1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
39 #include "arch-utils.h"
43 #include "opcode/mips.h"
48 /* A useful bit in the CP0 status register (PS_REGNUM). */
49 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50 #define ST0_FR (1 << 26)
52 /* The sizes of floating point registers. */
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
60 /* All the possible MIPS ABIs. */
74 static const char *mips_abi_string;
76 static const char *mips_abi_strings[] = {
87 struct frame_extra_info
89 mips_extra_func_info_t proc_desc;
93 /* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
97 static const char size_auto[] = "auto";
98 static const char size_32[] = "32";
99 static const char size_64[] = "64";
101 static const char *size_enums[] = {
108 /* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
119 #ifndef MIPS_DEFAULT_FPU_TYPE
120 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
122 static int mips_fpu_type_auto = 1;
123 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
125 static int mips_debug = 0;
127 /* MIPS specific per-architecture information */
130 /* from the elf header */
134 enum mips_abi mips_abi;
135 enum mips_abi found_abi;
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
139 int mips_default_saved_regsize;
140 int mips_fp_register_double;
141 int mips_default_stack_argsize;
142 int gdb_target_is_mips64;
143 int default_mask_address_p;
145 enum gdb_osabi osabi;
148 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
151 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
153 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
155 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
157 /* Return the currently configured (or set) saved register size. */
159 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
161 static const char *mips_saved_regsize_string = size_auto;
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
166 mips_saved_regsize (void)
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
172 else /* if (mips_saved_regsize_string == size_32) */
176 /* Functions for setting and testing a bit in a minimal symbol that
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
191 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
202 msymbol_is_special (struct minimal_symbol *msym)
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
208 msymbol_size (struct minimal_symbol *msym)
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
213 /* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
219 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
232 case BFD_ENDIAN_LITTLE:
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
239 internal_error (__FILE__, __LINE__, "bad switch");
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
245 if (mips_debug && out != NULL)
248 fprintf_unfiltered (gdb_stdlog, "out ");
249 for (i = 0; i < length; i++)
250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
259 fprintf_unfiltered (gdb_stdlog, "in ");
260 for (i = 0; i < length; i++)
261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
264 fprintf_unfiltered (gdb_stdlog, "\n");
267 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
272 mips2_fp_compat (void)
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
292 /* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
297 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
299 /* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
303 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
305 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
307 static const char *mips_stack_argsize_string = size_auto;
310 mips_stack_argsize (void)
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
316 else /* if (mips_stack_argsize_string == size_32) */
320 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
322 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
324 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
326 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
328 static void mips_print_register (int, int);
330 static mips_extra_func_info_t
331 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
333 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
335 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
337 static int mips_set_processor_type (char *);
339 static void mips_show_processor_type_command (char *, int);
341 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
343 static mips_extra_func_info_t
344 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
346 static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
349 static void mips_read_fp_register_single (int regno, char *rare_buffer);
350 static void mips_read_fp_register_double (int regno, char *rare_buffer);
352 static struct type *mips_float_register_type (void);
353 static struct type *mips_double_register_type (void);
355 /* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
358 char *mips_processor_type;
360 char *tmp_mips_processor_type;
362 /* The list of available "set mips " and "show mips " commands */
364 static struct cmd_list_element *setmipscmdlist = NULL;
365 static struct cmd_list_element *showmipscmdlist = NULL;
367 /* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
370 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371 char **mips_processor_reg_names = mips_generic_reg_names;
374 mips_register_name (int i)
376 return mips_processor_reg_names[i];
379 /* Names of IDT R3041 registers. */
381 char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
391 "fsr", "fir", "",/*"fp"*/ "",
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
396 /* Names of IDT R3051 registers. */
398 char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
408 "fsr", "fir", ""/*"fp"*/, "",
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
413 /* Names of IDT R3081 registers. */
415 char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
425 "fsr", "fir", ""/*"fp"*/, "",
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
430 /* Names of LSI 33k registers. */
432 char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
450 } mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
464 /* Table to translate MIPS16 register field to actual register number. */
465 static int mips16_to_32_reg[8] =
466 {16, 17, 2, 3, 4, 5, 6, 7};
468 /* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
472 static unsigned int heuristic_fence_post = 0;
474 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
476 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
484 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
486 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487 #define _PROC_MAGIC_ 0x0F0F0F0F
488 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
491 struct linked_proc_info
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
496 *linked_proc_desc_table = NULL;
499 mips_print_extra_frame_info (struct frame_info *fi)
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
505 printf_filtered (" frame pointer is at %s+%s\n",
506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
510 /* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
514 static int mips64_transfers_32bit_regs_p = 0;
517 mips_register_raw_size (int reg_nr)
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
530 /* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
534 mips_register_convertible (int reg_nr)
536 if (mips64_transfers_32bit_regs_p)
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
543 mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
553 TYPE_LENGTH (virtual_type));
557 mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
564 TYPE_LENGTH (virtual_type));
568 TYPE_LENGTH (virtual_type));
572 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
588 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
590 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
603 /* Return the GDB type object for the "standard" data type
604 of data in register REG.
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
614 mips_register_virtual_type (int reg)
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
622 return builtin_type_ieee_double_little;
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
635 return builtin_type_uint32;
639 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
647 /* Should the upper word of 64-bit addresses be zeroed? */
648 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
651 mips_mask_address_p (void)
653 switch (mask_address_var)
655 case AUTO_BOOLEAN_TRUE:
657 case AUTO_BOOLEAN_FALSE:
660 case AUTO_BOOLEAN_AUTO:
661 return MIPS_DEFAULT_MASK_ADDRESS_P;
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
670 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
672 switch (mask_address_var)
674 case AUTO_BOOLEAN_TRUE:
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
677 case AUTO_BOOLEAN_FALSE:
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
680 case AUTO_BOOLEAN_AUTO:
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
691 /* Should call_function allocate stack space for a struct return? */
694 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
700 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
706 mips_o32_use_struct_convention (int gcc_p, struct type *type)
708 return 1; /* Structures are returned by ref in extra arg0. */
711 /* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
716 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
728 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
734 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
739 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
742 pc_is_mips16 (bfd_vma memaddr)
744 struct minimal_symbol *sym;
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
755 return msymbol_is_special (sym);
760 /* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
764 mips_read_pc (ptid_t ptid)
766 return read_signed_register_pid (PC_REGNUM, ptid);
769 /* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
773 after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
785 proc_desc = find_proc_desc (pc, NULL, 0);
789 /* If function is frameless, then we need to do it the hard way. I
790 strongly suspect that frameless always means prologueless... */
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
799 sal = find_pc_line (func_addr, 0);
801 if (sal.end < func_end)
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
810 /* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
816 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
825 /* It might be possible to use the instruction to
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
843 /* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
849 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
867 /* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
871 mips_fetch_instruction (CORE_ADDR addr)
873 char buf[MIPS_INSTLEN];
877 if (pc_is_mips16 (addr))
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
883 instlen = MIPS_INSTLEN;
884 status = read_memory_nobpt (addr, buf, instlen);
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
891 /* These the fields of 32 bit mips instructions */
892 #define mips32_op(x) (x >> 26)
893 #define itype_op(x) (x >> 26)
894 #define itype_rs(x) ((x >> 21) & 0x1f)
895 #define itype_rt(x) ((x >> 16) & 0x1f)
896 #define itype_immediate(x) (x & 0xffff)
898 #define jtype_op(x) (x >> 26)
899 #define jtype_target(x) (x & 0x03ffffff)
901 #define rtype_op(x) (x >> 26)
902 #define rtype_rs(x) ((x >> 21) & 0x1f)
903 #define rtype_rt(x) ((x >> 16) & 0x1f)
904 #define rtype_rd(x) ((x >> 11) & 0x1f)
905 #define rtype_shamt(x) ((x >> 6) & 0x1f)
906 #define rtype_funct(x) (x & 0x3f)
909 mips32_relative_offset (unsigned long inst)
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
915 x |= 0xffff0000; /* sign extension */
921 /* Determine whate to set a single step breakpoint while considering
924 mips32_next_pc (CORE_ADDR pc)
928 inst = mips_fetch_instruction (pc);
929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
934 op = (itype_op (inst) & 0x03);
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
963 pc += 4; /* Not a branch, next instruction is easy */
966 { /* This gets way messy */
968 /* Further subdivide into SPECIAL, REGIMM and other */
969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
984 break; /* end SPECIAL */
987 op = itype_rt (inst); /* branch condition */
992 case 16: /* BLTZAL */
993 case 18: /* BLTZALL */
995 if (read_signed_register (itype_rs (inst)) < 0)
996 pc += mips32_relative_offset (inst) + 4;
998 pc += 8; /* after the delay slot */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
1004 greater_equal_branch:
1005 if (read_signed_register (itype_rs (inst)) >= 0)
1006 pc += mips32_relative_offset (inst) + 4;
1008 pc += 8; /* after the delay slot */
1010 /* All of the other instructions in the REGIMM category */
1015 break; /* end REGIMM */
1020 reg = jtype_target (inst) << 2;
1021 /* Upper four bits get never changed... */
1022 pc = reg + ((pc + 4) & 0xf0000000);
1025 /* FIXME case JALX : */
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1032 break; /* The new PC will be alternate mode */
1033 case 4: /* BEQ, BEQL */
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
1037 pc += mips32_relative_offset (inst) + 4;
1041 case 5: /* BNE, BNEL */
1043 if (read_signed_register (itype_rs (inst)) !=
1044 read_signed_register (itype_rt (inst)))
1045 pc += mips32_relative_offset (inst) + 4;
1049 case 6: /* BLEZ, BLEZL */
1051 if (read_signed_register (itype_rs (inst) <= 0))
1052 pc += mips32_relative_offset (inst) + 4;
1058 greater_branch: /* BGTZ, BGTZL */
1059 if (read_signed_register (itype_rs (inst) > 0))
1060 pc += mips32_relative_offset (inst) + 4;
1067 } /* mips32_next_pc */
1069 /* Decoding the next place to set a breakpoint is irregular for the
1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1076 /* Lots of mips16 instruction formats */
1077 /* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
1080 enum mips16_inst_fmts
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1105 /* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
1110 unsigned int regx; /* Function in i8 type */
1115 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
1119 extended_offset (unsigned int extension)
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1126 value |= extension & 0x01f; /* extract 4:0 */
1130 /* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
1135 /* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1140 fetch_mips_16 (CORE_ADDR pc)
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
1149 unpack_mips16 (CORE_ADDR pc,
1150 unsigned int extension,
1152 enum mips16_inst_fmts insn_format,
1153 struct upk_mips16 *upk)
1158 switch (insn_format)
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
1167 value |= inst & 0x7ff; /* eleven bits from instruction */
1171 value = inst & 0x7ff;
1172 /* FIXME : Consider sign extension */
1181 { /* A register identifier and an offset */
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1193 value &= ~0x3fff; /* remove the sign bit */
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1204 value &= 0xef; /* remove the sign bit */
1214 unsigned long value;
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1226 internal_error (__FILE__, __LINE__,
1229 upk->offset = offset;
1236 add_offset_16 (CORE_ADDR pc, int offset)
1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1242 extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1246 int op = (insn >> 11);
1249 case 2: /* Branch */
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1260 pc += (offset << 1) + 2;
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1276 struct upk_mips16 upk;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1281 pc += (upk.offset << 1) + 2;
1288 struct upk_mips16 upk;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1293 pc += (upk.offset << 1) + 2;
1298 case 12: /* I8 Formats btez btnez */
1300 struct upk_mips16 upk;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1330 break; /* Function return instruction */
1336 break; /* BOGUS Guess */
1338 pc = read_signed_register (reg);
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1363 mips16_next_pc (CORE_ADDR pc)
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1369 /* The mips_next_pc function supports single_step when the remote
1370 target monitor or stub is not developed enough to do a single_step.
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
1375 mips_next_pc (CORE_ADDR pc)
1378 return mips16_next_pc (pc);
1380 return mips32_next_pc (pc);
1383 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
1395 mips_find_saved_regs (struct frame_info *fci)
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1406 frame_saved_regs_zalloc (fci);
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412 #ifndef SIGFRAME_BASE
1413 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415 #define SIGFRAME_BASE MIPS_REGSIZE
1416 /* FIXME! Are these correct?? */
1417 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419 #define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1422 #ifndef SIGFRAME_REG_SIZE
1423 /* FIXME! Is this correct?? */
1424 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1426 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1444 proc_desc = fci->extra_info->proc_desc;
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || (get_frame_type (fci->next) == SIGTRAMP_FRAME))
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1475 /* We need to figure out whether the registers that the proc_desc
1476 claims are saved have been saved yet. */
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1504 /* Fill in the offsets for the registers which gen_mask says
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1508 if (gen_mask & 0x80000000)
1510 fci->saved_regs[ireg] = reg_position;
1511 reg_position -= MIPS_SAVED_REGSIZE;
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1524 int sreg_count = (inst >> 6) & 3;
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1529 reg_position -= MIPS_SAVED_REGSIZE;
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
1532 for (reg = 16; reg < sreg_count + 16; reg++)
1534 fci->saved_regs[reg] = reg_position;
1535 reg_position -= MIPS_SAVED_REGSIZE;
1540 /* Fill in the offsets for the registers which float_mask says
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1557 if (MIPS_SAVED_REGSIZE == 4)
1558 reg_position += MIPS_SAVED_REGSIZE;
1560 /* Fill in the offsets for the float registers which float_mask says
1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1563 if (float_mask & 0x80000000)
1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1566 reg_position -= MIPS_SAVED_REGSIZE;
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1572 /* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1580 mips_frame_init_saved_regs (struct frame_info *frame)
1582 if (frame->saved_regs == NULL)
1584 mips_find_saved_regs (frame);
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1590 read_next_frame_reg (struct frame_info *fi, int regno)
1595 enum lval_type lval;
1596 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1597 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1599 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1600 should have a pseudo register range that correspons to the ABI's,
1601 rather than the ISA's, view of registers. These registers would
1602 then implicitly describe their size and hence could be used
1603 without the below munging. */
1604 if (lval == lval_memory)
1608 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1610 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1614 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1617 /* mips_addr_bits_remove - remove useless address bits */
1620 mips_addr_bits_remove (CORE_ADDR addr)
1622 if (GDB_TARGET_IS_MIPS64)
1624 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1626 /* This hack is a work-around for existing boards using
1627 PMON, the simulator, and any other 64-bit targets that
1628 doesn't have true 64-bit addressing. On these targets,
1629 the upper 32 bits of addresses are ignored by the
1630 hardware. Thus, the PC or SP are likely to have been
1631 sign extended to all 1s by instruction sequences that
1632 load 32-bit addresses. For example, a typical piece of
1633 code that loads an address is this:
1634 lui $r2, <upper 16 bits>
1635 ori $r2, <lower 16 bits>
1636 But the lui sign-extends the value such that the upper 32
1637 bits may be all 1s. The workaround is simply to mask off
1638 these bits. In the future, gcc may be changed to support
1639 true 64-bit addressing, and this masking will have to be
1641 addr &= (CORE_ADDR) 0xffffffff;
1644 else if (mips_mask_address_p ())
1646 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1647 masking off bits, instead, the actual target should be asking
1648 for the address to be converted to a valid pointer. */
1649 /* Even when GDB is configured for some 32-bit targets
1650 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1651 so CORE_ADDR is 64 bits. So we still have to mask off
1652 useless bits from addresses. */
1653 addr &= (CORE_ADDR) 0xffffffff;
1658 /* mips_software_single_step() is called just before we want to resume
1659 the inferior, if we want to single-step it but there is no hardware
1660 or kernel single-step support (MIPS on GNU/Linux for example). We find
1661 the target of the coming instruction and breakpoint it.
