1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
59 #include "completer.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
70 #include "filestuff.h"
74 #include <sys/types.h>
76 typedef struct symbol *symbolp;
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
93 static const struct objfile_data *dwarf2_objfile_data_key;
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
102 /* A descriptor for dwarf sections.
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
118 struct dwarf2_section_info
122 /* If this is a real section, the bfd section. */
124 /* If this is a virtual section, pointer to the containing ("real")
126 struct dwarf2_section_info *containing_section;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
149 DEF_VEC_I (offset_type);
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
177 /* Index data format version. */
180 /* The total length of the buffer. */
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
204 int nr_uniq_abbrev_tables;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
214 struct dwarf2_per_objfile
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
229 VEC (dwarf2_section_info_def) *types;
232 struct objfile *objfile;
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
238 /* The number of compilation units in ALL_COMP_UNITS. */
241 /* The number of .debug_types-related CUs. */
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
260 /* Type unit statistics, to see how well the scaling improvements
262 struct tu_stats tu_stats;
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
272 /* Non-zero if we've check for whether there is a DWP file. */
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
282 /* A flag indicating wether this objfile has a section loaded at a
284 int has_section_at_zero;
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
302 /* Set during partial symbol reading, to prevent queueing of full
304 int reading_partial_symbols;
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
320 /* Default names of the debugging sections. */
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
343 /* List of DWO/DWP sections. */
345 static const struct dwop_section_names
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
374 /* local data types */
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
405 /* The type to which the method is attached, i.e., its parent class. */
408 /* The index of the method in the type's function fieldlists. */
411 /* The index of the method in the fieldlist. */
414 /* The name of the DIE. */
417 /* The DIE associated with this method. */
418 struct die_info *die;
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
424 /* Internal state when decoding a particular compilation unit. */
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
436 /* Non-zero if base_address has been set. */
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
443 const char *producer;
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
478 /* How many compilation units ago was this CU last referenced? */
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
485 /* Full DIEs if read in. */
486 struct die_info *dies;
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
512 struct dwo_unit *dwo_unit;
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
553 unsigned int processing_has_namespace_info : 1;
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
560 struct dwarf2_per_cu_data
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
565 If the DIE refers to a DWO file, this is always of the original die,
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
583 unsigned int is_debug_types : 1;
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
607 struct dwarf2_section_info *section;
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
651 /* Entry in the signatured_types hash table. */
653 struct signatured_type
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
659 struct dwarf2_per_cu_data per_cu;
661 /* The type's signature. */
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
696 struct stmt_list_hash
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
708 struct type_unit_group
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
735 /* The symbol tables for this TU (obtained from the files listed in
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
746 /* These sections are what may appear in a (real or virtual) DWO file. */
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
762 /* CUs/TUs in DWP/DWO files. */
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
789 enum dwp_v2_section_ids
794 /* Data for one DWO file.
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
837 /* These sections are what may appear in a DWP file. */
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
867 struct virtual_v1_dwo_sections
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
885 struct virtual_v2_dwo_sections
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
911 /* Contents of DWP hash tables. */
913 struct dwp_hash_table
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
922 const gdb_byte *indices;
926 /* This is indexed by column number and gives the id of the section
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
942 /* Data for one DWP file. */
946 /* Name of the file. */
949 /* File format version. */
955 /* Section info for this file. */
956 struct dwp_sections sections;
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
974 /* This represents a '.dwz' file. */
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
995 struct die_reader_specs
997 /* The bfd of die_section. */
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 /* Non-zero if referenced by the Line Number Program. */
1035 /* The associated symbol table, if any. */
1036 struct symtab *symtab;
1039 /* The line number information for a compilation unit (found in the
1040 .debug_line section) begins with a "statement program header",
1041 which contains the following information. */
1044 /* Offset of line number information in .debug_line section. */
1047 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1048 unsigned offset_in_dwz : 1;
1050 unsigned int total_length;
1051 unsigned short version;
1052 unsigned int header_length;
1053 unsigned char minimum_instruction_length;
1054 unsigned char maximum_ops_per_instruction;
1055 unsigned char default_is_stmt;
1057 unsigned char line_range;
1058 unsigned char opcode_base;
1060 /* standard_opcode_lengths[i] is the number of operands for the
1061 standard opcode whose value is i. This means that
1062 standard_opcode_lengths[0] is unused, and the last meaningful
1063 element is standard_opcode_lengths[opcode_base - 1]. */
1064 unsigned char *standard_opcode_lengths;
1066 /* The include_directories table. NOTE! These strings are not
1067 allocated with xmalloc; instead, they are pointers into
1068 debug_line_buffer. If you try to free them, `free' will get
1070 unsigned int num_include_dirs, include_dirs_size;
1071 const char **include_dirs;
1073 /* The file_names table. NOTE! These strings are not allocated
1074 with xmalloc; instead, they are pointers into debug_line_buffer.
1075 Don't try to free them directly. */
1076 unsigned int num_file_names, file_names_size;
1077 struct file_entry *file_names;
1079 /* The start and end of the statement program following this
1080 header. These point into dwarf2_per_objfile->line_buffer. */
1081 const gdb_byte *statement_program_start, *statement_program_end;
1084 /* When we construct a partial symbol table entry we only
1085 need this much information. */
1086 struct partial_die_info
1088 /* Offset of this DIE. */
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1094 /* Assorted flags describing the data found in this DIE. */
1095 unsigned int has_children : 1;
1096 unsigned int is_external : 1;
1097 unsigned int is_declaration : 1;
1098 unsigned int has_type : 1;
1099 unsigned int has_specification : 1;
1100 unsigned int has_pc_info : 1;
1101 unsigned int may_be_inlined : 1;
1103 /* Flag set if the SCOPE field of this structure has been
1105 unsigned int scope_set : 1;
1107 /* Flag set if the DIE has a byte_size attribute. */
1108 unsigned int has_byte_size : 1;
1110 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1111 unsigned int has_const_value : 1;
1113 /* Flag set if any of the DIE's children are template arguments. */
1114 unsigned int has_template_arguments : 1;
1116 /* Flag set if fixup_partial_die has been called on this die. */
1117 unsigned int fixup_called : 1;
1119 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1120 unsigned int is_dwz : 1;
1122 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1123 unsigned int spec_is_dwz : 1;
1125 /* The name of this DIE. Normally the value of DW_AT_name, but
1126 sometimes a default name for unnamed DIEs. */
1129 /* The linkage name, if present. */
1130 const char *linkage_name;
1132 /* The scope to prepend to our children. This is generally
1133 allocated on the comp_unit_obstack, so will disappear
1134 when this compilation unit leaves the cache. */
1137 /* Some data associated with the partial DIE. The tag determines
1138 which field is live. */
1141 /* The location description associated with this DIE, if any. */
1142 struct dwarf_block *locdesc;
1143 /* The offset of an import, for DW_TAG_imported_unit. */
1147 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1151 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1152 DW_AT_sibling, if any. */
1153 /* NOTE: This member isn't strictly necessary, read_partial_die could
1154 return DW_AT_sibling values to its caller load_partial_dies. */
1155 const gdb_byte *sibling;
1157 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1158 DW_AT_specification (or DW_AT_abstract_origin or
1159 DW_AT_extension). */
1160 sect_offset spec_offset;
1162 /* Pointers to this DIE's parent, first child, and next sibling,
1164 struct partial_die_info *die_parent, *die_child, *die_sibling;
1167 /* This data structure holds the information of an abbrev. */
1170 unsigned int number; /* number identifying abbrev */
1171 enum dwarf_tag tag; /* dwarf tag */
1172 unsigned short has_children; /* boolean */
1173 unsigned short num_attrs; /* number of attributes */
1174 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1175 struct abbrev_info *next; /* next in chain */
1180 ENUM_BITFIELD(dwarf_attribute) name : 16;
1181 ENUM_BITFIELD(dwarf_form) form : 16;
1184 /* Size of abbrev_table.abbrev_hash_table. */
1185 #define ABBREV_HASH_SIZE 121
1187 /* Top level data structure to contain an abbreviation table. */
1191 /* Where the abbrev table came from.
1192 This is used as a sanity check when the table is used. */
1195 /* Storage for the abbrev table. */
1196 struct obstack abbrev_obstack;
1198 /* Hash table of abbrevs.
1199 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1200 It could be statically allocated, but the previous code didn't so we
1202 struct abbrev_info **abbrevs;
1205 /* Attributes have a name and a value. */
1208 ENUM_BITFIELD(dwarf_attribute) name : 16;
1209 ENUM_BITFIELD(dwarf_form) form : 15;
1211 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1212 field should be in u.str (existing only for DW_STRING) but it is kept
1213 here for better struct attribute alignment. */
1214 unsigned int string_is_canonical : 1;
1219 struct dwarf_block *blk;
1228 /* This data structure holds a complete die structure. */
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1234 /* Number of attributes */
1235 unsigned char num_attrs;
1237 /* True if we're presently building the full type name for the
1238 type derived from this DIE. */
1239 unsigned char building_fullname : 1;
1241 /* True if this die is in process. PR 16581. */
1242 unsigned char in_process : 1;
1245 unsigned int abbrev;
1247 /* Offset in .debug_info or .debug_types section. */
1250 /* The dies in a compilation unit form an n-ary tree. PARENT
1251 points to this die's parent; CHILD points to the first child of
1252 this node; and all the children of a given node are chained
1253 together via their SIBLING fields. */
1254 struct die_info *child; /* Its first child, if any. */
1255 struct die_info *sibling; /* Its next sibling, if any. */
1256 struct die_info *parent; /* Its parent, if any. */
1258 /* An array of attributes, with NUM_ATTRS elements. There may be
1259 zero, but it's not common and zero-sized arrays are not
1260 sufficiently portable C. */
1261 struct attribute attrs[1];
1264 /* Get at parts of an attribute structure. */
1266 #define DW_STRING(attr) ((attr)->u.str)
1267 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1268 #define DW_UNSND(attr) ((attr)->u.unsnd)
1269 #define DW_BLOCK(attr) ((attr)->u.blk)
1270 #define DW_SND(attr) ((attr)->u.snd)
1271 #define DW_ADDR(attr) ((attr)->u.addr)
1272 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1274 /* Blocks are a bunch of untyped bytes. */
1279 /* Valid only if SIZE is not zero. */
1280 const gdb_byte *data;
1283 #ifndef ATTR_ALLOC_CHUNK
1284 #define ATTR_ALLOC_CHUNK 4
1287 /* Allocate fields for structs, unions and enums in this size. */
1288 #ifndef DW_FIELD_ALLOC_CHUNK
1289 #define DW_FIELD_ALLOC_CHUNK 4
1292 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1293 but this would require a corresponding change in unpack_field_as_long
1295 static int bits_per_byte = 8;
1299 struct nextfield *next;
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1315 struct nextfnfield *head;
1318 struct typedef_field_list
1320 struct typedef_field field;
1321 struct typedef_field_list *next;
1324 /* The routines that read and process dies for a C struct or C++ class
1325 pass lists of data member fields and lists of member function fields
1326 in an instance of a field_info structure, as defined below. */
1329 /* List of data member and baseclasses fields. */
1330 struct nextfield *fields, *baseclasses;
1332 /* Number of fields (including baseclasses). */
1335 /* Number of baseclasses. */
1338 /* Set if the accesibility of one of the fields is not public. */
1339 int non_public_fields;
1341 /* Member function fields array, entries are allocated in the order they
1342 are encountered in the object file. */
1343 struct nextfnfield *fnfields;
1345 /* Member function fieldlist array, contains name of possibly overloaded
1346 member function, number of overloaded member functions and a pointer
1347 to the head of the member function field chain. */
1348 struct fnfieldlist *fnfieldlists;
1350 /* Number of entries in the fnfieldlists array. */
1353 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1354 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1355 struct typedef_field_list *typedef_field_list;
1356 unsigned typedef_field_list_count;
1359 /* One item on the queue of compilation units to read in full symbols
1361 struct dwarf2_queue_item
1363 struct dwarf2_per_cu_data *per_cu;
1364 enum language pretend_language;
1365 struct dwarf2_queue_item *next;
1368 /* The current queue. */
1369 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1371 /* Loaded secondary compilation units are kept in memory until they
1372 have not been referenced for the processing of this many
1373 compilation units. Set this to zero to disable caching. Cache
1374 sizes of up to at least twenty will improve startup time for
1375 typical inter-CU-reference binaries, at an obvious memory cost. */
1376 static int dwarf2_max_cache_age = 5;
1378 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1379 struct cmd_list_element *c, const char *value)
1381 fprintf_filtered (file, _("The upper bound on the age of cached "
1382 "dwarf2 compilation units is %s.\n"),
1386 /* local function prototypes */
1388 static const char *get_section_name (const struct dwarf2_section_info *);
1390 static const char *get_section_file_name (const struct dwarf2_section_info *);
1392 static void dwarf2_locate_sections (bfd *, asection *, void *);
1394 static void dwarf2_find_base_address (struct die_info *die,
1395 struct dwarf2_cu *cu);
1397 static struct partial_symtab *create_partial_symtab
1398 (struct dwarf2_per_cu_data *per_cu, const char *name);
1400 static void dwarf2_build_psymtabs_hard (struct objfile *);
1402 static void scan_partial_symbols (struct partial_die_info *,
1403 CORE_ADDR *, CORE_ADDR *,
1404 int, struct dwarf2_cu *);
1406 static void add_partial_symbol (struct partial_die_info *,
1407 struct dwarf2_cu *);
1409 static void add_partial_namespace (struct partial_die_info *pdi,
1410 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1411 int set_addrmap, struct dwarf2_cu *cu);
1413 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1414 CORE_ADDR *highpc, int set_addrmap,
1415 struct dwarf2_cu *cu);
1417 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1418 struct dwarf2_cu *cu);
1420 static void add_partial_subprogram (struct partial_die_info *pdi,
1421 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1422 int need_pc, struct dwarf2_cu *cu);
1424 static void dwarf2_read_symtab (struct partial_symtab *,
1427 static void psymtab_to_symtab_1 (struct partial_symtab *);
1429 static struct abbrev_info *abbrev_table_lookup_abbrev
1430 (const struct abbrev_table *, unsigned int);
1432 static struct abbrev_table *abbrev_table_read_table
1433 (struct dwarf2_section_info *, sect_offset);
1435 static void abbrev_table_free (struct abbrev_table *);
1437 static void abbrev_table_free_cleanup (void *);
1439 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1440 struct dwarf2_section_info *);
1442 static void dwarf2_free_abbrev_table (void *);
1444 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1446 static struct partial_die_info *load_partial_dies
1447 (const struct die_reader_specs *, const gdb_byte *, int);
1449 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1450 struct partial_die_info *,
1451 struct abbrev_info *,
1455 static struct partial_die_info *find_partial_die (sect_offset, int,
1456 struct dwarf2_cu *);
1458 static void fixup_partial_die (struct partial_die_info *,
1459 struct dwarf2_cu *);
1461 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1462 struct attribute *, struct attr_abbrev *,
1465 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1467 static int read_1_signed_byte (bfd *, const gdb_byte *);
1469 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1471 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1473 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1475 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1478 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1480 static LONGEST read_checked_initial_length_and_offset
1481 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1482 unsigned int *, unsigned int *);
1484 static LONGEST read_offset (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1488 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1490 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1493 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1495 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1497 static const char *read_indirect_string (bfd *, const gdb_byte *,
1498 const struct comp_unit_head *,
1501 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1503 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1505 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1507 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1511 static const char *read_str_index (const struct die_reader_specs *reader,
1512 ULONGEST str_index);
1514 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1516 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1517 struct dwarf2_cu *);
1519 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1522 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1523 struct dwarf2_cu *cu);
1525 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1527 static struct die_info *die_specification (struct die_info *die,
1528 struct dwarf2_cu **);
1530 static void free_line_header (struct line_header *lh);
1532 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1533 struct dwarf2_cu *cu);
1535 static void dwarf_decode_lines (struct line_header *, const char *,
1536 struct dwarf2_cu *, struct partial_symtab *,
1537 CORE_ADDR, int decode_mapping);
1539 static void dwarf2_start_subfile (const char *, const char *);
1541 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1542 const char *, const char *,
1545 static struct symbol *new_symbol (struct die_info *, struct type *,
1546 struct dwarf2_cu *);
1548 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1549 struct dwarf2_cu *, struct symbol *);
1551 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1552 struct dwarf2_cu *);
1554 static void dwarf2_const_value_attr (const struct attribute *attr,
1557 struct obstack *obstack,
1558 struct dwarf2_cu *cu, LONGEST *value,
1559 const gdb_byte **bytes,
1560 struct dwarf2_locexpr_baton **baton);
1562 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1564 static int need_gnat_info (struct dwarf2_cu *);
1566 static struct type *die_descriptive_type (struct die_info *,
1567 struct dwarf2_cu *);
1569 static void set_descriptive_type (struct type *, struct die_info *,
1570 struct dwarf2_cu *);
1572 static struct type *die_containing_type (struct die_info *,
1573 struct dwarf2_cu *);
1575 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1576 struct dwarf2_cu *);
1578 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1580 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1582 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1584 static char *typename_concat (struct obstack *obs, const char *prefix,
1585 const char *suffix, int physname,
1586 struct dwarf2_cu *cu);
1588 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1590 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1592 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1594 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1596 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1598 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1599 struct dwarf2_cu *, struct partial_symtab *);
1601 static int dwarf2_get_pc_bounds (struct die_info *,
1602 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1603 struct partial_symtab *);
1605 static void get_scope_pc_bounds (struct die_info *,
1606 CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *);
1609 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1610 CORE_ADDR, struct dwarf2_cu *);
1612 static void dwarf2_add_field (struct field_info *, struct die_info *,
1613 struct dwarf2_cu *);
1615 static void dwarf2_attach_fields_to_type (struct field_info *,
1616 struct type *, struct dwarf2_cu *);
1618 static void dwarf2_add_member_fn (struct field_info *,
1619 struct die_info *, struct type *,
1620 struct dwarf2_cu *);
1622 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1624 struct dwarf2_cu *);
1626 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1628 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1630 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1632 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1634 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1636 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1638 static struct type *read_module_type (struct die_info *die,
1639 struct dwarf2_cu *cu);
1641 static const char *namespace_name (struct die_info *die,
1642 int *is_anonymous, struct dwarf2_cu *);
1644 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1646 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1648 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1649 struct dwarf2_cu *);
1651 static struct die_info *read_die_and_siblings_1
1652 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1655 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1656 const gdb_byte *info_ptr,
1657 const gdb_byte **new_info_ptr,
1658 struct die_info *parent);
1660 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1661 struct die_info **, const gdb_byte *,
1664 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1665 struct die_info **, const gdb_byte *,
1668 static void process_die (struct die_info *, struct dwarf2_cu *);
1670 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1673 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1675 static const char *dwarf2_full_name (const char *name,
1676 struct die_info *die,
1677 struct dwarf2_cu *cu);
1679 static const char *dwarf2_physname (const char *name, struct die_info *die,
1680 struct dwarf2_cu *cu);
1682 static struct die_info *dwarf2_extension (struct die_info *die,
1683 struct dwarf2_cu **);
1685 static const char *dwarf_tag_name (unsigned int);
1687 static const char *dwarf_attr_name (unsigned int);
1689 static const char *dwarf_form_name (unsigned int);
1691 static char *dwarf_bool_name (unsigned int);
1693 static const char *dwarf_type_encoding_name (unsigned int);
1695 static struct die_info *sibling_die (struct die_info *);
1697 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1699 static void dump_die_for_error (struct die_info *);
1701 static void dump_die_1 (struct ui_file *, int level, int max_level,
1704 /*static*/ void dump_die (struct die_info *, int max_level);
1706 static void store_in_ref_table (struct die_info *,
1707 struct dwarf2_cu *);
1709 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1711 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1713 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1714 const struct attribute *,
1715 struct dwarf2_cu **);
1717 static struct die_info *follow_die_ref (struct die_info *,
1718 const struct attribute *,
1719 struct dwarf2_cu **);
1721 static struct die_info *follow_die_sig (struct die_info *,
1722 const struct attribute *,
1723 struct dwarf2_cu **);
1725 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1726 struct dwarf2_cu *);
1728 static struct type *get_DW_AT_signature_type (struct die_info *,
1729 const struct attribute *,
1730 struct dwarf2_cu *);
1732 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1734 static void read_signatured_type (struct signatured_type *);
1736 /* memory allocation interface */
1738 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1740 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1742 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1744 static int attr_form_is_block (const struct attribute *);
1746 static int attr_form_is_section_offset (const struct attribute *);
1748 static int attr_form_is_constant (const struct attribute *);
1750 static int attr_form_is_ref (const struct attribute *);
1752 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1753 struct dwarf2_loclist_baton *baton,
1754 const struct attribute *attr);
1756 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1758 struct dwarf2_cu *cu,
1761 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1762 const gdb_byte *info_ptr,
1763 struct abbrev_info *abbrev);
1765 static void free_stack_comp_unit (void *);
1767 static hashval_t partial_die_hash (const void *item);
1769 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1771 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1772 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1774 static void init_one_comp_unit (struct dwarf2_cu *cu,
1775 struct dwarf2_per_cu_data *per_cu);
1777 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1778 struct die_info *comp_unit_die,
1779 enum language pretend_language);
1781 static void free_heap_comp_unit (void *);
1783 static void free_cached_comp_units (void *);
1785 static void age_cached_comp_units (void);
1787 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1789 static struct type *set_die_type (struct die_info *, struct type *,
1790 struct dwarf2_cu *);
1792 static void create_all_comp_units (struct objfile *);
1794 static int create_all_type_units (struct objfile *);
1796 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1799 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1802 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1805 static void dwarf2_add_dependence (struct dwarf2_cu *,
1806 struct dwarf2_per_cu_data *);
1808 static void dwarf2_mark (struct dwarf2_cu *);
1810 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1812 static struct type *get_die_type_at_offset (sect_offset,
1813 struct dwarf2_per_cu_data *);
1815 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1817 static void dwarf2_release_queue (void *dummy);
1819 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1820 enum language pretend_language);
1822 static void process_queue (void);
1824 static void find_file_and_directory (struct die_info *die,
1825 struct dwarf2_cu *cu,
1826 const char **name, const char **comp_dir);
1828 static char *file_full_name (int file, struct line_header *lh,
1829 const char *comp_dir);
1831 static const gdb_byte *read_and_check_comp_unit_head
1832 (struct comp_unit_head *header,
1833 struct dwarf2_section_info *section,
1834 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1835 int is_debug_types_section);
1837 static void init_cutu_and_read_dies
1838 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1839 int use_existing_cu, int keep,
1840 die_reader_func_ftype *die_reader_func, void *data);
1842 static void init_cutu_and_read_dies_simple
1843 (struct dwarf2_per_cu_data *this_cu,
1844 die_reader_func_ftype *die_reader_func, void *data);
1846 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1848 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1850 static struct dwo_unit *lookup_dwo_unit_in_dwp
1851 (struct dwp_file *dwp_file, const char *comp_dir,
1852 ULONGEST signature, int is_debug_types);
1854 static struct dwp_file *get_dwp_file (void);
1856 static struct dwo_unit *lookup_dwo_comp_unit
1857 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1859 static struct dwo_unit *lookup_dwo_type_unit
1860 (struct signatured_type *, const char *, const char *);
1862 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1864 static void free_dwo_file_cleanup (void *);
1866 static void process_cu_includes (void);
1868 static void check_producer (struct dwarf2_cu *cu);
1870 static void free_line_header_voidp (void *arg);
1872 /* Various complaints about symbol reading that don't abort the process. */
1875 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1877 complaint (&symfile_complaints,
1878 _("statement list doesn't fit in .debug_line section"));
1882 dwarf2_debug_line_missing_file_complaint (void)
1884 complaint (&symfile_complaints,
1885 _(".debug_line section has line data without a file"));
1889 dwarf2_debug_line_missing_end_sequence_complaint (void)
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line "
1893 "program sequence without an end"));
1897 dwarf2_complex_location_expr_complaint (void)
1899 complaint (&symfile_complaints, _("location expression too complex"));
1903 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1906 complaint (&symfile_complaints,
1907 _("const value length mismatch for '%s', got %d, expected %d"),
1912 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1914 complaint (&symfile_complaints,
1915 _("debug info runs off end of %s section"
1917 get_section_name (section),
1918 get_section_file_name (section));
1922 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1924 complaint (&symfile_complaints,
1925 _("macro debug info contains a "
1926 "malformed macro definition:\n`%s'"),
1931 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1933 complaint (&symfile_complaints,
1934 _("invalid attribute class or form for '%s' in '%s'"),
1938 /* Hash function for line_header_hash. */
1941 line_header_hash (const struct line_header *ofs)
1943 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1946 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1949 line_header_hash_voidp (const void *item)
1951 const struct line_header *ofs = item;
1953 return line_header_hash (ofs);
1956 /* Equality function for line_header_hash. */
1959 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1961 const struct line_header *ofs_lhs = item_lhs;
1962 const struct line_header *ofs_rhs = item_rhs;
1964 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1965 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1971 /* Convert VALUE between big- and little-endian. */
1973 byte_swap (offset_type value)
1977 result = (value & 0xff) << 24;
1978 result |= (value & 0xff00) << 8;
1979 result |= (value & 0xff0000) >> 8;
1980 result |= (value & 0xff000000) >> 24;
1984 #define MAYBE_SWAP(V) byte_swap (V)
1987 #define MAYBE_SWAP(V) (V)
1988 #endif /* WORDS_BIGENDIAN */
1990 /* Read the given attribute value as an address, taking the attribute's
1991 form into account. */
1994 attr_value_as_address (struct attribute *attr)
1998 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2000 /* Aside from a few clearly defined exceptions, attributes that
2001 contain an address must always be in DW_FORM_addr form.
2002 Unfortunately, some compilers happen to be violating this
2003 requirement by encoding addresses using other forms, such
2004 as DW_FORM_data4 for example. For those broken compilers,
2005 we try to do our best, without any guarantee of success,
2006 to interpret the address correctly. It would also be nice
2007 to generate a complaint, but that would require us to maintain
2008 a list of legitimate cases where a non-address form is allowed,
2009 as well as update callers to pass in at least the CU's DWARF
2010 version. This is more overhead than what we're willing to
2011 expand for a pretty rare case. */
2012 addr = DW_UNSND (attr);
2015 addr = DW_ADDR (attr);
2020 /* The suffix for an index file. */
2021 #define INDEX_SUFFIX ".gdb-index"
2023 /* Try to locate the sections we need for DWARF 2 debugging
2024 information and return true if we have enough to do something.
2025 NAMES points to the dwarf2 section names, or is NULL if the standard
2026 ELF names are used. */
2029 dwarf2_has_info (struct objfile *objfile,
2030 const struct dwarf2_debug_sections *names)
2032 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2033 if (!dwarf2_per_objfile)
2035 /* Initialize per-objfile state. */
2036 struct dwarf2_per_objfile *data
2037 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2039 memset (data, 0, sizeof (*data));
2040 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2041 dwarf2_per_objfile = data;
2043 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2045 dwarf2_per_objfile->objfile = objfile;
2047 return (!dwarf2_per_objfile->info.is_virtual
2048 && dwarf2_per_objfile->info.s.asection != NULL
2049 && !dwarf2_per_objfile->abbrev.is_virtual
2050 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2053 /* Return the containing section of virtual section SECTION. */
2055 static struct dwarf2_section_info *
2056 get_containing_section (const struct dwarf2_section_info *section)
2058 gdb_assert (section->is_virtual);
2059 return section->s.containing_section;
2062 /* Return the bfd owner of SECTION. */
2065 get_section_bfd_owner (const struct dwarf2_section_info *section)
2067 if (section->is_virtual)
2069 section = get_containing_section (section);
2070 gdb_assert (!section->is_virtual);
2072 return section->s.asection->owner;
2075 /* Return the bfd section of SECTION.
2076 Returns NULL if the section is not present. */
2079 get_section_bfd_section (const struct dwarf2_section_info *section)
2081 if (section->is_virtual)
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2086 return section->s.asection;
2089 /* Return the name of SECTION. */
2092 get_section_name (const struct dwarf2_section_info *section)
2094 asection *sectp = get_section_bfd_section (section);
2096 gdb_assert (sectp != NULL);
2097 return bfd_section_name (get_section_bfd_owner (section), sectp);
2100 /* Return the name of the file SECTION is in. */
2103 get_section_file_name (const struct dwarf2_section_info *section)
2105 bfd *abfd = get_section_bfd_owner (section);
2107 return bfd_get_filename (abfd);
2110 /* Return the id of SECTION.
2111 Returns 0 if SECTION doesn't exist. */
2114 get_section_id (const struct dwarf2_section_info *section)
2116 asection *sectp = get_section_bfd_section (section);
2123 /* Return the flags of SECTION.
2124 SECTION (or containing section if this is a virtual section) must exist. */
2127 get_section_flags (const struct dwarf2_section_info *section)
2129 asection *sectp = get_section_bfd_section (section);
2131 gdb_assert (sectp != NULL);
2132 return bfd_get_section_flags (sectp->owner, sectp);
2135 /* When loading sections, we look either for uncompressed section or for
2136 compressed section names. */
2139 section_is_p (const char *section_name,
2140 const struct dwarf2_section_names *names)
2142 if (names->normal != NULL
2143 && strcmp (section_name, names->normal) == 0)
2145 if (names->compressed != NULL
2146 && strcmp (section_name, names->compressed) == 0)
2151 /* This function is mapped across the sections and remembers the
2152 offset and size of each of the debugging sections we are interested
2156 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2158 const struct dwarf2_debug_sections *names;
2159 flagword aflag = bfd_get_section_flags (abfd, sectp);
2162 names = &dwarf2_elf_names;
2164 names = (const struct dwarf2_debug_sections *) vnames;
2166 if ((aflag & SEC_HAS_CONTENTS) == 0)
2169 else if (section_is_p (sectp->name, &names->info))
2171 dwarf2_per_objfile->info.s.asection = sectp;
2172 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2174 else if (section_is_p (sectp->name, &names->abbrev))
2176 dwarf2_per_objfile->abbrev.s.asection = sectp;
2177 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2179 else if (section_is_p (sectp->name, &names->line))
2181 dwarf2_per_objfile->line.s.asection = sectp;
2182 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2184 else if (section_is_p (sectp->name, &names->loc))
2186 dwarf2_per_objfile->loc.s.asection = sectp;
2187 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2189 else if (section_is_p (sectp->name, &names->macinfo))
2191 dwarf2_per_objfile->macinfo.s.asection = sectp;
2192 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2194 else if (section_is_p (sectp->name, &names->macro))
2196 dwarf2_per_objfile->macro.s.asection = sectp;
2197 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2199 else if (section_is_p (sectp->name, &names->str))
2201 dwarf2_per_objfile->str.s.asection = sectp;
2202 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2204 else if (section_is_p (sectp->name, &names->addr))
2206 dwarf2_per_objfile->addr.s.asection = sectp;
2207 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2209 else if (section_is_p (sectp->name, &names->frame))
2211 dwarf2_per_objfile->frame.s.asection = sectp;
2212 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2214 else if (section_is_p (sectp->name, &names->eh_frame))
2216 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2217 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2219 else if (section_is_p (sectp->name, &names->ranges))
2221 dwarf2_per_objfile->ranges.s.asection = sectp;
2222 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2224 else if (section_is_p (sectp->name, &names->types))
2226 struct dwarf2_section_info type_section;
2228 memset (&type_section, 0, sizeof (type_section));
2229 type_section.s.asection = sectp;
2230 type_section.size = bfd_get_section_size (sectp);
2232 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2235 else if (section_is_p (sectp->name, &names->gdb_index))
2237 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2238 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2241 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2242 && bfd_section_vma (abfd, sectp) == 0)
2243 dwarf2_per_objfile->has_section_at_zero = 1;
2246 /* A helper function that decides whether a section is empty,
2250 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2252 if (section->is_virtual)
2253 return section->size == 0;
2254 return section->s.asection == NULL || section->size == 0;
2257 /* Read the contents of the section INFO.
2258 OBJFILE is the main object file, but not necessarily the file where
2259 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2261 If the section is compressed, uncompress it before returning. */
2264 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2268 gdb_byte *buf, *retbuf;
2272 info->buffer = NULL;
2275 if (dwarf2_section_empty_p (info))
2278 sectp = get_section_bfd_section (info);
2280 /* If this is a virtual section we need to read in the real one first. */
2281 if (info->is_virtual)
2283 struct dwarf2_section_info *containing_section =
2284 get_containing_section (info);
2286 gdb_assert (sectp != NULL);
2287 if ((sectp->flags & SEC_RELOC) != 0)
2289 error (_("Dwarf Error: DWP format V2 with relocations is not"
2290 " supported in section %s [in module %s]"),
2291 get_section_name (info), get_section_file_name (info));
2293 dwarf2_read_section (objfile, containing_section);
2294 /* Other code should have already caught virtual sections that don't
2296 gdb_assert (info->virtual_offset + info->size
2297 <= containing_section->size);
2298 /* If the real section is empty or there was a problem reading the
2299 section we shouldn't get here. */
2300 gdb_assert (containing_section->buffer != NULL);
2301 info->buffer = containing_section->buffer + info->virtual_offset;
2305 /* If the section has relocations, we must read it ourselves.
2306 Otherwise we attach it to the BFD. */
2307 if ((sectp->flags & SEC_RELOC) == 0)
2309 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2313 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2316 /* When debugging .o files, we may need to apply relocations; see
2317 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2318 We never compress sections in .o files, so we only need to
2319 try this when the section is not compressed. */
2320 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2323 info->buffer = retbuf;
2327 abfd = get_section_bfd_owner (info);
2328 gdb_assert (abfd != NULL);
2330 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2331 || bfd_bread (buf, info->size, abfd) != info->size)
2333 error (_("Dwarf Error: Can't read DWARF data"
2334 " in section %s [in module %s]"),
2335 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2339 /* A helper function that returns the size of a section in a safe way.
2340 If you are positive that the section has been read before using the
2341 size, then it is safe to refer to the dwarf2_section_info object's
2342 "size" field directly. In other cases, you must call this
2343 function, because for compressed sections the size field is not set
2344 correctly until the section has been read. */
2346 static bfd_size_type
2347 dwarf2_section_size (struct objfile *objfile,
2348 struct dwarf2_section_info *info)
2351 dwarf2_read_section (objfile, info);
2355 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2359 dwarf2_get_section_info (struct objfile *objfile,
2360 enum dwarf2_section_enum sect,
2361 asection **sectp, const gdb_byte **bufp,
2362 bfd_size_type *sizep)
2364 struct dwarf2_per_objfile *data
2365 = objfile_data (objfile, dwarf2_objfile_data_key);
2366 struct dwarf2_section_info *info;
2368 /* We may see an objfile without any DWARF, in which case we just
2379 case DWARF2_DEBUG_FRAME:
2380 info = &data->frame;
2382 case DWARF2_EH_FRAME:
2383 info = &data->eh_frame;
2386 gdb_assert_not_reached ("unexpected section");
2389 dwarf2_read_section (objfile, info);
2391 *sectp = get_section_bfd_section (info);
2392 *bufp = info->buffer;
2393 *sizep = info->size;
2396 /* A helper function to find the sections for a .dwz file. */
2399 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2401 struct dwz_file *dwz_file = arg;
2403 /* Note that we only support the standard ELF names, because .dwz
2404 is ELF-only (at the time of writing). */
2405 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2407 dwz_file->abbrev.s.asection = sectp;
2408 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2410 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2412 dwz_file->info.s.asection = sectp;
2413 dwz_file->info.size = bfd_get_section_size (sectp);
2415 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2417 dwz_file->str.s.asection = sectp;
2418 dwz_file->str.size = bfd_get_section_size (sectp);
2420 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2422 dwz_file->line.s.asection = sectp;
2423 dwz_file->line.size = bfd_get_section_size (sectp);
2425 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2427 dwz_file->macro.s.asection = sectp;
2428 dwz_file->macro.size = bfd_get_section_size (sectp);
2430 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2432 dwz_file->gdb_index.s.asection = sectp;
2433 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2437 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2438 there is no .gnu_debugaltlink section in the file. Error if there
2439 is such a section but the file cannot be found. */
2441 static struct dwz_file *
2442 dwarf2_get_dwz_file (void)
2446 struct cleanup *cleanup;
2447 const char *filename;
2448 struct dwz_file *result;
2449 bfd_size_type buildid_len_arg;
2453 if (dwarf2_per_objfile->dwz_file != NULL)
2454 return dwarf2_per_objfile->dwz_file;
2456 bfd_set_error (bfd_error_no_error);
2457 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2458 &buildid_len_arg, &buildid);
2461 if (bfd_get_error () == bfd_error_no_error)
2463 error (_("could not read '.gnu_debugaltlink' section: %s"),
2464 bfd_errmsg (bfd_get_error ()));
2466 cleanup = make_cleanup (xfree, data);
2467 make_cleanup (xfree, buildid);
2469 buildid_len = (size_t) buildid_len_arg;
2471 filename = (const char *) data;
2472 if (!IS_ABSOLUTE_PATH (filename))
2474 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2477 make_cleanup (xfree, abs);
2478 abs = ldirname (abs);
2479 make_cleanup (xfree, abs);
2481 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2482 make_cleanup (xfree, rel);
2486 /* First try the file name given in the section. If that doesn't
2487 work, try to use the build-id instead. */
2488 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2489 if (dwz_bfd != NULL)
2491 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2493 gdb_bfd_unref (dwz_bfd);
2498 if (dwz_bfd == NULL)
2499 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2501 if (dwz_bfd == NULL)
2502 error (_("could not find '.gnu_debugaltlink' file for %s"),
2503 objfile_name (dwarf2_per_objfile->objfile));
2505 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2507 result->dwz_bfd = dwz_bfd;
2509 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2511 do_cleanups (cleanup);
2513 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2514 dwarf2_per_objfile->dwz_file = result;
2518 /* DWARF quick_symbols_functions support. */
2520 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2521 unique line tables, so we maintain a separate table of all .debug_line
2522 derived entries to support the sharing.
2523 All the quick functions need is the list of file names. We discard the
2524 line_header when we're done and don't need to record it here. */
2525 struct quick_file_names
2527 /* The data used to construct the hash key. */
2528 struct stmt_list_hash hash;
2530 /* The number of entries in file_names, real_names. */
2531 unsigned int num_file_names;
2533 /* The file names from the line table, after being run through
2535 const char **file_names;
2537 /* The file names from the line table after being run through
2538 gdb_realpath. These are computed lazily. */
2539 const char **real_names;
2542 /* When using the index (and thus not using psymtabs), each CU has an
2543 object of this type. This is used to hold information needed by
2544 the various "quick" methods. */
2545 struct dwarf2_per_cu_quick_data
2547 /* The file table. This can be NULL if there was no file table
2548 or it's currently not read in.
2549 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2550 struct quick_file_names *file_names;
2552 /* The corresponding symbol table. This is NULL if symbols for this
2553 CU have not yet been read. */
2554 struct compunit_symtab *compunit_symtab;
2556 /* A temporary mark bit used when iterating over all CUs in
2557 expand_symtabs_matching. */
2558 unsigned int mark : 1;
2560 /* True if we've tried to read the file table and found there isn't one.
2561 There will be no point in trying to read it again next time. */
2562 unsigned int no_file_data : 1;
2565 /* Utility hash function for a stmt_list_hash. */
2568 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2572 if (stmt_list_hash->dwo_unit != NULL)
2573 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2574 v += stmt_list_hash->line_offset.sect_off;
2578 /* Utility equality function for a stmt_list_hash. */
2581 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2582 const struct stmt_list_hash *rhs)
2584 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2586 if (lhs->dwo_unit != NULL
2587 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2590 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2593 /* Hash function for a quick_file_names. */
2596 hash_file_name_entry (const void *e)
2598 const struct quick_file_names *file_data = e;
2600 return hash_stmt_list_entry (&file_data->hash);
2603 /* Equality function for a quick_file_names. */
2606 eq_file_name_entry (const void *a, const void *b)
2608 const struct quick_file_names *ea = a;
2609 const struct quick_file_names *eb = b;
2611 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2614 /* Delete function for a quick_file_names. */
2617 delete_file_name_entry (void *e)
2619 struct quick_file_names *file_data = e;
2622 for (i = 0; i < file_data->num_file_names; ++i)
2624 xfree ((void*) file_data->file_names[i]);
2625 if (file_data->real_names)
2626 xfree ((void*) file_data->real_names[i]);
2629 /* The space for the struct itself lives on objfile_obstack,
2630 so we don't free it here. */
2633 /* Create a quick_file_names hash table. */
2636 create_quick_file_names_table (unsigned int nr_initial_entries)
2638 return htab_create_alloc (nr_initial_entries,
2639 hash_file_name_entry, eq_file_name_entry,
2640 delete_file_name_entry, xcalloc, xfree);
2643 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2644 have to be created afterwards. You should call age_cached_comp_units after
2645 processing PER_CU->CU. dw2_setup must have been already called. */
2648 load_cu (struct dwarf2_per_cu_data *per_cu)
2650 if (per_cu->is_debug_types)
2651 load_full_type_unit (per_cu);
2653 load_full_comp_unit (per_cu, language_minimal);
2655 gdb_assert (per_cu->cu != NULL);
2657 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2660 /* Read in the symbols for PER_CU. */
2663 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2665 struct cleanup *back_to;
2667 /* Skip type_unit_groups, reading the type units they contain
2668 is handled elsewhere. */
2669 if (IS_TYPE_UNIT_GROUP (per_cu))
2672 back_to = make_cleanup (dwarf2_release_queue, NULL);
2674 if (dwarf2_per_objfile->using_index
2675 ? per_cu->v.quick->compunit_symtab == NULL
2676 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2678 queue_comp_unit (per_cu, language_minimal);
2681 /* If we just loaded a CU from a DWO, and we're working with an index
2682 that may badly handle TUs, load all the TUs in that DWO as well.
2683 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2684 if (!per_cu->is_debug_types
2685 && per_cu->cu->dwo_unit != NULL
2686 && dwarf2_per_objfile->index_table != NULL
2687 && dwarf2_per_objfile->index_table->version <= 7
2688 /* DWP files aren't supported yet. */
2689 && get_dwp_file () == NULL)
2690 queue_and_load_all_dwo_tus (per_cu);
2695 /* Age the cache, releasing compilation units that have not
2696 been used recently. */
2697 age_cached_comp_units ();
2699 do_cleanups (back_to);
2702 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2703 the objfile from which this CU came. Returns the resulting symbol
2706 static struct compunit_symtab *
2707 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2709 gdb_assert (dwarf2_per_objfile->using_index);
2710 if (!per_cu->v.quick->compunit_symtab)
2712 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2713 increment_reading_symtab ();
2714 dw2_do_instantiate_symtab (per_cu);
2715 process_cu_includes ();
2716 do_cleanups (back_to);
2719 return per_cu->v.quick->compunit_symtab;
2722 /* Return the CU/TU given its index.
2724 This is intended for loops like:
2726 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2727 + dwarf2_per_objfile->n_type_units); ++i)
2729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2735 static struct dwarf2_per_cu_data *
2736 dw2_get_cutu (int index)
2738 if (index >= dwarf2_per_objfile->n_comp_units)
2740 index -= dwarf2_per_objfile->n_comp_units;
2741 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2742 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2745 return dwarf2_per_objfile->all_comp_units[index];
2748 /* Return the CU given its index.
2749 This differs from dw2_get_cutu in that it's for when you know INDEX
2752 static struct dwarf2_per_cu_data *
2753 dw2_get_cu (int index)
2755 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2757 return dwarf2_per_objfile->all_comp_units[index];
2760 /* A helper for create_cus_from_index that handles a given list of
2764 create_cus_from_index_list (struct objfile *objfile,
2765 const gdb_byte *cu_list, offset_type n_elements,
2766 struct dwarf2_section_info *section,
2772 for (i = 0; i < n_elements; i += 2)
2774 struct dwarf2_per_cu_data *the_cu;
2775 ULONGEST offset, length;
2777 gdb_static_assert (sizeof (ULONGEST) >= 8);
2778 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2779 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2782 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2783 struct dwarf2_per_cu_data);
2784 the_cu->offset.sect_off = offset;
2785 the_cu->length = length;
2786 the_cu->objfile = objfile;
2787 the_cu->section = section;
2788 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2789 struct dwarf2_per_cu_quick_data);
2790 the_cu->is_dwz = is_dwz;
2791 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2795 /* Read the CU list from the mapped index, and use it to create all
2796 the CU objects for this objfile. */
2799 create_cus_from_index (struct objfile *objfile,
2800 const gdb_byte *cu_list, offset_type cu_list_elements,
2801 const gdb_byte *dwz_list, offset_type dwz_elements)
2803 struct dwz_file *dwz;
2805 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2806 dwarf2_per_objfile->all_comp_units
2807 = obstack_alloc (&objfile->objfile_obstack,
2808 dwarf2_per_objfile->n_comp_units
2809 * sizeof (struct dwarf2_per_cu_data *));
2811 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2812 &dwarf2_per_objfile->info, 0, 0);
2814 if (dwz_elements == 0)
2817 dwz = dwarf2_get_dwz_file ();
2818 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2819 cu_list_elements / 2);
2822 /* Create the signatured type hash table from the index. */
2825 create_signatured_type_table_from_index (struct objfile *objfile,
2826 struct dwarf2_section_info *section,
2827 const gdb_byte *bytes,
2828 offset_type elements)
2831 htab_t sig_types_hash;
2833 dwarf2_per_objfile->n_type_units
2834 = dwarf2_per_objfile->n_allocated_type_units
2836 dwarf2_per_objfile->all_type_units
2837 = xmalloc (dwarf2_per_objfile->n_type_units
2838 * sizeof (struct signatured_type *));
2840 sig_types_hash = allocate_signatured_type_table (objfile);
2842 for (i = 0; i < elements; i += 3)
2844 struct signatured_type *sig_type;
2845 ULONGEST offset, type_offset_in_tu, signature;
2848 gdb_static_assert (sizeof (ULONGEST) >= 8);
2849 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2850 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2852 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2855 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2856 struct signatured_type);
2857 sig_type->signature = signature;
2858 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2859 sig_type->per_cu.is_debug_types = 1;
2860 sig_type->per_cu.section = section;
2861 sig_type->per_cu.offset.sect_off = offset;
2862 sig_type->per_cu.objfile = objfile;
2863 sig_type->per_cu.v.quick
2864 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_quick_data);
2867 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2870 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2873 dwarf2_per_objfile->signatured_types = sig_types_hash;
2876 /* Read the address map data from the mapped index, and use it to
2877 populate the objfile's psymtabs_addrmap. */
2880 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2883 const gdb_byte *iter, *end;
2884 struct obstack temp_obstack;
2885 struct addrmap *mutable_map;
2886 struct cleanup *cleanup;
2889 obstack_init (&temp_obstack);
2890 cleanup = make_cleanup_obstack_free (&temp_obstack);
2891 mutable_map = addrmap_create_mutable (&temp_obstack);
2893 iter = index->address_table;
2894 end = iter + index->address_table_size;
2896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2900 ULONGEST hi, lo, cu_index;
2901 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2903 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2905 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2910 complaint (&symfile_complaints,
2911 _(".gdb_index address table has invalid range (%s - %s)"),
2912 hex_string (lo), hex_string (hi));
2916 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2918 complaint (&symfile_complaints,
2919 _(".gdb_index address table has invalid CU number %u"),
2920 (unsigned) cu_index);
2924 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2925 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2926 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2929 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2930 &objfile->objfile_obstack);
2931 do_cleanups (cleanup);
2934 /* The hash function for strings in the mapped index. This is the same as
2935 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2936 implementation. This is necessary because the hash function is tied to the
2937 format of the mapped index file. The hash values do not have to match with
2940 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2943 mapped_index_string_hash (int index_version, const void *p)
2945 const unsigned char *str = (const unsigned char *) p;
2949 while ((c = *str++) != 0)
2951 if (index_version >= 5)
2953 r = r * 67 + c - 113;
2959 /* Find a slot in the mapped index INDEX for the object named NAME.
2960 If NAME is found, set *VEC_OUT to point to the CU vector in the
2961 constant pool and return 1. If NAME cannot be found, return 0. */
2964 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2965 offset_type **vec_out)
2967 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2969 offset_type slot, step;
2970 int (*cmp) (const char *, const char *);
2972 if (current_language->la_language == language_cplus
2973 || current_language->la_language == language_java
2974 || current_language->la_language == language_fortran)
2976 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2979 if (strchr (name, '(') != NULL)
2981 char *without_params = cp_remove_params (name);
2983 if (without_params != NULL)
2985 make_cleanup (xfree, without_params);
2986 name = without_params;
2991 /* Index version 4 did not support case insensitive searches. But the
2992 indices for case insensitive languages are built in lowercase, therefore
2993 simulate our NAME being searched is also lowercased. */
2994 hash = mapped_index_string_hash ((index->version == 4
2995 && case_sensitivity == case_sensitive_off
2996 ? 5 : index->version),
2999 slot = hash & (index->symbol_table_slots - 1);
3000 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3001 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3005 /* Convert a slot number to an offset into the table. */
3006 offset_type i = 2 * slot;
3008 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3010 do_cleanups (back_to);
3014 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3015 if (!cmp (name, str))
3017 *vec_out = (offset_type *) (index->constant_pool
3018 + MAYBE_SWAP (index->symbol_table[i + 1]));
3019 do_cleanups (back_to);
3023 slot = (slot + step) & (index->symbol_table_slots - 1);
3027 /* A helper function that reads the .gdb_index from SECTION and fills
3028 in MAP. FILENAME is the name of the file containing the section;
3029 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3030 ok to use deprecated sections.
