1 /* Parse expressions for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 Modified from expread.y by the Department of Computer Science at the
5 State University of New York at Buffalo, 1991.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
36 #include "gdb_string.h"
40 #include "expression.h"
44 #include "parser-defs.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
48 with "gdbarch.h" when appropriate. */
50 #include "builtin-regs.h"
51 #include "gdb_assert.h"
54 /* Symbols which architectures can redefine. */
56 /* Some systems have routines whose names start with `$'. Giving this
57 macro a non-zero value tells GDB's expression parser to check for
58 such routines when parsing tokens that begin with `$'.
60 On HP-UX, certain system routines (millicode) have names beginning
61 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
62 that handles inter-space procedure calls on PA-RISC. */
63 #ifndef SYMBOLS_CAN_START_WITH_DOLLAR
64 #define SYMBOLS_CAN_START_WITH_DOLLAR (0)
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
73 struct block *expression_context_block;
74 struct block *innermost_block;
76 union type_stack_elt *type_stack;
77 int type_stack_depth, type_stack_size;
83 static int expressiondebug = 0;
85 extern int hp_som_som_object_present;
87 static void free_funcalls (void *ignore);
89 static void prefixify_expression (struct expression *);
92 prefixify_subexp (struct expression *, struct expression *, int, int);
94 void _initialize_parse (void);
96 /* Data structure for saving values of arglist_len for function calls whose
97 arguments contain other function calls. */
101 struct funcall *next;
105 static struct funcall *funcall_chain;
107 /* The generic method for targets to specify how their registers are
108 named. The mapping can be derived from two sources: REGISTER_NAME;
112 target_map_name_to_register (char *str, int len)
116 /* Search register name space. */
117 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
118 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
119 && STREQN (str, REGISTER_NAME (i), len))
124 /* Try builtin registers. */
125 i = builtin_reg_map_name_to_regnum (str, len);
128 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
132 /* Try builtin registers. */
133 i = builtin_reg_map_name_to_regnum (str, len);
136 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
149 register struct funcall *new;
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
164 register int val = arglist_len;
165 register struct funcall *call = funcall_chain;
166 funcall_chain = call->next;
167 arglist_len = call->arglist_len;
172 /* Free everything in the funcall chain.
173 Used when there is an error inside parsing. */
176 free_funcalls (void *ignore)
178 register struct funcall *call, *next;
180 for (call = funcall_chain; call; call = next)
187 /* This page contains the functions for adding data to the struct expression
188 being constructed. */
190 /* Add one element to the end of the expression. */
192 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
193 a register through here */
196 write_exp_elt (union exp_element expelt)
198 if (expout_ptr >= expout_size)
201 expout = (struct expression *)
202 xrealloc ((char *) expout, sizeof (struct expression)
203 + EXP_ELEM_TO_BYTES (expout_size));
205 expout->elts[expout_ptr++] = expelt;
209 write_exp_elt_opcode (enum exp_opcode expelt)
211 union exp_element tmp;
219 write_exp_elt_sym (struct symbol *expelt)
221 union exp_element tmp;
229 write_exp_elt_block (struct block *b)
231 union exp_element tmp;
237 write_exp_elt_longcst (LONGEST expelt)
239 union exp_element tmp;
241 tmp.longconst = expelt;
247 write_exp_elt_dblcst (DOUBLEST expelt)
249 union exp_element tmp;
251 tmp.doubleconst = expelt;
257 write_exp_elt_type (struct type *expelt)
259 union exp_element tmp;
267 write_exp_elt_intern (struct internalvar *expelt)
269 union exp_element tmp;
271 tmp.internalvar = expelt;
276 /* Add a string constant to the end of the expression.
278 String constants are stored by first writing an expression element
279 that contains the length of the string, then stuffing the string
280 constant itself into however many expression elements are needed
281 to hold it, and then writing another expression element that contains
282 the length of the string. I.E. an expression element at each end of
283 the string records the string length, so you can skip over the
284 expression elements containing the actual string bytes from either
285 end of the string. Note that this also allows gdb to handle
286 strings with embedded null bytes, as is required for some languages.
