1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "arch-utils.h"
37 #include "breakpoint.h"
39 #include "complaints.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
54 #include "parser-defs.h"
60 #include <sys/types.h>
62 #include "gdb_string.h"
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
79 static void clear_symtab_users_cleanup (void *ignore);
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
84 /* External variables and functions referenced. */
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
88 /* Functions this file defines */
90 static void load_command (char *, int);
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94 static void add_symbol_file_command (char *, int);
96 bfd *symfile_bfd_open (char *);
98 int get_section_index (struct objfile *, char *);
100 static const struct sym_fns *find_sym_fns (bfd *);
102 static void decrement_reading_symtab (void *);
104 static void overlay_invalidate_all (void);
106 void list_overlays_command (char *, int);
108 void map_overlay_command (char *, int);
110 void unmap_overlay_command (char *, int);
112 static void overlay_auto_command (char *, int);
114 static void overlay_manual_command (char *, int);
116 static void overlay_off_command (char *, int);
118 static void overlay_load_command (char *, int);
120 static void overlay_command (char *, int);
122 static void simple_free_overlay_table (void);
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
127 static int simple_read_overlay_table (void);
129 static int simple_overlay_update_1 (struct obj_section *);
131 static void add_filename_language (char *ext, enum language lang);
133 static void info_ext_lang_command (char *args, int from_tty);
135 static void init_filename_language_table (void);
137 static void symfile_find_segment_sections (struct objfile *objfile);
139 void _initialize_symfile (void);
141 /* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150 /* Flag for whether user will be reloading symbols multiple times.
151 Defaults to ON for VxWorks, otherwise OFF. */
153 #ifdef SYMBOL_RELOADING_DEFAULT
154 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156 int symbol_reloading = 0;
159 show_symbol_reloading (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
162 fprintf_filtered (file, _("\
163 Dynamic symbol table reloading multiple times in one run is %s.\n"),
167 /* If non-zero, shared library symbols will be added automatically
168 when the inferior is created, new libraries are loaded, or when
169 attaching to the inferior. This is almost always what users will
170 want to have happen; but for very large programs, the startup time
171 will be excessive, and so if this is a problem, the user can clear
172 this flag and then add the shared library symbols as needed. Note
173 that there is a potential for confusion, since if the shared
174 library symbols are not loaded, commands like "info fun" will *not*
175 report all the functions that are actually present. */
177 int auto_solib_add = 1;
179 /* For systems that support it, a threshold size in megabytes. If
180 automatically adding a new library's symbol table to those already
181 known to the debugger would cause the total shared library symbol
182 size to exceed this threshhold, then the shlib's symbols are not
183 added. The threshold is ignored if the user explicitly asks for a
184 shlib to be added, such as when using the "sharedlibrary"
187 int auto_solib_limit;
190 /* Make a null terminated copy of the string at PTR with SIZE characters in
191 the obstack pointed to by OBSTACKP . Returns the address of the copy.
192 Note that the string at PTR does not have to be null terminated, I.E. it
193 may be part of a larger string and we are only saving a substring. */
196 obsavestring (const char *ptr, int size, struct obstack *obstackp)
198 char *p = (char *) obstack_alloc (obstackp, size + 1);
199 /* Open-coded memcpy--saves function call time. These strings are usually
200 short. FIXME: Is this really still true with a compiler that can
203 const char *p1 = ptr;
205 const char *end = ptr + size;
214 /* Concatenate NULL terminated variable argument list of `const char *' strings;
215 return the new string. Space is found in the OBSTACKP. Argument list must
216 be terminated by a sentinel expression `(char *) NULL'. */
219 obconcat (struct obstack *obstackp, ...)
223 va_start (ap, obstackp);
226 const char *s = va_arg (ap, const char *);
231 obstack_grow_str (obstackp, s);
234 obstack_1grow (obstackp, 0);
236 return obstack_finish (obstackp);
239 /* True if we are reading a symbol table. */
241 int currently_reading_symtab = 0;
244 decrement_reading_symtab (void *dummy)
246 currently_reading_symtab--;
249 /* Increment currently_reading_symtab and return a cleanup that can be
250 used to decrement it. */
252 increment_reading_symtab (void)
254 ++currently_reading_symtab;
255 return make_cleanup (decrement_reading_symtab, NULL);
258 /* Remember the lowest-addressed loadable section we've seen.
259 This function is called via bfd_map_over_sections.
261 In case of equal vmas, the section with the largest size becomes the
262 lowest-addressed loadable section.
264 If the vmas and sizes are equal, the last section is considered the
265 lowest-addressed loadable section. */
268 find_lowest_section (bfd *abfd, asection *sect, void *obj)
270 asection **lowest = (asection **) obj;
272 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
275 *lowest = sect; /* First loadable section */
276 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
277 *lowest = sect; /* A lower loadable section */
278 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
279 && (bfd_section_size (abfd, (*lowest))
280 <= bfd_section_size (abfd, sect)))
284 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
286 struct section_addr_info *
287 alloc_section_addr_info (size_t num_sections)
289 struct section_addr_info *sap;
292 size = (sizeof (struct section_addr_info)
293 + sizeof (struct other_sections) * (num_sections - 1));
294 sap = (struct section_addr_info *) xmalloc (size);
295 memset (sap, 0, size);
296 sap->num_sections = num_sections;
301 /* Build (allocate and populate) a section_addr_info struct from
302 an existing section table. */
304 extern struct section_addr_info *
305 build_section_addr_info_from_section_table (const struct target_section *start,
306 const struct target_section *end)
308 struct section_addr_info *sap;
309 const struct target_section *stp;
312 sap = alloc_section_addr_info (end - start);
314 for (stp = start, oidx = 0; stp != end; stp++)
316 if (bfd_get_section_flags (stp->bfd,
317 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
318 && oidx < end - start)
320 sap->other[oidx].addr = stp->addr;
321 sap->other[oidx].name
322 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
323 sap->other[oidx].sectindex = stp->the_bfd_section->index;
331 /* Create a section_addr_info from section offsets in ABFD. */
333 static struct section_addr_info *
334 build_section_addr_info_from_bfd (bfd *abfd)
336 struct section_addr_info *sap;
338 struct bfd_section *sec;
340 sap = alloc_section_addr_info (bfd_count_sections (abfd));
341 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
342 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
344 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
345 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
346 sap->other[i].sectindex = sec->index;
352 /* Create a section_addr_info from section offsets in OBJFILE. */
354 struct section_addr_info *
355 build_section_addr_info_from_objfile (const struct objfile *objfile)
357 struct section_addr_info *sap;
360 /* Before reread_symbols gets rewritten it is not safe to call:
361 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
363 sap = build_section_addr_info_from_bfd (objfile->obfd);
364 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
366 int sectindex = sap->other[i].sectindex;
368 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
373 /* Free all memory allocated by build_section_addr_info_from_section_table. */
376 free_section_addr_info (struct section_addr_info *sap)
380 for (idx = 0; idx < sap->num_sections; idx++)
381 if (sap->other[idx].name)
382 xfree (sap->other[idx].name);
387 /* Initialize OBJFILE's sect_index_* members. */
389 init_objfile_sect_indices (struct objfile *objfile)
394 sect = bfd_get_section_by_name (objfile->obfd, ".text");
396 objfile->sect_index_text = sect->index;
398 sect = bfd_get_section_by_name (objfile->obfd, ".data");
400 objfile->sect_index_data = sect->index;
402 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
404 objfile->sect_index_bss = sect->index;
406 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
408 objfile->sect_index_rodata = sect->index;
410 /* This is where things get really weird... We MUST have valid
411 indices for the various sect_index_* members or gdb will abort.
412 So if for example, there is no ".text" section, we have to
413 accomodate that. First, check for a file with the standard
414 one or two segments. */
416 symfile_find_segment_sections (objfile);
418 /* Except when explicitly adding symbol files at some address,
419 section_offsets contains nothing but zeros, so it doesn't matter
420 which slot in section_offsets the individual sect_index_* members
421 index into. So if they are all zero, it is safe to just point
422 all the currently uninitialized indices to the first slot. But
423 beware: if this is the main executable, it may be relocated
424 later, e.g. by the remote qOffsets packet, and then this will
425 be wrong! That's why we try segments first. */
427 for (i = 0; i < objfile->num_sections; i++)
429 if (ANOFFSET (objfile->section_offsets, i) != 0)
434 if (i == objfile->num_sections)
436 if (objfile->sect_index_text == -1)
437 objfile->sect_index_text = 0;
438 if (objfile->sect_index_data == -1)
439 objfile->sect_index_data = 0;
440 if (objfile->sect_index_bss == -1)
441 objfile->sect_index_bss = 0;
442 if (objfile->sect_index_rodata == -1)
443 objfile->sect_index_rodata = 0;
447 /* The arguments to place_section. */
449 struct place_section_arg
451 struct section_offsets *offsets;
455 /* Find a unique offset to use for loadable section SECT if
456 the user did not provide an offset. */
459 place_section (bfd *abfd, asection *sect, void *obj)
461 struct place_section_arg *arg = obj;
462 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
464 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
466 /* We are only interested in allocated sections. */
467 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
470 /* If the user specified an offset, honor it. */
471 if (offsets[sect->index] != 0)
474 /* Otherwise, let's try to find a place for the section. */
475 start_addr = (arg->lowest + align - 1) & -align;
482 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
484 int indx = cur_sec->index;
486 /* We don't need to compare against ourself. */
490 /* We can only conflict with allocated sections. */
491 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
494 /* If the section offset is 0, either the section has not been placed
495 yet, or it was the lowest section placed (in which case LOWEST
496 will be past its end). */
497 if (offsets[indx] == 0)
500 /* If this section would overlap us, then we must move up. */
501 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
502 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
504 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
505 start_addr = (start_addr + align - 1) & -align;
510 /* Otherwise, we appear to be OK. So far. */
515 offsets[sect->index] = start_addr;
516 arg->lowest = start_addr + bfd_get_section_size (sect);
519 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
520 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
524 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
526 struct section_addr_info *addrs)
530 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
532 /* Now calculate offsets for section that were specified by the caller. */
533 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
535 struct other_sections *osp;
537 osp = &addrs->other[i];
541 /* Record all sections in offsets */
542 /* The section_offsets in the objfile are here filled in using
544 section_offsets->offsets[osp->sectindex] = osp->addr;
548 /* Transform section name S for a name comparison. prelink can split section
549 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
550 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
551 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
552 (`.sbss') section has invalid (increased) virtual address. */
555 addr_section_name (const char *s)
557 if (strcmp (s, ".dynbss") == 0)
559 if (strcmp (s, ".sdynbss") == 0)
565 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
566 their (name, sectindex) pair. sectindex makes the sort by name stable. */
569 addrs_section_compar (const void *ap, const void *bp)
571 const struct other_sections *a = *((struct other_sections **) ap);
572 const struct other_sections *b = *((struct other_sections **) bp);
573 int retval, a_idx, b_idx;
575 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
579 /* SECTINDEX is undefined iff ADDR is zero. */
580 a_idx = a->addr == 0 ? 0 : a->sectindex;
581 b_idx = b->addr == 0 ? 0 : b->sectindex;
582 return a_idx - b_idx;
585 /* Provide sorted array of pointers to sections of ADDRS. The array is
586 terminated by NULL. Caller is responsible to call xfree for it. */
588 static struct other_sections **
589 addrs_section_sort (struct section_addr_info *addrs)
591 struct other_sections **array;
594 /* `+ 1' for the NULL terminator. */
595 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
596 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
597 array[i] = &addrs->other[i];
600 qsort (array, i, sizeof (*array), addrs_section_compar);
605 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
606 also SECTINDEXes specific to ABFD there. This function can be used to
607 rebase ADDRS to start referencing different BFD than before. */
610 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
612 asection *lower_sect;
613 CORE_ADDR lower_offset;
615 struct cleanup *my_cleanup;
616 struct section_addr_info *abfd_addrs;
617 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
618 struct other_sections **addrs_to_abfd_addrs;
620 /* Find lowest loadable section to be used as starting point for
621 continguous sections. */
623 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
624 if (lower_sect == NULL)
626 warning (_("no loadable sections found in added symbol-file %s"),
627 bfd_get_filename (abfd));
631 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
633 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
634 in ABFD. Section names are not unique - there can be multiple sections of
635 the same name. Also the sections of the same name do not have to be
636 adjacent to each other. Some sections may be present only in one of the
637 files. Even sections present in both files do not have to be in the same
640 Use stable sort by name for the sections in both files. Then linearly
641 scan both lists matching as most of the entries as possible. */
643 addrs_sorted = addrs_section_sort (addrs);
644 my_cleanup = make_cleanup (xfree, addrs_sorted);
646 abfd_addrs = build_section_addr_info_from_bfd (abfd);
647 make_cleanup_free_section_addr_info (abfd_addrs);
648 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
649 make_cleanup (xfree, abfd_addrs_sorted);
651 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
653 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
654 * addrs->num_sections);
655 make_cleanup (xfree, addrs_to_abfd_addrs);
657 while (*addrs_sorted)
659 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
661 while (*abfd_addrs_sorted
662 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
666 if (*abfd_addrs_sorted
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
672 /* Make the found item directly addressable from ADDRS. */
673 index_in_addrs = *addrs_sorted - addrs->other;
674 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
675 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
677 /* Never use the same ABFD entry twice. */
684 /* Calculate offsets for the loadable sections.
