"
1554 printf " gdbarch->${function} = ${postdefault};\n"
1555 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1557 printf " if (gdbarch->${function} == ${predefault})\n"
1558 printf " gdbarch->${function} = ${postdefault};\n"
1559 elif [ -n "${postdefault}" ]
1561 printf " if (gdbarch->${function} == 0)\n"
1562 printf " gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${invalid_p}" ]
1565 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1566 printf " && (${invalid_p}))\n"
1567 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1568 elif [ -n "${predefault}" ]
1570 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1571 printf " && (gdbarch->${function} == ${predefault}))\n"
1572 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1577 buf = ui_file_xstrdup (log, &dummy);
1578 make_cleanup (xfree, buf);
1579 if (strlen (buf) > 0)
1580 internal_error (__FILE__, __LINE__,
1581 "verify_gdbarch: the following are invalid ...%s",
1583 do_cleanups (cleanups);
1587 # dump the structure
1591 /* Print out the details of the current architecture. */
1593 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1594 just happens to match the global variable \`\`current_gdbarch''. That
1595 way macros refering to that variable get the local and not the global
1596 version - ulgh. Once everything is parameterised with gdbarch, this
1600 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1602 fprintf_unfiltered (file,
1603 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1606 function_list | sort -t: -k 3 | while do_read
1608 # First the predicate
1609 if class_is_predicate_p
1611 if class_is_multiarch_p
1613 printf " if (GDB_MULTI_ARCH)\n"
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1616 printf " gdbarch_${function}_p (current_gdbarch));\n"
1618 printf "#ifdef ${macro}_P\n"
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1621 printf " \"${macro}_P()\",\n"
1622 printf " XSTRING (${macro}_P ()));\n"
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1625 printf " ${macro}_P ());\n"
1629 # multiarch functions don't have macros.
1630 if class_is_multiarch_p
1632 printf " if (GDB_MULTI_ARCH)\n"
1633 printf " fprintf_unfiltered (file,\n"
1634 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1635 printf " (long) current_gdbarch->${function});\n"
1638 # Print the macro definition.
1639 printf "#ifdef ${macro}\n"
1640 if [ "x${returntype}" = "xvoid" ]
1642 printf "#if GDB_MULTI_ARCH\n"
1643 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1645 if class_is_function_p
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1649 printf " \"${macro}(${actual})\",\n"
1650 printf " XSTRING (${macro} (${actual})));\n"
1652 printf " fprintf_unfiltered (file,\n"
1653 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1654 printf " XSTRING (${macro}));\n"
1656 # Print the architecture vector value
1657 if [ "x${returntype}" = "xvoid" ]
1661 if [ "x${print_p}" = "x()" ]
1663 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1664 elif [ "x${print_p}" = "x0" ]
1666 printf " /* skip print of ${macro}, print_p == 0. */\n"
1667 elif [ -n "${print_p}" ]
1669 printf " if (${print_p})\n"
1670 printf " fprintf_unfiltered (file,\n"
1671 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1672 printf " ${print});\n"
1673 elif class_is_function_p
1675 printf " if (GDB_MULTI_ARCH)\n"
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1678 printf " (long) current_gdbarch->${function}\n"
1679 printf " /*${macro} ()*/);\n"
1681 printf " fprintf_unfiltered (file,\n"
1682 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1683 printf " ${print});\n"
1688 if (current_gdbarch->dump_tdep != NULL)
1689 current_gdbarch->dump_tdep (current_gdbarch, file);
1697 struct gdbarch_tdep *
1698 gdbarch_tdep (struct gdbarch *gdbarch)
1700 if (gdbarch_debug >= 2)
1701 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1702 return gdbarch->tdep;
1706 function_list | while do_read
1708 if class_is_predicate_p
1712 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1714 printf " gdb_assert (gdbarch != NULL);\n"
1715 if [ -n "${predicate}" ]
1717 printf " return ${predicate};\n"
1719 printf " return gdbarch->${function} != 0;\n"
1723 if class_is_function_p
1726 printf "${returntype}\n"
1727 if [ "x${formal}" = "xvoid" ]
1729 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1731 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1734 printf " gdb_assert (gdbarch != NULL);\n"
1735 printf " if (gdbarch->${function} == 0)\n"
1736 printf " internal_error (__FILE__, __LINE__,\n"
1737 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1738 if class_is_predicate_p && test -n "${predicate}"
1740 # Allow a call to a function with a predicate.