288 Don't be fooled by the fact that the string is null byte terminated,
289 this is strictly for the convenience of debugging gdb itself. Gdb
290 Gdb does not depend up the string being null terminated, since the
291 actual length is recorded in expression elements at each end of the
292 string. The null byte is taken into consideration when computing how
293 many expression elements are required to hold the string constant, of
298 write_exp_string (struct stoken str)
300 register int len = str.length;
302 register char *strdata;
304 /* Compute the number of expression elements required to hold the string
305 (including a null byte terminator), along with one expression element
306 at each end to record the actual string length (not including the
307 null byte terminator). */
309 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
311 /* Ensure that we have enough available expression elements to store
314 if ((expout_ptr + lenelt) >= expout_size)
316 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
317 expout = (struct expression *)
318 xrealloc ((char *) expout, (sizeof (struct expression)
319 + EXP_ELEM_TO_BYTES (expout_size)));
322 /* Write the leading length expression element (which advances the current
323 expression element index), then write the string constant followed by a
324 terminating null byte, and then write the trailing length expression
327 write_exp_elt_longcst ((LONGEST) len);
328 strdata = (char *) &expout->elts[expout_ptr];
329 memcpy (strdata, str.ptr, len);
330 *(strdata + len) = '\0';
331 expout_ptr += lenelt - 2;
332 write_exp_elt_longcst ((LONGEST) len);
335 /* Add a bitstring constant to the end of the expression.
337 Bitstring constants are stored by first writing an expression element
338 that contains the length of the bitstring (in bits), then stuffing the
339 bitstring constant itself into however many expression elements are
340 needed to hold it, and then writing another expression element that
341 contains the length of the bitstring. I.E. an expression element at
342 each end of the bitstring records the bitstring length, so you can skip
343 over the expression elements containing the actual bitstring bytes from
344 either end of the bitstring. */
347 write_exp_bitstring (struct stoken str)
349 register int bits = str.length; /* length in bits */
350 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
352 register char *strdata;
354 /* Compute the number of expression elements required to hold the bitstring,
355 along with one expression element at each end to record the actual
356 bitstring length in bits. */
358 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
360 /* Ensure that we have enough available expression elements to store
363 if ((expout_ptr + lenelt) >= expout_size)
365 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
366 expout = (struct expression *)
367 xrealloc ((char *) expout, (sizeof (struct expression)
368 + EXP_ELEM_TO_BYTES (expout_size)));
371 /* Write the leading length expression element (which advances the current
372 expression element index), then write the bitstring constant, and then
373 write the trailing length expression element. */
375 write_exp_elt_longcst ((LONGEST) bits);
376 strdata = (char *) &expout->elts[expout_ptr];
377 memcpy (strdata, str.ptr, len);
378 expout_ptr += lenelt - 2;
379 write_exp_elt_longcst ((LONGEST) bits);
382 /* Add the appropriate elements for a minimal symbol to the end of
383 the expression. The rationale behind passing in text_symbol_type and
384 data_symbol_type was so that Modula-2 could pass in WORD for
385 data_symbol_type. Perhaps it still is useful to have those types vary
386 based on the language, but they no longer have names like "int", so
387 the initial rationale is gone. */
389 static struct type *msym_text_symbol_type;
390 static struct type *msym_data_symbol_type;
391 static struct type *msym_unknown_symbol_type;
394 write_exp_msymbol (struct minimal_symbol *msymbol,
395 struct type *text_symbol_type,
396 struct type *data_symbol_type)
400 write_exp_elt_opcode (OP_LONG);
401 /* Let's make the type big enough to hold a 64-bit address. */
402 write_exp_elt_type (builtin_type_CORE_ADDR);
404 addr = SYMBOL_VALUE_ADDRESS (msymbol);
405 if (overlay_debugging)
406 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
407 write_exp_elt_longcst ((LONGEST) addr);
409 write_exp_elt_opcode (OP_LONG);
411 write_exp_elt_opcode (UNOP_MEMVAL);
412 switch (msymbol->type)
416 case mst_solib_trampoline:
417 write_exp_elt_type (msym_text_symbol_type);
424 write_exp_elt_type (msym_data_symbol_type);
428 write_exp_elt_type (msym_unknown_symbol_type);
431 write_exp_elt_opcode (UNOP_MEMVAL);
434 /* Recognize tokens that start with '$'. These include:
436 $regname A native register name or a "standard
439 $variable A convenience variable with a name chosen
442 $digits Value history with index <digits>, starting
443 from the first value which has index 1.
445 $$digits Value history with index <digits> relative
446 to the last value. I.E. $$0 is the last
447 value, $$1 is the one previous to that, $$2
448 is the one previous to $$1, etc.