3032 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3033 out parameters that are filled in with information about the CU and
3034 TU lists in the section.
3036 Returns 1 if all went well, 0 otherwise. */
3039 read_index_from_section (struct objfile *objfile,
3040 const char *filename,
3042 struct dwarf2_section_info *section,
3043 struct mapped_index *map,
3044 const gdb_byte **cu_list,
3045 offset_type *cu_list_elements,
3046 const gdb_byte **types_list,
3047 offset_type *types_list_elements)
3049 const gdb_byte *addr;
3050 offset_type version;
3051 offset_type *metadata;
3054 if (dwarf2_section_empty_p (section))
3057 /* Older elfutils strip versions could keep the section in the main
3058 executable while splitting it for the separate debug info file. */
3059 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3062 dwarf2_read_section (objfile, section);
3064 addr = section->buffer;
3065 /* Version check. */
3066 version = MAYBE_SWAP (*(offset_type *) addr);
3067 /* Versions earlier than 3 emitted every copy of a psymbol. This
3068 causes the index to behave very poorly for certain requests. Version 3
3069 contained incomplete addrmap. So, it seems better to just ignore such
3073 static int warning_printed = 0;
3074 if (!warning_printed)
3076 warning (_("Skipping obsolete .gdb_index section in %s."),
3078 warning_printed = 1;
3082 /* Index version 4 uses a different hash function than index version
3085 Versions earlier than 6 did not emit psymbols for inlined
3086 functions. Using these files will cause GDB not to be able to
3087 set breakpoints on inlined functions by name, so we ignore these
3088 indices unless the user has done
3089 "set use-deprecated-index-sections on". */
3090 if (version < 6 && !deprecated_ok)
3092 static int warning_printed = 0;
3093 if (!warning_printed)
3096 Skipping deprecated .gdb_index section in %s.\n\
3097 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3098 to use the section anyway."),
3100 warning_printed = 1;
3104 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3105 of the TU (for symbols coming from TUs),
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3107 Plus gold-generated indices can have duplicate entries for global symbols,
3108 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3109 These are just performance bugs, and we can't distinguish gdb-generated
3110 indices from gold-generated ones, so issue no warning here. */
3112 /* Indexes with higher version than the one supported by GDB may be no
3113 longer backward compatible. */
3117 map->version = version;
3118 map->total_size = section->size;
3120 metadata = (offset_type *) (addr + sizeof (offset_type));
3123 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3124 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3128 *types_list = addr + MAYBE_SWAP (metadata[i]);
3129 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3130 - MAYBE_SWAP (metadata[i]))
3134 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3135 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3136 - MAYBE_SWAP (metadata[i]));
3139 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3140 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3141 - MAYBE_SWAP (metadata[i]))
3142 / (2 * sizeof (offset_type)));
3145 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3151 /* Read the index file. If everything went ok, initialize the "quick"
3152 elements of all the CUs and return 1. Otherwise, return 0. */
3155 dwarf2_read_index (struct objfile *objfile)
3157 struct mapped_index local_map, *map;
3158 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3159 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3160 struct dwz_file *dwz;
3162 if (!read_index_from_section (objfile, objfile_name (objfile),
3163 use_deprecated_index_sections,
3164 &dwarf2_per_objfile->gdb_index, &local_map,
3165 &cu_list, &cu_list_elements,
3166 &types_list, &types_list_elements))
3169 /* Don't use the index if it's empty. */
3170 if (local_map.symbol_table_slots == 0)
3173 /* If there is a .dwz file, read it so we can get its CU list as
3175 dwz = dwarf2_get_dwz_file ();
3178 struct mapped_index dwz_map;
3179 const gdb_byte *dwz_types_ignore;
3180 offset_type dwz_types_elements_ignore;
3182 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3184 &dwz->gdb_index, &dwz_map,
3185 &dwz_list, &dwz_list_elements,
3187 &dwz_types_elements_ignore))
3189 warning (_("could not read '.gdb_index' section from %s; skipping"),
3190 bfd_get_filename (dwz->dwz_bfd));
3195 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3198 if (types_list_elements)
3200 struct dwarf2_section_info *section;
3202 /* We can only handle a single .debug_types when we have an
3204 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3207 section = VEC_index (dwarf2_section_info_def,
3208 dwarf2_per_objfile->types, 0);
3210 create_signatured_type_table_from_index (objfile, section, types_list,
3211 types_list_elements);
3214 create_addrmap_from_index (objfile, &local_map);
3216 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3219 dwarf2_per_objfile->index_table = map;
3220 dwarf2_per_objfile->using_index = 1;
3221 dwarf2_per_objfile->quick_file_names_table =
3222 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3227 /* A helper for the "quick" functions which sets the global
3228 dwarf2_per_objfile according to OBJFILE. */
3231 dw2_setup (struct objfile *objfile)
3233 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3234 gdb_assert (dwarf2_per_objfile);
3237 /* die_reader_func for dw2_get_file_names. */
3240 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3241 const gdb_byte *info_ptr,
3242 struct die_info *comp_unit_die,
3246 struct dwarf2_cu *cu = reader->cu;
3247 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3248 struct objfile *objfile = dwarf2_per_objfile->objfile;
3249 struct dwarf2_per_cu_data *lh_cu;
3250 struct line_header *lh;
3251 struct attribute *attr;
3253 const char *name, *comp_dir;
3255 struct quick_file_names *qfn;
3256 unsigned int line_offset;
3258 gdb_assert (! this_cu->is_debug_types);
3260 /* Our callers never want to match partial units -- instead they
3261 will match the enclosing full CU. */
3262 if (comp_unit_die->tag == DW_TAG_partial_unit)
3264 this_cu->v.quick->no_file_data = 1;
3273 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3276 struct quick_file_names find_entry;
3278 line_offset = DW_UNSND (attr);
3280 /* We may have already read in this line header (TU line header sharing).
3281 If we have we're done. */
3282 find_entry.hash.dwo_unit = cu->dwo_unit;
3283 find_entry.hash.line_offset.sect_off = line_offset;
3284 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3285 &find_entry, INSERT);
3288 lh_cu->v.quick->file_names = *slot;
3292 lh = dwarf_decode_line_header (line_offset, cu);
3296 lh_cu->v.quick->no_file_data = 1;
3300 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3301 qfn->hash.dwo_unit = cu->dwo_unit;
3302 qfn->hash.line_offset.sect_off = line_offset;
3303 gdb_assert (slot != NULL);
3306 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3308 qfn->num_file_names = lh->num_file_names;
3309 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3310 lh->num_file_names * sizeof (char *));
3311 for (i = 0; i < lh->num_file_names; ++i)
3312 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3313 qfn->real_names = NULL;
3315 free_line_header (lh);
3317 lh_cu->v.quick->file_names = qfn;
3320 /* A helper for the "quick" functions which attempts to read the line
3321 table for THIS_CU. */
3323 static struct quick_file_names *
3324 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3326 /* This should never be called for TUs. */
3327 gdb_assert (! this_cu->is_debug_types);
3328 /* Nor type unit groups. */
3329 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3331 if (this_cu->v.quick->file_names != NULL)
3332 return this_cu->v.quick->file_names;
3333 /* If we know there is no line data, no point in looking again. */
3334 if (this_cu->v.quick->no_file_data)
3337 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3339 if (this_cu->v.quick->no_file_data)
3341 return this_cu->v.quick->file_names;
3344 /* A helper for the "quick" functions which computes and caches the
3345 real path for a given file name from the line table. */
3348 dw2_get_real_path (struct objfile *objfile,
3349 struct quick_file_names *qfn, int index)
3351 if (qfn->real_names == NULL)
3352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3353 qfn->num_file_names, const char *);
3355 if (qfn->real_names[index] == NULL)
3356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3358 return qfn->real_names[index];
3361 static struct symtab *
3362 dw2_find_last_source_symtab (struct objfile *objfile)
3364 struct compunit_symtab *cust;
3367 dw2_setup (objfile);
3368 index = dwarf2_per_objfile->n_comp_units - 1;
3369 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3372 return compunit_primary_filetab (cust);
3375 /* Traversal function for dw2_forget_cached_source_info. */
3378 dw2_free_cached_file_names (void **slot, void *info)
3380 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3382 if (file_data->real_names)
3386 for (i = 0; i < file_data->num_file_names; ++i)
3388 xfree ((void*) file_data->real_names[i]);
3389 file_data->real_names[i] = NULL;
3397 dw2_forget_cached_source_info (struct objfile *objfile)
3399 dw2_setup (objfile);
3401 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3402 dw2_free_cached_file_names, NULL);
3405 /* Helper function for dw2_map_symtabs_matching_filename that expands
3406 the symtabs and calls the iterator. */
3409 dw2_map_expand_apply (struct objfile *objfile,
3410 struct dwarf2_per_cu_data *per_cu,
3411 const char *name, const char *real_path,
3412 int (*callback) (struct symtab *, void *),
3415 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3417 /* Don't visit already-expanded CUs. */
3418 if (per_cu->v.quick->compunit_symtab)
3421 /* This may expand more than one symtab, and we want to iterate over
3423 dw2_instantiate_symtab (per_cu);
3425 return iterate_over_some_symtabs (name, real_path, callback, data,
3426 objfile->compunit_symtabs, last_made);
3429 /* Implementation of the map_symtabs_matching_filename method. */
3432 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3433 const char *real_path,
3434 int (*callback) (struct symtab *, void *),
3438 const char *name_basename = lbasename (name);
3440 dw2_setup (objfile);
3442 /* The rule is CUs specify all the files, including those used by
3443 any TU, so there's no need to scan TUs here. */
3445 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3449 struct quick_file_names *file_data;
3451 /* We only need to look at symtabs not already expanded. */
3452 if (per_cu->v.quick->compunit_symtab)
3455 file_data = dw2_get_file_names (per_cu);
3456 if (file_data == NULL)
3459 for (j = 0; j < file_data->num_file_names; ++j)
3461 const char *this_name = file_data->file_names[j];
3462 const char *this_real_name;
3464 if (compare_filenames_for_search (this_name, name))
3466 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3472 /* Before we invoke realpath, which can get expensive when many
3473 files are involved, do a quick comparison of the basenames. */
3474 if (! basenames_may_differ
3475 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3478 this_real_name = dw2_get_real_path (objfile, file_data, j);
3479 if (compare_filenames_for_search (this_real_name, name))
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3487 if (real_path != NULL)
3489 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3490 gdb_assert (IS_ABSOLUTE_PATH (name));
3491 if (this_real_name != NULL
3492 && FILENAME_CMP (real_path, this_real_name) == 0)
3494 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3506 /* Struct used to manage iterating over all CUs looking for a symbol. */
3508 struct dw2_symtab_iterator
3510 /* The internalized form of .gdb_index. */
3511 struct mapped_index *index;
3512 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3513 int want_specific_block;
3514 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3515 Unused if !WANT_SPECIFIC_BLOCK. */
3517 /* The kind of symbol we're looking for. */
3519 /* The list of CUs from the index entry of the symbol,
3520 or NULL if not found. */
3522 /* The next element in VEC to look at. */
3524 /* The number of elements in VEC, or zero if there is no match. */
3526 /* Have we seen a global version of the symbol?
3527 If so we can ignore all further global instances.
3528 This is to work around gold/15646, inefficient gold-generated
3533 /* Initialize the index symtab iterator ITER.
3534 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3535 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3538 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3539 struct mapped_index *index,
3540 int want_specific_block,
3545 iter->index = index;
3546 iter->want_specific_block = want_specific_block;
3547 iter->block_index = block_index;
3548 iter->domain = domain;
3550 iter->global_seen = 0;
3552 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3553 iter->length = MAYBE_SWAP (*iter->vec);
3561 /* Return the next matching CU or NULL if there are no more. */
3563 static struct dwarf2_per_cu_data *
3564 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3566 for ( ; iter->next < iter->length; ++iter->next)
3568 offset_type cu_index_and_attrs =
3569 MAYBE_SWAP (iter->vec[iter->next + 1]);
3570 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3571 struct dwarf2_per_cu_data *per_cu;
3572 int want_static = iter->block_index != GLOBAL_BLOCK;
3573 /* This value is only valid for index versions >= 7. */
3574 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3575 gdb_index_symbol_kind symbol_kind =
3576 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3577 /* Only check the symbol attributes if they're present.
3578 Indices prior to version 7 don't record them,
3579 and indices >= 7 may elide them for certain symbols
3580 (gold does this). */
3582 (iter->index->version >= 7
3583 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3585 /* Don't crash on bad data. */
3586 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3587 + dwarf2_per_objfile->n_type_units))
3589 complaint (&symfile_complaints,
3590 _(".gdb_index entry has bad CU index"
3592 objfile_name (dwarf2_per_objfile->objfile));
3596 per_cu = dw2_get_cutu (cu_index);
3598 /* Skip if already read in. */
3599 if (per_cu->v.quick->compunit_symtab)
3602 /* Check static vs global. */
3605 if (iter->want_specific_block
3606 && want_static != is_static)
3608 /* Work around gold/15646. */
3609 if (!is_static && iter->global_seen)
3612 iter->global_seen = 1;
3615 /* Only check the symbol's kind if it has one. */
3618 switch (iter->domain)
3621 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3623 /* Some types are also in VAR_DOMAIN. */
3624 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3628 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3632 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3647 static struct compunit_symtab *
3648 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3649 const char *name, domain_enum domain)
3651 struct compunit_symtab *stab_best = NULL;
3652 struct mapped_index *index;
3654 dw2_setup (objfile);
3656 index = dwarf2_per_objfile->index_table;
3658 /* index is NULL if OBJF_READNOW. */
3661 struct dw2_symtab_iterator iter;
3662 struct dwarf2_per_cu_data *per_cu;
3664 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3666 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3668 struct symbol *sym = NULL;
3669 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3670 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3671 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3673 /* Some caution must be observed with overloaded functions
3674 and methods, since the index will not contain any overload
3675 information (but NAME might contain it). */
3676 sym = block_lookup_symbol (block, name, domain);
3678 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3680 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3686 /* Keep looking through other CUs. */
3694 dw2_print_stats (struct objfile *objfile)
3696 int i, total, count;
3698 dw2_setup (objfile);
3699 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3701 for (i = 0; i < total; ++i)
3703 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3705 if (!per_cu->v.quick->compunit_symtab)
3708 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3709 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3712 /* This dumps minimal information about the index.
3713 It is called via "mt print objfiles".
3714 One use is to verify .gdb_index has been loaded by the
3715 gdb.dwarf2/gdb-index.exp testcase. */
3718 dw2_dump (struct objfile *objfile)
3720 dw2_setup (objfile);
3721 gdb_assert (dwarf2_per_objfile->using_index);
3722 printf_filtered (".gdb_index:");
3723 if (dwarf2_per_objfile->index_table != NULL)
3725 printf_filtered (" version %d\n",
3726 dwarf2_per_objfile->index_table->version);
3729 printf_filtered (" faked for \"readnow\"\n");
3730 printf_filtered ("\n");
3734 dw2_relocate (struct objfile *objfile,
3735 const struct section_offsets *new_offsets,
3736 const struct section_offsets *delta)
3738 /* There's nothing to relocate here. */
3742 dw2_expand_symtabs_for_function (struct objfile *objfile,
3743 const char *func_name)
3745 struct mapped_index *index;
3747 dw2_setup (objfile);
3749 index = dwarf2_per_objfile->index_table;
3751 /* index is NULL if OBJF_READNOW. */
3754 struct dw2_symtab_iterator iter;
3755 struct dwarf2_per_cu_data *per_cu;
3757 /* Note: It doesn't matter what we pass for block_index here. */
3758 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3761 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3762 dw2_instantiate_symtab (per_cu);
3767 dw2_expand_all_symtabs (struct objfile *objfile)
3771 dw2_setup (objfile);
3773 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3774 + dwarf2_per_objfile->n_type_units); ++i)
3776 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3778 dw2_instantiate_symtab (per_cu);
3783 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3784 const char *fullname)
3788 dw2_setup (objfile);
3790 /* We don't need to consider type units here.
3791 This is only called for examining code, e.g. expand_line_sal.
3792 There can be an order of magnitude (or more) more type units
3793 than comp units, and we avoid them if we can. */
3795 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3798 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3799 struct quick_file_names *file_data;
3801 /* We only need to look at symtabs not already expanded. */
3802 if (per_cu->v.quick->compunit_symtab)
3805 file_data = dw2_get_file_names (per_cu);
3806 if (file_data == NULL)
3809 for (j = 0; j < file_data->num_file_names; ++j)
3811 const char *this_fullname = file_data->file_names[j];
3813 if (filename_cmp (this_fullname, fullname) == 0)
3815 dw2_instantiate_symtab (per_cu);
3823 dw2_map_matching_symbols (struct objfile *objfile,
3824 const char * name, domain_enum domain,
3826 int (*callback) (struct block *,
3827 struct symbol *, void *),
3828 void *data, symbol_compare_ftype *match,
3829 symbol_compare_ftype *ordered_compare)
3831 /* Currently unimplemented; used for Ada. The function can be called if the
3832 current language is Ada for a non-Ada objfile using GNU index. As Ada
3833 does not look for non-Ada symbols this function should just return. */
3837 dw2_expand_symtabs_matching
3838 (struct objfile *objfile,
3839 expand_symtabs_file_matcher_ftype *file_matcher,
3840 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3841 expand_symtabs_exp_notify_ftype *expansion_notify,
3842 enum search_domain kind,
3847 struct mapped_index *index;
3849 dw2_setup (objfile);
3851 /* index_table is NULL if OBJF_READNOW. */
3852 if (!dwarf2_per_objfile->index_table)
3854 index = dwarf2_per_objfile->index_table;
3856 if (file_matcher != NULL)
3858 struct cleanup *cleanup;
3859 htab_t visited_found, visited_not_found;
3861 visited_found = htab_create_alloc (10,
3862 htab_hash_pointer, htab_eq_pointer,
3863 NULL, xcalloc, xfree);
3864 cleanup = make_cleanup_htab_delete (visited_found);
3865 visited_not_found = htab_create_alloc (10,
3866 htab_hash_pointer, htab_eq_pointer,
3867 NULL, xcalloc, xfree);
3868 make_cleanup_htab_delete (visited_not_found);
3870 /* The rule is CUs specify all the files, including those used by
3871 any TU, so there's no need to scan TUs here. */
3873 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3876 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3877 struct quick_file_names *file_data;
3882 per_cu->v.quick->mark = 0;
3884 /* We only need to look at symtabs not already expanded. */
3885 if (per_cu->v.quick->compunit_symtab)
3888 file_data = dw2_get_file_names (per_cu);
3889 if (file_data == NULL)
3892 if (htab_find (visited_not_found, file_data) != NULL)
3894 else if (htab_find (visited_found, file_data) != NULL)
3896 per_cu->v.quick->mark = 1;
3900 for (j = 0; j < file_data->num_file_names; ++j)
3902 const char *this_real_name;
3904 if (file_matcher (file_data->file_names[j], data, 0))
3906 per_cu->v.quick->mark = 1;
3910 /* Before we invoke realpath, which can get expensive when many
3911 files are involved, do a quick comparison of the basenames. */
3912 if (!basenames_may_differ
3913 && !file_matcher (lbasename (file_data->file_names[j]),
3917 this_real_name = dw2_get_real_path (objfile, file_data, j);
3918 if (file_matcher (this_real_name, data, 0))
3920 per_cu->v.quick->mark = 1;
3925 slot = htab_find_slot (per_cu->v.quick->mark
3927 : visited_not_found,
3932 do_cleanups (cleanup);
3935 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3937 offset_type idx = 2 * iter;
3939 offset_type *vec, vec_len, vec_idx;
3940 int global_seen = 0;
3944 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3947 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3949 if (! (*symbol_matcher) (name, data))
3952 /* The name was matched, now expand corresponding CUs that were
3954 vec = (offset_type *) (index->constant_pool
3955 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3956 vec_len = MAYBE_SWAP (vec[0]);
3957 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3959 struct dwarf2_per_cu_data *per_cu;
3960 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3966 /* Only check the symbol attributes if they're present.
3967 Indices prior to version 7 don't record them,
3968 and indices >= 7 may elide them for certain symbols
3969 (gold does this). */
3971 (index->version >= 7
3972 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3974 /* Work around gold/15646. */
3977 if (!is_static && global_seen)
3983 /* Only check the symbol's kind if it has one. */
3988 case VARIABLES_DOMAIN:
3989 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3992 case FUNCTIONS_DOMAIN:
3993 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3997 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4007 + dwarf2_per_objfile->n_type_units))
4009 complaint (&symfile_complaints,
4010 _(".gdb_index entry has bad CU index"
4011 " [in module %s]"), objfile_name (objfile));
4015 per_cu = dw2_get_cutu (cu_index);
4016 if (file_matcher == NULL || per_cu->v.quick->mark)
4018 int symtab_was_null =
4019 (per_cu->v.quick->compunit_symtab == NULL);
4021 dw2_instantiate_symtab (per_cu);
4023 if (expansion_notify != NULL
4025 && per_cu->v.quick->compunit_symtab != NULL)
4027 expansion_notify (per_cu->v.quick->compunit_symtab,
4035 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4038 static struct compunit_symtab *
4039 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4044 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4045 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4048 if (cust->includes == NULL)
4051 for (i = 0; cust->includes[i]; ++i)
4053 struct compunit_symtab *s = cust->includes[i];
4055 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4063 static struct compunit_symtab *
4064 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4065 struct bound_minimal_symbol msymbol,
4067 struct obj_section *section,
4070 struct dwarf2_per_cu_data *data;
4071 struct compunit_symtab *result;
4073 dw2_setup (objfile);
4075 if (!objfile->psymtabs_addrmap)
4078 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4082 if (warn_if_readin && data->v.quick->compunit_symtab)
4083 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4084 paddress (get_objfile_arch (objfile), pc));
4087 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4089 gdb_assert (result != NULL);
4094 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4095 void *data, int need_fullname)
4098 struct cleanup *cleanup;
4099 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4100 NULL, xcalloc, xfree);
4102 cleanup = make_cleanup_htab_delete (visited);
4103 dw2_setup (objfile);
4105 /* The rule is CUs specify all the files, including those used by
4106 any TU, so there's no need to scan TUs here.
4107 We can ignore file names coming from already-expanded CUs. */
4109 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4111 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4113 if (per_cu->v.quick->compunit_symtab)
4115 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4118 *slot = per_cu->v.quick->file_names;
4122 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4125 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4126 struct quick_file_names *file_data;
4129 /* We only need to look at symtabs not already expanded. */
4130 if (per_cu->v.quick->compunit_symtab)
4133 file_data = dw2_get_file_names (per_cu);
4134 if (file_data == NULL)
4137 slot = htab_find_slot (visited, file_data, INSERT);
4140 /* Already visited. */
4145 for (j = 0; j < file_data->num_file_names; ++j)
4147 const char *this_real_name;
4150 this_real_name = dw2_get_real_path (objfile, file_data, j);
4152 this_real_name = NULL;
4153 (*fun) (file_data->file_names[j], this_real_name, data);
4157 do_cleanups (cleanup);
4161 dw2_has_symbols (struct objfile *objfile)
4166 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4169 dw2_find_last_source_symtab,
4170 dw2_forget_cached_source_info,
4171 dw2_map_symtabs_matching_filename,
4176 dw2_expand_symtabs_for_function,
4177 dw2_expand_all_symtabs,
4178 dw2_expand_symtabs_with_fullname,
4179 dw2_map_matching_symbols,
4180 dw2_expand_symtabs_matching,
4181 dw2_find_pc_sect_compunit_symtab,
4182 dw2_map_symbol_filenames
4185 /* Initialize for reading DWARF for this objfile. Return 0 if this
4186 file will use psymtabs, or 1 if using the GNU index. */
4189 dwarf2_initialize_objfile (struct objfile *objfile)
4191 /* If we're about to read full symbols, don't bother with the
4192 indices. In this case we also don't care if some other debug
4193 format is making psymtabs, because they are all about to be
4195 if ((objfile->flags & OBJF_READNOW))
4199 dwarf2_per_objfile->using_index = 1;
4200 create_all_comp_units (objfile);
4201 create_all_type_units (objfile);
4202 dwarf2_per_objfile->quick_file_names_table =
4203 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4205 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4206 + dwarf2_per_objfile->n_type_units); ++i)
4208 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4210 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4211 struct dwarf2_per_cu_quick_data);
4214 /* Return 1 so that gdb sees the "quick" functions. However,
4215 these functions will be no-ops because we will have expanded
4220 if (dwarf2_read_index (objfile))
4228 /* Build a partial symbol table. */
4231 dwarf2_build_psymtabs (struct objfile *objfile)
4234 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4236 init_psymbol_list (objfile, 1024);
4241 /* This isn't really ideal: all the data we allocate on the
4242 objfile's obstack is still uselessly kept around. However,
4243 freeing it seems unsafe. */
4244 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4246 dwarf2_build_psymtabs_hard (objfile);
4247 discard_cleanups (cleanups);
4249 CATCH (except, RETURN_MASK_ERROR)
4251 exception_print (gdb_stderr, except);
4256 /* Return the total length of the CU described by HEADER. */
4259 get_cu_length (const struct comp_unit_head *header)
4261 return header->initial_length_size + header->length;
4264 /* Return TRUE if OFFSET is within CU_HEADER. */
4267 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4269 sect_offset bottom = { cu_header->offset.sect_off };
4270 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4272 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4275 /* Find the base address of the compilation unit for range lists and
4276 location lists. It will normally be specified by DW_AT_low_pc.
4277 In DWARF-3 draft 4, the base address could be overridden by
4278 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4279 compilation units with discontinuous ranges. */
4282 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4284 struct attribute *attr;
4287 cu->base_address = 0;
4289 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4292 cu->base_address = attr_value_as_address (attr);
4297 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4300 cu->base_address = attr_value_as_address (attr);
4306 /* Read in the comp unit header information from the debug_info at info_ptr.
4307 NOTE: This leaves members offset, first_die_offset to be filled in
4310 static const gdb_byte *
4311 read_comp_unit_head (struct comp_unit_head *cu_header,
4312 const gdb_byte *info_ptr, bfd *abfd)
4315 unsigned int bytes_read;
4317 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4318 cu_header->initial_length_size = bytes_read;
4319 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4320 info_ptr += bytes_read;
4321 cu_header->version = read_2_bytes (abfd, info_ptr);
4323 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4325 info_ptr += bytes_read;
4326 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4328 signed_addr = bfd_get_sign_extend_vma (abfd);
4329 if (signed_addr < 0)
4330 internal_error (__FILE__, __LINE__,
4331 _("read_comp_unit_head: dwarf from non elf file"));
4332 cu_header->signed_addr_p = signed_addr;
4337 /* Helper function that returns the proper abbrev section for
4340 static struct dwarf2_section_info *
4341 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4343 struct dwarf2_section_info *abbrev;
4345 if (this_cu->is_dwz)
4346 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4348 abbrev = &dwarf2_per_objfile->abbrev;
4353 /* Subroutine of read_and_check_comp_unit_head and
4354 read_and_check_type_unit_head to simplify them.
4355 Perform various error checking on the header. */
4358 error_check_comp_unit_head (struct comp_unit_head *header,
4359 struct dwarf2_section_info *section,
4360 struct dwarf2_section_info *abbrev_section)
4362 bfd *abfd = get_section_bfd_owner (section);
4363 const char *filename = get_section_file_name (section);
4365 if (header->version != 2 && header->version != 3 && header->version != 4)
4366 error (_("Dwarf Error: wrong version in compilation unit header "
4367 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4370 if (header->abbrev_offset.sect_off
4371 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4372 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4373 "(offset 0x%lx + 6) [in module %s]"),
4374 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4377 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4378 avoid potential 32-bit overflow. */
4379 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4381 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4382 "(offset 0x%lx + 0) [in module %s]"),
4383 (long) header->length, (long) header->offset.sect_off,
4387 /* Read in a CU/TU header and perform some basic error checking.
4388 The contents of the header are stored in HEADER.
4389 The result is a pointer to the start of the first DIE. */
4391 static const gdb_byte *
4392 read_and_check_comp_unit_head (struct comp_unit_head *header,
4393 struct dwarf2_section_info *section,
4394 struct dwarf2_section_info *abbrev_section,
4395 const gdb_byte *info_ptr,
4396 int is_debug_types_section)
4398 const gdb_byte *beg_of_comp_unit = info_ptr;
4399 bfd *abfd = get_section_bfd_owner (section);
4401 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4403 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4405 /* If we're reading a type unit, skip over the signature and
4406 type_offset fields. */
4407 if (is_debug_types_section)
4408 info_ptr += 8 /*signature*/ + header->offset_size;
4410 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4412 error_check_comp_unit_head (header, section, abbrev_section);
4417 /* Read in the types comp unit header information from .debug_types entry at
4418 types_ptr. The result is a pointer to one past the end of the header. */
4420 static const gdb_byte *
4421 read_and_check_type_unit_head (struct comp_unit_head *header,
4422 struct dwarf2_section_info *section,
4423 struct dwarf2_section_info *abbrev_section,
4424 const gdb_byte *info_ptr,
4425 ULONGEST *signature,
4426 cu_offset *type_offset_in_tu)
4428 const gdb_byte *beg_of_comp_unit = info_ptr;
4429 bfd *abfd = get_section_bfd_owner (section);
4431 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4433 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4435 /* If we're reading a type unit, skip over the signature and
4436 type_offset fields. */
4437 if (signature != NULL)
4438 *signature = read_8_bytes (abfd, info_ptr);
4440 if (type_offset_in_tu != NULL)
4441 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4442 header->offset_size);
4443 info_ptr += header->offset_size;
4445 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4447 error_check_comp_unit_head (header, section, abbrev_section);
4452 /* Fetch the abbreviation table offset from a comp or type unit header. */
4455 read_abbrev_offset (struct dwarf2_section_info *section,
4458 bfd *abfd = get_section_bfd_owner (section);
4459 const gdb_byte *info_ptr;
4460 unsigned int length, initial_length_size, offset_size;
4461 sect_offset abbrev_offset;
4463 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4464 info_ptr = section->buffer + offset.sect_off;
4465 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4466 offset_size = initial_length_size == 4 ? 4 : 8;
4467 info_ptr += initial_length_size + 2 /*version*/;
4468 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4469 return abbrev_offset;
4472 /* Allocate a new partial symtab for file named NAME and mark this new
4473 partial symtab as being an include of PST. */
4476 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4477 struct objfile *objfile)
4479 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4481 if (!IS_ABSOLUTE_PATH (subpst->filename))
4483 /* It shares objfile->objfile_obstack. */
4484 subpst->dirname = pst->dirname;
4487 subpst->section_offsets = pst->section_offsets;
4488 subpst->textlow = 0;
4489 subpst->texthigh = 0;
4491 subpst->dependencies = (struct partial_symtab **)
4492 obstack_alloc (&objfile->objfile_obstack,
4493 sizeof (struct partial_symtab *));
4494 subpst->dependencies[0] = pst;
4495 subpst->number_of_dependencies = 1;
4497 subpst->globals_offset = 0;
4498 subpst->n_global_syms = 0;
4499 subpst->statics_offset = 0;
4500 subpst->n_static_syms = 0;
4501 subpst->compunit_symtab = NULL;
4502 subpst->read_symtab = pst->read_symtab;
4505 /* No private part is necessary for include psymtabs. This property
4506 can be used to differentiate between such include psymtabs and
4507 the regular ones. */
4508 subpst->read_symtab_private = NULL;
4511 /* Read the Line Number Program data and extract the list of files
4512 included by the source file represented by PST. Build an include
4513 partial symtab for each of these included files. */
4516 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4517 struct die_info *die,
4518 struct partial_symtab *pst)
4520 struct line_header *lh = NULL;
4521 struct attribute *attr;
4523 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4525 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4527 return; /* No linetable, so no includes. */
4529 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4530 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4532 free_line_header (lh);
4536 hash_signatured_type (const void *item)
4538 const struct signatured_type *sig_type = item;
4540 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4541 return sig_type->signature;
4545 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4547 const struct signatured_type *lhs = item_lhs;
4548 const struct signatured_type *rhs = item_rhs;
4550 return lhs->signature == rhs->signature;
4553 /* Allocate a hash table for signatured types. */
4556 allocate_signatured_type_table (struct objfile *objfile)
4558 return htab_create_alloc_ex (41,
4559 hash_signatured_type,
4562 &objfile->objfile_obstack,
4563 hashtab_obstack_allocate,
4564 dummy_obstack_deallocate);
4567 /* A helper function to add a signatured type CU to a table. */
4570 add_signatured_type_cu_to_table (void **slot, void *datum)
4572 struct signatured_type *sigt = *slot;
4573 struct signatured_type ***datap = datum;
4581 /* Create the hash table of all entries in the .debug_types
4582 (or .debug_types.dwo) section(s).
4583 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4584 otherwise it is NULL.
4586 The result is a pointer to the hash table or NULL if there are no types.
4588 Note: This function processes DWO files only, not DWP files. */
4591 create_debug_types_hash_table (struct dwo_file *dwo_file,
4592 VEC (dwarf2_section_info_def) *types)
4594 struct objfile *objfile = dwarf2_per_objfile->objfile;
4595 htab_t types_htab = NULL;
4597 struct dwarf2_section_info *section;
4598 struct dwarf2_section_info *abbrev_section;
4600 if (VEC_empty (dwarf2_section_info_def, types))
4603 abbrev_section = (dwo_file != NULL
4604 ? &dwo_file->sections.abbrev
4605 : &dwarf2_per_objfile->abbrev);
4607 if (dwarf2_read_debug)
4608 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4609 dwo_file ? ".dwo" : "",
4610 get_section_file_name (abbrev_section));
4613 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4617 const gdb_byte *info_ptr, *end_ptr;
4619 dwarf2_read_section (objfile, section);
4620 info_ptr = section->buffer;
4622 if (info_ptr == NULL)
4625 /* We can't set abfd until now because the section may be empty or
4626 not present, in which case the bfd is unknown. */
4627 abfd = get_section_bfd_owner (section);
4629 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4630 because we don't need to read any dies: the signature is in the
4633 end_ptr = info_ptr + section->size;
4634 while (info_ptr < end_ptr)
4637 cu_offset type_offset_in_tu;
4639 struct signatured_type *sig_type;
4640 struct dwo_unit *dwo_tu;
4642 const gdb_byte *ptr = info_ptr;
4643 struct comp_unit_head header;
4644 unsigned int length;
4646 offset.sect_off = ptr - section->buffer;
4648 /* We need to read the type's signature in order to build the hash
4649 table, but we don't need anything else just yet. */
4651 ptr = read_and_check_type_unit_head (&header, section,
4652 abbrev_section, ptr,
4653 &signature, &type_offset_in_tu);
4655 length = get_cu_length (&header);
4657 /* Skip dummy type units. */
4658 if (ptr >= info_ptr + length
4659 || peek_abbrev_code (abfd, ptr) == 0)
4665 if (types_htab == NULL)
4668 types_htab = allocate_dwo_unit_table (objfile);
4670 types_htab = allocate_signatured_type_table (objfile);
4676 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4678 dwo_tu->dwo_file = dwo_file;
4679 dwo_tu->signature = signature;
4680 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4681 dwo_tu->section = section;
4682 dwo_tu->offset = offset;
4683 dwo_tu->length = length;
4687 /* N.B.: type_offset is not usable if this type uses a DWO file.
4688 The real type_offset is in the DWO file. */
4690 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4691 struct signatured_type);
4692 sig_type->signature = signature;
4693 sig_type->type_offset_in_tu = type_offset_in_tu;
4694 sig_type->per_cu.objfile = objfile;
4695 sig_type->per_cu.is_debug_types = 1;
4696 sig_type->per_cu.section = section;
4697 sig_type->per_cu.offset = offset;
4698 sig_type->per_cu.length = length;
4701 slot = htab_find_slot (types_htab,
4702 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4704 gdb_assert (slot != NULL);
4707 sect_offset dup_offset;
4711 const struct dwo_unit *dup_tu = *slot;
4713 dup_offset = dup_tu->offset;
4717 const struct signatured_type *dup_tu = *slot;
4719 dup_offset = dup_tu->per_cu.offset;
4722 complaint (&symfile_complaints,
4723 _("debug type entry at offset 0x%x is duplicate to"
4724 " the entry at offset 0x%x, signature %s"),
4725 offset.sect_off, dup_offset.sect_off,
4726 hex_string (signature));
4728 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4730 if (dwarf2_read_debug > 1)
4731 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4733 hex_string (signature));
4742 /* Create the hash table of all entries in the .debug_types section,
4743 and initialize all_type_units.
4744 The result is zero if there is an error (e.g. missing .debug_types section),
4745 otherwise non-zero. */
4748 create_all_type_units (struct objfile *objfile)
4751 struct signatured_type **iter;
4753 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4754 if (types_htab == NULL)
4756 dwarf2_per_objfile->signatured_types = NULL;
4760 dwarf2_per_objfile->signatured_types = types_htab;
4762 dwarf2_per_objfile->n_type_units
4763 = dwarf2_per_objfile->n_allocated_type_units
4764 = htab_elements (types_htab);
4765 dwarf2_per_objfile->all_type_units
4766 = xmalloc (dwarf2_per_objfile->n_type_units
4767 * sizeof (struct signatured_type *));
4768 iter = &dwarf2_per_objfile->all_type_units[0];
4769 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4770 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4771 == dwarf2_per_objfile->n_type_units);
4776 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4777 If SLOT is non-NULL, it is the entry to use in the hash table.
4778 Otherwise we find one. */
4780 static struct signatured_type *
4781 add_type_unit (ULONGEST sig, void **slot)
4783 struct objfile *objfile = dwarf2_per_objfile->objfile;
4784 int n_type_units = dwarf2_per_objfile->n_type_units;
4785 struct signatured_type *sig_type;
4787 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4789 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4791 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4792 dwarf2_per_objfile->n_allocated_type_units = 1;
4793 dwarf2_per_objfile->n_allocated_type_units *= 2;
4794 dwarf2_per_objfile->all_type_units
4795 = xrealloc (dwarf2_per_objfile->all_type_units,
4796 dwarf2_per_objfile->n_allocated_type_units
4797 * sizeof (struct signatured_type *));
4798 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4800 dwarf2_per_objfile->n_type_units = n_type_units;
4802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4803 struct signatured_type);
4804 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4805 sig_type->signature = sig;
4806 sig_type->per_cu.is_debug_types = 1;
4807 if (dwarf2_per_objfile->using_index)
4809 sig_type->per_cu.v.quick =
4810 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4811 struct dwarf2_per_cu_quick_data);
4816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4819 gdb_assert (*slot == NULL);
4821 /* The rest of sig_type must be filled in by the caller. */
4825 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4826 Fill in SIG_ENTRY with DWO_ENTRY. */
4829 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4830 struct signatured_type *sig_entry,
4831 struct dwo_unit *dwo_entry)
4833 /* Make sure we're not clobbering something we don't expect to. */
4834 gdb_assert (! sig_entry->per_cu.queued);
4835 gdb_assert (sig_entry->per_cu.cu == NULL);
4836 if (dwarf2_per_objfile->using_index)
4838 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4839 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4842 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4843 gdb_assert (sig_entry->signature == dwo_entry->signature);
4844 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4845 gdb_assert (sig_entry->type_unit_group == NULL);
4846 gdb_assert (sig_entry->dwo_unit == NULL);
4848 sig_entry->per_cu.section = dwo_entry->section;
4849 sig_entry->per_cu.offset = dwo_entry->offset;
4850 sig_entry->per_cu.length = dwo_entry->length;
4851 sig_entry->per_cu.reading_dwo_directly = 1;
4852 sig_entry->per_cu.objfile = objfile;
4853 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4854 sig_entry->dwo_unit = dwo_entry;
4857 /* Subroutine of lookup_signatured_type.
4858 If we haven't read the TU yet, create the signatured_type data structure
4859 for a TU to be read in directly from a DWO file, bypassing the stub.
4860 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4861 using .gdb_index, then when reading a CU we want to stay in the DWO file
4862 containing that CU. Otherwise we could end up reading several other DWO
4863 files (due to comdat folding) to process the transitive closure of all the
4864 mentioned TUs, and that can be slow. The current DWO file will have every
4865 type signature that it needs.
4866 We only do this for .gdb_index because in the psymtab case we already have
4867 to read all the DWOs to build the type unit groups. */
4869 static struct signatured_type *
4870 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4872 struct objfile *objfile = dwarf2_per_objfile->objfile;
4873 struct dwo_file *dwo_file;
4874 struct dwo_unit find_dwo_entry, *dwo_entry;
4875 struct signatured_type find_sig_entry, *sig_entry;
4878 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4880 /* If TU skeletons have been removed then we may not have read in any
4882 if (dwarf2_per_objfile->signatured_types == NULL)
4884 dwarf2_per_objfile->signatured_types
4885 = allocate_signatured_type_table (objfile);
4888 /* We only ever need to read in one copy of a signatured type.
4889 Use the global signatured_types array to do our own comdat-folding
4890 of types. If this is the first time we're reading this TU, and
4891 the TU has an entry in .gdb_index, replace the recorded data from
4892 .gdb_index with this TU. */
4894 find_sig_entry.signature = sig;
4895 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4896 &find_sig_entry, INSERT);
4899 /* We can get here with the TU already read, *or* in the process of being
4900 read. Don't reassign the global entry to point to this DWO if that's
4901 the case. Also note that if the TU is already being read, it may not
4902 have come from a DWO, the program may be a mix of Fission-compiled
4903 code and non-Fission-compiled code. */
4905 /* Have we already tried to read this TU?
4906 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4907 needn't exist in the global table yet). */
4908 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4911 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4912 dwo_unit of the TU itself. */
4913 dwo_file = cu->dwo_unit->dwo_file;
4915 /* Ok, this is the first time we're reading this TU. */
4916 if (dwo_file->tus == NULL)
4918 find_dwo_entry.signature = sig;
4919 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4920 if (dwo_entry == NULL)
4923 /* If the global table doesn't have an entry for this TU, add one. */
4924 if (sig_entry == NULL)
4925 sig_entry = add_type_unit (sig, slot);
4927 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4928 sig_entry->per_cu.tu_read = 1;
4932 /* Subroutine of lookup_signatured_type.
4933 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4934 then try the DWP file. If the TU stub (skeleton) has been removed then
4935 it won't be in .gdb_index. */
4937 static struct signatured_type *
4938 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4940 struct objfile *objfile = dwarf2_per_objfile->objfile;
4941 struct dwp_file *dwp_file = get_dwp_file ();
4942 struct dwo_unit *dwo_entry;
4943 struct signatured_type find_sig_entry, *sig_entry;
4946 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4947 gdb_assert (dwp_file != NULL);
4949 /* If TU skeletons have been removed then we may not have read in any
4951 if (dwarf2_per_objfile->signatured_types == NULL)
4953 dwarf2_per_objfile->signatured_types
4954 = allocate_signatured_type_table (objfile);
4957 find_sig_entry.signature = sig;
4958 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4959 &find_sig_entry, INSERT);
4962 /* Have we already tried to read this TU?
4963 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4964 needn't exist in the global table yet). */
4965 if (sig_entry != NULL)
4968 if (dwp_file->tus == NULL)
4970 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4971 sig, 1 /* is_debug_types */);
4972 if (dwo_entry == NULL)
4975 sig_entry = add_type_unit (sig, slot);
4976 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4981 /* Lookup a signature based type for DW_FORM_ref_sig8.
4982 Returns NULL if signature SIG is not present in the table.
4983 It is up to the caller to complain about this. */
4985 static struct signatured_type *
4986 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4989 && dwarf2_per_objfile->using_index)
4991 /* We're in a DWO/DWP file, and we're using .gdb_index.
4992 These cases require special processing. */
4993 if (get_dwp_file () == NULL)
4994 return lookup_dwo_signatured_type (cu, sig);
4996 return lookup_dwp_signatured_type (cu, sig);
5000 struct signatured_type find_entry, *entry;
5002 if (dwarf2_per_objfile->signatured_types == NULL)
5004 find_entry.signature = sig;
5005 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5010 /* Low level DIE reading support. */
5012 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5015 init_cu_die_reader (struct die_reader_specs *reader,
5016 struct dwarf2_cu *cu,
5017 struct dwarf2_section_info *section,
5018 struct dwo_file *dwo_file)
5020 gdb_assert (section->readin && section->buffer != NULL);
5021 reader->abfd = get_section_bfd_owner (section);
5023 reader->dwo_file = dwo_file;
5024 reader->die_section = section;
5025 reader->buffer = section->buffer;
5026 reader->buffer_end = section->buffer + section->size;
5027 reader->comp_dir = NULL;
5030 /* Subroutine of init_cutu_and_read_dies to simplify it.
5031 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5032 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5035 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5036 from it to the DIE in the DWO. If NULL we are skipping the stub.
5037 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5038 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5039 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5040 STUB_COMP_DIR may be non-NULL.
5041 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5042 are filled in with the info of the DIE from the DWO file.
5043 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5044 provided an abbrev table to use.
5045 The result is non-zero if a valid (non-dummy) DIE was found. */
5048 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5049 struct dwo_unit *dwo_unit,
5050 int abbrev_table_provided,
5051 struct die_info *stub_comp_unit_die,
5052 const char *stub_comp_dir,
5053 struct die_reader_specs *result_reader,
5054 const gdb_byte **result_info_ptr,
5055 struct die_info **result_comp_unit_die,
5056 int *result_has_children)
5058 struct objfile *objfile = dwarf2_per_objfile->objfile;
5059 struct dwarf2_cu *cu = this_cu->cu;
5060 struct dwarf2_section_info *section;
5062 const gdb_byte *begin_info_ptr, *info_ptr;
5063 ULONGEST signature; /* Or dwo_id. */
5064 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5065 int i,num_extra_attrs;
5066 struct dwarf2_section_info *dwo_abbrev_section;
5067 struct attribute *attr;
5068 struct die_info *comp_unit_die;
5070 /* At most one of these may be provided. */
5071 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5073 /* These attributes aren't processed until later:
5074 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5075 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5076 referenced later. However, these attributes are found in the stub
5077 which we won't have later. In order to not impose this complication
5078 on the rest of the code, we read them here and copy them to the
5087 if (stub_comp_unit_die != NULL)
5089 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5091 if (! this_cu->is_debug_types)
5092 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5093 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5094 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5095 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5096 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5098 /* There should be a DW_AT_addr_base attribute here (if needed).
5099 We need the value before we can process DW_FORM_GNU_addr_index. */
5101 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5103 cu->addr_base = DW_UNSND (attr);
5105 /* There should be a DW_AT_ranges_base attribute here (if needed).
5106 We need the value before we can process DW_AT_ranges. */
5107 cu->ranges_base = 0;
5108 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5110 cu->ranges_base = DW_UNSND (attr);
5112 else if (stub_comp_dir != NULL)
5114 /* Reconstruct the comp_dir attribute to simplify the code below. */
5115 comp_dir = (struct attribute *)
5116 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5117 comp_dir->name = DW_AT_comp_dir;
5118 comp_dir->form = DW_FORM_string;
5119 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5120 DW_STRING (comp_dir) = stub_comp_dir;
5123 /* Set up for reading the DWO CU/TU. */
5124 cu->dwo_unit = dwo_unit;
5125 section = dwo_unit->section;
5126 dwarf2_read_section (objfile, section);
5127 abfd = get_section_bfd_owner (section);
5128 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5129 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5130 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5132 if (this_cu->is_debug_types)
5134 ULONGEST header_signature;
5135 cu_offset type_offset_in_tu;
5136 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5138 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5142 &type_offset_in_tu);
5143 /* This is not an assert because it can be caused by bad debug info. */
5144 if (sig_type->signature != header_signature)
5146 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5147 " TU at offset 0x%x [in module %s]"),
5148 hex_string (sig_type->signature),
5149 hex_string (header_signature),
5150 dwo_unit->offset.sect_off,
5151 bfd_get_filename (abfd));
5153 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5154 /* For DWOs coming from DWP files, we don't know the CU length
5155 nor the type's offset in the TU until now. */
5156 dwo_unit->length = get_cu_length (&cu->header);
5157 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5159 /* Establish the type offset that can be used to lookup the type.
5160 For DWO files, we don't know it until now. */
5161 sig_type->type_offset_in_section.sect_off =
5162 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5166 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5169 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5170 /* For DWOs coming from DWP files, we don't know the CU length
5172 dwo_unit->length = get_cu_length (&cu->header);
5175 /* Replace the CU's original abbrev table with the DWO's.
5176 Reminder: We can't read the abbrev table until we've read the header. */
5177 if (abbrev_table_provided)
5179 /* Don't free the provided abbrev table, the caller of
5180 init_cutu_and_read_dies owns it. */
5181 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5182 /* Ensure the DWO abbrev table gets freed. */
5183 make_cleanup (dwarf2_free_abbrev_table, cu);
5187 dwarf2_free_abbrev_table (cu);
5188 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5189 /* Leave any existing abbrev table cleanup as is. */
5192 /* Read in the die, but leave space to copy over the attributes
5193 from the stub. This has the benefit of simplifying the rest of
5194 the code - all the work to maintain the illusion of a single
5195 DW_TAG_{compile,type}_unit DIE is done here. */
5196 num_extra_attrs = ((stmt_list != NULL)
5200 + (comp_dir != NULL));
5201 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5202 result_has_children, num_extra_attrs);
5204 /* Copy over the attributes from the stub to the DIE we just read in. */
5205 comp_unit_die = *result_comp_unit_die;
5206 i = comp_unit_die->num_attrs;
5207 if (stmt_list != NULL)
5208 comp_unit_die->attrs[i++] = *stmt_list;
5210 comp_unit_die->attrs[i++] = *low_pc;
5211 if (high_pc != NULL)
5212 comp_unit_die->attrs[i++] = *high_pc;
5214 comp_unit_die->attrs[i++] = *ranges;
5215 if (comp_dir != NULL)
5216 comp_unit_die->attrs[i++] = *comp_dir;
5217 comp_unit_die->num_attrs += num_extra_attrs;
5219 if (dwarf2_die_debug)
5221 fprintf_unfiltered (gdb_stdlog,
5222 "Read die from %s@0x%x of %s:\n",
5223 get_section_name (section),
5224 (unsigned) (begin_info_ptr - section->buffer),
5225 bfd_get_filename (abfd));
5226 dump_die (comp_unit_die, dwarf2_die_debug);
5229 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5230 TUs by skipping the stub and going directly to the entry in the DWO file.
5231 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5232 to get it via circuitous means. Blech. */
5233 if (comp_dir != NULL)
5234 result_reader->comp_dir = DW_STRING (comp_dir);
5236 /* Skip dummy compilation units. */
5237 if (info_ptr >= begin_info_ptr + dwo_unit->length
5238 || peek_abbrev_code (abfd, info_ptr) == 0)
5241 *result_info_ptr = info_ptr;
5245 /* Subroutine of init_cutu_and_read_dies to simplify it.
5246 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5247 Returns NULL if the specified DWO unit cannot be found. */
5249 static struct dwo_unit *
5250 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5251 struct die_info *comp_unit_die)
5253 struct dwarf2_cu *cu = this_cu->cu;
5254 struct attribute *attr;
5256 struct dwo_unit *dwo_unit;
5257 const char *comp_dir, *dwo_name;
5259 gdb_assert (cu != NULL);
5261 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5262 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5263 gdb_assert (attr != NULL);
5264 dwo_name = DW_STRING (attr);
5266 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5268 comp_dir = DW_STRING (attr);
5270 if (this_cu->is_debug_types)
5272 struct signatured_type *sig_type;
5274 /* Since this_cu is the first member of struct signatured_type,
5275 we can go from a pointer to one to a pointer to the other. */
5276 sig_type = (struct signatured_type *) this_cu;
5277 signature = sig_type->signature;
5278 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5282 struct attribute *attr;
5284 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5286 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5288 dwo_name, objfile_name (this_cu->objfile));
5289 signature = DW_UNSND (attr);
5290 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5297 /* Subroutine of init_cutu_and_read_dies to simplify it.
5298 See it for a description of the parameters.
5299 Read a TU directly from a DWO file, bypassing the stub.
5301 Note: This function could be a little bit simpler if we shared cleanups
5302 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5303 to do, so we keep this function self-contained. Or we could move this
5304 into our caller, but it's complex enough already. */
5307 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5308 int use_existing_cu, int keep,
5309 die_reader_func_ftype *die_reader_func,
5312 struct dwarf2_cu *cu;
5313 struct signatured_type *sig_type;
5314 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5315 struct die_reader_specs reader;
5316 const gdb_byte *info_ptr;
5317 struct die_info *comp_unit_die;
5320 /* Verify we can do the following downcast, and that we have the
5322 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5323 sig_type = (struct signatured_type *) this_cu;
5324 gdb_assert (sig_type->dwo_unit != NULL);
5326 cleanups = make_cleanup (null_cleanup, NULL);
5328 if (use_existing_cu && this_cu->cu != NULL)
5330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5332 /* There's no need to do the rereading_dwo_cu handling that
5333 init_cutu_and_read_dies does since we don't read the stub. */
5337 /* If !use_existing_cu, this_cu->cu must be NULL. */
5338 gdb_assert (this_cu->cu == NULL);
5339 cu = xmalloc (sizeof (*cu));
5340 init_one_comp_unit (cu, this_cu);
5341 /* If an error occurs while loading, release our storage. */
5342 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5345 /* A future optimization, if needed, would be to use an existing
5346 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5347 could share abbrev tables. */
5349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5350 0 /* abbrev_table_provided */,
5351 NULL /* stub_comp_unit_die */,
5352 sig_type->dwo_unit->dwo_file->comp_dir,
5354 &comp_unit_die, &has_children) == 0)
5357 do_cleanups (cleanups);
5361 /* All the "real" work is done here. */
5362 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5364 /* This duplicates the code in init_cutu_and_read_dies,
5365 but the alternative is making the latter more complex.
5366 This function is only for the special case of using DWO files directly:
5367 no point in overly complicating the general case just to handle this. */
5368 if (free_cu_cleanup != NULL)
5372 /* We've successfully allocated this compilation unit. Let our
5373 caller clean it up when finished with it. */
5374 discard_cleanups (free_cu_cleanup);
5376 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5377 So we have to manually free the abbrev table. */
5378 dwarf2_free_abbrev_table (cu);
5380 /* Link this CU into read_in_chain. */
5381 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5382 dwarf2_per_objfile->read_in_chain = this_cu;
5385 do_cleanups (free_cu_cleanup);
5388 do_cleanups (cleanups);
5391 /* Initialize a CU (or TU) and read its DIEs.
5392 If the CU defers to a DWO file, read the DWO file as well.
5394 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5395 Otherwise the table specified in the comp unit header is read in and used.
5396 This is an optimization for when we already have the abbrev table.
5398 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5399 Otherwise, a new CU is allocated with xmalloc.