1663 single_step is also called just after the inferior stops. If we had
1664 set up a simulated single-step, we undo our damage. */
1667 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1669 static CORE_ADDR next_pc;
1670 typedef char binsn_quantum[BREAKPOINT_MAX];
1671 static binsn_quantum break_mem;
1674 if (insert_breakpoints_p)
1676 pc = read_register (PC_REGNUM);
1677 next_pc = mips_next_pc (pc);
1679 target_insert_breakpoint (next_pc, break_mem);
1682 target_remove_breakpoint (next_pc, break_mem);
1686 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1690 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1691 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1692 tmp = SKIP_TRAMPOLINE_CODE (pc);
1693 prev->pc = tmp ? tmp : pc;
1698 mips_frame_saved_pc (struct frame_info *frame)
1701 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1702 /* We have to get the saved pc from the sigcontext
1703 if it is a signal handler frame. */
1704 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1705 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1707 if (USE_GENERIC_DUMMY_FRAMES
1708 && PC_IN_CALL_DUMMY (frame->pc, 0, 0))
1711 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1714 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1715 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1717 saved_pc = read_next_frame_reg (frame, pcreg);
1719 return ADDR_BITS_REMOVE (saved_pc);
1722 static struct mips_extra_func_info temp_proc_desc;
1723 static CORE_ADDR temp_saved_regs[NUM_REGS];
1725 /* Set a register's saved stack address in temp_saved_regs. If an address
1726 has already been set for this register, do nothing; this way we will
1727 only recognize the first save of a given register in a function prologue.
1728 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1731 set_reg_offset (int regno, CORE_ADDR offset)
1733 if (temp_saved_regs[regno] == 0)
1734 temp_saved_regs[regno] = offset;
1738 /* Test whether the PC points to the return instruction at the
1739 end of a function. */
1742 mips_about_to_return (CORE_ADDR pc)
1744 if (pc_is_mips16 (pc))
1745 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1746 generates a "jr $ra"; other times it generates code to load
1747 the return address from the stack to an accessible register (such
1748 as $a3), then a "jr" using that register. This second case
1749 is almost impossible to distinguish from an indirect jump
1750 used for switch statements, so we don't even try. */
1751 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1753 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1757 /* This fencepost looks highly suspicious to me. Removing it also
1758 seems suspicious as it could affect remote debugging across serial
1762 heuristic_proc_start (CORE_ADDR pc)
1769 pc = ADDR_BITS_REMOVE (pc);
1771 fence = start_pc - heuristic_fence_post;
1775 if (heuristic_fence_post == UINT_MAX
1776 || fence < VM_MIN_ADDRESS)
1777 fence = VM_MIN_ADDRESS;
1779 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1781 /* search back for previous return */
1782 for (start_pc -= instlen;; start_pc -= instlen)
1783 if (start_pc < fence)
1785 /* It's not clear to me why we reach this point when
1786 stop_soon_quietly, but with this test, at least we
1787 don't print out warnings for every child forked (eg, on
1789 if (!stop_soon_quietly)
1791 static int blurb_printed = 0;
1793 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1798 /* This actually happens frequently in embedded
1799 development, when you first connect to a board
1800 and your stack pointer and pc are nowhere in
1801 particular. This message needs to give people
1802 in that situation enough information to
1803 determine that it's no big deal. */
1804 printf_filtered ("\n\
1805 GDB is unable to find the start of the function at 0x%s\n\
1806 and thus can't determine the size of that function's stack frame.\n\
1807 This means that GDB may be unable to access that stack frame, or\n\
1808 the frames below it.\n\
1809 This problem is most likely caused by an invalid program counter or\n\
1811 However, if you think GDB should simply search farther back\n\
1812 from 0x%s for code which looks like the beginning of a\n\
1813 function, you can increase the range of the search using the `set\n\
1814 heuristic-fence-post' command.\n",
1815 paddr_nz (pc), paddr_nz (pc));
1822 else if (pc_is_mips16 (start_pc))
1824 unsigned short inst;
1826 /* On MIPS16, any one of the following is likely to be the
1827 start of a function:
1831 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1832 inst = mips_fetch_instruction (start_pc);
1833 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1834 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1835 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1836 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1838 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1839 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1844 else if (mips_about_to_return (start_pc))
1846 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1853 /* Fetch the immediate value from a MIPS16 instruction.
1854 If the previous instruction was an EXTEND, use it to extend
1855 the upper bits of the immediate value. This is a helper function
1856 for mips16_heuristic_proc_desc. */
1859 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1860 unsigned short inst, /* current instruction */
1861 int nbits, /* number of bits in imm field */
1862 int scale, /* scale factor to be applied to imm */
1863 int is_signed) /* is the imm field signed? */
1867 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1869 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1870 if (offset & 0x8000) /* check for negative extend */
1871 offset = 0 - (0x10000 - (offset & 0xffff));
1872 return offset | (inst & 0x1f);
1876 int max_imm = 1 << nbits;
1877 int mask = max_imm - 1;
1878 int sign_bit = max_imm >> 1;
1880 offset = inst & mask;
1881 if (is_signed && (offset & sign_bit))
1882 offset = 0 - (max_imm - offset);
1883 return offset * scale;
1888 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1889 stream from start_pc to limit_pc. */
1892 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1893 struct frame_info *next_frame, CORE_ADDR sp)
1896 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1897 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1898 unsigned inst = 0; /* current instruction */
1899 unsigned entry_inst = 0; /* the entry instruction */
1902 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1903 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1905 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1907 /* Save the previous instruction. If it's an EXTEND, we'll extract
1908 the immediate offset extension from it in mips16_get_imm. */
1911 /* Fetch and decode the instruction. */
1912 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1913 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1914 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1916 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1917 if (offset < 0) /* negative stack adjustment? */
1918 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1920 /* Exit loop if a positive stack adjustment is found, which
1921 usually means that the stack cleanup code in the function
1922 epilogue is reached. */
1925 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1927 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1928 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1929 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1930 set_reg_offset (reg, sp + offset);
1932 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1934 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1935 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1936 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1937 set_reg_offset (reg, sp + offset);
1939 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1941 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1942 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1943 set_reg_offset (RA_REGNUM, sp + offset);
1945 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1947 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1948 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1949 set_reg_offset (RA_REGNUM, sp + offset);
1951 else if (inst == 0x673d) /* move $s1, $sp */
1954 PROC_FRAME_REG (&temp_proc_desc) = 17;
1956 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1958 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1959 frame_addr = sp + offset;
1960 PROC_FRAME_REG (&temp_proc_desc) = 17;
1961 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1963 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1965 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1966 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1967 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1968 set_reg_offset (reg, frame_addr + offset);
1970 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1972 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1973 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1974 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1975 set_reg_offset (reg, frame_addr + offset);
1977 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1978 entry_inst = inst; /* save for later processing */
1979 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1980 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1983 /* The entry instruction is typically the first instruction in a function,
1984 and it stores registers at offsets relative to the value of the old SP
1985 (before the prologue). But the value of the sp parameter to this
1986 function is the new SP (after the prologue has been executed). So we
1987 can't calculate those offsets until we've seen the entire prologue,
1988 and can calculate what the old SP must have been. */
1989 if (entry_inst != 0)
1991 int areg_count = (entry_inst >> 8) & 7;
1992 int sreg_count = (entry_inst >> 6) & 3;
1994 /* The entry instruction always subtracts 32 from the SP. */
1995 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1997 /* Now we can calculate what the SP must have been at the
1998 start of the function prologue. */
1999 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2001 /* Check if a0-a3 were saved in the caller's argument save area. */
2002 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2004 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2005 set_reg_offset (reg, sp + offset);
2006 offset += MIPS_SAVED_REGSIZE;
2009 /* Check if the ra register was pushed on the stack. */
2011 if (entry_inst & 0x20)
2013 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2014 set_reg_offset (RA_REGNUM, sp + offset);
2015 offset -= MIPS_SAVED_REGSIZE;
2018 /* Check if the s0 and s1 registers were pushed on the stack. */
2019 for (reg = 16; reg < sreg_count + 16; reg++)
2021 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2022 set_reg_offset (reg, sp + offset);
2023 offset -= MIPS_SAVED_REGSIZE;
2029 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2030 struct frame_info *next_frame, CORE_ADDR sp)
2033 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2035 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2036 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2037 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2038 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2040 unsigned long inst, high_word, low_word;
2043 /* Fetch the instruction. */
2044 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2046 /* Save some code by pre-extracting some useful fields. */
2047 high_word = (inst >> 16) & 0xffff;
2048 low_word = inst & 0xffff;
2049 reg = high_word & 0x1f;
2051 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2052 || high_word == 0x23bd /* addi $sp,$sp,-i */
2053 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2055 if (low_word & 0x8000) /* negative stack adjustment? */
2056 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2058 /* Exit loop if a positive stack adjustment is found, which
2059 usually means that the stack cleanup code in the function
2060 epilogue is reached. */
2063 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2065 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2066 set_reg_offset (reg, sp + low_word);
2068 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2070 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2071 but the register size used is only 32 bits. Make the address
2072 for the saved register point to the lower 32 bits. */
2073 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2074 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2076 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2078 /* Old gcc frame, r30 is virtual frame pointer. */
2079 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2080 frame_addr = sp + low_word;
2081 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2083 unsigned alloca_adjust;
2084 PROC_FRAME_REG (&temp_proc_desc) = 30;
2085 frame_addr = read_next_frame_reg (next_frame, 30);
2086 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2087 if (alloca_adjust > 0)
2089 /* FP > SP + frame_size. This may be because
2090 * of an alloca or somethings similar.
2091 * Fix sp to "pre-alloca" value, and try again.
2093 sp += alloca_adjust;
2098 /* move $30,$sp. With different versions of gas this will be either
2099 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2100 Accept any one of these. */
2101 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2103 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2104 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2106 unsigned alloca_adjust;
2107 PROC_FRAME_REG (&temp_proc_desc) = 30;
2108 frame_addr = read_next_frame_reg (next_frame, 30);
2109 alloca_adjust = (unsigned) (frame_addr - sp);
2110 if (alloca_adjust > 0)
2112 /* FP > SP + frame_size. This may be because
2113 * of an alloca or somethings similar.
2114 * Fix sp to "pre-alloca" value, and try again.
2116 sp += alloca_adjust;
2121 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2123 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2124 set_reg_offset (reg, frame_addr + low_word);
2129 static mips_extra_func_info_t
2130 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2131 struct frame_info *next_frame, int cur_frame)
2136 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2142 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2143 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2144 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2145 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2146 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2148 if (start_pc + 200 < limit_pc)
2149 limit_pc = start_pc + 200;
2150 if (pc_is_mips16 (start_pc))
2151 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2153 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2154 return &temp_proc_desc;
2157 struct mips_objfile_private
2163 /* Global used to communicate between non_heuristic_proc_desc and
2164 compare_pdr_entries within qsort (). */
2165 static bfd *the_bfd;
2168 compare_pdr_entries (const void *a, const void *b)
2170 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2171 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2175 else if (lhs == rhs)
2181 static mips_extra_func_info_t
2182 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2184 CORE_ADDR startaddr;
2185 mips_extra_func_info_t proc_desc;
2186 struct block *b = block_for_pc (pc);
2188 struct obj_section *sec;
2189 struct mips_objfile_private *priv;
2191 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2194 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2196 *addrptr = startaddr;
2200 sec = find_pc_section (pc);
2203 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2205 /* Search the ".pdr" section generated by GAS. This includes most of
2206 the information normally found in ECOFF PDRs. */
2208 the_bfd = sec->objfile->obfd;
2210 && (the_bfd->format == bfd_object
2211 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2212 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2214 /* Right now GAS only outputs the address as a four-byte sequence.
2215 This means that we should not bother with this method on 64-bit
2216 targets (until that is fixed). */
2218 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2219 sizeof (struct mips_objfile_private));
2221 sec->objfile->obj_private = priv;
2223 else if (priv == NULL)
2227 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2228 sizeof (struct mips_objfile_private));
2230 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2233 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2234 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2236 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2237 priv->contents, 0, priv->size);
2239 /* In general, the .pdr section is sorted. However, in the
2240 presence of multiple code sections (and other corner cases)
2241 it can become unsorted. Sort it so that we can use a faster
2243 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2248 sec->objfile->obj_private = priv;
2252 if (priv->size != 0)
2258 high = priv->size / 32;
2264 mid = (low + high) / 2;
2266 ptr = priv->contents + mid * 32;
2267 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2268 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2269 SECT_OFF_TEXT (sec->objfile));
2270 if (pdr_pc == startaddr)
2272 if (pdr_pc > startaddr)
2277 while (low != high);
2281 struct symbol *sym = find_pc_function (pc);
2283 /* Fill in what we need of the proc_desc. */
2284 proc_desc = (mips_extra_func_info_t)
2285 obstack_alloc (&sec->objfile->psymbol_obstack,
2286 sizeof (struct mips_extra_func_info));
2287 PROC_LOW_ADDR (proc_desc) = startaddr;
2289 /* Only used for dummy frames. */
2290 PROC_HIGH_ADDR (proc_desc) = 0;
2292 PROC_FRAME_OFFSET (proc_desc)
2293 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2294 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2296 PROC_FRAME_ADJUST (proc_desc) = 0;
2297 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2299 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2301 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2303 PROC_FREG_OFFSET (proc_desc)
2304 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2305 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2307 proc_desc->pdr.isym = (long) sym;
2317 if (startaddr > BLOCK_START (b))
2319 /* This is the "pathological" case referred to in a comment in
2320 print_frame_info. It might be better to move this check into
2325 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2327 /* If we never found a PDR for this function in symbol reading, then
2328 examine prologues to find the information. */
2331 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2332 if (PROC_FRAME_REG (proc_desc) == -1)
2342 static mips_extra_func_info_t
2343 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2345 mips_extra_func_info_t proc_desc;
2346 CORE_ADDR startaddr = 0;
2348 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2352 /* IF this is the topmost frame AND
2353 * (this proc does not have debugging information OR
2354 * the PC is in the procedure prologue)
2355 * THEN create a "heuristic" proc_desc (by analyzing
2356 * the actual code) to replace the "official" proc_desc.
2358 if (next_frame == NULL)
2360 struct symtab_and_line val;
2361 struct symbol *proc_symbol =
2362 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2366 val = find_pc_line (BLOCK_START
2367 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2369 val.pc = val.end ? val.end : pc;
2371 if (!proc_symbol || pc < val.pc)
2373 mips_extra_func_info_t found_heuristic =
2374 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2375 pc, next_frame, cur_frame);
2376 if (found_heuristic)
2377 proc_desc = found_heuristic;
2383 /* Is linked_proc_desc_table really necessary? It only seems to be used
2384 by procedure call dummys. However, the procedures being called ought
2385 to have their own proc_descs, and even if they don't,
2386 heuristic_proc_desc knows how to create them! */
2388 register struct linked_proc_info *link;
2390 for (link = linked_proc_desc_table; link; link = link->next)
2391 if (PROC_LOW_ADDR (&link->info) <= pc
2392 && PROC_HIGH_ADDR (&link->info) > pc)
2396 startaddr = heuristic_proc_start (pc);
2399 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2405 get_frame_pointer (struct frame_info *frame,
2406 mips_extra_func_info_t proc_desc)
2408 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2409 PROC_FRAME_REG (proc_desc)) +
2410 PROC_FRAME_OFFSET (proc_desc) -
2411 PROC_FRAME_ADJUST (proc_desc));
2414 static mips_extra_func_info_t cached_proc_desc;
2417 mips_frame_chain (struct frame_info *frame)
2419 mips_extra_func_info_t proc_desc;
2421 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2423 if (saved_pc == 0 || inside_entry_file (saved_pc))
2426 /* Check if the PC is inside a call stub. If it is, fetch the
2427 PC of the caller of that stub. */
2428 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2431 if (USE_GENERIC_DUMMY_FRAMES
2432 && PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2434 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2435 is well, frame->frame the bottom of the current frame will
2436 contain that value. */
2437 return frame->frame;
2440 /* Look up the procedure descriptor for this PC. */
2441 proc_desc = find_proc_desc (saved_pc, frame, 1);
2445 cached_proc_desc = proc_desc;
2447 /* If no frame pointer and frame size is zero, we must be at end
2448 of stack (or otherwise hosed). If we don't check frame size,
2449 we loop forever if we see a zero size frame. */
2450 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2451 && PROC_FRAME_OFFSET (proc_desc) == 0
2452 /* The previous frame from a sigtramp frame might be frameless
2453 and have frame size zero. */
2454 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2455 /* For a generic dummy frame, let get_frame_pointer() unwind a
2456 register value saved as part of the dummy frame call. */
2457 && !(USE_GENERIC_DUMMY_FRAMES
2458 && PC_IN_CALL_DUMMY (frame->pc, 0, 0)))
2461 return get_frame_pointer (frame, proc_desc);
2465 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2469 /* Use proc_desc calculated in frame_chain */
2470 mips_extra_func_info_t proc_desc =
2471 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2473 fci->extra_info = (struct frame_extra_info *)
2474 frame_obstack_alloc (sizeof (struct frame_extra_info));
2476 fci->saved_regs = NULL;
2477 fci->extra_info->proc_desc =
2478 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2481 /* Fixup frame-pointer - only needed for top frame */
2482 /* This may not be quite right, if proc has a real frame register.