685 FIXME! Sections must be in order of increasing loadable section
686 so that contiguous sections can use the lower-offset!!!
688 Adjust offsets if the segments are not contiguous.
689 If the section is contiguous, its offset should be set to
690 the offset of the highest loadable section lower than it
691 (the loadable section directly below it in memory).
692 this_offset = lower_offset = lower_addr - lower_orig_addr */
694 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
696 struct other_sections *sect = addrs_to_abfd_addrs[i];
700 /* This is the index used by BFD. */
701 addrs->other[i].sectindex = sect->sectindex;
703 if (addrs->other[i].addr != 0)
705 addrs->other[i].addr -= sect->addr;
706 lower_offset = addrs->other[i].addr;
709 addrs->other[i].addr = lower_offset;
713 /* addr_section_name transformation is not used for SECT_NAME. */
714 const char *sect_name = addrs->other[i].name;
716 /* This section does not exist in ABFD, which is normally
717 unexpected and we want to issue a warning.
719 However, the ELF prelinker does create a few sections which are
720 marked in the main executable as loadable (they are loaded in
721 memory from the DYNAMIC segment) and yet are not present in
722 separate debug info files. This is fine, and should not cause
723 a warning. Shared libraries contain just the section
724 ".gnu.liblist" but it is not marked as loadable there. There is
725 no other way to identify them than by their name as the sections
726 created by prelink have no special flags.
728 For the sections `.bss' and `.sbss' see addr_section_name. */
730 if (!(strcmp (sect_name, ".gnu.liblist") == 0
731 || strcmp (sect_name, ".gnu.conflict") == 0
732 || (strcmp (sect_name, ".bss") == 0
734 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
735 && addrs_to_abfd_addrs[i - 1] != NULL)
736 || (strcmp (sect_name, ".sbss") == 0
738 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
739 && addrs_to_abfd_addrs[i - 1] != NULL)))
740 warning (_("section %s not found in %s"), sect_name,
741 bfd_get_filename (abfd));
743 addrs->other[i].addr = 0;
745 /* SECTINDEX is invalid if ADDR is zero. */
749 do_cleanups (my_cleanup);
752 /* Parse the user's idea of an offset for dynamic linking, into our idea
753 of how to represent it for fast symbol reading. This is the default
754 version of the sym_fns.sym_offsets function for symbol readers that
755 don't need to do anything special. It allocates a section_offsets table
756 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
759 default_symfile_offsets (struct objfile *objfile,
760 struct section_addr_info *addrs)
762 objfile->num_sections = bfd_count_sections (objfile->obfd);
763 objfile->section_offsets = (struct section_offsets *)
764 obstack_alloc (&objfile->objfile_obstack,
765 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
766 relative_addr_info_to_section_offsets (objfile->section_offsets,
767 objfile->num_sections, addrs);
769 /* For relocatable files, all loadable sections will start at zero.
770 The zero is meaningless, so try to pick arbitrary addresses such
771 that no loadable sections overlap. This algorithm is quadratic,
772 but the number of sections in a single object file is generally
774 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
776 struct place_section_arg arg;
777 bfd *abfd = objfile->obfd;
780 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
781 /* We do not expect this to happen; just skip this step if the
782 relocatable file has a section with an assigned VMA. */
783 if (bfd_section_vma (abfd, cur_sec) != 0)
788 CORE_ADDR *offsets = objfile->section_offsets->offsets;
790 /* Pick non-overlapping offsets for sections the user did not
792 arg.offsets = objfile->section_offsets;
794 bfd_map_over_sections (objfile->obfd, place_section, &arg);
796 /* Correctly filling in the section offsets is not quite
797 enough. Relocatable files have two properties that
798 (most) shared objects do not:
800 - Their debug information will contain relocations. Some
801 shared libraries do also, but many do not, so this can not
804 - If there are multiple code sections they will be loaded
805 at different relative addresses in memory than they are
806 in the objfile, since all sections in the file will start
809 Because GDB has very limited ability to map from an
810 address in debug info to the correct code section,
811 it relies on adding SECT_OFF_TEXT to things which might be
812 code. If we clear all the section offsets, and set the
813 section VMAs instead, then symfile_relocate_debug_section
814 will return meaningful debug information pointing at the
817 GDB has too many different data structures for section
818 addresses - a bfd, objfile, and so_list all have section
819 tables, as does exec_ops. Some of these could probably
822 for (cur_sec = abfd->sections; cur_sec != NULL;
823 cur_sec = cur_sec->next)
825 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
828 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
829 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
830 offsets[cur_sec->index]);
831 offsets[cur_sec->index] = 0;
836 /* Remember the bfd indexes for the .text, .data, .bss and
838 init_objfile_sect_indices (objfile);
842 /* Divide the file into segments, which are individual relocatable units.
843 This is the default version of the sym_fns.sym_segments function for
844 symbol readers that do not have an explicit representation of segments.
845 It assumes that object files do not have segments, and fully linked
846 files have a single segment. */
848 struct symfile_segment_data *
849 default_symfile_segments (bfd *abfd)
853 struct symfile_segment_data *data;
856 /* Relocatable files contain enough information to position each
857 loadable section independently; they should not be relocated
859 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
862 /* Make sure there is at least one loadable section in the file. */
863 for (sect = abfd->sections; sect != NULL; sect = sect->next)
865 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
873 low = bfd_get_section_vma (abfd, sect);
874 high = low + bfd_get_section_size (sect);
876 data = XZALLOC (struct symfile_segment_data);
877 data->num_segments = 1;
878 data->segment_bases = XCALLOC (1, CORE_ADDR);
879 data->segment_sizes = XCALLOC (1, CORE_ADDR);
881 num_sections = bfd_count_sections (abfd);
882 data->segment_info = XCALLOC (num_sections, int);
884 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
888 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
891 vma = bfd_get_section_vma (abfd, sect);
894 if (vma + bfd_get_section_size (sect) > high)
895 high = vma + bfd_get_section_size (sect);
897 data->segment_info[i] = 1;
900 data->segment_bases[0] = low;
901 data->segment_sizes[0] = high - low;
906 /* Process a symbol file, as either the main file or as a dynamically
909 OBJFILE is where the symbols are to be read from.
911 ADDRS is the list of section load addresses. If the user has given
912 an 'add-symbol-file' command, then this is the list of offsets and
913 addresses he or she provided as arguments to the command; or, if
914 we're handling a shared library, these are the actual addresses the
915 sections are loaded at, according to the inferior's dynamic linker
916 (as gleaned by GDB's shared library code). We convert each address
917 into an offset from the section VMA's as it appears in the object
918 file, and then call the file's sym_offsets function to convert this
919 into a format-specific offset table --- a `struct section_offsets'.
920 If ADDRS is non-zero, OFFSETS must be zero.
922 OFFSETS is a table of section offsets already in the right
923 format-specific representation. NUM_OFFSETS is the number of
924 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
925 assume this is the proper table the call to sym_offsets described
926 above would produce. Instead of calling sym_offsets, we just dump
927 it right into objfile->section_offsets. (When we're re-reading
928 symbols from an objfile, we don't have the original load address
929 list any more; all we have is the section offset table.) If
930 OFFSETS is non-zero, ADDRS must be zero.
932 ADD_FLAGS encodes verbosity level, whether this is main symbol or
933 an extra symbol file such as dynamically loaded code, and wether
934 breakpoint reset should be deferred. */
937 syms_from_objfile (struct objfile *objfile,
938 struct section_addr_info *addrs,
939 struct section_offsets *offsets,
943 struct section_addr_info *local_addr = NULL;
944 struct cleanup *old_chain;
945 const int mainline = add_flags & SYMFILE_MAINLINE;
947 gdb_assert (! (addrs && offsets));
949 init_entry_point_info (objfile);
950 objfile->sf = find_sym_fns (objfile->obfd);
952 if (objfile->sf == NULL)
953 return; /* No symbols. */
955 /* Make sure that partially constructed symbol tables will be cleaned up
956 if an error occurs during symbol reading. */
957 old_chain = make_cleanup_free_objfile (objfile);
959 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
960 list. We now establish the convention that an addr of zero means
961 no load address was specified. */
962 if (! addrs && ! offsets)
965 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
966 make_cleanup (xfree, local_addr);
970 /* Now either addrs or offsets is non-zero. */
974 /* We will modify the main symbol table, make sure that all its users
975 will be cleaned up if an error occurs during symbol reading. */
976 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
978 /* Since no error yet, throw away the old symbol table. */
980 if (symfile_objfile != NULL)
982 free_objfile (symfile_objfile);
983 gdb_assert (symfile_objfile == NULL);
986 /* Currently we keep symbols from the add-symbol-file command.
987 If the user wants to get rid of them, they should do "symbol-file"
988 without arguments first. Not sure this is the best behavior
991 (*objfile->sf->sym_new_init) (objfile);
994 /* Convert addr into an offset rather than an absolute address.
995 We find the lowest address of a loaded segment in the objfile,
996 and assume that <addr> is where that got loaded.
998 We no longer warn if the lowest section is not a text segment (as
999 happens for the PA64 port. */
1000 if (addrs && addrs->other[0].name)
1001 addr_info_make_relative (addrs, objfile->obfd);
1003 /* Initialize symbol reading routines for this objfile, allow complaints to
1004 appear for this new file, and record how verbose to be, then do the
1005 initial symbol reading for this file. */
1007 (*objfile->sf->sym_init) (objfile);
1008 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1016 /* Just copy in the offset table directly as given to us. */
1017 objfile->num_sections = num_offsets;
1018 objfile->section_offsets
1019 = ((struct section_offsets *)
1020 obstack_alloc (&objfile->objfile_obstack, size));
1021 memcpy (objfile->section_offsets, offsets, size);
1023 init_objfile_sect_indices (objfile);
1026 (*objfile->sf->sym_read) (objfile, add_flags);
1028 /* Discard cleanups as symbol reading was successful. */
1030 discard_cleanups (old_chain);
1034 /* Perform required actions after either reading in the initial
1035 symbols for a new objfile, or mapping in the symbols from a reusable
1036 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1039 new_symfile_objfile (struct objfile *objfile, int add_flags)
1041 /* If this is the main symbol file we have to clean up all users of the
1042 old main symbol file. Otherwise it is sufficient to fixup all the
1043 breakpoints that may have been redefined by this symbol file. */
1044 if (add_flags & SYMFILE_MAINLINE)
1046 /* OK, make it the "real" symbol file. */
1047 symfile_objfile = objfile;
1049 clear_symtab_users (add_flags);
1051 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1053 breakpoint_re_set ();
1056 /* We're done reading the symbol file; finish off complaints. */
1057 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1060 /* Process a symbol file, as either the main file or as a dynamically
1063 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1064 This BFD will be closed on error, and is always consumed by this function.