5401 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5402 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5404 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5405 linker) then DIE_READER_FUNC will not get called. */
5408 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5409 struct abbrev_table *abbrev_table,
5410 int use_existing_cu, int keep,
5411 die_reader_func_ftype *die_reader_func,
5414 struct objfile *objfile = dwarf2_per_objfile->objfile;
5415 struct dwarf2_section_info *section = this_cu->section;
5416 bfd *abfd = get_section_bfd_owner (section);
5417 struct dwarf2_cu *cu;
5418 const gdb_byte *begin_info_ptr, *info_ptr;
5419 struct die_reader_specs reader;
5420 struct die_info *comp_unit_die;
5422 struct attribute *attr;
5423 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5424 struct signatured_type *sig_type = NULL;
5425 struct dwarf2_section_info *abbrev_section;
5426 /* Non-zero if CU currently points to a DWO file and we need to
5427 reread it. When this happens we need to reread the skeleton die
5428 before we can reread the DWO file (this only applies to CUs, not TUs). */
5429 int rereading_dwo_cu = 0;
5431 if (dwarf2_die_debug)
5432 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5433 this_cu->is_debug_types ? "type" : "comp",
5434 this_cu->offset.sect_off);
5436 if (use_existing_cu)
5439 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5440 file (instead of going through the stub), short-circuit all of this. */
5441 if (this_cu->reading_dwo_directly)
5443 /* Narrow down the scope of possibilities to have to understand. */
5444 gdb_assert (this_cu->is_debug_types);
5445 gdb_assert (abbrev_table == NULL);
5446 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5447 die_reader_func, data);
5451 cleanups = make_cleanup (null_cleanup, NULL);
5453 /* This is cheap if the section is already read in. */
5454 dwarf2_read_section (objfile, section);
5456 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5458 abbrev_section = get_abbrev_section_for_cu (this_cu);
5460 if (use_existing_cu && this_cu->cu != NULL)
5463 /* If this CU is from a DWO file we need to start over, we need to
5464 refetch the attributes from the skeleton CU.
5465 This could be optimized by retrieving those attributes from when we
5466 were here the first time: the previous comp_unit_die was stored in
5467 comp_unit_obstack. But there's no data yet that we need this
5469 if (cu->dwo_unit != NULL)
5470 rereading_dwo_cu = 1;
5474 /* If !use_existing_cu, this_cu->cu must be NULL. */
5475 gdb_assert (this_cu->cu == NULL);
5476 cu = xmalloc (sizeof (*cu));
5477 init_one_comp_unit (cu, this_cu);
5478 /* If an error occurs while loading, release our storage. */
5479 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5482 /* Get the header. */
5483 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5485 /* We already have the header, there's no need to read it in again. */
5486 info_ptr += cu->header.first_die_offset.cu_off;
5490 if (this_cu->is_debug_types)
5493 cu_offset type_offset_in_tu;
5495 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5496 abbrev_section, info_ptr,
5498 &type_offset_in_tu);
5500 /* Since per_cu is the first member of struct signatured_type,
5501 we can go from a pointer to one to a pointer to the other. */
5502 sig_type = (struct signatured_type *) this_cu;
5503 gdb_assert (sig_type->signature == signature);
5504 gdb_assert (sig_type->type_offset_in_tu.cu_off
5505 == type_offset_in_tu.cu_off);
5506 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5508 /* LENGTH has not been set yet for type units if we're
5509 using .gdb_index. */
5510 this_cu->length = get_cu_length (&cu->header);
5512 /* Establish the type offset that can be used to lookup the type. */
5513 sig_type->type_offset_in_section.sect_off =
5514 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5518 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5522 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5527 /* Skip dummy compilation units. */
5528 if (info_ptr >= begin_info_ptr + this_cu->length
5529 || peek_abbrev_code (abfd, info_ptr) == 0)
5531 do_cleanups (cleanups);
5535 /* If we don't have them yet, read the abbrevs for this compilation unit.
5536 And if we need to read them now, make sure they're freed when we're
5537 done. Note that it's important that if the CU had an abbrev table
5538 on entry we don't free it when we're done: Somewhere up the call stack
5539 it may be in use. */
5540 if (abbrev_table != NULL)
5542 gdb_assert (cu->abbrev_table == NULL);
5543 gdb_assert (cu->header.abbrev_offset.sect_off
5544 == abbrev_table->offset.sect_off);
5545 cu->abbrev_table = abbrev_table;
5547 else if (cu->abbrev_table == NULL)
5549 dwarf2_read_abbrevs (cu, abbrev_section);
5550 make_cleanup (dwarf2_free_abbrev_table, cu);
5552 else if (rereading_dwo_cu)
5554 dwarf2_free_abbrev_table (cu);
5555 dwarf2_read_abbrevs (cu, abbrev_section);
5558 /* Read the top level CU/TU die. */
5559 init_cu_die_reader (&reader, cu, section, NULL);
5560 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5562 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5564 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5565 DWO CU, that this test will fail (the attribute will not be present). */
5566 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5569 struct dwo_unit *dwo_unit;
5570 struct die_info *dwo_comp_unit_die;
5574 complaint (&symfile_complaints,
5575 _("compilation unit with DW_AT_GNU_dwo_name"
5576 " has children (offset 0x%x) [in module %s]"),
5577 this_cu->offset.sect_off, bfd_get_filename (abfd));
5579 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5580 if (dwo_unit != NULL)
5582 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5583 abbrev_table != NULL,
5584 comp_unit_die, NULL,
5586 &dwo_comp_unit_die, &has_children) == 0)
5589 do_cleanups (cleanups);
5592 comp_unit_die = dwo_comp_unit_die;
5596 /* Yikes, we couldn't find the rest of the DIE, we only have
5597 the stub. A complaint has already been logged. There's
5598 not much more we can do except pass on the stub DIE to
5599 die_reader_func. We don't want to throw an error on bad
5604 /* All of the above is setup for this call. Yikes. */
5605 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5607 /* Done, clean up. */
5608 if (free_cu_cleanup != NULL)
5612 /* We've successfully allocated this compilation unit. Let our
5613 caller clean it up when finished with it. */
5614 discard_cleanups (free_cu_cleanup);
5616 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5617 So we have to manually free the abbrev table. */
5618 dwarf2_free_abbrev_table (cu);
5620 /* Link this CU into read_in_chain. */
5621 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5622 dwarf2_per_objfile->read_in_chain = this_cu;
5625 do_cleanups (free_cu_cleanup);
5628 do_cleanups (cleanups);
5631 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5632 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5633 to have already done the lookup to find the DWO file).
5635 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5636 THIS_CU->is_debug_types, but nothing else.
5638 We fill in THIS_CU->length.
5640 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5641 linker) then DIE_READER_FUNC will not get called.
5643 THIS_CU->cu is always freed when done.
5644 This is done in order to not leave THIS_CU->cu in a state where we have
5645 to care whether it refers to the "main" CU or the DWO CU. */
5648 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5649 struct dwo_file *dwo_file,
5650 die_reader_func_ftype *die_reader_func,
5653 struct objfile *objfile = dwarf2_per_objfile->objfile;
5654 struct dwarf2_section_info *section = this_cu->section;
5655 bfd *abfd = get_section_bfd_owner (section);
5656 struct dwarf2_section_info *abbrev_section;
5657 struct dwarf2_cu cu;
5658 const gdb_byte *begin_info_ptr, *info_ptr;
5659 struct die_reader_specs reader;
5660 struct cleanup *cleanups;
5661 struct die_info *comp_unit_die;
5664 if (dwarf2_die_debug)
5665 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5666 this_cu->is_debug_types ? "type" : "comp",
5667 this_cu->offset.sect_off);
5669 gdb_assert (this_cu->cu == NULL);
5671 abbrev_section = (dwo_file != NULL
5672 ? &dwo_file->sections.abbrev
5673 : get_abbrev_section_for_cu (this_cu));
5675 /* This is cheap if the section is already read in. */
5676 dwarf2_read_section (objfile, section);
5678 init_one_comp_unit (&cu, this_cu);
5680 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5682 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5683 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5684 abbrev_section, info_ptr,
5685 this_cu->is_debug_types);
5687 this_cu->length = get_cu_length (&cu.header);
5689 /* Skip dummy compilation units. */
5690 if (info_ptr >= begin_info_ptr + this_cu->length
5691 || peek_abbrev_code (abfd, info_ptr) == 0)
5693 do_cleanups (cleanups);
5697 dwarf2_read_abbrevs (&cu, abbrev_section);
5698 make_cleanup (dwarf2_free_abbrev_table, &cu);
5700 init_cu_die_reader (&reader, &cu, section, dwo_file);
5701 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5703 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5705 do_cleanups (cleanups);
5708 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5709 does not lookup the specified DWO file.
5710 This cannot be used to read DWO files.
5712 THIS_CU->cu is always freed when done.
5713 This is done in order to not leave THIS_CU->cu in a state where we have
5714 to care whether it refers to the "main" CU or the DWO CU.
5715 We can revisit this if the data shows there's a performance issue. */
5718 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5719 die_reader_func_ftype *die_reader_func,
5722 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5725 /* Type Unit Groups.
5727 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5728 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5729 so that all types coming from the same compilation (.o file) are grouped
5730 together. A future step could be to put the types in the same symtab as
5731 the CU the types ultimately came from. */
5734 hash_type_unit_group (const void *item)
5736 const struct type_unit_group *tu_group = item;
5738 return hash_stmt_list_entry (&tu_group->hash);
5742 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5744 const struct type_unit_group *lhs = item_lhs;
5745 const struct type_unit_group *rhs = item_rhs;
5747 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5750 /* Allocate a hash table for type unit groups. */
5753 allocate_type_unit_groups_table (void)
5755 return htab_create_alloc_ex (3,
5756 hash_type_unit_group,
5759 &dwarf2_per_objfile->objfile->objfile_obstack,
5760 hashtab_obstack_allocate,
5761 dummy_obstack_deallocate);
5764 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5765 partial symtabs. We combine several TUs per psymtab to not let the size
5766 of any one psymtab grow too big. */
5767 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5768 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5770 /* Helper routine for get_type_unit_group.
5771 Create the type_unit_group object used to hold one or more TUs. */
5773 static struct type_unit_group *
5774 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5776 struct objfile *objfile = dwarf2_per_objfile->objfile;
5777 struct dwarf2_per_cu_data *per_cu;
5778 struct type_unit_group *tu_group;
5780 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5781 struct type_unit_group);
5782 per_cu = &tu_group->per_cu;
5783 per_cu->objfile = objfile;
5785 if (dwarf2_per_objfile->using_index)
5787 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5788 struct dwarf2_per_cu_quick_data);
5792 unsigned int line_offset = line_offset_struct.sect_off;
5793 struct partial_symtab *pst;
5796 /* Give the symtab a useful name for debug purposes. */
5797 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5798 name = xstrprintf ("<type_units_%d>",
5799 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5801 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5803 pst = create_partial_symtab (per_cu, name);
5809 tu_group->hash.dwo_unit = cu->dwo_unit;
5810 tu_group->hash.line_offset = line_offset_struct;
5815 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5816 STMT_LIST is a DW_AT_stmt_list attribute. */
5818 static struct type_unit_group *
5819 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5821 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5822 struct type_unit_group *tu_group;
5824 unsigned int line_offset;
5825 struct type_unit_group type_unit_group_for_lookup;
5827 if (dwarf2_per_objfile->type_unit_groups == NULL)
5829 dwarf2_per_objfile->type_unit_groups =
5830 allocate_type_unit_groups_table ();
5833 /* Do we need to create a new group, or can we use an existing one? */
5837 line_offset = DW_UNSND (stmt_list);
5838 ++tu_stats->nr_symtab_sharers;
5842 /* Ugh, no stmt_list. Rare, but we have to handle it.
5843 We can do various things here like create one group per TU or
5844 spread them over multiple groups to split up the expansion work.
5845 To avoid worst case scenarios (too many groups or too large groups)
5846 we, umm, group them in bunches. */
5847 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5848 | (tu_stats->nr_stmt_less_type_units
5849 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5850 ++tu_stats->nr_stmt_less_type_units;
5853 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5854 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5855 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5856 &type_unit_group_for_lookup, INSERT);
5860 gdb_assert (tu_group != NULL);
5864 sect_offset line_offset_struct;
5866 line_offset_struct.sect_off = line_offset;
5867 tu_group = create_type_unit_group (cu, line_offset_struct);
5869 ++tu_stats->nr_symtabs;
5875 /* Partial symbol tables. */
5877 /* Create a psymtab named NAME and assign it to PER_CU.
5879 The caller must fill in the following details:
5880 dirname, textlow, texthigh. */
5882 static struct partial_symtab *
5883 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5885 struct objfile *objfile = per_cu->objfile;
5886 struct partial_symtab *pst;
5888 pst = start_psymtab_common (objfile, objfile->section_offsets,
5890 objfile->global_psymbols.next,
5891 objfile->static_psymbols.next);
5893 pst->psymtabs_addrmap_supported = 1;
5895 /* This is the glue that links PST into GDB's symbol API. */
5896 pst->read_symtab_private = per_cu;
5897 pst->read_symtab = dwarf2_read_symtab;
5898 per_cu->v.psymtab = pst;
5903 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5906 struct process_psymtab_comp_unit_data
5908 /* True if we are reading a DW_TAG_partial_unit. */
5910 int want_partial_unit;
5912 /* The "pretend" language that is used if the CU doesn't declare a
5915 enum language pretend_language;
5918 /* die_reader_func for process_psymtab_comp_unit. */
5921 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5922 const gdb_byte *info_ptr,
5923 struct die_info *comp_unit_die,
5927 struct dwarf2_cu *cu = reader->cu;
5928 struct objfile *objfile = cu->objfile;
5929 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5930 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5931 struct attribute *attr;
5933 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5934 struct partial_symtab *pst;
5936 const char *filename;
5937 struct process_psymtab_comp_unit_data *info = data;
5939 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5942 gdb_assert (! per_cu->is_debug_types);
5944 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5946 cu->list_in_scope = &file_symbols;
5948 /* Allocate a new partial symbol table structure. */
5949 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5950 if (attr == NULL || !DW_STRING (attr))
5953 filename = DW_STRING (attr);
5955 pst = create_partial_symtab (per_cu, filename);
5957 /* This must be done before calling dwarf2_build_include_psymtabs. */
5958 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5960 pst->dirname = DW_STRING (attr);
5962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5964 dwarf2_find_base_address (comp_unit_die, cu);
5966 /* Possibly set the default values of LOWPC and HIGHPC from
5968 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5969 &best_highpc, cu, pst);
5970 if (has_pc_info == 1 && best_lowpc < best_highpc)
5971 /* Store the contiguous range if it is not empty; it can be empty for
5972 CUs with no code. */
5973 addrmap_set_empty (objfile->psymtabs_addrmap,
5974 gdbarch_adjust_dwarf2_addr (gdbarch,
5975 best_lowpc + baseaddr),
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_highpc + baseaddr) - 1,
5980 /* Check if comp unit has_children.
5981 If so, read the rest of the partial symbols from this comp unit.
5982 If not, there's no more debug_info for this comp unit. */
5985 struct partial_die_info *first_die;
5986 CORE_ADDR lowpc, highpc;
5988 lowpc = ((CORE_ADDR) -1);
5989 highpc = ((CORE_ADDR) 0);
5991 first_die = load_partial_dies (reader, info_ptr, 1);
5993 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 /* If we didn't find a lowpc, set it to highpc to avoid
5997 complaints from `maint check'. */
5998 if (lowpc == ((CORE_ADDR) -1))
6001 /* If the compilation unit didn't have an explicit address range,
6002 then use the information extracted from its child dies. */
6006 best_highpc = highpc;
6009 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6010 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6012 pst->n_global_syms = objfile->global_psymbols.next -
6013 (objfile->global_psymbols.list + pst->globals_offset);
6014 pst->n_static_syms = objfile->static_psymbols.next -
6015 (objfile->static_psymbols.list + pst->statics_offset);
6016 sort_pst_symbols (objfile, pst);
6018 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6021 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6022 struct dwarf2_per_cu_data *iter;
6024 /* Fill in 'dependencies' here; we fill in 'users' in a
6026 pst->number_of_dependencies = len;
6027 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6028 len * sizeof (struct symtab *));
6030 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6033 pst->dependencies[i] = iter->v.psymtab;
6035 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6038 /* Get the list of files included in the current compilation unit,
6039 and build a psymtab for each of them. */
6040 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6042 if (dwarf2_read_debug)
6044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6046 fprintf_unfiltered (gdb_stdlog,
6047 "Psymtab for %s unit @0x%x: %s - %s"
6048 ", %d global, %d static syms\n",
6049 per_cu->is_debug_types ? "type" : "comp",
6050 per_cu->offset.sect_off,
6051 paddress (gdbarch, pst->textlow),
6052 paddress (gdbarch, pst->texthigh),
6053 pst->n_global_syms, pst->n_static_syms);
6057 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6058 Process compilation unit THIS_CU for a psymtab. */
6061 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6062 int want_partial_unit,
6063 enum language pretend_language)
6065 struct process_psymtab_comp_unit_data info;
6067 /* If this compilation unit was already read in, free the
6068 cached copy in order to read it in again. This is
6069 necessary because we skipped some symbols when we first
6070 read in the compilation unit (see load_partial_dies).
6071 This problem could be avoided, but the benefit is unclear. */
6072 if (this_cu->cu != NULL)
6073 free_one_cached_comp_unit (this_cu);
6075 gdb_assert (! this_cu->is_debug_types);
6076 info.want_partial_unit = want_partial_unit;
6077 info.pretend_language = pretend_language;
6078 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6079 process_psymtab_comp_unit_reader,
6082 /* Age out any secondary CUs. */
6083 age_cached_comp_units ();
6086 /* Reader function for build_type_psymtabs. */
6089 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6090 const gdb_byte *info_ptr,
6091 struct die_info *type_unit_die,
6095 struct objfile *objfile = dwarf2_per_objfile->objfile;
6096 struct dwarf2_cu *cu = reader->cu;
6097 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6098 struct signatured_type *sig_type;
6099 struct type_unit_group *tu_group;
6100 struct attribute *attr;
6101 struct partial_die_info *first_die;
6102 CORE_ADDR lowpc, highpc;
6103 struct partial_symtab *pst;
6105 gdb_assert (data == NULL);
6106 gdb_assert (per_cu->is_debug_types);
6107 sig_type = (struct signatured_type *) per_cu;
6112 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6113 tu_group = get_type_unit_group (cu, attr);
6115 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6117 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6118 cu->list_in_scope = &file_symbols;
6119 pst = create_partial_symtab (per_cu, "");
6122 first_die = load_partial_dies (reader, info_ptr, 1);
6124 lowpc = (CORE_ADDR) -1;
6125 highpc = (CORE_ADDR) 0;
6126 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6128 pst->n_global_syms = objfile->global_psymbols.next -
6129 (objfile->global_psymbols.list + pst->globals_offset);
6130 pst->n_static_syms = objfile->static_psymbols.next -
6131 (objfile->static_psymbols.list + pst->statics_offset);
6132 sort_pst_symbols (objfile, pst);
6135 /* Struct used to sort TUs by their abbreviation table offset. */
6137 struct tu_abbrev_offset
6139 struct signatured_type *sig_type;
6140 sect_offset abbrev_offset;
6143 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6146 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6148 const struct tu_abbrev_offset * const *a = ap;
6149 const struct tu_abbrev_offset * const *b = bp;
6150 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6151 unsigned int boff = (*b)->abbrev_offset.sect_off;
6153 return (aoff > boff) - (aoff < boff);
6156 /* Efficiently read all the type units.
6157 This does the bulk of the work for build_type_psymtabs.
6159 The efficiency is because we sort TUs by the abbrev table they use and
6160 only read each abbrev table once. In one program there are 200K TUs
6161 sharing 8K abbrev tables.
6163 The main purpose of this function is to support building the
6164 dwarf2_per_objfile->type_unit_groups table.
6165 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6166 can collapse the search space by grouping them by stmt_list.
6167 The savings can be significant, in the same program from above the 200K TUs
6168 share 8K stmt_list tables.
6170 FUNC is expected to call get_type_unit_group, which will create the
6171 struct type_unit_group if necessary and add it to
6172 dwarf2_per_objfile->type_unit_groups. */
6175 build_type_psymtabs_1 (void)
6177 struct objfile *objfile = dwarf2_per_objfile->objfile;
6178 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6179 struct cleanup *cleanups;
6180 struct abbrev_table *abbrev_table;
6181 sect_offset abbrev_offset;
6182 struct tu_abbrev_offset *sorted_by_abbrev;
6183 struct type_unit_group **iter;
6186 /* It's up to the caller to not call us multiple times. */
6187 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6189 if (dwarf2_per_objfile->n_type_units == 0)
6192 /* TUs typically share abbrev tables, and there can be way more TUs than
6193 abbrev tables. Sort by abbrev table to reduce the number of times we
6194 read each abbrev table in.
6195 Alternatives are to punt or to maintain a cache of abbrev tables.
6196 This is simpler and efficient enough for now.
6198 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6199 symtab to use). Typically TUs with the same abbrev offset have the same
6200 stmt_list value too so in practice this should work well.
6202 The basic algorithm here is:
6204 sort TUs by abbrev table
6205 for each TU with same abbrev table:
6206 read abbrev table if first user
6207 read TU top level DIE
6208 [IWBN if DWO skeletons had DW_AT_stmt_list]
6211 if (dwarf2_read_debug)
6212 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6214 /* Sort in a separate table to maintain the order of all_type_units
6215 for .gdb_index: TU indices directly index all_type_units. */
6216 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6217 dwarf2_per_objfile->n_type_units);
6218 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6220 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6222 sorted_by_abbrev[i].sig_type = sig_type;
6223 sorted_by_abbrev[i].abbrev_offset =
6224 read_abbrev_offset (sig_type->per_cu.section,
6225 sig_type->per_cu.offset);
6227 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6228 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6229 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6231 abbrev_offset.sect_off = ~(unsigned) 0;
6232 abbrev_table = NULL;
6233 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6235 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6237 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6239 /* Switch to the next abbrev table if necessary. */
6240 if (abbrev_table == NULL
6241 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6243 if (abbrev_table != NULL)
6245 abbrev_table_free (abbrev_table);
6246 /* Reset to NULL in case abbrev_table_read_table throws
6247 an error: abbrev_table_free_cleanup will get called. */
6248 abbrev_table = NULL;
6250 abbrev_offset = tu->abbrev_offset;
6252 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6254 ++tu_stats->nr_uniq_abbrev_tables;
6257 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6258 build_type_psymtabs_reader, NULL);
6261 do_cleanups (cleanups);
6264 /* Print collected type unit statistics. */
6267 print_tu_stats (void)
6269 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6271 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6272 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6273 dwarf2_per_objfile->n_type_units);
6274 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6275 tu_stats->nr_uniq_abbrev_tables);
6276 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6277 tu_stats->nr_symtabs);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6279 tu_stats->nr_symtab_sharers);
6280 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6281 tu_stats->nr_stmt_less_type_units);
6282 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6283 tu_stats->nr_all_type_units_reallocs);
6286 /* Traversal function for build_type_psymtabs. */
6289 build_type_psymtab_dependencies (void **slot, void *info)
6291 struct objfile *objfile = dwarf2_per_objfile->objfile;
6292 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6293 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6294 struct partial_symtab *pst = per_cu->v.psymtab;
6295 int len = VEC_length (sig_type_ptr, tu_group->tus);
6296 struct signatured_type *iter;
6299 gdb_assert (len > 0);
6300 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6302 pst->number_of_dependencies = len;
6303 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6304 len * sizeof (struct psymtab *));
6306 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6309 gdb_assert (iter->per_cu.is_debug_types);
6310 pst->dependencies[i] = iter->per_cu.v.psymtab;
6311 iter->type_unit_group = tu_group;
6314 VEC_free (sig_type_ptr, tu_group->tus);
6319 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6320 Build partial symbol tables for the .debug_types comp-units. */
6323 build_type_psymtabs (struct objfile *objfile)
6325 if (! create_all_type_units (objfile))
6328 build_type_psymtabs_1 ();
6331 /* Traversal function for process_skeletonless_type_unit.
6332 Read a TU in a DWO file and build partial symbols for it. */
6335 process_skeletonless_type_unit (void **slot, void *info)
6337 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6338 struct objfile *objfile = info;
6339 struct signatured_type find_entry, *entry;
6341 /* If this TU doesn't exist in the global table, add it and read it in. */
6343 if (dwarf2_per_objfile->signatured_types == NULL)
6345 dwarf2_per_objfile->signatured_types
6346 = allocate_signatured_type_table (objfile);
6349 find_entry.signature = dwo_unit->signature;
6350 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6352 /* If we've already seen this type there's nothing to do. What's happening
6353 is we're doing our own version of comdat-folding here. */
6357 /* This does the job that create_all_type_units would have done for
6359 entry = add_type_unit (dwo_unit->signature, slot);
6360 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6363 /* This does the job that build_type_psymtabs_1 would have done. */
6364 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6365 build_type_psymtabs_reader, NULL);
6370 /* Traversal function for process_skeletonless_type_units. */
6373 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6375 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6377 if (dwo_file->tus != NULL)
6379 htab_traverse_noresize (dwo_file->tus,
6380 process_skeletonless_type_unit, info);
6386 /* Scan all TUs of DWO files, verifying we've processed them.
6387 This is needed in case a TU was emitted without its skeleton.
6388 Note: This can't be done until we know what all the DWO files are. */
6391 process_skeletonless_type_units (struct objfile *objfile)
6393 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6394 if (get_dwp_file () == NULL
6395 && dwarf2_per_objfile->dwo_files != NULL)
6397 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6398 process_dwo_file_for_skeletonless_type_units,
6403 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6406 psymtabs_addrmap_cleanup (void *o)
6408 struct objfile *objfile = o;
6410 objfile->psymtabs_addrmap = NULL;
6413 /* Compute the 'user' field for each psymtab in OBJFILE. */
6416 set_partial_user (struct objfile *objfile)
6420 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6422 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6423 struct partial_symtab *pst = per_cu->v.psymtab;
6429 for (j = 0; j < pst->number_of_dependencies; ++j)
6431 /* Set the 'user' field only if it is not already set. */
6432 if (pst->dependencies[j]->user == NULL)
6433 pst->dependencies[j]->user = pst;
6438 /* Build the partial symbol table by doing a quick pass through the
6439 .debug_info and .debug_abbrev sections. */
6442 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6444 struct cleanup *back_to, *addrmap_cleanup;
6445 struct obstack temp_obstack;
6448 if (dwarf2_read_debug)
6450 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6451 objfile_name (objfile));
6454 dwarf2_per_objfile->reading_partial_symbols = 1;
6456 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6458 /* Any cached compilation units will be linked by the per-objfile
6459 read_in_chain. Make sure to free them when we're done. */
6460 back_to = make_cleanup (free_cached_comp_units, NULL);
6462 build_type_psymtabs (objfile);
6464 create_all_comp_units (objfile);
6466 /* Create a temporary address map on a temporary obstack. We later
6467 copy this to the final obstack. */
6468 obstack_init (&temp_obstack);
6469 make_cleanup_obstack_free (&temp_obstack);
6470 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6471 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6473 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6475 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6477 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6480 /* This has to wait until we read the CUs, we need the list of DWOs. */
6481 process_skeletonless_type_units (objfile);
6483 /* Now that all TUs have been processed we can fill in the dependencies. */
6484 if (dwarf2_per_objfile->type_unit_groups != NULL)
6486 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6487 build_type_psymtab_dependencies, NULL);
6490 if (dwarf2_read_debug)
6493 set_partial_user (objfile);
6495 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6496 &objfile->objfile_obstack);
6497 discard_cleanups (addrmap_cleanup);
6499 do_cleanups (back_to);
6501 if (dwarf2_read_debug)
6502 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6503 objfile_name (objfile));
6506 /* die_reader_func for load_partial_comp_unit. */
6509 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6510 const gdb_byte *info_ptr,
6511 struct die_info *comp_unit_die,
6515 struct dwarf2_cu *cu = reader->cu;
6517 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6519 /* Check if comp unit has_children.
6520 If so, read the rest of the partial symbols from this comp unit.
6521 If not, there's no more debug_info for this comp unit. */
6523 load_partial_dies (reader, info_ptr, 0);
6526 /* Load the partial DIEs for a secondary CU into memory.
6527 This is also used when rereading a primary CU with load_all_dies. */
6530 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6532 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6533 load_partial_comp_unit_reader, NULL);
6537 read_comp_units_from_section (struct objfile *objfile,
6538 struct dwarf2_section_info *section,
6539 unsigned int is_dwz,
6542 struct dwarf2_per_cu_data ***all_comp_units)
6544 const gdb_byte *info_ptr;
6545 bfd *abfd = get_section_bfd_owner (section);
6547 if (dwarf2_read_debug)
6548 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6549 get_section_name (section),
6550 get_section_file_name (section));
6552 dwarf2_read_section (objfile, section);
6554 info_ptr = section->buffer;
6556 while (info_ptr < section->buffer + section->size)
6558 unsigned int length, initial_length_size;
6559 struct dwarf2_per_cu_data *this_cu;
6562 offset.sect_off = info_ptr - section->buffer;
6564 /* Read just enough information to find out where the next
6565 compilation unit is. */
6566 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6568 /* Save the compilation unit for later lookup. */
6569 this_cu = obstack_alloc (&objfile->objfile_obstack,
6570 sizeof (struct dwarf2_per_cu_data));
6571 memset (this_cu, 0, sizeof (*this_cu));
6572 this_cu->offset = offset;
6573 this_cu->length = length + initial_length_size;
6574 this_cu->is_dwz = is_dwz;
6575 this_cu->objfile = objfile;
6576 this_cu->section = section;
6578 if (*n_comp_units == *n_allocated)
6581 *all_comp_units = xrealloc (*all_comp_units,
6583 * sizeof (struct dwarf2_per_cu_data *));
6585 (*all_comp_units)[*n_comp_units] = this_cu;
6588 info_ptr = info_ptr + this_cu->length;
6592 /* Create a list of all compilation units in OBJFILE.
6593 This is only done for -readnow and building partial symtabs. */
6596 create_all_comp_units (struct objfile *objfile)
6600 struct dwarf2_per_cu_data **all_comp_units;
6601 struct dwz_file *dwz;
6605 all_comp_units = xmalloc (n_allocated
6606 * sizeof (struct dwarf2_per_cu_data *));
6608 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6609 &n_allocated, &n_comp_units, &all_comp_units);
6611 dwz = dwarf2_get_dwz_file ();
6613 read_comp_units_from_section (objfile, &dwz->info, 1,
6614 &n_allocated, &n_comp_units,
6617 dwarf2_per_objfile->all_comp_units
6618 = obstack_alloc (&objfile->objfile_obstack,
6619 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6620 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 xfree (all_comp_units);
6623 dwarf2_per_objfile->n_comp_units = n_comp_units;
6626 /* Process all loaded DIEs for compilation unit CU, starting at
6627 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6628 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6629 DW_AT_ranges). See the comments of add_partial_subprogram on how
6630 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6633 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6634 CORE_ADDR *highpc, int set_addrmap,
6635 struct dwarf2_cu *cu)
6637 struct partial_die_info *pdi;
6639 /* Now, march along the PDI's, descending into ones which have
6640 interesting children but skipping the children of the other ones,
6641 until we reach the end of the compilation unit. */
6647 fixup_partial_die (pdi, cu);
6649 /* Anonymous namespaces or modules have no name but have interesting
6650 children, so we need to look at them. Ditto for anonymous
6653 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6654 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6655 || pdi->tag == DW_TAG_imported_unit)
6659 case DW_TAG_subprogram:
6660 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6662 case DW_TAG_constant:
6663 case DW_TAG_variable:
6664 case DW_TAG_typedef:
6665 case DW_TAG_union_type:
6666 if (!pdi->is_declaration)
6668 add_partial_symbol (pdi, cu);
6671 case DW_TAG_class_type:
6672 case DW_TAG_interface_type:
6673 case DW_TAG_structure_type:
6674 if (!pdi->is_declaration)
6676 add_partial_symbol (pdi, cu);
6679 case DW_TAG_enumeration_type:
6680 if (!pdi->is_declaration)
6681 add_partial_enumeration (pdi, cu);
6683 case DW_TAG_base_type:
6684 case DW_TAG_subrange_type:
6685 /* File scope base type definitions are added to the partial
6687 add_partial_symbol (pdi, cu);
6689 case DW_TAG_namespace:
6690 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6693 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6695 case DW_TAG_imported_unit:
6697 struct dwarf2_per_cu_data *per_cu;
6699 /* For now we don't handle imported units in type units. */
6700 if (cu->per_cu->is_debug_types)
6702 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6703 " supported in type units [in module %s]"),
6704 objfile_name (cu->objfile));
6707 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6711 /* Go read the partial unit, if needed. */
6712 if (per_cu->v.psymtab == NULL)
6713 process_psymtab_comp_unit (per_cu, 1, cu->language);
6715 VEC_safe_push (dwarf2_per_cu_ptr,
6716 cu->per_cu->imported_symtabs, per_cu);
6719 case DW_TAG_imported_declaration:
6720 add_partial_symbol (pdi, cu);
6727 /* If the die has a sibling, skip to the sibling. */
6729 pdi = pdi->die_sibling;
6733 /* Functions used to compute the fully scoped name of a partial DIE.
6735 Normally, this is simple. For C++, the parent DIE's fully scoped
6736 name is concatenated with "::" and the partial DIE's name. For
6737 Java, the same thing occurs except that "." is used instead of "::".
6738 Enumerators are an exception; they use the scope of their parent
6739 enumeration type, i.e. the name of the enumeration type is not
6740 prepended to the enumerator.
6742 There are two complexities. One is DW_AT_specification; in this
6743 case "parent" means the parent of the target of the specification,
6744 instead of the direct parent of the DIE. The other is compilers
6745 which do not emit DW_TAG_namespace; in this case we try to guess
6746 the fully qualified name of structure types from their members'
6747 linkage names. This must be done using the DIE's children rather
6748 than the children of any DW_AT_specification target. We only need
6749 to do this for structures at the top level, i.e. if the target of
6750 any DW_AT_specification (if any; otherwise the DIE itself) does not
6753 /* Compute the scope prefix associated with PDI's parent, in
6754 compilation unit CU. The result will be allocated on CU's
6755 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6756 field. NULL is returned if no prefix is necessary. */
6758 partial_die_parent_scope (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6761 const char *grandparent_scope;
6762 struct partial_die_info *parent, *real_pdi;
6764 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6765 then this means the parent of the specification DIE. */
6768 while (real_pdi->has_specification)
6769 real_pdi = find_partial_die (real_pdi->spec_offset,
6770 real_pdi->spec_is_dwz, cu);
6772 parent = real_pdi->die_parent;
6776 if (parent->scope_set)
6777 return parent->scope;
6779 fixup_partial_die (parent, cu);
6781 grandparent_scope = partial_die_parent_scope (parent, cu);
6783 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6784 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6785 Work around this problem here. */
6786 if (cu->language == language_cplus
6787 && parent->tag == DW_TAG_namespace
6788 && strcmp (parent->name, "::") == 0
6789 && grandparent_scope == NULL)
6791 parent->scope = NULL;
6792 parent->scope_set = 1;
6796 if (pdi->tag == DW_TAG_enumerator)
6797 /* Enumerators should not get the name of the enumeration as a prefix. */
6798 parent->scope = grandparent_scope;
6799 else if (parent->tag == DW_TAG_namespace
6800 || parent->tag == DW_TAG_module
6801 || parent->tag == DW_TAG_structure_type
6802 || parent->tag == DW_TAG_class_type
6803 || parent->tag == DW_TAG_interface_type
6804 || parent->tag == DW_TAG_union_type
6805 || parent->tag == DW_TAG_enumeration_type)
6807 if (grandparent_scope == NULL)
6808 parent->scope = parent->name;
6810 parent->scope = typename_concat (&cu->comp_unit_obstack,
6812 parent->name, 0, cu);
6816 /* FIXME drow/2004-04-01: What should we be doing with
6817 function-local names? For partial symbols, we should probably be
6819 complaint (&symfile_complaints,
6820 _("unhandled containing DIE tag %d for DIE at %d"),
6821 parent->tag, pdi->offset.sect_off);
6822 parent->scope = grandparent_scope;
6825 parent->scope_set = 1;
6826 return parent->scope;
6829 /* Return the fully scoped name associated with PDI, from compilation unit
6830 CU. The result will be allocated with malloc. */
6833 partial_die_full_name (struct partial_die_info *pdi,
6834 struct dwarf2_cu *cu)
6836 const char *parent_scope;
6838 /* If this is a template instantiation, we can not work out the
6839 template arguments from partial DIEs. So, unfortunately, we have
6840 to go through the full DIEs. At least any work we do building
6841 types here will be reused if full symbols are loaded later. */
6842 if (pdi->has_template_arguments)
6844 fixup_partial_die (pdi, cu);
6846 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6848 struct die_info *die;
6849 struct attribute attr;
6850 struct dwarf2_cu *ref_cu = cu;
6852 /* DW_FORM_ref_addr is using section offset. */
6854 attr.form = DW_FORM_ref_addr;
6855 attr.u.unsnd = pdi->offset.sect_off;
6856 die = follow_die_ref (NULL, &attr, &ref_cu);
6858 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6862 parent_scope = partial_die_parent_scope (pdi, cu);
6863 if (parent_scope == NULL)
6866 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6870 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6872 struct objfile *objfile = cu->objfile;
6873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6875 const char *actual_name = NULL;
6877 char *built_actual_name;
6879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6881 built_actual_name = partial_die_full_name (pdi, cu);
6882 if (built_actual_name != NULL)
6883 actual_name = built_actual_name;
6885 if (actual_name == NULL)
6886 actual_name = pdi->name;
6890 case DW_TAG_subprogram:
6891 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6892 if (pdi->is_external || cu->language == language_ada)
6894 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6895 of the global scope. But in Ada, we want to be able to access
6896 nested procedures globally. So all Ada subprograms are stored
6897 in the global scope. */
6898 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6900 add_psymbol_to_list (actual_name, strlen (actual_name),
6901 built_actual_name != NULL,
6902 VAR_DOMAIN, LOC_BLOCK,
6903 &objfile->global_psymbols,
6904 0, addr, cu->language, objfile);
6908 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 0, addr, cu->language, objfile);
6917 case DW_TAG_constant:
6919 struct psymbol_allocation_list *list;
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, 0, cu->language, objfile);
6930 case DW_TAG_variable:
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6936 && !dwarf2_per_objfile->has_section_at_zero)
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6943 else if (pdi->is_external)
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6964 cu->language, objfile);
6968 int has_loc = pdi->d.locdesc != NULL;
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6974 xfree (built_actual_name);
6978 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6979 mst_file_data, objfile); */
6980 add_psymbol_to_list (actual_name, strlen (actual_name),
6981 built_actual_name != NULL,
6982 VAR_DOMAIN, LOC_STATIC,
6983 &objfile->static_psymbols,
6985 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6986 cu->language, objfile);
6989 case DW_TAG_typedef:
6990 case DW_TAG_base_type:
6991 case DW_TAG_subrange_type:
6992 add_psymbol_to_list (actual_name, strlen (actual_name),
6993 built_actual_name != NULL,
6994 VAR_DOMAIN, LOC_TYPEDEF,
6995 &objfile->static_psymbols,
6996 0, (CORE_ADDR) 0, cu->language, objfile);
6998 case DW_TAG_imported_declaration:
6999 case DW_TAG_namespace:
7000 add_psymbol_to_list (actual_name, strlen (actual_name),
7001 built_actual_name != NULL,
7002 VAR_DOMAIN, LOC_TYPEDEF,
7003 &objfile->global_psymbols,
7004 0, (CORE_ADDR) 0, cu->language, objfile);
7007 add_psymbol_to_list (actual_name, strlen (actual_name),
7008 built_actual_name != NULL,
7009 MODULE_DOMAIN, LOC_TYPEDEF,
7010 &objfile->global_psymbols,
7011 0, (CORE_ADDR) 0, cu->language, objfile);
7013 case DW_TAG_class_type:
7014 case DW_TAG_interface_type:
7015 case DW_TAG_structure_type:
7016 case DW_TAG_union_type:
7017 case DW_TAG_enumeration_type:
7018 /* Skip external references. The DWARF standard says in the section
7019 about "Structure, Union, and Class Type Entries": "An incomplete
7020 structure, union or class type is represented by a structure,
7021 union or class entry that does not have a byte size attribute
7022 and that has a DW_AT_declaration attribute." */
7023 if (!pdi->has_byte_size && pdi->is_declaration)
7025 xfree (built_actual_name);
7029 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7030 static vs. global. */
7031 add_psymbol_to_list (actual_name, strlen (actual_name),
7032 built_actual_name != NULL,
7033 STRUCT_DOMAIN, LOC_TYPEDEF,
7034 (cu->language == language_cplus
7035 || cu->language == language_java)
7036 ? &objfile->global_psymbols
7037 : &objfile->static_psymbols,
7038 0, (CORE_ADDR) 0, cu->language, objfile);
7041 case DW_TAG_enumerator:
7042 add_psymbol_to_list (actual_name, strlen (actual_name),
7043 built_actual_name != NULL,
7044 VAR_DOMAIN, LOC_CONST,
7045 (cu->language == language_cplus
7046 || cu->language == language_java)
7047 ? &objfile->global_psymbols
7048 : &objfile->static_psymbols,
7049 0, (CORE_ADDR) 0, cu->language, objfile);
7055 xfree (built_actual_name);
7058 /* Read a partial die corresponding to a namespace; also, add a symbol
7059 corresponding to that namespace to the symbol table. NAMESPACE is
7060 the name of the enclosing namespace. */
7063 add_partial_namespace (struct partial_die_info *pdi,
7064 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7065 int set_addrmap, struct dwarf2_cu *cu)
7067 /* Add a symbol for the namespace. */
7069 add_partial_symbol (pdi, cu);
7071 /* Now scan partial symbols in that namespace. */
7073 if (pdi->has_children)
7074 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7077 /* Read a partial die corresponding to a Fortran module. */
7080 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7081 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7083 /* Add a symbol for the namespace. */
7085 add_partial_symbol (pdi, cu);
7087 /* Now scan partial symbols in that module. */
7089 if (pdi->has_children)
7090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7093 /* Read a partial die corresponding to a subprogram and create a partial
7094 symbol for that subprogram. When the CU language allows it, this
7095 routine also defines a partial symbol for each nested subprogram
7096 that this subprogram contains. If SET_ADDRMAP is true, record the
7097 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7098 and highest PC values found in PDI.
7100 PDI may also be a lexical block, in which case we simply search
7101 recursively for subprograms defined inside that lexical block.
7102 Again, this is only performed when the CU language allows this
7103 type of definitions. */
7106 add_partial_subprogram (struct partial_die_info *pdi,
7107 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7108 int set_addrmap, struct dwarf2_cu *cu)
7110 if (pdi->tag == DW_TAG_subprogram)
7112 if (pdi->has_pc_info)
7114 if (pdi->lowpc < *lowpc)
7115 *lowpc = pdi->lowpc;
7116 if (pdi->highpc > *highpc)
7117 *highpc = pdi->highpc;
7120 struct objfile *objfile = cu->objfile;
7121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7126 baseaddr = ANOFFSET (objfile->section_offsets,
7127 SECT_OFF_TEXT (objfile));
7128 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7129 pdi->lowpc + baseaddr);
7130 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7131 pdi->highpc + baseaddr);
7132 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7133 cu->per_cu->v.psymtab);
7137 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7139 if (!pdi->is_declaration)
7140 /* Ignore subprogram DIEs that do not have a name, they are
7141 illegal. Do not emit a complaint at this point, we will
7142 do so when we convert this psymtab into a symtab. */
7144 add_partial_symbol (pdi, cu);
7148 if (! pdi->has_children)
7151 if (cu->language == language_ada)
7153 pdi = pdi->die_child;
7156 fixup_partial_die (pdi, cu);
7157 if (pdi->tag == DW_TAG_subprogram
7158 || pdi->tag == DW_TAG_lexical_block)
7159 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7160 pdi = pdi->die_sibling;
7165 /* Read a partial die corresponding to an enumeration type. */
7168 add_partial_enumeration (struct partial_die_info *enum_pdi,
7169 struct dwarf2_cu *cu)
7171 struct partial_die_info *pdi;
7173 if (enum_pdi->name != NULL)
7174 add_partial_symbol (enum_pdi, cu);
7176 pdi = enum_pdi->die_child;
7179 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7180 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7182 add_partial_symbol (pdi, cu);
7183 pdi = pdi->die_sibling;
7187 /* Return the initial uleb128 in the die at INFO_PTR. */
7190 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7192 unsigned int bytes_read;
7194 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7197 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7198 Return the corresponding abbrev, or NULL if the number is zero (indicating
7199 an empty DIE). In either case *BYTES_READ will be set to the length of
7200 the initial number. */
7202 static struct abbrev_info *
7203 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7204 struct dwarf2_cu *cu)
7206 bfd *abfd = cu->objfile->obfd;
7207 unsigned int abbrev_number;
7208 struct abbrev_info *abbrev;
7210 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7212 if (abbrev_number == 0)
7215 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7218 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7219 " at offset 0x%x [in module %s]"),
7220 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7221 cu->header.offset.sect_off, bfd_get_filename (abfd));
7227 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7228 Returns a pointer to the end of a series of DIEs, terminated by an empty
7229 DIE. Any children of the skipped DIEs will also be skipped. */
7231 static const gdb_byte *
7232 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7234 struct dwarf2_cu *cu = reader->cu;
7235 struct abbrev_info *abbrev;
7236 unsigned int bytes_read;
7240 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7242 return info_ptr + bytes_read;
7244 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7248 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7249 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7250 abbrev corresponding to that skipped uleb128 should be passed in
7251 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7254 static const gdb_byte *
7255 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7256 struct abbrev_info *abbrev)
7258 unsigned int bytes_read;
7259 struct attribute attr;
7260 bfd *abfd = reader->abfd;
7261 struct dwarf2_cu *cu = reader->cu;
7262 const gdb_byte *buffer = reader->buffer;
7263 const gdb_byte *buffer_end = reader->buffer_end;
7264 const gdb_byte *start_info_ptr = info_ptr;
7265 unsigned int form, i;
7267 for (i = 0; i < abbrev->num_attrs; i++)
7269 /* The only abbrev we care about is DW_AT_sibling. */
7270 if (abbrev->attrs[i].name == DW_AT_sibling)
7272 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7273 if (attr.form == DW_FORM_ref_addr)
7274 complaint (&symfile_complaints,
7275 _("ignoring absolute DW_AT_sibling"));
7278 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7279 const gdb_byte *sibling_ptr = buffer + off;
7281 if (sibling_ptr < info_ptr)
7282 complaint (&symfile_complaints,
7283 _("DW_AT_sibling points backwards"));
7284 else if (sibling_ptr > reader->buffer_end)
7285 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7291 /* If it isn't DW_AT_sibling, skip this attribute. */
7292 form = abbrev->attrs[i].form;
7296 case DW_FORM_ref_addr:
7297 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7298 and later it is offset sized. */
7299 if (cu->header.version == 2)
7300 info_ptr += cu->header.addr_size;
7302 info_ptr += cu->header.offset_size;
7304 case DW_FORM_GNU_ref_alt:
7305 info_ptr += cu->header.offset_size;
7308 info_ptr += cu->header.addr_size;
7315 case DW_FORM_flag_present:
7327 case DW_FORM_ref_sig8:
7330 case DW_FORM_string:
7331 read_direct_string (abfd, info_ptr, &bytes_read);
7332 info_ptr += bytes_read;
7334 case DW_FORM_sec_offset:
7336 case DW_FORM_GNU_strp_alt:
7337 info_ptr += cu->header.offset_size;
7339 case DW_FORM_exprloc:
7341 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7342 info_ptr += bytes_read;
7344 case DW_FORM_block1:
7345 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7347 case DW_FORM_block2:
7348 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7350 case DW_FORM_block4:
7351 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7355 case DW_FORM_ref_udata:
7356 case DW_FORM_GNU_addr_index:
7357 case DW_FORM_GNU_str_index:
7358 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7360 case DW_FORM_indirect:
7361 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7362 info_ptr += bytes_read;
7363 /* We need to continue parsing from here, so just go back to
7365 goto skip_attribute;
7368 error (_("Dwarf Error: Cannot handle %s "
7369 "in DWARF reader [in module %s]"),
7370 dwarf_form_name (form),
7371 bfd_get_filename (abfd));
7375 if (abbrev->has_children)
7376 return skip_children (reader, info_ptr);
7381 /* Locate ORIG_PDI's sibling.
7382 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7384 static const gdb_byte *
7385 locate_pdi_sibling (const struct die_reader_specs *reader,
7386 struct partial_die_info *orig_pdi,
7387 const gdb_byte *info_ptr)
7389 /* Do we know the sibling already? */
7391 if (orig_pdi->sibling)
7392 return orig_pdi->sibling;
7394 /* Are there any children to deal with? */
7396 if (!orig_pdi->has_children)
7399 /* Skip the children the long way. */
7401 return skip_children (reader, info_ptr);
7404 /* Expand this partial symbol table into a full symbol table. SELF is
7408 dwarf2_read_symtab (struct partial_symtab *self,
7409 struct objfile *objfile)
7413 warning (_("bug: psymtab for %s is already read in."),
7420 printf_filtered (_("Reading in symbols for %s..."),
7422 gdb_flush (gdb_stdout);
7425 /* Restore our global data. */
7426 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7428 /* If this psymtab is constructed from a debug-only objfile, the
7429 has_section_at_zero flag will not necessarily be correct. We
7430 can get the correct value for this flag by looking at the data
7431 associated with the (presumably stripped) associated objfile. */
7432 if (objfile->separate_debug_objfile_backlink)
7434 struct dwarf2_per_objfile *dpo_backlink
7435 = objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key);
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7444 psymtab_to_symtab_1 (self);
7446 /* Finish up the debug error message. */
7448 printf_filtered (_("done.\n"));
7451 process_cu_includes ();
7454 /* Reading in full CUs. */
7456 /* Add PER_CU to the queue. */
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7462 struct dwarf2_queue_item *item;
7465 item = xmalloc (sizeof (*item));
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7473 dwarf2_queue_tail->next = item;
7475 dwarf2_queue_tail = item;
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7502 /* Mark the dependence relation so that we don't flush PER_CU
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7507 /* If it's already on the queue, we have nothing to do. */
7511 /* If the compilation unit is already loaded, just mark it as
7513 if (per_cu->cu != NULL)
7515 per_cu->cu->last_used = 0;
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7525 /* Process the queue. */
7528 process_queue (void)
7530 struct dwarf2_queue_item *item, *next_item;
7532 if (dwarf2_read_debug)
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7543 if (dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7547 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7548 unsigned int debug_print_threshold;
7551 if (per_cu->is_debug_types)
7553 struct signatured_type *sig_type =
7554 (struct signatured_type *) per_cu;
7556 sprintf (buf, "TU %s at offset 0x%x",
7557 hex_string (sig_type->signature),
7558 per_cu->offset.sect_off);
7559 /* There can be 100s of TUs.
7560 Only print them in verbose mode. */
7561 debug_print_threshold = 2;
7565 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7566 debug_print_threshold = 1;
7569 if (dwarf2_read_debug >= debug_print_threshold)
7570 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7572 if (per_cu->is_debug_types)
7573 process_full_type_unit (per_cu, item->pretend_language);
7575 process_full_comp_unit (per_cu, item->pretend_language);
7577 if (dwarf2_read_debug >= debug_print_threshold)
7578 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7581 item->per_cu->queued = 0;
7582 next_item = item->next;
7586 dwarf2_queue_tail = NULL;
7588 if (dwarf2_read_debug)
7590 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7591 objfile_name (dwarf2_per_objfile->objfile));
7595 /* Free all allocated queue entries. This function only releases anything if
7596 an error was thrown; if the queue was processed then it would have been
7597 freed as we went along. */
7600 dwarf2_release_queue (void *dummy)
7602 struct dwarf2_queue_item *item, *last;
7604 item = dwarf2_queue;
7607 /* Anything still marked queued is likely to be in an
7608 inconsistent state, so discard it. */
7609 if (item->per_cu->queued)
7611 if (item->per_cu->cu != NULL)
7612 free_one_cached_comp_unit (item->per_cu);
7613 item->per_cu->queued = 0;
7621 dwarf2_queue = dwarf2_queue_tail = NULL;
7624 /* Read in full symbols for PST, and anything it depends on. */
7627 psymtab_to_symtab_1 (struct partial_symtab *pst)
7629 struct dwarf2_per_cu_data *per_cu;
7635 for (i = 0; i < pst->number_of_dependencies; i++)
7636 if (!pst->dependencies[i]->readin
7637 && pst->dependencies[i]->user == NULL)
7639 /* Inform about additional files that need to be read in. */
7642 /* FIXME: i18n: Need to make this a single string. */
7643 fputs_filtered (" ", gdb_stdout);
7645 fputs_filtered ("and ", gdb_stdout);
7647 printf_filtered ("%s...", pst->dependencies[i]->filename);
7648 wrap_here (""); /* Flush output. */
7649 gdb_flush (gdb_stdout);
7651 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 per_cu = pst->read_symtab_private;
7658 /* It's an include file, no symbols to read for it.