2483 Get the value of the frame relative sp, procedure might have been
2484 interrupted by a signal at it's very start. */
2485 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2486 && !PROC_DESC_IS_DUMMY (proc_desc))
2487 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2488 else if (USE_GENERIC_DUMMY_FRAMES
2489 && PC_IN_CALL_DUMMY (fci->pc, 0, 0))
2490 /* Do not ``fix'' fci->frame. It will have the value of the
2491 generic dummy frame's top-of-stack (since the draft
2492 fci->frame is obtained by returning the unwound stack
2493 pointer) and that is what we want. That way the fci->frame
2494 value will match the top-of-stack value that was saved as
2495 part of the dummy frames data. */
2498 fci->frame = get_frame_pointer (fci->next, proc_desc);
2500 if (proc_desc == &temp_proc_desc)
2504 /* Do not set the saved registers for a sigtramp frame,
2505 mips_find_saved_registers will do that for us. We can't
2506 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2508 /* FIXME: cagney/2002-11-18: This problem will go away once
2509 frame.c:get_prev_frame() is modified to set the frame's
2510 type before calling functions like this. */
2511 find_pc_partial_function (fci->pc, &name,
2512 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2513 if (!PC_IN_SIGTRAMP (fci->pc, name))
2515 frame_saved_regs_zalloc (fci);
2516 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2517 fci->saved_regs[PC_REGNUM]
2518 = fci->saved_regs[RA_REGNUM];
2519 /* Set value of previous frame's stack pointer. Remember that
2520 saved_regs[SP_REGNUM] is special in that it contains the
2521 value of the stack pointer register. The other saved_regs
2522 values are addresses (in the inferior) at which a given
2523 register's value may be found. */
2524 fci->saved_regs[SP_REGNUM] = fci->frame;
2528 /* hack: if argument regs are saved, guess these contain args */
2529 /* assume we can't tell how many args for now */
2530 fci->extra_info->num_args = -1;
2531 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2533 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2535 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2542 /* MIPS stack frames are almost impenetrable. When execution stops,
2543 we basically have to look at symbol information for the function
2544 that we stopped in, which tells us *which* register (if any) is
2545 the base of the frame pointer, and what offset from that register
2546 the frame itself is at.
2548 This presents a problem when trying to examine a stack in memory
2549 (that isn't executing at the moment), using the "frame" command. We
2550 don't have a PC, nor do we have any registers except SP.
2552 This routine takes two arguments, SP and PC, and tries to make the
2553 cached frames look as if these two arguments defined a frame on the
2554 cache. This allows the rest of info frame to extract the important
2555 arguments without difficulty. */
2558 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2561 error ("MIPS frame specifications require two arguments: sp and pc");
2563 return create_new_frame (argv[0], argv[1]);
2566 /* According to the current ABI, should the type be passed in a
2567 floating-point register (assuming that there is space)? When there
2568 is no FPU, FP are not even considered as possibile candidates for
2569 FP registers and, consequently this returns false - forces FP
2570 arguments into integer registers. */
2573 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2575 return ((typecode == TYPE_CODE_FLT
2577 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2578 && TYPE_NFIELDS (arg_type) == 1
2579 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2580 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2583 /* On o32, argument passing in GPRs depends on the alignment of the type being
2584 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2587 mips_type_needs_double_align (struct type *type)
2589 enum type_code typecode = TYPE_CODE (type);
2591 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2593 else if (typecode == TYPE_CODE_STRUCT)
2595 if (TYPE_NFIELDS (type) < 1)
2597 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2599 else if (typecode == TYPE_CODE_UNION)
2603 n = TYPE_NFIELDS (type);
2604 for (i = 0; i < n; i++)
2605 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2612 /* Macros to round N up or down to the next A boundary;
2613 A must be a power of two. */
2615 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2616 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2618 /* Adjust the address downward (direction of stack growth) so that it
2619 is correctly aligned for a new stack frame. */
2621 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2623 return ROUND_DOWN (addr, 16);
2627 mips_eabi_push_arguments (int nargs,
2628 struct value **args,
2631 CORE_ADDR struct_addr)
2637 int stack_offset = 0;
2639 /* First ensure that the stack and structure return address (if any)
2640 are properly aligned. The stack has to be at least 64-bit
2641 aligned even on 32-bit machines, because doubles must be 64-bit
2642 aligned. For n32 and n64, stack frames need to be 128-bit
2643 aligned, so we round to this widest known alignment. */
2645 sp = ROUND_DOWN (sp, 16);
2646 struct_addr = ROUND_DOWN (struct_addr, 16);
2648 /* Now make space on the stack for the args. We allocate more
2649 than necessary for EABI, because the first few arguments are
2650 passed in registers, but that's OK. */
2651 for (argnum = 0; argnum < nargs; argnum++)
2652 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2653 MIPS_STACK_ARGSIZE);
2654 sp -= ROUND_UP (len, 16);
2657 fprintf_unfiltered (gdb_stdlog,
2658 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2659 paddr_nz (sp), ROUND_UP (len, 16));
2661 /* Initialize the integer and float register pointers. */
2663 float_argreg = FPA0_REGNUM;
2665 /* The struct_return pointer occupies the first parameter-passing reg. */
2669 fprintf_unfiltered (gdb_stdlog,
2670 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2671 argreg, paddr_nz (struct_addr));
2672 write_register (argreg++, struct_addr);
2675 /* Now load as many as possible of the first arguments into
2676 registers, and push the rest onto the stack. Loop thru args
2677 from first to last. */
2678 for (argnum = 0; argnum < nargs; argnum++)
2681 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2682 struct value *arg = args[argnum];
2683 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2684 int len = TYPE_LENGTH (arg_type);
2685 enum type_code typecode = TYPE_CODE (arg_type);
2688 fprintf_unfiltered (gdb_stdlog,
2689 "mips_eabi_push_arguments: %d len=%d type=%d",
2690 argnum + 1, len, (int) typecode);
2692 /* The EABI passes structures that do not fit in a register by
2694 if (len > MIPS_SAVED_REGSIZE
2695 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2697 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2698 typecode = TYPE_CODE_PTR;
2699 len = MIPS_SAVED_REGSIZE;
2702 fprintf_unfiltered (gdb_stdlog, " push");
2705 val = (char *) VALUE_CONTENTS (arg);
2707 /* 32-bit ABIs always start floating point arguments in an
2708 even-numbered floating point register. Round the FP register
2709 up before the check to see if there are any FP registers
2710 left. Non MIPS_EABI targets also pass the FP in the integer
2711 registers so also round up normal registers. */
2712 if (!FP_REGISTER_DOUBLE
2713 && fp_register_arg_p (typecode, arg_type))
2715 if ((float_argreg & 1))
2719 /* Floating point arguments passed in registers have to be
2720 treated specially. On 32-bit architectures, doubles
2721 are passed in register pairs; the even register gets
2722 the low word, and the odd register gets the high word.
2723 On non-EABI processors, the first two floating point arguments are
2724 also copied to general registers, because MIPS16 functions
2725 don't use float registers for arguments. This duplication of
2726 arguments in general registers can't hurt non-MIPS16 functions
2727 because those registers are normally skipped. */
2728 /* MIPS_EABI squeezes a struct that contains a single floating
2729 point value into an FP register instead of pushing it onto the
2731 if (fp_register_arg_p (typecode, arg_type)
2732 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2734 if (!FP_REGISTER_DOUBLE && len == 8)
2736 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2737 unsigned long regval;
2739 /* Write the low word of the double to the even register(s). */
2740 regval = extract_unsigned_integer (val + low_offset, 4);
2742 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2743 float_argreg, phex (regval, 4));
2744 write_register (float_argreg++, regval);
2746 /* Write the high word of the double to the odd register(s). */
2747 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2749 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2750 float_argreg, phex (regval, 4));
2751 write_register (float_argreg++, regval);
2755 /* This is a floating point value that fits entirely
2756 in a single register. */
2757 /* On 32 bit ABI's the float_argreg is further adjusted
2758 above to ensure that it is even register aligned. */
2759 LONGEST regval = extract_unsigned_integer (val, len);
2761 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2762 float_argreg, phex (regval, len));
2763 write_register (float_argreg++, regval);
2768 /* Copy the argument to general registers or the stack in
2769 register-sized pieces. Large arguments are split between
2770 registers and stack. */
2771 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2772 are treated specially: Irix cc passes them in registers
2773 where gcc sometimes puts them on the stack. For maximum
2774 compatibility, we will put them in both places. */
2775 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2776 (len % MIPS_SAVED_REGSIZE != 0));
2778 /* Note: Floating-point values that didn't fit into an FP
2779 register are only written to memory. */
2782 /* Remember if the argument was written to the stack. */
2783 int stack_used_p = 0;
2785 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2788 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2791 /* Write this portion of the argument to the stack. */
2792 if (argreg > MIPS_LAST_ARG_REGNUM
2794 || fp_register_arg_p (typecode, arg_type))
2796 /* Should shorter than int integer values be
2797 promoted to int before being stored? */
2798 int longword_offset = 0;
2801 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2803 if (MIPS_STACK_ARGSIZE == 8 &&
2804 (typecode == TYPE_CODE_INT ||
2805 typecode == TYPE_CODE_PTR ||
2806 typecode == TYPE_CODE_FLT) && len <= 4)
2807 longword_offset = MIPS_STACK_ARGSIZE - len;
2808 else if ((typecode == TYPE_CODE_STRUCT ||
2809 typecode == TYPE_CODE_UNION) &&
2810 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2811 longword_offset = MIPS_STACK_ARGSIZE - len;
2816 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2817 paddr_nz (stack_offset));
2818 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2819 paddr_nz (longword_offset));
2822 addr = sp + stack_offset + longword_offset;
2827 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2829 for (i = 0; i < partial_len; i++)
2831 fprintf_unfiltered (gdb_stdlog, "%02x",
2835 write_memory (addr, val, partial_len);
2838 /* Note!!! This is NOT an else clause. Odd sized
2839 structs may go thru BOTH paths. Floating point
2840 arguments will not. */
2841 /* Write this portion of the argument to a general
2842 purpose register. */
2843 if (argreg <= MIPS_LAST_ARG_REGNUM
2844 && !fp_register_arg_p (typecode, arg_type))
2846 LONGEST regval = extract_unsigned_integer (val, partial_len);
2849 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2851 phex (regval, MIPS_SAVED_REGSIZE));
2852 write_register (argreg, regval);
2859 /* Compute the the offset into the stack at which we
2860 will copy the next parameter.
2862 In the new EABI (and the NABI32), the stack_offset
2863 only needs to be adjusted when it has been used. */
2866 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2870 fprintf_unfiltered (gdb_stdlog, "\n");
2873 /* Return adjusted stack pointer. */
2877 /* N32/N64 version of push_arguments. */
2880 mips_n32n64_push_arguments (int nargs,
2881 struct value **args,
2884 CORE_ADDR struct_addr)
2890 int stack_offset = 0;
2892 /* First ensure that the stack and structure return address (if any)
2893 are properly aligned. The stack has to be at least 64-bit
2894 aligned even on 32-bit machines, because doubles must be 64-bit
2895 aligned. For n32 and n64, stack frames need to be 128-bit
2896 aligned, so we round to this widest known alignment. */
2898 sp = ROUND_DOWN (sp, 16);
2899 struct_addr = ROUND_DOWN (struct_addr, 16);
2901 /* Now make space on the stack for the args. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2903 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2904 MIPS_STACK_ARGSIZE);
2905 sp -= ROUND_UP (len, 16);
2908 fprintf_unfiltered (gdb_stdlog,
2909 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2910 paddr_nz (sp), ROUND_UP (len, 16));
2912 /* Initialize the integer and float register pointers. */
2914 float_argreg = FPA0_REGNUM;
2916 /* The struct_return pointer occupies the first parameter-passing reg. */
2920 fprintf_unfiltered (gdb_stdlog,
2921 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2922 argreg, paddr_nz (struct_addr));
2923 write_register (argreg++, struct_addr);
2926 /* Now load as many as possible of the first arguments into
2927 registers, and push the rest onto the stack. Loop thru args
2928 from first to last. */
2929 for (argnum = 0; argnum < nargs; argnum++)
2932 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2933 struct value *arg = args[argnum];
2934 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2935 int len = TYPE_LENGTH (arg_type);
2936 enum type_code typecode = TYPE_CODE (arg_type);
2939 fprintf_unfiltered (gdb_stdlog,
2940 "mips_n32n64_push_arguments: %d len=%d type=%d",
2941 argnum + 1, len, (int) typecode);
2943 val = (char *) VALUE_CONTENTS (arg);
2945 if (fp_register_arg_p (typecode, arg_type)
2946 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2948 /* This is a floating point value that fits entirely
2949 in a single register. */
2950 /* On 32 bit ABI's the float_argreg is further adjusted
2951 above to ensure that it is even register aligned. */
2952 LONGEST regval = extract_unsigned_integer (val, len);
2954 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2955 float_argreg, phex (regval, len));
2956 write_register (float_argreg++, regval);
2959 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2960 argreg, phex (regval, len));
2961 write_register (argreg, regval);
2966 /* Copy the argument to general registers or the stack in
2967 register-sized pieces. Large arguments are split between
2968 registers and stack. */
2969 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2970 are treated specially: Irix cc passes them in registers
2971 where gcc sometimes puts them on the stack. For maximum
2972 compatibility, we will put them in both places. */
2973 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2974 (len % MIPS_SAVED_REGSIZE != 0));
2975 /* Note: Floating-point values that didn't fit into an FP
2976 register are only written to memory. */
2979 /* Rememer if the argument was written to the stack. */
2980 int stack_used_p = 0;
2981 int partial_len = len < MIPS_SAVED_REGSIZE ?
2982 len : MIPS_SAVED_REGSIZE;
2985 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2988 /* Write this portion of the argument to the stack. */
2989 if (argreg > MIPS_LAST_ARG_REGNUM
2991 || fp_register_arg_p (typecode, arg_type))
2993 /* Should shorter than int integer values be
2994 promoted to int before being stored? */
2995 int longword_offset = 0;
2998 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3000 if (MIPS_STACK_ARGSIZE == 8 &&
3001 (typecode == TYPE_CODE_INT ||
3002 typecode == TYPE_CODE_PTR ||
3003 typecode == TYPE_CODE_FLT) && len <= 4)
3004 longword_offset = MIPS_STACK_ARGSIZE - len;
3009 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3010 paddr_nz (stack_offset));
3011 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3012 paddr_nz (longword_offset));
3015 addr = sp + stack_offset + longword_offset;
3020 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3022 for (i = 0; i < partial_len; i++)
3024 fprintf_unfiltered (gdb_stdlog, "%02x",
3028 write_memory (addr, val, partial_len);
3031 /* Note!!! This is NOT an else clause. Odd sized
3032 structs may go thru BOTH paths. Floating point
3033 arguments will not. */
3034 /* Write this portion of the argument to a general
3035 purpose register. */
3036 if (argreg <= MIPS_LAST_ARG_REGNUM
3037 && !fp_register_arg_p (typecode, arg_type))
3039 LONGEST regval = extract_unsigned_integer (val, partial_len);
3041 /* A non-floating-point argument being passed in a
3042 general register. If a struct or union, and if
3043 the remaining length is smaller than the register
3044 size, we have to adjust the register value on
3047 It does not seem to be necessary to do the
3048 same for integral types.
3050 cagney/2001-07-23: gdb/179: Also, GCC, when
3051 outputting LE O32 with sizeof (struct) <
3052 MIPS_SAVED_REGSIZE, generates a left shift as
3053 part of storing the argument in a register a
3054 register (the left shift isn't generated when
3055 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3056 is quite possible that this is GCC contradicting
3057 the LE/O32 ABI, GDB has not been adjusted to
3058 accommodate this. Either someone needs to
3059 demonstrate that the LE/O32 ABI specifies such a
3060 left shift OR this new ABI gets identified as
3061 such and GDB gets tweaked accordingly. */
3063 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3064 && partial_len < MIPS_SAVED_REGSIZE
3065 && (typecode == TYPE_CODE_STRUCT ||
3066 typecode == TYPE_CODE_UNION))
3067 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3071 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3073 phex (regval, MIPS_SAVED_REGSIZE));
3074 write_register (argreg, regval);
3081 /* Compute the the offset into the stack at which we
3082 will copy the next parameter.