1066 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1067 extra, such as dynamically loaded code, and what to do with breakpoins.
1069 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1070 syms_from_objfile, above.
1071 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1073 Upon success, returns a pointer to the objfile that was added.
1074 Upon failure, jumps back to command level (never returns). */
1076 static struct objfile *
1077 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1079 struct section_addr_info *addrs,
1080 struct section_offsets *offsets,
1084 struct objfile *objfile;
1085 struct cleanup *my_cleanups;
1086 const char *name = bfd_get_filename (abfd);
1087 const int from_tty = add_flags & SYMFILE_VERBOSE;
1089 if (readnow_symbol_files)
1090 flags |= OBJF_READNOW;
1092 my_cleanups = make_cleanup_bfd_close (abfd);
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && (add_flags & SYMFILE_MAINLINE)
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1103 objfile = allocate_objfile (abfd, flags);
1104 discard_cleanups (my_cleanups);
1106 /* We either created a new mapped symbol table, mapped an existing
1107 symbol table file which has not had initial symbol reading
1108 performed, or need to read an unmapped symbol table. */
1109 if (from_tty || info_verbose)
1111 if (deprecated_pre_add_symbol_hook)
1112 deprecated_pre_add_symbol_hook (name);
1115 printf_unfiltered (_("Reading symbols from %s..."), name);
1117 gdb_flush (gdb_stdout);
1120 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1123 /* We now have at least a partial symbol table. Check to see if the
1124 user requested that all symbols be read on initial access via either
1125 the gdb startup command line or on a per symbol file basis. Expand
1126 all partial symbol tables for this objfile if so. */
1128 if ((flags & OBJF_READNOW))
1130 if (from_tty || info_verbose)
1132 printf_unfiltered (_("expanding to full symbols..."));
1134 gdb_flush (gdb_stdout);
1138 objfile->sf->qf->expand_all_symtabs (objfile);
1141 if ((from_tty || info_verbose)
1142 && !objfile_has_symbols (objfile))
1145 printf_unfiltered (_("(no debugging symbols found)..."));
1149 if (from_tty || info_verbose)
1151 if (deprecated_post_add_symbol_hook)
1152 deprecated_post_add_symbol_hook ();
1154 printf_unfiltered (_("done.\n"));
1157 /* We print some messages regardless of whether 'from_tty ||
1158 info_verbose' is true, so make sure they go out at the right
1160 gdb_flush (gdb_stdout);
1162 do_cleanups (my_cleanups);
1164 if (objfile->sf == NULL)
1166 observer_notify_new_objfile (objfile);
1167 return objfile; /* No symbols. */
1170 new_symfile_objfile (objfile, add_flags);
1172 observer_notify_new_objfile (objfile);
1174 bfd_cache_close_all ();
1178 /* Add BFD as a separate debug file for OBJFILE. */
1181 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1183 struct objfile *new_objfile;
1184 struct section_addr_info *sap;
1185 struct cleanup *my_cleanup;
1187 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1188 because sections of BFD may not match sections of OBJFILE and because
1189 vma may have been modified by tools such as prelink. */
1190 sap = build_section_addr_info_from_objfile (objfile);
1191 my_cleanup = make_cleanup_free_section_addr_info (sap);
1193 new_objfile = symbol_file_add_with_addrs_or_offsets
1194 (bfd, symfile_flags,
1196 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1197 | OBJF_USERLOADED));
1199 do_cleanups (my_cleanup);
1201 add_separate_debug_objfile (new_objfile, objfile);
1204 /* Process the symbol file ABFD, as either the main file or as a
1205 dynamically loaded file.
1207 See symbol_file_add_with_addrs_or_offsets's comments for
1210 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1211 struct section_addr_info *addrs,
1214 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1219 /* Process a symbol file, as either the main file or as a dynamically
1220 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1223 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1226 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1231 /* Call symbol_file_add() with default values and update whatever is
1232 affected by the loading of a new main().
1233 Used when the file is supplied in the gdb command line
1234 and by some targets with special loading requirements.
1235 The auxiliary function, symbol_file_add_main_1(), has the flags
1236 argument for the switches that can only be specified in the symbol_file
1240 symbol_file_add_main (char *args, int from_tty)
1242 symbol_file_add_main_1 (args, from_tty, 0);
1246 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1248 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1249 symbol_file_add (args, add_flags, NULL, flags);
1251 /* Getting new symbols may change our opinion about
1252 what is frameless. */
1253 reinit_frame_cache ();
1255 set_initial_language ();
1259 symbol_file_clear (int from_tty)
1261 if ((have_full_symbols () || have_partial_symbols ())
1264 ? !query (_("Discard symbol table from `%s'? "),
1265 symfile_objfile->name)
1266 : !query (_("Discard symbol table? "))))
1267 error (_("Not confirmed."));
1269 /* solib descriptors may have handles to objfiles. Wipe them before their
1270 objfiles get stale by free_all_objfiles. */
1271 no_shared_libraries (NULL, from_tty);
1273 free_all_objfiles ();
1275 gdb_assert (symfile_objfile == NULL);
1277 printf_unfiltered (_("No symbol file now.\n"));
1281 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1284 bfd_size_type debuglink_size;
1285 unsigned long crc32;
1289 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1294 debuglink_size = bfd_section_size (objfile->obfd, sect);
1296 contents = xmalloc (debuglink_size);
1297 bfd_get_section_contents (objfile->obfd, sect, contents,
1298 (file_ptr)0, (bfd_size_type)debuglink_size);
1300 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1301 crc_offset = strlen (contents) + 1;
1302 crc_offset = (crc_offset + 3) & ~3;
1304 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1311 separate_debug_file_exists (const char *name, unsigned long crc,
1312 struct objfile *parent_objfile)
1314 unsigned long file_crc = 0;
1316 gdb_byte buffer[8*1024];
1318 struct stat parent_stat, abfd_stat;
1320 /* Find a separate debug info file as if symbols would be present in
1321 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1322 section can contain just the basename of PARENT_OBJFILE without any
1323 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1324 the separate debug infos with the same basename can exist. */
1326 if (strcmp (name, parent_objfile->name) == 0)
1329 abfd = bfd_open_maybe_remote (name);
1334 /* Verify symlinks were not the cause of strcmp name difference above.
1336 Some operating systems, e.g. Windows, do not provide a meaningful
1337 st_ino; they always set it to zero. (Windows does provide a
1338 meaningful st_dev.) Do not indicate a duplicate library in that
1339 case. While there is no guarantee that a system that provides
1340 meaningful inode numbers will never set st_ino to zero, this is
1341 merely an optimization, so we do not need to worry about false
1344 if (bfd_stat (abfd, &abfd_stat) == 0
1345 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1346 && abfd_stat.st_dev == parent_stat.st_dev
1347 && abfd_stat.st_ino == parent_stat.st_ino
1348 && abfd_stat.st_ino != 0)
1354 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1355 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359 if (crc != file_crc)
1361 warning (_("the debug information found in \"%s\""
1362 " does not match \"%s\" (CRC mismatch).\n"),
1363 name, parent_objfile->name);
1370 char *debug_file_directory = NULL;
1372 show_debug_file_directory (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c, const char *value)
1375 fprintf_filtered (file, _("\
1376 The directory where separate debug symbols are searched for is \"%s\".\n"),
1380 #if ! defined (DEBUG_SUBDIRECTORY)
1381 #define DEBUG_SUBDIRECTORY ".debug"
1385 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1387 char *basename, *debugdir;
1389 char *debugfile = NULL;
1390 char *canon_name = NULL;
1391 unsigned long crc32;
1394 basename = get_debug_link_info (objfile, &crc32);
1396 if (basename == NULL)
1397 /* There's no separate debug info, hence there's no way we could
1398 load it => no warning. */
1399 goto cleanup_return_debugfile;
1401 dir = xstrdup (objfile->name);
1403 /* Strip off the final filename part, leaving the directory name,
1404 followed by a slash. The directory can be relative or absolute. */
1405 for (i = strlen(dir) - 1; i >= 0; i--)
1407 if (IS_DIR_SEPARATOR (dir[i]))
1410 /* If I is -1 then no directory is present there and DIR will be "". */
1413 /* Set I to max (strlen (canon_name), strlen (dir)). */
1414 canon_name = lrealpath (dir);
1416 if (canon_name && strlen (canon_name) > i)
1417 i = strlen (canon_name);
1419 debugfile = xmalloc (strlen (debug_file_directory) + 1
1421 + strlen (DEBUG_SUBDIRECTORY)
1426 /* First try in the same directory as the original file. */
1427 strcpy (debugfile, dir);
1428 strcat (debugfile, basename);
1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
1431 goto cleanup_return_debugfile;
1433 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1434 strcpy (debugfile, dir);
1435 strcat (debugfile, DEBUG_SUBDIRECTORY);
1436 strcat (debugfile, "/");
1437 strcat (debugfile, basename);
1439 if (separate_debug_file_exists (debugfile, crc32, objfile))
1440 goto cleanup_return_debugfile;
1442 /* Then try in the global debugfile directories.
1444 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1445 cause "/..." lookups. */
1447 debugdir = debug_file_directory;
1452 while (*debugdir == DIRNAME_SEPARATOR)
1455 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1456 if (debugdir_end == NULL)
1457 debugdir_end = &debugdir[strlen (debugdir)];
1459 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1460 debugfile[debugdir_end - debugdir] = 0;
1461 strcat (debugfile, "/");
1462 strcat (debugfile, dir);
1463 strcat (debugfile, basename);
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 goto cleanup_return_debugfile;
1468 /* If the file is in the sysroot, try using its base path in the
1469 global debugfile directory. */
1471 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1472 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1474 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1475 debugfile[debugdir_end - debugdir] = 0;
1476 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1477 strcat (debugfile, "/");
1478 strcat (debugfile, basename);
1480 if (separate_debug_file_exists (debugfile, crc32, objfile))
1481 goto cleanup_return_debugfile;
1484 debugdir = debugdir_end;
1486 while (*debugdir != 0);
1491 cleanup_return_debugfile:
1499 /* This is the symbol-file command. Read the file, analyze its
1500 symbols, and add a struct symtab to a symtab list. The syntax of
1501 the command is rather bizarre:
1503 1. The function buildargv implements various quoting conventions
1504 which are undocumented and have little or nothing in common with
1505 the way things are quoted (or not quoted) elsewhere in GDB.