1741 printf " /* Ignore predicate (${predicate}). */\n"
1743 printf " if (gdbarch_debug >= 2)\n"
1744 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1745 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1747 if class_is_multiarch_p
1754 if class_is_multiarch_p
1756 params="gdbarch, ${actual}"
1761 if [ "x${returntype}" = "xvoid" ]
1763 printf " gdbarch->${function} (${params});\n"
1765 printf " return gdbarch->${function} (${params});\n"
1770 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1771 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1773 printf " gdbarch->${function} = ${function};\n"
1775 elif class_is_variable_p
1778 printf "${returntype}\n"
1779 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1781 printf " gdb_assert (gdbarch != NULL);\n"
1782 if [ "x${invalid_p}" = "x0" ]
1784 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1785 elif [ -n "${invalid_p}" ]
1787 printf " if (${invalid_p})\n"
1788 printf " internal_error (__FILE__, __LINE__,\n"
1789 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1790 elif [ -n "${predefault}" ]
1792 printf " if (gdbarch->${function} == ${predefault})\n"
1793 printf " internal_error (__FILE__, __LINE__,\n"
1794 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1796 printf " if (gdbarch_debug >= 2)\n"
1797 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1798 printf " return gdbarch->${function};\n"
1802 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1803 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1805 printf " gdbarch->${function} = ${function};\n"
1807 elif class_is_info_p
1810 printf "${returntype}\n"
1811 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1813 printf " gdb_assert (gdbarch != NULL);\n"
1814 printf " if (gdbarch_debug >= 2)\n"
1815 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1816 printf " return gdbarch->${function};\n"
1821 # All the trailing guff
1825 /* Keep a registry of per-architecture data-pointers required by GDB
1832 gdbarch_data_init_ftype *init;
1833 gdbarch_data_free_ftype *free;
1836 struct gdbarch_data_registration
1838 struct gdbarch_data *data;
1839 struct gdbarch_data_registration *next;
1842 struct gdbarch_data_registry
1845 struct gdbarch_data_registration *registrations;
1848 struct gdbarch_data_registry gdbarch_data_registry =
1853 struct gdbarch_data *
1854 register_gdbarch_data (gdbarch_data_init_ftype *init,
1855 gdbarch_data_free_ftype *free)
1857 struct gdbarch_data_registration **curr;
1858 /* Append the new registraration. */
1859 for (curr = &gdbarch_data_registry.registrations;
1861 curr = &(*curr)->next);
1862 (*curr) = XMALLOC (struct gdbarch_data_registration);
1863 (*curr)->next = NULL;
1864 (*curr)->data = XMALLOC (struct gdbarch_data);
1865 (*curr)->data->index = gdbarch_data_registry.nr++;
1866 (*curr)->data->init = init;
1867 (*curr)->data->init_p = 1;
1868 (*curr)->data->free = free;
1869 return (*curr)->data;
1873 /* Create/delete the gdbarch data vector. */
1876 alloc_gdbarch_data (struct gdbarch *gdbarch)
1878 gdb_assert (gdbarch->data == NULL);
1879 gdbarch->nr_data = gdbarch_data_registry.nr;
1880 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1884 free_gdbarch_data (struct gdbarch *gdbarch)
1886 struct gdbarch_data_registration *rego;
1887 gdb_assert (gdbarch->data != NULL);
1888 for (rego = gdbarch_data_registry.registrations;
1892 struct gdbarch_data *data = rego->data;
1893 gdb_assert (data->index < gdbarch->nr_data);
1894 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1896 data->free (gdbarch, gdbarch->data[data->index]);
1897 gdbarch->data[data->index] = NULL;
1900 xfree (gdbarch->data);
1901 gdbarch->data = NULL;
1905 /* Initialize the current value of the specified per-architecture
1909 set_gdbarch_data (struct gdbarch *gdbarch,
1910 struct gdbarch_data *data,
1913 gdb_assert (data->index < gdbarch->nr_data);
1914 if (gdbarch->data[data->index] != NULL)
1916 gdb_assert (data->free != NULL);
1917 data->free (gdbarch, gdbarch->data[data->index]);
1919 gdbarch->data[data->index] = pointer;
1922 /* Return the current value of the specified per-architecture