3084 In N32 (N64?), the stack_offset only needs to be
3085 adjusted when it has been used. */
3088 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3092 fprintf_unfiltered (gdb_stdlog, "\n");
3095 /* Return adjusted stack pointer. */
3099 /* O32 version of push_arguments. */
3102 mips_o32_push_arguments (int nargs,
3103 struct value **args,
3106 CORE_ADDR struct_addr)
3112 int stack_offset = 0;
3114 /* First ensure that the stack and structure return address (if any)
3115 are properly aligned. The stack has to be at least 64-bit
3116 aligned even on 32-bit machines, because doubles must be 64-bit
3117 aligned. For n32 and n64, stack frames need to be 128-bit
3118 aligned, so we round to this widest known alignment. */
3120 sp = ROUND_DOWN (sp, 16);
3121 struct_addr = ROUND_DOWN (struct_addr, 16);
3123 /* Now make space on the stack for the args. */
3124 for (argnum = 0; argnum < nargs; argnum++)
3125 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3126 MIPS_STACK_ARGSIZE);
3127 sp -= ROUND_UP (len, 16);
3130 fprintf_unfiltered (gdb_stdlog,
3131 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3132 paddr_nz (sp), ROUND_UP (len, 16));
3134 /* Initialize the integer and float register pointers. */
3136 float_argreg = FPA0_REGNUM;
3138 /* The struct_return pointer occupies the first parameter-passing reg. */
3142 fprintf_unfiltered (gdb_stdlog,
3143 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3144 argreg, paddr_nz (struct_addr));
3145 write_register (argreg++, struct_addr);
3146 stack_offset += MIPS_STACK_ARGSIZE;
3149 /* Now load as many as possible of the first arguments into
3150 registers, and push the rest onto the stack. Loop thru args
3151 from first to last. */
3152 for (argnum = 0; argnum < nargs; argnum++)
3155 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3156 struct value *arg = args[argnum];
3157 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3158 int len = TYPE_LENGTH (arg_type);
3159 enum type_code typecode = TYPE_CODE (arg_type);
3162 fprintf_unfiltered (gdb_stdlog,
3163 "mips_o32_push_arguments: %d len=%d type=%d",
3164 argnum + 1, len, (int) typecode);
3166 val = (char *) VALUE_CONTENTS (arg);
3168 /* 32-bit ABIs always start floating point arguments in an
3169 even-numbered floating point register. Round the FP register
3170 up before the check to see if there are any FP registers
3171 left. O32/O64 targets also pass the FP in the integer
3172 registers so also round up normal registers. */
3173 if (!FP_REGISTER_DOUBLE
3174 && fp_register_arg_p (typecode, arg_type))
3176 if ((float_argreg & 1))
3180 /* Floating point arguments passed in registers have to be
3181 treated specially. On 32-bit architectures, doubles
3182 are passed in register pairs; the even register gets
3183 the low word, and the odd register gets the high word.
3184 On O32/O64, the first two floating point arguments are
3185 also copied to general registers, because MIPS16 functions
3186 don't use float registers for arguments. This duplication of
3187 arguments in general registers can't hurt non-MIPS16 functions
3188 because those registers are normally skipped. */
3190 if (fp_register_arg_p (typecode, arg_type)
3191 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3193 if (!FP_REGISTER_DOUBLE && len == 8)
3195 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3196 unsigned long regval;
3198 /* Write the low word of the double to the even register(s). */
3199 regval = extract_unsigned_integer (val + low_offset, 4);
3201 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3202 float_argreg, phex (regval, 4));
3203 write_register (float_argreg++, regval);
3205 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3206 argreg, phex (regval, 4));
3207 write_register (argreg++, regval);
3209 /* Write the high word of the double to the odd register(s). */
3210 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3212 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3213 float_argreg, phex (regval, 4));
3214 write_register (float_argreg++, regval);
3217 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3218 argreg, phex (regval, 4));
3219 write_register (argreg++, regval);
3223 /* This is a floating point value that fits entirely
3224 in a single register. */
3225 /* On 32 bit ABI's the float_argreg is further adjusted
3226 above to ensure that it is even register aligned. */
3227 LONGEST regval = extract_unsigned_integer (val, len);
3229 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3230 float_argreg, phex (regval, len));
3231 write_register (float_argreg++, regval);
3232 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3233 registers for each argument. The below is (my
3234 guess) to ensure that the corresponding integer
3235 register has reserved the same space. */
3237 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3238 argreg, phex (regval, len));
3239 write_register (argreg, regval);
3240 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3242 /* Reserve space for the FP register. */
3243 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3247 /* Copy the argument to general registers or the stack in
3248 register-sized pieces. Large arguments are split between
3249 registers and stack. */
3250 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3251 are treated specially: Irix cc passes them in registers
3252 where gcc sometimes puts them on the stack. For maximum
3253 compatibility, we will put them in both places. */
3254 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3255 (len % MIPS_SAVED_REGSIZE != 0));
3256 /* Structures should be aligned to eight bytes (even arg registers)
3257 on MIPS_ABI_O32, if their first member has double precision. */
3258 if (MIPS_SAVED_REGSIZE < 8
3259 && mips_type_needs_double_align (arg_type))
3264 /* Note: Floating-point values that didn't fit into an FP
3265 register are only written to memory. */
3268 /* Remember if the argument was written to the stack. */
3269 int stack_used_p = 0;
3271 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3274 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3277 /* Write this portion of the argument to the stack. */
3278 if (argreg > MIPS_LAST_ARG_REGNUM
3280 || fp_register_arg_p (typecode, arg_type))
3282 /* Should shorter than int integer values be
3283 promoted to int before being stored? */
3284 int longword_offset = 0;
3287 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3289 if (MIPS_STACK_ARGSIZE == 8 &&
3290 (typecode == TYPE_CODE_INT ||
3291 typecode == TYPE_CODE_PTR ||
3292 typecode == TYPE_CODE_FLT) && len <= 4)
3293 longword_offset = MIPS_STACK_ARGSIZE - len;
3298 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3299 paddr_nz (stack_offset));
3300 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3301 paddr_nz (longword_offset));
3304 addr = sp + stack_offset + longword_offset;
3309 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3311 for (i = 0; i < partial_len; i++)
3313 fprintf_unfiltered (gdb_stdlog, "%02x",
3317 write_memory (addr, val, partial_len);
3320 /* Note!!! This is NOT an else clause. Odd sized
3321 structs may go thru BOTH paths. Floating point
3322 arguments will not. */
3323 /* Write this portion of the argument to a general
3324 purpose register. */
3325 if (argreg <= MIPS_LAST_ARG_REGNUM
3326 && !fp_register_arg_p (typecode, arg_type))
3328 LONGEST regval = extract_signed_integer (val, partial_len);
3329 /* Value may need to be sign extended, because
3330 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3332 /* A non-floating-point argument being passed in a
3333 general register. If a struct or union, and if
3334 the remaining length is smaller than the register
3335 size, we have to adjust the register value on
3338 It does not seem to be necessary to do the
3339 same for integral types.
3341 Also don't do this adjustment on O64 binaries.
3343 cagney/2001-07-23: gdb/179: Also, GCC, when
3344 outputting LE O32 with sizeof (struct) <
3345 MIPS_SAVED_REGSIZE, generates a left shift as
3346 part of storing the argument in a register a
3347 register (the left shift isn't generated when
3348 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3349 is quite possible that this is GCC contradicting
3350 the LE/O32 ABI, GDB has not been adjusted to
3351 accommodate this. Either someone needs to
3352 demonstrate that the LE/O32 ABI specifies such a
3353 left shift OR this new ABI gets identified as
3354 such and GDB gets tweaked accordingly. */
3356 if (MIPS_SAVED_REGSIZE < 8
3357 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3358 && partial_len < MIPS_SAVED_REGSIZE
3359 && (typecode == TYPE_CODE_STRUCT ||
3360 typecode == TYPE_CODE_UNION))
3361 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3365 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3367 phex (regval, MIPS_SAVED_REGSIZE));
3368 write_register (argreg, regval);
3371 /* Prevent subsequent floating point arguments from
3372 being passed in floating point registers. */
3373 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3379 /* Compute the the offset into the stack at which we
3380 will copy the next parameter.
3382 In older ABIs, the caller reserved space for
3383 registers that contained arguments. This was loosely
3384 refered to as their "home". Consequently, space is
3385 always allocated. */
3387 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3391 fprintf_unfiltered (gdb_stdlog, "\n");
3394 /* Return adjusted stack pointer. */
3398 /* O64 version of push_arguments. */
3401 mips_o64_push_arguments (int nargs,
3402 struct value **args,
3405 CORE_ADDR struct_addr)
3411 int stack_offset = 0;
3413 /* First ensure that the stack and structure return address (if any)
3414 are properly aligned. The stack has to be at least 64-bit
3415 aligned even on 32-bit machines, because doubles must be 64-bit
3416 aligned. For n32 and n64, stack frames need to be 128-bit
3417 aligned, so we round to this widest known alignment. */
3419 sp = ROUND_DOWN (sp, 16);
3420 struct_addr = ROUND_DOWN (struct_addr, 16);
3422 /* Now make space on the stack for the args. */
3423 for (argnum = 0; argnum < nargs; argnum++)
3424 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3425 MIPS_STACK_ARGSIZE);
3426 sp -= ROUND_UP (len, 16);
3429 fprintf_unfiltered (gdb_stdlog,
3430 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3431 paddr_nz (sp), ROUND_UP (len, 16));
3433 /* Initialize the integer and float register pointers. */
3435 float_argreg = FPA0_REGNUM;
3437 /* The struct_return pointer occupies the first parameter-passing reg. */
3441 fprintf_unfiltered (gdb_stdlog,
3442 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3443 argreg, paddr_nz (struct_addr));
3444 write_register (argreg++, struct_addr);
3445 stack_offset += MIPS_STACK_ARGSIZE;
3448 /* Now load as many as possible of the first arguments into
3449 registers, and push the rest onto the stack. Loop thru args
3450 from first to last. */
3451 for (argnum = 0; argnum < nargs; argnum++)
3454 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3455 struct value *arg = args[argnum];
3456 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3457 int len = TYPE_LENGTH (arg_type);
3458 enum type_code typecode = TYPE_CODE (arg_type);
3461 fprintf_unfiltered (gdb_stdlog,
3462 "mips_o64_push_arguments: %d len=%d type=%d",
3463 argnum + 1, len, (int) typecode);
3465 val = (char *) VALUE_CONTENTS (arg);
3467 /* 32-bit ABIs always start floating point arguments in an
3468 even-numbered floating point register. Round the FP register
3469 up before the check to see if there are any FP registers
3470 left. O32/O64 targets also pass the FP in the integer
3471 registers so also round up normal registers. */
3472 if (!FP_REGISTER_DOUBLE
3473 && fp_register_arg_p (typecode, arg_type))
3475 if ((float_argreg & 1))
3479 /* Floating point arguments passed in registers have to be
3480 treated specially. On 32-bit architectures, doubles
3481 are passed in register pairs; the even register gets
3482 the low word, and the odd register gets the high word.
3483 On O32/O64, the first two floating point arguments are
3484 also copied to general registers, because MIPS16 functions
3485 don't use float registers for arguments. This duplication of
3486 arguments in general registers can't hurt non-MIPS16 functions
3487 because those registers are normally skipped. */
3489 if (fp_register_arg_p (typecode, arg_type)
3490 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3492 if (!FP_REGISTER_DOUBLE && len == 8)
3494 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3495 unsigned long regval;
3497 /* Write the low word of the double to the even register(s). */
3498 regval = extract_unsigned_integer (val + low_offset, 4);
3500 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3501 float_argreg, phex (regval, 4));
3502 write_register (float_argreg++, regval);
3504 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3505 argreg, phex (regval, 4));
3506 write_register (argreg++, regval);
3508 /* Write the high word of the double to the odd register(s). */
3509 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3511 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3512 float_argreg, phex (regval, 4));
3513 write_register (float_argreg++, regval);
3516 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3517 argreg, phex (regval, 4));
3518 write_register (argreg++, regval);
3522 /* This is a floating point value that fits entirely
3523 in a single register. */
3524 /* On 32 bit ABI's the float_argreg is further adjusted
3525 above to ensure that it is even register aligned. */
3526 LONGEST regval = extract_unsigned_integer (val, len);
3528 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3529 float_argreg, phex (regval, len));
3530 write_register (float_argreg++, regval);
3531 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3532 registers for each argument. The below is (my
3533 guess) to ensure that the corresponding integer
3534 register has reserved the same space. */
3536 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3537 argreg, phex (regval, len));
3538 write_register (argreg, regval);
3539 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3541 /* Reserve space for the FP register. */
3542 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3546 /* Copy the argument to general registers or the stack in
3547 register-sized pieces. Large arguments are split between
3548 registers and stack. */
3549 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3550 are treated specially: Irix cc passes them in registers
3551 where gcc sometimes puts them on the stack. For maximum
3552 compatibility, we will put them in both places. */
3553 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3554 (len % MIPS_SAVED_REGSIZE != 0));
3555 /* Structures should be aligned to eight bytes (even arg registers)
3556 on MIPS_ABI_O32, if their first member has double precision. */
3557 if (MIPS_SAVED_REGSIZE < 8
3558 && mips_type_needs_double_align (arg_type))
3563 /* Note: Floating-point values that didn't fit into an FP
3564 register are only written to memory. */
3567 /* Remember if the argument was written to the stack. */
3568 int stack_used_p = 0;
3570 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3573 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3576 /* Write this portion of the argument to the stack. */
3577 if (argreg > MIPS_LAST_ARG_REGNUM
3579 || fp_register_arg_p (typecode, arg_type))
3581 /* Should shorter than int integer values be
3582 promoted to int before being stored? */
3583 int longword_offset = 0;
3586 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3588 if (MIPS_STACK_ARGSIZE == 8 &&
3589 (typecode == TYPE_CODE_INT ||
3590 typecode == TYPE_CODE_PTR ||
3591 typecode == TYPE_CODE_FLT) && len <= 4)
3592 longword_offset = MIPS_STACK_ARGSIZE - len;
3597 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3598 paddr_nz (stack_offset));
3599 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3600 paddr_nz (longword_offset));
3603 addr = sp + stack_offset + longword_offset;
3608 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3610 for (i = 0; i < partial_len; i++)
3612 fprintf_unfiltered (gdb_stdlog, "%02x",
3616 write_memory (addr, val, partial_len);
3619 /* Note!!! This is NOT an else clause. Odd sized
3620 structs may go thru BOTH paths. Floating point
3621 arguments will not. */
3622 /* Write this portion of the argument to a general
3623 purpose register. */
3624 if (argreg <= MIPS_LAST_ARG_REGNUM
3625 && !fp_register_arg_p (typecode, arg_type))
3627 LONGEST regval = extract_signed_integer (val, partial_len);
3628 /* Value may need to be sign extended, because
3629 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3631 /* A non-floating-point argument being passed in a
3632 general register. If a struct or union, and if
3633 the remaining length is smaller than the register
3634 size, we have to adjust the register value on
3637 It does not seem to be necessary to do the
3638 same for integral types.
3640 Also don't do this adjustment on O64 binaries.
3642 cagney/2001-07-23: gdb/179: Also, GCC, when
3643 outputting LE O32 with sizeof (struct) <
3644 MIPS_SAVED_REGSIZE, generates a left shift as
3645 part of storing the argument in a register a
3646 register (the left shift isn't generated when
3647 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3648 is quite possible that this is GCC contradicting
3649 the LE/O32 ABI, GDB has not been adjusted to
3650 accommodate this. Either someone needs to
3651 demonstrate that the LE/O32 ABI specifies such a
3652 left shift OR this new ABI gets identified as
3653 such and GDB gets tweaked accordingly. */
3655 if (MIPS_SAVED_REGSIZE < 8
3656 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3657 && partial_len < MIPS_SAVED_REGSIZE
3658 && (typecode == TYPE_CODE_STRUCT ||
3659 typecode == TYPE_CODE_UNION))
3660 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3664 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3666 phex (regval, MIPS_SAVED_REGSIZE));
3667 write_register (argreg, regval);
3670 /* Prevent subsequent floating point arguments from
3671 being passed in floating point registers. */
3672 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3678 /* Compute the the offset into the stack at which we
3679 will copy the next parameter.