1507 2. Options are used, which are not generally used in GDB (perhaps
1508 "set mapped on", "set readnow on" would be better)
1510 3. The order of options matters, which is contrary to GNU
1511 conventions (because it is confusing and inconvenient). */
1514 symbol_file_command (char *args, int from_tty)
1520 symbol_file_clear (from_tty);
1524 char **argv = gdb_buildargv (args);
1525 int flags = OBJF_USERLOADED;
1526 struct cleanup *cleanups;
1529 cleanups = make_cleanup_freeargv (argv);
1530 while (*argv != NULL)
1532 if (strcmp (*argv, "-readnow") == 0)
1533 flags |= OBJF_READNOW;
1534 else if (**argv == '-')
1535 error (_("unknown option `%s'"), *argv);
1538 symbol_file_add_main_1 (*argv, from_tty, flags);
1546 error (_("no symbol file name was specified"));
1548 do_cleanups (cleanups);
1552 /* Set the initial language.
1554 FIXME: A better solution would be to record the language in the
1555 psymtab when reading partial symbols, and then use it (if known) to
1556 set the language. This would be a win for formats that encode the
1557 language in an easily discoverable place, such as DWARF. For
1558 stabs, we can jump through hoops looking for specially named
1559 symbols or try to intuit the language from the specific type of
1560 stabs we find, but we can't do that until later when we read in
1564 set_initial_language (void)
1566 enum language lang = language_unknown;
1568 if (language_of_main != language_unknown)
1569 lang = language_of_main;
1572 const char *filename;
1574 filename = find_main_filename ();
1575 if (filename != NULL)
1576 lang = deduce_language_from_filename (filename);
1579 if (lang == language_unknown)
1581 /* Make C the default language */
1585 set_language (lang);
1586 expected_language = current_language; /* Don't warn the user. */
1589 /* If NAME is a remote name open the file using remote protocol, otherwise
1590 open it normally. */
1593 bfd_open_maybe_remote (const char *name)
1595 if (remote_filename_p (name))
1596 return remote_bfd_open (name, gnutarget);
1598 return bfd_openr (name, gnutarget);
1602 /* Open the file specified by NAME and hand it off to BFD for
1603 preliminary analysis. Return a newly initialized bfd *, which
1604 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605 absolute). In case of trouble, error() is called. */
1608 symfile_bfd_open (char *name)
1612 char *absolute_name;
1614 if (remote_filename_p (name))
1616 name = xstrdup (name);
1617 sym_bfd = remote_bfd_open (name, gnutarget);
1620 make_cleanup (xfree, name);
1621 error (_("`%s': can't open to read symbols: %s."), name,
1622 bfd_errmsg (bfd_get_error ()));
1625 if (!bfd_check_format (sym_bfd, bfd_object))
1627 bfd_close (sym_bfd);
1628 make_cleanup (xfree, name);
1629 error (_("`%s': can't read symbols: %s."), name,
1630 bfd_errmsg (bfd_get_error ()));
1636 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1638 /* Look down path for it, allocate 2nd new malloc'd copy. */
1639 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1640 O_RDONLY | O_BINARY, &absolute_name);
1641 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1644 char *exename = alloca (strlen (name) + 5);
1646 strcat (strcpy (exename, name), ".exe");
1647 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1648 O_RDONLY | O_BINARY, &absolute_name);
1653 make_cleanup (xfree, name);
1654 perror_with_name (name);
1657 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1658 bfd. It'll be freed in free_objfile(). */
1660 name = absolute_name;
1662 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1666 make_cleanup (xfree, name);
1667 error (_("`%s': can't open to read symbols: %s."), name,
1668 bfd_errmsg (bfd_get_error ()));
1670 bfd_set_cacheable (sym_bfd, 1);
1672 if (!bfd_check_format (sym_bfd, bfd_object))
1674 /* FIXME: should be checking for errors from bfd_close (for one
1675 thing, on error it does not free all the storage associated
1677 bfd_close (sym_bfd); /* This also closes desc. */
1678 make_cleanup (xfree, name);
1679 error (_("`%s': can't read symbols: %s."), name,
1680 bfd_errmsg (bfd_get_error ()));
1683 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1684 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1689 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1693 get_section_index (struct objfile *objfile, char *section_name)
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1703 /* Link SF into the global symtab_fns list. Called on startup by the
1704 _initialize routine in each object file format reader, to register
1705 information about each format the the reader is prepared to
1709 add_symtab_fns (const struct sym_fns *sf)
1711 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1714 /* Initialize OBJFILE to read symbols from its associated BFD. It
1715 either returns or calls error(). The result is an initialized
1716 struct sym_fns in the objfile structure, that contains cached
1717 information about the symbol file. */
1719 static const struct sym_fns *
1720 find_sym_fns (bfd *abfd)
1722 const struct sym_fns *sf;
1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1726 if (our_flavour == bfd_target_srec_flavour
1727 || our_flavour == bfd_target_ihex_flavour
1728 || our_flavour == bfd_target_tekhex_flavour)
1729 return NULL; /* No symbols. */
1731 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1732 if (our_flavour == sf->sym_flavour)
1735 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1736 bfd_get_target (abfd));
1740 /* This function runs the load command of our current target. */
1743 load_command (char *arg, int from_tty)
1745 /* The user might be reloading because the binary has changed. Take
1746 this opportunity to check. */
1747 reopen_exec_file ();
1755 parg = arg = get_exec_file (1);
1757 /* Count how many \ " ' tab space there are in the name. */
1758 while ((parg = strpbrk (parg, "\\\"'\t ")))
1766 /* We need to quote this string so buildargv can pull it apart. */
1767 char *temp = xmalloc (strlen (arg) + count + 1 );
1771 make_cleanup (xfree, temp);
1774 while ((parg = strpbrk (parg, "\\\"'\t ")))
1776 strncpy (ptemp, prev, parg - prev);
1777 ptemp += parg - prev;
1781 strcpy (ptemp, prev);
1787 target_load (arg, from_tty);
1789 /* After re-loading the executable, we don't really know which
1790 overlays are mapped any more. */
1791 overlay_cache_invalid = 1;
1794 /* This version of "load" should be usable for any target. Currently
1795 it is just used for remote targets, not inftarg.c or core files,
1796 on the theory that only in that case is it useful.
1798 Avoiding xmodem and the like seems like a win (a) because we don't have
1799 to worry about finding it, and (b) On VMS, fork() is very slow and so
1800 we don't want to run a subprocess. On the other hand, I'm not sure how
1801 performance compares. */
1803 static int validate_download = 0;
1805 /* Callback service function for generic_load (bfd_map_over_sections). */
1808 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1810 bfd_size_type *sum = data;
1812 *sum += bfd_get_section_size (asec);
1815 /* Opaque data for load_section_callback. */
1816 struct load_section_data {
1817 unsigned long load_offset;
1818 struct load_progress_data *progress_data;
1819 VEC(memory_write_request_s) *requests;
1822 /* Opaque data for load_progress. */
1823 struct load_progress_data {
1824 /* Cumulative data. */
1825 unsigned long write_count;
1826 unsigned long data_count;
1827 bfd_size_type total_size;
1830 /* Opaque data for load_progress for a single section. */
1831 struct load_progress_section_data {
1832 struct load_progress_data *cumulative;
1834 /* Per-section data. */
1835 const char *section_name;
1836 ULONGEST section_sent;
1837 ULONGEST section_size;
1842 /* Target write callback routine for progress reporting. */
1845 load_progress (ULONGEST bytes, void *untyped_arg)
1847 struct load_progress_section_data *args = untyped_arg;
1848 struct load_progress_data *totals;
1851 /* Writing padding data. No easy way to get at the cumulative
1852 stats, so just ignore this. */
1855 totals = args->cumulative;
1857 if (bytes == 0 && args->section_sent == 0)
1859 /* The write is just starting. Let the user know we've started
1861 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1862 args->section_name, hex_string (args->section_size),
1863 paddress (target_gdbarch, args->lma));
1867 if (validate_download)
1869 /* Broken memories and broken monitors manifest themselves here
1870 when bring new computers to life. This doubles already slow
1872 /* NOTE: cagney/1999-10-18: A more efficient implementation
1873 might add a verify_memory() method to the target vector and
1874 then use that. remote.c could implement that method using
1875 the ``qCRC'' packet. */
1876 gdb_byte *check = xmalloc (bytes);
1877 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1879 if (target_read_memory (args->lma, check, bytes) != 0)
1880 error (_("Download verify read failed at %s"),
1881 paddress (target_gdbarch, args->lma));
1882 if (memcmp (args->buffer, check, bytes) != 0)
1883 error (_("Download verify compare failed at %s"),
1884 paddress (target_gdbarch, args->lma));
1885 do_cleanups (verify_cleanups);
1887 totals->data_count += bytes;
1889 args->buffer += bytes;
1890 totals->write_count += 1;
1891 args->section_sent += bytes;
1893 || (deprecated_ui_load_progress_hook != NULL
1894 && deprecated_ui_load_progress_hook (args->section_name,
1895 args->section_sent)))
1896 error (_("Canceled the download"));
1898 if (deprecated_show_load_progress != NULL)
1899 deprecated_show_load_progress (args->section_name,
1903 totals->total_size);
1906 /* Callback service function for generic_load (bfd_map_over_sections). */
1909 load_section_callback (bfd *abfd, asection *asec, void *data)
1911 struct memory_write_request *new_request;
1912 struct load_section_data *args = data;
1913 struct load_progress_section_data *section_data;
1914 bfd_size_type size = bfd_get_section_size (asec);
1916 const char *sect_name = bfd_get_section_name (abfd, asec);
1918 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1924 new_request = VEC_safe_push (memory_write_request_s,
1925 args->requests, NULL);
1926 memset (new_request, 0, sizeof (struct memory_write_request));
1927 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1928 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1929 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1930 new_request->data = xmalloc (size);
1931 new_request->baton = section_data;
1933 buffer = new_request->data;
1935 section_data->cumulative = args->progress_data;
1936 section_data->section_name = sect_name;
1937 section_data->section_size = size;
1938 section_data->lma = new_request->begin;
1939 section_data->buffer = buffer;
1941 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1944 /* Clean up an entire memory request vector, including load
1945 data and progress records. */
1948 clear_memory_write_data (void *arg)
1950 VEC(memory_write_request_s) **vec_p = arg;
1951 VEC(memory_write_request_s) *vec = *vec_p;
1953 struct memory_write_request *mr;
1955 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1960 VEC_free (memory_write_request_s, vec);
1964 generic_load (char *args, int from_tty)
1967 struct timeval start_time, end_time;
1969 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1970 struct load_section_data cbdata;
1971 struct load_progress_data total_progress;
1976 memset (&cbdata, 0, sizeof (cbdata));
1977 memset (&total_progress, 0, sizeof (total_progress));
1978 cbdata.progress_data = &total_progress;
1980 make_cleanup (clear_memory_write_data, &cbdata.requests);
1983 error_no_arg (_("file to load"));
1985 argv = gdb_buildargv (args);
1986 make_cleanup_freeargv (argv);
1988 filename = tilde_expand (argv[0]);
1989 make_cleanup (xfree, filename);
1991 if (argv[1] != NULL)
1995 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1997 /* If the last word was not a valid number then
1998 treat it as a file name with spaces in. */
1999 if (argv[1] == endptr)
2000 error (_("Invalid download offset:%s."), argv[1]);
2002 if (argv[2] != NULL)
2003 error (_("Too many parameters."));
2006 /* Open the file for loading. */
2007 loadfile_bfd = bfd_openr (filename, gnutarget);
2008 if (loadfile_bfd == NULL)
2010 perror_with_name (filename);
2014 /* FIXME: should be checking for errors from bfd_close (for one thing,
2015 on error it does not free all the storage associated with the
2017 make_cleanup_bfd_close (loadfile_bfd);
2019 if (!bfd_check_format (loadfile_bfd, bfd_object))
2021 error (_("\"%s\" is not an object file: %s"), filename,
2022 bfd_errmsg (bfd_get_error ()));
2025 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2026 (void *) &total_progress.total_size);
2028 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2030 gettimeofday (&start_time, NULL);
2032 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2033 load_progress) != 0)
2034 error (_("Load failed"));
2036 gettimeofday (&end_time, NULL);
2038 entry = bfd_get_start_address (loadfile_bfd);
2039 ui_out_text (uiout, "Start address ");
2040 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2041 ui_out_text (uiout, ", load size ");
2042 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2043 ui_out_text (uiout, "\n");
2044 /* We were doing this in remote-mips.c, I suspect it is right
2045 for other targets too. */
2046 regcache_write_pc (get_current_regcache (), entry);
2048 /* Reset breakpoints, now that we have changed the load image. For
2049 instance, breakpoints may have been set (or reset, by
2050 post_create_inferior) while connected to the target but before we
2051 loaded the program. In that case, the prologue analyzer could
2052 have read instructions from the target to find the right
2053 breakpoint locations. Loading has changed the contents of that
2056 breakpoint_re_set ();
2058 /* FIXME: are we supposed to call symbol_file_add or not? According
2059 to a comment from remote-mips.c (where a call to symbol_file_add
2060 was commented out), making the call confuses GDB if more than one
2061 file is loaded in. Some targets do (e.g., remote-vx.c) but
2062 others don't (or didn't - perhaps they have all been deleted). */
2064 print_transfer_performance (gdb_stdout, total_progress.data_count,
2065 total_progress.write_count,
2066 &start_time, &end_time);
2068 do_cleanups (old_cleanups);
2071 /* Report how fast the transfer went. */
2073 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2074 replaced by print_transfer_performance (with a very different
2075 function signature). */
2078 report_transfer_performance (unsigned long data_count, time_t start_time,
2081 struct timeval start, end;
2083 start.tv_sec = start_time;
2085 end.tv_sec = end_time;
2088 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2092 print_transfer_performance (struct ui_file *stream,
2093 unsigned long data_count,
2094 unsigned long write_count,
2095 const struct timeval *start_time,
2096 const struct timeval *end_time)
2098 ULONGEST time_count;
2100 /* Compute the elapsed time in milliseconds, as a tradeoff between
2101 accuracy and overflow. */
2102 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2103 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2105 ui_out_text (uiout, "Transfer rate: ");
2108 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2110 if (ui_out_is_mi_like_p (uiout))
2112 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2113 ui_out_text (uiout, " bits/sec");
2115 else if (rate < 1024)
2117 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2118 ui_out_text (uiout, " bytes/sec");
2122 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2123 ui_out_text (uiout, " KB/sec");
2128 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2129 ui_out_text (uiout, " bits in <1 sec");
2131 if (write_count > 0)
2133 ui_out_text (uiout, ", ");
2134 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2135 ui_out_text (uiout, " bytes/write");
2137 ui_out_text (uiout, ".\n");
2140 /* This function allows the addition of incrementally linked object files.