450 $ | $0 | $$0 The last value in the value history.
452 $$ An abbreviation for the second to the last
453 value in the value history, I.E. $$1
458 write_dollar_variable (struct stoken str)
460 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
461 and $$digits (equivalent to $<-digits> if you could type that). */
465 /* Double dollar means negate the number and add -1 as well.
466 Thus $$ alone means -1. */
467 if (str.length >= 2 && str.ptr[1] == '$')
474 /* Just dollars (one or two) */
478 /* Is the rest of the token digits? */
479 for (; i < str.length; i++)
480 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
484 i = atoi (str.ptr + 1 + negate);
490 /* Handle tokens that refer to machine registers:
491 $ followed by a register name. */
492 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
494 goto handle_register;
496 if (SYMBOLS_CAN_START_WITH_DOLLAR)
498 struct symbol *sym = NULL;
499 struct minimal_symbol *msym = NULL;
501 /* On HP-UX, certain system routines (millicode) have names beginning
502 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
503 calls on PA-RISC. Check for those, first. */
505 /* This code is not enabled on non HP-UX systems, since worst case
506 symbol table lookup performance is awful, to put it mildly. */
508 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
509 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
512 write_exp_elt_opcode (OP_VAR_VALUE);
513 write_exp_elt_block (block_found); /* set by lookup_symbol */
514 write_exp_elt_sym (sym);
515 write_exp_elt_opcode (OP_VAR_VALUE);
518 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
521 write_exp_msymbol (msym,
522 lookup_function_type (builtin_type_int),
528 /* Any other names starting in $ are debugger internal variables. */
530 write_exp_elt_opcode (OP_INTERNALVAR);
531 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
532 write_exp_elt_opcode (OP_INTERNALVAR);
535 write_exp_elt_opcode (OP_LAST);
536 write_exp_elt_longcst ((LONGEST) i);
537 write_exp_elt_opcode (OP_LAST);
540 write_exp_elt_opcode (OP_REGISTER);
541 write_exp_elt_longcst (i);
542 write_exp_elt_opcode (OP_REGISTER);
547 /* Parse a string that is possibly a namespace / nested class
548 specification, i.e., something of the form A::B::C::x. Input
549 (NAME) is the entire string; LEN is the current valid length; the
550 output is a string, TOKEN, which points to the largest recognized
551 prefix which is a series of namespaces or classes. CLASS_PREFIX is
552 another output, which records whether a nested class spec was
553 recognized (= 1) or a fully qualified variable name was found (=
554 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
555 string recognized and consumed by this routine.
557 The return value is a pointer to the symbol for the base class or
558 variable if found, or NULL if not found. Callers must check this
559 first -- if NULL, the outputs may not be correct.
561 This function is used c-exp.y. This is used specifically to get
562 around HP aCC (and possibly other compilers), which insists on
563 generating names with embedded colons for namespace or nested class
566 (Argument LEN is currently unused. 1997-08-27)
568 Callers must free memory allocated for the output string TOKEN. */
570 static const char coloncolon[2] =
574 parse_nested_classes_for_hpacc (char *name, int len, char **token,
575 int *class_prefix, char **argptr)
577 /* Comment below comes from decode_line_1 which has very similar
578 code, which is called for "break" command parsing. */
580 /* We have what looks like a class or namespace
581 scope specification (A::B), possibly with many
582 levels of namespaces or classes (A::B::C::D).