7659 Everything is in the parent symtab. */
7664 dw2_do_instantiate_symtab (per_cu);
7667 /* Trivial hash function for die_info: the hash value of a DIE
7668 is its offset in .debug_info for this objfile. */
7671 die_hash (const void *item)
7673 const struct die_info *die = item;
7675 return die->offset.sect_off;
7678 /* Trivial comparison function for die_info structures: two DIEs
7679 are equal if they have the same offset. */
7682 die_eq (const void *item_lhs, const void *item_rhs)
7684 const struct die_info *die_lhs = item_lhs;
7685 const struct die_info *die_rhs = item_rhs;
7687 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690 /* die_reader_func for load_full_comp_unit.
7691 This is identical to read_signatured_type_reader,
7692 but is kept separate for now. */
7695 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7696 const gdb_byte *info_ptr,
7697 struct die_info *comp_unit_die,
7701 struct dwarf2_cu *cu = reader->cu;
7702 enum language *language_ptr = data;
7704 gdb_assert (cu->die_hash == NULL);
7706 htab_create_alloc_ex (cu->header.length / 12,
7710 &cu->comp_unit_obstack,
7711 hashtab_obstack_allocate,
7712 dummy_obstack_deallocate);
7715 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7716 &info_ptr, comp_unit_die);
7717 cu->dies = comp_unit_die;
7718 /* comp_unit_die is not stored in die_hash, no need. */
7720 /* We try not to read any attributes in this function, because not
7721 all CUs needed for references have been loaded yet, and symbol
7722 table processing isn't initialized. But we have to set the CU language,
7723 or we won't be able to build types correctly.
7724 Similarly, if we do not read the producer, we can not apply
7725 producer-specific interpretation. */
7726 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7729 /* Load the DIEs associated with PER_CU into memory. */
7732 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7733 enum language pretend_language)
7735 gdb_assert (! this_cu->is_debug_types);
7737 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7738 load_full_comp_unit_reader, &pretend_language);
7741 /* Add a DIE to the delayed physname list. */
7744 add_to_method_list (struct type *type, int fnfield_index, int index,
7745 const char *name, struct die_info *die,
7746 struct dwarf2_cu *cu)
7748 struct delayed_method_info mi;
7750 mi.fnfield_index = fnfield_index;
7754 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757 /* A cleanup for freeing the delayed method list. */
7760 free_delayed_list (void *ptr)
7762 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7763 if (cu->method_list != NULL)
7765 VEC_free (delayed_method_info, cu->method_list);
7766 cu->method_list = NULL;
7770 /* Compute the physnames of any methods on the CU's method list.
7772 The computation of method physnames is delayed in order to avoid the
7773 (bad) condition that one of the method's formal parameters is of an as yet
7777 compute_delayed_physnames (struct dwarf2_cu *cu)
7780 struct delayed_method_info *mi;
7781 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7783 const char *physname;
7784 struct fn_fieldlist *fn_flp
7785 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7786 physname = dwarf2_physname (mi->name, mi->die, cu);
7787 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7788 = physname ? physname : "";
7792 /* Go objects should be embedded in a DW_TAG_module DIE,
7793 and it's not clear if/how imported objects will appear.
7794 To keep Go support simple until that's worked out,
7795 go back through what we've read and create something usable.
7796 We could do this while processing each DIE, and feels kinda cleaner,
7797 but that way is more invasive.
7798 This is to, for example, allow the user to type "p var" or "b main"
7799 without having to specify the package name, and allow lookups
7800 of module.object to work in contexts that use the expression
7804 fixup_go_packaging (struct dwarf2_cu *cu)
7806 char *package_name = NULL;
7807 struct pending *list;
7810 for (list = global_symbols; list != NULL; list = list->next)
7812 for (i = 0; i < list->nsyms; ++i)
7814 struct symbol *sym = list->symbol[i];
7816 if (SYMBOL_LANGUAGE (sym) == language_go
7817 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7819 char *this_package_name = go_symbol_package_name (sym);
7821 if (this_package_name == NULL)
7823 if (package_name == NULL)
7824 package_name = this_package_name;
7827 if (strcmp (package_name, this_package_name) != 0)
7828 complaint (&symfile_complaints,
7829 _("Symtab %s has objects from two different Go packages: %s and %s"),
7830 (symbol_symtab (sym) != NULL
7831 ? symtab_to_filename_for_display
7832 (symbol_symtab (sym))
7833 : objfile_name (cu->objfile)),
7834 this_package_name, package_name);
7835 xfree (this_package_name);
7841 if (package_name != NULL)
7843 struct objfile *objfile = cu->objfile;
7844 const char *saved_package_name
7845 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7847 strlen (package_name));
7848 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7849 saved_package_name, objfile);
7852 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7854 sym = allocate_symbol (objfile);
7855 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7856 SYMBOL_SET_NAMES (sym, saved_package_name,
7857 strlen (saved_package_name), 0, objfile);
7858 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7859 e.g., "main" finds the "main" module and not C's main(). */
7860 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7861 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7862 SYMBOL_TYPE (sym) = type;
7864 add_symbol_to_list (sym, &global_symbols);
7866 xfree (package_name);
7870 /* Return the symtab for PER_CU. This works properly regardless of
7871 whether we're using the index or psymtabs. */
7873 static struct compunit_symtab *
7874 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7876 return (dwarf2_per_objfile->using_index
7877 ? per_cu->v.quick->compunit_symtab
7878 : per_cu->v.psymtab->compunit_symtab);
7881 /* A helper function for computing the list of all symbol tables
7882 included by PER_CU. */
7885 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7886 htab_t all_children, htab_t all_type_symtabs,
7887 struct dwarf2_per_cu_data *per_cu,
7888 struct compunit_symtab *immediate_parent)
7892 struct compunit_symtab *cust;
7893 struct dwarf2_per_cu_data *iter;
7895 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 /* This inclusion and its children have been processed. */
7903 /* Only add a CU if it has a symbol table. */
7904 cust = get_compunit_symtab (per_cu);
7907 /* If this is a type unit only add its symbol table if we haven't
7908 seen it yet (type unit per_cu's can share symtabs). */
7909 if (per_cu->is_debug_types)
7911 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7915 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7916 if (cust->user == NULL)
7917 cust->user = immediate_parent;
7922 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7923 if (cust->user == NULL)
7924 cust->user = immediate_parent;
7929 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7932 recursively_compute_inclusions (result, all_children,
7933 all_type_symtabs, iter, cust);
7937 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7941 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7943 gdb_assert (! per_cu->is_debug_types);
7945 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7948 struct dwarf2_per_cu_data *per_cu_iter;
7949 struct compunit_symtab *compunit_symtab_iter;
7950 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7951 htab_t all_children, all_type_symtabs;
7952 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7954 /* If we don't have a symtab, we can just skip this case. */
7958 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7960 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7964 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7968 recursively_compute_inclusions (&result_symtabs, all_children,
7969 all_type_symtabs, per_cu_iter,
7973 /* Now we have a transitive closure of all the included symtabs. */
7974 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7976 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7977 (len + 1) * sizeof (struct symtab *));
7979 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7980 compunit_symtab_iter);
7982 cust->includes[ix] = compunit_symtab_iter;
7983 cust->includes[len] = NULL;
7985 VEC_free (compunit_symtab_ptr, result_symtabs);
7986 htab_delete (all_children);
7987 htab_delete (all_type_symtabs);
7991 /* Compute the 'includes' field for the symtabs of all the CUs we just
7995 process_cu_includes (void)
7998 struct dwarf2_per_cu_data *iter;
8001 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8005 if (! iter->is_debug_types)
8006 compute_compunit_symtab_includes (iter);
8009 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012 /* Generate full symbol information for PER_CU, whose DIEs have
8013 already been loaded into memory. */
8016 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8017 enum language pretend_language)
8019 struct dwarf2_cu *cu = per_cu->cu;
8020 struct objfile *objfile = per_cu->objfile;
8021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8022 CORE_ADDR lowpc, highpc;
8023 struct compunit_symtab *cust;
8024 struct cleanup *back_to, *delayed_list_cleanup;
8026 struct block *static_block;
8029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032 back_to = make_cleanup (really_free_pendings, NULL);
8033 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8035 cu->list_in_scope = &file_symbols;
8037 cu->language = pretend_language;
8038 cu->language_defn = language_def (cu->language);
8040 /* Do line number decoding in read_file_scope () */
8041 process_die (cu->dies, cu);
8043 /* For now fudge the Go package. */
8044 if (cu->language == language_go)
8045 fixup_go_packaging (cu);
8047 /* Now that we have processed all the DIEs in the CU, all the types
8048 should be complete, and it should now be safe to compute all of the
8050 compute_delayed_physnames (cu);
8051 do_cleanups (delayed_list_cleanup);
8053 /* Some compilers don't define a DW_AT_high_pc attribute for the
8054 compilation unit. If the DW_AT_high_pc is missing, synthesize
8055 it, by scanning the DIE's below the compilation unit. */
8056 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8058 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8059 static_block = end_symtab_get_static_block (addr, 0, 1);
8061 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8062 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8063 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8064 addrmap to help ensure it has an accurate map of pc values belonging to
8066 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8068 cust = end_symtab_from_static_block (static_block,
8069 SECT_OFF_TEXT (objfile), 0);
8073 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8075 /* Set symtab language to language from DW_AT_language. If the
8076 compilation is from a C file generated by language preprocessors, do
8077 not set the language if it was already deduced by start_subfile. */
8078 if (!(cu->language == language_c
8079 && COMPUNIT_FILETABS (cust)->language != language_c))
8080 COMPUNIT_FILETABS (cust)->language = cu->language;
8082 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8083 produce DW_AT_location with location lists but it can be possibly
8084 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8085 there were bugs in prologue debug info, fixed later in GCC-4.5
8086 by "unwind info for epilogues" patch (which is not directly related).
8088 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8089 needed, it would be wrong due to missing DW_AT_producer there.
8091 Still one can confuse GDB by using non-standard GCC compilation
8092 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8094 if (cu->has_loclist && gcc_4_minor >= 5)
8095 cust->locations_valid = 1;
8097 if (gcc_4_minor >= 5)
8098 cust->epilogue_unwind_valid = 1;
8100 cust->call_site_htab = cu->call_site_htab;
8103 if (dwarf2_per_objfile->using_index)
8104 per_cu->v.quick->compunit_symtab = cust;
8107 struct partial_symtab *pst = per_cu->v.psymtab;
8108 pst->compunit_symtab = cust;
8112 /* Push it for inclusion processing later. */
8113 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8115 do_cleanups (back_to);
8118 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8119 already been loaded into memory. */
8122 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8123 enum language pretend_language)
8125 struct dwarf2_cu *cu = per_cu->cu;
8126 struct objfile *objfile = per_cu->objfile;
8127 struct compunit_symtab *cust;
8128 struct cleanup *back_to, *delayed_list_cleanup;
8129 struct signatured_type *sig_type;
8131 gdb_assert (per_cu->is_debug_types);
8132 sig_type = (struct signatured_type *) per_cu;
8135 back_to = make_cleanup (really_free_pendings, NULL);
8136 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8138 cu->list_in_scope = &file_symbols;
8140 cu->language = pretend_language;
8141 cu->language_defn = language_def (cu->language);
8143 /* The symbol tables are set up in read_type_unit_scope. */
8144 process_die (cu->dies, cu);
8146 /* For now fudge the Go package. */
8147 if (cu->language == language_go)
8148 fixup_go_packaging (cu);
8150 /* Now that we have processed all the DIEs in the CU, all the types
8151 should be complete, and it should now be safe to compute all of the
8153 compute_delayed_physnames (cu);
8154 do_cleanups (delayed_list_cleanup);
8156 /* TUs share symbol tables.
8157 If this is the first TU to use this symtab, complete the construction
8158 of it with end_expandable_symtab. Otherwise, complete the addition of
8159 this TU's symbols to the existing symtab. */
8160 if (sig_type->type_unit_group->compunit_symtab == NULL)
8162 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8163 sig_type->type_unit_group->compunit_symtab = cust;
8167 /* Set symtab language to language from DW_AT_language. If the
8168 compilation is from a C file generated by language preprocessors,
8169 do not set the language if it was already deduced by
8171 if (!(cu->language == language_c
8172 && COMPUNIT_FILETABS (cust)->language != language_c))
8173 COMPUNIT_FILETABS (cust)->language = cu->language;
8178 augment_type_symtab ();
8179 cust = sig_type->type_unit_group->compunit_symtab;
8182 if (dwarf2_per_objfile->using_index)
8183 per_cu->v.quick->compunit_symtab = cust;
8186 struct partial_symtab *pst = per_cu->v.psymtab;
8187 pst->compunit_symtab = cust;
8191 do_cleanups (back_to);
8194 /* Process an imported unit DIE. */
8197 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8199 struct attribute *attr;
8201 /* For now we don't handle imported units in type units. */
8202 if (cu->per_cu->is_debug_types)
8204 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8205 " supported in type units [in module %s]"),
8206 objfile_name (cu->objfile));
8209 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 struct dwarf2_per_cu_data *per_cu;
8213 struct symtab *imported_symtab;
8217 offset = dwarf2_get_ref_die_offset (attr);
8218 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8219 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8221 /* If necessary, add it to the queue and load its DIEs. */
8222 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8223 load_full_comp_unit (per_cu, cu->language);
8225 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8230 /* Reset the in_process bit of a die. */
8233 reset_die_in_process (void *arg)
8235 struct die_info *die = arg;
8237 die->in_process = 0;
8240 /* Process a die and its children. */
8243 process_die (struct die_info *die, struct dwarf2_cu *cu)
8245 struct cleanup *in_process;
8247 /* We should only be processing those not already in process. */
8248 gdb_assert (!die->in_process);
8250 die->in_process = 1;
8251 in_process = make_cleanup (reset_die_in_process,die);
8255 case DW_TAG_padding:
8257 case DW_TAG_compile_unit:
8258 case DW_TAG_partial_unit:
8259 read_file_scope (die, cu);
8261 case DW_TAG_type_unit:
8262 read_type_unit_scope (die, cu);
8264 case DW_TAG_subprogram:
8265 case DW_TAG_inlined_subroutine:
8266 read_func_scope (die, cu);
8268 case DW_TAG_lexical_block:
8269 case DW_TAG_try_block:
8270 case DW_TAG_catch_block:
8271 read_lexical_block_scope (die, cu);
8273 case DW_TAG_GNU_call_site:
8274 read_call_site_scope (die, cu);
8276 case DW_TAG_class_type:
8277 case DW_TAG_interface_type:
8278 case DW_TAG_structure_type:
8279 case DW_TAG_union_type:
8280 process_structure_scope (die, cu);
8282 case DW_TAG_enumeration_type:
8283 process_enumeration_scope (die, cu);
8286 /* These dies have a type, but processing them does not create
8287 a symbol or recurse to process the children. Therefore we can
8288 read them on-demand through read_type_die. */
8289 case DW_TAG_subroutine_type:
8290 case DW_TAG_set_type:
8291 case DW_TAG_array_type:
8292 case DW_TAG_pointer_type:
8293 case DW_TAG_ptr_to_member_type:
8294 case DW_TAG_reference_type:
8295 case DW_TAG_string_type:
8298 case DW_TAG_base_type:
8299 case DW_TAG_subrange_type:
8300 case DW_TAG_typedef:
8301 /* Add a typedef symbol for the type definition, if it has a
8303 new_symbol (die, read_type_die (die, cu), cu);
8305 case DW_TAG_common_block:
8306 read_common_block (die, cu);
8308 case DW_TAG_common_inclusion:
8310 case DW_TAG_namespace:
8311 cu->processing_has_namespace_info = 1;
8312 read_namespace (die, cu);
8315 cu->processing_has_namespace_info = 1;
8316 read_module (die, cu);
8318 case DW_TAG_imported_declaration:
8319 cu->processing_has_namespace_info = 1;
8320 if (read_namespace_alias (die, cu))
8322 /* The declaration is not a global namespace alias: fall through. */
8323 case DW_TAG_imported_module:
8324 cu->processing_has_namespace_info = 1;
8325 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8326 || cu->language != language_fortran))
8327 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8328 dwarf_tag_name (die->tag));
8329 read_import_statement (die, cu);
8332 case DW_TAG_imported_unit:
8333 process_imported_unit_die (die, cu);
8337 new_symbol (die, NULL, cu);
8341 do_cleanups (in_process);
8344 /* DWARF name computation. */
8346 /* A helper function for dwarf2_compute_name which determines whether DIE
8347 needs to have the name of the scope prepended to the name listed in the
8351 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8353 struct attribute *attr;
8357 case DW_TAG_namespace:
8358 case DW_TAG_typedef:
8359 case DW_TAG_class_type:
8360 case DW_TAG_interface_type:
8361 case DW_TAG_structure_type:
8362 case DW_TAG_union_type:
8363 case DW_TAG_enumeration_type:
8364 case DW_TAG_enumerator:
8365 case DW_TAG_subprogram:
8367 case DW_TAG_imported_declaration:
8370 case DW_TAG_variable:
8371 case DW_TAG_constant:
8372 /* We only need to prefix "globally" visible variables. These include
8373 any variable marked with DW_AT_external or any variable that
8374 lives in a namespace. [Variables in anonymous namespaces
8375 require prefixing, but they are not DW_AT_external.] */
8377 if (dwarf2_attr (die, DW_AT_specification, cu))
8379 struct dwarf2_cu *spec_cu = cu;
8381 return die_needs_namespace (die_specification (die, &spec_cu),
8385 attr = dwarf2_attr (die, DW_AT_external, cu);
8386 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8387 && die->parent->tag != DW_TAG_module)
8389 /* A variable in a lexical block of some kind does not need a
8390 namespace, even though in C++ such variables may be external
8391 and have a mangled name. */
8392 if (die->parent->tag == DW_TAG_lexical_block
8393 || die->parent->tag == DW_TAG_try_block
8394 || die->parent->tag == DW_TAG_catch_block
8395 || die->parent->tag == DW_TAG_subprogram)
8404 /* Retrieve the last character from a mem_file. */
8407 do_ui_file_peek_last (void *object, const char *buffer, long length)
8409 char *last_char_p = (char *) object;
8412 *last_char_p = buffer[length - 1];
8415 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8416 compute the physname for the object, which include a method's:
8417 - formal parameters (C++/Java),
8418 - receiver type (Go),
8419 - return type (Java).
8421 The term "physname" is a bit confusing.
8422 For C++, for example, it is the demangled name.
8423 For Go, for example, it's the mangled name.
8425 For Ada, return the DIE's linkage name rather than the fully qualified
8426 name. PHYSNAME is ignored..
8428 The result is allocated on the objfile_obstack and canonicalized. */
8431 dwarf2_compute_name (const char *name,
8432 struct die_info *die, struct dwarf2_cu *cu,
8435 struct objfile *objfile = cu->objfile;
8438 name = dwarf2_name (die, cu);
8440 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8441 compute it by typename_concat inside GDB. */
8442 if (cu->language == language_ada
8443 || (cu->language == language_fortran && physname))
8445 /* For Ada unit, we prefer the linkage name over the name, as
8446 the former contains the exported name, which the user expects
8447 to be able to reference. Ideally, we want the user to be able
8448 to reference this entity using either natural or linkage name,
8449 but we haven't started looking at this enhancement yet. */
8450 struct attribute *attr;
8452 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8454 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8455 if (attr && DW_STRING (attr))
8456 return DW_STRING (attr);
8459 /* These are the only languages we know how to qualify names in. */
8461 && (cu->language == language_cplus || cu->language == language_java
8462 || cu->language == language_fortran))
8464 if (die_needs_namespace (die, cu))
8468 struct ui_file *buf;
8469 char *intermediate_name;
8470 const char *canonical_name = NULL;
8472 prefix = determine_prefix (die, cu);
8473 buf = mem_fileopen ();
8474 if (*prefix != '\0')
8476 char *prefixed_name = typename_concat (NULL, prefix, name,
8479 fputs_unfiltered (prefixed_name, buf);
8480 xfree (prefixed_name);
8483 fputs_unfiltered (name, buf);
8485 /* Template parameters may be specified in the DIE's DW_AT_name, or
8486 as children with DW_TAG_template_type_param or
8487 DW_TAG_value_type_param. If the latter, add them to the name
8488 here. If the name already has template parameters, then
8489 skip this step; some versions of GCC emit both, and
8490 it is more efficient to use the pre-computed name.
8492 Something to keep in mind about this process: it is very
8493 unlikely, or in some cases downright impossible, to produce
8494 something that will match the mangled name of a function.
8495 If the definition of the function has the same debug info,
8496 we should be able to match up with it anyway. But fallbacks
8497 using the minimal symbol, for instance to find a method
8498 implemented in a stripped copy of libstdc++, will not work.
8499 If we do not have debug info for the definition, we will have to
8500 match them up some other way.
8502 When we do name matching there is a related problem with function
8503 templates; two instantiated function templates are allowed to
8504 differ only by their return types, which we do not add here. */
8506 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8508 struct attribute *attr;
8509 struct die_info *child;
8512 die->building_fullname = 1;
8514 for (child = die->child; child != NULL; child = child->sibling)
8518 const gdb_byte *bytes;
8519 struct dwarf2_locexpr_baton *baton;
8522 if (child->tag != DW_TAG_template_type_param
8523 && child->tag != DW_TAG_template_value_param)
8528 fputs_unfiltered ("<", buf);
8532 fputs_unfiltered (", ", buf);
8534 attr = dwarf2_attr (child, DW_AT_type, cu);
8537 complaint (&symfile_complaints,
8538 _("template parameter missing DW_AT_type"));
8539 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8542 type = die_type (child, cu);
8544 if (child->tag == DW_TAG_template_type_param)
8546 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8550 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8553 complaint (&symfile_complaints,
8554 _("template parameter missing "
8555 "DW_AT_const_value"));
8556 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8560 dwarf2_const_value_attr (attr, type, name,
8561 &cu->comp_unit_obstack, cu,
8562 &value, &bytes, &baton);
8564 if (TYPE_NOSIGN (type))
8565 /* GDB prints characters as NUMBER 'CHAR'. If that's
8566 changed, this can use value_print instead. */
8567 c_printchar (value, type, buf);
8570 struct value_print_options opts;
8573 v = dwarf2_evaluate_loc_desc (type, NULL,
8577 else if (bytes != NULL)
8579 v = allocate_value (type);
8580 memcpy (value_contents_writeable (v), bytes,
8581 TYPE_LENGTH (type));
8584 v = value_from_longest (type, value);
8586 /* Specify decimal so that we do not depend on
8588 get_formatted_print_options (&opts, 'd');
8590 value_print (v, buf, &opts);
8596 die->building_fullname = 0;
8600 /* Close the argument list, with a space if necessary
8601 (nested templates). */
8602 char last_char = '\0';
8603 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8604 if (last_char == '>')
8605 fputs_unfiltered (" >", buf);
8607 fputs_unfiltered (">", buf);
8611 /* For Java and C++ methods, append formal parameter type
8612 information, if PHYSNAME. */
8614 if (physname && die->tag == DW_TAG_subprogram
8615 && (cu->language == language_cplus
8616 || cu->language == language_java))
8618 struct type *type = read_type_die (die, cu);
8620 c_type_print_args (type, buf, 1, cu->language,
8621 &type_print_raw_options);
8623 if (cu->language == language_java)
8625 /* For java, we must append the return type to method
8627 if (die->tag == DW_TAG_subprogram)
8628 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8629 0, 0, &type_print_raw_options);
8631 else if (cu->language == language_cplus)
8633 /* Assume that an artificial first parameter is
8634 "this", but do not crash if it is not. RealView
8635 marks unnamed (and thus unused) parameters as
8636 artificial; there is no way to differentiate
8638 if (TYPE_NFIELDS (type) > 0
8639 && TYPE_FIELD_ARTIFICIAL (type, 0)
8640 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8641 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8643 fputs_unfiltered (" const", buf);
8647 intermediate_name = ui_file_xstrdup (buf, &length);
8648 ui_file_delete (buf);
8650 if (cu->language == language_cplus)
8652 = dwarf2_canonicalize_name (intermediate_name, cu,
8653 &objfile->per_bfd->storage_obstack);
8655 /* If we only computed INTERMEDIATE_NAME, or if
8656 INTERMEDIATE_NAME is already canonical, then we need to
8657 copy it to the appropriate obstack. */
8658 if (canonical_name == NULL || canonical_name == intermediate_name)
8659 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8661 strlen (intermediate_name));
8663 name = canonical_name;
8665 xfree (intermediate_name);
8672 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8673 If scope qualifiers are appropriate they will be added. The result
8674 will be allocated on the storage_obstack, or NULL if the DIE does
8675 not have a name. NAME may either be from a previous call to
8676 dwarf2_name or NULL.
8678 The output string will be canonicalized (if C++/Java). */
8681 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8683 return dwarf2_compute_name (name, die, cu, 0);
8686 /* Construct a physname for the given DIE in CU. NAME may either be
8687 from a previous call to dwarf2_name or NULL. The result will be
8688 allocated on the objfile_objstack or NULL if the DIE does not have a
8691 The output string will be canonicalized (if C++/Java). */
8694 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8696 struct objfile *objfile = cu->objfile;
8697 struct attribute *attr;
8698 const char *retval, *mangled = NULL, *canon = NULL;
8699 struct cleanup *back_to;
8702 /* In this case dwarf2_compute_name is just a shortcut not building anything
8704 if (!die_needs_namespace (die, cu))
8705 return dwarf2_compute_name (name, die, cu, 1);
8707 back_to = make_cleanup (null_cleanup, NULL);
8709 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8711 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8713 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8715 if (attr && DW_STRING (attr))
8719 mangled = DW_STRING (attr);
8721 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8722 type. It is easier for GDB users to search for such functions as
8723 `name(params)' than `long name(params)'. In such case the minimal
8724 symbol names do not match the full symbol names but for template
8725 functions there is never a need to look up their definition from their
8726 declaration so the only disadvantage remains the minimal symbol
8727 variant `long name(params)' does not have the proper inferior type.
8730 if (cu->language == language_go)
8732 /* This is a lie, but we already lie to the caller new_symbol_full.
8733 new_symbol_full assumes we return the mangled name.
8734 This just undoes that lie until things are cleaned up. */
8739 demangled = gdb_demangle (mangled,
8740 (DMGL_PARAMS | DMGL_ANSI
8741 | (cu->language == language_java
8742 ? DMGL_JAVA | DMGL_RET_POSTFIX
8747 make_cleanup (xfree, demangled);
8757 if (canon == NULL || check_physname)
8759 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8761 if (canon != NULL && strcmp (physname, canon) != 0)
8763 /* It may not mean a bug in GDB. The compiler could also
8764 compute DW_AT_linkage_name incorrectly. But in such case
8765 GDB would need to be bug-to-bug compatible. */
8767 complaint (&symfile_complaints,
8768 _("Computed physname <%s> does not match demangled <%s> "
8769 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8770 physname, canon, mangled, die->offset.sect_off,
8771 objfile_name (objfile));
8773 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8774 is available here - over computed PHYSNAME. It is safer
8775 against both buggy GDB and buggy compilers. */
8789 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8790 retval, strlen (retval));
8792 do_cleanups (back_to);
8796 /* Inspect DIE in CU for a namespace alias. If one exists, record
8797 a new symbol for it.
8799 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8802 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8804 struct attribute *attr;
8806 /* If the die does not have a name, this is not a namespace
8808 attr = dwarf2_attr (die, DW_AT_name, cu);
8812 struct die_info *d = die;
8813 struct dwarf2_cu *imported_cu = cu;
8815 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8816 keep inspecting DIEs until we hit the underlying import. */
8817 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8818 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8820 attr = dwarf2_attr (d, DW_AT_import, cu);
8824 d = follow_die_ref (d, attr, &imported_cu);
8825 if (d->tag != DW_TAG_imported_declaration)
8829 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8831 complaint (&symfile_complaints,
8832 _("DIE at 0x%x has too many recursively imported "
8833 "declarations"), d->offset.sect_off);
8840 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8842 type = get_die_type_at_offset (offset, cu->per_cu);
8843 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8845 /* This declaration is a global namespace alias. Add
8846 a symbol for it whose type is the aliased namespace. */
8847 new_symbol (die, type, cu);
8856 /* Read the import statement specified by the given die and record it. */
8859 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8861 struct objfile *objfile = cu->objfile;
8862 struct attribute *import_attr;
8863 struct die_info *imported_die, *child_die;
8864 struct dwarf2_cu *imported_cu;
8865 const char *imported_name;
8866 const char *imported_name_prefix;
8867 const char *canonical_name;
8868 const char *import_alias;
8869 const char *imported_declaration = NULL;
8870 const char *import_prefix;
8871 VEC (const_char_ptr) *excludes = NULL;
8872 struct cleanup *cleanups;
8874 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8875 if (import_attr == NULL)
8877 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8878 dwarf_tag_name (die->tag));
8883 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8884 imported_name = dwarf2_name (imported_die, imported_cu);
8885 if (imported_name == NULL)
8887 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8889 The import in the following code:
8903 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8904 <52> DW_AT_decl_file : 1
8905 <53> DW_AT_decl_line : 6
8906 <54> DW_AT_import : <0x75>
8907 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8909 <5b> DW_AT_decl_file : 1
8910 <5c> DW_AT_decl_line : 2
8911 <5d> DW_AT_type : <0x6e>
8913 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8914 <76> DW_AT_byte_size : 4
8915 <77> DW_AT_encoding : 5 (signed)
8917 imports the wrong die ( 0x75 instead of 0x58 ).
8918 This case will be ignored until the gcc bug is fixed. */
8922 /* Figure out the local name after import. */
8923 import_alias = dwarf2_name (die, cu);
8925 /* Figure out where the statement is being imported to. */
8926 import_prefix = determine_prefix (die, cu);
8928 /* Figure out what the scope of the imported die is and prepend it
8929 to the name of the imported die. */
8930 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8932 if (imported_die->tag != DW_TAG_namespace
8933 && imported_die->tag != DW_TAG_module)
8935 imported_declaration = imported_name;
8936 canonical_name = imported_name_prefix;
8938 else if (strlen (imported_name_prefix) > 0)
8939 canonical_name = obconcat (&objfile->objfile_obstack,
8940 imported_name_prefix, "::", imported_name,
8943 canonical_name = imported_name;
8945 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8947 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8948 for (child_die = die->child; child_die && child_die->tag;
8949 child_die = sibling_die (child_die))
8951 /* DWARF-4: A Fortran use statement with a “rename list” may be
8952 represented by an imported module entry with an import attribute
8953 referring to the module and owned entries corresponding to those
8954 entities that are renamed as part of being imported. */
8956 if (child_die->tag != DW_TAG_imported_declaration)
8958 complaint (&symfile_complaints,
8959 _("child DW_TAG_imported_declaration expected "
8960 "- DIE at 0x%x [in module %s]"),
8961 child_die->offset.sect_off, objfile_name (objfile));
8965 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8966 if (import_attr == NULL)
8968 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8969 dwarf_tag_name (child_die->tag));
8974 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8976 imported_name = dwarf2_name (imported_die, imported_cu);
8977 if (imported_name == NULL)
8979 complaint (&symfile_complaints,
8980 _("child DW_TAG_imported_declaration has unknown "
8981 "imported name - DIE at 0x%x [in module %s]"),
8982 child_die->offset.sect_off, objfile_name (objfile));
8986 VEC_safe_push (const_char_ptr, excludes, imported_name);
8988 process_die (child_die, cu);
8991 cp_add_using_directive (import_prefix,
8994 imported_declaration,
8997 &objfile->objfile_obstack);
8999 do_cleanups (cleanups);
9002 /* Cleanup function for handle_DW_AT_stmt_list. */
9005 free_cu_line_header (void *arg)
9007 struct dwarf2_cu *cu = arg;
9009 free_line_header (cu->line_header);
9010 cu->line_header = NULL;
9013 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9014 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9015 this, it was first present in GCC release 4.3.0. */
9018 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9020 if (!cu->checked_producer)
9021 check_producer (cu);
9023 return cu->producer_is_gcc_lt_4_3;
9027 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9028 const char **name, const char **comp_dir)
9030 struct attribute *attr;
9035 /* Find the filename. Do not use dwarf2_name here, since the filename
9036 is not a source language identifier. */
9037 attr = dwarf2_attr (die, DW_AT_name, cu);
9040 *name = DW_STRING (attr);
9043 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9045 *comp_dir = DW_STRING (attr);
9046 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9047 && IS_ABSOLUTE_PATH (*name))
9049 char *d = ldirname (*name);
9053 make_cleanup (xfree, d);
9055 if (*comp_dir != NULL)
9057 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9058 directory, get rid of it. */
9059 char *cp = strchr (*comp_dir, ':');
9061 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9066 *name = "<unknown>";
9069 /* Handle DW_AT_stmt_list for a compilation unit.
9070 DIE is the DW_TAG_compile_unit die for CU.
9071 COMP_DIR is the compilation directory. LOWPC is passed to
9072 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9075 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9076 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9078 struct objfile *objfile = dwarf2_per_objfile->objfile;
9079 struct attribute *attr;
9080 unsigned int line_offset;
9081 struct line_header line_header_local;
9082 hashval_t line_header_local_hash;
9087 gdb_assert (! cu->per_cu->is_debug_types);
9089 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9093 line_offset = DW_UNSND (attr);
9095 /* The line header hash table is only created if needed (it exists to
9096 prevent redundant reading of the line table for partial_units).
9097 If we're given a partial_unit, we'll need it. If we're given a
9098 compile_unit, then use the line header hash table if it's already
9099 created, but don't create one just yet. */
9101 if (dwarf2_per_objfile->line_header_hash == NULL
9102 && die->tag == DW_TAG_partial_unit)
9104 dwarf2_per_objfile->line_header_hash
9105 = htab_create_alloc_ex (127, line_header_hash_voidp,
9106 line_header_eq_voidp,
9107 free_line_header_voidp,
9108 &objfile->objfile_obstack,
9109 hashtab_obstack_allocate,
9110 dummy_obstack_deallocate);
9113 line_header_local.offset.sect_off = line_offset;
9114 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9115 line_header_local_hash = line_header_hash (&line_header_local);
9116 if (dwarf2_per_objfile->line_header_hash != NULL)
9118 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9120 line_header_local_hash, NO_INSERT);
9122 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9123 is not present in *SLOT (since if there is something in *SLOT then
9124 it will be for a partial_unit). */
9125 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9127 gdb_assert (*slot != NULL);
9128 cu->line_header = *slot;
9133 /* dwarf_decode_line_header does not yet provide sufficient information.
9134 We always have to call also dwarf_decode_lines for it. */
9135 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9136 if (cu->line_header == NULL)
9139 if (dwarf2_per_objfile->line_header_hash == NULL)
9143 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9145 line_header_local_hash, INSERT);
9146 gdb_assert (slot != NULL);
9148 if (slot != NULL && *slot == NULL)
9150 /* This newly decoded line number information unit will be owned
9151 by line_header_hash hash table. */
9152 *slot = cu->line_header;
9156 /* We cannot free any current entry in (*slot) as that struct line_header
9157 may be already used by multiple CUs. Create only temporary decoded
9158 line_header for this CU - it may happen at most once for each line
9159 number information unit. And if we're not using line_header_hash
9160 then this is what we want as well. */
9161 gdb_assert (die->tag != DW_TAG_partial_unit);
9162 make_cleanup (free_cu_line_header, cu);
9164 decode_mapping = (die->tag != DW_TAG_partial_unit);
9165 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9169 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9172 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9174 struct objfile *objfile = dwarf2_per_objfile->objfile;
9175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9176 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9177 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9178 CORE_ADDR highpc = ((CORE_ADDR) 0);
9179 struct attribute *attr;
9180 const char *name = NULL;
9181 const char *comp_dir = NULL;
9182 struct die_info *child_die;
9183 bfd *abfd = objfile->obfd;
9186 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9188 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9190 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9191 from finish_block. */
9192 if (lowpc == ((CORE_ADDR) -1))
9194 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9196 find_file_and_directory (die, cu, &name, &comp_dir);
9198 prepare_one_comp_unit (cu, die, cu->language);
9200 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9201 standardised yet. As a workaround for the language detection we fall
9202 back to the DW_AT_producer string. */
9203 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9204 cu->language = language_opencl;
9206 /* Similar hack for Go. */
9207 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9208 set_cu_language (DW_LANG_Go, cu);
9210 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9212 /* Decode line number information if present. We do this before
9213 processing child DIEs, so that the line header table is available
9214 for DW_AT_decl_file. */
9215 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9217 /* Process all dies in compilation unit. */
9218 if (die->child != NULL)
9220 child_die = die->child;
9221 while (child_die && child_die->tag)
9223 process_die (child_die, cu);
9224 child_die = sibling_die (child_die);
9228 /* Decode macro information, if present. Dwarf 2 macro information
9229 refers to information in the line number info statement program
9230 header, so we can only read it if we've read the header
9232 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9233 if (attr && cu->line_header)
9235 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9236 complaint (&symfile_complaints,
9237 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9239 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9243 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9244 if (attr && cu->line_header)
9246 unsigned int macro_offset = DW_UNSND (attr);
9248 dwarf_decode_macros (cu, macro_offset, 0);
9252 do_cleanups (back_to);
9255 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9256 Create the set of symtabs used by this TU, or if this TU is sharing
9257 symtabs with another TU and the symtabs have already been created
9258 then restore those symtabs in the line header.
9259 We don't need the pc/line-number mapping for type units. */
9262 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9264 struct objfile *objfile = dwarf2_per_objfile->objfile;
9265 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9266 struct type_unit_group *tu_group;
9268 struct line_header *lh;
9269 struct attribute *attr;
9270 unsigned int i, line_offset;
9271 struct signatured_type *sig_type;
9273 gdb_assert (per_cu->is_debug_types);
9274 sig_type = (struct signatured_type *) per_cu;
9276 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9278 /* If we're using .gdb_index (includes -readnow) then
9279 per_cu->type_unit_group may not have been set up yet. */
9280 if (sig_type->type_unit_group == NULL)
9281 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9282 tu_group = sig_type->type_unit_group;
9284 /* If we've already processed this stmt_list there's no real need to
9285 do it again, we could fake it and just recreate the part we need
9286 (file name,index -> symtab mapping). If data shows this optimization
9287 is useful we can do it then. */
9288 first_time = tu_group->compunit_symtab == NULL;
9290 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9295 line_offset = DW_UNSND (attr);
9296 lh = dwarf_decode_line_header (line_offset, cu);
9301 dwarf2_start_symtab (cu, "", NULL, 0);
9304 gdb_assert (tu_group->symtabs == NULL);
9305 restart_symtab (tu_group->compunit_symtab, "", 0);
9310 cu->line_header = lh;
9311 make_cleanup (free_cu_line_header, cu);
9315 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9317 tu_group->num_symtabs = lh->num_file_names;
9318 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9320 for (i = 0; i < lh->num_file_names; ++i)
9322 const char *dir = NULL;
9323 struct file_entry *fe = &lh->file_names[i];
9325 if (fe->dir_index && lh->include_dirs != NULL)
9326 dir = lh->include_dirs[fe->dir_index - 1];
9327 dwarf2_start_subfile (fe->name, dir);
9329 if (current_subfile->symtab == NULL)
9331 /* NOTE: start_subfile will recognize when it's been passed
9332 a file it has already seen. So we can't assume there's a
9333 simple mapping from lh->file_names to subfiles, plus
9334 lh->file_names may contain dups. */
9335 current_subfile->symtab
9336 = allocate_symtab (cust, current_subfile->name);
9339 fe->symtab = current_subfile->symtab;
9340 tu_group->symtabs[i] = fe->symtab;
9345 restart_symtab (tu_group->compunit_symtab, "", 0);
9347 for (i = 0; i < lh->num_file_names; ++i)
9349 struct file_entry *fe = &lh->file_names[i];
9351 fe->symtab = tu_group->symtabs[i];
9355 /* The main symtab is allocated last. Type units don't have DW_AT_name
9356 so they don't have a "real" (so to speak) symtab anyway.
9357 There is later code that will assign the main symtab to all symbols
9358 that don't have one. We need to handle the case of a symbol with a
9359 missing symtab (DW_AT_decl_file) anyway. */
9362 /* Process DW_TAG_type_unit.
9363 For TUs we want to skip the first top level sibling if it's not the
9364 actual type being defined by this TU. In this case the first top
9365 level sibling is there to provide context only. */
9368 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9370 struct die_info *child_die;
9372 prepare_one_comp_unit (cu, die, language_minimal);
9374 /* Initialize (or reinitialize) the machinery for building symtabs.
9375 We do this before processing child DIEs, so that the line header table
9376 is available for DW_AT_decl_file. */
9377 setup_type_unit_groups (die, cu);
9379 if (die->child != NULL)
9381 child_die = die->child;
9382 while (child_die && child_die->tag)
9384 process_die (child_die, cu);
9385 child_die = sibling_die (child_die);
9392 http://gcc.gnu.org/wiki/DebugFission
9393 http://gcc.gnu.org/wiki/DebugFissionDWP
9395 To simplify handling of both DWO files ("object" files with the DWARF info)
9396 and DWP files (a file with the DWOs packaged up into one file), we treat
9397 DWP files as having a collection of virtual DWO files. */
9400 hash_dwo_file (const void *item)
9402 const struct dwo_file *dwo_file = item;
9405 hash = htab_hash_string (dwo_file->dwo_name);
9406 if (dwo_file->comp_dir != NULL)
9407 hash += htab_hash_string (dwo_file->comp_dir);
9412 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9414 const struct dwo_file *lhs = item_lhs;
9415 const struct dwo_file *rhs = item_rhs;
9417 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9419 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9420 return lhs->comp_dir == rhs->comp_dir;
9421 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9424 /* Allocate a hash table for DWO files. */
9427 allocate_dwo_file_hash_table (void)
9429 struct objfile *objfile = dwarf2_per_objfile->objfile;
9431 return htab_create_alloc_ex (41,
9435 &objfile->objfile_obstack,
9436 hashtab_obstack_allocate,
9437 dummy_obstack_deallocate);
9440 /* Lookup DWO file DWO_NAME. */
9443 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9445 struct dwo_file find_entry;
9448 if (dwarf2_per_objfile->dwo_files == NULL)
9449 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9451 memset (&find_entry, 0, sizeof (find_entry));
9452 find_entry.dwo_name = dwo_name;
9453 find_entry.comp_dir = comp_dir;
9454 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9460 hash_dwo_unit (const void *item)
9462 const struct dwo_unit *dwo_unit = item;
9464 /* This drops the top 32 bits of the id, but is ok for a hash. */
9465 return dwo_unit->signature;
9469 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9471 const struct dwo_unit *lhs = item_lhs;
9472 const struct dwo_unit *rhs = item_rhs;
9474 /* The signature is assumed to be unique within the DWO file.
9475 So while object file CU dwo_id's always have the value zero,
9476 that's OK, assuming each object file DWO file has only one CU,
9477 and that's the rule for now. */
9478 return lhs->signature == rhs->signature;
9481 /* Allocate a hash table for DWO CUs,TUs.
9482 There is one of these tables for each of CUs,TUs for each DWO file. */
9485 allocate_dwo_unit_table (struct objfile *objfile)
9487 /* Start out with a pretty small number.
9488 Generally DWO files contain only one CU and maybe some TUs. */
9489 return htab_create_alloc_ex (3,
9493 &objfile->objfile_obstack,
9494 hashtab_obstack_allocate,
9495 dummy_obstack_deallocate);
9498 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9500 struct create_dwo_cu_data
9502 struct dwo_file *dwo_file;
9503 struct dwo_unit dwo_unit;
9506 /* die_reader_func for create_dwo_cu. */
9509 create_dwo_cu_reader (const struct die_reader_specs *reader,
9510 const gdb_byte *info_ptr,
9511 struct die_info *comp_unit_die,
9515 struct dwarf2_cu *cu = reader->cu;
9516 struct objfile *objfile = dwarf2_per_objfile->objfile;
9517 sect_offset offset = cu->per_cu->offset;
9518 struct dwarf2_section_info *section = cu->per_cu->section;
9519 struct create_dwo_cu_data *data = datap;
9520 struct dwo_file *dwo_file = data->dwo_file;
9521 struct dwo_unit *dwo_unit = &data->dwo_unit;
9522 struct attribute *attr;
9524 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9527 complaint (&symfile_complaints,
9528 _("Dwarf Error: debug entry at offset 0x%x is missing"
9529 " its dwo_id [in module %s]"),
9530 offset.sect_off, dwo_file->dwo_name);
9534 dwo_unit->dwo_file = dwo_file;
9535 dwo_unit->signature = DW_UNSND (attr);
9536 dwo_unit->section = section;
9537 dwo_unit->offset = offset;
9538 dwo_unit->length = cu->per_cu->length;
9540 if (dwarf2_read_debug)
9541 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9542 offset.sect_off, hex_string (dwo_unit->signature));
9545 /* Create the dwo_unit for the lone CU in DWO_FILE.
9546 Note: This function processes DWO files only, not DWP files. */
9548 static struct dwo_unit *
9549 create_dwo_cu (struct dwo_file *dwo_file)
9551 struct objfile *objfile = dwarf2_per_objfile->objfile;
9552 struct dwarf2_section_info *section = &dwo_file->sections.info;
9555 const gdb_byte *info_ptr, *end_ptr;
9556 struct create_dwo_cu_data create_dwo_cu_data;
9557 struct dwo_unit *dwo_unit;
9559 dwarf2_read_section (objfile, section);
9560 info_ptr = section->buffer;
9562 if (info_ptr == NULL)
9565 /* We can't set abfd until now because the section may be empty or
9566 not present, in which case section->asection will be NULL. */
9567 abfd = get_section_bfd_owner (section);
9569 if (dwarf2_read_debug)
9571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9572 get_section_name (section),
9573 get_section_file_name (section));
9576 create_dwo_cu_data.dwo_file = dwo_file;
9579 end_ptr = info_ptr + section->size;
9580 while (info_ptr < end_ptr)
9582 struct dwarf2_per_cu_data per_cu;
9584 memset (&create_dwo_cu_data.dwo_unit, 0,
9585 sizeof (create_dwo_cu_data.dwo_unit));
9586 memset (&per_cu, 0, sizeof (per_cu));
9587 per_cu.objfile = objfile;
9588 per_cu.is_debug_types = 0;
9589 per_cu.offset.sect_off = info_ptr - section->buffer;
9590 per_cu.section = section;
9592 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9593 create_dwo_cu_reader,
9594 &create_dwo_cu_data);
9596 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9598 /* If we've already found one, complain. We only support one
9599 because having more than one requires hacking the dwo_name of
9600 each to match, which is highly unlikely to happen. */
9601 if (dwo_unit != NULL)
9603 complaint (&symfile_complaints,
9604 _("Multiple CUs in DWO file %s [in module %s]"),
9605 dwo_file->dwo_name, objfile_name (objfile));
9609 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9610 *dwo_unit = create_dwo_cu_data.dwo_unit;
9613 info_ptr += per_cu.length;
9619 /* DWP file .debug_{cu,tu}_index section format:
9620 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9624 Both index sections have the same format, and serve to map a 64-bit
9625 signature to a set of section numbers. Each section begins with a header,
9626 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9627 indexes, and a pool of 32-bit section numbers. The index sections will be
9628 aligned at 8-byte boundaries in the file.
9630 The index section header consists of:
9632 V, 32 bit version number
9634 N, 32 bit number of compilation units or type units in the index
9635 M, 32 bit number of slots in the hash table
9637 Numbers are recorded using the byte order of the application binary.
9639 The hash table begins at offset 16 in the section, and consists of an array
9640 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9641 order of the application binary). Unused slots in the hash table are 0.
9642 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9644 The parallel table begins immediately after the hash table
9645 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9646 array of 32-bit indexes (using the byte order of the application binary),
9647 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9648 table contains a 32-bit index into the pool of section numbers. For unused
9649 hash table slots, the corresponding entry in the parallel table will be 0.
9651 The pool of section numbers begins immediately following the hash table
9652 (at offset 16 + 12 * M from the beginning of the section). The pool of
9653 section numbers consists of an array of 32-bit words (using the byte order
9654 of the application binary). Each item in the array is indexed starting
9655 from 0. The hash table entry provides the index of the first section
9656 number in the set. Additional section numbers in the set follow, and the
9657 set is terminated by a 0 entry (section number 0 is not used in ELF).
9659 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9660 section must be the first entry in the set, and the .debug_abbrev.dwo must
9661 be the second entry. Other members of the set may follow in any order.
9667 DWP Version 2 combines all the .debug_info, etc. sections into one,
9668 and the entries in the index tables are now offsets into these sections.
9669 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9672 Index Section Contents:
9674 Hash Table of Signatures dwp_hash_table.hash_table
9675 Parallel Table of Indices dwp_hash_table.unit_table
9676 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9677 Table of Section Sizes dwp_hash_table.v2.sizes
9679 The index section header consists of:
9681 V, 32 bit version number
9682 L, 32 bit number of columns in the table of section offsets
9683 N, 32 bit number of compilation units or type units in the index
9684 M, 32 bit number of slots in the hash table
9686 Numbers are recorded using the byte order of the application binary.
9688 The hash table has the same format as version 1.
9689 The parallel table of indices has the same format as version 1,
9690 except that the entries are origin-1 indices into the table of sections
9691 offsets and the table of section sizes.
9693 The table of offsets begins immediately following the parallel table
9694 (at offset 16 + 12 * M from the beginning of the section). The table is
9695 a two-dimensional array of 32-bit words (using the byte order of the
9696 application binary), with L columns and N+1 rows, in row-major order.
9697 Each row in the array is indexed starting from 0. The first row provides
9698 a key to the remaining rows: each column in this row provides an identifier
9699 for a debug section, and the offsets in the same column of subsequent rows
9700 refer to that section. The section identifiers are:
9702 DW_SECT_INFO 1 .debug_info.dwo
9703 DW_SECT_TYPES 2 .debug_types.dwo
9704 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9705 DW_SECT_LINE 4 .debug_line.dwo
9706 DW_SECT_LOC 5 .debug_loc.dwo
9707 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9708 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9709 DW_SECT_MACRO 8 .debug_macro.dwo
9711 The offsets provided by the CU and TU index sections are the base offsets
9712 for the contributions made by each CU or TU to the corresponding section
9713 in the package file. Each CU and TU header contains an abbrev_offset
9714 field, used to find the abbreviations table for that CU or TU within the
9715 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9716 be interpreted as relative to the base offset given in the index section.
9717 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9718 should be interpreted as relative to the base offset for .debug_line.dwo,
9719 and offsets into other debug sections obtained from DWARF attributes should
9720 also be interpreted as relative to the corresponding base offset.
9722 The table of sizes begins immediately following the table of offsets.
9723 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9724 with L columns and N rows, in row-major order. Each row in the array is
9725 indexed starting from 1 (row 0 is shared by the two tables).
9729 Hash table lookup is handled the same in version 1 and 2:
9731 We assume that N and M will not exceed 2^32 - 1.
9732 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9734 Given a 64-bit compilation unit signature or a type signature S, an entry
9735 in the hash table is located as follows:
9737 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9738 the low-order k bits all set to 1.
9740 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9742 3) If the hash table entry at index H matches the signature, use that
9743 entry. If the hash table entry at index H is unused (all zeroes),
9744 terminate the search: the signature is not present in the table.
9746 4) Let H = (H + H') modulo M. Repeat at Step 3.
9748 Because M > N and H' and M are relatively prime, the search is guaranteed
9749 to stop at an unused slot or find the match. */
9751 /* Create a hash table to map DWO IDs to their CU/TU entry in
9752 .debug_{info,types}.dwo in DWP_FILE.