1926 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1928 gdb_assert (data->index < gdbarch->nr_data);
1929 /* The data-pointer isn't initialized, call init() to get a value but
1930 only if the architecture initializaiton has completed. Otherwise
1931 punt - hope that the caller knows what they are doing. */
1932 if (gdbarch->data[data->index] == NULL
1933 && gdbarch->initialized_p)
1935 /* Be careful to detect an initialization cycle. */
1936 gdb_assert (data->init_p);
1938 gdb_assert (data->init != NULL);
1939 gdbarch->data[data->index] = data->init (gdbarch);
1941 gdb_assert (gdbarch->data[data->index] != NULL);
1943 return gdbarch->data[data->index];
1948 /* Keep a registry of swapped data required by GDB modules. */
1953 struct gdbarch_swap_registration *source;
1954 struct gdbarch_swap *next;
1957 struct gdbarch_swap_registration
1960 unsigned long sizeof_data;
1961 gdbarch_swap_ftype *init;
1962 struct gdbarch_swap_registration *next;
1965 struct gdbarch_swap_registry
1968 struct gdbarch_swap_registration *registrations;
1971 struct gdbarch_swap_registry gdbarch_swap_registry =
1977 register_gdbarch_swap (void *data,
1978 unsigned long sizeof_data,
1979 gdbarch_swap_ftype *init)
1981 struct gdbarch_swap_registration **rego;
1982 for (rego = &gdbarch_swap_registry.registrations;
1984 rego = &(*rego)->next);
1985 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1986 (*rego)->next = NULL;
1987 (*rego)->init = init;
1988 (*rego)->data = data;
1989 (*rego)->sizeof_data = sizeof_data;
1993 clear_gdbarch_swap (struct gdbarch *gdbarch)
1995 struct gdbarch_swap *curr;
1996 for (curr = gdbarch->swap;
2000 memset (curr->source->data, 0, curr->source->sizeof_data);
2005 init_gdbarch_swap (struct gdbarch *gdbarch)
2007 struct gdbarch_swap_registration *rego;
2008 struct gdbarch_swap **curr = &gdbarch->swap;
2009 for (rego = gdbarch_swap_registry.registrations;
2013 if (rego->data != NULL)
2015 (*curr) = XMALLOC (struct gdbarch_swap);
2016 (*curr)->source = rego;
2017 (*curr)->swap = xmalloc (rego->sizeof_data);
2018 (*curr)->next = NULL;
2019 curr = &(*curr)->next;
2021 if (rego->init != NULL)
2027 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2029 struct gdbarch_swap *curr;
2030 for (curr = gdbarch->swap;
2033 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2037 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2039 struct gdbarch_swap *curr;
2040 for (curr = gdbarch->swap;
2043 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2047 /* Keep a registry of the architectures known by GDB. */
2049 struct gdbarch_registration
2051 enum bfd_architecture bfd_architecture;
2052 gdbarch_init_ftype *init;
2053 gdbarch_dump_tdep_ftype *dump_tdep;
2054 struct gdbarch_list *arches;
2055 struct gdbarch_registration *next;
2058 static struct gdbarch_registration *gdbarch_registry = NULL;
2061 append_name (const char ***buf, int *nr, const char *name)
2063 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2069 gdbarch_printable_names (void)
2073 /* Accumulate a list of names based on the registed list of
2075 enum bfd_architecture a;
2077 const char **arches = NULL;
2078 struct gdbarch_registration *rego;
2079 for (rego = gdbarch_registry;
2083 const struct bfd_arch_info *ap;
2084 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2086 internal_error (__FILE__, __LINE__,
2087 "gdbarch_architecture_names: multi-arch unknown");
2090 append_name (&arches, &nr_arches, ap->printable_name);
2095 append_name (&arches, &nr_arches, NULL);
2099 /* Just return all the architectures that BFD knows. Assume that
2100 the legacy architecture framework supports them. */
2101 return bfd_arch_list ();
2106 gdbarch_register (enum bfd_architecture bfd_architecture,
2107 gdbarch_init_ftype *init,
2108 gdbarch_dump_tdep_ftype *dump_tdep)
2110 struct gdbarch_registration **curr;
2111 const struct bfd_arch_info *bfd_arch_info;
2112 /* Check that BFD recognizes this architecture */
2113 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2114 if (bfd_arch_info == NULL)
2116 internal_error (__FILE__, __LINE__,
2117 "gdbarch: Attempt to register unknown architecture (%d)",