584 Some versions of the HP ANSI C++ compiler (as also possibly
585 other compilers) generate class/function/member names with
586 embedded double-colons if they are inside namespaces. To
587 handle this, we loop a few times, considering larger and
588 larger prefixes of the string as though they were single
589 symbols. So, if the initially supplied string is
590 A::B::C::D::foo, we have to look up "A", then "A::B",
591 then "A::B::C", then "A::B::C::D", and finally
592 "A::B::C::D::foo" as single, monolithic symbols, because
593 A, B, C or D may be namespaces.
595 Note that namespaces can nest only inside other
596 namespaces, and not inside classes. So we need only
597 consider *prefixes* of the string; there is no need to look up
598 "B::C" separately as a symbol in the previous example. */
604 struct symbol *sym_class = NULL;
605 struct symbol *sym_var = NULL;
611 /* Check for HP-compiled executable -- in other cases
612 return NULL, and caller must default to standard GDB
615 if (!hp_som_som_object_present)
616 return (struct symbol *) NULL;
620 /* Skip over whitespace and possible global "::" */
621 while (*p && (*p == ' ' || *p == '\t'))
623 if (p[0] == ':' && p[1] == ':')
625 while (*p && (*p == ' ' || *p == '\t'))
630 /* Get to the end of the next namespace or class spec. */
631 /* If we're looking at some non-token, fail immediately */
633 if (!(isalpha (*p) || *p == '$' || *p == '_'))
634 return (struct symbol *) NULL;
636 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
641 /* If we have the start of a template specification,
642 scan right ahead to its end */
643 q = find_template_name_end (p);
650 /* Skip over "::" and whitespace for next time around */
651 while (*p && (*p == ' ' || *p == '\t'))
653 if (p[0] == ':' && p[1] == ':')
655 while (*p && (*p == ' ' || *p == '\t'))
658 /* Done with tokens? */
659 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
662 tmp = (char *) alloca (prefix_len + end - start + 3);
665 memcpy (tmp, prefix, prefix_len);
666 memcpy (tmp + prefix_len, coloncolon, 2);
667 memcpy (tmp + prefix_len + 2, start, end - start);
668 tmp[prefix_len + 2 + end - start] = '\000';
672 memcpy (tmp, start, end - start);
673 tmp[end - start] = '\000';
677 prefix_len = strlen (prefix);
679 /* See if the prefix we have now is something we know about */
683 /* More tokens to process, so this must be a class/namespace */
684 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
685 0, (struct symtab **) NULL);
689 /* No more tokens, so try as a variable first */
690 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
691 0, (struct symtab **) NULL);
692 /* If failed, try as class/namespace */
694 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
695 0, (struct symtab **) NULL);
700 (t = check_typedef (SYMBOL_TYPE (sym_class)),
701 (TYPE_CODE (t) == TYPE_CODE_STRUCT
702 || TYPE_CODE (t) == TYPE_CODE_UNION))))
704 /* We found a valid token */
705 *token = (char *) xmalloc (prefix_len + 1);
706 memcpy (*token, prefix, prefix_len);
707 (*token)[prefix_len] = '\000';
711 /* No variable or class/namespace found, no more tokens */
713 return (struct symbol *) NULL;
716 /* Out of loop, so we must have found a valid token */
723 *argptr = done ? p : end;
725 return sym_var ? sym_var : sym_class; /* found */
729 find_template_name_end (char *p)
732 int just_seen_right = 0;
733 int just_seen_colon = 0;
734 int just_seen_space = 0;
736 if (!p || (*p != '<'))
747 /* In future, may want to allow these?? */
750 depth++; /* start nested template */
751 if (just_seen_colon || just_seen_right || just_seen_space)
752 return 0; /* but not after : or :: or > or space */
755 if (just_seen_colon || just_seen_right)
756 return 0; /* end a (nested?) template */
757 just_seen_right = 1; /* but not after : or :: */
758 if (--depth == 0) /* also disallow >>, insist on > > */
759 return ++p; /* if outermost ended, return */
762 if (just_seen_space || (just_seen_colon > 1))
763 return 0; /* nested class spec coming up */
764 just_seen_colon++; /* we allow :: but not :::: */
769 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
770 (*p >= 'A' && *p <= 'Z') ||
771 (*p >= '0' && *p <= '9') ||
772 (*p == '_') || (*p == ',') || /* commas for template args */
773 (*p == '&') || (*p == '*') || /* pointer and ref types */
774 (*p == '(') || (*p == ')') || /* function types */
775 (*p == '[') || (*p == ']'))) /* array types */
790 /* Return a null-terminated temporary copy of the name
791 of a string token. */
794 copy_name (struct stoken token)
796 memcpy (namecopy, token.ptr, token.length);
797 namecopy[token.length] = 0;
801 /* Reverse an expression from suffix form (in which it is constructed)
802 to prefix form (in which we can conveniently print or execute it). */
805 prefixify_expression (register struct expression *expr)
808 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
809 register struct expression *temp;
810 register int inpos = expr->nelts, outpos = 0;
812 temp = (struct expression *) alloca (len);
814 /* Copy the original expression into temp. */
815 memcpy (temp, expr, len);
817 prefixify_subexp (temp, expr, inpos, outpos);
820 /* Return the number of exp_elements in the subexpression of EXPR
821 whose last exp_element is at index ENDPOS - 1 in EXPR. */
824 length_of_subexp (register struct expression *expr, register int endpos)
826 register int oplen = 1;
827 register int args = 0;
831 error ("?error in length_of_subexp");
833 i = (int) expr->elts[endpos - 1].opcode;
839 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
840 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
863 case OP_F77_UNDETERMINED_ARGLIST:
865 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
893 case STRUCTOP_STRUCT:
901 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
902 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
906 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
907 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
908 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
913 args = longest_to_int (expr->elts[endpos - 2].longconst);
914 args -= longest_to_int (expr->elts[endpos - 3].longconst);
920 case TERNOP_SLICE_COUNT:
925 case MULTI_SUBSCRIPT:
927 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
930 case BINOP_ASSIGN_MODIFY:
941 args = 1 + (i < (int) BINOP_END);
946 oplen += length_of_subexp (expr, endpos - oplen);
953 /* Copy the subexpression ending just before index INEND in INEXPR
954 into OUTEXPR, starting at index OUTBEG.