9753 Returns NULL if there isn't one.
9754 Note: This function processes DWP files only, not DWO files. */
9756 static struct dwp_hash_table *
9757 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9759 struct objfile *objfile = dwarf2_per_objfile->objfile;
9760 bfd *dbfd = dwp_file->dbfd;
9761 const gdb_byte *index_ptr, *index_end;
9762 struct dwarf2_section_info *index;
9763 uint32_t version, nr_columns, nr_units, nr_slots;
9764 struct dwp_hash_table *htab;
9767 index = &dwp_file->sections.tu_index;
9769 index = &dwp_file->sections.cu_index;
9771 if (dwarf2_section_empty_p (index))
9773 dwarf2_read_section (objfile, index);
9775 index_ptr = index->buffer;
9776 index_end = index_ptr + index->size;
9778 version = read_4_bytes (dbfd, index_ptr);
9781 nr_columns = read_4_bytes (dbfd, index_ptr);
9785 nr_units = read_4_bytes (dbfd, index_ptr);
9787 nr_slots = read_4_bytes (dbfd, index_ptr);
9790 if (version != 1 && version != 2)
9792 error (_("Dwarf Error: unsupported DWP file version (%s)"
9794 pulongest (version), dwp_file->name);
9796 if (nr_slots != (nr_slots & -nr_slots))
9798 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9799 " is not power of 2 [in module %s]"),
9800 pulongest (nr_slots), dwp_file->name);
9803 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9804 htab->version = version;
9805 htab->nr_columns = nr_columns;
9806 htab->nr_units = nr_units;
9807 htab->nr_slots = nr_slots;
9808 htab->hash_table = index_ptr;
9809 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9811 /* Exit early if the table is empty. */
9812 if (nr_slots == 0 || nr_units == 0
9813 || (version == 2 && nr_columns == 0))
9815 /* All must be zero. */
9816 if (nr_slots != 0 || nr_units != 0
9817 || (version == 2 && nr_columns != 0))
9819 complaint (&symfile_complaints,
9820 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9821 " all zero [in modules %s]"),
9829 htab->section_pool.v1.indices =
9830 htab->unit_table + sizeof (uint32_t) * nr_slots;
9831 /* It's harder to decide whether the section is too small in v1.
9832 V1 is deprecated anyway so we punt. */
9836 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9837 int *ids = htab->section_pool.v2.section_ids;
9838 /* Reverse map for error checking. */
9839 int ids_seen[DW_SECT_MAX + 1];
9844 error (_("Dwarf Error: bad DWP hash table, too few columns"
9845 " in section table [in module %s]"),
9848 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9850 error (_("Dwarf Error: bad DWP hash table, too many columns"
9851 " in section table [in module %s]"),
9854 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9855 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 for (i = 0; i < nr_columns; ++i)
9858 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9860 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9862 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9863 " in section table [in module %s]"),
9864 id, dwp_file->name);
9866 if (ids_seen[id] != -1)
9868 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9869 " id %d in section table [in module %s]"),
9870 id, dwp_file->name);
9875 /* Must have exactly one info or types section. */
9876 if (((ids_seen[DW_SECT_INFO] != -1)
9877 + (ids_seen[DW_SECT_TYPES] != -1))
9880 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9881 " DWO info/types section [in module %s]"),
9884 /* Must have an abbrev section. */
9885 if (ids_seen[DW_SECT_ABBREV] == -1)
9887 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9888 " section [in module %s]"),
9891 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9892 htab->section_pool.v2.sizes =
9893 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9894 * nr_units * nr_columns);
9895 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9896 * nr_units * nr_columns))
9899 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9908 /* Update SECTIONS with the data from SECTP.
9910 This function is like the other "locate" section routines that are
9911 passed to bfd_map_over_sections, but in this context the sections to
9912 read comes from the DWP V1 hash table, not the full ELF section table.
9914 The result is non-zero for success, or zero if an error was found. */
9917 locate_v1_virtual_dwo_sections (asection *sectp,
9918 struct virtual_v1_dwo_sections *sections)
9920 const struct dwop_section_names *names = &dwop_section_names;
9922 if (section_is_p (sectp->name, &names->abbrev_dwo))
9924 /* There can be only one. */
9925 if (sections->abbrev.s.asection != NULL)
9927 sections->abbrev.s.asection = sectp;
9928 sections->abbrev.size = bfd_get_section_size (sectp);
9930 else if (section_is_p (sectp->name, &names->info_dwo)
9931 || section_is_p (sectp->name, &names->types_dwo))
9933 /* There can be only one. */
9934 if (sections->info_or_types.s.asection != NULL)
9936 sections->info_or_types.s.asection = sectp;
9937 sections->info_or_types.size = bfd_get_section_size (sectp);
9939 else if (section_is_p (sectp->name, &names->line_dwo))
9941 /* There can be only one. */
9942 if (sections->line.s.asection != NULL)
9944 sections->line.s.asection = sectp;
9945 sections->line.size = bfd_get_section_size (sectp);
9947 else if (section_is_p (sectp->name, &names->loc_dwo))
9949 /* There can be only one. */
9950 if (sections->loc.s.asection != NULL)
9952 sections->loc.s.asection = sectp;
9953 sections->loc.size = bfd_get_section_size (sectp);
9955 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9957 /* There can be only one. */
9958 if (sections->macinfo.s.asection != NULL)
9960 sections->macinfo.s.asection = sectp;
9961 sections->macinfo.size = bfd_get_section_size (sectp);
9963 else if (section_is_p (sectp->name, &names->macro_dwo))
9965 /* There can be only one. */
9966 if (sections->macro.s.asection != NULL)
9968 sections->macro.s.asection = sectp;
9969 sections->macro.size = bfd_get_section_size (sectp);
9971 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9973 /* There can be only one. */
9974 if (sections->str_offsets.s.asection != NULL)
9976 sections->str_offsets.s.asection = sectp;
9977 sections->str_offsets.size = bfd_get_section_size (sectp);
9981 /* No other kind of section is valid. */
9988 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9989 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9990 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9991 This is for DWP version 1 files. */
9993 static struct dwo_unit *
9994 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9995 uint32_t unit_index,
9996 const char *comp_dir,
9997 ULONGEST signature, int is_debug_types)
9999 struct objfile *objfile = dwarf2_per_objfile->objfile;
10000 const struct dwp_hash_table *dwp_htab =
10001 is_debug_types ? dwp_file->tus : dwp_file->cus;
10002 bfd *dbfd = dwp_file->dbfd;
10003 const char *kind = is_debug_types ? "TU" : "CU";
10004 struct dwo_file *dwo_file;
10005 struct dwo_unit *dwo_unit;
10006 struct virtual_v1_dwo_sections sections;
10007 void **dwo_file_slot;
10008 char *virtual_dwo_name;
10009 struct dwarf2_section_info *cutu;
10010 struct cleanup *cleanups;
10013 gdb_assert (dwp_file->version == 1);
10015 if (dwarf2_read_debug)
10017 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10019 pulongest (unit_index), hex_string (signature),
10023 /* Fetch the sections of this DWO unit.
10024 Put a limit on the number of sections we look for so that bad data
10025 doesn't cause us to loop forever. */
10027 #define MAX_NR_V1_DWO_SECTIONS \
10028 (1 /* .debug_info or .debug_types */ \
10029 + 1 /* .debug_abbrev */ \
10030 + 1 /* .debug_line */ \
10031 + 1 /* .debug_loc */ \
10032 + 1 /* .debug_str_offsets */ \
10033 + 1 /* .debug_macro or .debug_macinfo */ \
10034 + 1 /* trailing zero */)
10036 memset (§ions, 0, sizeof (sections));
10037 cleanups = make_cleanup (null_cleanup, 0);
10039 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10042 uint32_t section_nr =
10043 read_4_bytes (dbfd,
10044 dwp_htab->section_pool.v1.indices
10045 + (unit_index + i) * sizeof (uint32_t));
10047 if (section_nr == 0)
10049 if (section_nr >= dwp_file->num_sections)
10051 error (_("Dwarf Error: bad DWP hash table, section number too large"
10052 " [in module %s]"),
10056 sectp = dwp_file->elf_sections[section_nr];
10057 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
10059 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10060 " [in module %s]"),
10066 || dwarf2_section_empty_p (§ions.info_or_types)
10067 || dwarf2_section_empty_p (§ions.abbrev))
10069 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10070 " [in module %s]"),
10073 if (i == MAX_NR_V1_DWO_SECTIONS)
10075 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10076 " [in module %s]"),
10080 /* It's easier for the rest of the code if we fake a struct dwo_file and
10081 have dwo_unit "live" in that. At least for now.
10083 The DWP file can be made up of a random collection of CUs and TUs.
10084 However, for each CU + set of TUs that came from the same original DWO
10085 file, we can combine them back into a virtual DWO file to save space
10086 (fewer struct dwo_file objects to allocate). Remember that for really
10087 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10090 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10091 get_section_id (§ions.abbrev),
10092 get_section_id (§ions.line),
10093 get_section_id (§ions.loc),
10094 get_section_id (§ions.str_offsets));
10095 make_cleanup (xfree, virtual_dwo_name);
10096 /* Can we use an existing virtual DWO file? */
10097 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10098 /* Create one if necessary. */
10099 if (*dwo_file_slot == NULL)
10101 if (dwarf2_read_debug)
10103 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10106 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10107 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10109 strlen (virtual_dwo_name));
10110 dwo_file->comp_dir = comp_dir;
10111 dwo_file->sections.abbrev = sections.abbrev;
10112 dwo_file->sections.line = sections.line;
10113 dwo_file->sections.loc = sections.loc;
10114 dwo_file->sections.macinfo = sections.macinfo;
10115 dwo_file->sections.macro = sections.macro;
10116 dwo_file->sections.str_offsets = sections.str_offsets;
10117 /* The "str" section is global to the entire DWP file. */
10118 dwo_file->sections.str = dwp_file->sections.str;
10119 /* The info or types section is assigned below to dwo_unit,
10120 there's no need to record it in dwo_file.
10121 Also, we can't simply record type sections in dwo_file because
10122 we record a pointer into the vector in dwo_unit. As we collect more
10123 types we'll grow the vector and eventually have to reallocate space
10124 for it, invalidating all copies of pointers into the previous
10126 *dwo_file_slot = dwo_file;
10130 if (dwarf2_read_debug)
10132 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10135 dwo_file = *dwo_file_slot;
10137 do_cleanups (cleanups);
10139 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10140 dwo_unit->dwo_file = dwo_file;
10141 dwo_unit->signature = signature;
10142 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10143 sizeof (struct dwarf2_section_info));
10144 *dwo_unit->section = sections.info_or_types;
10145 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10150 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10151 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10152 piece within that section used by a TU/CU, return a virtual section
10153 of just that piece. */
10155 static struct dwarf2_section_info
10156 create_dwp_v2_section (struct dwarf2_section_info *section,
10157 bfd_size_type offset, bfd_size_type size)
10159 struct dwarf2_section_info result;
10162 gdb_assert (section != NULL);
10163 gdb_assert (!section->is_virtual);
10165 memset (&result, 0, sizeof (result));
10166 result.s.containing_section = section;
10167 result.is_virtual = 1;
10172 sectp = get_section_bfd_section (section);
10174 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10175 bounds of the real section. This is a pretty-rare event, so just
10176 flag an error (easier) instead of a warning and trying to cope. */
10178 || offset + size > bfd_get_section_size (sectp))
10180 bfd *abfd = sectp->owner;
10182 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10183 " in section %s [in module %s]"),
10184 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10185 objfile_name (dwarf2_per_objfile->objfile));
10188 result.virtual_offset = offset;
10189 result.size = size;
10193 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10194 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10195 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10196 This is for DWP version 2 files. */
10198 static struct dwo_unit *
10199 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10200 uint32_t unit_index,
10201 const char *comp_dir,
10202 ULONGEST signature, int is_debug_types)
10204 struct objfile *objfile = dwarf2_per_objfile->objfile;
10205 const struct dwp_hash_table *dwp_htab =
10206 is_debug_types ? dwp_file->tus : dwp_file->cus;
10207 bfd *dbfd = dwp_file->dbfd;
10208 const char *kind = is_debug_types ? "TU" : "CU";
10209 struct dwo_file *dwo_file;
10210 struct dwo_unit *dwo_unit;
10211 struct virtual_v2_dwo_sections sections;
10212 void **dwo_file_slot;
10213 char *virtual_dwo_name;
10214 struct dwarf2_section_info *cutu;
10215 struct cleanup *cleanups;
10218 gdb_assert (dwp_file->version == 2);
10220 if (dwarf2_read_debug)
10222 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10224 pulongest (unit_index), hex_string (signature),
10228 /* Fetch the section offsets of this DWO unit. */
10230 memset (§ions, 0, sizeof (sections));
10231 cleanups = make_cleanup (null_cleanup, 0);
10233 for (i = 0; i < dwp_htab->nr_columns; ++i)
10235 uint32_t offset = read_4_bytes (dbfd,
10236 dwp_htab->section_pool.v2.offsets
10237 + (((unit_index - 1) * dwp_htab->nr_columns
10239 * sizeof (uint32_t)));
10240 uint32_t size = read_4_bytes (dbfd,
10241 dwp_htab->section_pool.v2.sizes
10242 + (((unit_index - 1) * dwp_htab->nr_columns
10244 * sizeof (uint32_t)));
10246 switch (dwp_htab->section_pool.v2.section_ids[i])
10249 case DW_SECT_TYPES:
10250 sections.info_or_types_offset = offset;
10251 sections.info_or_types_size = size;
10253 case DW_SECT_ABBREV:
10254 sections.abbrev_offset = offset;
10255 sections.abbrev_size = size;
10258 sections.line_offset = offset;
10259 sections.line_size = size;
10262 sections.loc_offset = offset;
10263 sections.loc_size = size;
10265 case DW_SECT_STR_OFFSETS:
10266 sections.str_offsets_offset = offset;
10267 sections.str_offsets_size = size;
10269 case DW_SECT_MACINFO:
10270 sections.macinfo_offset = offset;
10271 sections.macinfo_size = size;
10273 case DW_SECT_MACRO:
10274 sections.macro_offset = offset;
10275 sections.macro_size = size;
10280 /* It's easier for the rest of the code if we fake a struct dwo_file and
10281 have dwo_unit "live" in that. At least for now.
10283 The DWP file can be made up of a random collection of CUs and TUs.
10284 However, for each CU + set of TUs that came from the same original DWO
10285 file, we can combine them back into a virtual DWO file to save space
10286 (fewer struct dwo_file objects to allocate). Remember that for really
10287 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10290 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10291 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10292 (long) (sections.line_size ? sections.line_offset : 0),
10293 (long) (sections.loc_size ? sections.loc_offset : 0),
10294 (long) (sections.str_offsets_size
10295 ? sections.str_offsets_offset : 0));
10296 make_cleanup (xfree, virtual_dwo_name);
10297 /* Can we use an existing virtual DWO file? */
10298 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10299 /* Create one if necessary. */
10300 if (*dwo_file_slot == NULL)
10302 if (dwarf2_read_debug)
10304 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10307 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10308 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10310 strlen (virtual_dwo_name));
10311 dwo_file->comp_dir = comp_dir;
10312 dwo_file->sections.abbrev =
10313 create_dwp_v2_section (&dwp_file->sections.abbrev,
10314 sections.abbrev_offset, sections.abbrev_size);
10315 dwo_file->sections.line =
10316 create_dwp_v2_section (&dwp_file->sections.line,
10317 sections.line_offset, sections.line_size);
10318 dwo_file->sections.loc =
10319 create_dwp_v2_section (&dwp_file->sections.loc,
10320 sections.loc_offset, sections.loc_size);
10321 dwo_file->sections.macinfo =
10322 create_dwp_v2_section (&dwp_file->sections.macinfo,
10323 sections.macinfo_offset, sections.macinfo_size);
10324 dwo_file->sections.macro =
10325 create_dwp_v2_section (&dwp_file->sections.macro,
10326 sections.macro_offset, sections.macro_size);
10327 dwo_file->sections.str_offsets =
10328 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10329 sections.str_offsets_offset,
10330 sections.str_offsets_size);
10331 /* The "str" section is global to the entire DWP file. */
10332 dwo_file->sections.str = dwp_file->sections.str;
10333 /* The info or types section is assigned below to dwo_unit,
10334 there's no need to record it in dwo_file.
10335 Also, we can't simply record type sections in dwo_file because
10336 we record a pointer into the vector in dwo_unit. As we collect more
10337 types we'll grow the vector and eventually have to reallocate space
10338 for it, invalidating all copies of pointers into the previous
10340 *dwo_file_slot = dwo_file;
10344 if (dwarf2_read_debug)
10346 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10349 dwo_file = *dwo_file_slot;
10351 do_cleanups (cleanups);
10353 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10354 dwo_unit->dwo_file = dwo_file;
10355 dwo_unit->signature = signature;
10356 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10357 sizeof (struct dwarf2_section_info));
10358 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10359 ? &dwp_file->sections.types
10360 : &dwp_file->sections.info,
10361 sections.info_or_types_offset,
10362 sections.info_or_types_size);
10363 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10368 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10369 Returns NULL if the signature isn't found. */
10371 static struct dwo_unit *
10372 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10373 ULONGEST signature, int is_debug_types)
10375 const struct dwp_hash_table *dwp_htab =
10376 is_debug_types ? dwp_file->tus : dwp_file->cus;
10377 bfd *dbfd = dwp_file->dbfd;
10378 uint32_t mask = dwp_htab->nr_slots - 1;
10379 uint32_t hash = signature & mask;
10380 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10383 struct dwo_unit find_dwo_cu, *dwo_cu;
10385 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10386 find_dwo_cu.signature = signature;
10387 slot = htab_find_slot (is_debug_types
10388 ? dwp_file->loaded_tus
10389 : dwp_file->loaded_cus,
10390 &find_dwo_cu, INSERT);
10395 /* Use a for loop so that we don't loop forever on bad debug info. */
10396 for (i = 0; i < dwp_htab->nr_slots; ++i)
10398 ULONGEST signature_in_table;
10400 signature_in_table =
10401 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10402 if (signature_in_table == signature)
10404 uint32_t unit_index =
10405 read_4_bytes (dbfd,
10406 dwp_htab->unit_table + hash * sizeof (uint32_t));
10408 if (dwp_file->version == 1)
10410 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10411 comp_dir, signature,
10416 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10417 comp_dir, signature,
10422 if (signature_in_table == 0)
10424 hash = (hash + hash2) & mask;
10427 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10428 " [in module %s]"),
10432 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10433 Open the file specified by FILE_NAME and hand it off to BFD for
10434 preliminary analysis. Return a newly initialized bfd *, which
10435 includes a canonicalized copy of FILE_NAME.
10436 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10437 SEARCH_CWD is true if the current directory is to be searched.
10438 It will be searched before debug-file-directory.
10439 If successful, the file is added to the bfd include table of the
10440 objfile's bfd (see gdb_bfd_record_inclusion).
10441 If unable to find/open the file, return NULL.
10442 NOTE: This function is derived from symfile_bfd_open. */
10445 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10449 char *absolute_name;
10450 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10451 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10452 to debug_file_directory. */
10454 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10458 if (*debug_file_directory != '\0')
10459 search_path = concat (".", dirname_separator_string,
10460 debug_file_directory, NULL);
10462 search_path = xstrdup (".");
10465 search_path = xstrdup (debug_file_directory);
10467 flags = OPF_RETURN_REALPATH;
10469 flags |= OPF_SEARCH_IN_PATH;
10470 desc = openp (search_path, flags, file_name,
10471 O_RDONLY | O_BINARY, &absolute_name);
10472 xfree (search_path);
10476 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10477 xfree (absolute_name);
10478 if (sym_bfd == NULL)
10480 bfd_set_cacheable (sym_bfd, 1);
10482 if (!bfd_check_format (sym_bfd, bfd_object))
10484 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10488 /* Success. Record the bfd as having been included by the objfile's bfd.
10489 This is important because things like demangled_names_hash lives in the
10490 objfile's per_bfd space and may have references to things like symbol
10491 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10492 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10497 /* Try to open DWO file FILE_NAME.
10498 COMP_DIR is the DW_AT_comp_dir attribute.
10499 The result is the bfd handle of the file.
10500 If there is a problem finding or opening the file, return NULL.
10501 Upon success, the canonicalized path of the file is stored in the bfd,
10502 same as symfile_bfd_open. */
10505 open_dwo_file (const char *file_name, const char *comp_dir)
10509 if (IS_ABSOLUTE_PATH (file_name))
10510 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10512 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10514 if (comp_dir != NULL)
10516 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10518 /* NOTE: If comp_dir is a relative path, this will also try the
10519 search path, which seems useful. */
10520 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10521 xfree (path_to_try);
10526 /* That didn't work, try debug-file-directory, which, despite its name,
10527 is a list of paths. */
10529 if (*debug_file_directory == '\0')
10532 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10535 /* This function is mapped across the sections and remembers the offset and
10536 size of each of the DWO debugging sections we are interested in. */
10539 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10541 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10542 const struct dwop_section_names *names = &dwop_section_names;
10544 if (section_is_p (sectp->name, &names->abbrev_dwo))
10546 dwo_sections->abbrev.s.asection = sectp;
10547 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10549 else if (section_is_p (sectp->name, &names->info_dwo))
10551 dwo_sections->info.s.asection = sectp;
10552 dwo_sections->info.size = bfd_get_section_size (sectp);
10554 else if (section_is_p (sectp->name, &names->line_dwo))
10556 dwo_sections->line.s.asection = sectp;
10557 dwo_sections->line.size = bfd_get_section_size (sectp);
10559 else if (section_is_p (sectp->name, &names->loc_dwo))
10561 dwo_sections->loc.s.asection = sectp;
10562 dwo_sections->loc.size = bfd_get_section_size (sectp);
10564 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10566 dwo_sections->macinfo.s.asection = sectp;
10567 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10569 else if (section_is_p (sectp->name, &names->macro_dwo))
10571 dwo_sections->macro.s.asection = sectp;
10572 dwo_sections->macro.size = bfd_get_section_size (sectp);
10574 else if (section_is_p (sectp->name, &names->str_dwo))
10576 dwo_sections->str.s.asection = sectp;
10577 dwo_sections->str.size = bfd_get_section_size (sectp);
10579 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10581 dwo_sections->str_offsets.s.asection = sectp;
10582 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10584 else if (section_is_p (sectp->name, &names->types_dwo))
10586 struct dwarf2_section_info type_section;
10588 memset (&type_section, 0, sizeof (type_section));
10589 type_section.s.asection = sectp;
10590 type_section.size = bfd_get_section_size (sectp);
10591 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10596 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10597 by PER_CU. This is for the non-DWP case.
10598 The result is NULL if DWO_NAME can't be found. */
10600 static struct dwo_file *
10601 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10602 const char *dwo_name, const char *comp_dir)
10604 struct objfile *objfile = dwarf2_per_objfile->objfile;
10605 struct dwo_file *dwo_file;
10607 struct cleanup *cleanups;
10609 dbfd = open_dwo_file (dwo_name, comp_dir);
10612 if (dwarf2_read_debug)
10613 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10616 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10617 dwo_file->dwo_name = dwo_name;
10618 dwo_file->comp_dir = comp_dir;
10619 dwo_file->dbfd = dbfd;
10621 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10623 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10625 dwo_file->cu = create_dwo_cu (dwo_file);
10627 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10628 dwo_file->sections.types);
10630 discard_cleanups (cleanups);
10632 if (dwarf2_read_debug)
10633 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10638 /* This function is mapped across the sections and remembers the offset and
10639 size of each of the DWP debugging sections common to version 1 and 2 that
10640 we are interested in. */
10643 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10644 void *dwp_file_ptr)
10646 struct dwp_file *dwp_file = dwp_file_ptr;
10647 const struct dwop_section_names *names = &dwop_section_names;
10648 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10650 /* Record the ELF section number for later lookup: this is what the
10651 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10652 gdb_assert (elf_section_nr < dwp_file->num_sections);
10653 dwp_file->elf_sections[elf_section_nr] = sectp;
10655 /* Look for specific sections that we need. */
10656 if (section_is_p (sectp->name, &names->str_dwo))
10658 dwp_file->sections.str.s.asection = sectp;
10659 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10661 else if (section_is_p (sectp->name, &names->cu_index))
10663 dwp_file->sections.cu_index.s.asection = sectp;
10664 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10666 else if (section_is_p (sectp->name, &names->tu_index))
10668 dwp_file->sections.tu_index.s.asection = sectp;
10669 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10673 /* This function is mapped across the sections and remembers the offset and
10674 size of each of the DWP version 2 debugging sections that we are interested
10675 in. This is split into a separate function because we don't know if we
10676 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10679 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10681 struct dwp_file *dwp_file = dwp_file_ptr;
10682 const struct dwop_section_names *names = &dwop_section_names;
10683 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10685 /* Record the ELF section number for later lookup: this is what the
10686 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10687 gdb_assert (elf_section_nr < dwp_file->num_sections);
10688 dwp_file->elf_sections[elf_section_nr] = sectp;
10690 /* Look for specific sections that we need. */
10691 if (section_is_p (sectp->name, &names->abbrev_dwo))
10693 dwp_file->sections.abbrev.s.asection = sectp;
10694 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10696 else if (section_is_p (sectp->name, &names->info_dwo))
10698 dwp_file->sections.info.s.asection = sectp;
10699 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10701 else if (section_is_p (sectp->name, &names->line_dwo))
10703 dwp_file->sections.line.s.asection = sectp;
10704 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10706 else if (section_is_p (sectp->name, &names->loc_dwo))
10708 dwp_file->sections.loc.s.asection = sectp;
10709 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10711 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10713 dwp_file->sections.macinfo.s.asection = sectp;
10714 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10716 else if (section_is_p (sectp->name, &names->macro_dwo))
10718 dwp_file->sections.macro.s.asection = sectp;
10719 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10721 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10723 dwp_file->sections.str_offsets.s.asection = sectp;
10724 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10726 else if (section_is_p (sectp->name, &names->types_dwo))
10728 dwp_file->sections.types.s.asection = sectp;
10729 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10733 /* Hash function for dwp_file loaded CUs/TUs. */
10736 hash_dwp_loaded_cutus (const void *item)
10738 const struct dwo_unit *dwo_unit = item;
10740 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10741 return dwo_unit->signature;
10744 /* Equality function for dwp_file loaded CUs/TUs. */
10747 eq_dwp_loaded_cutus (const void *a, const void *b)
10749 const struct dwo_unit *dua = a;
10750 const struct dwo_unit *dub = b;
10752 return dua->signature == dub->signature;
10755 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10758 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10760 return htab_create_alloc_ex (3,
10761 hash_dwp_loaded_cutus,
10762 eq_dwp_loaded_cutus,
10764 &objfile->objfile_obstack,
10765 hashtab_obstack_allocate,
10766 dummy_obstack_deallocate);
10769 /* Try to open DWP file FILE_NAME.
10770 The result is the bfd handle of the file.
10771 If there is a problem finding or opening the file, return NULL.
10772 Upon success, the canonicalized path of the file is stored in the bfd,
10773 same as symfile_bfd_open. */
10776 open_dwp_file (const char *file_name)
10780 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10784 /* Work around upstream bug 15652.
10785 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10786 [Whether that's a "bug" is debatable, but it is getting in our way.]
10787 We have no real idea where the dwp file is, because gdb's realpath-ing
10788 of the executable's path may have discarded the needed info.
10789 [IWBN if the dwp file name was recorded in the executable, akin to
10790 .gnu_debuglink, but that doesn't exist yet.]
10791 Strip the directory from FILE_NAME and search again. */
10792 if (*debug_file_directory != '\0')
10794 /* Don't implicitly search the current directory here.
10795 If the user wants to search "." to handle this case,
10796 it must be added to debug-file-directory. */
10797 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10804 /* Initialize the use of the DWP file for the current objfile.
10805 By convention the name of the DWP file is ${objfile}.dwp.
10806 The result is NULL if it can't be found. */
10808 static struct dwp_file *
10809 open_and_init_dwp_file (void)
10811 struct objfile *objfile = dwarf2_per_objfile->objfile;
10812 struct dwp_file *dwp_file;
10815 struct cleanup *cleanups;
10817 /* Try to find first .dwp for the binary file before any symbolic links
10819 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10820 cleanups = make_cleanup (xfree, dwp_name);
10822 dbfd = open_dwp_file (dwp_name);
10824 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10826 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10827 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10828 make_cleanup (xfree, dwp_name);
10829 dbfd = open_dwp_file (dwp_name);
10834 if (dwarf2_read_debug)
10835 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10836 do_cleanups (cleanups);
10839 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10840 dwp_file->name = bfd_get_filename (dbfd);
10841 dwp_file->dbfd = dbfd;
10842 do_cleanups (cleanups);
10844 /* +1: section 0 is unused */
10845 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10846 dwp_file->elf_sections =
10847 OBSTACK_CALLOC (&objfile->objfile_obstack,
10848 dwp_file->num_sections, asection *);
10850 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10852 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10854 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10856 /* The DWP file version is stored in the hash table. Oh well. */
10857 if (dwp_file->cus->version != dwp_file->tus->version)
10859 /* Technically speaking, we should try to limp along, but this is
10860 pretty bizarre. We use pulongest here because that's the established
10861 portability solution (e.g, we cannot use %u for uint32_t). */
10862 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10863 " TU version %s [in DWP file %s]"),
10864 pulongest (dwp_file->cus->version),
10865 pulongest (dwp_file->tus->version), dwp_name);
10867 dwp_file->version = dwp_file->cus->version;
10869 if (dwp_file->version == 2)
10870 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10872 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10873 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10875 if (dwarf2_read_debug)
10877 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10878 fprintf_unfiltered (gdb_stdlog,
10879 " %s CUs, %s TUs\n",
10880 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10881 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10887 /* Wrapper around open_and_init_dwp_file, only open it once. */
10889 static struct dwp_file *
10890 get_dwp_file (void)
10892 if (! dwarf2_per_objfile->dwp_checked)
10894 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10895 dwarf2_per_objfile->dwp_checked = 1;
10897 return dwarf2_per_objfile->dwp_file;
10900 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10901 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10902 or in the DWP file for the objfile, referenced by THIS_UNIT.
10903 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10904 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10906 This is called, for example, when wanting to read a variable with a
10907 complex location. Therefore we don't want to do file i/o for every call.
10908 Therefore we don't want to look for a DWO file on every call.
10909 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10910 then we check if we've already seen DWO_NAME, and only THEN do we check
10913 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10914 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10916 static struct dwo_unit *
10917 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10918 const char *dwo_name, const char *comp_dir,
10919 ULONGEST signature, int is_debug_types)
10921 struct objfile *objfile = dwarf2_per_objfile->objfile;
10922 const char *kind = is_debug_types ? "TU" : "CU";
10923 void **dwo_file_slot;
10924 struct dwo_file *dwo_file;
10925 struct dwp_file *dwp_file;
10927 /* First see if there's a DWP file.
10928 If we have a DWP file but didn't find the DWO inside it, don't
10929 look for the original DWO file. It makes gdb behave differently
10930 depending on whether one is debugging in the build tree. */
10932 dwp_file = get_dwp_file ();
10933 if (dwp_file != NULL)
10935 const struct dwp_hash_table *dwp_htab =
10936 is_debug_types ? dwp_file->tus : dwp_file->cus;
10938 if (dwp_htab != NULL)
10940 struct dwo_unit *dwo_cutu =
10941 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10942 signature, is_debug_types);
10944 if (dwo_cutu != NULL)
10946 if (dwarf2_read_debug)
10948 fprintf_unfiltered (gdb_stdlog,
10949 "Virtual DWO %s %s found: @%s\n",
10950 kind, hex_string (signature),
10951 host_address_to_string (dwo_cutu));
10959 /* No DWP file, look for the DWO file. */
10961 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10962 if (*dwo_file_slot == NULL)
10964 /* Read in the file and build a table of the CUs/TUs it contains. */
10965 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10967 /* NOTE: This will be NULL if unable to open the file. */
10968 dwo_file = *dwo_file_slot;
10970 if (dwo_file != NULL)
10972 struct dwo_unit *dwo_cutu = NULL;
10974 if (is_debug_types && dwo_file->tus)
10976 struct dwo_unit find_dwo_cutu;
10978 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10979 find_dwo_cutu.signature = signature;
10980 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10982 else if (!is_debug_types && dwo_file->cu)
10984 if (signature == dwo_file->cu->signature)
10985 dwo_cutu = dwo_file->cu;
10988 if (dwo_cutu != NULL)
10990 if (dwarf2_read_debug)
10992 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10993 kind, dwo_name, hex_string (signature),
10994 host_address_to_string (dwo_cutu));
11001 /* We didn't find it. This could mean a dwo_id mismatch, or
11002 someone deleted the DWO/DWP file, or the search path isn't set up
11003 correctly to find the file. */
11005 if (dwarf2_read_debug)
11007 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11008 kind, dwo_name, hex_string (signature));
11011 /* This is a warning and not a complaint because it can be caused by
11012 pilot error (e.g., user accidentally deleting the DWO). */
11014 /* Print the name of the DWP file if we looked there, helps the user
11015 better diagnose the problem. */
11016 char *dwp_text = NULL;
11017 struct cleanup *cleanups;
11019 if (dwp_file != NULL)
11020 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11021 cleanups = make_cleanup (xfree, dwp_text);
11023 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11024 " [in module %s]"),
11025 kind, dwo_name, hex_string (signature),
11026 dwp_text != NULL ? dwp_text : "",
11027 this_unit->is_debug_types ? "TU" : "CU",
11028 this_unit->offset.sect_off, objfile_name (objfile));
11030 do_cleanups (cleanups);
11035 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11036 See lookup_dwo_cutu_unit for details. */
11038 static struct dwo_unit *
11039 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11040 const char *dwo_name, const char *comp_dir,
11041 ULONGEST signature)
11043 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11046 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11047 See lookup_dwo_cutu_unit for details. */
11049 static struct dwo_unit *
11050 lookup_dwo_type_unit (struct signatured_type *this_tu,
11051 const char *dwo_name, const char *comp_dir)
11053 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11056 /* Traversal function for queue_and_load_all_dwo_tus. */
11059 queue_and_load_dwo_tu (void **slot, void *info)
11061 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11062 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11063 ULONGEST signature = dwo_unit->signature;
11064 struct signatured_type *sig_type =
11065 lookup_dwo_signatured_type (per_cu->cu, signature);
11067 if (sig_type != NULL)
11069 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11071 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11072 a real dependency of PER_CU on SIG_TYPE. That is detected later
11073 while processing PER_CU. */
11074 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11075 load_full_type_unit (sig_cu);
11076 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11082 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11083 The DWO may have the only definition of the type, though it may not be
11084 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11085 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11088 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11090 struct dwo_unit *dwo_unit;
11091 struct dwo_file *dwo_file;
11093 gdb_assert (!per_cu->is_debug_types);
11094 gdb_assert (get_dwp_file () == NULL);
11095 gdb_assert (per_cu->cu != NULL);
11097 dwo_unit = per_cu->cu->dwo_unit;
11098 gdb_assert (dwo_unit != NULL);
11100 dwo_file = dwo_unit->dwo_file;
11101 if (dwo_file->tus != NULL)
11102 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11105 /* Free all resources associated with DWO_FILE.
11106 Close the DWO file and munmap the sections.
11107 All memory should be on the objfile obstack. */
11110 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11113 struct dwarf2_section_info *section;
11115 /* Note: dbfd is NULL for virtual DWO files. */
11116 gdb_bfd_unref (dwo_file->dbfd);
11118 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11121 /* Wrapper for free_dwo_file for use in cleanups. */
11124 free_dwo_file_cleanup (void *arg)
11126 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11127 struct objfile *objfile = dwarf2_per_objfile->objfile;
11129 free_dwo_file (dwo_file, objfile);
11132 /* Traversal function for free_dwo_files. */
11135 free_dwo_file_from_slot (void **slot, void *info)
11137 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11138 struct objfile *objfile = (struct objfile *) info;
11140 free_dwo_file (dwo_file, objfile);
11145 /* Free all resources associated with DWO_FILES. */
11148 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11150 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11153 /* Read in various DIEs. */
11155 /* qsort helper for inherit_abstract_dies. */
11158 unsigned_int_compar (const void *ap, const void *bp)
11160 unsigned int a = *(unsigned int *) ap;
11161 unsigned int b = *(unsigned int *) bp;
11163 return (a > b) - (b > a);
11166 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11167 Inherit only the children of the DW_AT_abstract_origin DIE not being
11168 already referenced by DW_AT_abstract_origin from the children of the
11172 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11174 struct die_info *child_die;
11175 unsigned die_children_count;
11176 /* CU offsets which were referenced by children of the current DIE. */
11177 sect_offset *offsets;
11178 sect_offset *offsets_end, *offsetp;
11179 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11180 struct die_info *origin_die;
11181 /* Iterator of the ORIGIN_DIE children. */
11182 struct die_info *origin_child_die;
11183 struct cleanup *cleanups;
11184 struct attribute *attr;
11185 struct dwarf2_cu *origin_cu;
11186 struct pending **origin_previous_list_in_scope;
11188 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11192 /* Note that following die references may follow to a die in a
11196 origin_die = follow_die_ref (die, attr, &origin_cu);
11198 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11200 origin_previous_list_in_scope = origin_cu->list_in_scope;
11201 origin_cu->list_in_scope = cu->list_in_scope;
11203 if (die->tag != origin_die->tag
11204 && !(die->tag == DW_TAG_inlined_subroutine
11205 && origin_die->tag == DW_TAG_subprogram))
11206 complaint (&symfile_complaints,
11207 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11208 die->offset.sect_off, origin_die->offset.sect_off);
11210 child_die = die->child;
11211 die_children_count = 0;
11212 while (child_die && child_die->tag)
11214 child_die = sibling_die (child_die);
11215 die_children_count++;
11217 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11218 cleanups = make_cleanup (xfree, offsets);
11220 offsets_end = offsets;
11221 for (child_die = die->child;
11222 child_die && child_die->tag;
11223 child_die = sibling_die (child_die))
11225 struct die_info *child_origin_die;
11226 struct dwarf2_cu *child_origin_cu;
11228 /* We are trying to process concrete instance entries:
11229 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11230 it's not relevant to our analysis here. i.e. detecting DIEs that are
11231 present in the abstract instance but not referenced in the concrete
11233 if (child_die->tag == DW_TAG_GNU_call_site)
11236 /* For each CHILD_DIE, find the corresponding child of
11237 ORIGIN_DIE. If there is more than one layer of
11238 DW_AT_abstract_origin, follow them all; there shouldn't be,
11239 but GCC versions at least through 4.4 generate this (GCC PR
11241 child_origin_die = child_die;
11242 child_origin_cu = cu;
11245 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11249 child_origin_die = follow_die_ref (child_origin_die, attr,
11253 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11254 counterpart may exist. */
11255 if (child_origin_die != child_die)
11257 if (child_die->tag != child_origin_die->tag
11258 && !(child_die->tag == DW_TAG_inlined_subroutine
11259 && child_origin_die->tag == DW_TAG_subprogram))
11260 complaint (&symfile_complaints,
11261 _("Child DIE 0x%x and its abstract origin 0x%x have "
11262 "different tags"), child_die->offset.sect_off,
11263 child_origin_die->offset.sect_off);
11264 if (child_origin_die->parent != origin_die)
11265 complaint (&symfile_complaints,
11266 _("Child DIE 0x%x and its abstract origin 0x%x have "
11267 "different parents"), child_die->offset.sect_off,
11268 child_origin_die->offset.sect_off);
11270 *offsets_end++ = child_origin_die->offset;
11273 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11274 unsigned_int_compar);
11275 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11276 if (offsetp[-1].sect_off == offsetp->sect_off)
11277 complaint (&symfile_complaints,
11278 _("Multiple children of DIE 0x%x refer "
11279 "to DIE 0x%x as their abstract origin"),
11280 die->offset.sect_off, offsetp->sect_off);
11283 origin_child_die = origin_die->child;
11284 while (origin_child_die && origin_child_die->tag)
11286 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11287 while (offsetp < offsets_end
11288 && offsetp->sect_off < origin_child_die->offset.sect_off)
11290 if (offsetp >= offsets_end
11291 || offsetp->sect_off > origin_child_die->offset.sect_off)
11293 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11294 Check whether we're already processing ORIGIN_CHILD_DIE.
11295 This can happen with mutually referenced abstract_origins.
11297 if (!origin_child_die->in_process)
11298 process_die (origin_child_die, origin_cu);
11300 origin_child_die = sibling_die (origin_child_die);
11302 origin_cu->list_in_scope = origin_previous_list_in_scope;
11304 do_cleanups (cleanups);
11308 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11310 struct objfile *objfile = cu->objfile;
11311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11312 struct context_stack *newobj;
11315 struct die_info *child_die;
11316 struct attribute *attr, *call_line, *call_file;
11318 CORE_ADDR baseaddr;
11319 struct block *block;
11320 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11321 VEC (symbolp) *template_args = NULL;
11322 struct template_symbol *templ_func = NULL;
11326 /* If we do not have call site information, we can't show the
11327 caller of this inlined function. That's too confusing, so
11328 only use the scope for local variables. */
11329 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11330 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11331 if (call_line == NULL || call_file == NULL)
11333 read_lexical_block_scope (die, cu);
11338 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11340 name = dwarf2_name (die, cu);
11342 /* Ignore functions with missing or empty names. These are actually
11343 illegal according to the DWARF standard. */
11346 complaint (&symfile_complaints,
11347 _("missing name for subprogram DIE at %d"),
11348 die->offset.sect_off);
11352 /* Ignore functions with missing or invalid low and high pc attributes. */
11353 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11355 attr = dwarf2_attr (die, DW_AT_external, cu);
11356 if (!attr || !DW_UNSND (attr))
11357 complaint (&symfile_complaints,
11358 _("cannot get low and high bounds "
11359 "for subprogram DIE at %d"),
11360 die->offset.sect_off);
11364 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11365 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11367 /* If we have any template arguments, then we must allocate a
11368 different sort of symbol. */
11369 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11371 if (child_die->tag == DW_TAG_template_type_param
11372 || child_die->tag == DW_TAG_template_value_param)
11374 templ_func = allocate_template_symbol (objfile);
11375 templ_func->base.is_cplus_template_function = 1;
11380 newobj = push_context (0, lowpc);
11381 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11382 (struct symbol *) templ_func);
11384 /* If there is a location expression for DW_AT_frame_base, record
11386 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11388 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11390 cu->list_in_scope = &local_symbols;
11392 if (die->child != NULL)
11394 child_die = die->child;
11395 while (child_die && child_die->tag)
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11400 struct symbol *arg = new_symbol (child_die, NULL, cu);
11403 VEC_safe_push (symbolp, template_args, arg);
11406 process_die (child_die, cu);
11407 child_die = sibling_die (child_die);
11411 inherit_abstract_dies (die, cu);
11413 /* If we have a DW_AT_specification, we might need to import using
11414 directives from the context of the specification DIE. See the
11415 comment in determine_prefix. */
11416 if (cu->language == language_cplus
11417 && dwarf2_attr (die, DW_AT_specification, cu))
11419 struct dwarf2_cu *spec_cu = cu;
11420 struct die_info *spec_die = die_specification (die, &spec_cu);
11424 child_die = spec_die->child;
11425 while (child_die && child_die->tag)
11427 if (child_die->tag == DW_TAG_imported_module)
11428 process_die (child_die, spec_cu);
11429 child_die = sibling_die (child_die);
11432 /* In some cases, GCC generates specification DIEs that
11433 themselves contain DW_AT_specification attributes. */
11434 spec_die = die_specification (spec_die, &spec_cu);
11438 newobj = pop_context ();
11439 /* Make a block for the local symbols within. */
11440 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11443 /* For C++, set the block's scope. */
11444 if ((cu->language == language_cplus || cu->language == language_fortran)
11445 && cu->processing_has_namespace_info)
11446 block_set_scope (block, determine_prefix (die, cu),
11447 &objfile->objfile_obstack);
11449 /* If we have address ranges, record them. */
11450 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11452 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11454 /* Attach template arguments to function. */
11455 if (! VEC_empty (symbolp, template_args))
11457 gdb_assert (templ_func != NULL);
11459 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11460 templ_func->template_arguments
11461 = obstack_alloc (&objfile->objfile_obstack,
11462 (templ_func->n_template_arguments
11463 * sizeof (struct symbol *)));
11464 memcpy (templ_func->template_arguments,
11465 VEC_address (symbolp, template_args),
11466 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11467 VEC_free (symbolp, template_args);
11470 /* In C++, we can have functions nested inside functions (e.g., when
11471 a function declares a class that has methods). This means that
11472 when we finish processing a function scope, we may need to go
11473 back to building a containing block's symbol lists. */
11474 local_symbols = newobj->locals;
11475 using_directives = newobj->using_directives;
11477 /* If we've finished processing a top-level function, subsequent
11478 symbols go in the file symbol list. */
11479 if (outermost_context_p ())
11480 cu->list_in_scope = &file_symbols;
11483 /* Process all the DIES contained within a lexical block scope. Start
11484 a new scope, process the dies, and then close the scope. */
11487 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11489 struct objfile *objfile = cu->objfile;
11490 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11491 struct context_stack *newobj;
11492 CORE_ADDR lowpc, highpc;
11493 struct die_info *child_die;
11494 CORE_ADDR baseaddr;
11496 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11498 /* Ignore blocks with missing or invalid low and high pc attributes. */
11499 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11500 as multiple lexical blocks? Handling children in a sane way would
11501 be nasty. Might be easier to properly extend generic blocks to
11502 describe ranges. */
11503 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11505 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11506 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11508 push_context (0, lowpc);
11509 if (die->child != NULL)
11511 child_die = die->child;
11512 while (child_die && child_die->tag)
11514 process_die (child_die, cu);
11515 child_die = sibling_die (child_die);
11518 inherit_abstract_dies (die, cu);
11519 newobj = pop_context ();
11521 if (local_symbols != NULL || using_directives != NULL)
11523 struct block *block
11524 = finish_block (0, &local_symbols, newobj->old_blocks,
11525 newobj->start_addr, highpc);
11527 /* Note that recording ranges after traversing children, as we
11528 do here, means that recording a parent's ranges entails
11529 walking across all its children's ranges as they appear in
11530 the address map, which is quadratic behavior.
11532 It would be nicer to record the parent's ranges before
11533 traversing its children, simply overriding whatever you find
11534 there. But since we don't even decide whether to create a
11535 block until after we've traversed its children, that's hard
11537 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11539 local_symbols = newobj->locals;
11540 using_directives = newobj->using_directives;
11543 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11546 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11548 struct objfile *objfile = cu->objfile;
11549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11550 CORE_ADDR pc, baseaddr;
11551 struct attribute *attr;
11552 struct call_site *call_site, call_site_local;
11555 struct die_info *child_die;
11557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11559 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11562 complaint (&symfile_complaints,
11563 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11564 "DIE 0x%x [in module %s]"),
11565 die->offset.sect_off, objfile_name (objfile));
11568 pc = attr_value_as_address (attr) + baseaddr;
11569 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11571 if (cu->call_site_htab == NULL)
11572 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11573 NULL, &objfile->objfile_obstack,
11574 hashtab_obstack_allocate, NULL);
11575 call_site_local.pc = pc;
11576 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11579 complaint (&symfile_complaints,
11580 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11581 "DIE 0x%x [in module %s]"),
11582 paddress (gdbarch, pc), die->offset.sect_off,
11583 objfile_name (objfile));
11587 /* Count parameters at the caller. */
11590 for (child_die = die->child; child_die && child_die->tag;
11591 child_die = sibling_die (child_die))
11593 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11595 complaint (&symfile_complaints,
11596 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11597 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11598 child_die->tag, child_die->offset.sect_off,
11599 objfile_name (objfile));
11606 call_site = obstack_alloc (&objfile->objfile_obstack,
11607 (sizeof (*call_site)
11608 + (sizeof (*call_site->parameter)
11609 * (nparams - 1))));
11611 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11612 call_site->pc = pc;
11614 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11616 struct die_info *func_die;
11618 /* Skip also over DW_TAG_inlined_subroutine. */
11619 for (func_die = die->parent;
11620 func_die && func_die->tag != DW_TAG_subprogram
11621 && func_die->tag != DW_TAG_subroutine_type;
11622 func_die = func_die->parent);
11624 /* DW_AT_GNU_all_call_sites is a superset
11625 of DW_AT_GNU_all_tail_call_sites. */
11627 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11628 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11630 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11631 not complete. But keep CALL_SITE for look ups via call_site_htab,
11632 both the initial caller containing the real return address PC and
11633 the final callee containing the current PC of a chain of tail
11634 calls do not need to have the tail call list complete. But any
11635 function candidate for a virtual tail call frame searched via
11636 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11637 determined unambiguously. */
11641 struct type *func_type = NULL;
11644 func_type = get_die_type (func_die, cu);
11645 if (func_type != NULL)
11647 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11649 /* Enlist this call site to the function. */
11650 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11651 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11654 complaint (&symfile_complaints,
11655 _("Cannot find function owning DW_TAG_GNU_call_site "
11656 "DIE 0x%x [in module %s]"),
11657 die->offset.sect_off, objfile_name (objfile));
11661 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11663 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11664 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11665 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11666 /* Keep NULL DWARF_BLOCK. */;
11667 else if (attr_form_is_block (attr))
11669 struct dwarf2_locexpr_baton *dlbaton;
11671 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11672 dlbaton->data = DW_BLOCK (attr)->data;
11673 dlbaton->size = DW_BLOCK (attr)->size;
11674 dlbaton->per_cu = cu->per_cu;
11676 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11678 else if (attr_form_is_ref (attr))
11680 struct dwarf2_cu *target_cu = cu;
11681 struct die_info *target_die;
11683 target_die = follow_die_ref (die, attr, &target_cu);
11684 gdb_assert (target_cu->objfile == objfile);
11685 if (die_is_declaration (target_die, target_cu))
11687 const char *target_physname = NULL;
11688 struct attribute *target_attr;
11690 /* Prefer the mangled name; otherwise compute the demangled one. */
11691 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11692 if (target_attr == NULL)
11693 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11695 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11696 target_physname = DW_STRING (target_attr);
11698 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11699 if (target_physname == NULL)
11700 complaint (&symfile_complaints,
11701 _("DW_AT_GNU_call_site_target target DIE has invalid "
11702 "physname, for referencing DIE 0x%x [in module %s]"),
11703 die->offset.sect_off, objfile_name (objfile));
11705 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11711 /* DW_AT_entry_pc should be preferred. */
11712 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11713 complaint (&symfile_complaints,
11714 _("DW_AT_GNU_call_site_target target DIE has invalid "
11715 "low pc, for referencing DIE 0x%x [in module %s]"),
11716 die->offset.sect_off, objfile_name (objfile));
11719 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11720 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11725 complaint (&symfile_complaints,
11726 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11727 "block nor reference, for DIE 0x%x [in module %s]"),
11728 die->offset.sect_off, objfile_name (objfile));
11730 call_site->per_cu = cu->per_cu;
11732 for (child_die = die->child;
11733 child_die && child_die->tag;
11734 child_die = sibling_die (child_die))
11736 struct call_site_parameter *parameter;
11737 struct attribute *loc, *origin;
11739 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11741 /* Already printed the complaint above. */
11745 gdb_assert (call_site->parameter_count < nparams);
11746 parameter = &call_site->parameter[call_site->parameter_count];
11748 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11749 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11750 register is contained in DW_AT_GNU_call_site_value. */
11752 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11753 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11754 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11756 sect_offset offset;
11758 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11759 offset = dwarf2_get_ref_die_offset (origin);
11760 if (!offset_in_cu_p (&cu->header, offset))
11762 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11763 binding can be done only inside one CU. Such referenced DIE
11764 therefore cannot be even moved to DW_TAG_partial_unit. */
11765 complaint (&symfile_complaints,
11766 _("DW_AT_abstract_origin offset is not in CU for "
11767 "DW_TAG_GNU_call_site child DIE 0x%x "
11769 child_die->offset.sect_off, objfile_name (objfile));
11772 parameter->u.param_offset.cu_off = (offset.sect_off
11773 - cu->header.offset.sect_off);
11775 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11777 complaint (&symfile_complaints,
11778 _("No DW_FORM_block* DW_AT_location for "
11779 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11780 child_die->offset.sect_off, objfile_name (objfile));
11785 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11786 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11787 if (parameter->u.dwarf_reg != -1)
11788 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11789 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11790 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11791 ¶meter->u.fb_offset))
11792 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11795 complaint (&symfile_complaints,
11796 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11797 "for DW_FORM_block* DW_AT_location is supported for "
11798 "DW_TAG_GNU_call_site child DIE 0x%x "
11800 child_die->offset.sect_off, objfile_name (objfile));
11805 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11806 if (!attr_form_is_block (attr))
11808 complaint (&symfile_complaints,
11809 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11810 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11811 child_die->offset.sect_off, objfile_name (objfile));
11814 parameter->value = DW_BLOCK (attr)->data;
11815 parameter->value_size = DW_BLOCK (attr)->size;
11817 /* Parameters are not pre-cleared by memset above. */
11818 parameter->data_value = NULL;
11819 parameter->data_value_size = 0;
11820 call_site->parameter_count++;
11822 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11825 if (!attr_form_is_block (attr))
11826 complaint (&symfile_complaints,
11827 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11828 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11829 child_die->offset.sect_off, objfile_name (objfile));
11832 parameter->data_value = DW_BLOCK (attr)->data;
11833 parameter->data_value_size = DW_BLOCK (attr)->size;
11839 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11840 Return 1 if the attributes are present and valid, otherwise, return 0.