3681 In older ABIs, the caller reserved space for
3682 registers that contained arguments. This was loosely
3683 refered to as their "home". Consequently, space is
3684 always allocated. */
3686 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3690 fprintf_unfiltered (gdb_stdlog, "\n");
3693 /* Return adjusted stack pointer. */
3698 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3700 /* Set the return address register to point to the entry
3701 point of the program, where a breakpoint lies in wait. */
3702 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3707 mips_push_register (CORE_ADDR * sp, int regno)
3709 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3712 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3714 regsize = MIPS_SAVED_REGSIZE;
3715 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3716 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3721 regsize = REGISTER_RAW_SIZE (regno);
3725 deprecated_read_register_gen (regno, buffer);
3726 write_memory (*sp, buffer + offset, regsize);
3729 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3730 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3733 mips_push_dummy_frame (void)
3736 struct linked_proc_info *link = (struct linked_proc_info *)
3737 xmalloc (sizeof (struct linked_proc_info));
3738 mips_extra_func_info_t proc_desc = &link->info;
3739 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3740 CORE_ADDR old_sp = sp;
3741 link->next = linked_proc_desc_table;
3742 linked_proc_desc_table = link;
3744 /* FIXME! are these correct ? */
3745 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3746 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3747 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3748 #define FLOAT_SINGLE_REG_SAVE_MASK \
3749 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3751 * The registers we must save are all those not preserved across
3752 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3753 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3754 * and FP Control/Status registers.
3757 * Dummy frame layout:
3760 * Saved MMHI, MMLO, FPC_CSR
3765 * Saved D18 (i.e. F19, F18)
3767 * Saved D0 (i.e. F1, F0)
3768 * Argument build area and stack arguments written via mips_push_arguments
3772 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3773 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3774 PROC_FRAME_OFFSET (proc_desc) = 0;
3775 PROC_FRAME_ADJUST (proc_desc) = 0;
3776 mips_push_register (&sp, PC_REGNUM);
3777 mips_push_register (&sp, HI_REGNUM);
3778 mips_push_register (&sp, LO_REGNUM);
3779 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3781 /* Save general CPU registers */
3782 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3783 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3784 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3785 for (ireg = 32; --ireg >= 0;)
3786 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3787 mips_push_register (&sp, ireg);
3789 /* Save floating point registers starting with high order word */
3790 PROC_FREG_MASK (proc_desc) =
3791 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3792 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3793 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3795 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3796 for (ireg = 32; --ireg >= 0;)
3797 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3798 mips_push_register (&sp, ireg + FP0_REGNUM);
3800 /* Update the frame pointer for the call dummy and the stack pointer.
3801 Set the procedure's starting and ending addresses to point to the
3802 call dummy address at the entry point. */
3803 write_register (PUSH_FP_REGNUM, old_sp);
3804 write_register (SP_REGNUM, sp);
3805 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3806 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3807 SET_PROC_DESC_IS_DUMMY (proc_desc);
3808 PROC_PC_REG (proc_desc) = RA_REGNUM;
3812 mips_pop_frame (void)
3814 register int regnum;
3815 struct frame_info *frame = get_current_frame ();
3816 CORE_ADDR new_sp = FRAME_FP (frame);
3817 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3819 if (USE_GENERIC_DUMMY_FRAMES
3820 && PC_IN_CALL_DUMMY (frame->pc, 0, 0))
3822 generic_pop_dummy_frame ();
3823 flush_cached_frames ();
3827 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3828 if (frame->saved_regs == NULL)
3829 FRAME_INIT_SAVED_REGS (frame);
3830 for (regnum = 0; regnum < NUM_REGS; regnum++)
3831 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3832 && frame->saved_regs[regnum])
3834 /* Floating point registers must not be sign extended,
3835 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3837 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3838 write_register (regnum,
3839 read_memory_unsigned_integer (frame->saved_regs[regnum],
3840 MIPS_SAVED_REGSIZE));
3842 write_register (regnum,
3843 read_memory_integer (frame->saved_regs[regnum],
3844 MIPS_SAVED_REGSIZE));
3847 write_register (SP_REGNUM, new_sp);
3848 flush_cached_frames ();
3850 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3852 struct linked_proc_info *pi_ptr, *prev_ptr;
3854 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3856 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3858 if (&pi_ptr->info == proc_desc)
3863 error ("Can't locate dummy extra frame info\n");
3865 if (prev_ptr != NULL)
3866 prev_ptr->next = pi_ptr->next;
3868 linked_proc_desc_table = pi_ptr->next;
3872 write_register (HI_REGNUM,
3873 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3874 MIPS_SAVED_REGSIZE));
3875 write_register (LO_REGNUM,
3876 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3877 MIPS_SAVED_REGSIZE));
3878 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3879 write_register (FCRCS_REGNUM,
3880 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3881 MIPS_SAVED_REGSIZE));
3886 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3887 struct value **args, struct type *type, int gcc_p)
3889 write_register(T9_REGNUM, fun);
3892 /* Floating point register management.
3894 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3895 64bit operations, these early MIPS cpus treat fp register pairs
3896 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3897 registers and offer a compatibility mode that emulates the MIPS2 fp
3898 model. When operating in MIPS2 fp compat mode, later cpu's split
3899 double precision floats into two 32-bit chunks and store them in
3900 consecutive fp regs. To display 64-bit floats stored in this
3901 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3902 Throw in user-configurable endianness and you have a real mess.
3904 The way this works is:
3905 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3906 double-precision value will be split across two logical registers.
3907 The lower-numbered logical register will hold the low-order bits,
3908 regardless of the processor's endianness.
3909 - If we are on a 64-bit processor, and we are looking for a
3910 single-precision value, it will be in the low ordered bits
3911 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3912 save slot in memory.
3913 - If we are in 64-bit mode, everything is straightforward.
3915 Note that this code only deals with "live" registers at the top of the
3916 stack. We will attempt to deal with saved registers later, when
3917 the raw/cooked register interface is in place. (We need a general
3918 interface that can deal with dynamic saved register sizes -- fp
3919 regs could be 32 bits wide in one frame and 64 on the frame above
3922 static struct type *
3923 mips_float_register_type (void)
3925 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3926 return builtin_type_ieee_single_big;
3928 return builtin_type_ieee_single_little;
3931 static struct type *
3932 mips_double_register_type (void)
3934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3935 return builtin_type_ieee_double_big;
3937 return builtin_type_ieee_double_little;
3940 /* Copy a 32-bit single-precision value from the current frame
3941 into rare_buffer. */
3944 mips_read_fp_register_single (int regno, char *rare_buffer)
3946 int raw_size = REGISTER_RAW_SIZE (regno);
3947 char *raw_buffer = alloca (raw_size);
3949 if (!frame_register_read (selected_frame, regno, raw_buffer))
3950 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3953 /* We have a 64-bit value for this register. Find the low-order
3957 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3962 memcpy (rare_buffer, raw_buffer + offset, 4);
3966 memcpy (rare_buffer, raw_buffer, 4);
3970 /* Copy a 64-bit double-precision value from the current frame into
3971 rare_buffer. This may include getting half of it from the next
3975 mips_read_fp_register_double (int regno, char *rare_buffer)
3977 int raw_size = REGISTER_RAW_SIZE (regno);
3979 if (raw_size == 8 && !mips2_fp_compat ())
3981 /* We have a 64-bit value for this register, and we should use
3983 if (!frame_register_read (selected_frame, regno, rare_buffer))
3984 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3988 if ((regno - FP0_REGNUM) & 1)
3989 internal_error (__FILE__, __LINE__,
3990 "mips_read_fp_register_double: bad access to "
3991 "odd-numbered FP register");
3993 /* mips_read_fp_register_single will find the correct 32 bits from
3995 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3997 mips_read_fp_register_single (regno, rare_buffer + 4);
3998 mips_read_fp_register_single (regno + 1, rare_buffer);
4002 mips_read_fp_register_single (regno, rare_buffer);
4003 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4009 mips_print_register (int regnum, int all)
4011 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4013 /* Get the data in raw format. */
4014 if (!frame_register_read (selected_frame, regnum, raw_buffer))
4016 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4020 /* If we have a actual 32-bit floating point register (or we are in
4021 32-bit compatibility mode), and the register is even-numbered,
4022 also print it as a double (spanning two registers). */
4023 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4024 && (REGISTER_RAW_SIZE (regnum) == 4
4025 || mips2_fp_compat ())
4026 && !((regnum - FP0_REGNUM) & 1))
4028 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4030 mips_read_fp_register_double (regnum, dbuffer);
4032 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4033 val_print (mips_double_register_type (), dbuffer, 0, 0,
4034 gdb_stdout, 0, 1, 0, Val_pretty_default);
4035 printf_filtered ("); ");
4037 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4039 /* The problem with printing numeric register names (r26, etc.) is that
4040 the user can't use them on input. Probably the best solution is to
4041 fix it so that either the numeric or the funky (a2, etc.) names
4042 are accepted on input. */
4043 if (regnum < MIPS_NUMREGS)
4044 printf_filtered ("(r%d): ", regnum);
4046 printf_filtered (": ");
4048 /* If virtual format is floating, print it that way. */
4049 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4050 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4052 /* We have a meaningful 64-bit value in this register. Show
4053 it as a 32-bit float and a 64-bit double. */
4054 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4056 printf_filtered (" (float) ");
4057 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4058 gdb_stdout, 0, 1, 0, Val_pretty_default);
4059 printf_filtered (", (double) ");
4060 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4061 gdb_stdout, 0, 1, 0, Val_pretty_default);
4064 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4065 gdb_stdout, 0, 1, 0, Val_pretty_default);
4066 /* Else print as integer in hex. */
4071 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4072 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4076 print_scalar_formatted (raw_buffer + offset,
4077 REGISTER_VIRTUAL_TYPE (regnum),
4078 'x', 0, gdb_stdout);
4082 /* Replacement for generic do_registers_info.
4083 Print regs in pretty columns. */
4086 do_fp_register_row (int regnum)
4087 { /* do values for FP (float) regs */
4089 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4090 int inv1, inv2, inv3;
4092 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4094 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4096 /* 4-byte registers: we can fit two registers per row. */
4097 /* Also print every pair of 4-byte regs as an 8-byte double. */
4098 mips_read_fp_register_single (regnum, raw_buffer);
4099 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4101 mips_read_fp_register_single (regnum + 1, raw_buffer);
4102 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4104 mips_read_fp_register_double (regnum, raw_buffer);
4105 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4107 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4109 printf_filtered (": <invalid float>");
4111 printf_filtered ("%-17.9g", flt1);
4113 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4115 printf_filtered (": <invalid float>");
4117 printf_filtered ("%-17.9g", flt2);
4119 printf_filtered (" dbl: ");
4121 printf_filtered ("<invalid double>");
4123 printf_filtered ("%-24.17g", doub);
4124 printf_filtered ("\n");
4126 /* may want to do hex display here (future enhancement) */
4131 /* Eight byte registers: print each one as float AND as double. */
4132 mips_read_fp_register_single (regnum, raw_buffer);
4133 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4135 mips_read_fp_register_double (regnum, raw_buffer);
4136 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4138 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4140 printf_filtered ("<invalid float>");
4142 printf_filtered ("flt: %-17.9g", flt1);
4144 printf_filtered (" dbl: ");
4146 printf_filtered ("<invalid double>");
4148 printf_filtered ("%-24.17g", doub);
4150 printf_filtered ("\n");
4151 /* may want to do hex display here (future enhancement) */
4157 /* Print a row's worth of GP (int) registers, with name labels above */
4160 do_gp_register_row (int regnum)
4162 /* do values for GP (int) regs */
4163 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4164 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4166 int start_regnum = regnum;
4167 int numregs = NUM_REGS;
4170 /* For GP registers, we print a separate row of names above the vals */
4171 printf_filtered (" ");
4172 for (col = 0; col < ncols && regnum < numregs; regnum++)
4174 if (*REGISTER_NAME (regnum) == '\0')
4175 continue; /* unused register */
4176 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4177 break; /* end the row: reached FP register */
4178 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4179 REGISTER_NAME (regnum));
4182 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4183 start_regnum); /* print the R0 to R31 names */
4185 regnum = start_regnum; /* go back to start of row */
4186 /* now print the values in hex, 4 or 8 to the row */
4187 for (col = 0; col < ncols && regnum < numregs; regnum++)
4189 if (*REGISTER_NAME (regnum) == '\0')
4190 continue; /* unused register */
4191 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4192 break; /* end row: reached FP register */
4193 /* OK: get the data in raw format. */
4194 if (!frame_register_read (selected_frame, regnum, raw_buffer))
4195 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4196 /* pad small registers */
4197 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4198 printf_filtered (" ");
4199 /* Now print the register value in hex, endian order. */
4200 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4201 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4202 byte < REGISTER_RAW_SIZE (regnum);
4204 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4206 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4209 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4210 printf_filtered (" ");
4213 if (col > 0) /* ie. if we actually printed anything... */
4214 printf_filtered ("\n");
4219 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4222 mips_do_registers_info (int regnum, int fpregs)
4224 if (regnum != -1) /* do one specified register */
4226 if (*(REGISTER_NAME (regnum)) == '\0')
4227 error ("Not a valid register for the current processor type");
4229 mips_print_register (regnum, 0);
4230 printf_filtered ("\n");
4233 /* do all (or most) registers */
4236 while (regnum < NUM_REGS)
4238 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4239 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4240 regnum = do_fp_register_row (regnum); /* FP regs */
4242 regnum += MIPS_NUMREGS; /* skip floating point regs */
4244 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4249 /* Is this a branch with a delay slot? */
4251 static int is_delayed (unsigned long);
4254 is_delayed (unsigned long insn)
4257 for (i = 0; i < NUMOPCODES; ++i)
4258 if (mips_opcodes[i].pinfo != INSN_MACRO
4259 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4261 return (i < NUMOPCODES
4262 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4263 | INSN_COND_BRANCH_DELAY
4264 | INSN_COND_BRANCH_LIKELY)));
4268 mips_step_skips_delay (CORE_ADDR pc)
4270 char buf[MIPS_INSTLEN];
4272 /* There is no branch delay slot on MIPS16. */
4273 if (pc_is_mips16 (pc))
4276 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4277 /* If error reading memory, guess that it is not a delayed branch. */
4279 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4283 /* Skip the PC past function prologue instructions (32-bit version).
4284 This is a helper function for mips_skip_prologue. */
4287 mips32_skip_prologue (CORE_ADDR pc)
4291 int seen_sp_adjust = 0;
4292 int load_immediate_bytes = 0;
4294 /* Skip the typical prologue instructions. These are the stack adjustment
4295 instruction and the instructions that save registers on the stack
4296 or in the gcc frame. */
4297 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4299 unsigned long high_word;
4301 inst = mips_fetch_instruction (pc);
4302 high_word = (inst >> 16) & 0xffff;
4304 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4305 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4307 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4308 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4310 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4311 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4312 && (inst & 0x001F0000)) /* reg != $zero */
4315 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4317 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4319 continue; /* reg != $zero */
4321 /* move $s8,$sp. With different versions of gas this will be either
4322 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4323 Accept any one of these. */
4324 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4327 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4329 else if (high_word == 0x3c1c) /* lui $gp,n */
4331 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4333 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4334 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4336 /* The following instructions load $at or $t0 with an immediate
4337 value in preparation for a stack adjustment via
4338 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4339 a local variable, so we accept them only before a stack adjustment
4340 instruction was seen. */
4341 else if (!seen_sp_adjust)
4343 if (high_word == 0x3c01 || /* lui $at,n */
4344 high_word == 0x3c08) /* lui $t0,n */
4346 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4349 else if (high_word == 0x3421 || /* ori $at,$at,n */
4350 high_word == 0x3508 || /* ori $t0,$t0,n */
4351 high_word == 0x3401 || /* ori $at,$zero,n */
4352 high_word == 0x3408) /* ori $t0,$zero,n */
4354 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4364 /* In a frameless function, we might have incorrectly
4365 skipped some load immediate instructions. Undo the skipping
4366 if the load immediate was not followed by a stack adjustment. */
4367 if (load_immediate_bytes && !seen_sp_adjust)
4368 pc -= load_immediate_bytes;
4372 /* Skip the PC past function prologue instructions (16-bit version).