2141 It does not modify any state in the target, only in the debugger. */
2142 /* Note: ezannoni 2000-04-13 This function/command used to have a
2143 special case syntax for the rombug target (Rombug is the boot
2144 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2145 rombug case, the user doesn't need to supply a text address,
2146 instead a call to target_link() (in target.c) would supply the
2147 value to use. We are now discontinuing this type of ad hoc syntax. */
2150 add_symbol_file_command (char *args, int from_tty)
2152 struct gdbarch *gdbarch = get_current_arch ();
2153 char *filename = NULL;
2154 int flags = OBJF_USERLOADED;
2156 int section_index = 0;
2160 int expecting_sec_name = 0;
2161 int expecting_sec_addr = 0;
2170 struct section_addr_info *section_addrs;
2171 struct sect_opt *sect_opts = NULL;
2172 size_t num_sect_opts = 0;
2173 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2176 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2177 * sizeof (struct sect_opt));
2182 error (_("add-symbol-file takes a file name and an address"));
2184 argv = gdb_buildargv (args);
2185 make_cleanup_freeargv (argv);
2187 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2189 /* Process the argument. */
2192 /* The first argument is the file name. */
2193 filename = tilde_expand (arg);
2194 make_cleanup (xfree, filename);
2199 /* The second argument is always the text address at which
2200 to load the program. */
2201 sect_opts[section_index].name = ".text";
2202 sect_opts[section_index].value = arg;
2203 if (++section_index >= num_sect_opts)
2206 sect_opts = ((struct sect_opt *)
2207 xrealloc (sect_opts,
2209 * sizeof (struct sect_opt)));
2214 /* It's an option (starting with '-') or it's an argument
2219 if (strcmp (arg, "-readnow") == 0)
2220 flags |= OBJF_READNOW;
2221 else if (strcmp (arg, "-s") == 0)
2223 expecting_sec_name = 1;
2224 expecting_sec_addr = 1;
2229 if (expecting_sec_name)
2231 sect_opts[section_index].name = arg;
2232 expecting_sec_name = 0;
2235 if (expecting_sec_addr)
2237 sect_opts[section_index].value = arg;
2238 expecting_sec_addr = 0;
2239 if (++section_index >= num_sect_opts)
2242 sect_opts = ((struct sect_opt *)
2243 xrealloc (sect_opts,
2245 * sizeof (struct sect_opt)));
2249 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2254 /* This command takes at least two arguments. The first one is a
2255 filename, and the second is the address where this file has been
2256 loaded. Abort now if this address hasn't been provided by the
2258 if (section_index < 1)
2259 error (_("The address where %s has been loaded is missing"), filename);
2261 /* Print the prompt for the query below. And save the arguments into
2262 a sect_addr_info structure to be passed around to other
2263 functions. We have to split this up into separate print
2264 statements because hex_string returns a local static
2267 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2268 section_addrs = alloc_section_addr_info (section_index);
2269 make_cleanup (xfree, section_addrs);
2270 for (i = 0; i < section_index; i++)
2273 char *val = sect_opts[i].value;
2274 char *sec = sect_opts[i].name;
2276 addr = parse_and_eval_address (val);
2278 /* Here we store the section offsets in the order they were
2279 entered on the command line. */
2280 section_addrs->other[sec_num].name = sec;
2281 section_addrs->other[sec_num].addr = addr;
2282 printf_unfiltered ("\t%s_addr = %s\n", sec,
2283 paddress (gdbarch, addr));
2286 /* The object's sections are initialized when a
2287 call is made to build_objfile_section_table (objfile).
2288 This happens in reread_symbols.
2289 At this point, we don't know what file type this is,
2290 so we can't determine what section names are valid. */
2293 if (from_tty && (!query ("%s", "")))
2294 error (_("Not confirmed."));
2296 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2297 section_addrs, flags);
2299 /* Getting new symbols may change our opinion about what is
2301 reinit_frame_cache ();
2302 do_cleanups (my_cleanups);
2306 /* Re-read symbols if a symbol-file has changed. */
2308 reread_symbols (void)
2310 struct objfile *objfile;
2313 struct stat new_statbuf;
2316 /* With the addition of shared libraries, this should be modified,
2317 the load time should be saved in the partial symbol tables, since
2318 different tables may come from different source files. FIXME.
2319 This routine should then walk down each partial symbol table
2320 and see if the symbol table that it originates from has been changed */
2322 for (objfile = object_files; objfile; objfile = objfile->next)
2324 /* solib-sunos.c creates one objfile with obfd. */
2325 if (objfile->obfd == NULL)
2328 /* Separate debug objfiles are handled in the main objfile. */
2329 if (objfile->separate_debug_objfile_backlink)
2332 /* If this object is from an archive (what you usually create with
2333 `ar', often called a `static library' on most systems, though
2334 a `shared library' on AIX is also an archive), then you should
2335 stat on the archive name, not member name. */
2336 if (objfile->obfd->my_archive)
2337 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2339 res = stat (objfile->name, &new_statbuf);
2342 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2343 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2347 new_modtime = new_statbuf.st_mtime;
2348 if (new_modtime != objfile->mtime)
2350 struct cleanup *old_cleanups;
2351 struct section_offsets *offsets;
2353 char *obfd_filename;
2355 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2358 /* There are various functions like symbol_file_add,
2359 symfile_bfd_open, syms_from_objfile, etc., which might
2360 appear to do what we want. But they have various other
2361 effects which we *don't* want. So we just do stuff
2362 ourselves. We don't worry about mapped files (for one thing,
2363 any mapped file will be out of date). */
2365 /* If we get an error, blow away this objfile (not sure if
2366 that is the correct response for things like shared
2368 old_cleanups = make_cleanup_free_objfile (objfile);
2369 /* We need to do this whenever any symbols go away. */
2370 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2372 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2373 bfd_get_filename (exec_bfd)) == 0)
2375 /* Reload EXEC_BFD without asking anything. */
2377 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2380 /* Clean up any state BFD has sitting around. We don't need
2381 to close the descriptor but BFD lacks a way of closing the
2382 BFD without closing the descriptor. */
2383 obfd_filename = bfd_get_filename (objfile->obfd);
2384 if (!bfd_close (objfile->obfd))
2385 error (_("Can't close BFD for %s: %s"), objfile->name,
2386 bfd_errmsg (bfd_get_error ()));
2387 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2388 if (objfile->obfd == NULL)
2389 error (_("Can't open %s to read symbols."), objfile->name);
2391 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2392 /* bfd_openr sets cacheable to true, which is what we want. */
2393 if (!bfd_check_format (objfile->obfd, bfd_object))
2394 error (_("Can't read symbols from %s: %s."), objfile->name,
2395 bfd_errmsg (bfd_get_error ()));
2397 /* Save the offsets, we will nuke them with the rest of the
2399 num_offsets = objfile->num_sections;
2400 offsets = ((struct section_offsets *)
2401 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2402 memcpy (offsets, objfile->section_offsets,
2403 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2405 /* Remove any references to this objfile in the global
2407 preserve_values (objfile);
2409 /* Nuke all the state that we will re-read. Much of the following
2410 code which sets things to NULL really is necessary to tell
2411 other parts of GDB that there is nothing currently there.