11841 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11844 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11845 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11846 struct partial_symtab *ranges_pst)
11848 struct objfile *objfile = cu->objfile;
11849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11850 struct comp_unit_head *cu_header = &cu->header;
11851 bfd *obfd = objfile->obfd;
11852 unsigned int addr_size = cu_header->addr_size;
11853 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11854 /* Base address selection entry. */
11857 unsigned int dummy;
11858 const gdb_byte *buffer;
11862 CORE_ADDR high = 0;
11863 CORE_ADDR baseaddr;
11865 found_base = cu->base_known;
11866 base = cu->base_address;
11868 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11869 if (offset >= dwarf2_per_objfile->ranges.size)
11871 complaint (&symfile_complaints,
11872 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11876 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11878 /* Read in the largest possible address. */
11879 marker = read_address (obfd, buffer, cu, &dummy);
11880 if ((marker & mask) == mask)
11882 /* If we found the largest possible address, then
11883 read the base address. */
11884 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11885 buffer += 2 * addr_size;
11886 offset += 2 * addr_size;
11892 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11896 CORE_ADDR range_beginning, range_end;
11898 range_beginning = read_address (obfd, buffer, cu, &dummy);
11899 buffer += addr_size;
11900 range_end = read_address (obfd, buffer, cu, &dummy);
11901 buffer += addr_size;
11902 offset += 2 * addr_size;
11904 /* An end of list marker is a pair of zero addresses. */
11905 if (range_beginning == 0 && range_end == 0)
11906 /* Found the end of list entry. */
11909 /* Each base address selection entry is a pair of 2 values.
11910 The first is the largest possible address, the second is
11911 the base address. Check for a base address here. */
11912 if ((range_beginning & mask) == mask)
11914 /* If we found the largest possible address, then
11915 read the base address. */
11916 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11923 /* We have no valid base address for the ranges
11925 complaint (&symfile_complaints,
11926 _("Invalid .debug_ranges data (no base address)"));
11930 if (range_beginning > range_end)
11932 /* Inverted range entries are invalid. */
11933 complaint (&symfile_complaints,
11934 _("Invalid .debug_ranges data (inverted range)"));
11938 /* Empty range entries have no effect. */
11939 if (range_beginning == range_end)
11942 range_beginning += base;
11945 /* A not-uncommon case of bad debug info.
11946 Don't pollute the addrmap with bad data. */
11947 if (range_beginning + baseaddr == 0
11948 && !dwarf2_per_objfile->has_section_at_zero)
11950 complaint (&symfile_complaints,
11951 _(".debug_ranges entry has start address of zero"
11952 " [in module %s]"), objfile_name (objfile));
11956 if (ranges_pst != NULL)
11961 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11962 range_beginning + baseaddr);
11963 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11964 range_end + baseaddr);
11965 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11969 /* FIXME: This is recording everything as a low-high
11970 segment of consecutive addresses. We should have a
11971 data structure for discontiguous block ranges
11975 low = range_beginning;
11981 if (range_beginning < low)
11982 low = range_beginning;
11983 if (range_end > high)
11989 /* If the first entry is an end-of-list marker, the range
11990 describes an empty scope, i.e. no instructions. */
11996 *high_return = high;
12000 /* Get low and high pc attributes from a die. Return 1 if the attributes
12001 are present and valid, otherwise, return 0. Return -1 if the range is
12002 discontinuous, i.e. derived from DW_AT_ranges information. */
12005 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12006 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12007 struct partial_symtab *pst)
12009 struct attribute *attr;
12010 struct attribute *attr_high;
12012 CORE_ADDR high = 0;
12015 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12018 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12021 low = attr_value_as_address (attr);
12022 high = attr_value_as_address (attr_high);
12023 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12027 /* Found high w/o low attribute. */
12030 /* Found consecutive range of addresses. */
12035 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12038 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12039 We take advantage of the fact that DW_AT_ranges does not appear
12040 in DW_TAG_compile_unit of DWO files. */
12041 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12042 unsigned int ranges_offset = (DW_UNSND (attr)
12043 + (need_ranges_base
12047 /* Value of the DW_AT_ranges attribute is the offset in the
12048 .debug_ranges section. */
12049 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12051 /* Found discontinuous range of addresses. */
12056 /* read_partial_die has also the strict LOW < HIGH requirement. */
12060 /* When using the GNU linker, .gnu.linkonce. sections are used to
12061 eliminate duplicate copies of functions and vtables and such.
12062 The linker will arbitrarily choose one and discard the others.
12063 The AT_*_pc values for such functions refer to local labels in
12064 these sections. If the section from that file was discarded, the
12065 labels are not in the output, so the relocs get a value of 0.
12066 If this is a discarded function, mark the pc bounds as invalid,
12067 so that GDB will ignore it. */
12068 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12077 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12078 its low and high PC addresses. Do nothing if these addresses could not
12079 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12080 and HIGHPC to the high address if greater than HIGHPC. */
12083 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12084 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12085 struct dwarf2_cu *cu)
12087 CORE_ADDR low, high;
12088 struct die_info *child = die->child;
12090 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12092 *lowpc = min (*lowpc, low);
12093 *highpc = max (*highpc, high);
12096 /* If the language does not allow nested subprograms (either inside
12097 subprograms or lexical blocks), we're done. */
12098 if (cu->language != language_ada)
12101 /* Check all the children of the given DIE. If it contains nested
12102 subprograms, then check their pc bounds. Likewise, we need to
12103 check lexical blocks as well, as they may also contain subprogram
12105 while (child && child->tag)
12107 if (child->tag == DW_TAG_subprogram
12108 || child->tag == DW_TAG_lexical_block)
12109 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12110 child = sibling_die (child);
12114 /* Get the low and high pc's represented by the scope DIE, and store
12115 them in *LOWPC and *HIGHPC. If the correct values can't be
12116 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12119 get_scope_pc_bounds (struct die_info *die,
12120 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12121 struct dwarf2_cu *cu)
12123 CORE_ADDR best_low = (CORE_ADDR) -1;
12124 CORE_ADDR best_high = (CORE_ADDR) 0;
12125 CORE_ADDR current_low, current_high;
12127 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
12129 best_low = current_low;
12130 best_high = current_high;
12134 struct die_info *child = die->child;
12136 while (child && child->tag)
12138 switch (child->tag) {
12139 case DW_TAG_subprogram:
12140 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12142 case DW_TAG_namespace:
12143 case DW_TAG_module:
12144 /* FIXME: carlton/2004-01-16: Should we do this for
12145 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12146 that current GCC's always emit the DIEs corresponding
12147 to definitions of methods of classes as children of a
12148 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12149 the DIEs giving the declarations, which could be
12150 anywhere). But I don't see any reason why the
12151 standards says that they have to be there. */
12152 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
12154 if (current_low != ((CORE_ADDR) -1))
12156 best_low = min (best_low, current_low);
12157 best_high = max (best_high, current_high);
12165 child = sibling_die (child);
12170 *highpc = best_high;
12173 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12177 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12178 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12180 struct objfile *objfile = cu->objfile;
12181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12182 struct attribute *attr;
12183 struct attribute *attr_high;
12185 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12188 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12191 CORE_ADDR low = attr_value_as_address (attr);
12192 CORE_ADDR high = attr_value_as_address (attr_high);
12194 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12197 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12198 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12199 record_block_range (block, low, high - 1);
12203 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12206 bfd *obfd = objfile->obfd;
12207 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12208 We take advantage of the fact that DW_AT_ranges does not appear
12209 in DW_TAG_compile_unit of DWO files. */
12210 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12212 /* The value of the DW_AT_ranges attribute is the offset of the
12213 address range list in the .debug_ranges section. */
12214 unsigned long offset = (DW_UNSND (attr)
12215 + (need_ranges_base ? cu->ranges_base : 0));
12216 const gdb_byte *buffer;
12218 /* For some target architectures, but not others, the
12219 read_address function sign-extends the addresses it returns.
12220 To recognize base address selection entries, we need a
12222 unsigned int addr_size = cu->header.addr_size;
12223 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12225 /* The base address, to which the next pair is relative. Note
12226 that this 'base' is a DWARF concept: most entries in a range
12227 list are relative, to reduce the number of relocs against the
12228 debugging information. This is separate from this function's
12229 'baseaddr' argument, which GDB uses to relocate debugging
12230 information from a shared library based on the address at
12231 which the library was loaded. */
12232 CORE_ADDR base = cu->base_address;
12233 int base_known = cu->base_known;
12235 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12236 if (offset >= dwarf2_per_objfile->ranges.size)
12238 complaint (&symfile_complaints,
12239 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12243 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12247 unsigned int bytes_read;
12248 CORE_ADDR start, end;
12250 start = read_address (obfd, buffer, cu, &bytes_read);
12251 buffer += bytes_read;
12252 end = read_address (obfd, buffer, cu, &bytes_read);
12253 buffer += bytes_read;
12255 /* Did we find the end of the range list? */
12256 if (start == 0 && end == 0)
12259 /* Did we find a base address selection entry? */
12260 else if ((start & base_select_mask) == base_select_mask)
12266 /* We found an ordinary address range. */
12271 complaint (&symfile_complaints,
12272 _("Invalid .debug_ranges data "
12273 "(no base address)"));
12279 /* Inverted range entries are invalid. */
12280 complaint (&symfile_complaints,
12281 _("Invalid .debug_ranges data "
12282 "(inverted range)"));
12286 /* Empty range entries have no effect. */
12290 start += base + baseaddr;
12291 end += base + baseaddr;
12293 /* A not-uncommon case of bad debug info.
12294 Don't pollute the addrmap with bad data. */
12295 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12297 complaint (&symfile_complaints,
12298 _(".debug_ranges entry has start address of zero"
12299 " [in module %s]"), objfile_name (objfile));
12303 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12304 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12305 record_block_range (block, start, end - 1);
12311 /* Check whether the producer field indicates either of GCC < 4.6, or the
12312 Intel C/C++ compiler, and cache the result in CU. */
12315 check_producer (struct dwarf2_cu *cu)
12320 if (cu->producer == NULL)
12322 /* For unknown compilers expect their behavior is DWARF version
12325 GCC started to support .debug_types sections by -gdwarf-4 since
12326 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12327 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12328 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12329 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12331 else if (producer_is_gcc (cu->producer, &major, &minor))
12333 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12334 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12336 else if (startswith (cu->producer, "Intel(R) C"))
12337 cu->producer_is_icc = 1;
12340 /* For other non-GCC compilers, expect their behavior is DWARF version
12344 cu->checked_producer = 1;
12347 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12348 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12349 during 4.6.0 experimental. */
12352 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12354 if (!cu->checked_producer)
12355 check_producer (cu);
12357 return cu->producer_is_gxx_lt_4_6;
12360 /* Return the default accessibility type if it is not overriden by
12361 DW_AT_accessibility. */
12363 static enum dwarf_access_attribute
12364 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12366 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12368 /* The default DWARF 2 accessibility for members is public, the default
12369 accessibility for inheritance is private. */
12371 if (die->tag != DW_TAG_inheritance)
12372 return DW_ACCESS_public;
12374 return DW_ACCESS_private;
12378 /* DWARF 3+ defines the default accessibility a different way. The same
12379 rules apply now for DW_TAG_inheritance as for the members and it only
12380 depends on the container kind. */
12382 if (die->parent->tag == DW_TAG_class_type)
12383 return DW_ACCESS_private;
12385 return DW_ACCESS_public;
12389 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12390 offset. If the attribute was not found return 0, otherwise return
12391 1. If it was found but could not properly be handled, set *OFFSET
12395 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12398 struct attribute *attr;
12400 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12405 /* Note that we do not check for a section offset first here.
12406 This is because DW_AT_data_member_location is new in DWARF 4,
12407 so if we see it, we can assume that a constant form is really
12408 a constant and not a section offset. */
12409 if (attr_form_is_constant (attr))
12410 *offset = dwarf2_get_attr_constant_value (attr, 0);
12411 else if (attr_form_is_section_offset (attr))
12412 dwarf2_complex_location_expr_complaint ();
12413 else if (attr_form_is_block (attr))
12414 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12416 dwarf2_complex_location_expr_complaint ();
12424 /* Add an aggregate field to the field list. */
12427 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12428 struct dwarf2_cu *cu)
12430 struct objfile *objfile = cu->objfile;
12431 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12432 struct nextfield *new_field;
12433 struct attribute *attr;
12435 const char *fieldname = "";
12437 /* Allocate a new field list entry and link it in. */
12438 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12439 make_cleanup (xfree, new_field);
12440 memset (new_field, 0, sizeof (struct nextfield));
12442 if (die->tag == DW_TAG_inheritance)
12444 new_field->next = fip->baseclasses;
12445 fip->baseclasses = new_field;
12449 new_field->next = fip->fields;
12450 fip->fields = new_field;
12454 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12456 new_field->accessibility = DW_UNSND (attr);
12458 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12459 if (new_field->accessibility != DW_ACCESS_public)
12460 fip->non_public_fields = 1;
12462 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12464 new_field->virtuality = DW_UNSND (attr);
12466 new_field->virtuality = DW_VIRTUALITY_none;
12468 fp = &new_field->field;
12470 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12474 /* Data member other than a C++ static data member. */
12476 /* Get type of field. */
12477 fp->type = die_type (die, cu);
12479 SET_FIELD_BITPOS (*fp, 0);
12481 /* Get bit size of field (zero if none). */
12482 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12485 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12489 FIELD_BITSIZE (*fp) = 0;
12492 /* Get bit offset of field. */
12493 if (handle_data_member_location (die, cu, &offset))
12494 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12495 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12498 if (gdbarch_bits_big_endian (gdbarch))
12500 /* For big endian bits, the DW_AT_bit_offset gives the
12501 additional bit offset from the MSB of the containing
12502 anonymous object to the MSB of the field. We don't
12503 have to do anything special since we don't need to
12504 know the size of the anonymous object. */
12505 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12509 /* For little endian bits, compute the bit offset to the
12510 MSB of the anonymous object, subtract off the number of
12511 bits from the MSB of the field to the MSB of the
12512 object, and then subtract off the number of bits of
12513 the field itself. The result is the bit offset of
12514 the LSB of the field. */
12515 int anonymous_size;
12516 int bit_offset = DW_UNSND (attr);
12518 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12521 /* The size of the anonymous object containing
12522 the bit field is explicit, so use the
12523 indicated size (in bytes). */
12524 anonymous_size = DW_UNSND (attr);
12528 /* The size of the anonymous object containing
12529 the bit field must be inferred from the type
12530 attribute of the data member containing the
12532 anonymous_size = TYPE_LENGTH (fp->type);
12534 SET_FIELD_BITPOS (*fp,
12535 (FIELD_BITPOS (*fp)
12536 + anonymous_size * bits_per_byte
12537 - bit_offset - FIELD_BITSIZE (*fp)));
12541 /* Get name of field. */
12542 fieldname = dwarf2_name (die, cu);
12543 if (fieldname == NULL)
12546 /* The name is already allocated along with this objfile, so we don't
12547 need to duplicate it for the type. */
12548 fp->name = fieldname;
12550 /* Change accessibility for artificial fields (e.g. virtual table
12551 pointer or virtual base class pointer) to private. */
12552 if (dwarf2_attr (die, DW_AT_artificial, cu))
12554 FIELD_ARTIFICIAL (*fp) = 1;
12555 new_field->accessibility = DW_ACCESS_private;
12556 fip->non_public_fields = 1;
12559 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12561 /* C++ static member. */
12563 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12564 is a declaration, but all versions of G++ as of this writing
12565 (so through at least 3.2.1) incorrectly generate
12566 DW_TAG_variable tags. */
12568 const char *physname;
12570 /* Get name of field. */
12571 fieldname = dwarf2_name (die, cu);
12572 if (fieldname == NULL)
12575 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12577 /* Only create a symbol if this is an external value.
12578 new_symbol checks this and puts the value in the global symbol
12579 table, which we want. If it is not external, new_symbol
12580 will try to put the value in cu->list_in_scope which is wrong. */
12581 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12583 /* A static const member, not much different than an enum as far as
12584 we're concerned, except that we can support more types. */
12585 new_symbol (die, NULL, cu);
12588 /* Get physical name. */
12589 physname = dwarf2_physname (fieldname, die, cu);
12591 /* The name is already allocated along with this objfile, so we don't
12592 need to duplicate it for the type. */
12593 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12594 FIELD_TYPE (*fp) = die_type (die, cu);
12595 FIELD_NAME (*fp) = fieldname;
12597 else if (die->tag == DW_TAG_inheritance)
12601 /* C++ base class field. */
12602 if (handle_data_member_location (die, cu, &offset))
12603 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12604 FIELD_BITSIZE (*fp) = 0;
12605 FIELD_TYPE (*fp) = die_type (die, cu);
12606 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12607 fip->nbaseclasses++;
12611 /* Add a typedef defined in the scope of the FIP's class. */
12614 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12615 struct dwarf2_cu *cu)
12617 struct objfile *objfile = cu->objfile;
12618 struct typedef_field_list *new_field;
12619 struct attribute *attr;
12620 struct typedef_field *fp;
12621 char *fieldname = "";
12623 /* Allocate a new field list entry and link it in. */
12624 new_field = xzalloc (sizeof (*new_field));
12625 make_cleanup (xfree, new_field);
12627 gdb_assert (die->tag == DW_TAG_typedef);
12629 fp = &new_field->field;
12631 /* Get name of field. */
12632 fp->name = dwarf2_name (die, cu);
12633 if (fp->name == NULL)
12636 fp->type = read_type_die (die, cu);
12638 new_field->next = fip->typedef_field_list;
12639 fip->typedef_field_list = new_field;
12640 fip->typedef_field_list_count++;
12643 /* Create the vector of fields, and attach it to the type. */
12646 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12647 struct dwarf2_cu *cu)
12649 int nfields = fip->nfields;
12651 /* Record the field count, allocate space for the array of fields,
12652 and create blank accessibility bitfields if necessary. */
12653 TYPE_NFIELDS (type) = nfields;
12654 TYPE_FIELDS (type) = (struct field *)
12655 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12656 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12658 if (fip->non_public_fields && cu->language != language_ada)
12660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12662 TYPE_FIELD_PRIVATE_BITS (type) =
12663 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12664 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12666 TYPE_FIELD_PROTECTED_BITS (type) =
12667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12668 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12670 TYPE_FIELD_IGNORE_BITS (type) =
12671 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12672 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12675 /* If the type has baseclasses, allocate and clear a bit vector for
12676 TYPE_FIELD_VIRTUAL_BITS. */
12677 if (fip->nbaseclasses && cu->language != language_ada)
12679 int num_bytes = B_BYTES (fip->nbaseclasses);
12680 unsigned char *pointer;
12682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12683 pointer = TYPE_ALLOC (type, num_bytes);
12684 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12685 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12686 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12689 /* Copy the saved-up fields into the field vector. Start from the head of
12690 the list, adding to the tail of the field array, so that they end up in
12691 the same order in the array in which they were added to the list. */
12692 while (nfields-- > 0)
12694 struct nextfield *fieldp;
12698 fieldp = fip->fields;
12699 fip->fields = fieldp->next;
12703 fieldp = fip->baseclasses;
12704 fip->baseclasses = fieldp->next;
12707 TYPE_FIELD (type, nfields) = fieldp->field;
12708 switch (fieldp->accessibility)
12710 case DW_ACCESS_private:
12711 if (cu->language != language_ada)
12712 SET_TYPE_FIELD_PRIVATE (type, nfields);
12715 case DW_ACCESS_protected:
12716 if (cu->language != language_ada)
12717 SET_TYPE_FIELD_PROTECTED (type, nfields);
12720 case DW_ACCESS_public:
12724 /* Unknown accessibility. Complain and treat it as public. */
12726 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12727 fieldp->accessibility);
12731 if (nfields < fip->nbaseclasses)
12733 switch (fieldp->virtuality)
12735 case DW_VIRTUALITY_virtual:
12736 case DW_VIRTUALITY_pure_virtual:
12737 if (cu->language == language_ada)
12738 error (_("unexpected virtuality in component of Ada type"));
12739 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12746 /* Return true if this member function is a constructor, false
12750 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12752 const char *fieldname;
12753 const char *type_name;
12756 if (die->parent == NULL)
12759 if (die->parent->tag != DW_TAG_structure_type
12760 && die->parent->tag != DW_TAG_union_type
12761 && die->parent->tag != DW_TAG_class_type)
12764 fieldname = dwarf2_name (die, cu);
12765 type_name = dwarf2_name (die->parent, cu);
12766 if (fieldname == NULL || type_name == NULL)
12769 len = strlen (fieldname);
12770 return (strncmp (fieldname, type_name, len) == 0
12771 && (type_name[len] == '\0' || type_name[len] == '<'));
12774 /* Add a member function to the proper fieldlist. */
12777 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12778 struct type *type, struct dwarf2_cu *cu)
12780 struct objfile *objfile = cu->objfile;
12781 struct attribute *attr;
12782 struct fnfieldlist *flp;
12784 struct fn_field *fnp;
12785 const char *fieldname;
12786 struct nextfnfield *new_fnfield;
12787 struct type *this_type;
12788 enum dwarf_access_attribute accessibility;
12790 if (cu->language == language_ada)
12791 error (_("unexpected member function in Ada type"));
12793 /* Get name of member function. */
12794 fieldname = dwarf2_name (die, cu);
12795 if (fieldname == NULL)
12798 /* Look up member function name in fieldlist. */
12799 for (i = 0; i < fip->nfnfields; i++)
12801 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12805 /* Create new list element if necessary. */
12806 if (i < fip->nfnfields)
12807 flp = &fip->fnfieldlists[i];
12810 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12812 fip->fnfieldlists = (struct fnfieldlist *)
12813 xrealloc (fip->fnfieldlists,
12814 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12815 * sizeof (struct fnfieldlist));
12816 if (fip->nfnfields == 0)
12817 make_cleanup (free_current_contents, &fip->fnfieldlists);
12819 flp = &fip->fnfieldlists[fip->nfnfields];
12820 flp->name = fieldname;
12823 i = fip->nfnfields++;
12826 /* Create a new member function field and chain it to the field list
12828 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12829 make_cleanup (xfree, new_fnfield);
12830 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12831 new_fnfield->next = flp->head;
12832 flp->head = new_fnfield;
12835 /* Fill in the member function field info. */
12836 fnp = &new_fnfield->fnfield;
12838 /* Delay processing of the physname until later. */
12839 if (cu->language == language_cplus || cu->language == language_java)
12841 add_to_method_list (type, i, flp->length - 1, fieldname,
12846 const char *physname = dwarf2_physname (fieldname, die, cu);
12847 fnp->physname = physname ? physname : "";
12850 fnp->type = alloc_type (objfile);
12851 this_type = read_type_die (die, cu);
12852 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12854 int nparams = TYPE_NFIELDS (this_type);
12856 /* TYPE is the domain of this method, and THIS_TYPE is the type
12857 of the method itself (TYPE_CODE_METHOD). */
12858 smash_to_method_type (fnp->type, type,
12859 TYPE_TARGET_TYPE (this_type),
12860 TYPE_FIELDS (this_type),
12861 TYPE_NFIELDS (this_type),
12862 TYPE_VARARGS (this_type));
12864 /* Handle static member functions.
12865 Dwarf2 has no clean way to discern C++ static and non-static
12866 member functions. G++ helps GDB by marking the first
12867 parameter for non-static member functions (which is the this
12868 pointer) as artificial. We obtain this information from
12869 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12870 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12871 fnp->voffset = VOFFSET_STATIC;
12874 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12875 dwarf2_full_name (fieldname, die, cu));
12877 /* Get fcontext from DW_AT_containing_type if present. */
12878 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12879 fnp->fcontext = die_containing_type (die, cu);
12881 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12882 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12884 /* Get accessibility. */
12885 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12887 accessibility = DW_UNSND (attr);
12889 accessibility = dwarf2_default_access_attribute (die, cu);
12890 switch (accessibility)
12892 case DW_ACCESS_private:
12893 fnp->is_private = 1;
12895 case DW_ACCESS_protected:
12896 fnp->is_protected = 1;
12900 /* Check for artificial methods. */
12901 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12902 if (attr && DW_UNSND (attr) != 0)
12903 fnp->is_artificial = 1;
12905 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12907 /* Get index in virtual function table if it is a virtual member
12908 function. For older versions of GCC, this is an offset in the
12909 appropriate virtual table, as specified by DW_AT_containing_type.
12910 For everyone else, it is an expression to be evaluated relative
12911 to the object address. */
12913 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12916 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12918 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12920 /* Old-style GCC. */
12921 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12923 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12924 || (DW_BLOCK (attr)->size > 1
12925 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12926 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12928 struct dwarf_block blk;
12931 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12933 blk.size = DW_BLOCK (attr)->size - offset;
12934 blk.data = DW_BLOCK (attr)->data + offset;
12935 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12936 if ((fnp->voffset % cu->header.addr_size) != 0)
12937 dwarf2_complex_location_expr_complaint ();
12939 fnp->voffset /= cu->header.addr_size;
12943 dwarf2_complex_location_expr_complaint ();
12945 if (!fnp->fcontext)
12947 /* If there is no `this' field and no DW_AT_containing_type,
12948 we cannot actually find a base class context for the
12950 if (TYPE_NFIELDS (this_type) == 0
12951 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12953 complaint (&symfile_complaints,
12954 _("cannot determine context for virtual member "
12955 "function \"%s\" (offset %d)"),
12956 fieldname, die->offset.sect_off);
12961 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12965 else if (attr_form_is_section_offset (attr))
12967 dwarf2_complex_location_expr_complaint ();
12971 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12977 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12978 if (attr && DW_UNSND (attr))
12980 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12981 complaint (&symfile_complaints,
12982 _("Member function \"%s\" (offset %d) is virtual "
12983 "but the vtable offset is not specified"),
12984 fieldname, die->offset.sect_off);
12985 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12986 TYPE_CPLUS_DYNAMIC (type) = 1;
12991 /* Create the vector of member function fields, and attach it to the type. */
12994 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12995 struct dwarf2_cu *cu)
12997 struct fnfieldlist *flp;
13000 if (cu->language == language_ada)
13001 error (_("unexpected member functions in Ada type"));
13003 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13004 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13005 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13007 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13009 struct nextfnfield *nfp = flp->head;
13010 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13013 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13014 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13015 fn_flp->fn_fields = (struct fn_field *)
13016 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13017 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13018 fn_flp->fn_fields[k] = nfp->fnfield;
13021 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13024 /* Returns non-zero if NAME is the name of a vtable member in CU's
13025 language, zero otherwise. */
13027 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13029 static const char vptr[] = "_vptr";
13030 static const char vtable[] = "vtable";
13032 /* Look for the C++ and Java forms of the vtable. */
13033 if ((cu->language == language_java
13034 && startswith (name, vtable))
13035 || (startswith (name, vptr)
13036 && is_cplus_marker (name[sizeof (vptr) - 1])))
13042 /* GCC outputs unnamed structures that are really pointers to member
13043 functions, with the ABI-specified layout. If TYPE describes
13044 such a structure, smash it into a member function type.
13046 GCC shouldn't do this; it should just output pointer to member DIEs.
13047 This is GCC PR debug/28767. */
13050 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13052 struct type *pfn_type, *self_type, *new_type;
13054 /* Check for a structure with no name and two children. */
13055 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13058 /* Check for __pfn and __delta members. */
13059 if (TYPE_FIELD_NAME (type, 0) == NULL
13060 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13061 || TYPE_FIELD_NAME (type, 1) == NULL
13062 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13065 /* Find the type of the method. */
13066 pfn_type = TYPE_FIELD_TYPE (type, 0);
13067 if (pfn_type == NULL
13068 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13069 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13072 /* Look for the "this" argument. */
13073 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13074 if (TYPE_NFIELDS (pfn_type) == 0
13075 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13076 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13079 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13080 new_type = alloc_type (objfile);
13081 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13082 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13083 TYPE_VARARGS (pfn_type));
13084 smash_to_methodptr_type (type, new_type);
13087 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13091 producer_is_icc (struct dwarf2_cu *cu)
13093 if (!cu->checked_producer)
13094 check_producer (cu);
13096 return cu->producer_is_icc;
13099 /* Called when we find the DIE that starts a structure or union scope
13100 (definition) to create a type for the structure or union. Fill in
13101 the type's name and general properties; the members will not be
13102 processed until process_structure_scope. A symbol table entry for
13103 the type will also not be done until process_structure_scope (assuming
13104 the type has a name).
13106 NOTE: we need to call these functions regardless of whether or not the
13107 DIE has a DW_AT_name attribute, since it might be an anonymous
13108 structure or union. This gets the type entered into our set of
13109 user defined types. */
13111 static struct type *
13112 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13114 struct objfile *objfile = cu->objfile;
13116 struct attribute *attr;
13119 /* If the definition of this type lives in .debug_types, read that type.
13120 Don't follow DW_AT_specification though, that will take us back up
13121 the chain and we want to go down. */
13122 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13125 type = get_DW_AT_signature_type (die, attr, cu);
13127 /* The type's CU may not be the same as CU.
13128 Ensure TYPE is recorded with CU in die_type_hash. */
13129 return set_die_type (die, type, cu);
13132 type = alloc_type (objfile);
13133 INIT_CPLUS_SPECIFIC (type);
13135 name = dwarf2_name (die, cu);
13138 if (cu->language == language_cplus
13139 || cu->language == language_java)
13141 const char *full_name = dwarf2_full_name (name, die, cu);
13143 /* dwarf2_full_name might have already finished building the DIE's
13144 type. If so, there is no need to continue. */
13145 if (get_die_type (die, cu) != NULL)
13146 return get_die_type (die, cu);
13148 TYPE_TAG_NAME (type) = full_name;
13149 if (die->tag == DW_TAG_structure_type
13150 || die->tag == DW_TAG_class_type)
13151 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13155 /* The name is already allocated along with this objfile, so
13156 we don't need to duplicate it for the type. */
13157 TYPE_TAG_NAME (type) = name;
13158 if (die->tag == DW_TAG_class_type)
13159 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13163 if (die->tag == DW_TAG_structure_type)
13165 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13167 else if (die->tag == DW_TAG_union_type)
13169 TYPE_CODE (type) = TYPE_CODE_UNION;
13173 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13176 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13177 TYPE_DECLARED_CLASS (type) = 1;
13179 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13182 TYPE_LENGTH (type) = DW_UNSND (attr);
13186 TYPE_LENGTH (type) = 0;
13189 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13191 /* ICC does not output the required DW_AT_declaration
13192 on incomplete types, but gives them a size of zero. */
13193 TYPE_STUB (type) = 1;
13196 TYPE_STUB_SUPPORTED (type) = 1;
13198 if (die_is_declaration (die, cu))
13199 TYPE_STUB (type) = 1;
13200 else if (attr == NULL && die->child == NULL
13201 && producer_is_realview (cu->producer))
13202 /* RealView does not output the required DW_AT_declaration
13203 on incomplete types. */
13204 TYPE_STUB (type) = 1;
13206 /* We need to add the type field to the die immediately so we don't
13207 infinitely recurse when dealing with pointers to the structure
13208 type within the structure itself. */
13209 set_die_type (die, type, cu);
13211 /* set_die_type should be already done. */
13212 set_descriptive_type (type, die, cu);
13217 /* Finish creating a structure or union type, including filling in
13218 its members and creating a symbol for it. */
13221 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13223 struct objfile *objfile = cu->objfile;
13224 struct die_info *child_die;
13227 type = get_die_type (die, cu);
13229 type = read_structure_type (die, cu);
13231 if (die->child != NULL && ! die_is_declaration (die, cu))
13233 struct field_info fi;
13234 VEC (symbolp) *template_args = NULL;
13235 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13237 memset (&fi, 0, sizeof (struct field_info));
13239 child_die = die->child;
13241 while (child_die && child_die->tag)
13243 if (child_die->tag == DW_TAG_member
13244 || child_die->tag == DW_TAG_variable)
13246 /* NOTE: carlton/2002-11-05: A C++ static data member
13247 should be a DW_TAG_member that is a declaration, but
13248 all versions of G++ as of this writing (so through at
13249 least 3.2.1) incorrectly generate DW_TAG_variable
13250 tags for them instead. */
13251 dwarf2_add_field (&fi, child_die, cu);
13253 else if (child_die->tag == DW_TAG_subprogram)
13255 /* C++ member function. */
13256 dwarf2_add_member_fn (&fi, child_die, type, cu);
13258 else if (child_die->tag == DW_TAG_inheritance)
13260 /* C++ base class field. */
13261 dwarf2_add_field (&fi, child_die, cu);
13263 else if (child_die->tag == DW_TAG_typedef)
13264 dwarf2_add_typedef (&fi, child_die, cu);
13265 else if (child_die->tag == DW_TAG_template_type_param
13266 || child_die->tag == DW_TAG_template_value_param)
13268 struct symbol *arg = new_symbol (child_die, NULL, cu);
13271 VEC_safe_push (symbolp, template_args, arg);
13274 child_die = sibling_die (child_die);
13277 /* Attach template arguments to type. */
13278 if (! VEC_empty (symbolp, template_args))
13280 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13281 TYPE_N_TEMPLATE_ARGUMENTS (type)
13282 = VEC_length (symbolp, template_args);
13283 TYPE_TEMPLATE_ARGUMENTS (type)
13284 = obstack_alloc (&objfile->objfile_obstack,
13285 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13286 * sizeof (struct symbol *)));
13287 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13288 VEC_address (symbolp, template_args),
13289 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13290 * sizeof (struct symbol *)));
13291 VEC_free (symbolp, template_args);
13294 /* Attach fields and member functions to the type. */
13296 dwarf2_attach_fields_to_type (&fi, type, cu);
13299 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13301 /* Get the type which refers to the base class (possibly this
13302 class itself) which contains the vtable pointer for the current
13303 class from the DW_AT_containing_type attribute. This use of
13304 DW_AT_containing_type is a GNU extension. */
13306 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13308 struct type *t = die_containing_type (die, cu);
13310 set_type_vptr_basetype (type, t);
13315 /* Our own class provides vtbl ptr. */
13316 for (i = TYPE_NFIELDS (t) - 1;
13317 i >= TYPE_N_BASECLASSES (t);
13320 const char *fieldname = TYPE_FIELD_NAME (t, i);
13322 if (is_vtable_name (fieldname, cu))
13324 set_type_vptr_fieldno (type, i);
13329 /* Complain if virtual function table field not found. */
13330 if (i < TYPE_N_BASECLASSES (t))
13331 complaint (&symfile_complaints,
13332 _("virtual function table pointer "
13333 "not found when defining class '%s'"),
13334 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13339 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13342 else if (cu->producer
13343 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13345 /* The IBM XLC compiler does not provide direct indication
13346 of the containing type, but the vtable pointer is
13347 always named __vfp. */
13351 for (i = TYPE_NFIELDS (type) - 1;
13352 i >= TYPE_N_BASECLASSES (type);
13355 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13357 set_type_vptr_fieldno (type, i);
13358 set_type_vptr_basetype (type, type);
13365 /* Copy fi.typedef_field_list linked list elements content into the
13366 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13367 if (fi.typedef_field_list)
13369 int i = fi.typedef_field_list_count;
13371 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13372 TYPE_TYPEDEF_FIELD_ARRAY (type)
13373 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13374 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13376 /* Reverse the list order to keep the debug info elements order. */
13379 struct typedef_field *dest, *src;
13381 dest = &TYPE_TYPEDEF_FIELD (type, i);
13382 src = &fi.typedef_field_list->field;
13383 fi.typedef_field_list = fi.typedef_field_list->next;
13388 do_cleanups (back_to);
13390 if (HAVE_CPLUS_STRUCT (type))
13391 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13394 quirk_gcc_member_function_pointer (type, objfile);
13396 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13397 snapshots) has been known to create a die giving a declaration
13398 for a class that has, as a child, a die giving a definition for a
13399 nested class. So we have to process our children even if the
13400 current die is a declaration. Normally, of course, a declaration
13401 won't have any children at all. */
13403 child_die = die->child;
13405 while (child_die != NULL && child_die->tag)
13407 if (child_die->tag == DW_TAG_member
13408 || child_die->tag == DW_TAG_variable
13409 || child_die->tag == DW_TAG_inheritance
13410 || child_die->tag == DW_TAG_template_value_param
13411 || child_die->tag == DW_TAG_template_type_param)
13416 process_die (child_die, cu);
13418 child_die = sibling_die (child_die);
13421 /* Do not consider external references. According to the DWARF standard,
13422 these DIEs are identified by the fact that they have no byte_size
13423 attribute, and a declaration attribute. */
13424 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13425 || !die_is_declaration (die, cu))
13426 new_symbol (die, type, cu);
13429 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13430 update TYPE using some information only available in DIE's children. */
13433 update_enumeration_type_from_children (struct die_info *die,
13435 struct dwarf2_cu *cu)
13437 struct obstack obstack;
13438 struct die_info *child_die;
13439 int unsigned_enum = 1;
13442 struct cleanup *old_chain;
13444 obstack_init (&obstack);
13445 old_chain = make_cleanup_obstack_free (&obstack);
13447 for (child_die = die->child;
13448 child_die != NULL && child_die->tag;
13449 child_die = sibling_die (child_die))
13451 struct attribute *attr;
13453 const gdb_byte *bytes;
13454 struct dwarf2_locexpr_baton *baton;
13457 if (child_die->tag != DW_TAG_enumerator)
13460 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13464 name = dwarf2_name (child_die, cu);
13466 name = "<anonymous enumerator>";
13468 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13469 &value, &bytes, &baton);
13475 else if ((mask & value) != 0)
13480 /* If we already know that the enum type is neither unsigned, nor
13481 a flag type, no need to look at the rest of the enumerates. */
13482 if (!unsigned_enum && !flag_enum)
13487 TYPE_UNSIGNED (type) = 1;
13489 TYPE_FLAG_ENUM (type) = 1;
13491 do_cleanups (old_chain);
13494 /* Given a DW_AT_enumeration_type die, set its type. We do not
13495 complete the type's fields yet, or create any symbols. */
13497 static struct type *
13498 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13500 struct objfile *objfile = cu->objfile;
13502 struct attribute *attr;
13505 /* If the definition of this type lives in .debug_types, read that type.
13506 Don't follow DW_AT_specification though, that will take us back up
13507 the chain and we want to go down. */
13508 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13511 type = get_DW_AT_signature_type (die, attr, cu);
13513 /* The type's CU may not be the same as CU.
13514 Ensure TYPE is recorded with CU in die_type_hash. */
13515 return set_die_type (die, type, cu);
13518 type = alloc_type (objfile);
13520 TYPE_CODE (type) = TYPE_CODE_ENUM;
13521 name = dwarf2_full_name (NULL, die, cu);
13523 TYPE_TAG_NAME (type) = name;
13525 attr = dwarf2_attr (die, DW_AT_type, cu);
13528 struct type *underlying_type = die_type (die, cu);
13530 TYPE_TARGET_TYPE (type) = underlying_type;
13533 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13536 TYPE_LENGTH (type) = DW_UNSND (attr);
13540 TYPE_LENGTH (type) = 0;
13543 /* The enumeration DIE can be incomplete. In Ada, any type can be
13544 declared as private in the package spec, and then defined only
13545 inside the package body. Such types are known as Taft Amendment
13546 Types. When another package uses such a type, an incomplete DIE
13547 may be generated by the compiler. */
13548 if (die_is_declaration (die, cu))
13549 TYPE_STUB (type) = 1;
13551 /* Finish the creation of this type by using the enum's children.
13552 We must call this even when the underlying type has been provided
13553 so that we can determine if we're looking at a "flag" enum. */
13554 update_enumeration_type_from_children (die, type, cu);
13556 /* If this type has an underlying type that is not a stub, then we
13557 may use its attributes. We always use the "unsigned" attribute
13558 in this situation, because ordinarily we guess whether the type
13559 is unsigned -- but the guess can be wrong and the underlying type
13560 can tell us the reality. However, we defer to a local size
13561 attribute if one exists, because this lets the compiler override
13562 the underlying type if needed. */
13563 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13565 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13566 if (TYPE_LENGTH (type) == 0)
13567 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13570 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13572 return set_die_type (die, type, cu);
13575 /* Given a pointer to a die which begins an enumeration, process all
13576 the dies that define the members of the enumeration, and create the
13577 symbol for the enumeration type.
13579 NOTE: We reverse the order of the element list. */
13582 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13584 struct type *this_type;
13586 this_type = get_die_type (die, cu);
13587 if (this_type == NULL)
13588 this_type = read_enumeration_type (die, cu);
13590 if (die->child != NULL)
13592 struct die_info *child_die;
13593 struct symbol *sym;
13594 struct field *fields = NULL;
13595 int num_fields = 0;
13598 child_die = die->child;
13599 while (child_die && child_die->tag)
13601 if (child_die->tag != DW_TAG_enumerator)
13603 process_die (child_die, cu);
13607 name = dwarf2_name (child_die, cu);
13610 sym = new_symbol (child_die, this_type, cu);
13612 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13614 fields = (struct field *)
13616 (num_fields + DW_FIELD_ALLOC_CHUNK)
13617 * sizeof (struct field));
13620 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13621 FIELD_TYPE (fields[num_fields]) = NULL;
13622 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13623 FIELD_BITSIZE (fields[num_fields]) = 0;
13629 child_die = sibling_die (child_die);
13634 TYPE_NFIELDS (this_type) = num_fields;
13635 TYPE_FIELDS (this_type) = (struct field *)
13636 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13637 memcpy (TYPE_FIELDS (this_type), fields,
13638 sizeof (struct field) * num_fields);
13643 /* If we are reading an enum from a .debug_types unit, and the enum
13644 is a declaration, and the enum is not the signatured type in the
13645 unit, then we do not want to add a symbol for it. Adding a
13646 symbol would in some cases obscure the true definition of the
13647 enum, giving users an incomplete type when the definition is
13648 actually available. Note that we do not want to do this for all
13649 enums which are just declarations, because C++0x allows forward
13650 enum declarations. */
13651 if (cu->per_cu->is_debug_types
13652 && die_is_declaration (die, cu))
13654 struct signatured_type *sig_type;
13656 sig_type = (struct signatured_type *) cu->per_cu;
13657 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13658 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13662 new_symbol (die, this_type, cu);
13665 /* Extract all information from a DW_TAG_array_type DIE and put it in
13666 the DIE's type field. For now, this only handles one dimensional
13669 static struct type *
13670 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13672 struct objfile *objfile = cu->objfile;
13673 struct die_info *child_die;
13675 struct type *element_type, *range_type, *index_type;
13676 struct type **range_types = NULL;
13677 struct attribute *attr;
13679 struct cleanup *back_to;
13681 unsigned int bit_stride = 0;
13683 element_type = die_type (die, cu);
13685 /* The die_type call above may have already set the type for this DIE. */
13686 type = get_die_type (die, cu);
13690 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13692 bit_stride = DW_UNSND (attr) * 8;
13694 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13696 bit_stride = DW_UNSND (attr);
13698 /* Irix 6.2 native cc creates array types without children for
13699 arrays with unspecified length. */
13700 if (die->child == NULL)
13702 index_type = objfile_type (objfile)->builtin_int;
13703 range_type = create_static_range_type (NULL, index_type, 0, -1);
13704 type = create_array_type_with_stride (NULL, element_type, range_type,
13706 return set_die_type (die, type, cu);
13709 back_to = make_cleanup (null_cleanup, NULL);
13710 child_die = die->child;
13711 while (child_die && child_die->tag)
13713 if (child_die->tag == DW_TAG_subrange_type)
13715 struct type *child_type = read_type_die (child_die, cu);
13717 if (child_type != NULL)
13719 /* The range type was succesfully read. Save it for the
13720 array type creation. */
13721 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13723 range_types = (struct type **)
13724 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13725 * sizeof (struct type *));
13727 make_cleanup (free_current_contents, &range_types);
13729 range_types[ndim++] = child_type;
13732 child_die = sibling_die (child_die);
13735 /* Dwarf2 dimensions are output from left to right, create the
13736 necessary array types in backwards order. */
13738 type = element_type;
13740 if (read_array_order (die, cu) == DW_ORD_col_major)
13745 type = create_array_type_with_stride (NULL, type, range_types[i++],
13751 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13755 /* Understand Dwarf2 support for vector types (like they occur on
13756 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13757 array type. This is not part of the Dwarf2/3 standard yet, but a
13758 custom vendor extension. The main difference between a regular
13759 array and the vector variant is that vectors are passed by value
13761 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13763 make_vector_type (type);
13765 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13766 implementation may choose to implement triple vectors using this
13768 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13771 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13772 TYPE_LENGTH (type) = DW_UNSND (attr);
13774 complaint (&symfile_complaints,
13775 _("DW_AT_byte_size for array type smaller "
13776 "than the total size of elements"));
13779 name = dwarf2_name (die, cu);
13781 TYPE_NAME (type) = name;
13783 /* Install the type in the die. */
13784 set_die_type (die, type, cu);
13786 /* set_die_type should be already done. */
13787 set_descriptive_type (type, die, cu);
13789 do_cleanups (back_to);
13794 static enum dwarf_array_dim_ordering
13795 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13797 struct attribute *attr;
13799 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13801 if (attr) return DW_SND (attr);
13803 /* GNU F77 is a special case, as at 08/2004 array type info is the
13804 opposite order to the dwarf2 specification, but data is still
13805 laid out as per normal fortran.
13807 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13808 version checking. */
13810 if (cu->language == language_fortran
13811 && cu->producer && strstr (cu->producer, "GNU F77"))
13813 return DW_ORD_row_major;
13816 switch (cu->language_defn->la_array_ordering)
13818 case array_column_major:
13819 return DW_ORD_col_major;
13820 case array_row_major:
13822 return DW_ORD_row_major;
13826 /* Extract all information from a DW_TAG_set_type DIE and put it in
13827 the DIE's type field. */
13829 static struct type *
13830 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13832 struct type *domain_type, *set_type;
13833 struct attribute *attr;
13835 domain_type = die_type (die, cu);
13837 /* The die_type call above may have already set the type for this DIE. */
13838 set_type = get_die_type (die, cu);
13842 set_type = create_set_type (NULL, domain_type);
13844 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13846 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13848 return set_die_type (die, set_type, cu);
13851 /* A helper for read_common_block that creates a locexpr baton.
13852 SYM is the symbol which we are marking as computed.
13853 COMMON_DIE is the DIE for the common block.
13854 COMMON_LOC is the location expression attribute for the common
13856 MEMBER_LOC is the location expression attribute for the particular
13857 member of the common block that we are processing.
13858 CU is the CU from which the above come. */
13861 mark_common_block_symbol_computed (struct symbol *sym,
13862 struct die_info *common_die,
13863 struct attribute *common_loc,
13864 struct attribute *member_loc,
13865 struct dwarf2_cu *cu)
13867 struct objfile *objfile = dwarf2_per_objfile->objfile;
13868 struct dwarf2_locexpr_baton *baton;
13870 unsigned int cu_off;
13871 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13872 LONGEST offset = 0;
13874 gdb_assert (common_loc && member_loc);
13875 gdb_assert (attr_form_is_block (common_loc));
13876 gdb_assert (attr_form_is_block (member_loc)
13877 || attr_form_is_constant (member_loc));
13879 baton = obstack_alloc (&objfile->objfile_obstack,
13880 sizeof (struct dwarf2_locexpr_baton));
13881 baton->per_cu = cu->per_cu;
13882 gdb_assert (baton->per_cu);
13884 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13886 if (attr_form_is_constant (member_loc))
13888 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13889 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13892 baton->size += DW_BLOCK (member_loc)->size;
13894 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13897 *ptr++ = DW_OP_call4;
13898 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13899 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13902 if (attr_form_is_constant (member_loc))
13904 *ptr++ = DW_OP_addr;
13905 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13906 ptr += cu->header.addr_size;
13910 /* We have to copy the data here, because DW_OP_call4 will only
13911 use a DW_AT_location attribute. */
13912 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13913 ptr += DW_BLOCK (member_loc)->size;
13916 *ptr++ = DW_OP_plus;
13917 gdb_assert (ptr - baton->data == baton->size);
13919 SYMBOL_LOCATION_BATON (sym) = baton;
13920 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13923 /* Create appropriate locally-scoped variables for all the
13924 DW_TAG_common_block entries. Also create a struct common_block
13925 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13926 is used to sepate the common blocks name namespace from regular
13930 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13932 struct attribute *attr;
13934 attr = dwarf2_attr (die, DW_AT_location, cu);
13937 /* Support the .debug_loc offsets. */
13938 if (attr_form_is_block (attr))
13942 else if (attr_form_is_section_offset (attr))
13944 dwarf2_complex_location_expr_complaint ();
13949 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13950 "common block member");
13955 if (die->child != NULL)
13957 struct objfile *objfile = cu->objfile;
13958 struct die_info *child_die;
13959 size_t n_entries = 0, size;
13960 struct common_block *common_block;
13961 struct symbol *sym;
13963 for (child_die = die->child;
13964 child_die && child_die->tag;
13965 child_die = sibling_die (child_die))
13968 size = (sizeof (struct common_block)
13969 + (n_entries - 1) * sizeof (struct symbol *));
13970 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13971 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13972 common_block->n_entries = 0;
13974 for (child_die = die->child;
13975 child_die && child_die->tag;
13976 child_die = sibling_die (child_die))
13978 /* Create the symbol in the DW_TAG_common_block block in the current
13980 sym = new_symbol (child_die, NULL, cu);
13983 struct attribute *member_loc;
13985 common_block->contents[common_block->n_entries++] = sym;
13987 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13991 /* GDB has handled this for a long time, but it is
13992 not specified by DWARF. It seems to have been
13993 emitted by gfortran at least as recently as:
13994 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13995 complaint (&symfile_complaints,
13996 _("Variable in common block has "
13997 "DW_AT_data_member_location "
13998 "- DIE at 0x%x [in module %s]"),
13999 child_die->offset.sect_off,
14000 objfile_name (cu->objfile));
14002 if (attr_form_is_section_offset (member_loc))
14003 dwarf2_complex_location_expr_complaint ();
14004 else if (attr_form_is_constant (member_loc)
14005 || attr_form_is_block (member_loc))
14008 mark_common_block_symbol_computed (sym, die, attr,
14012 dwarf2_complex_location_expr_complaint ();
14017 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14018 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14022 /* Create a type for a C++ namespace. */
14024 static struct type *
14025 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14027 struct objfile *objfile = cu->objfile;
14028 const char *previous_prefix, *name;
14032 /* For extensions, reuse the type of the original namespace. */
14033 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14035 struct die_info *ext_die;
14036 struct dwarf2_cu *ext_cu = cu;
14038 ext_die = dwarf2_extension (die, &ext_cu);
14039 type = read_type_die (ext_die, ext_cu);
14041 /* EXT_CU may not be the same as CU.