955 In the process, convert it from suffix to prefix form. */
958 prefixify_subexp (register struct expression *inexpr,
959 struct expression *outexpr, register int inend, int outbeg)
961 register int oplen = 1;
962 register int args = 0;
965 enum exp_opcode opcode;
967 /* Compute how long the last operation is (in OPLEN),
968 and also how many preceding subexpressions serve as
969 arguments for it (in ARGS). */
971 opcode = inexpr->elts[inend - 1].opcode;
976 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
977 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
1000 case OP_F77_UNDETERMINED_ARGLIST:
1002 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1028 case STRUCTOP_STRUCT:
1037 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1038 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1042 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1043 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1044 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1049 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1050 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1056 case TERNOP_SLICE_COUNT:
1060 case BINOP_ASSIGN_MODIFY:
1066 case MULTI_SUBSCRIPT:
1068 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1077 args = 1 + ((int) opcode < (int) BINOP_END);
1080 /* Copy the final operator itself, from the end of the input
1081 to the beginning of the output. */
1083 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1084 EXP_ELEM_TO_BYTES (oplen));
1087 /* Find the lengths of the arg subexpressions. */
1088 arglens = (int *) alloca (args * sizeof (int));
1089 for (i = args - 1; i >= 0; i--)
1091 oplen = length_of_subexp (inexpr, inend);
1096 /* Now copy each subexpression, preserving the order of
1097 the subexpressions, but prefixifying each one.
1098 In this loop, inend starts at the beginning of
1099 the expression this level is working on
1100 and marches forward over the arguments.
1101 outbeg does similarly in the output. */
1102 for (i = 0; i < args; i++)
1106 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1111 /* This page contains the two entry points to this file. */
1113 /* Read an expression from the string *STRINGPTR points to,
1114 parse it, and return a pointer to a struct expression that we malloc.
1115 Use block BLOCK as the lexical context for variable names;
1116 if BLOCK is zero, use the block of the selected stack frame.
1117 Meanwhile, advance *STRINGPTR to point after the expression,
1118 at the first nonwhite character that is not part of the expression
1119 (possibly a null character).
1121 If COMMA is nonzero, stop if a comma is reached. */
1124 parse_exp_1 (char **stringptr, struct block *block, int comma)
1126 struct cleanup *old_chain;
1128 lexptr = *stringptr;
1131 type_stack_depth = 0;
1133 comma_terminates = comma;
1135 if (lexptr == 0 || *lexptr == 0)
1136 error_no_arg ("expression to compute");
1138 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1141 expression_context_block = block ? block : get_selected_block (0);
1143 namecopy = (char *) alloca (strlen (lexptr) + 1);
1146 expout = (struct expression *)
1147 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1148 expout->language_defn = current_language;
1149 make_cleanup (free_current_contents, &expout);
1151 if (current_language->la_parser ())
1152 current_language->la_error (NULL);
1154 discard_cleanups (old_chain);
1156 /* Record the actual number of expression elements, and then
1157 reallocate the expression memory so that we free up any
1160 expout->nelts = expout_ptr;
1161 expout = (struct expression *)
1162 xrealloc ((char *) expout,
1163 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1165 /* Convert expression from postfix form as generated by yacc
1166 parser, to a prefix form. */
1168 if (expressiondebug)
1169 dump_prefix_expression (expout, gdb_stdlog,
1170 "before conversion to prefix form");
1172 prefixify_expression (expout);
1174 if (expressiondebug)
1175 dump_postfix_expression (expout, gdb_stdlog,
1176 "after conversion to prefix form");
1178 *stringptr = lexptr;
1182 /* Parse STRING as an expression, and complain if this fails