2413 Try to keep the freeing order compatible with free_objfile. */
2415 if (objfile->sf != NULL)
2417 (*objfile->sf->sym_finish) (objfile);
2420 clear_objfile_data (objfile);
2422 /* Free the separate debug objfiles. It will be
2423 automatically recreated by sym_read. */
2424 free_objfile_separate_debug (objfile);
2426 /* FIXME: Do we have to free a whole linked list, or is this
2428 if (objfile->global_psymbols.list)
2429 xfree (objfile->global_psymbols.list);
2430 memset (&objfile->global_psymbols, 0,
2431 sizeof (objfile->global_psymbols));
2432 if (objfile->static_psymbols.list)
2433 xfree (objfile->static_psymbols.list);
2434 memset (&objfile->static_psymbols, 0,
2435 sizeof (objfile->static_psymbols));
2437 /* Free the obstacks for non-reusable objfiles */
2438 psymbol_bcache_free (objfile->psymbol_cache);
2439 objfile->psymbol_cache = psymbol_bcache_init ();
2440 bcache_xfree (objfile->macro_cache);
2441 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2442 bcache_xfree (objfile->filename_cache);
2443 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2444 if (objfile->demangled_names_hash != NULL)
2446 htab_delete (objfile->demangled_names_hash);
2447 objfile->demangled_names_hash = NULL;
2449 obstack_free (&objfile->objfile_obstack, 0);
2450 objfile->sections = NULL;
2451 objfile->symtabs = NULL;
2452 objfile->psymtabs = NULL;
2453 objfile->psymtabs_addrmap = NULL;
2454 objfile->free_psymtabs = NULL;
2455 objfile->cp_namespace_symtab = NULL;
2456 objfile->template_symbols = NULL;
2457 objfile->msymbols = NULL;
2458 objfile->deprecated_sym_private = NULL;
2459 objfile->minimal_symbol_count = 0;
2460 memset (&objfile->msymbol_hash, 0,
2461 sizeof (objfile->msymbol_hash));
2462 memset (&objfile->msymbol_demangled_hash, 0,
2463 sizeof (objfile->msymbol_demangled_hash));
2465 objfile->psymbol_cache = psymbol_bcache_init ();
2466 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2467 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2468 /* obstack_init also initializes the obstack so it is
2469 empty. We could use obstack_specify_allocation but
2470 gdb_obstack.h specifies the alloc/dealloc
2472 obstack_init (&objfile->objfile_obstack);
2473 if (build_objfile_section_table (objfile))
2475 error (_("Can't find the file sections in `%s': %s"),
2476 objfile->name, bfd_errmsg (bfd_get_error ()));
2478 terminate_minimal_symbol_table (objfile);
2480 /* We use the same section offsets as from last time. I'm not
2481 sure whether that is always correct for shared libraries. */
2482 objfile->section_offsets = (struct section_offsets *)
2483 obstack_alloc (&objfile->objfile_obstack,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485 memcpy (objfile->section_offsets, offsets,
2486 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2487 objfile->num_sections = num_offsets;
2489 /* What the hell is sym_new_init for, anyway? The concept of
2490 distinguishing between the main file and additional files
2491 in this way seems rather dubious. */
2492 if (objfile == symfile_objfile)
2494 (*objfile->sf->sym_new_init) (objfile);
2497 (*objfile->sf->sym_init) (objfile);
2498 clear_complaints (&symfile_complaints, 1, 1);
2499 /* Do not set flags as this is safe and we don't want to be
2501 (*objfile->sf->sym_read) (objfile, 0);
2502 if (!objfile_has_symbols (objfile))
2505 printf_unfiltered (_("(no debugging symbols found)\n"));
2509 /* We're done reading the symbol file; finish off complaints. */
2510 clear_complaints (&symfile_complaints, 0, 1);
2512 /* Getting new symbols may change our opinion about what is
2515 reinit_frame_cache ();
2517 /* Discard cleanups as symbol reading was successful. */
2518 discard_cleanups (old_cleanups);
2520 /* If the mtime has changed between the time we set new_modtime
2521 and now, we *want* this to be out of date, so don't call stat
2523 objfile->mtime = new_modtime;
2525 init_entry_point_info (objfile);
2531 /* Notify objfiles that we've modified objfile sections. */
2532 objfiles_changed ();
2534 clear_symtab_users (0);
2535 /* At least one objfile has changed, so we can consider that
2536 the executable we're debugging has changed too. */
2537 observer_notify_executable_changed ();
2550 static filename_language *filename_language_table;
2551 static int fl_table_size, fl_table_next;
2554 add_filename_language (char *ext, enum language lang)
2556 if (fl_table_next >= fl_table_size)
2558 fl_table_size += 10;
2559 filename_language_table =
2560 xrealloc (filename_language_table,
2561 fl_table_size * sizeof (*filename_language_table));
2564 filename_language_table[fl_table_next].ext = xstrdup (ext);
2565 filename_language_table[fl_table_next].lang = lang;
2569 static char *ext_args;
2571 show_ext_args (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2574 fprintf_filtered (file, _("\
2575 Mapping between filename extension and source language is \"%s\".\n"),
2580 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2583 char *cp = ext_args;
2586 /* First arg is filename extension, starting with '.' */
2588 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2590 /* Find end of first arg. */
2591 while (*cp && !isspace (*cp))
2595 error (_("'%s': two arguments required -- filename extension and language"),
2598 /* Null-terminate first arg */
2601 /* Find beginning of second arg, which should be a source language. */
2602 while (*cp && isspace (*cp))
2606 error (_("'%s': two arguments required -- filename extension and language"),
2609 /* Lookup the language from among those we know. */
2610 lang = language_enum (cp);
2612 /* Now lookup the filename extension: do we already know it? */
2613 for (i = 0; i < fl_table_next; i++)
2614 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2617 if (i >= fl_table_next)
2619 /* new file extension */
2620 add_filename_language (ext_args, lang);
2624 /* redefining a previously known filename extension */
2627 /* query ("Really make files of type %s '%s'?", */
2628 /* ext_args, language_str (lang)); */
2630 xfree (filename_language_table[i].ext);
2631 filename_language_table[i].ext = xstrdup (ext_args);
2632 filename_language_table[i].lang = lang;
2637 info_ext_lang_command (char *args, int from_tty)
2641 printf_filtered (_("Filename extensions and the languages they represent:"));
2642 printf_filtered ("\n\n");
2643 for (i = 0; i < fl_table_next; i++)
2644 printf_filtered ("\t%s\t- %s\n",
2645 filename_language_table[i].ext,
2646 language_str (filename_language_table[i].lang));
2650 init_filename_language_table (void)
2652 if (fl_table_size == 0) /* protect against repetition */
2656 filename_language_table =
2657 xmalloc (fl_table_size * sizeof (*filename_language_table));
2658 add_filename_language (".c", language_c);
2659 add_filename_language (".d", language_d);
2660 add_filename_language (".C", language_cplus);
2661 add_filename_language (".cc", language_cplus);
2662 add_filename_language (".cp", language_cplus);
2663 add_filename_language (".cpp", language_cplus);
2664 add_filename_language (".cxx", language_cplus);
2665 add_filename_language (".c++", language_cplus);
2666 add_filename_language (".java", language_java);
2667 add_filename_language (".class", language_java);
2668 add_filename_language (".m", language_objc);
2669 add_filename_language (".f", language_fortran);
2670 add_filename_language (".F", language_fortran);
2671 add_filename_language (".for", language_fortran);
2672 add_filename_language (".FOR", language_fortran);
2673 add_filename_language (".ftn", language_fortran);
2674 add_filename_language (".FTN", language_fortran);
2675 add_filename_language (".fpp", language_fortran);
2676 add_filename_language (".FPP", language_fortran);
2677 add_filename_language (".f90", language_fortran);
2678 add_filename_language (".F90", language_fortran);
2679 add_filename_language (".f95", language_fortran);
2680 add_filename_language (".F95", language_fortran);
2681 add_filename_language (".f03", language_fortran);
2682 add_filename_language (".F03", language_fortran);
2683 add_filename_language (".f08", language_fortran);
2684 add_filename_language (".F08", language_fortran);
2685 add_filename_language (".s", language_asm);
2686 add_filename_language (".sx", language_asm);
2687 add_filename_language (".S", language_asm);
2688 add_filename_language (".pas", language_pascal);
2689 add_filename_language (".p", language_pascal);
2690 add_filename_language (".pp", language_pascal);
2691 add_filename_language (".adb", language_ada);
2692 add_filename_language (".ads", language_ada);
2693 add_filename_language (".a", language_ada);
2694 add_filename_language (".ada", language_ada);
2695 add_filename_language (".dg", language_ada);
2700 deduce_language_from_filename (const char *filename)
2705 if (filename != NULL)
2706 if ((cp = strrchr (filename, '.')) != NULL)
2707 for (i = 0; i < fl_table_next; i++)
2708 if (strcmp (cp, filename_language_table[i].ext) == 0)
2709 return filename_language_table[i].lang;
2711 return language_unknown;
2716 Allocate and partly initialize a new symbol table. Return a pointer
2717 to it. error() if no space.
2719 Caller must set these fields:
2728 allocate_symtab (const char *filename, struct objfile *objfile)
2730 struct symtab *symtab;
2732 symtab = (struct symtab *)
2733 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2734 memset (symtab, 0, sizeof (*symtab));
2735 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2736 objfile->filename_cache);
2737 symtab->fullname = NULL;
2738 symtab->language = deduce_language_from_filename (filename);
2739 symtab->debugformat = "unknown";
2741 /* Hook it to the objfile it comes from */
2743 symtab->objfile = objfile;
2744 symtab->next = objfile->symtabs;
2745 objfile->symtabs = symtab;
2751 /* Reset all data structures in gdb which may contain references to symbol
2752 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2755 clear_symtab_users (int add_flags)
2757 /* Someday, we should do better than this, by only blowing away
2758 the things that really need to be blown. */
2760 /* Clear the "current" symtab first, because it is no longer valid.
2761 breakpoint_re_set may try to access the current symtab. */
2762 clear_current_source_symtab_and_line ();
2765 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2766 breakpoint_re_set ();
2767 set_default_breakpoint (0, NULL, 0, 0, 0);
2768 clear_pc_function_cache ();
2769 observer_notify_new_objfile (NULL);
2771 /* Clear globals which might have pointed into a removed objfile.
2772 FIXME: It's not clear which of these are supposed to persist
2773 between expressions and which ought to be reset each time. */
2774 expression_context_block = NULL;
2775 innermost_block = NULL;
2777 /* Varobj may refer to old symbols, perform a cleanup. */
2778 varobj_invalidate ();
2783 clear_symtab_users_cleanup (void *ignore)
2785 clear_symtab_users (0);
2789 The following code implements an abstraction for debugging overlay sections.
2791 The target model is as follows:
2792 1) The gnu linker will permit multiple sections to be mapped into the
2793 same VMA, each with its own unique LMA (or load address).
2794 2) It is assumed that some runtime mechanism exists for mapping the
2795 sections, one by one, from the load address into the VMA address.
2796 3) This code provides a mechanism for gdb to keep track of which
2797 sections should be considered to be mapped from the VMA to the LMA.
2798 This information is used for symbol lookup, and memory read/write.
2799 For instance, if a section has been mapped then its contents
2800 should be read from the VMA, otherwise from the LMA.
2802 Two levels of debugger support for overlays are available. One is
2803 "manual", in which the debugger relies on the user to tell it which
2804 overlays are currently mapped. This level of support is
2805 implemented entirely in the core debugger, and the information about
2806 whether a section is mapped is kept in the objfile->obj_section table.
2808 The second level of support is "automatic", and is only available if
2809 the target-specific code provides functionality to read the target's
2810 overlay mapping table, and translate its contents for the debugger
2811 (by updating the mapped state information in the obj_section tables).
2813 The interface is as follows:
2815 overlay map <name> -- tell gdb to consider this section mapped
2816 overlay unmap <name> -- tell gdb to consider this section unmapped
2817 overlay list -- list the sections that GDB thinks are mapped
2818 overlay read-target -- get the target's state of what's mapped
2819 overlay off/manual/auto -- set overlay debugging state
2820 Functional interface:
2821 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2822 section, return that section.