14042 Ensure TYPE is recorded with CU in die_type_hash. */
14043 return set_die_type (die, type, cu);
14046 name = namespace_name (die, &is_anonymous, cu);
14048 /* Now build the name of the current namespace. */
14050 previous_prefix = determine_prefix (die, cu);
14051 if (previous_prefix[0] != '\0')
14052 name = typename_concat (&objfile->objfile_obstack,
14053 previous_prefix, name, 0, cu);
14055 /* Create the type. */
14056 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14058 TYPE_NAME (type) = name;
14059 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14061 return set_die_type (die, type, cu);
14064 /* Read a C++ namespace. */
14067 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14069 struct objfile *objfile = cu->objfile;
14072 /* Add a symbol associated to this if we haven't seen the namespace
14073 before. Also, add a using directive if it's an anonymous
14076 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14080 type = read_type_die (die, cu);
14081 new_symbol (die, type, cu);
14083 namespace_name (die, &is_anonymous, cu);
14086 const char *previous_prefix = determine_prefix (die, cu);
14088 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14089 NULL, NULL, 0, &objfile->objfile_obstack);
14093 if (die->child != NULL)
14095 struct die_info *child_die = die->child;
14097 while (child_die && child_die->tag)
14099 process_die (child_die, cu);
14100 child_die = sibling_die (child_die);
14105 /* Read a Fortran module as type. This DIE can be only a declaration used for
14106 imported module. Still we need that type as local Fortran "use ... only"
14107 declaration imports depend on the created type in determine_prefix. */
14109 static struct type *
14110 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14112 struct objfile *objfile = cu->objfile;
14113 const char *module_name;
14116 module_name = dwarf2_name (die, cu);
14118 complaint (&symfile_complaints,
14119 _("DW_TAG_module has no name, offset 0x%x"),
14120 die->offset.sect_off);
14121 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14123 /* determine_prefix uses TYPE_TAG_NAME. */
14124 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14126 return set_die_type (die, type, cu);
14129 /* Read a Fortran module. */
14132 read_module (struct die_info *die, struct dwarf2_cu *cu)
14134 struct die_info *child_die = die->child;
14137 type = read_type_die (die, cu);
14138 new_symbol (die, type, cu);
14140 while (child_die && child_die->tag)
14142 process_die (child_die, cu);
14143 child_die = sibling_die (child_die);
14147 /* Return the name of the namespace represented by DIE. Set
14148 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14151 static const char *
14152 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14154 struct die_info *current_die;
14155 const char *name = NULL;
14157 /* Loop through the extensions until we find a name. */
14159 for (current_die = die;
14160 current_die != NULL;
14161 current_die = dwarf2_extension (die, &cu))
14163 /* We don't use dwarf2_name here so that we can detect the absence
14164 of a name -> anonymous namespace. */
14165 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14168 name = DW_STRING (attr);
14173 /* Is it an anonymous namespace? */
14175 *is_anonymous = (name == NULL);
14177 name = CP_ANONYMOUS_NAMESPACE_STR;
14182 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14183 the user defined type vector. */
14185 static struct type *
14186 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14188 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14189 struct comp_unit_head *cu_header = &cu->header;
14191 struct attribute *attr_byte_size;
14192 struct attribute *attr_address_class;
14193 int byte_size, addr_class;
14194 struct type *target_type;
14196 target_type = die_type (die, cu);
14198 /* The die_type call above may have already set the type for this DIE. */
14199 type = get_die_type (die, cu);
14203 type = lookup_pointer_type (target_type);
14205 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14206 if (attr_byte_size)
14207 byte_size = DW_UNSND (attr_byte_size);
14209 byte_size = cu_header->addr_size;
14211 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14212 if (attr_address_class)
14213 addr_class = DW_UNSND (attr_address_class);
14215 addr_class = DW_ADDR_none;
14217 /* If the pointer size or address class is different than the
14218 default, create a type variant marked as such and set the
14219 length accordingly. */
14220 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14222 if (gdbarch_address_class_type_flags_p (gdbarch))
14226 type_flags = gdbarch_address_class_type_flags
14227 (gdbarch, byte_size, addr_class);
14228 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14230 type = make_type_with_address_space (type, type_flags);
14232 else if (TYPE_LENGTH (type) != byte_size)
14234 complaint (&symfile_complaints,
14235 _("invalid pointer size %d"), byte_size);
14239 /* Should we also complain about unhandled address classes? */
14243 TYPE_LENGTH (type) = byte_size;
14244 return set_die_type (die, type, cu);
14247 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14248 the user defined type vector. */
14250 static struct type *
14251 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14254 struct type *to_type;
14255 struct type *domain;
14257 to_type = die_type (die, cu);
14258 domain = die_containing_type (die, cu);
14260 /* The calls above may have already set the type for this DIE. */
14261 type = get_die_type (die, cu);
14265 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14266 type = lookup_methodptr_type (to_type);
14267 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14269 struct type *new_type = alloc_type (cu->objfile);
14271 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14272 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14273 TYPE_VARARGS (to_type));
14274 type = lookup_methodptr_type (new_type);
14277 type = lookup_memberptr_type (to_type, domain);
14279 return set_die_type (die, type, cu);
14282 /* Extract all information from a DW_TAG_reference_type DIE and add to
14283 the user defined type vector. */
14285 static struct type *
14286 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14288 struct comp_unit_head *cu_header = &cu->header;
14289 struct type *type, *target_type;
14290 struct attribute *attr;
14292 target_type = die_type (die, cu);
14294 /* The die_type call above may have already set the type for this DIE. */
14295 type = get_die_type (die, cu);
14299 type = lookup_reference_type (target_type);
14300 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14303 TYPE_LENGTH (type) = DW_UNSND (attr);
14307 TYPE_LENGTH (type) = cu_header->addr_size;
14309 return set_die_type (die, type, cu);
14312 /* Add the given cv-qualifiers to the element type of the array. GCC
14313 outputs DWARF type qualifiers that apply to an array, not the
14314 element type. But GDB relies on the array element type to carry
14315 the cv-qualifiers. This mimics section 6.7.3 of the C99
14318 static struct type *
14319 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14320 struct type *base_type, int cnst, int voltl)
14322 struct type *el_type, *inner_array;
14324 base_type = copy_type (base_type);
14325 inner_array = base_type;
14327 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14329 TYPE_TARGET_TYPE (inner_array) =
14330 copy_type (TYPE_TARGET_TYPE (inner_array));
14331 inner_array = TYPE_TARGET_TYPE (inner_array);
14334 el_type = TYPE_TARGET_TYPE (inner_array);
14335 cnst |= TYPE_CONST (el_type);
14336 voltl |= TYPE_VOLATILE (el_type);
14337 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14339 return set_die_type (die, base_type, cu);
14342 static struct type *
14343 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14345 struct type *base_type, *cv_type;
14347 base_type = die_type (die, cu);
14349 /* The die_type call above may have already set the type for this DIE. */
14350 cv_type = get_die_type (die, cu);
14354 /* In case the const qualifier is applied to an array type, the element type
14355 is so qualified, not the array type (section 6.7.3 of C99). */
14356 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14357 return add_array_cv_type (die, cu, base_type, 1, 0);
14359 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14360 return set_die_type (die, cv_type, cu);
14363 static struct type *
14364 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14366 struct type *base_type, *cv_type;
14368 base_type = die_type (die, cu);
14370 /* The die_type call above may have already set the type for this DIE. */
14371 cv_type = get_die_type (die, cu);
14375 /* In case the volatile qualifier is applied to an array type, the
14376 element type is so qualified, not the array type (section 6.7.3
14378 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14379 return add_array_cv_type (die, cu, base_type, 0, 1);
14381 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14382 return set_die_type (die, cv_type, cu);
14385 /* Handle DW_TAG_restrict_type. */
14387 static struct type *
14388 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14390 struct type *base_type, *cv_type;
14392 base_type = die_type (die, cu);
14394 /* The die_type call above may have already set the type for this DIE. */
14395 cv_type = get_die_type (die, cu);
14399 cv_type = make_restrict_type (base_type);
14400 return set_die_type (die, cv_type, cu);
14403 /* Handle DW_TAG_atomic_type. */
14405 static struct type *
14406 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14408 struct type *base_type, *cv_type;
14410 base_type = die_type (die, cu);
14412 /* The die_type call above may have already set the type for this DIE. */
14413 cv_type = get_die_type (die, cu);
14417 cv_type = make_atomic_type (base_type);
14418 return set_die_type (die, cv_type, cu);
14421 /* Extract all information from a DW_TAG_string_type DIE and add to
14422 the user defined type vector. It isn't really a user defined type,
14423 but it behaves like one, with other DIE's using an AT_user_def_type
14424 attribute to reference it. */
14426 static struct type *
14427 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14429 struct objfile *objfile = cu->objfile;
14430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14431 struct type *type, *range_type, *index_type, *char_type;
14432 struct attribute *attr;
14433 unsigned int length;
14435 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14438 length = DW_UNSND (attr);
14442 /* Check for the DW_AT_byte_size attribute. */
14443 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14446 length = DW_UNSND (attr);
14454 index_type = objfile_type (objfile)->builtin_int;
14455 range_type = create_static_range_type (NULL, index_type, 1, length);
14456 char_type = language_string_char_type (cu->language_defn, gdbarch);
14457 type = create_string_type (NULL, char_type, range_type);
14459 return set_die_type (die, type, cu);
14462 /* Assuming that DIE corresponds to a function, returns nonzero
14463 if the function is prototyped. */
14466 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14468 struct attribute *attr;
14470 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14471 if (attr && (DW_UNSND (attr) != 0))
14474 /* The DWARF standard implies that the DW_AT_prototyped attribute
14475 is only meaninful for C, but the concept also extends to other
14476 languages that allow unprototyped functions (Eg: Objective C).
14477 For all other languages, assume that functions are always
14479 if (cu->language != language_c
14480 && cu->language != language_objc
14481 && cu->language != language_opencl)
14484 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14485 prototyped and unprototyped functions; default to prototyped,
14486 since that is more common in modern code (and RealView warns
14487 about unprototyped functions). */
14488 if (producer_is_realview (cu->producer))
14494 /* Handle DIES due to C code like:
14498 int (*funcp)(int a, long l);
14502 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14504 static struct type *
14505 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14507 struct objfile *objfile = cu->objfile;
14508 struct type *type; /* Type that this function returns. */
14509 struct type *ftype; /* Function that returns above type. */
14510 struct attribute *attr;
14512 type = die_type (die, cu);
14514 /* The die_type call above may have already set the type for this DIE. */
14515 ftype = get_die_type (die, cu);
14519 ftype = lookup_function_type (type);
14521 if (prototyped_function_p (die, cu))
14522 TYPE_PROTOTYPED (ftype) = 1;
14524 /* Store the calling convention in the type if it's available in
14525 the subroutine die. Otherwise set the calling convention to
14526 the default value DW_CC_normal. */
14527 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14529 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14530 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14531 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14533 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14535 /* Record whether the function returns normally to its caller or not
14536 if the DWARF producer set that information. */
14537 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14538 if (attr && (DW_UNSND (attr) != 0))
14539 TYPE_NO_RETURN (ftype) = 1;
14541 /* We need to add the subroutine type to the die immediately so
14542 we don't infinitely recurse when dealing with parameters
14543 declared as the same subroutine type. */
14544 set_die_type (die, ftype, cu);
14546 if (die->child != NULL)
14548 struct type *void_type = objfile_type (objfile)->builtin_void;
14549 struct die_info *child_die;
14550 int nparams, iparams;
14552 /* Count the number of parameters.
14553 FIXME: GDB currently ignores vararg functions, but knows about
14554 vararg member functions. */
14556 child_die = die->child;
14557 while (child_die && child_die->tag)
14559 if (child_die->tag == DW_TAG_formal_parameter)
14561 else if (child_die->tag == DW_TAG_unspecified_parameters)
14562 TYPE_VARARGS (ftype) = 1;
14563 child_die = sibling_die (child_die);
14566 /* Allocate storage for parameters and fill them in. */
14567 TYPE_NFIELDS (ftype) = nparams;
14568 TYPE_FIELDS (ftype) = (struct field *)
14569 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14571 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14572 even if we error out during the parameters reading below. */
14573 for (iparams = 0; iparams < nparams; iparams++)
14574 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14577 child_die = die->child;
14578 while (child_die && child_die->tag)
14580 if (child_die->tag == DW_TAG_formal_parameter)
14582 struct type *arg_type;
14584 /* DWARF version 2 has no clean way to discern C++
14585 static and non-static member functions. G++ helps
14586 GDB by marking the first parameter for non-static
14587 member functions (which is the this pointer) as
14588 artificial. We pass this information to
14589 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14591 DWARF version 3 added DW_AT_object_pointer, which GCC
14592 4.5 does not yet generate. */
14593 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14595 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14598 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14600 /* GCC/43521: In java, the formal parameter
14601 "this" is sometimes not marked with DW_AT_artificial. */
14602 if (cu->language == language_java)
14604 const char *name = dwarf2_name (child_die, cu);
14606 if (name && !strcmp (name, "this"))
14607 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14610 arg_type = die_type (child_die, cu);
14612 /* RealView does not mark THIS as const, which the testsuite
14613 expects. GCC marks THIS as const in method definitions,
14614 but not in the class specifications (GCC PR 43053). */
14615 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14616 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14619 struct dwarf2_cu *arg_cu = cu;
14620 const char *name = dwarf2_name (child_die, cu);
14622 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14625 /* If the compiler emits this, use it. */
14626 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14629 else if (name && strcmp (name, "this") == 0)
14630 /* Function definitions will have the argument names. */
14632 else if (name == NULL && iparams == 0)
14633 /* Declarations may not have the names, so like
14634 elsewhere in GDB, assume an artificial first
14635 argument is "this". */
14639 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14643 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14646 child_die = sibling_die (child_die);
14653 static struct type *
14654 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14656 struct objfile *objfile = cu->objfile;
14657 const char *name = NULL;
14658 struct type *this_type, *target_type;
14660 name = dwarf2_full_name (NULL, die, cu);
14661 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14662 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14663 TYPE_NAME (this_type) = name;
14664 set_die_type (die, this_type, cu);
14665 target_type = die_type (die, cu);
14666 if (target_type != this_type)
14667 TYPE_TARGET_TYPE (this_type) = target_type;
14670 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14671 spec and cause infinite loops in GDB. */
14672 complaint (&symfile_complaints,
14673 _("Self-referential DW_TAG_typedef "
14674 "- DIE at 0x%x [in module %s]"),
14675 die->offset.sect_off, objfile_name (objfile));
14676 TYPE_TARGET_TYPE (this_type) = NULL;
14681 /* Find a representation of a given base type and install
14682 it in the TYPE field of the die. */
14684 static struct type *
14685 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14687 struct objfile *objfile = cu->objfile;
14689 struct attribute *attr;
14690 int encoding = 0, size = 0;
14692 enum type_code code = TYPE_CODE_INT;
14693 int type_flags = 0;
14694 struct type *target_type = NULL;
14696 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14699 encoding = DW_UNSND (attr);
14701 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14704 size = DW_UNSND (attr);
14706 name = dwarf2_name (die, cu);
14709 complaint (&symfile_complaints,
14710 _("DW_AT_name missing from DW_TAG_base_type"));
14715 case DW_ATE_address:
14716 /* Turn DW_ATE_address into a void * pointer. */
14717 code = TYPE_CODE_PTR;
14718 type_flags |= TYPE_FLAG_UNSIGNED;
14719 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14721 case DW_ATE_boolean:
14722 code = TYPE_CODE_BOOL;
14723 type_flags |= TYPE_FLAG_UNSIGNED;
14725 case DW_ATE_complex_float:
14726 code = TYPE_CODE_COMPLEX;
14727 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14729 case DW_ATE_decimal_float:
14730 code = TYPE_CODE_DECFLOAT;
14733 code = TYPE_CODE_FLT;
14735 case DW_ATE_signed:
14737 case DW_ATE_unsigned:
14738 type_flags |= TYPE_FLAG_UNSIGNED;
14739 if (cu->language == language_fortran
14741 && startswith (name, "character("))
14742 code = TYPE_CODE_CHAR;
14744 case DW_ATE_signed_char:
14745 if (cu->language == language_ada || cu->language == language_m2
14746 || cu->language == language_pascal
14747 || cu->language == language_fortran)
14748 code = TYPE_CODE_CHAR;
14750 case DW_ATE_unsigned_char:
14751 if (cu->language == language_ada || cu->language == language_m2
14752 || cu->language == language_pascal
14753 || cu->language == language_fortran)
14754 code = TYPE_CODE_CHAR;
14755 type_flags |= TYPE_FLAG_UNSIGNED;
14758 /* We just treat this as an integer and then recognize the
14759 type by name elsewhere. */
14763 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14764 dwarf_type_encoding_name (encoding));
14768 type = init_type (code, size, type_flags, NULL, objfile);
14769 TYPE_NAME (type) = name;
14770 TYPE_TARGET_TYPE (type) = target_type;
14772 if (name && strcmp (name, "char") == 0)
14773 TYPE_NOSIGN (type) = 1;
14775 return set_die_type (die, type, cu);
14778 /* Parse dwarf attribute if it's a block, reference or constant and put the
14779 resulting value of the attribute into struct bound_prop.
14780 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14783 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14784 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14786 struct dwarf2_property_baton *baton;
14787 struct obstack *obstack = &cu->objfile->objfile_obstack;
14789 if (attr == NULL || prop == NULL)
14792 if (attr_form_is_block (attr))
14794 baton = obstack_alloc (obstack, sizeof (*baton));
14795 baton->referenced_type = NULL;
14796 baton->locexpr.per_cu = cu->per_cu;
14797 baton->locexpr.size = DW_BLOCK (attr)->size;
14798 baton->locexpr.data = DW_BLOCK (attr)->data;
14799 prop->data.baton = baton;
14800 prop->kind = PROP_LOCEXPR;
14801 gdb_assert (prop->data.baton != NULL);
14803 else if (attr_form_is_ref (attr))
14805 struct dwarf2_cu *target_cu = cu;
14806 struct die_info *target_die;
14807 struct attribute *target_attr;
14809 target_die = follow_die_ref (die, attr, &target_cu);
14810 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14811 if (target_attr == NULL)
14812 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14814 if (target_attr == NULL)
14817 switch (target_attr->name)
14819 case DW_AT_location:
14820 if (attr_form_is_section_offset (target_attr))
14822 baton = obstack_alloc (obstack, sizeof (*baton));
14823 baton->referenced_type = die_type (target_die, target_cu);
14824 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14825 prop->data.baton = baton;
14826 prop->kind = PROP_LOCLIST;
14827 gdb_assert (prop->data.baton != NULL);
14829 else if (attr_form_is_block (target_attr))
14831 baton = obstack_alloc (obstack, sizeof (*baton));
14832 baton->referenced_type = die_type (target_die, target_cu);
14833 baton->locexpr.per_cu = cu->per_cu;
14834 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14835 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14836 prop->data.baton = baton;
14837 prop->kind = PROP_LOCEXPR;
14838 gdb_assert (prop->data.baton != NULL);
14842 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14843 "dynamic property");
14847 case DW_AT_data_member_location:
14851 if (!handle_data_member_location (target_die, target_cu,
14855 baton = obstack_alloc (obstack, sizeof (*baton));
14856 baton->referenced_type = read_type_die (target_die->parent,
14858 baton->offset_info.offset = offset;
14859 baton->offset_info.type = die_type (target_die, target_cu);
14860 prop->data.baton = baton;
14861 prop->kind = PROP_ADDR_OFFSET;
14866 else if (attr_form_is_constant (attr))
14868 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14869 prop->kind = PROP_CONST;
14873 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14874 dwarf2_name (die, cu));
14881 /* Read the given DW_AT_subrange DIE. */
14883 static struct type *
14884 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14886 struct type *base_type, *orig_base_type;
14887 struct type *range_type;
14888 struct attribute *attr;
14889 struct dynamic_prop low, high;
14890 int low_default_is_valid;
14891 int high_bound_is_count = 0;
14893 LONGEST negative_mask;
14895 orig_base_type = die_type (die, cu);
14896 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14897 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14898 creating the range type, but we use the result of check_typedef
14899 when examining properties of the type. */
14900 base_type = check_typedef (orig_base_type);
14902 /* The die_type call above may have already set the type for this DIE. */
14903 range_type = get_die_type (die, cu);
14907 low.kind = PROP_CONST;
14908 high.kind = PROP_CONST;
14909 high.data.const_val = 0;
14911 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14912 omitting DW_AT_lower_bound. */
14913 switch (cu->language)
14916 case language_cplus:
14917 low.data.const_val = 0;
14918 low_default_is_valid = 1;
14920 case language_fortran:
14921 low.data.const_val = 1;
14922 low_default_is_valid = 1;
14925 case language_java:
14926 case language_objc:
14927 low.data.const_val = 0;
14928 low_default_is_valid = (cu->header.version >= 4);
14932 case language_pascal:
14933 low.data.const_val = 1;
14934 low_default_is_valid = (cu->header.version >= 4);
14937 low.data.const_val = 0;
14938 low_default_is_valid = 0;
14942 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14944 attr_to_dynamic_prop (attr, die, cu, &low);
14945 else if (!low_default_is_valid)
14946 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14947 "- DIE at 0x%x [in module %s]"),
14948 die->offset.sect_off, objfile_name (cu->objfile));
14950 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14951 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14953 attr = dwarf2_attr (die, DW_AT_count, cu);
14954 if (attr_to_dynamic_prop (attr, die, cu, &high))
14956 /* If bounds are constant do the final calculation here. */
14957 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14958 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14960 high_bound_is_count = 1;
14964 /* Dwarf-2 specifications explicitly allows to create subrange types
14965 without specifying a base type.
14966 In that case, the base type must be set to the type of
14967 the lower bound, upper bound or count, in that order, if any of these
14968 three attributes references an object that has a type.
14969 If no base type is found, the Dwarf-2 specifications say that
14970 a signed integer type of size equal to the size of an address should
14972 For the following C code: `extern char gdb_int [];'
14973 GCC produces an empty range DIE.
14974 FIXME: muller/2010-05-28: Possible references to object for low bound,
14975 high bound or count are not yet handled by this code. */
14976 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14978 struct objfile *objfile = cu->objfile;
14979 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14980 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14981 struct type *int_type = objfile_type (objfile)->builtin_int;
14983 /* Test "int", "long int", and "long long int" objfile types,
14984 and select the first one having a size above or equal to the
14985 architecture address size. */
14986 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14987 base_type = int_type;
14990 int_type = objfile_type (objfile)->builtin_long;
14991 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14992 base_type = int_type;
14995 int_type = objfile_type (objfile)->builtin_long_long;
14996 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14997 base_type = int_type;
15002 /* Normally, the DWARF producers are expected to use a signed
15003 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15004 But this is unfortunately not always the case, as witnessed
15005 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15006 is used instead. To work around that ambiguity, we treat
15007 the bounds as signed, and thus sign-extend their values, when
15008 the base type is signed. */
15010 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15011 if (low.kind == PROP_CONST
15012 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15013 low.data.const_val |= negative_mask;
15014 if (high.kind == PROP_CONST
15015 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15016 high.data.const_val |= negative_mask;
15018 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15020 if (high_bound_is_count)
15021 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15023 /* Ada expects an empty array on no boundary attributes. */
15024 if (attr == NULL && cu->language != language_ada)
15025 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15027 name = dwarf2_name (die, cu);
15029 TYPE_NAME (range_type) = name;
15031 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15033 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15035 set_die_type (die, range_type, cu);
15037 /* set_die_type should be already done. */
15038 set_descriptive_type (range_type, die, cu);
15043 static struct type *
15044 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15048 /* For now, we only support the C meaning of an unspecified type: void. */
15050 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15051 TYPE_NAME (type) = dwarf2_name (die, cu);
15053 return set_die_type (die, type, cu);
15056 /* Read a single die and all its descendents. Set the die's sibling
15057 field to NULL; set other fields in the die correctly, and set all
15058 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15059 location of the info_ptr after reading all of those dies. PARENT
15060 is the parent of the die in question. */
15062 static struct die_info *
15063 read_die_and_children (const struct die_reader_specs *reader,
15064 const gdb_byte *info_ptr,
15065 const gdb_byte **new_info_ptr,
15066 struct die_info *parent)
15068 struct die_info *die;
15069 const gdb_byte *cur_ptr;
15072 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15075 *new_info_ptr = cur_ptr;
15078 store_in_ref_table (die, reader->cu);
15081 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15085 *new_info_ptr = cur_ptr;
15088 die->sibling = NULL;
15089 die->parent = parent;
15093 /* Read a die, all of its descendents, and all of its siblings; set
15094 all of the fields of all of the dies correctly. Arguments are as
15095 in read_die_and_children. */
15097 static struct die_info *
15098 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15099 const gdb_byte *info_ptr,
15100 const gdb_byte **new_info_ptr,
15101 struct die_info *parent)
15103 struct die_info *first_die, *last_sibling;
15104 const gdb_byte *cur_ptr;
15106 cur_ptr = info_ptr;
15107 first_die = last_sibling = NULL;
15111 struct die_info *die
15112 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15116 *new_info_ptr = cur_ptr;
15123 last_sibling->sibling = die;
15125 last_sibling = die;
15129 /* Read a die, all of its descendents, and all of its siblings; set
15130 all of the fields of all of the dies correctly. Arguments are as
15131 in read_die_and_children.
15132 This the main entry point for reading a DIE and all its children. */
15134 static struct die_info *
15135 read_die_and_siblings (const struct die_reader_specs *reader,
15136 const gdb_byte *info_ptr,
15137 const gdb_byte **new_info_ptr,
15138 struct die_info *parent)
15140 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15141 new_info_ptr, parent);
15143 if (dwarf2_die_debug)
15145 fprintf_unfiltered (gdb_stdlog,
15146 "Read die from %s@0x%x of %s:\n",
15147 get_section_name (reader->die_section),
15148 (unsigned) (info_ptr - reader->die_section->buffer),
15149 bfd_get_filename (reader->abfd));
15150 dump_die (die, dwarf2_die_debug);
15156 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15158 The caller is responsible for filling in the extra attributes
15159 and updating (*DIEP)->num_attrs.
15160 Set DIEP to point to a newly allocated die with its information,
15161 except for its child, sibling, and parent fields.
15162 Set HAS_CHILDREN to tell whether the die has children or not. */
15164 static const gdb_byte *
15165 read_full_die_1 (const struct die_reader_specs *reader,
15166 struct die_info **diep, const gdb_byte *info_ptr,
15167 int *has_children, int num_extra_attrs)
15169 unsigned int abbrev_number, bytes_read, i;
15170 sect_offset offset;
15171 struct abbrev_info *abbrev;
15172 struct die_info *die;
15173 struct dwarf2_cu *cu = reader->cu;
15174 bfd *abfd = reader->abfd;
15176 offset.sect_off = info_ptr - reader->buffer;
15177 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15178 info_ptr += bytes_read;
15179 if (!abbrev_number)
15186 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15188 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15190 bfd_get_filename (abfd));
15192 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15193 die->offset = offset;
15194 die->tag = abbrev->tag;
15195 die->abbrev = abbrev_number;
15197 /* Make the result usable.
15198 The caller needs to update num_attrs after adding the extra
15200 die->num_attrs = abbrev->num_attrs;
15202 for (i = 0; i < abbrev->num_attrs; ++i)
15203 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15207 *has_children = abbrev->has_children;
15211 /* Read a die and all its attributes.
15212 Set DIEP to point to a newly allocated die with its information,
15213 except for its child, sibling, and parent fields.
15214 Set HAS_CHILDREN to tell whether the die has children or not. */
15216 static const gdb_byte *
15217 read_full_die (const struct die_reader_specs *reader,
15218 struct die_info **diep, const gdb_byte *info_ptr,
15221 const gdb_byte *result;
15223 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15225 if (dwarf2_die_debug)
15227 fprintf_unfiltered (gdb_stdlog,
15228 "Read die from %s@0x%x of %s:\n",
15229 get_section_name (reader->die_section),
15230 (unsigned) (info_ptr - reader->die_section->buffer),
15231 bfd_get_filename (reader->abfd));
15232 dump_die (*diep, dwarf2_die_debug);
15238 /* Abbreviation tables.
15240 In DWARF version 2, the description of the debugging information is
15241 stored in a separate .debug_abbrev section. Before we read any
15242 dies from a section we read in all abbreviations and install them
15243 in a hash table. */
15245 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15247 static struct abbrev_info *
15248 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15250 struct abbrev_info *abbrev;
15252 abbrev = (struct abbrev_info *)
15253 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15254 memset (abbrev, 0, sizeof (struct abbrev_info));
15258 /* Add an abbreviation to the table. */
15261 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15262 unsigned int abbrev_number,
15263 struct abbrev_info *abbrev)
15265 unsigned int hash_number;
15267 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15268 abbrev->next = abbrev_table->abbrevs[hash_number];
15269 abbrev_table->abbrevs[hash_number] = abbrev;
15272 /* Look up an abbrev in the table.
15273 Returns NULL if the abbrev is not found. */
15275 static struct abbrev_info *
15276 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15277 unsigned int abbrev_number)
15279 unsigned int hash_number;
15280 struct abbrev_info *abbrev;
15282 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15283 abbrev = abbrev_table->abbrevs[hash_number];
15287 if (abbrev->number == abbrev_number)
15289 abbrev = abbrev->next;
15294 /* Read in an abbrev table. */
15296 static struct abbrev_table *
15297 abbrev_table_read_table (struct dwarf2_section_info *section,
15298 sect_offset offset)
15300 struct objfile *objfile = dwarf2_per_objfile->objfile;
15301 bfd *abfd = get_section_bfd_owner (section);
15302 struct abbrev_table *abbrev_table;
15303 const gdb_byte *abbrev_ptr;
15304 struct abbrev_info *cur_abbrev;
15305 unsigned int abbrev_number, bytes_read, abbrev_name;
15306 unsigned int abbrev_form;
15307 struct attr_abbrev *cur_attrs;
15308 unsigned int allocated_attrs;
15310 abbrev_table = XNEW (struct abbrev_table);
15311 abbrev_table->offset = offset;
15312 obstack_init (&abbrev_table->abbrev_obstack);
15313 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15315 * sizeof (struct abbrev_info *)));
15316 memset (abbrev_table->abbrevs, 0,
15317 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15319 dwarf2_read_section (objfile, section);
15320 abbrev_ptr = section->buffer + offset.sect_off;
15321 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15322 abbrev_ptr += bytes_read;
15324 allocated_attrs = ATTR_ALLOC_CHUNK;
15325 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15327 /* Loop until we reach an abbrev number of 0. */
15328 while (abbrev_number)
15330 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15332 /* read in abbrev header */
15333 cur_abbrev->number = abbrev_number;
15334 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15335 abbrev_ptr += bytes_read;
15336 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15339 /* now read in declarations */
15340 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15341 abbrev_ptr += bytes_read;
15342 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15343 abbrev_ptr += bytes_read;
15344 while (abbrev_name)
15346 if (cur_abbrev->num_attrs == allocated_attrs)
15348 allocated_attrs += ATTR_ALLOC_CHUNK;
15350 = xrealloc (cur_attrs, (allocated_attrs
15351 * sizeof (struct attr_abbrev)));
15354 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15355 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15356 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15357 abbrev_ptr += bytes_read;
15358 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15359 abbrev_ptr += bytes_read;
15362 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15363 (cur_abbrev->num_attrs
15364 * sizeof (struct attr_abbrev)));
15365 memcpy (cur_abbrev->attrs, cur_attrs,
15366 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15368 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15370 /* Get next abbreviation.
15371 Under Irix6 the abbreviations for a compilation unit are not
15372 always properly terminated with an abbrev number of 0.
15373 Exit loop if we encounter an abbreviation which we have
15374 already read (which means we are about to read the abbreviations
15375 for the next compile unit) or if the end of the abbreviation
15376 table is reached. */
15377 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15379 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15386 return abbrev_table;
15389 /* Free the resources held by ABBREV_TABLE. */
15392 abbrev_table_free (struct abbrev_table *abbrev_table)
15394 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15395 xfree (abbrev_table);
15398 /* Same as abbrev_table_free but as a cleanup.
15399 We pass in a pointer to the pointer to the table so that we can
15400 set the pointer to NULL when we're done. It also simplifies
15401 build_type_psymtabs_1. */
15404 abbrev_table_free_cleanup (void *table_ptr)
15406 struct abbrev_table **abbrev_table_ptr = table_ptr;
15408 if (*abbrev_table_ptr != NULL)
15409 abbrev_table_free (*abbrev_table_ptr);
15410 *abbrev_table_ptr = NULL;
15413 /* Read the abbrev table for CU from ABBREV_SECTION. */
15416 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15417 struct dwarf2_section_info *abbrev_section)
15420 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15423 /* Release the memory used by the abbrev table for a compilation unit. */
15426 dwarf2_free_abbrev_table (void *ptr_to_cu)
15428 struct dwarf2_cu *cu = ptr_to_cu;
15430 if (cu->abbrev_table != NULL)
15431 abbrev_table_free (cu->abbrev_table);
15432 /* Set this to NULL so that we SEGV if we try to read it later,
15433 and also because free_comp_unit verifies this is NULL. */
15434 cu->abbrev_table = NULL;
15437 /* Returns nonzero if TAG represents a type that we might generate a partial
15441 is_type_tag_for_partial (int tag)
15446 /* Some types that would be reasonable to generate partial symbols for,
15447 that we don't at present. */
15448 case DW_TAG_array_type:
15449 case DW_TAG_file_type:
15450 case DW_TAG_ptr_to_member_type:
15451 case DW_TAG_set_type:
15452 case DW_TAG_string_type:
15453 case DW_TAG_subroutine_type:
15455 case DW_TAG_base_type:
15456 case DW_TAG_class_type:
15457 case DW_TAG_interface_type:
15458 case DW_TAG_enumeration_type:
15459 case DW_TAG_structure_type:
15460 case DW_TAG_subrange_type:
15461 case DW_TAG_typedef:
15462 case DW_TAG_union_type:
15469 /* Load all DIEs that are interesting for partial symbols into memory. */
15471 static struct partial_die_info *
15472 load_partial_dies (const struct die_reader_specs *reader,
15473 const gdb_byte *info_ptr, int building_psymtab)
15475 struct dwarf2_cu *cu = reader->cu;
15476 struct objfile *objfile = cu->objfile;
15477 struct partial_die_info *part_die;
15478 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15479 struct abbrev_info *abbrev;
15480 unsigned int bytes_read;
15481 unsigned int load_all = 0;
15482 int nesting_level = 1;
15487 gdb_assert (cu->per_cu != NULL);
15488 if (cu->per_cu->load_all_dies)
15492 = htab_create_alloc_ex (cu->header.length / 12,
15496 &cu->comp_unit_obstack,
15497 hashtab_obstack_allocate,
15498 dummy_obstack_deallocate);
15500 part_die = obstack_alloc (&cu->comp_unit_obstack,
15501 sizeof (struct partial_die_info));
15505 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15507 /* A NULL abbrev means the end of a series of children. */
15508 if (abbrev == NULL)
15510 if (--nesting_level == 0)
15512 /* PART_DIE was probably the last thing allocated on the
15513 comp_unit_obstack, so we could call obstack_free
15514 here. We don't do that because the waste is small,
15515 and will be cleaned up when we're done with this
15516 compilation unit. This way, we're also more robust
15517 against other users of the comp_unit_obstack. */
15520 info_ptr += bytes_read;
15521 last_die = parent_die;
15522 parent_die = parent_die->die_parent;
15526 /* Check for template arguments. We never save these; if
15527 they're seen, we just mark the parent, and go on our way. */
15528 if (parent_die != NULL
15529 && cu->language == language_cplus
15530 && (abbrev->tag == DW_TAG_template_type_param
15531 || abbrev->tag == DW_TAG_template_value_param))
15533 parent_die->has_template_arguments = 1;
15537 /* We don't need a partial DIE for the template argument. */
15538 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15543 /* We only recurse into c++ subprograms looking for template arguments.
15544 Skip their other children. */
15546 && cu->language == language_cplus
15547 && parent_die != NULL
15548 && parent_die->tag == DW_TAG_subprogram)
15550 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15554 /* Check whether this DIE is interesting enough to save. Normally
15555 we would not be interested in members here, but there may be
15556 later variables referencing them via DW_AT_specification (for
15557 static members). */
15559 && !is_type_tag_for_partial (abbrev->tag)
15560 && abbrev->tag != DW_TAG_constant
15561 && abbrev->tag != DW_TAG_enumerator
15562 && abbrev->tag != DW_TAG_subprogram
15563 && abbrev->tag != DW_TAG_lexical_block
15564 && abbrev->tag != DW_TAG_variable
15565 && abbrev->tag != DW_TAG_namespace
15566 && abbrev->tag != DW_TAG_module
15567 && abbrev->tag != DW_TAG_member
15568 && abbrev->tag != DW_TAG_imported_unit
15569 && abbrev->tag != DW_TAG_imported_declaration)
15571 /* Otherwise we skip to the next sibling, if any. */
15572 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15576 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15579 /* This two-pass algorithm for processing partial symbols has a
15580 high cost in cache pressure. Thus, handle some simple cases
15581 here which cover the majority of C partial symbols. DIEs
15582 which neither have specification tags in them, nor could have
15583 specification tags elsewhere pointing at them, can simply be
15584 processed and discarded.
15586 This segment is also optional; scan_partial_symbols and
15587 add_partial_symbol will handle these DIEs if we chain
15588 them in normally. When compilers which do not emit large
15589 quantities of duplicate debug information are more common,
15590 this code can probably be removed. */
15592 /* Any complete simple types at the top level (pretty much all
15593 of them, for a language without namespaces), can be processed
15595 if (parent_die == NULL
15596 && part_die->has_specification == 0
15597 && part_die->is_declaration == 0
15598 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15599 || part_die->tag == DW_TAG_base_type
15600 || part_die->tag == DW_TAG_subrange_type))
15602 if (building_psymtab && part_die->name != NULL)
15603 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15604 VAR_DOMAIN, LOC_TYPEDEF,
15605 &objfile->static_psymbols,
15606 0, (CORE_ADDR) 0, cu->language, objfile);
15607 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15611 /* The exception for DW_TAG_typedef with has_children above is
15612 a workaround of GCC PR debug/47510. In the case of this complaint
15613 type_name_no_tag_or_error will error on such types later.
15615 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15616 it could not find the child DIEs referenced later, this is checked
15617 above. In correct DWARF DW_TAG_typedef should have no children. */
15619 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15620 complaint (&symfile_complaints,
15621 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15622 "- DIE at 0x%x [in module %s]"),
15623 part_die->offset.sect_off, objfile_name (objfile));
15625 /* If we're at the second level, and we're an enumerator, and
15626 our parent has no specification (meaning possibly lives in a
15627 namespace elsewhere), then we can add the partial symbol now
15628 instead of queueing it. */
15629 if (part_die->tag == DW_TAG_enumerator
15630 && parent_die != NULL
15631 && parent_die->die_parent == NULL
15632 && parent_die->tag == DW_TAG_enumeration_type
15633 && parent_die->has_specification == 0)
15635 if (part_die->name == NULL)
15636 complaint (&symfile_complaints,
15637 _("malformed enumerator DIE ignored"));
15638 else if (building_psymtab)
15639 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15640 VAR_DOMAIN, LOC_CONST,
15641 (cu->language == language_cplus
15642 || cu->language == language_java)
15643 ? &objfile->global_psymbols
15644 : &objfile->static_psymbols,
15645 0, (CORE_ADDR) 0, cu->language, objfile);
15647 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15651 /* We'll save this DIE so link it in. */
15652 part_die->die_parent = parent_die;
15653 part_die->die_sibling = NULL;
15654 part_die->die_child = NULL;
15656 if (last_die && last_die == parent_die)
15657 last_die->die_child = part_die;
15659 last_die->die_sibling = part_die;
15661 last_die = part_die;
15663 if (first_die == NULL)
15664 first_die = part_die;
15666 /* Maybe add the DIE to the hash table. Not all DIEs that we
15667 find interesting need to be in the hash table, because we
15668 also have the parent/sibling/child chains; only those that we
15669 might refer to by offset later during partial symbol reading.
15671 For now this means things that might have be the target of a
15672 DW_AT_specification, DW_AT_abstract_origin, or
15673 DW_AT_extension. DW_AT_extension will refer only to
15674 namespaces; DW_AT_abstract_origin refers to functions (and
15675 many things under the function DIE, but we do not recurse
15676 into function DIEs during partial symbol reading) and
15677 possibly variables as well; DW_AT_specification refers to
15678 declarations. Declarations ought to have the DW_AT_declaration
15679 flag. It happens that GCC forgets to put it in sometimes, but
15680 only for functions, not for types.
15682 Adding more things than necessary to the hash table is harmless
15683 except for the performance cost. Adding too few will result in
15684 wasted time in find_partial_die, when we reread the compilation
15685 unit with load_all_dies set. */
15688 || abbrev->tag == DW_TAG_constant
15689 || abbrev->tag == DW_TAG_subprogram
15690 || abbrev->tag == DW_TAG_variable
15691 || abbrev->tag == DW_TAG_namespace
15692 || part_die->is_declaration)
15696 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15697 part_die->offset.sect_off, INSERT);
15701 part_die = obstack_alloc (&cu->comp_unit_obstack,
15702 sizeof (struct partial_die_info));
15704 /* For some DIEs we want to follow their children (if any). For C
15705 we have no reason to follow the children of structures; for other
15706 languages we have to, so that we can get at method physnames
15707 to infer fully qualified class names, for DW_AT_specification,
15708 and for C++ template arguments. For C++, we also look one level
15709 inside functions to find template arguments (if the name of the
15710 function does not already contain the template arguments).
15712 For Ada, we need to scan the children of subprograms and lexical
15713 blocks as well because Ada allows the definition of nested
15714 entities that could be interesting for the debugger, such as
15715 nested subprograms for instance. */
15716 if (last_die->has_children
15718 || last_die->tag == DW_TAG_namespace
15719 || last_die->tag == DW_TAG_module
15720 || last_die->tag == DW_TAG_enumeration_type
15721 || (cu->language == language_cplus
15722 && last_die->tag == DW_TAG_subprogram
15723 && (last_die->name == NULL
15724 || strchr (last_die->name, '<') == NULL))
15725 || (cu->language != language_c
15726 && (last_die->tag == DW_TAG_class_type
15727 || last_die->tag == DW_TAG_interface_type
15728 || last_die->tag == DW_TAG_structure_type
15729 || last_die->tag == DW_TAG_union_type))
15730 || (cu->language == language_ada
15731 && (last_die->tag == DW_TAG_subprogram
15732 || last_die->tag == DW_TAG_lexical_block))))
15735 parent_die = last_die;
15739 /* Otherwise we skip to the next sibling, if any. */
15740 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15742 /* Back to the top, do it again. */
15746 /* Read a minimal amount of information into the minimal die structure. */
15748 static const gdb_byte *
15749 read_partial_die (const struct die_reader_specs *reader,
15750 struct partial_die_info *part_die,
15751 struct abbrev_info *abbrev, unsigned int abbrev_len,
15752 const gdb_byte *info_ptr)
15754 struct dwarf2_cu *cu = reader->cu;
15755 struct objfile *objfile = cu->objfile;
15756 const gdb_byte *buffer = reader->buffer;
15758 struct attribute attr;
15759 int has_low_pc_attr = 0;
15760 int has_high_pc_attr = 0;
15761 int high_pc_relative = 0;
15763 memset (part_die, 0, sizeof (struct partial_die_info));
15765 part_die->offset.sect_off = info_ptr - buffer;
15767 info_ptr += abbrev_len;
15769 if (abbrev == NULL)
15772 part_die->tag = abbrev->tag;
15773 part_die->has_children = abbrev->has_children;
15775 for (i = 0; i < abbrev->num_attrs; ++i)
15777 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15779 /* Store the data if it is of an attribute we want to keep in a
15780 partial symbol table. */
15784 switch (part_die->tag)
15786 case DW_TAG_compile_unit:
15787 case DW_TAG_partial_unit:
15788 case DW_TAG_type_unit:
15789 /* Compilation units have a DW_AT_name that is a filename, not
15790 a source language identifier. */
15791 case DW_TAG_enumeration_type:
15792 case DW_TAG_enumerator:
15793 /* These tags always have simple identifiers already; no need
15794 to canonicalize them. */
15795 part_die->name = DW_STRING (&attr);
15799 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15800 &objfile->per_bfd->storage_obstack);
15804 case DW_AT_linkage_name:
15805 case DW_AT_MIPS_linkage_name:
15806 /* Note that both forms of linkage name might appear. We
15807 assume they will be the same, and we only store the last
15809 if (cu->language == language_ada)
15810 part_die->name = DW_STRING (&attr);
15811 part_die->linkage_name = DW_STRING (&attr);
15814 has_low_pc_attr = 1;
15815 part_die->lowpc = attr_value_as_address (&attr);
15817 case DW_AT_high_pc:
15818 has_high_pc_attr = 1;
15819 part_die->highpc = attr_value_as_address (&attr);
15820 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15821 high_pc_relative = 1;
15823 case DW_AT_location:
15824 /* Support the .debug_loc offsets. */
15825 if (attr_form_is_block (&attr))
15827 part_die->d.locdesc = DW_BLOCK (&attr);
15829 else if (attr_form_is_section_offset (&attr))
15831 dwarf2_complex_location_expr_complaint ();
15835 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15836 "partial symbol information");
15839 case DW_AT_external:
15840 part_die->is_external = DW_UNSND (&attr);
15842 case DW_AT_declaration:
15843 part_die->is_declaration = DW_UNSND (&attr);
15846 part_die->has_type = 1;
15848 case DW_AT_abstract_origin:
15849 case DW_AT_specification:
15850 case DW_AT_extension:
15851 part_die->has_specification = 1;
15852 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15853 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15854 || cu->per_cu->is_dwz);
15856 case DW_AT_sibling:
15857 /* Ignore absolute siblings, they might point outside of
15858 the current compile unit. */
15859 if (attr.form == DW_FORM_ref_addr)
15860 complaint (&symfile_complaints,
15861 _("ignoring absolute DW_AT_sibling"));
15864 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15865 const gdb_byte *sibling_ptr = buffer + off;
15867 if (sibling_ptr < info_ptr)
15868 complaint (&symfile_complaints,
15869 _("DW_AT_sibling points backwards"));
15870 else if (sibling_ptr > reader->buffer_end)
15871 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15873 part_die->sibling = sibling_ptr;
15876 case DW_AT_byte_size:
15877 part_die->has_byte_size = 1;
15879 case DW_AT_const_value:
15880 part_die->has_const_value = 1;
15882 case DW_AT_calling_convention:
15883 /* DWARF doesn't provide a way to identify a program's source-level
15884 entry point. DW_AT_calling_convention attributes are only meant
15885 to describe functions' calling conventions.
15887 However, because it's a necessary piece of information in
15888 Fortran, and because DW_CC_program is the only piece of debugging
15889 information whose definition refers to a 'main program' at all,
15890 several compilers have begun marking Fortran main programs with
15891 DW_CC_program --- even when those functions use the standard
15892 calling conventions.
15894 So until DWARF specifies a way to provide this information and
15895 compilers pick up the new representation, we'll support this
15897 if (DW_UNSND (&attr) == DW_CC_program
15898 && cu->language == language_fortran)
15899 set_objfile_main_name (objfile, part_die->name, language_fortran);
15902 if (DW_UNSND (&attr) == DW_INL_inlined
15903 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15904 part_die->may_be_inlined = 1;
15908 if (part_die->tag == DW_TAG_imported_unit)
15910 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15911 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15912 || cu->per_cu->is_dwz);
15921 if (high_pc_relative)
15922 part_die->highpc += part_die->lowpc;
15924 if (has_low_pc_attr && has_high_pc_attr)
15926 /* When using the GNU linker, .gnu.linkonce. sections are used to
15927 eliminate duplicate copies of functions and vtables and such.
15928 The linker will arbitrarily choose one and discard the others.
15929 The AT_*_pc values for such functions refer to local labels in
15930 these sections. If the section from that file was discarded, the
15931 labels are not in the output, so the relocs get a value of 0.
15932 If this is a discarded function, mark the pc bounds as invalid,
15933 so that GDB will ignore it. */
15934 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15938 complaint (&symfile_complaints,
15939 _("DW_AT_low_pc %s is zero "
15940 "for DIE at 0x%x [in module %s]"),
15941 paddress (gdbarch, part_die->lowpc),
15942 part_die->offset.sect_off, objfile_name (objfile));
15944 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15945 else if (part_die->lowpc >= part_die->highpc)
15947 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15949 complaint (&symfile_complaints,
15950 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15951 "for DIE at 0x%x [in module %s]"),
15952 paddress (gdbarch, part_die->lowpc),
15953 paddress (gdbarch, part_die->highpc),
15954 part_die->offset.sect_off, objfile_name (objfile));
15957 part_die->has_pc_info = 1;
15963 /* Find a cached partial DIE at OFFSET in CU. */
15965 static struct partial_die_info *
15966 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15968 struct partial_die_info *lookup_die = NULL;
15969 struct partial_die_info part_die;
15971 part_die.offset = offset;
15972 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15978 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15979 except in the case of .debug_types DIEs which do not reference
15980 outside their CU (they do however referencing other types via
15981 DW_FORM_ref_sig8). */
15983 static struct partial_die_info *
15984 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15986 struct objfile *objfile = cu->objfile;
15987 struct dwarf2_per_cu_data *per_cu = NULL;
15988 struct partial_die_info *pd = NULL;
15990 if (offset_in_dwz == cu->per_cu->is_dwz
15991 && offset_in_cu_p (&cu->header, offset))
15993 pd = find_partial_die_in_comp_unit (offset, cu);
15996 /* We missed recording what we needed.
15997 Load all dies and try again. */
15998 per_cu = cu->per_cu;
16002 /* TUs don't reference other CUs/TUs (except via type signatures). */
16003 if (cu->per_cu->is_debug_types)
16005 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16006 " external reference to offset 0x%lx [in module %s].\n"),
16007 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16008 bfd_get_filename (objfile->obfd));
16010 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16013 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16014 load_partial_comp_unit (per_cu);
16016 per_cu->cu->last_used = 0;
16017 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16020 /* If we didn't find it, and not all dies have been loaded,
16021 load them all and try again. */
16023 if (pd == NULL && per_cu->load_all_dies == 0)
16025 per_cu->load_all_dies = 1;
16027 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16028 THIS_CU->cu may already be in use. So we can't just free it and
16029 replace its DIEs with the ones we read in. Instead, we leave those
16030 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16031 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16033 load_partial_comp_unit (per_cu);
16035 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16039 internal_error (__FILE__, __LINE__,
16040 _("could not find partial DIE 0x%x "
16041 "in cache [from module %s]\n"),
16042 offset.sect_off, bfd_get_filename (objfile->obfd));
16046 /* See if we can figure out if the class lives in a namespace. We do
16047 this by looking for a member function; its demangled name will
16048 contain namespace info, if there is any. */
16051 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16052 struct dwarf2_cu *cu)
16054 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16055 what template types look like, because the demangler
16056 frequently doesn't give the same name as the debug info. We
16057 could fix this by only using the demangled name to get the
16058 prefix (but see comment in read_structure_type). */
16060 struct partial_die_info *real_pdi;
16061 struct partial_die_info *child_pdi;
16063 /* If this DIE (this DIE's specification, if any) has a parent, then
16064 we should not do this. We'll prepend the parent's fully qualified
16065 name when we create the partial symbol. */
16067 real_pdi = struct_pdi;
16068 while (real_pdi->has_specification)
16069 real_pdi = find_partial_die (real_pdi->spec_offset,
16070 real_pdi->spec_is_dwz, cu);
16072 if (real_pdi->die_parent != NULL)
16075 for (child_pdi = struct_pdi->die_child;
16077 child_pdi = child_pdi->die_sibling)
16079 if (child_pdi->tag == DW_TAG_subprogram
16080 && child_pdi->linkage_name != NULL)
16082 char *actual_class_name
16083 = language_class_name_from_physname (cu->language_defn,
16084 child_pdi->linkage_name);
16085 if (actual_class_name != NULL)
16088 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16090 strlen (actual_class_name));
16091 xfree (actual_class_name);
16098 /* Adjust PART_DIE before generating a symbol for it. This function
16099 may set the is_external flag or change the DIE's name. */
16102 fixup_partial_die (struct partial_die_info *part_die,
16103 struct dwarf2_cu *cu)
16105 /* Once we've fixed up a die, there's no point in doing so again.