1183 to use up all of the contents of STRING. */
1186 parse_expression (char *string)
1188 register struct expression *exp;
1189 exp = parse_exp_1 (&string, 0, 0);
1191 error ("Junk after end of expression.");
1195 /* Stuff for maintaining a stack of types. Currently just used by C, but
1196 probably useful for any language which declares its types "backwards". */
1199 check_type_stack_depth (void)
1201 if (type_stack_depth == type_stack_size)
1203 type_stack_size *= 2;
1204 type_stack = (union type_stack_elt *)
1205 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1210 push_type (enum type_pieces tp)
1212 check_type_stack_depth ();
1213 type_stack[type_stack_depth++].piece = tp;
1217 push_type_int (int n)
1219 check_type_stack_depth ();
1220 type_stack[type_stack_depth++].int_val = n;
1224 push_type_address_space (char *string)
1226 push_type_int (address_space_name_to_int (string));
1232 if (type_stack_depth)
1233 return type_stack[--type_stack_depth].piece;
1240 if (type_stack_depth)
1241 return type_stack[--type_stack_depth].int_val;
1242 /* "Can't happen". */
1246 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1247 as modified by all the stuff on the stack. */
1249 follow_types (struct type *follow_type)
1253 int make_volatile = 0;
1254 int make_addr_space = 0;
1256 struct type *range_type;
1259 switch (pop_type ())
1264 follow_type = make_cv_type (make_const,
1265 TYPE_VOLATILE (follow_type),
1268 follow_type = make_cv_type (TYPE_CONST (follow_type),
1271 if (make_addr_space)
1272 follow_type = make_type_with_address_space (follow_type,
1274 make_const = make_volatile = 0;
1275 make_addr_space = 0;
1283 case tp_space_identifier:
1284 make_addr_space = pop_type_int ();
1287 follow_type = lookup_pointer_type (follow_type);
1289 follow_type = make_cv_type (make_const,
1290 TYPE_VOLATILE (follow_type),
1293 follow_type = make_cv_type (TYPE_CONST (follow_type),
1296 if (make_addr_space)
1297 follow_type = make_type_with_address_space (follow_type,
1299 make_const = make_volatile = 0;
1300 make_addr_space = 0;
1303 follow_type = lookup_reference_type (follow_type);
1305 follow_type = make_cv_type (make_const,
1306 TYPE_VOLATILE (follow_type),
1309 follow_type = make_cv_type (TYPE_CONST (follow_type),
1312 if (make_addr_space)
1313 follow_type = make_type_with_address_space (follow_type,
1315 make_const = make_volatile = 0;
1316 make_addr_space = 0;
1319 array_size = pop_type_int ();
1320 /* FIXME-type-allocation: need a way to free this type when we are
1323 create_range_type ((struct type *) NULL,
1324 builtin_type_int, 0,
1325 array_size >= 0 ? array_size - 1 : 0);
1327 create_array_type ((struct type *) NULL,
1328 follow_type, range_type);
1330 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1331 = BOUND_CANNOT_BE_DETERMINED;
1334 /* FIXME-type-allocation: need a way to free this type when we are
1336 follow_type = lookup_function_type (follow_type);
1342 static void build_parse (void);
1348 msym_text_symbol_type =
1349 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1350 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1351 msym_data_symbol_type =
1352 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1353 "<data variable, no debug info>", NULL);
1354 msym_unknown_symbol_type =
1355 init_type (TYPE_CODE_INT, 1, 0,
1356 "<variable (not text or data), no debug info>",
1361 _initialize_parse (void)
1363 type_stack_size = 80;
1364 type_stack_depth = 0;
1365 type_stack = (union type_stack_elt *)
1366 xmalloc (type_stack_size * sizeof (*type_stack));
1370 /* FIXME - For the moment, handle types by swapping them in and out.
1371 Should be using the per-architecture data-pointer and a large
1373 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1374 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1375 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1377 register_gdbarch_swap (NULL, 0, build_parse);
1380 add_set_cmd ("expression", class_maintenance, var_zinteger,
1381 (char *) &expressiondebug,
1382 "Set expression debugging.\n\
1383 When non-zero, the internal representation of expressions will be printed.",