2823 find_pc_overlay(pc): find any overlay section that contains
2824 the pc, either in its VMA or its LMA
2825 section_is_mapped(sect): true if overlay is marked as mapped
2826 section_is_overlay(sect): true if section's VMA != LMA
2827 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2828 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2829 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2830 overlay_mapped_address(...): map an address from section's LMA to VMA
2831 overlay_unmapped_address(...): map an address from section's VMA to LMA
2832 symbol_overlayed_address(...): Return a "current" address for symbol:
2833 either in VMA or LMA depending on whether
2834 the symbol's section is currently mapped
2837 /* Overlay debugging state: */
2839 enum overlay_debugging_state overlay_debugging = ovly_off;
2840 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2842 /* Function: section_is_overlay (SECTION)
2843 Returns true if SECTION has VMA not equal to LMA, ie.
2844 SECTION is loaded at an address different from where it will "run". */
2847 section_is_overlay (struct obj_section *section)
2849 if (overlay_debugging && section)
2851 bfd *abfd = section->objfile->obfd;
2852 asection *bfd_section = section->the_bfd_section;
2854 if (bfd_section_lma (abfd, bfd_section) != 0
2855 && bfd_section_lma (abfd, bfd_section)
2856 != bfd_section_vma (abfd, bfd_section))
2863 /* Function: overlay_invalidate_all (void)
2864 Invalidate the mapped state of all overlay sections (mark it as stale). */
2867 overlay_invalidate_all (void)
2869 struct objfile *objfile;
2870 struct obj_section *sect;
2872 ALL_OBJSECTIONS (objfile, sect)
2873 if (section_is_overlay (sect))
2874 sect->ovly_mapped = -1;
2877 /* Function: section_is_mapped (SECTION)
2878 Returns true if section is an overlay, and is currently mapped.
2880 Access to the ovly_mapped flag is restricted to this function, so
2881 that we can do automatic update. If the global flag
2882 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2883 overlay_invalidate_all. If the mapped state of the particular
2884 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2887 section_is_mapped (struct obj_section *osect)
2889 struct gdbarch *gdbarch;
2891 if (osect == 0 || !section_is_overlay (osect))
2894 switch (overlay_debugging)
2898 return 0; /* overlay debugging off */
2899 case ovly_auto: /* overlay debugging automatic */
2900 /* Unles there is a gdbarch_overlay_update function,
2901 there's really nothing useful to do here (can't really go auto) */
2902 gdbarch = get_objfile_arch (osect->objfile);
2903 if (gdbarch_overlay_update_p (gdbarch))
2905 if (overlay_cache_invalid)
2907 overlay_invalidate_all ();
2908 overlay_cache_invalid = 0;
2910 if (osect->ovly_mapped == -1)
2911 gdbarch_overlay_update (gdbarch, osect);
2913 /* fall thru to manual case */
2914 case ovly_on: /* overlay debugging manual */
2915 return osect->ovly_mapped == 1;
2919 /* Function: pc_in_unmapped_range
2920 If PC falls into the lma range of SECTION, return true, else false. */
2923 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2925 if (section_is_overlay (section))
2927 bfd *abfd = section->objfile->obfd;
2928 asection *bfd_section = section->the_bfd_section;
2930 /* We assume the LMA is relocated by the same offset as the VMA. */
2931 bfd_vma size = bfd_get_section_size (bfd_section);
2932 CORE_ADDR offset = obj_section_offset (section);
2934 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2935 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2942 /* Function: pc_in_mapped_range
2943 If PC falls into the vma range of SECTION, return true, else false. */
2946 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2948 if (section_is_overlay (section))
2950 if (obj_section_addr (section) <= pc
2951 && pc < obj_section_endaddr (section))
2959 /* Return true if the mapped ranges of sections A and B overlap, false
2962 sections_overlap (struct obj_section *a, struct obj_section *b)
2964 CORE_ADDR a_start = obj_section_addr (a);
2965 CORE_ADDR a_end = obj_section_endaddr (a);
2966 CORE_ADDR b_start = obj_section_addr (b);
2967 CORE_ADDR b_end = obj_section_endaddr (b);
2969 return (a_start < b_end && b_start < a_end);
2972 /* Function: overlay_unmapped_address (PC, SECTION)
2973 Returns the address corresponding to PC in the unmapped (load) range.
2974 May be the same as PC. */
2977 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2979 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2981 bfd *abfd = section->objfile->obfd;
2982 asection *bfd_section = section->the_bfd_section;
2984 return pc + bfd_section_lma (abfd, bfd_section)
2985 - bfd_section_vma (abfd, bfd_section);
2991 /* Function: overlay_mapped_address (PC, SECTION)
2992 Returns the address corresponding to PC in the mapped (runtime) range.
2993 May be the same as PC. */
2996 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2998 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3000 bfd *abfd = section->objfile->obfd;
3001 asection *bfd_section = section->the_bfd_section;
3003 return pc + bfd_section_vma (abfd, bfd_section)
3004 - bfd_section_lma (abfd, bfd_section);
3011 /* Function: symbol_overlayed_address
3012 Return one of two addresses (relative to the VMA or to the LMA),
3013 depending on whether the section is mapped or not. */
3016 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3018 if (overlay_debugging)
3020 /* If the symbol has no section, just return its regular address. */
3023 /* If the symbol's section is not an overlay, just return its address */
3024 if (!section_is_overlay (section))
3026 /* If the symbol's section is mapped, just return its address */
3027 if (section_is_mapped (section))
3030 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3031 * then return its LOADED address rather than its vma address!!
3033 return overlay_unmapped_address (address, section);
3038 /* Function: find_pc_overlay (PC)
3039 Return the best-match overlay section for PC:
3040 If PC matches a mapped overlay section's VMA, return that section.
3041 Else if PC matches an unmapped section's VMA, return that section.
3042 Else if PC matches an unmapped section's LMA, return that section. */
3044 struct obj_section *
3045 find_pc_overlay (CORE_ADDR pc)
3047 struct objfile *objfile;
3048 struct obj_section *osect, *best_match = NULL;
3050 if (overlay_debugging)
3051 ALL_OBJSECTIONS (objfile, osect)
3052 if (section_is_overlay (osect))
3054 if (pc_in_mapped_range (pc, osect))
3056 if (section_is_mapped (osect))
3061 else if (pc_in_unmapped_range (pc, osect))
3067 /* Function: find_pc_mapped_section (PC)
3068 If PC falls into the VMA address range of an overlay section that is
3069 currently marked as MAPPED, return that section. Else return NULL. */
3071 struct obj_section *
3072 find_pc_mapped_section (CORE_ADDR pc)
3074 struct objfile *objfile;
3075 struct obj_section *osect;
3077 if (overlay_debugging)
3078 ALL_OBJSECTIONS (objfile, osect)
3079 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3085 /* Function: list_overlays_command
3086 Print a list of mapped sections and their PC ranges */
3089 list_overlays_command (char *args, int from_tty)
3092 struct objfile *objfile;
3093 struct obj_section *osect;
3095 if (overlay_debugging)
3096 ALL_OBJSECTIONS (objfile, osect)
3097 if (section_is_mapped (osect))
3099 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3104 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3105 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3106 size = bfd_get_section_size (osect->the_bfd_section);
3107 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3109 printf_filtered ("Section %s, loaded at ", name);
3110 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3111 puts_filtered (" - ");
3112 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3113 printf_filtered (", mapped at ");
3114 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3115 puts_filtered (" - ");
3116 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3117 puts_filtered ("\n");
3122 printf_filtered (_("No sections are mapped.\n"));
3125 /* Function: map_overlay_command
3126 Mark the named section as mapped (ie. residing at its VMA address). */
3129 map_overlay_command (char *args, int from_tty)
3131 struct objfile *objfile, *objfile2;
3132 struct obj_section *sec, *sec2;
3134 if (!overlay_debugging)
3136 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3137 the 'overlay manual' command."));
3139 if (args == 0 || *args == 0)
3140 error (_("Argument required: name of an overlay section"));
3142 /* First, find a section matching the user supplied argument */
3143 ALL_OBJSECTIONS (objfile, sec)
3144 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3146 /* Now, check to see if the section is an overlay. */
3147 if (!section_is_overlay (sec))
3148 continue; /* not an overlay section */
3150 /* Mark the overlay as "mapped" */
3151 sec->ovly_mapped = 1;
3153 /* Next, make a pass and unmap any sections that are
3154 overlapped by this new section: */
3155 ALL_OBJSECTIONS (objfile2, sec2)
3156 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3159 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3160 bfd_section_name (objfile->obfd,
3161 sec2->the_bfd_section));
3162 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3166 error (_("No overlay section called %s"), args);
3169 /* Function: unmap_overlay_command
3170 Mark the overlay section as unmapped
3171 (ie. resident in its LMA address range, rather than the VMA range). */
3174 unmap_overlay_command (char *args, int from_tty)
3176 struct objfile *objfile;
3177 struct obj_section *sec;
3179 if (!overlay_debugging)
3181 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3182 the 'overlay manual' command."));
3184 if (args == 0 || *args == 0)
3185 error (_("Argument required: name of an overlay section"));
3187 /* First, find a section matching the user supplied argument */
3188 ALL_OBJSECTIONS (objfile, sec)
3189 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3191 if (!sec->ovly_mapped)
3192 error (_("Section %s is not mapped"), args);
3193 sec->ovly_mapped = 0;
3196 error (_("No overlay section called %s"), args);
3199 /* Function: overlay_auto_command
3200 A utility command to turn on overlay debugging.
3201 Possibly this should be done via a set/show command. */
3204 overlay_auto_command (char *args, int from_tty)
3206 overlay_debugging = ovly_auto;
3207 enable_overlay_breakpoints ();
3209 printf_unfiltered (_("Automatic overlay debugging enabled."));
3212 /* Function: overlay_manual_command
3213 A utility command to turn on overlay debugging.
3214 Possibly this should be done via a set/show command. */
3217 overlay_manual_command (char *args, int from_tty)
3219 overlay_debugging = ovly_on;
3220 disable_overlay_breakpoints ();
3222 printf_unfiltered (_("Overlay debugging enabled."));
3225 /* Function: overlay_off_command
3226 A utility command to turn on overlay debugging.
3227 Possibly this should be done via a set/show command. */
3230 overlay_off_command (char *args, int from_tty)
3232 overlay_debugging = ovly_off;
3233 disable_overlay_breakpoints ();
3235 printf_unfiltered (_("Overlay debugging disabled."));
3239 overlay_load_command (char *args, int from_tty)
3241 struct gdbarch *gdbarch = get_current_arch ();
3243 if (gdbarch_overlay_update_p (gdbarch))
3244 gdbarch_overlay_update (gdbarch, NULL);
3246 error (_("This target does not know how to read its overlay state."));
3249 /* Function: overlay_command
3250 A place-holder for a mis-typed command */
3252 /* Command list chain containing all defined "overlay" subcommands. */
3253 struct cmd_list_element *overlaylist;
3256 overlay_command (char *args, int from_tty)
3259 ("\"overlay\" must be followed by the name of an overlay command.\n");
3260 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3264 /* Target Overlays for the "Simplest" overlay manager:
3266 This is GDB's default target overlay layer. It works with the
3267 minimal overlay manager supplied as an example by Cygnus. The
3268 entry point is via a function pointer "gdbarch_overlay_update",
3269 so targets that use a different runtime overlay manager can
3270 substitute their own overlay_update function and take over the
3273 The overlay_update function pokes around in the target's data structures
3274 to see what overlays are mapped, and updates GDB's overlay mapping with
3277 In this simple implementation, the target data structures are as follows:
3278 unsigned _novlys; /# number of overlay sections #/
3279 unsigned _ovly_table[_novlys][4] = {
3280 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3281 {..., ..., ..., ...},
3283 unsigned _novly_regions; /# number of overlay regions #/
3284 unsigned _ovly_region_table[_novly_regions][3] = {
3285 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3288 These functions will attempt to update GDB's mappedness state in the
3289 symbol section table, based on the target's mappedness state.
3291 To do this, we keep a cached copy of the target's _ovly_table, and
3292 attempt to detect when the cached copy is invalidated. The main
3293 entry point is "simple_overlay_update(SECT), which looks up SECT in
3294 the cached table and re-reads only the entry for that section from
3295 the target (whenever possible).
3298 /* Cached, dynamically allocated copies of the target data structures: */
3299 static unsigned (*cache_ovly_table)[4] = 0;
3300 static unsigned cache_novlys = 0;
3301 static CORE_ADDR cache_ovly_table_base = 0;
3304 VMA, SIZE, LMA, MAPPED
3307 /* Throw away the cached copy of _ovly_table */
3309 simple_free_overlay_table (void)
3311 if (cache_ovly_table)
3312 xfree (cache_ovly_table);
3314 cache_ovly_table = NULL;
3315 cache_ovly_table_base = 0;
3318 /* Read an array of ints of size SIZE from the target into a local buffer.