2120 /* Check that we haven't seen this architecture before */
2121 for (curr = &gdbarch_registry;
2123 curr = &(*curr)->next)
2125 if (bfd_architecture == (*curr)->bfd_architecture)
2126 internal_error (__FILE__, __LINE__,
2127 "gdbarch: Duplicate registraration of architecture (%s)",
2128 bfd_arch_info->printable_name);
2132 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2133 bfd_arch_info->printable_name,
2136 (*curr) = XMALLOC (struct gdbarch_registration);
2137 (*curr)->bfd_architecture = bfd_architecture;
2138 (*curr)->init = init;
2139 (*curr)->dump_tdep = dump_tdep;
2140 (*curr)->arches = NULL;
2141 (*curr)->next = NULL;
2142 /* When non- multi-arch, install whatever target dump routine we've
2143 been provided - hopefully that routine has been written correctly
2144 and works regardless of multi-arch. */
2145 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2146 && startup_gdbarch.dump_tdep == NULL)
2147 startup_gdbarch.dump_tdep = dump_tdep;
2151 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2152 gdbarch_init_ftype *init)
2154 gdbarch_register (bfd_architecture, init, NULL);
2158 /* Look for an architecture using gdbarch_info. Base search on only
2159 BFD_ARCH_INFO and BYTE_ORDER. */
2161 struct gdbarch_list *
2162 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2163 const struct gdbarch_info *info)
2165 for (; arches != NULL; arches = arches->next)
2167 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2169 if (info->byte_order != arches->gdbarch->byte_order)
2171 if (info->osabi != arches->gdbarch->osabi)
2179 /* Update the current architecture. Return ZERO if the update request
2183 gdbarch_update_p (struct gdbarch_info info)
2185 struct gdbarch *new_gdbarch;
2186 struct gdbarch *old_gdbarch;
2187 struct gdbarch_registration *rego;
2189 /* Fill in missing parts of the INFO struct using a number of
2190 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2192 /* \`\`(gdb) set architecture ...'' */
2193 if (info.bfd_arch_info == NULL
2194 && !TARGET_ARCHITECTURE_AUTO)
2195 info.bfd_arch_info = TARGET_ARCHITECTURE;
2196 if (info.bfd_arch_info == NULL
2197 && info.abfd != NULL
2198 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2199 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2200 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2201 if (info.bfd_arch_info == NULL)
2202 info.bfd_arch_info = TARGET_ARCHITECTURE;
2204 /* \`\`(gdb) set byte-order ...'' */
2205 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2206 && !TARGET_BYTE_ORDER_AUTO)
2207 info.byte_order = TARGET_BYTE_ORDER;
2208 /* From the INFO struct. */
2209 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2210 && info.abfd != NULL)
2211 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2212 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2213 : BFD_ENDIAN_UNKNOWN);
2214 /* From the current target. */
2215 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2216 info.byte_order = TARGET_BYTE_ORDER;
2218 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2219 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2220 info.osabi = gdbarch_lookup_osabi (info.abfd);
2221 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2222 info.osabi = current_gdbarch->osabi;
2224 /* Must have found some sort of architecture. */
2225 gdb_assert (info.bfd_arch_info != NULL);
2229 fprintf_unfiltered (gdb_stdlog,
2230 "gdbarch_update: info.bfd_arch_info %s\n",
2231 (info.bfd_arch_info != NULL
2232 ? info.bfd_arch_info->printable_name
2234 fprintf_unfiltered (gdb_stdlog,
2235 "gdbarch_update: info.byte_order %d (%s)\n",
2237 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2238 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2240 fprintf_unfiltered (gdb_stdlog,
2241 "gdbarch_update: info.osabi %d (%s)\n",
2242 info.osabi, gdbarch_osabi_name (info.osabi));
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_update: info.abfd 0x%lx\n",
2246 fprintf_unfiltered (gdb_stdlog,
2247 "gdbarch_update: info.tdep_info 0x%lx\n",
2248 (long) info.tdep_info);
2251 /* Find the target that knows about this architecture. */
2252 for (rego = gdbarch_registry;