4373 This is a helper function for mips_skip_prologue. */
4376 mips16_skip_prologue (CORE_ADDR pc)
4379 int extend_bytes = 0;
4380 int prev_extend_bytes;
4382 /* Table of instructions likely to be found in a function prologue. */
4385 unsigned short inst;
4386 unsigned short mask;
4393 , /* addiu $sp,offset */
4397 , /* daddiu $sp,offset */
4401 , /* sw reg,n($sp) */
4405 , /* sd reg,n($sp) */
4409 , /* sw $ra,n($sp) */
4413 , /* sd $ra,n($sp) */
4421 , /* sw $a0-$a3,n($s1) */
4425 , /* move reg,$a0-$a3 */
4429 , /* entry pseudo-op */
4433 , /* addiu $s1,$sp,n */
4436 } /* end of table marker */
4439 /* Skip the typical prologue instructions. These are the stack adjustment
4440 instruction and the instructions that save registers on the stack
4441 or in the gcc frame. */
4442 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4444 unsigned short inst;
4447 inst = mips_fetch_instruction (pc);
4449 /* Normally we ignore an extend instruction. However, if it is
4450 not followed by a valid prologue instruction, we must adjust
4451 the pc back over the extend so that it won't be considered
4452 part of the prologue. */
4453 if ((inst & 0xf800) == 0xf000) /* extend */
4455 extend_bytes = MIPS16_INSTLEN;
4458 prev_extend_bytes = extend_bytes;
4461 /* Check for other valid prologue instructions besides extend. */
4462 for (i = 0; table[i].mask != 0; i++)
4463 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4465 if (table[i].mask != 0) /* it was in table? */
4466 continue; /* ignore it */
4470 /* Return the current pc, adjusted backwards by 2 if
4471 the previous instruction was an extend. */
4472 return pc - prev_extend_bytes;
4478 /* To skip prologues, I use this predicate. Returns either PC itself
4479 if the code at PC does not look like a function prologue; otherwise
4480 returns an address that (if we're lucky) follows the prologue. If
4481 LENIENT, then we must skip everything which is involved in setting
4482 up the frame (it's OK to skip more, just so long as we don't skip
4483 anything which might clobber the registers which are being saved.
4484 We must skip more in the case where part of the prologue is in the
4485 delay slot of a non-prologue instruction). */
4488 mips_skip_prologue (CORE_ADDR pc)
4490 /* See if we can determine the end of the prologue via the symbol table.
4491 If so, then return either PC, or the PC after the prologue, whichever
4494 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4496 if (post_prologue_pc != 0)
4497 return max (pc, post_prologue_pc);
4499 /* Can't determine prologue from the symbol table, need to examine
4502 if (pc_is_mips16 (pc))
4503 return mips16_skip_prologue (pc);
4505 return mips32_skip_prologue (pc);
4508 /* Determine how a return value is stored within the MIPS register
4509 file, given the return type `valtype'. */
4511 struct return_value_word
4520 return_value_location (struct type *valtype,
4521 struct return_value_word *hi,
4522 struct return_value_word *lo)
4524 int len = TYPE_LENGTH (valtype);
4526 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4527 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4528 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4530 if (!FP_REGISTER_DOUBLE && len == 8)
4532 /* We need to break a 64bit float in two 32 bit halves and
4533 spread them across a floating-point register pair. */
4534 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4535 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4536 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4537 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4539 hi->reg_offset = lo->reg_offset;
4540 lo->reg = FP0_REGNUM + 0;
4541 hi->reg = FP0_REGNUM + 1;
4547 /* The floating point value fits in a single floating-point
4549 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4550 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4553 lo->reg = FP0_REGNUM;
4564 /* Locate a result possibly spread across two registers. */
4566 lo->reg = regnum + 0;
4567 hi->reg = regnum + 1;
4568 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4569 && len < MIPS_SAVED_REGSIZE)
4571 /* "un-left-justify" the value in the low register */
4572 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4577 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4578 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4579 && len < MIPS_SAVED_REGSIZE * 2
4580 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4581 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4583 /* "un-left-justify" the value spread across two registers. */
4584 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4585 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4587 hi->len = len - lo->len;
4591 /* Only perform a partial copy of the second register. */
4594 if (len > MIPS_SAVED_REGSIZE)
4596 lo->len = MIPS_SAVED_REGSIZE;
4597 hi->len = len - MIPS_SAVED_REGSIZE;
4605 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4606 && REGISTER_RAW_SIZE (regnum) == 8
4607 && MIPS_SAVED_REGSIZE == 4)
4609 /* Account for the fact that only the least-signficant part
4610 of the register is being used */
4611 lo->reg_offset += 4;
4612 hi->reg_offset += 4;
4615 hi->buf_offset = lo->len;
4619 /* Given a return value in `regbuf' with a type `valtype', extract and
4620 copy its value into `valbuf'. */
4623 mips_eabi_extract_return_value (struct type *valtype,
4624 char regbuf[REGISTER_BYTES],
4627 struct return_value_word lo;
4628 struct return_value_word hi;
4629 return_value_location (valtype, &hi, &lo);
4631 memcpy (valbuf + lo.buf_offset,
4632 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4636 memcpy (valbuf + hi.buf_offset,
4637 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4642 mips_o64_extract_return_value (struct type *valtype,
4643 char regbuf[REGISTER_BYTES],
4646 struct return_value_word lo;
4647 struct return_value_word hi;
4648 return_value_location (valtype, &hi, &lo);
4650 memcpy (valbuf + lo.buf_offset,
4651 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4655 memcpy (valbuf + hi.buf_offset,
4656 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4660 /* Given a return value in `valbuf' with a type `valtype', write it's
4661 value into the appropriate register. */
4664 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4666 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4667 struct return_value_word lo;
4668 struct return_value_word hi;
4669 return_value_location (valtype, &hi, &lo);
4671 memset (raw_buffer, 0, sizeof (raw_buffer));
4672 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4673 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4674 REGISTER_RAW_SIZE (lo.reg));
4678 memset (raw_buffer, 0, sizeof (raw_buffer));
4679 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4680 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4681 REGISTER_RAW_SIZE (hi.reg));
4686 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4688 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4689 struct return_value_word lo;
4690 struct return_value_word hi;
4691 return_value_location (valtype, &hi, &lo);
4693 memset (raw_buffer, 0, sizeof (raw_buffer));
4694 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4695 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4696 REGISTER_RAW_SIZE (lo.reg));
4700 memset (raw_buffer, 0, sizeof (raw_buffer));
4701 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4702 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4703 REGISTER_RAW_SIZE (hi.reg));
4707 /* O32 ABI stuff. */
4710 mips_o32_xfer_return_value (struct type *type,
4711 struct regcache *regcache,
4712 bfd_byte *in, const bfd_byte *out)
4714 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4715 if (TYPE_CODE (type) == TYPE_CODE_FLT
4716 && TYPE_LENGTH (type) == 4
4717 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4719 /* A single-precision floating-point value. It fits in the
4720 least significant part of FP0. */
4722 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4723 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4724 TARGET_BYTE_ORDER, in, out, 0);
4726 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4727 && TYPE_LENGTH (type) == 8
4728 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4730 /* A double-precision floating-point value. It fits in the
4731 least significant part of FP0/FP1 but with byte ordering
4732 based on the target (???). */
4734 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4735 switch (TARGET_BYTE_ORDER)
4737 case BFD_ENDIAN_LITTLE:
4738 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4739 TARGET_BYTE_ORDER, in, out, 0);
4740 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4741 TARGET_BYTE_ORDER, in, out, 4);
4743 case BFD_ENDIAN_BIG:
4744 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4745 TARGET_BYTE_ORDER, in, out, 0);
4746 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4747 TARGET_BYTE_ORDER, in, out, 4);
4750 internal_error (__FILE__, __LINE__, "bad switch");
4754 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4755 && TYPE_NFIELDS (type) <= 2
4756 && TYPE_NFIELDS (type) >= 1
4757 && ((TYPE_NFIELDS (type) == 1
4758 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4760 || (TYPE_NFIELDS (type) == 2
4761 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4763 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4765 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4767 /* A struct that contains one or two floats. Each value is part
4768 in the least significant part of their floating point
4770 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4773 for (field = 0, regnum = FP0_REGNUM;
4774 field < TYPE_NFIELDS (type);
4775 field++, regnum += 2)
4777 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4780 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4781 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4782 TARGET_BYTE_ORDER, in, out, offset);
4787 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4788 || TYPE_CODE (type) == TYPE_CODE_UNION)
4790 /* A structure or union. Extract the left justified value,
4791 regardless of the byte order. I.e. DO NOT USE
4795 for (offset = 0, regnum = V0_REGNUM;
4796 offset < TYPE_LENGTH (type);
4797 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4799 int xfer = REGISTER_RAW_SIZE (regnum);
4800 if (offset + xfer > TYPE_LENGTH (type))
4801 xfer = TYPE_LENGTH (type) - offset;
4803 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4804 offset, xfer, regnum);
4805 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4812 /* A scalar extract each part but least-significant-byte
4813 justified. o32 thinks registers are 4 byte, regardless of
4814 the ISA. mips_stack_argsize controls this. */
4817 for (offset = 0, regnum = V0_REGNUM;
4818 offset < TYPE_LENGTH (type);
4819 offset += mips_stack_argsize (), regnum++)
4821 int xfer = mips_stack_argsize ();
4823 if (offset + xfer > TYPE_LENGTH (type))
4824 xfer = TYPE_LENGTH (type) - offset;
4826 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4827 offset, xfer, regnum);
4828 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4835 mips_o32_extract_return_value (struct type *type,
4836 struct regcache *regcache,
4839 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4843 mips_o32_store_return_value (struct type *type, char *valbuf)
4845 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4848 /* N32/N44 ABI stuff. */
4851 mips_n32n64_xfer_return_value (struct type *type,
4852 struct regcache *regcache,
4853 bfd_byte *in, const bfd_byte *out)
4855 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4856 if (TYPE_CODE (type) == TYPE_CODE_FLT
4857 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4859 /* A floating-point value belongs in the least significant part
4862 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4863 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4864 TARGET_BYTE_ORDER, in, out, 0);
4866 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4867 && TYPE_NFIELDS (type) <= 2
4868 && TYPE_NFIELDS (type) >= 1
4869 && ((TYPE_NFIELDS (type) == 1
4870 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4872 || (TYPE_NFIELDS (type) == 2
4873 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4875 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4877 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4879 /* A struct that contains one or two floats. Each value is part
4880 in the least significant part of their floating point
4882 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4885 for (field = 0, regnum = FP0_REGNUM;
4886 field < TYPE_NFIELDS (type);
4887 field++, regnum += 2)
4889 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4892 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4893 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4894 TARGET_BYTE_ORDER, in, out, offset);
4897 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4898 || TYPE_CODE (type) == TYPE_CODE_UNION)
4900 /* A structure or union. Extract the left justified value,
4901 regardless of the byte order. I.e. DO NOT USE
4905 for (offset = 0, regnum = V0_REGNUM;
4906 offset < TYPE_LENGTH (type);
4907 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4909 int xfer = REGISTER_RAW_SIZE (regnum);
4910 if (offset + xfer > TYPE_LENGTH (type))
4911 xfer = TYPE_LENGTH (type) - offset;
4913 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4914 offset, xfer, regnum);
4915 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4921 /* A scalar extract each part but least-significant-byte
4925 for (offset = 0, regnum = V0_REGNUM;
4926 offset < TYPE_LENGTH (type);
4927 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4929 int xfer = REGISTER_RAW_SIZE (regnum);
4931 if (offset + xfer > TYPE_LENGTH (type))
4932 xfer = TYPE_LENGTH (type) - offset;
4934 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4935 offset, xfer, regnum);
4936 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4943 mips_n32n64_extract_return_value (struct type *type,
4944 struct regcache *regcache,
4947 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4951 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4953 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4957 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4959 /* Nothing to do -- push_arguments does all the work. */
4963 mips_extract_struct_value_address (struct regcache *regcache)
4965 /* FIXME: This will only work at random. The caller passes the
4966 struct_return address in V0, but it is not preserved. It may
4967 still be there, or this may be a random value. */
4970 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4974 /* Exported procedure: Is PC in the signal trampoline code */
4977 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4979 if (sigtramp_address == 0)
4981 return (pc >= sigtramp_address && pc < sigtramp_end);
4984 /* Root of all "set mips "/"show mips " commands. This will eventually be
4985 used for all MIPS-specific commands. */
4988 show_mips_command (char *args, int from_tty)
4990 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4994 set_mips_command (char *args, int from_tty)
4996 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4997 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5000 /* Commands to show/set the MIPS FPU type. */
5003 show_mipsfpu_command (char *args, int from_tty)
5006 switch (MIPS_FPU_TYPE)
5008 case MIPS_FPU_SINGLE:
5009 fpu = "single-precision";
5011 case MIPS_FPU_DOUBLE:
5012 fpu = "double-precision";
5015 fpu = "absent (none)";
5018 internal_error (__FILE__, __LINE__, "bad switch");
5020 if (mips_fpu_type_auto)
5021 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5024 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5030 set_mipsfpu_command (char *args, int from_tty)
5032 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5033 show_mipsfpu_command (args, from_tty);
5037 set_mipsfpu_single_command (char *args, int from_tty)
5039 mips_fpu_type = MIPS_FPU_SINGLE;
5040 mips_fpu_type_auto = 0;
5041 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5045 set_mipsfpu_double_command (char *args, int from_tty)
5047 mips_fpu_type = MIPS_FPU_DOUBLE;
5048 mips_fpu_type_auto = 0;
5049 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5053 set_mipsfpu_none_command (char *args, int from_tty)
5055 mips_fpu_type = MIPS_FPU_NONE;
5056 mips_fpu_type_auto = 0;
5057 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5061 set_mipsfpu_auto_command (char *args, int from_tty)
5063 mips_fpu_type_auto = 1;
5066 /* Command to set the processor type. */
5069 mips_set_processor_type_command (char *args, int from_tty)
5073 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5075 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5076 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5077 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5079 /* Restore the value. */
5080 tmp_mips_processor_type = xstrdup (mips_processor_type);
5085 if (!mips_set_processor_type (tmp_mips_processor_type))
5087 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5088 /* Restore its value. */
5089 tmp_mips_processor_type = xstrdup (mips_processor_type);
5094 mips_show_processor_type_command (char *args, int from_tty)
5098 /* Modify the actual processor type. */
5101 mips_set_processor_type (char *str)
5108 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5110 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5112 mips_processor_type = str;
5113 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5115 /* FIXME tweak fpu flag too */
5122 /* Attempt to identify the particular processor model by reading the
5126 mips_read_processor_type (void)
5130 prid = read_register (PRID_REGNUM);
5132 if ((prid & ~0xf) == 0x700)
5133 return savestring ("r3041", strlen ("r3041"));
5138 /* Just like reinit_frame_cache, but with the right arguments to be
5139 callable as an sfunc. */
5142 reinit_frame_cache_sfunc (char *args, int from_tty,
5143 struct cmd_list_element *c)
5145 reinit_frame_cache ();
5149 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5151 mips_extra_func_info_t proc_desc;
5153 /* Search for the function containing this address. Set the low bit
5154 of the address when searching, in case we were given an even address
5155 that is the start of a 16-bit function. If we didn't do this,
5156 the search would fail because the symbol table says the function
5157 starts at an odd address, i.e. 1 byte past the given address. */
5158 memaddr = ADDR_BITS_REMOVE (memaddr);
5159 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5161 /* Make an attempt to determine if this is a 16-bit function. If
5162 the procedure descriptor exists and the address therein is odd,
5163 it's definitely a 16-bit function. Otherwise, we have to just
5164 guess that if the address passed in is odd, it's 16-bits. */
5166 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5167 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5169 info->mach = pc_is_mips16 (memaddr) ?
5170 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5172 /* Round down the instruction address to the appropriate boundary. */
5173 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5175 /* Call the appropriate disassembler based on the target endian-ness. */
5176 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5177 return print_insn_big_mips (memaddr, info);
5179 return print_insn_little_mips (memaddr, info);
5182 /* Old-style breakpoint macros.