3319 Convert to host order. int LEN is number of ints */
3321 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3322 int len, int size, enum bfd_endian byte_order)
3324 /* FIXME (alloca): Not safe if array is very large. */
3325 gdb_byte *buf = alloca (len * size);
3328 read_memory (memaddr, buf, len * size);
3329 for (i = 0; i < len; i++)
3330 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3333 /* Find and grab a copy of the target _ovly_table
3334 (and _novlys, which is needed for the table's size) */
3336 simple_read_overlay_table (void)
3338 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3339 struct gdbarch *gdbarch;
3341 enum bfd_endian byte_order;
3343 simple_free_overlay_table ();
3344 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3347 error (_("Error reading inferior's overlay table: "
3348 "couldn't find `_novlys' variable\n"
3349 "in inferior. Use `overlay manual' mode."));
3353 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3354 if (! ovly_table_msym)
3356 error (_("Error reading inferior's overlay table: couldn't find "
3357 "`_ovly_table' array\n"
3358 "in inferior. Use `overlay manual' mode."));
3362 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3363 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3364 byte_order = gdbarch_byte_order (gdbarch);
3366 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3369 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3370 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3371 read_target_long_array (cache_ovly_table_base,
3372 (unsigned int *) cache_ovly_table,
3373 cache_novlys * 4, word_size, byte_order);
3375 return 1; /* SUCCESS */
3378 /* Function: simple_overlay_update_1
3379 A helper function for simple_overlay_update. Assuming a cached copy
3380 of _ovly_table exists, look through it to find an entry whose vma,
3381 lma and size match those of OSECT. Re-read the entry and make sure
3382 it still matches OSECT (else the table may no longer be valid).
3383 Set OSECT's mapped state to match the entry. Return: 1 for
3384 success, 0 for failure. */
3387 simple_overlay_update_1 (struct obj_section *osect)
3390 bfd *obfd = osect->objfile->obfd;
3391 asection *bsect = osect->the_bfd_section;
3392 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3393 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3394 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3396 size = bfd_get_section_size (osect->the_bfd_section);
3397 for (i = 0; i < cache_novlys; i++)
3398 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3399 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3400 /* && cache_ovly_table[i][SIZE] == size */ )
3402 read_target_long_array (cache_ovly_table_base + i * word_size,
3403 (unsigned int *) cache_ovly_table[i],
3404 4, word_size, byte_order);
3405 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3406 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3407 /* && cache_ovly_table[i][SIZE] == size */ )
3409 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3412 else /* Warning! Warning! Target's ovly table has changed! */
3418 /* Function: simple_overlay_update
3419 If OSECT is NULL, then update all sections' mapped state
3420 (after re-reading the entire target _ovly_table).
3421 If OSECT is non-NULL, then try to find a matching entry in the
3422 cached ovly_table and update only OSECT's mapped state.
3423 If a cached entry can't be found or the cache isn't valid, then
3424 re-read the entire cache, and go ahead and update all sections. */
3427 simple_overlay_update (struct obj_section *osect)
3429 struct objfile *objfile;
3431 /* Were we given an osect to look up? NULL means do all of them. */
3433 /* Have we got a cached copy of the target's overlay table? */
3434 if (cache_ovly_table != NULL)
3435 /* Does its cached location match what's currently in the symtab? */
3436 if (cache_ovly_table_base ==
3437 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3438 /* Then go ahead and try to look up this single section in the cache */
3439 if (simple_overlay_update_1 (osect))
3440 /* Found it! We're done. */
3443 /* Cached table no good: need to read the entire table anew.
3444 Or else we want all the sections, in which case it's actually
3445 more efficient to read the whole table in one block anyway. */
3447 if (! simple_read_overlay_table ())
3450 /* Now may as well update all sections, even if only one was requested. */
3451 ALL_OBJSECTIONS (objfile, osect)
3452 if (section_is_overlay (osect))
3455 bfd *obfd = osect->objfile->obfd;
3456 asection *bsect = osect->the_bfd_section;
3458 size = bfd_get_section_size (bsect);
3459 for (i = 0; i < cache_novlys; i++)
3460 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3461 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3462 /* && cache_ovly_table[i][SIZE] == size */ )
3463 { /* obj_section matches i'th entry in ovly_table */
3464 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3465 break; /* finished with inner for loop: break out */
3470 /* Set the output sections and output offsets for section SECTP in
3471 ABFD. The relocation code in BFD will read these offsets, so we
3472 need to be sure they're initialized. We map each section to itself,
3473 with no offset; this means that SECTP->vma will be honored. */
3476 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3478 sectp->output_section = sectp;
3479 sectp->output_offset = 0;
3482 /* Default implementation for sym_relocate. */
3486 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3489 bfd *abfd = objfile->obfd;
3491 /* We're only interested in sections with relocation
3493 if ((sectp->flags & SEC_RELOC) == 0)
3496 /* We will handle section offsets properly elsewhere, so relocate as if
3497 all sections begin at 0. */
3498 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3500 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3503 /* Relocate the contents of a debug section SECTP in ABFD. The
3504 contents are stored in BUF if it is non-NULL, or returned in a
3505 malloc'd buffer otherwise.
3507 For some platforms and debug info formats, shared libraries contain
3508 relocations against the debug sections (particularly for DWARF-2;
3509 one affected platform is PowerPC GNU/Linux, although it depends on
3510 the version of the linker in use). Also, ELF object files naturally
3511 have unresolved relocations for their debug sections. We need to apply
3512 the relocations in order to get the locations of symbols correct.
3513 Another example that may require relocation processing, is the
3514 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3518 symfile_relocate_debug_section (struct objfile *objfile,
3519 asection *sectp, bfd_byte *buf)
3521 gdb_assert (objfile->sf->sym_relocate);
3523 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3526 struct symfile_segment_data *
3527 get_symfile_segment_data (bfd *abfd)
3529 const struct sym_fns *sf = find_sym_fns (abfd);
3534 return sf->sym_segments (abfd);
3538 free_symfile_segment_data (struct symfile_segment_data *data)
3540 xfree (data->segment_bases);
3541 xfree (data->segment_sizes);
3542 xfree (data->segment_info);
3548 - DATA, containing segment addresses from the object file ABFD, and
3549 the mapping from ABFD's sections onto the segments that own them,
3551 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3552 segment addresses reported by the target,
3553 store the appropriate offsets for each section in OFFSETS.
3555 If there are fewer entries in SEGMENT_BASES than there are segments
3556 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3558 If there are more entries, then ignore the extra. The target may
3559 not be able to distinguish between an empty data segment and a
3560 missing data segment; a missing text segment is less plausible. */
3562 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3563 struct section_offsets *offsets,
3564 int num_segment_bases,
3565 const CORE_ADDR *segment_bases)
3570 /* It doesn't make sense to call this function unless you have some
3571 segment base addresses. */
3572 gdb_assert (num_segment_bases > 0);
3574 /* If we do not have segment mappings for the object file, we
3575 can not relocate it by segments. */
3576 gdb_assert (data != NULL);
3577 gdb_assert (data->num_segments > 0);
3579 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3581 int which = data->segment_info[i];
3583 gdb_assert (0 <= which && which <= data->num_segments);
3585 /* Don't bother computing offsets for sections that aren't
3586 loaded as part of any segment. */
3590 /* Use the last SEGMENT_BASES entry as the address of any extra
3591 segments mentioned in DATA->segment_info. */
3592 if (which > num_segment_bases)
3593 which = num_segment_bases;
3595 offsets->offsets[i] = (segment_bases[which - 1]
3596 - data->segment_bases[which - 1]);
3603 symfile_find_segment_sections (struct objfile *objfile)
3605 bfd *abfd = objfile->obfd;
3608 struct symfile_segment_data *data;
3610 data = get_symfile_segment_data (objfile->obfd);
3614 if (data->num_segments != 1 && data->num_segments != 2)
3616 free_symfile_segment_data (data);
3620 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3622 int which = data->segment_info[i];
3626 if (objfile->sect_index_text == -1)
3627 objfile->sect_index_text = sect->index;
3629 if (objfile->sect_index_rodata == -1)
3630 objfile->sect_index_rodata = sect->index;
3632 else if (which == 2)
3634 if (objfile->sect_index_data == -1)
3635 objfile->sect_index_data = sect->index;
3637 if (objfile->sect_index_bss == -1)
3638 objfile->sect_index_bss = sect->index;
3642 free_symfile_segment_data (data);
3646 _initialize_symfile (void)
3648 struct cmd_list_element *c;
3650 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3651 Load symbol table from executable file FILE.\n\
3652 The `file' command can also load symbol tables, as well as setting the file\n\
3653 to execute."), &cmdlist);
3654 set_cmd_completer (c, filename_completer);
3656 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3657 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3658 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3659 ADDR is the starting address of the file's text.\n\
3660 The optional arguments are section-name section-address pairs and\n\
3661 should be specified if the data and bss segments are not contiguous\n\
3662 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3664 set_cmd_completer (c, filename_completer);
3666 c = add_cmd ("load", class_files, load_command, _("\
3667 Dynamically load FILE into the running program, and record its symbols\n\
3668 for access from GDB.\n\
3669 A load OFFSET may also be given."), &cmdlist);
3670 set_cmd_completer (c, filename_completer);
3672 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3673 &symbol_reloading, _("\
3674 Set dynamic symbol table reloading multiple times in one run."), _("\
3675 Show dynamic symbol table reloading multiple times in one run."), NULL,
3677 show_symbol_reloading,
3678 &setlist, &showlist);
3680 add_prefix_cmd ("overlay", class_support, overlay_command,
3681 _("Commands for debugging overlays."), &overlaylist,
3682 "overlay ", 0, &cmdlist);
3684 add_com_alias ("ovly", "overlay", class_alias, 1);
3685 add_com_alias ("ov", "overlay", class_alias, 1);
3687 add_cmd ("map-overlay", class_support, map_overlay_command,
3688 _("Assert that an overlay section is mapped."), &overlaylist);
3690 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3691 _("Assert that an overlay section is unmapped."), &overlaylist);
3693 add_cmd ("list-overlays", class_support, list_overlays_command,
3694 _("List mappings of overlay sections."), &overlaylist);
3696 add_cmd ("manual", class_support, overlay_manual_command,
3697 _("Enable overlay debugging."), &overlaylist);
3698 add_cmd ("off", class_support, overlay_off_command,
3699 _("Disable overlay debugging."), &overlaylist);
3700 add_cmd ("auto", class_support, overlay_auto_command,
3701 _("Enable automatic overlay debugging."), &overlaylist);
3702 add_cmd ("load-target", class_support, overlay_load_command,
3703 _("Read the overlay mapping state from the target."), &overlaylist);
3705 /* Filename extension to source language lookup table: */
3706 init_filename_language_table ();
3707 add_setshow_string_noescape_cmd ("extension-language", class_files,
3709 Set mapping between filename extension and source language."), _("\
3710 Show mapping between filename extension and source language."), _("\
3711 Usage: set extension-language .foo bar"),
3712 set_ext_lang_command,
3714 &setlist, &showlist);
3716 add_info ("extensions", info_ext_lang_command,
3717 _("All filename extensions associated with a source language."));
3719 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3720 &debug_file_directory, _("\
3721 Set the directories where separate debug symbols are searched for."), _("\
3722 Show the directories where separate debug symbols are searched for."), _("\
3723 Separate debug symbols are first searched for in the same\n\
3724 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3725 and lastly at the path of the directory of the binary with\n\
3726 each global debug-file-directory component prepended."),
3728 show_debug_file_directory,
3729 &setlist, &showlist);