2255 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2260 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2264 /* Swap the data belonging to the old target out setting the
2265 installed data to zero. This stops the ->init() function trying
2266 to refer to the previous architecture's global data structures. */
2267 swapout_gdbarch_swap (current_gdbarch);
2268 clear_gdbarch_swap (current_gdbarch);
2270 /* Save the previously selected architecture, setting the global to
2271 NULL. This stops ->init() trying to use the previous
2272 architecture's configuration. The previous architecture may not
2273 even be of the same architecture family. The most recent
2274 architecture of the same family is found at the head of the
2275 rego->arches list. */
2276 old_gdbarch = current_gdbarch;
2277 current_gdbarch = NULL;
2279 /* Ask the target for a replacement architecture. */
2280 new_gdbarch = rego->init (info, rego->arches);
2282 /* Did the target like it? No. Reject the change and revert to the
2283 old architecture. */
2284 if (new_gdbarch == NULL)
2287 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2288 swapin_gdbarch_swap (old_gdbarch);
2289 current_gdbarch = old_gdbarch;
2293 /* Did the architecture change? No. Oops, put the old architecture
2295 if (old_gdbarch == new_gdbarch)
2298 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2300 new_gdbarch->bfd_arch_info->printable_name);
2301 swapin_gdbarch_swap (old_gdbarch);
2302 current_gdbarch = old_gdbarch;
2306 /* Is this a pre-existing architecture? Yes. Move it to the front
2307 of the list of architectures (keeping the list sorted Most
2308 Recently Used) and then copy it in. */
2310 struct gdbarch_list **list;
2311 for (list = ®o->arches;
2313 list = &(*list)->next)
2315 if ((*list)->gdbarch == new_gdbarch)
2317 struct gdbarch_list *this;
2319 fprintf_unfiltered (gdb_stdlog,
2320 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2322 new_gdbarch->bfd_arch_info->printable_name);
2325 (*list) = this->next;
2326 /* Insert in the front. */
2327 this->next = rego->arches;
2328 rego->arches = this;
2329 /* Copy the new architecture in. */
2330 current_gdbarch = new_gdbarch;
2331 swapin_gdbarch_swap (new_gdbarch);
2332 architecture_changed_event ();
2338 /* Prepend this new architecture to the architecture list (keep the
2339 list sorted Most Recently Used). */
2341 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2342 this->next = rego->arches;
2343 this->gdbarch = new_gdbarch;
2344 rego->arches = this;
2347 /* Switch to this new architecture marking it initialized. */
2348 current_gdbarch = new_gdbarch;
2349 current_gdbarch->initialized_p = 1;
2352 fprintf_unfiltered (gdb_stdlog,
2353 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2355 new_gdbarch->bfd_arch_info->printable_name);
2358 /* Check that the newly installed architecture is valid. Plug in
2359 any post init values. */
2360 new_gdbarch->dump_tdep = rego->dump_tdep;
2361 verify_gdbarch (new_gdbarch);
2363 /* Initialize the per-architecture memory (swap) areas.
2364 CURRENT_GDBARCH must be update before these modules are
2366 init_gdbarch_swap (new_gdbarch);
2368 /* Initialize the per-architecture data. CURRENT_GDBARCH
2369 must be updated before these modules are called. */
2370 architecture_changed_event ();
2373 gdbarch_dump (current_gdbarch, gdb_stdlog);
2381 /* Pointer to the target-dependent disassembly function. */
2382 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2384 extern void _initialize_gdbarch (void);
2387 _initialize_gdbarch (void)
2389 struct cmd_list_element *c;
2391 add_show_from_set (add_set_cmd ("arch",
2394 (char *)&gdbarch_debug,
2395 "Set architecture debugging.\\n\\
2396 When non-zero, architecture debugging is enabled.", &setdebuglist),
2398 c = add_set_cmd ("archdebug",
2401 (char *)&gdbarch_debug,
2402 "Set architecture debugging.\\n\\
2403 When non-zero, architecture debugging is enabled.", &setlist);
2405 deprecate_cmd (c, "set debug arch");
2406 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2412 #../move-if-change new-gdbarch.c gdbarch.c
2413 compare_new gdbarch.c