5183 The IDT board uses an unusual breakpoint value, and sometimes gets
5184 confused when it sees the usual MIPS breakpoint instruction. */
5186 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5187 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5188 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5189 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5190 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5191 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5192 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5193 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5195 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5196 counter value to determine whether a 16- or 32-bit breakpoint should be
5197 used. It returns a pointer to a string of bytes that encode a breakpoint
5198 instruction, stores the length of the string to *lenptr, and adjusts pc
5199 (if necessary) to point to the actual memory location where the
5200 breakpoint should be inserted. */
5202 static const unsigned char *
5203 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5205 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5207 if (pc_is_mips16 (*pcptr))
5209 static unsigned char mips16_big_breakpoint[] =
5210 MIPS16_BIG_BREAKPOINT;
5211 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5212 *lenptr = sizeof (mips16_big_breakpoint);
5213 return mips16_big_breakpoint;
5217 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5218 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5219 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5221 *lenptr = sizeof (big_breakpoint);
5223 if (strcmp (target_shortname, "mips") == 0)
5224 return idt_big_breakpoint;
5225 else if (strcmp (target_shortname, "ddb") == 0
5226 || strcmp (target_shortname, "pmon") == 0
5227 || strcmp (target_shortname, "lsi") == 0)
5228 return pmon_big_breakpoint;
5230 return big_breakpoint;
5235 if (pc_is_mips16 (*pcptr))
5237 static unsigned char mips16_little_breakpoint[] =
5238 MIPS16_LITTLE_BREAKPOINT;
5239 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5240 *lenptr = sizeof (mips16_little_breakpoint);
5241 return mips16_little_breakpoint;
5245 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5246 static unsigned char pmon_little_breakpoint[] =
5247 PMON_LITTLE_BREAKPOINT;
5248 static unsigned char idt_little_breakpoint[] =
5249 IDT_LITTLE_BREAKPOINT;
5251 *lenptr = sizeof (little_breakpoint);
5253 if (strcmp (target_shortname, "mips") == 0)
5254 return idt_little_breakpoint;
5255 else if (strcmp (target_shortname, "ddb") == 0
5256 || strcmp (target_shortname, "pmon") == 0
5257 || strcmp (target_shortname, "lsi") == 0)
5258 return pmon_little_breakpoint;
5260 return little_breakpoint;
5265 /* If PC is in a mips16 call or return stub, return the address of the target
5266 PC, which is either the callee or the caller. There are several
5267 cases which must be handled:
5269 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5270 target PC is in $31 ($ra).
5271 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5272 and the target PC is in $2.
5273 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5274 before the jal instruction, this is effectively a call stub
5275 and the the target PC is in $2. Otherwise this is effectively
5276 a return stub and the target PC is in $18.
5278 See the source code for the stubs in gcc/config/mips/mips16.S for
5281 This function implements the SKIP_TRAMPOLINE_CODE macro.
5285 mips_skip_stub (CORE_ADDR pc)
5288 CORE_ADDR start_addr;
5290 /* Find the starting address and name of the function containing the PC. */
5291 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5294 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5295 target PC is in $31 ($ra). */
5296 if (strcmp (name, "__mips16_ret_sf") == 0
5297 || strcmp (name, "__mips16_ret_df") == 0)
5298 return read_signed_register (RA_REGNUM);
5300 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5302 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5303 and the target PC is in $2. */
5304 if (name[19] >= '0' && name[19] <= '9')
5305 return read_signed_register (2);
5307 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5308 before the jal instruction, this is effectively a call stub
5309 and the the target PC is in $2. Otherwise this is effectively
5310 a return stub and the target PC is in $18. */
5311 else if (name[19] == 's' || name[19] == 'd')
5313 if (pc == start_addr)
5315 /* Check if the target of the stub is a compiler-generated
5316 stub. Such a stub for a function bar might have a name
5317 like __fn_stub_bar, and might look like this:
5322 la $1,bar (becomes a lui/addiu pair)
5324 So scan down to the lui/addi and extract the target
5325 address from those two instructions. */
5327 CORE_ADDR target_pc = read_signed_register (2);
5331 /* See if the name of the target function is __fn_stub_*. */
5332 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5334 if (strncmp (name, "__fn_stub_", 10) != 0
5335 && strcmp (name, "etext") != 0
5336 && strcmp (name, "_etext") != 0)
5339 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5340 The limit on the search is arbitrarily set to 20
5341 instructions. FIXME. */
5342 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5344 inst = mips_fetch_instruction (target_pc);
5345 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5346 pc = (inst << 16) & 0xffff0000; /* high word */
5347 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5348 return pc | (inst & 0xffff); /* low word */
5351 /* Couldn't find the lui/addui pair, so return stub address. */
5355 /* This is the 'return' part of a call stub. The return
5356 address is in $r18. */
5357 return read_signed_register (18);
5360 return 0; /* not a stub */
5364 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5365 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5368 mips_in_call_stub (CORE_ADDR pc, char *name)
5370 CORE_ADDR start_addr;
5372 /* Find the starting address of the function containing the PC. If the
5373 caller didn't give us a name, look it up at the same time. */
5374 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5377 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5379 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5380 if (name[19] >= '0' && name[19] <= '9')
5382 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5383 before the jal instruction, this is effectively a call stub. */
5384 else if (name[19] == 's' || name[19] == 'd')
5385 return pc == start_addr;
5388 return 0; /* not a stub */
5392 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5393 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5396 mips_in_return_stub (CORE_ADDR pc, char *name)
5398 CORE_ADDR start_addr;
5400 /* Find the starting address of the function containing the PC. */
5401 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5404 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5405 if (strcmp (name, "__mips16_ret_sf") == 0
5406 || strcmp (name, "__mips16_ret_df") == 0)
5409 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5410 i.e. after the jal instruction, this is effectively a return stub. */
5411 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5412 && (name[19] == 's' || name[19] == 'd')
5413 && pc != start_addr)
5416 return 0; /* not a stub */
5420 /* Return non-zero if the PC is in a library helper function that should
5421 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5424 mips_ignore_helper (CORE_ADDR pc)
5428 /* Find the starting address and name of the function containing the PC. */
5429 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5432 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5433 that we want to ignore. */
5434 return (strcmp (name, "__mips16_ret_sf") == 0
5435 || strcmp (name, "__mips16_ret_df") == 0);
5439 /* Return a location where we can set a breakpoint that will be hit
5440 when an inferior function call returns. This is normally the
5441 program's entry point. Executables that don't have an entry
5442 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5443 whose address is the location where the breakpoint should be placed. */
5446 mips_call_dummy_address (void)
5448 struct minimal_symbol *sym;
5450 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5452 return SYMBOL_VALUE_ADDRESS (sym);
5454 return entry_point_address ();
5458 /* If the current gcc for this target does not produce correct debugging
5459 information for float parameters, both prototyped and unprototyped, then
5460 define this macro. This forces gdb to always assume that floats are
5461 passed as doubles and then converted in the callee.
5463 For the mips chip, it appears that the debug info marks the parameters as
5464 floats regardless of whether the function is prototyped, but the actual
5465 values are passed as doubles for the non-prototyped case and floats for
5466 the prototyped case. Thus we choose to make the non-prototyped case work
5467 for C and break the prototyped case, since the non-prototyped case is
5468 probably much more common. (FIXME). */
5471 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5473 return current_language->la_language == language_c;
5476 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5477 the register stored on the stack (32) is different to its real raw
5478 size (64). The below ensures that registers are fetched from the
5479 stack using their ABI size and then stored into the RAW_BUFFER
5480 using their raw size.
5482 The alternative to adding this function would be to add an ABI
5483 macro - REGISTER_STACK_SIZE(). */
5486 mips_get_saved_register (char *raw_buffer,
5489 struct frame_info *frame,
5491 enum lval_type *lvalp)
5494 enum lval_type lvalx;
5498 if (!target_has_registers)
5499 error ("No registers.");
5501 /* Make certain that all needed parameters are present. */
5506 if (optimizedp == NULL)
5507 optimizedp = &optimizedx;
5508 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5509 addrp, &realnum, raw_buffer);
5510 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5511 have a pseudo register range that correspons to the ABI's, rather
5512 than the ISA's, view of registers. These registers would then
5513 implicitly describe their size and hence could be used without
5514 the below munging. */
5515 if ((*lvalp) == lval_memory)
5517 if (raw_buffer != NULL)
5521 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5523 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5524 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5530 /* Immediately after a function call, return the saved pc.
5531 Can't always go through the frames for this because on some machines
5532 the new frame is not set up until the new function executes
5533 some instructions. */
5536 mips_saved_pc_after_call (struct frame_info *frame)
5538 return read_signed_register (RA_REGNUM);
5542 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5546 mips_stab_reg_to_regnum (int num)
5551 return num + FP0_REGNUM - 38;
5554 /* Convert a ecoff register number to a gdb REGNUM */
5557 mips_ecoff_reg_to_regnum (int num)
5562 return num + FP0_REGNUM - 32;
5565 /* Convert an integer into an address. By first converting the value
5566 into a pointer and then extracting it signed, the address is
5567 guarenteed to be correctly sign extended. */
5570 mips_integer_to_address (struct type *type, void *buf)
5572 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5573 LONGEST val = unpack_long (type, buf);
5574 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5575 return extract_signed_integer (tmp,
5576 TYPE_LENGTH (builtin_type_void_data_ptr));
5580 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5582 enum mips_abi *abip = (enum mips_abi *) obj;
5583 const char *name = bfd_get_section_name (abfd, sect);
5585 if (*abip != MIPS_ABI_UNKNOWN)
5588 if (strncmp (name, ".mdebug.", 8) != 0)
5591 if (strcmp (name, ".mdebug.abi32") == 0)
5592 *abip = MIPS_ABI_O32;
5593 else if (strcmp (name, ".mdebug.abiN32") == 0)
5594 *abip = MIPS_ABI_N32;
5595 else if (strcmp (name, ".mdebug.abi64") == 0)
5596 *abip = MIPS_ABI_N64;
5597 else if (strcmp (name, ".mdebug.abiO64") == 0)
5598 *abip = MIPS_ABI_O64;
5599 else if (strcmp (name, ".mdebug.eabi32") == 0)
5600 *abip = MIPS_ABI_EABI32;
5601 else if (strcmp (name, ".mdebug.eabi64") == 0)
5602 *abip = MIPS_ABI_EABI64;
5604 warning ("unsupported ABI %s.", name + 8);
5607 static enum mips_abi
5608 global_mips_abi (void)
5612 for (i = 0; mips_abi_strings[i] != NULL; i++)
5613 if (mips_abi_strings[i] == mips_abi_string)
5614 return (enum mips_abi) i;
5616 internal_error (__FILE__, __LINE__,
5617 "unknown ABI string");
5620 static struct gdbarch *
5621 mips_gdbarch_init (struct gdbarch_info info,
5622 struct gdbarch_list *arches)
5624 static LONGEST mips_call_dummy_words[] =
5626 struct gdbarch *gdbarch;
5627 struct gdbarch_tdep *tdep;
5629 enum mips_abi mips_abi, found_abi, wanted_abi;
5630 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5632 /* Reset the disassembly info, in case it was set to something
5634 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5635 tm_print_insn_info.arch = bfd_arch_unknown;
5636 tm_print_insn_info.mach = 0;
5642 /* First of all, extract the elf_flags, if available. */
5643 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5644 elf_flags = elf_elfheader (info.abfd)->e_flags;
5646 /* Try to determine the OS ABI of the object we are loading. If
5647 we end up with `unknown', just leave it that way. */
5648 osabi = gdbarch_lookup_osabi (info.abfd);
5651 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5652 switch ((elf_flags & EF_MIPS_ABI))
5654 case E_MIPS_ABI_O32:
5655 mips_abi = MIPS_ABI_O32;
5657 case E_MIPS_ABI_O64:
5658 mips_abi = MIPS_ABI_O64;
5660 case E_MIPS_ABI_EABI32:
5661 mips_abi = MIPS_ABI_EABI32;
5663 case E_MIPS_ABI_EABI64:
5664 mips_abi = MIPS_ABI_EABI64;
5667 if ((elf_flags & EF_MIPS_ABI2))
5668 mips_abi = MIPS_ABI_N32;
5670 mips_abi = MIPS_ABI_UNKNOWN;
5674 /* GCC creates a pseudo-section whose name describes the ABI. */
5675 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5676 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5678 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5679 Use the ABI from the last architecture if there is one. */
5680 if (info.abfd == NULL && arches != NULL)
5681 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5683 /* Try the architecture for any hint of the correct ABI. */
5684 if (mips_abi == MIPS_ABI_UNKNOWN
5685 && info.bfd_arch_info != NULL
5686 && info.bfd_arch_info->arch == bfd_arch_mips)
5688 switch (info.bfd_arch_info->mach)
5690 case bfd_mach_mips3900:
5691 mips_abi = MIPS_ABI_EABI32;
5693 case bfd_mach_mips4100:
5694 case bfd_mach_mips5000:
5695 mips_abi = MIPS_ABI_EABI64;
5697 case bfd_mach_mips8000:
5698 case bfd_mach_mips10000:
5699 /* On Irix, ELF64 executables use the N64 ABI. The
5700 pseudo-sections which describe the ABI aren't present
5701 on IRIX. (Even for executables created by gcc.) */
5702 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5703 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5704 mips_abi = MIPS_ABI_N64;
5706 mips_abi = MIPS_ABI_N32;
5711 if (mips_abi == MIPS_ABI_UNKNOWN)
5712 mips_abi = MIPS_ABI_O32;
5714 /* Now that we have found what the ABI for this binary would be,
5715 check whether the user is overriding it. */
5716 found_abi = mips_abi;
5717 wanted_abi = global_mips_abi ();
5718 if (wanted_abi != MIPS_ABI_UNKNOWN)
5719 mips_abi = wanted_abi;
5723 fprintf_unfiltered (gdb_stdlog,
5724 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5726 fprintf_unfiltered (gdb_stdlog,
5727 "mips_gdbarch_init: mips_abi = %d\n",
5729 fprintf_unfiltered (gdb_stdlog,
5730 "mips_gdbarch_init: found_mips_abi = %d\n",
5734 /* try to find a pre-existing architecture */
5735 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5737 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5739 /* MIPS needs to be pedantic about which ABI the object is
5741 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5743 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5745 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5746 return arches->gdbarch;
5749 /* Need a new architecture. Fill in a target specific vector. */
5750 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5751 gdbarch = gdbarch_alloc (&info, tdep);
5752 tdep->elf_flags = elf_flags;
5753 tdep->osabi = osabi;
5755 /* Initially set everything according to the default ABI/ISA. */
5756 set_gdbarch_short_bit (gdbarch, 16);
5757 set_gdbarch_int_bit (gdbarch, 32);
5758 set_gdbarch_float_bit (gdbarch, 32);
5759 set_gdbarch_double_bit (gdbarch, 64);
5760 set_gdbarch_long_double_bit (gdbarch, 64);
5761 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5762 set_gdbarch_max_register_raw_size (gdbarch, 8);
5763 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5764 tdep->found_abi = found_abi;
5765 tdep->mips_abi = mips_abi;
5767 set_gdbarch_elf_make_msymbol_special (gdbarch,
5768 mips_elf_make_msymbol_special);
5773 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5774 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5775 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5776 tdep->mips_default_saved_regsize = 4;
5777 tdep->mips_default_stack_argsize = 4;
5778 tdep->mips_fp_register_double = 0;
5779 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5780 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5781 tdep->gdb_target_is_mips64 = 0;
5782 tdep->default_mask_address_p = 0;
5783 set_gdbarch_long_bit (gdbarch, 32);
5784 set_gdbarch_ptr_bit (gdbarch, 32);
5785 set_gdbarch_long_long_bit (gdbarch, 64);
5786 set_gdbarch_reg_struct_has_addr (gdbarch,
5787 mips_o32_reg_struct_has_addr);
5788 set_gdbarch_use_struct_convention (gdbarch,
5789 mips_o32_use_struct_convention);
5792 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5793 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5794 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5795 tdep->mips_default_saved_regsize = 8;
5796 tdep->mips_default_stack_argsize = 8;
5797 tdep->mips_fp_register_double = 1;
5798 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5799 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5800 tdep->gdb_target_is_mips64 = 1;
5801 tdep->default_mask_address_p = 0;
5802 set_gdbarch_long_bit (gdbarch, 32);
5803 set_gdbarch_ptr_bit (gdbarch, 32);
5804 set_gdbarch_long_long_bit (gdbarch, 64);
5805 set_gdbarch_reg_struct_has_addr (gdbarch,
5806 mips_o32_reg_struct_has_addr);
5807 set_gdbarch_use_struct_convention (gdbarch,
5808 mips_o32_use_struct_convention);
5810 case MIPS_ABI_EABI32:
5811 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5812 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5813 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5814 tdep->mips_default_saved_regsize = 4;
5815 tdep->mips_default_stack_argsize = 4;
5816 tdep->mips_fp_register_double = 0;
5817 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5818 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5819 tdep->gdb_target_is_mips64 = 0;
5820 tdep->default_mask_address_p = 0;
5821 set_gdbarch_long_bit (gdbarch, 32);
5822 set_gdbarch_ptr_bit (gdbarch, 32);
5823 set_gdbarch_long_long_bit (gdbarch, 64);
5824 set_gdbarch_reg_struct_has_addr (gdbarch,
5825 mips_eabi_reg_struct_has_addr);
5826 set_gdbarch_use_struct_convention (gdbarch,
5827 mips_eabi_use_struct_convention);
5829 case MIPS_ABI_EABI64:
5830 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5831 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5832 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5833 tdep->mips_default_saved_regsize = 8;
5834 tdep->mips_default_stack_argsize = 8;
5835 tdep->mips_fp_register_double = 1;
5836 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5837 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5838 tdep->gdb_target_is_mips64 = 1;
5839 tdep->default_mask_address_p = 0;
5840 set_gdbarch_long_bit (gdbarch, 64);
5841 set_gdbarch_ptr_bit (gdbarch, 64);
5842 set_gdbarch_long_long_bit (gdbarch, 64);
5843 set_gdbarch_reg_struct_has_addr (gdbarch,
5844 mips_eabi_reg_struct_has_addr);
5845 set_gdbarch_use_struct_convention (gdbarch,
5846 mips_eabi_use_struct_convention);
5849 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5850 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5851 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5852 tdep->mips_default_saved_regsize = 8;
5853 tdep->mips_default_stack_argsize = 8;
5854 tdep->mips_fp_register_double = 1;
5855 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5856 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5857 tdep->gdb_target_is_mips64 = 1;
5858 tdep->default_mask_address_p = 0;
5859 set_gdbarch_long_bit (gdbarch, 32);
5860 set_gdbarch_ptr_bit (gdbarch, 32);
5861 set_gdbarch_long_long_bit (gdbarch, 64);
5863 /* Set up the disassembler info, so that we get the right
5864 register names from libopcodes. */
5865 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5866 tm_print_insn_info.arch = bfd_arch_mips;
5867 if (info.bfd_arch_info != NULL
5868 && info.bfd_arch_info->arch == bfd_arch_mips
5869 && info.bfd_arch_info->mach)
5870 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5872 tm_print_insn_info.mach = bfd_mach_mips8000;
5874 set_gdbarch_use_struct_convention (gdbarch,
5875 mips_n32n64_use_struct_convention);
5876 set_gdbarch_reg_struct_has_addr (gdbarch,
5877 mips_n32n64_reg_struct_has_addr);
5880 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5881 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5882 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5883 tdep->mips_default_saved_regsize = 8;
5884 tdep->mips_default_stack_argsize = 8;
5885 tdep->mips_fp_register_double = 1;
5886 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5887 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5888 tdep->gdb_target_is_mips64 = 1;
5889 tdep->default_mask_address_p = 0;
5890 set_gdbarch_long_bit (gdbarch, 64);
5891 set_gdbarch_ptr_bit (gdbarch, 64);
5892 set_gdbarch_long_long_bit (gdbarch, 64);
5894 /* Set up the disassembler info, so that we get the right
5895 register names from libopcodes. */
5896 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5897 tm_print_insn_info.arch = bfd_arch_mips;
5898 if (info.bfd_arch_info != NULL
5899 && info.bfd_arch_info->arch == bfd_arch_mips
5900 && info.bfd_arch_info->mach)
5901 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5903 tm_print_insn_info.mach = bfd_mach_mips8000;
5905 set_gdbarch_use_struct_convention (gdbarch,
5906 mips_n32n64_use_struct_convention);
5907 set_gdbarch_reg_struct_has_addr (gdbarch,
5908 mips_n32n64_reg_struct_has_addr);
5911 internal_error (__FILE__, __LINE__,
5912 "unknown ABI in switch");
5915 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5916 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5919 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5920 flag in object files because to do so would make it impossible to
5921 link with libraries compiled without "-gp32". This is
5922 unnecessarily restrictive.
5924 We could solve this problem by adding "-gp32" multilibs to gcc,
5925 but to set this flag before gcc is built with such multilibs will
5926 break too many systems.''
5928 But even more unhelpfully, the default linker output target for
5929 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5930 for 64-bit programs - you need to change the ABI to change this,
5931 and not all gcc targets support that currently. Therefore using
5932 this flag to detect 32-bit mode would do the wrong thing given
5933 the current gcc - it would make GDB treat these 64-bit programs
5934 as 32-bit programs by default. */
5936 /* enable/disable the MIPS FPU */
5937 if (!mips_fpu_type_auto)
5938 tdep->mips_fpu_type = mips_fpu_type;
5939 else if (info.bfd_arch_info != NULL
5940 && info.bfd_arch_info->arch == bfd_arch_mips)
5941 switch (info.bfd_arch_info->mach)
5943 case bfd_mach_mips3900:
5944 case bfd_mach_mips4100:
5945 case bfd_mach_mips4111:
5946 tdep->mips_fpu_type = MIPS_FPU_NONE;
5948 case bfd_mach_mips4650:
5949 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5952 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5956 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5958 /* MIPS version of register names. NOTE: At present the MIPS
5959 register name management is part way between the old -
5960 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5961 Further work on it is required. */
5962 /* NOTE: many targets (esp. embedded) do not go thru the
5963 gdbarch_register_name vector at all, instead bypassing it
5964 by defining REGISTER_NAMES. */
5965 set_gdbarch_register_name (gdbarch, mips_register_name);
5966 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5967 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5968 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5969 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5970 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5972 /* Add/remove bits from an address. The MIPS needs be careful to
5973 ensure that all 32 bit addresses are sign extended to 64 bits. */
5974 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5976 /* There's a mess in stack frame creation. See comments in
5977 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5978 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5979 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
5981 /* Map debug register numbers onto internal register numbers. */
5982 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5983 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5985 /* Initialize a frame */
5986 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5987 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5989 /* MIPS version of CALL_DUMMY */
5991 set_gdbarch_call_dummy_p (gdbarch, 1);
5992 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5993 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
5994 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5995 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5996 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5997 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
5998 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5999 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
6000 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
6001 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
6002 set_gdbarch_call_dummy_length (gdbarch, 0);
6003 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
6004 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
6005 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
6006 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
6007 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
6008 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6009 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6010 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
6011 set_gdbarch_register_convert_to_virtual (gdbarch,
6012 mips_register_convert_to_virtual);
6013 set_gdbarch_register_convert_to_raw (gdbarch,
6014 mips_register_convert_to_raw);
6016 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
6018 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
6019 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
6020 set_gdbarch_frameless_function_invocation (gdbarch,
6021 generic_frameless_function_invocation_not);
6022 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6023 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6024 set_gdbarch_frame_args_skip (gdbarch, 0);
6026 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
6028 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6029 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6030 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6032 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6033 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6035 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6036 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6037 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6039 set_gdbarch_function_start_offset (gdbarch, 0);
6041 /* There are MIPS targets which do not yet use this since they still
6042 define REGISTER_VIRTUAL_TYPE. */
6043 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6044 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6046 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6047 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6049 /* Hook in OS ABI-specific overrides, if they have been registered. */
6050 gdbarch_init_osabi (info, gdbarch, osabi);
6052 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6053 set_gdbarch_extract_struct_value_address (gdbarch,
6054 mips_extract_struct_value_address);
6056 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6058 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6059 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6065 mips_abi_update (char *ignore_args, int from_tty,
6066 struct cmd_list_element *c)
6068 struct gdbarch_info info;
6070 /* Force the architecture to update, and (if it's a MIPS architecture)
6071 mips_gdbarch_init will take care of the rest. */
6072 gdbarch_info_init (&info);
6073 gdbarch_update_p (info);
6077 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6079 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6083 int ef_mips_32bitmode;
6084 /* determine the ISA */
6085 switch (tdep->elf_flags & EF_MIPS_ARCH)
6103 /* determine the size of a pointer */
6104 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6108 fprintf_unfiltered (file,
6109 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6111 fprintf_unfiltered (file,
6112 "mips_dump_tdep: ef_mips_arch = %d\n",
6114 fprintf_unfiltered (file,
6115 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6117 mips_abi_strings[tdep->mips_abi]);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6120 mips_mask_address_p (),
6121 tdep->default_mask_address_p);
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6125 FP_REGISTER_DOUBLE);
6126 fprintf_unfiltered (file,
6127 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6128 MIPS_DEFAULT_FPU_TYPE,
6129 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6130 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6131 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: MIPS_EABI = %d\n",
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6138 MIPS_LAST_FP_ARG_REGNUM,
6139 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6143 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6144 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6145 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6147 fprintf_unfiltered (file,
6148 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6149 MIPS_DEFAULT_SAVED_REGSIZE);
6150 fprintf_unfiltered (file,
6151 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6152 FP_REGISTER_DOUBLE);
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6155 MIPS_DEFAULT_STACK_ARGSIZE);
6156 fprintf_unfiltered (file,
6157 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6158 MIPS_STACK_ARGSIZE);
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6162 fprintf_unfiltered (file,
6163 "mips_dump_tdep: A0_REGNUM = %d\n",
6165 fprintf_unfiltered (file,
6166 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6167 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6170 XSTRING (ATTACH_DETACH));
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6181 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6184 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6193 FIRST_EMBED_REGNUM);
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6197 fprintf_unfiltered (file,
6198 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6199 GDB_TARGET_IS_MIPS64);
6200 fprintf_unfiltered (file,
6201 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6205 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: HI_REGNUM = %d\n",
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6215 XSTRING (IGNORE_HELPER_CALL (PC)));
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6218 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6221 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: LO_REGNUM = %d\n",
6232 #ifdef MACHINE_CPROC_FP_OFFSET
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6235 MACHINE_CPROC_FP_OFFSET);
6237 #ifdef MACHINE_CPROC_PC_OFFSET
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6240 MACHINE_CPROC_PC_OFFSET);
6242 #ifdef MACHINE_CPROC_SP_OFFSET
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6245 MACHINE_CPROC_SP_OFFSET);
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6265 MIPS_LAST_ARG_REGNUM,
6266 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6274 MIPS_SAVED_REGSIZE);
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: OP_LDFPR = used?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: OP_LDGPR = used?\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PRID_REGNUM = %d\n",
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6288 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: PROC_PC_REG = function?\n");
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: PS_REGNUM = %d\n",
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: RA_REGNUM = %d\n",
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6324 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6327 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: ROUND_DOWN = function?\n");
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: ROUND_UP = function?\n");
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: SAVED_BYTES = %d\n",
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: SAVED_FP = %d\n",
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: SAVED_PC = %d\n",
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6351 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6359 SIGFRAME_FPREGSAVE_OFF);
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6365 SIGFRAME_REGSAVE_OFF);
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6371 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6374 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6377 SOFTWARE_SINGLE_STEP_P ());
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6380 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6381 #ifdef STACK_END_ADDR
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6388 XSTRING (STEP_SKIPS_DELAY (PC)));
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6391 STEP_SKIPS_DELAY_P);
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6394 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: T9_REGNUM = %d\n",
6398 fprintf_unfiltered (file,
6399 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6400 fprintf_unfiltered (file,
6401 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6402 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6405 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: TARGET_MIPS = used?\n");
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6410 XSTRING (TM_PRINT_INSN_MACH));
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6414 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6421 #ifdef TRACE_FLAVOR_SIZE
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6427 fprintf_unfiltered (file,
6428 "mips_dump_tdep: TRACE_SET # %s\n",
6429 XSTRING (TRACE_SET (X,STATE)));
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6433 #ifdef UNUSED_REGNUM
6434 fprintf_unfiltered (file,
6435 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6438 fprintf_unfiltered (file,
6439 "mips_dump_tdep: V0_REGNUM = %d\n",
6441 fprintf_unfiltered (file,
6442 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6443 (long) VM_MIN_ADDRESS);
6445 fprintf_unfiltered (file,
6446 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6449 fprintf_unfiltered (file,
6450 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6452 fprintf_unfiltered (file,
6453 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6456 fprintf_unfiltered (file,
6457 "mips_dump_tdep: OS ABI = %s\n",
6458 gdbarch_osabi_name (tdep->osabi));
6462 _initialize_mips_tdep (void)
6464 static struct cmd_list_element *mipsfpulist = NULL;
6465 struct cmd_list_element *c;
6467 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6468 if (MIPS_ABI_LAST + 1
6469 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6470 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6472 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6473 if (!tm_print_insn) /* Someone may have already set it */
6474 tm_print_insn = gdb_print_insn_mips;
6476 /* Add root prefix command for all "set mips"/"show mips" commands */
6477 add_prefix_cmd ("mips", no_class, set_mips_command,
6478 "Various MIPS specific commands.",
6479 &setmipscmdlist, "set mips ", 0, &setlist);
6481 add_prefix_cmd ("mips", no_class, show_mips_command,
6482 "Various MIPS specific commands.",
6483 &showmipscmdlist, "show mips ", 0, &showlist);
6485 /* Allow the user to override the saved register size. */
6486 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6489 &mips_saved_regsize_string, "\
6490 Set size of general purpose registers saved on the stack.\n\
6491 This option can be set to one of:\n\
6492 32 - Force GDB to treat saved GP registers as 32-bit\n\
6493 64 - Force GDB to treat saved GP registers as 64-bit\n\
6494 auto - Allow GDB to use the target's default setting or autodetect the\n\
6495 saved GP register size from information contained in the executable.\n\
6500 /* Allow the user to override the argument stack size. */
6501 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6504 &mips_stack_argsize_string, "\
6505 Set the amount of stack space reserved for each argument.\n\
6506 This option can be set to one of:\n\
6507 32 - Force GDB to allocate 32-bit chunks per argument\n\
6508 64 - Force GDB to allocate 64-bit chunks per argument\n\
6509 auto - Allow GDB to determine the correct setting from the current\n\
6510 target and executable (default)",
6514 /* Allow the user to override the ABI. */
6515 c = add_set_enum_cmd
6516 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6517 "Set the ABI used by this program.\n"
6518 "This option can be set to one of:\n"
6519 " auto - the default ABI associated with the current binary\n"
6527 add_show_from_set (c, &showmipscmdlist);
6528 set_cmd_sfunc (c, mips_abi_update);
6530 /* Let the user turn off floating point and set the fence post for
6531 heuristic_proc_start. */
6533 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6534 "Set use of MIPS floating-point coprocessor.",
6535 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6536 add_cmd ("single", class_support, set_mipsfpu_single_command,
6537 "Select single-precision MIPS floating-point coprocessor.",
6539 add_cmd ("double", class_support, set_mipsfpu_double_command,
6540 "Select double-precision MIPS floating-point coprocessor.",
6542 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6543 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6544 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6545 add_cmd ("none", class_support, set_mipsfpu_none_command,
6546 "Select no MIPS floating-point coprocessor.",
6548 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6549 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6550 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6551 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6552 "Select MIPS floating-point coprocessor automatically.",
6554 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6555 "Show current use of MIPS floating-point coprocessor target.",
6558 /* We really would like to have both "0" and "unlimited" work, but
6559 command.c doesn't deal with that. So make it a var_zinteger
6560 because the user can always use "999999" or some such for unlimited. */
6561 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6562 (char *) &heuristic_fence_post,
6564 Set the distance searched for the start of a function.\n\
6565 If you are debugging a stripped executable, GDB needs to search through the\n\
6566 program for the start of a function. This command sets the distance of the\n\
6567 search. The only need to set it is when debugging a stripped executable.",
6569 /* We need to throw away the frame cache when we set this, since it
6570 might change our ability to get backtraces. */
6571 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6572 add_show_from_set (c, &showlist);
6574 /* Allow the user to control whether the upper bits of 64-bit
6575 addresses should be zeroed. */
6576 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6577 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6578 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6579 allow GDB to determine the correct value.\n", "\
6580 Show zeroing of upper 32 bits of 64-bit addresses.",
6581 NULL, show_mask_address,
6582 &setmipscmdlist, &showmipscmdlist);
6584 /* Allow the user to control the size of 32 bit registers within the
6585 raw remote packet. */
6586 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6589 (char *)&mips64_transfers_32bit_regs_p, "\
6590 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6591 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6592 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6593 64 bits for others. Use \"off\" to disable compatibility mode",
6597 /* Debug this files internals. */
6598 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6599 &mips_debug, "Set mips debugging.\n\
6600 When non-zero, mips specific debugging is enabled.", &setdebuglist),