16106 This also avoids a memory leak if we were to call
16107 guess_partial_die_structure_name multiple times. */
16108 if (part_die->fixup_called)
16111 /* If we found a reference attribute and the DIE has no name, try
16112 to find a name in the referred to DIE. */
16114 if (part_die->name == NULL && part_die->has_specification)
16116 struct partial_die_info *spec_die;
16118 spec_die = find_partial_die (part_die->spec_offset,
16119 part_die->spec_is_dwz, cu);
16121 fixup_partial_die (spec_die, cu);
16123 if (spec_die->name)
16125 part_die->name = spec_die->name;
16127 /* Copy DW_AT_external attribute if it is set. */
16128 if (spec_die->is_external)
16129 part_die->is_external = spec_die->is_external;
16133 /* Set default names for some unnamed DIEs. */
16135 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16136 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16138 /* If there is no parent die to provide a namespace, and there are
16139 children, see if we can determine the namespace from their linkage
16141 if (cu->language == language_cplus
16142 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16143 && part_die->die_parent == NULL
16144 && part_die->has_children
16145 && (part_die->tag == DW_TAG_class_type
16146 || part_die->tag == DW_TAG_structure_type
16147 || part_die->tag == DW_TAG_union_type))
16148 guess_partial_die_structure_name (part_die, cu);
16150 /* GCC might emit a nameless struct or union that has a linkage
16151 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16152 if (part_die->name == NULL
16153 && (part_die->tag == DW_TAG_class_type
16154 || part_die->tag == DW_TAG_interface_type
16155 || part_die->tag == DW_TAG_structure_type
16156 || part_die->tag == DW_TAG_union_type)
16157 && part_die->linkage_name != NULL)
16161 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16166 /* Strip any leading namespaces/classes, keep only the base name.
16167 DW_AT_name for named DIEs does not contain the prefixes. */
16168 base = strrchr (demangled, ':');
16169 if (base && base > demangled && base[-1] == ':')
16175 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16176 base, strlen (base));
16181 part_die->fixup_called = 1;
16184 /* Read an attribute value described by an attribute form. */
16186 static const gdb_byte *
16187 read_attribute_value (const struct die_reader_specs *reader,
16188 struct attribute *attr, unsigned form,
16189 const gdb_byte *info_ptr)
16191 struct dwarf2_cu *cu = reader->cu;
16192 struct objfile *objfile = cu->objfile;
16193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16194 bfd *abfd = reader->abfd;
16195 struct comp_unit_head *cu_header = &cu->header;
16196 unsigned int bytes_read;
16197 struct dwarf_block *blk;
16202 case DW_FORM_ref_addr:
16203 if (cu->header.version == 2)
16204 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16206 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16207 &cu->header, &bytes_read);
16208 info_ptr += bytes_read;
16210 case DW_FORM_GNU_ref_alt:
16211 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16212 info_ptr += bytes_read;
16215 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16216 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16217 info_ptr += bytes_read;
16219 case DW_FORM_block2:
16220 blk = dwarf_alloc_block (cu);
16221 blk->size = read_2_bytes (abfd, info_ptr);
16223 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16224 info_ptr += blk->size;
16225 DW_BLOCK (attr) = blk;
16227 case DW_FORM_block4:
16228 blk = dwarf_alloc_block (cu);
16229 blk->size = read_4_bytes (abfd, info_ptr);
16231 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16232 info_ptr += blk->size;
16233 DW_BLOCK (attr) = blk;
16235 case DW_FORM_data2:
16236 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16239 case DW_FORM_data4:
16240 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16243 case DW_FORM_data8:
16244 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16247 case DW_FORM_sec_offset:
16248 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16249 info_ptr += bytes_read;
16251 case DW_FORM_string:
16252 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16253 DW_STRING_IS_CANONICAL (attr) = 0;
16254 info_ptr += bytes_read;
16257 if (!cu->per_cu->is_dwz)
16259 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16261 DW_STRING_IS_CANONICAL (attr) = 0;
16262 info_ptr += bytes_read;
16266 case DW_FORM_GNU_strp_alt:
16268 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16269 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16272 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16273 DW_STRING_IS_CANONICAL (attr) = 0;
16274 info_ptr += bytes_read;
16277 case DW_FORM_exprloc:
16278 case DW_FORM_block:
16279 blk = dwarf_alloc_block (cu);
16280 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16281 info_ptr += bytes_read;
16282 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16283 info_ptr += blk->size;
16284 DW_BLOCK (attr) = blk;
16286 case DW_FORM_block1:
16287 blk = dwarf_alloc_block (cu);
16288 blk->size = read_1_byte (abfd, info_ptr);
16290 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16291 info_ptr += blk->size;
16292 DW_BLOCK (attr) = blk;
16294 case DW_FORM_data1:
16295 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16299 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16302 case DW_FORM_flag_present:
16303 DW_UNSND (attr) = 1;
16305 case DW_FORM_sdata:
16306 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16307 info_ptr += bytes_read;
16309 case DW_FORM_udata:
16310 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16311 info_ptr += bytes_read;
16314 DW_UNSND (attr) = (cu->header.offset.sect_off
16315 + read_1_byte (abfd, info_ptr));
16319 DW_UNSND (attr) = (cu->header.offset.sect_off
16320 + read_2_bytes (abfd, info_ptr));
16324 DW_UNSND (attr) = (cu->header.offset.sect_off
16325 + read_4_bytes (abfd, info_ptr));
16329 DW_UNSND (attr) = (cu->header.offset.sect_off
16330 + read_8_bytes (abfd, info_ptr));
16333 case DW_FORM_ref_sig8:
16334 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16337 case DW_FORM_ref_udata:
16338 DW_UNSND (attr) = (cu->header.offset.sect_off
16339 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16340 info_ptr += bytes_read;
16342 case DW_FORM_indirect:
16343 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16344 info_ptr += bytes_read;
16345 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16347 case DW_FORM_GNU_addr_index:
16348 if (reader->dwo_file == NULL)
16350 /* For now flag a hard error.
16351 Later we can turn this into a complaint. */
16352 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16353 dwarf_form_name (form),
16354 bfd_get_filename (abfd));
16356 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16357 info_ptr += bytes_read;
16359 case DW_FORM_GNU_str_index:
16360 if (reader->dwo_file == NULL)
16362 /* For now flag a hard error.
16363 Later we can turn this into a complaint if warranted. */
16364 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16365 dwarf_form_name (form),
16366 bfd_get_filename (abfd));
16369 ULONGEST str_index =
16370 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16372 DW_STRING (attr) = read_str_index (reader, str_index);
16373 DW_STRING_IS_CANONICAL (attr) = 0;
16374 info_ptr += bytes_read;
16378 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16379 dwarf_form_name (form),
16380 bfd_get_filename (abfd));
16384 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16385 attr->form = DW_FORM_GNU_ref_alt;
16387 /* We have seen instances where the compiler tried to emit a byte
16388 size attribute of -1 which ended up being encoded as an unsigned
16389 0xffffffff. Although 0xffffffff is technically a valid size value,
16390 an object of this size seems pretty unlikely so we can relatively
16391 safely treat these cases as if the size attribute was invalid and
16392 treat them as zero by default. */
16393 if (attr->name == DW_AT_byte_size
16394 && form == DW_FORM_data4
16395 && DW_UNSND (attr) >= 0xffffffff)
16398 (&symfile_complaints,
16399 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16400 hex_string (DW_UNSND (attr)));
16401 DW_UNSND (attr) = 0;
16407 /* Read an attribute described by an abbreviated attribute. */
16409 static const gdb_byte *
16410 read_attribute (const struct die_reader_specs *reader,
16411 struct attribute *attr, struct attr_abbrev *abbrev,
16412 const gdb_byte *info_ptr)
16414 attr->name = abbrev->name;
16415 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16418 /* Read dwarf information from a buffer. */
16420 static unsigned int
16421 read_1_byte (bfd *abfd, const gdb_byte *buf)
16423 return bfd_get_8 (abfd, buf);
16427 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16429 return bfd_get_signed_8 (abfd, buf);
16432 static unsigned int
16433 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16435 return bfd_get_16 (abfd, buf);
16439 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16441 return bfd_get_signed_16 (abfd, buf);
16444 static unsigned int
16445 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16447 return bfd_get_32 (abfd, buf);
16451 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16453 return bfd_get_signed_32 (abfd, buf);
16457 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16459 return bfd_get_64 (abfd, buf);
16463 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16464 unsigned int *bytes_read)
16466 struct comp_unit_head *cu_header = &cu->header;
16467 CORE_ADDR retval = 0;
16469 if (cu_header->signed_addr_p)
16471 switch (cu_header->addr_size)
16474 retval = bfd_get_signed_16 (abfd, buf);
16477 retval = bfd_get_signed_32 (abfd, buf);
16480 retval = bfd_get_signed_64 (abfd, buf);
16483 internal_error (__FILE__, __LINE__,
16484 _("read_address: bad switch, signed [in module %s]"),
16485 bfd_get_filename (abfd));
16490 switch (cu_header->addr_size)
16493 retval = bfd_get_16 (abfd, buf);
16496 retval = bfd_get_32 (abfd, buf);
16499 retval = bfd_get_64 (abfd, buf);
16502 internal_error (__FILE__, __LINE__,
16503 _("read_address: bad switch, "
16504 "unsigned [in module %s]"),
16505 bfd_get_filename (abfd));
16509 *bytes_read = cu_header->addr_size;
16513 /* Read the initial length from a section. The (draft) DWARF 3
16514 specification allows the initial length to take up either 4 bytes
16515 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16516 bytes describe the length and all offsets will be 8 bytes in length
16519 An older, non-standard 64-bit format is also handled by this
16520 function. The older format in question stores the initial length
16521 as an 8-byte quantity without an escape value. Lengths greater
16522 than 2^32 aren't very common which means that the initial 4 bytes
16523 is almost always zero. Since a length value of zero doesn't make
16524 sense for the 32-bit format, this initial zero can be considered to
16525 be an escape value which indicates the presence of the older 64-bit
16526 format. As written, the code can't detect (old format) lengths
16527 greater than 4GB. If it becomes necessary to handle lengths
16528 somewhat larger than 4GB, we could allow other small values (such
16529 as the non-sensical values of 1, 2, and 3) to also be used as
16530 escape values indicating the presence of the old format.
16532 The value returned via bytes_read should be used to increment the
16533 relevant pointer after calling read_initial_length().
16535 [ Note: read_initial_length() and read_offset() are based on the
16536 document entitled "DWARF Debugging Information Format", revision
16537 3, draft 8, dated November 19, 2001. This document was obtained
16540 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16542 This document is only a draft and is subject to change. (So beware.)
16544 Details regarding the older, non-standard 64-bit format were
16545 determined empirically by examining 64-bit ELF files produced by
16546 the SGI toolchain on an IRIX 6.5 machine.
16548 - Kevin, July 16, 2002
16552 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16554 LONGEST length = bfd_get_32 (abfd, buf);
16556 if (length == 0xffffffff)
16558 length = bfd_get_64 (abfd, buf + 4);
16561 else if (length == 0)
16563 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16564 length = bfd_get_64 (abfd, buf);
16575 /* Cover function for read_initial_length.
16576 Returns the length of the object at BUF, and stores the size of the
16577 initial length in *BYTES_READ and stores the size that offsets will be in
16579 If the initial length size is not equivalent to that specified in
16580 CU_HEADER then issue a complaint.
16581 This is useful when reading non-comp-unit headers. */
16584 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16585 const struct comp_unit_head *cu_header,
16586 unsigned int *bytes_read,
16587 unsigned int *offset_size)
16589 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16591 gdb_assert (cu_header->initial_length_size == 4
16592 || cu_header->initial_length_size == 8
16593 || cu_header->initial_length_size == 12);
16595 if (cu_header->initial_length_size != *bytes_read)
16596 complaint (&symfile_complaints,
16597 _("intermixed 32-bit and 64-bit DWARF sections"));
16599 *offset_size = (*bytes_read == 4) ? 4 : 8;
16603 /* Read an offset from the data stream. The size of the offset is
16604 given by cu_header->offset_size. */
16607 read_offset (bfd *abfd, const gdb_byte *buf,
16608 const struct comp_unit_head *cu_header,
16609 unsigned int *bytes_read)
16611 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16613 *bytes_read = cu_header->offset_size;
16617 /* Read an offset from the data stream. */
16620 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16622 LONGEST retval = 0;
16624 switch (offset_size)
16627 retval = bfd_get_32 (abfd, buf);
16630 retval = bfd_get_64 (abfd, buf);
16633 internal_error (__FILE__, __LINE__,
16634 _("read_offset_1: bad switch [in module %s]"),
16635 bfd_get_filename (abfd));
16641 static const gdb_byte *
16642 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16644 /* If the size of a host char is 8 bits, we can return a pointer
16645 to the buffer, otherwise we have to copy the data to a buffer
16646 allocated on the temporary obstack. */
16647 gdb_assert (HOST_CHAR_BIT == 8);
16651 static const char *
16652 read_direct_string (bfd *abfd, const gdb_byte *buf,
16653 unsigned int *bytes_read_ptr)
16655 /* If the size of a host char is 8 bits, we can return a pointer
16656 to the string, otherwise we have to copy the string to a buffer
16657 allocated on the temporary obstack. */
16658 gdb_assert (HOST_CHAR_BIT == 8);
16661 *bytes_read_ptr = 1;
16664 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16665 return (const char *) buf;
16668 static const char *
16669 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16671 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16672 if (dwarf2_per_objfile->str.buffer == NULL)
16673 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16674 bfd_get_filename (abfd));
16675 if (str_offset >= dwarf2_per_objfile->str.size)
16676 error (_("DW_FORM_strp pointing outside of "
16677 ".debug_str section [in module %s]"),
16678 bfd_get_filename (abfd));
16679 gdb_assert (HOST_CHAR_BIT == 8);
16680 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16682 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16685 /* Read a string at offset STR_OFFSET in the .debug_str section from
16686 the .dwz file DWZ. Throw an error if the offset is too large. If
16687 the string consists of a single NUL byte, return NULL; otherwise
16688 return a pointer to the string. */
16690 static const char *
16691 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16693 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16695 if (dwz->str.buffer == NULL)
16696 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16697 "section [in module %s]"),
16698 bfd_get_filename (dwz->dwz_bfd));
16699 if (str_offset >= dwz->str.size)
16700 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16701 ".debug_str section [in module %s]"),
16702 bfd_get_filename (dwz->dwz_bfd));
16703 gdb_assert (HOST_CHAR_BIT == 8);
16704 if (dwz->str.buffer[str_offset] == '\0')
16706 return (const char *) (dwz->str.buffer + str_offset);
16709 static const char *
16710 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16711 const struct comp_unit_head *cu_header,
16712 unsigned int *bytes_read_ptr)
16714 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16716 return read_indirect_string_at_offset (abfd, str_offset);
16720 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16721 unsigned int *bytes_read_ptr)
16724 unsigned int num_read;
16726 unsigned char byte;
16734 byte = bfd_get_8 (abfd, buf);
16737 result |= ((ULONGEST) (byte & 127) << shift);
16738 if ((byte & 128) == 0)
16744 *bytes_read_ptr = num_read;
16749 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16750 unsigned int *bytes_read_ptr)
16753 int i, shift, num_read;
16754 unsigned char byte;
16762 byte = bfd_get_8 (abfd, buf);
16765 result |= ((LONGEST) (byte & 127) << shift);
16767 if ((byte & 128) == 0)
16772 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16773 result |= -(((LONGEST) 1) << shift);
16774 *bytes_read_ptr = num_read;
16778 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16779 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16780 ADDR_SIZE is the size of addresses from the CU header. */
16783 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16785 struct objfile *objfile = dwarf2_per_objfile->objfile;
16786 bfd *abfd = objfile->obfd;
16787 const gdb_byte *info_ptr;
16789 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16790 if (dwarf2_per_objfile->addr.buffer == NULL)
16791 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16792 objfile_name (objfile));
16793 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16794 error (_("DW_FORM_addr_index pointing outside of "
16795 ".debug_addr section [in module %s]"),
16796 objfile_name (objfile));
16797 info_ptr = (dwarf2_per_objfile->addr.buffer
16798 + addr_base + addr_index * addr_size);
16799 if (addr_size == 4)
16800 return bfd_get_32 (abfd, info_ptr);
16802 return bfd_get_64 (abfd, info_ptr);
16805 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16808 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16810 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16813 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16816 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16817 unsigned int *bytes_read)
16819 bfd *abfd = cu->objfile->obfd;
16820 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16822 return read_addr_index (cu, addr_index);
16825 /* Data structure to pass results from dwarf2_read_addr_index_reader
16826 back to dwarf2_read_addr_index. */
16828 struct dwarf2_read_addr_index_data
16830 ULONGEST addr_base;
16834 /* die_reader_func for dwarf2_read_addr_index. */
16837 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16838 const gdb_byte *info_ptr,
16839 struct die_info *comp_unit_die,
16843 struct dwarf2_cu *cu = reader->cu;
16844 struct dwarf2_read_addr_index_data *aidata =
16845 (struct dwarf2_read_addr_index_data *) data;
16847 aidata->addr_base = cu->addr_base;
16848 aidata->addr_size = cu->header.addr_size;
16851 /* Given an index in .debug_addr, fetch the value.
16852 NOTE: This can be called during dwarf expression evaluation,
16853 long after the debug information has been read, and thus per_cu->cu
16854 may no longer exist. */
16857 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16858 unsigned int addr_index)
16860 struct objfile *objfile = per_cu->objfile;
16861 struct dwarf2_cu *cu = per_cu->cu;
16862 ULONGEST addr_base;
16865 /* This is intended to be called from outside this file. */
16866 dw2_setup (objfile);
16868 /* We need addr_base and addr_size.
16869 If we don't have PER_CU->cu, we have to get it.
16870 Nasty, but the alternative is storing the needed info in PER_CU,
16871 which at this point doesn't seem justified: it's not clear how frequently
16872 it would get used and it would increase the size of every PER_CU.
16873 Entry points like dwarf2_per_cu_addr_size do a similar thing
16874 so we're not in uncharted territory here.
16875 Alas we need to be a bit more complicated as addr_base is contained
16878 We don't need to read the entire CU(/TU).
16879 We just need the header and top level die.
16881 IWBN to use the aging mechanism to let us lazily later discard the CU.
16882 For now we skip this optimization. */
16886 addr_base = cu->addr_base;
16887 addr_size = cu->header.addr_size;
16891 struct dwarf2_read_addr_index_data aidata;
16893 /* Note: We can't use init_cutu_and_read_dies_simple here,
16894 we need addr_base. */
16895 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16896 dwarf2_read_addr_index_reader, &aidata);
16897 addr_base = aidata.addr_base;
16898 addr_size = aidata.addr_size;
16901 return read_addr_index_1 (addr_index, addr_base, addr_size);
16904 /* Given a DW_FORM_GNU_str_index, fetch the string.
16905 This is only used by the Fission support. */
16907 static const char *
16908 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16910 struct objfile *objfile = dwarf2_per_objfile->objfile;
16911 const char *objf_name = objfile_name (objfile);
16912 bfd *abfd = objfile->obfd;
16913 struct dwarf2_cu *cu = reader->cu;
16914 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16915 struct dwarf2_section_info *str_offsets_section =
16916 &reader->dwo_file->sections.str_offsets;
16917 const gdb_byte *info_ptr;
16918 ULONGEST str_offset;
16919 static const char form_name[] = "DW_FORM_GNU_str_index";
16921 dwarf2_read_section (objfile, str_section);
16922 dwarf2_read_section (objfile, str_offsets_section);
16923 if (str_section->buffer == NULL)
16924 error (_("%s used without .debug_str.dwo section"
16925 " in CU at offset 0x%lx [in module %s]"),
16926 form_name, (long) cu->header.offset.sect_off, objf_name);
16927 if (str_offsets_section->buffer == NULL)
16928 error (_("%s used without .debug_str_offsets.dwo section"
16929 " in CU at offset 0x%lx [in module %s]"),
16930 form_name, (long) cu->header.offset.sect_off, objf_name);
16931 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16932 error (_("%s pointing outside of .debug_str_offsets.dwo"
16933 " section in CU at offset 0x%lx [in module %s]"),
16934 form_name, (long) cu->header.offset.sect_off, objf_name);
16935 info_ptr = (str_offsets_section->buffer
16936 + str_index * cu->header.offset_size);
16937 if (cu->header.offset_size == 4)
16938 str_offset = bfd_get_32 (abfd, info_ptr);
16940 str_offset = bfd_get_64 (abfd, info_ptr);
16941 if (str_offset >= str_section->size)
16942 error (_("Offset from %s pointing outside of"
16943 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16944 form_name, (long) cu->header.offset.sect_off, objf_name);
16945 return (const char *) (str_section->buffer + str_offset);
16948 /* Return the length of an LEB128 number in BUF. */
16951 leb128_size (const gdb_byte *buf)
16953 const gdb_byte *begin = buf;
16959 if ((byte & 128) == 0)
16960 return buf - begin;
16965 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16974 cu->language = language_c;
16976 case DW_LANG_C_plus_plus:
16977 case DW_LANG_C_plus_plus_11:
16978 case DW_LANG_C_plus_plus_14:
16979 cu->language = language_cplus;
16982 cu->language = language_d;
16984 case DW_LANG_Fortran77:
16985 case DW_LANG_Fortran90:
16986 case DW_LANG_Fortran95:
16987 case DW_LANG_Fortran03:
16988 case DW_LANG_Fortran08:
16989 cu->language = language_fortran;
16992 cu->language = language_go;
16994 case DW_LANG_Mips_Assembler:
16995 cu->language = language_asm;
16998 cu->language = language_java;
17000 case DW_LANG_Ada83:
17001 case DW_LANG_Ada95:
17002 cu->language = language_ada;
17004 case DW_LANG_Modula2:
17005 cu->language = language_m2;
17007 case DW_LANG_Pascal83:
17008 cu->language = language_pascal;
17011 cu->language = language_objc;
17013 case DW_LANG_Cobol74:
17014 case DW_LANG_Cobol85:
17016 cu->language = language_minimal;
17019 cu->language_defn = language_def (cu->language);
17022 /* Return the named attribute or NULL if not there. */
17024 static struct attribute *
17025 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17030 struct attribute *spec = NULL;
17032 for (i = 0; i < die->num_attrs; ++i)
17034 if (die->attrs[i].name == name)
17035 return &die->attrs[i];
17036 if (die->attrs[i].name == DW_AT_specification
17037 || die->attrs[i].name == DW_AT_abstract_origin)
17038 spec = &die->attrs[i];
17044 die = follow_die_ref (die, spec, &cu);
17050 /* Return the named attribute or NULL if not there,
17051 but do not follow DW_AT_specification, etc.
17052 This is for use in contexts where we're reading .debug_types dies.
17053 Following DW_AT_specification, DW_AT_abstract_origin will take us
17054 back up the chain, and we want to go down. */
17056 static struct attribute *
17057 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17061 for (i = 0; i < die->num_attrs; ++i)
17062 if (die->attrs[i].name == name)
17063 return &die->attrs[i];
17068 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17069 and holds a non-zero value. This function should only be used for
17070 DW_FORM_flag or DW_FORM_flag_present attributes. */
17073 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17075 struct attribute *attr = dwarf2_attr (die, name, cu);
17077 return (attr && DW_UNSND (attr));
17081 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17083 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17084 which value is non-zero. However, we have to be careful with
17085 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17086 (via dwarf2_flag_true_p) follows this attribute. So we may
17087 end up accidently finding a declaration attribute that belongs
17088 to a different DIE referenced by the specification attribute,
17089 even though the given DIE does not have a declaration attribute. */
17090 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17091 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17094 /* Return the die giving the specification for DIE, if there is
17095 one. *SPEC_CU is the CU containing DIE on input, and the CU
17096 containing the return value on output. If there is no
17097 specification, but there is an abstract origin, that is
17100 static struct die_info *
17101 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17103 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17106 if (spec_attr == NULL)
17107 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17109 if (spec_attr == NULL)
17112 return follow_die_ref (die, spec_attr, spec_cu);
17115 /* Free the line_header structure *LH, and any arrays and strings it
17117 NOTE: This is also used as a "cleanup" function. */
17120 free_line_header (struct line_header *lh)
17122 if (lh->standard_opcode_lengths)
17123 xfree (lh->standard_opcode_lengths);
17125 /* Remember that all the lh->file_names[i].name pointers are
17126 pointers into debug_line_buffer, and don't need to be freed. */
17127 if (lh->file_names)
17128 xfree (lh->file_names);
17130 /* Similarly for the include directory names. */
17131 if (lh->include_dirs)
17132 xfree (lh->include_dirs);
17137 /* Stub for free_line_header to match void * callback types. */
17140 free_line_header_voidp (void *arg)
17142 struct line_header *lh = arg;
17144 free_line_header (lh);
17147 /* Add an entry to LH's include directory table. */
17150 add_include_dir (struct line_header *lh, const char *include_dir)
17152 /* Grow the array if necessary. */
17153 if (lh->include_dirs_size == 0)
17155 lh->include_dirs_size = 1; /* for testing */
17156 lh->include_dirs = xmalloc (lh->include_dirs_size
17157 * sizeof (*lh->include_dirs));
17159 else if (lh->num_include_dirs >= lh->include_dirs_size)
17161 lh->include_dirs_size *= 2;
17162 lh->include_dirs = xrealloc (lh->include_dirs,
17163 (lh->include_dirs_size
17164 * sizeof (*lh->include_dirs)));
17167 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17170 /* Add an entry to LH's file name table. */
17173 add_file_name (struct line_header *lh,
17175 unsigned int dir_index,
17176 unsigned int mod_time,
17177 unsigned int length)
17179 struct file_entry *fe;
17181 /* Grow the array if necessary. */
17182 if (lh->file_names_size == 0)
17184 lh->file_names_size = 1; /* for testing */
17185 lh->file_names = xmalloc (lh->file_names_size
17186 * sizeof (*lh->file_names));
17188 else if (lh->num_file_names >= lh->file_names_size)
17190 lh->file_names_size *= 2;
17191 lh->file_names = xrealloc (lh->file_names,
17192 (lh->file_names_size
17193 * sizeof (*lh->file_names)));
17196 fe = &lh->file_names[lh->num_file_names++];
17198 fe->dir_index = dir_index;
17199 fe->mod_time = mod_time;
17200 fe->length = length;
17201 fe->included_p = 0;
17205 /* A convenience function to find the proper .debug_line section for a CU. */
17207 static struct dwarf2_section_info *
17208 get_debug_line_section (struct dwarf2_cu *cu)
17210 struct dwarf2_section_info *section;
17212 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17214 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17215 section = &cu->dwo_unit->dwo_file->sections.line;
17216 else if (cu->per_cu->is_dwz)
17218 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17220 section = &dwz->line;
17223 section = &dwarf2_per_objfile->line;
17228 /* Read the statement program header starting at OFFSET in
17229 .debug_line, or .debug_line.dwo. Return a pointer
17230 to a struct line_header, allocated using xmalloc.
17231 Returns NULL if there is a problem reading the header, e.g., if it
17232 has a version we don't understand.
17234 NOTE: the strings in the include directory and file name tables of
17235 the returned object point into the dwarf line section buffer,
17236 and must not be freed. */
17238 static struct line_header *
17239 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17241 struct cleanup *back_to;
17242 struct line_header *lh;
17243 const gdb_byte *line_ptr;
17244 unsigned int bytes_read, offset_size;
17246 const char *cur_dir, *cur_file;
17247 struct dwarf2_section_info *section;
17250 section = get_debug_line_section (cu);
17251 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17252 if (section->buffer == NULL)
17254 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17255 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17257 complaint (&symfile_complaints, _("missing .debug_line section"));
17261 /* We can't do this until we know the section is non-empty.
17262 Only then do we know we have such a section. */
17263 abfd = get_section_bfd_owner (section);
17265 /* Make sure that at least there's room for the total_length field.
17266 That could be 12 bytes long, but we're just going to fudge that. */
17267 if (offset + 4 >= section->size)
17269 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17273 lh = xmalloc (sizeof (*lh));
17274 memset (lh, 0, sizeof (*lh));
17275 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17278 lh->offset.sect_off = offset;
17279 lh->offset_in_dwz = cu->per_cu->is_dwz;
17281 line_ptr = section->buffer + offset;
17283 /* Read in the header. */
17285 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17286 &bytes_read, &offset_size);
17287 line_ptr += bytes_read;
17288 if (line_ptr + lh->total_length > (section->buffer + section->size))
17290 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17291 do_cleanups (back_to);
17294 lh->statement_program_end = line_ptr + lh->total_length;
17295 lh->version = read_2_bytes (abfd, line_ptr);
17297 if (lh->version > 4)
17299 /* This is a version we don't understand. The format could have
17300 changed in ways we don't handle properly so just punt. */
17301 complaint (&symfile_complaints,
17302 _("unsupported version in .debug_line section"));
17305 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17306 line_ptr += offset_size;
17307 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17309 if (lh->version >= 4)
17311 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17315 lh->maximum_ops_per_instruction = 1;
17317 if (lh->maximum_ops_per_instruction == 0)
17319 lh->maximum_ops_per_instruction = 1;
17320 complaint (&symfile_complaints,
17321 _("invalid maximum_ops_per_instruction "
17322 "in `.debug_line' section"));
17325 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17327 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17329 lh->line_range = read_1_byte (abfd, line_ptr);
17331 lh->opcode_base = read_1_byte (abfd, line_ptr);
17333 lh->standard_opcode_lengths
17334 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17336 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17337 for (i = 1; i < lh->opcode_base; ++i)
17339 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17343 /* Read directory table. */
17344 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17346 line_ptr += bytes_read;
17347 add_include_dir (lh, cur_dir);
17349 line_ptr += bytes_read;
17351 /* Read file name table. */
17352 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17354 unsigned int dir_index, mod_time, length;
17356 line_ptr += bytes_read;
17357 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17358 line_ptr += bytes_read;
17359 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17360 line_ptr += bytes_read;
17361 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17362 line_ptr += bytes_read;
17364 add_file_name (lh, cur_file, dir_index, mod_time, length);
17366 line_ptr += bytes_read;
17367 lh->statement_program_start = line_ptr;
17369 if (line_ptr > (section->buffer + section->size))
17370 complaint (&symfile_complaints,
17371 _("line number info header doesn't "
17372 "fit in `.debug_line' section"));
17374 discard_cleanups (back_to);
17378 /* Subroutine of dwarf_decode_lines to simplify it.
17379 Return the file name of the psymtab for included file FILE_INDEX
17380 in line header LH of PST.
17381 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17382 If space for the result is malloc'd, it will be freed by a cleanup.
17383 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17385 The function creates dangling cleanup registration. */
17387 static const char *
17388 psymtab_include_file_name (const struct line_header *lh, int file_index,
17389 const struct partial_symtab *pst,
17390 const char *comp_dir)
17392 const struct file_entry fe = lh->file_names [file_index];
17393 const char *include_name = fe.name;
17394 const char *include_name_to_compare = include_name;
17395 const char *dir_name = NULL;
17396 const char *pst_filename;
17397 char *copied_name = NULL;
17400 if (fe.dir_index && lh->include_dirs != NULL)
17401 dir_name = lh->include_dirs[fe.dir_index - 1];
17403 if (!IS_ABSOLUTE_PATH (include_name)
17404 && (dir_name != NULL || comp_dir != NULL))
17406 /* Avoid creating a duplicate psymtab for PST.
17407 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17408 Before we do the comparison, however, we need to account
17409 for DIR_NAME and COMP_DIR.
17410 First prepend dir_name (if non-NULL). If we still don't
17411 have an absolute path prepend comp_dir (if non-NULL).
17412 However, the directory we record in the include-file's
17413 psymtab does not contain COMP_DIR (to match the
17414 corresponding symtab(s)).
17419 bash$ gcc -g ./hello.c
17420 include_name = "hello.c"
17422 DW_AT_comp_dir = comp_dir = "/tmp"
17423 DW_AT_name = "./hello.c"
17427 if (dir_name != NULL)
17429 char *tem = concat (dir_name, SLASH_STRING,
17430 include_name, (char *)NULL);
17432 make_cleanup (xfree, tem);
17433 include_name = tem;
17434 include_name_to_compare = include_name;
17436 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17438 char *tem = concat (comp_dir, SLASH_STRING,
17439 include_name, (char *)NULL);
17441 make_cleanup (xfree, tem);
17442 include_name_to_compare = tem;
17446 pst_filename = pst->filename;
17447 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17449 copied_name = concat (pst->dirname, SLASH_STRING,
17450 pst_filename, (char *)NULL);
17451 pst_filename = copied_name;
17454 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17456 if (copied_name != NULL)
17457 xfree (copied_name);
17461 return include_name;
17464 /* Ignore this record_line request. */
17467 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17472 /* Return non-zero if we should add LINE to the line number table.
17473 LINE is the line to add, LAST_LINE is the last line that was added,
17474 LAST_SUBFILE is the subfile for LAST_LINE.
17475 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17476 had a non-zero discriminator.
17478 We have to be careful in the presence of discriminators.
17479 E.g., for this line:
17481 for (i = 0; i < 100000; i++);
17483 clang can emit four line number entries for that one line,
17484 each with a different discriminator.
17485 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17487 However, we want gdb to coalesce all four entries into one.
17488 Otherwise the user could stepi into the middle of the line and
17489 gdb would get confused about whether the pc really was in the
17490 middle of the line.
17492 Things are further complicated by the fact that two consecutive
17493 line number entries for the same line is a heuristic used by gcc
17494 to denote the end of the prologue. So we can't just discard duplicate
17495 entries, we have to be selective about it. The heuristic we use is
17496 that we only collapse consecutive entries for the same line if at least
17497 one of those entries has a non-zero discriminator. PR 17276.
17499 Note: Addresses in the line number state machine can never go backwards
17500 within one sequence, thus this coalescing is ok. */
17503 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17504 int line_has_non_zero_discriminator,
17505 struct subfile *last_subfile)
17507 if (current_subfile != last_subfile)
17509 if (line != last_line)
17511 /* Same line for the same file that we've seen already.
17512 As a last check, for pr 17276, only record the line if the line
17513 has never had a non-zero discriminator. */
17514 if (!line_has_non_zero_discriminator)
17519 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17520 in the line table of subfile SUBFILE. */
17523 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17524 unsigned int line, CORE_ADDR address,
17525 record_line_ftype p_record_line)
17527 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17529 (*p_record_line) (subfile, line, addr);
17532 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17533 Mark the end of a set of line number records.
17534 The arguments are the same as for dwarf_record_line.
17535 If SUBFILE is NULL the request is ignored. */
17538 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17539 CORE_ADDR address, record_line_ftype p_record_line)
17541 if (subfile != NULL)
17542 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17545 /* Subroutine of dwarf_decode_lines to simplify it.
17546 Process the line number information in LH. */
17549 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17550 const int decode_for_pst_p, CORE_ADDR lowpc)
17552 const gdb_byte *line_ptr, *extended_end;
17553 const gdb_byte *line_end;
17554 unsigned int bytes_read, extended_len;
17555 unsigned char op_code, extended_op;
17556 CORE_ADDR baseaddr;
17557 struct objfile *objfile = cu->objfile;
17558 bfd *abfd = objfile->obfd;
17559 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17560 struct subfile *last_subfile = NULL;
17561 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17564 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17566 line_ptr = lh->statement_program_start;
17567 line_end = lh->statement_program_end;
17569 /* Read the statement sequences until there's nothing left. */
17570 while (line_ptr < line_end)
17572 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17573 on the initial 0 address as if there was a line entry for it
17574 so that the backend has a chance to adjust it and also record
17575 it in case it needs it. This is currently used by MIPS code,
17576 cf. `mips_adjust_dwarf2_line'. */
17577 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17578 unsigned int file = 1;
17579 unsigned int line = 1;
17580 int is_stmt = lh->default_is_stmt;
17581 int end_sequence = 0;
17582 unsigned char op_index = 0;
17583 unsigned int discriminator = 0;
17584 /* The last line number that was recorded, used to coalesce
17585 consecutive entries for the same line. This can happen, for
17586 example, when discriminators are present. PR 17276. */
17587 unsigned int last_line = 0;
17588 int line_has_non_zero_discriminator = 0;
17590 if (!decode_for_pst_p && lh->num_file_names >= file)
17592 /* Start a subfile for the current file of the state machine. */
17593 /* lh->include_dirs and lh->file_names are 0-based, but the
17594 directory and file name numbers in the statement program
17596 struct file_entry *fe = &lh->file_names[file - 1];
17597 const char *dir = NULL;
17599 if (fe->dir_index && lh->include_dirs != NULL)
17600 dir = lh->include_dirs[fe->dir_index - 1];
17602 dwarf2_start_subfile (fe->name, dir);
17605 /* Decode the table. */
17606 while (!end_sequence)
17608 op_code = read_1_byte (abfd, line_ptr);
17610 if (line_ptr > line_end)
17612 dwarf2_debug_line_missing_end_sequence_complaint ();
17616 if (op_code >= lh->opcode_base)
17618 /* Special opcode. */
17619 unsigned char adj_opcode;
17620 CORE_ADDR addr_adj;
17623 adj_opcode = op_code - lh->opcode_base;
17624 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17625 / lh->maximum_ops_per_instruction)
17626 * lh->minimum_instruction_length);
17627 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17628 op_index = ((op_index + (adj_opcode / lh->line_range))
17629 % lh->maximum_ops_per_instruction);
17630 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17631 line += line_delta;
17632 if (line_delta != 0)
17633 line_has_non_zero_discriminator = discriminator != 0;
17634 if (lh->num_file_names < file || file == 0)
17635 dwarf2_debug_line_missing_file_complaint ();
17636 /* For now we ignore lines not starting on an
17637 instruction boundary. */
17638 else if (op_index == 0)
17640 lh->file_names[file - 1].included_p = 1;
17641 if (!decode_for_pst_p && is_stmt)
17643 if (last_subfile != current_subfile)
17645 dwarf_finish_line (gdbarch, last_subfile,
17646 address, p_record_line);
17648 if (dwarf_record_line_p (line, last_line,
17649 line_has_non_zero_discriminator,
17652 dwarf_record_line (gdbarch, current_subfile,
17653 line, address, p_record_line);
17655 last_subfile = current_subfile;
17661 else switch (op_code)
17663 case DW_LNS_extended_op:
17664 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17666 line_ptr += bytes_read;
17667 extended_end = line_ptr + extended_len;
17668 extended_op = read_1_byte (abfd, line_ptr);
17670 switch (extended_op)
17672 case DW_LNE_end_sequence:
17673 p_record_line = record_line;
17676 case DW_LNE_set_address:
17677 address = read_address (abfd, line_ptr, cu, &bytes_read);
17679 /* If address < lowpc then it's not a usable value, it's
17680 outside the pc range of the CU. However, we restrict
17681 the test to only address values of zero to preserve
17682 GDB's previous behaviour which is to handle the specific
17683 case of a function being GC'd by the linker. */
17684 if (address == 0 && address < lowpc)
17686 /* This line table is for a function which has been
17687 GCd by the linker. Ignore it. PR gdb/12528 */
17690 = line_ptr - get_debug_line_section (cu)->buffer;
17692 complaint (&symfile_complaints,
17693 _(".debug_line address at offset 0x%lx is 0 "
17695 line_offset, objfile_name (objfile));
17696 p_record_line = noop_record_line;
17697 /* Note: p_record_line is left as noop_record_line
17698 until we see DW_LNE_end_sequence. */
17702 line_ptr += bytes_read;
17703 address += baseaddr;
17704 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17706 case DW_LNE_define_file:
17708 const char *cur_file;
17709 unsigned int dir_index, mod_time, length;
17711 cur_file = read_direct_string (abfd, line_ptr,
17713 line_ptr += bytes_read;
17715 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17716 line_ptr += bytes_read;
17718 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17719 line_ptr += bytes_read;
17721 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17722 line_ptr += bytes_read;
17723 add_file_name (lh, cur_file, dir_index, mod_time, length);
17726 case DW_LNE_set_discriminator:
17727 /* The discriminator is not interesting to the debugger;
17728 just ignore it. We still need to check its value though:
17729 if there are consecutive entries for the same
17730 (non-prologue) line we want to coalesce them.
17732 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17734 line_has_non_zero_discriminator |= discriminator != 0;
17735 line_ptr += bytes_read;
17738 complaint (&symfile_complaints,
17739 _("mangled .debug_line section"));
17742 /* Make sure that we parsed the extended op correctly. If e.g.
17743 we expected a different address size than the producer used,
17744 we may have read the wrong number of bytes. */
17745 if (line_ptr != extended_end)
17747 complaint (&symfile_complaints,
17748 _("mangled .debug_line section"));
17753 if (lh->num_file_names < file || file == 0)
17754 dwarf2_debug_line_missing_file_complaint ();
17757 lh->file_names[file - 1].included_p = 1;
17758 if (!decode_for_pst_p && is_stmt)
17760 if (last_subfile != current_subfile)
17762 dwarf_finish_line (gdbarch, last_subfile,
17763 address, p_record_line);
17765 if (dwarf_record_line_p (line, last_line,
17766 line_has_non_zero_discriminator,
17769 dwarf_record_line (gdbarch, current_subfile,
17770 line, address, p_record_line);
17772 last_subfile = current_subfile;
17778 case DW_LNS_advance_pc:
17781 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17782 CORE_ADDR addr_adj;
17784 addr_adj = (((op_index + adjust)
17785 / lh->maximum_ops_per_instruction)
17786 * lh->minimum_instruction_length);
17787 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17788 op_index = ((op_index + adjust)
17789 % lh->maximum_ops_per_instruction);
17790 line_ptr += bytes_read;
17793 case DW_LNS_advance_line:
17796 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17798 line += line_delta;
17799 if (line_delta != 0)
17800 line_has_non_zero_discriminator = discriminator != 0;
17801 line_ptr += bytes_read;
17804 case DW_LNS_set_file:
17806 /* The arrays lh->include_dirs and lh->file_names are
17807 0-based, but the directory and file name numbers in
17808 the statement program are 1-based. */
17809 struct file_entry *fe;
17810 const char *dir = NULL;
17812 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17813 line_ptr += bytes_read;
17814 if (lh->num_file_names < file || file == 0)
17815 dwarf2_debug_line_missing_file_complaint ();
17818 fe = &lh->file_names[file - 1];
17819 if (fe->dir_index && lh->include_dirs != NULL)
17820 dir = lh->include_dirs[fe->dir_index - 1];
17821 if (!decode_for_pst_p)
17823 last_subfile = current_subfile;
17824 line_has_non_zero_discriminator = discriminator != 0;
17825 dwarf2_start_subfile (fe->name, dir);
17830 case DW_LNS_set_column:
17831 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17832 line_ptr += bytes_read;
17834 case DW_LNS_negate_stmt:
17835 is_stmt = (!is_stmt);
17837 case DW_LNS_set_basic_block:
17839 /* Add to the address register of the state machine the
17840 address increment value corresponding to special opcode
17841 255. I.e., this value is scaled by the minimum
17842 instruction length since special opcode 255 would have
17843 scaled the increment. */
17844 case DW_LNS_const_add_pc:
17846 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17847 CORE_ADDR addr_adj;
17849 addr_adj = (((op_index + adjust)
17850 / lh->maximum_ops_per_instruction)
17851 * lh->minimum_instruction_length);
17852 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17853 op_index = ((op_index + adjust)
17854 % lh->maximum_ops_per_instruction);
17857 case DW_LNS_fixed_advance_pc:
17859 CORE_ADDR addr_adj;
17861 addr_adj = read_2_bytes (abfd, line_ptr);
17862 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17869 /* Unknown standard opcode, ignore it. */
17872 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17874 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17875 line_ptr += bytes_read;
17880 if (lh->num_file_names < file || file == 0)
17881 dwarf2_debug_line_missing_file_complaint ();
17884 lh->file_names[file - 1].included_p = 1;
17885 if (!decode_for_pst_p)
17887 dwarf_finish_line (gdbarch, current_subfile, address,
17894 /* Decode the Line Number Program (LNP) for the given line_header
17895 structure and CU. The actual information extracted and the type
17896 of structures created from the LNP depends on the value of PST.
17898 1. If PST is NULL, then this procedure uses the data from the program
17899 to create all necessary symbol tables, and their linetables.
17901 2. If PST is not NULL, this procedure reads the program to determine
17902 the list of files included by the unit represented by PST, and
17903 builds all the associated partial symbol tables.
17905 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17906 It is used for relative paths in the line table.
17907 NOTE: When processing partial symtabs (pst != NULL),
17908 comp_dir == pst->dirname.
17910 NOTE: It is important that psymtabs have the same file name (via strcmp)
17911 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17912 symtab we don't use it in the name of the psymtabs we create.
17913 E.g. expand_line_sal requires this when finding psymtabs to expand.
17914 A good testcase for this is mb-inline.exp.
17916 LOWPC is the lowest address in CU (or 0 if not known).
17918 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17919 for its PC<->lines mapping information. Otherwise only the filename
17920 table is read in. */
17923 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17924 struct dwarf2_cu *cu, struct partial_symtab *pst,
17925 CORE_ADDR lowpc, int decode_mapping)
17927 struct objfile *objfile = cu->objfile;
17928 const int decode_for_pst_p = (pst != NULL);
17930 if (decode_mapping)
17931 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17933 if (decode_for_pst_p)
17937 /* Now that we're done scanning the Line Header Program, we can
17938 create the psymtab of each included file. */
17939 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17940 if (lh->file_names[file_index].included_p == 1)
17942 const char *include_name =
17943 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17944 if (include_name != NULL)
17945 dwarf2_create_include_psymtab (include_name, pst, objfile);
17950 /* Make sure a symtab is created for every file, even files
17951 which contain only variables (i.e. no code with associated
17953 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17956 for (i = 0; i < lh->num_file_names; i++)
17958 const char *dir = NULL;
17959 struct file_entry *fe;
17961 fe = &lh->file_names[i];
17962 if (fe->dir_index && lh->include_dirs != NULL)
17963 dir = lh->include_dirs[fe->dir_index - 1];
17964 dwarf2_start_subfile (fe->name, dir);
17966 if (current_subfile->symtab == NULL)
17968 current_subfile->symtab
17969 = allocate_symtab (cust, current_subfile->name);
17971 fe->symtab = current_subfile->symtab;
17976 /* Start a subfile for DWARF. FILENAME is the name of the file and
17977 DIRNAME the name of the source directory which contains FILENAME
17978 or NULL if not known.
17979 This routine tries to keep line numbers from identical absolute and
17980 relative file names in a common subfile.
17982 Using the `list' example from the GDB testsuite, which resides in
17983 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17984 of /srcdir/list0.c yields the following debugging information for list0.c:
17986 DW_AT_name: /srcdir/list0.c
17987 DW_AT_comp_dir: /compdir
17988 files.files[0].name: list0.h
17989 files.files[0].dir: /srcdir
17990 files.files[1].name: list0.c
17991 files.files[1].dir: /srcdir
17993 The line number information for list0.c has to end up in a single
17994 subfile, so that `break /srcdir/list0.c:1' works as expected.
17995 start_subfile will ensure that this happens provided that we pass the
17996 concatenation of files.files[1].dir and files.files[1].name as the
18000 dwarf2_start_subfile (const char *filename, const char *dirname)
18004 /* In order not to lose the line information directory,
18005 we concatenate it to the filename when it makes sense.
18006 Note that the Dwarf3 standard says (speaking of filenames in line
18007 information): ``The directory index is ignored for file names
18008 that represent full path names''. Thus ignoring dirname in the
18009 `else' branch below isn't an issue. */
18011 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18013 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18017 start_subfile (filename);
18023 /* Start a symtab for DWARF.
18024 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18026 static struct compunit_symtab *
18027 dwarf2_start_symtab (struct dwarf2_cu *cu,
18028 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18030 struct compunit_symtab *cust
18031 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18033 record_debugformat ("DWARF 2");
18034 record_producer (cu->producer);
18036 /* We assume that we're processing GCC output. */
18037 processing_gcc_compilation = 2;
18039 cu->processing_has_namespace_info = 0;
18045 var_decode_location (struct attribute *attr, struct symbol *sym,
18046 struct dwarf2_cu *cu)
18048 struct objfile *objfile = cu->objfile;
18049 struct comp_unit_head *cu_header = &cu->header;
18051 /* NOTE drow/2003-01-30: There used to be a comment and some special
18052 code here to turn a symbol with DW_AT_external and a
18053 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18054 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18055 with some versions of binutils) where shared libraries could have
18056 relocations against symbols in their debug information - the
18057 minimal symbol would have the right address, but the debug info
18058 would not. It's no longer necessary, because we will explicitly
18059 apply relocations when we read in the debug information now. */
18061 /* A DW_AT_location attribute with no contents indicates that a
18062 variable has been optimized away. */
18063 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18065 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18069 /* Handle one degenerate form of location expression specially, to
18070 preserve GDB's previous behavior when section offsets are
18071 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18072 then mark this symbol as LOC_STATIC. */
18074 if (attr_form_is_block (attr)
18075 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18076 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18077 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18078 && (DW_BLOCK (attr)->size
18079 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18081 unsigned int dummy;
18083 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18084 SYMBOL_VALUE_ADDRESS (sym) =
18085 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18087 SYMBOL_VALUE_ADDRESS (sym) =
18088 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18089 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18090 fixup_symbol_section (sym, objfile);
18091 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18092 SYMBOL_SECTION (sym));
18096 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18097 expression evaluator, and use LOC_COMPUTED only when necessary
18098 (i.e. when the value of a register or memory location is
18099 referenced, or a thread-local block, etc.). Then again, it might
18100 not be worthwhile. I'm assuming that it isn't unless performance
18101 or memory numbers show me otherwise. */
18103 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18105 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18106 cu->has_loclist = 1;
18109 /* Given a pointer to a DWARF information entry, figure out if we need
18110 to make a symbol table entry for it, and if so, create a new entry
18111 and return a pointer to it.
18112 If TYPE is NULL, determine symbol type from the die, otherwise
18113 used the passed type.
18114 If SPACE is not NULL, use it to hold the new symbol. If it is
18115 NULL, allocate a new symbol on the objfile's obstack. */
18117 static struct symbol *
18118 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18119 struct symbol *space)
18121 struct objfile *objfile = cu->objfile;
18122 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18123 struct symbol *sym = NULL;
18125 struct attribute *attr = NULL;
18126 struct attribute *attr2 = NULL;
18127 CORE_ADDR baseaddr;
18128 struct pending **list_to_add = NULL;
18130 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18132 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18134 name = dwarf2_name (die, cu);
18137 const char *linkagename;
18138 int suppress_add = 0;
18143 sym = allocate_symbol (objfile);
18144 OBJSTAT (objfile, n_syms++);
18146 /* Cache this symbol's name and the name's demangled form (if any). */
18147 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18148 linkagename = dwarf2_physname (name, die, cu);
18149 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18151 /* Fortran does not have mangling standard and the mangling does differ
18152 between gfortran, iFort etc. */
18153 if (cu->language == language_fortran
18154 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18155 symbol_set_demangled_name (&(sym->ginfo),
18156 dwarf2_full_name (name, die, cu),
18159 /* Default assumptions.
18160 Use the passed type or decode it from the die. */
18161 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18162 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18164 SYMBOL_TYPE (sym) = type;
18166 SYMBOL_TYPE (sym) = die_type (die, cu);
18167 attr = dwarf2_attr (die,
18168 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18172 SYMBOL_LINE (sym) = DW_UNSND (attr);
18175 attr = dwarf2_attr (die,
18176 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18180 int file_index = DW_UNSND (attr);
18182 if (cu->line_header == NULL
18183 || file_index > cu->line_header->num_file_names)
18184 complaint (&symfile_complaints,
18185 _("file index out of range"));
18186 else if (file_index > 0)
18188 struct file_entry *fe;
18190 fe = &cu->line_header->file_names[file_index - 1];
18191 symbol_set_symtab (sym, fe->symtab);
18198 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18203 addr = attr_value_as_address (attr);
18204 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18205 SYMBOL_VALUE_ADDRESS (sym) = addr;
18207 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18208 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18209 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18210 add_symbol_to_list (sym, cu->list_in_scope);
18212 case DW_TAG_subprogram:
18213 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18215 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18216 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18217 if ((attr2 && (DW_UNSND (attr2) != 0))
18218 || cu->language == language_ada)
18220 /* Subprograms marked external are stored as a global symbol.
18221 Ada subprograms, whether marked external or not, are always
18222 stored as a global symbol, because we want to be able to
18223 access them globally. For instance, we want to be able
18224 to break on a nested subprogram without having to
18225 specify the context. */
18226 list_to_add = &global_symbols;
18230 list_to_add = cu->list_in_scope;
18233 case DW_TAG_inlined_subroutine:
18234 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18236 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18237 SYMBOL_INLINED (sym) = 1;
18238 list_to_add = cu->list_in_scope;
18240 case DW_TAG_template_value_param:
18242 /* Fall through. */
18243 case DW_TAG_constant:
18244 case DW_TAG_variable:
18245 case DW_TAG_member:
18246 /* Compilation with minimal debug info may result in
18247 variables with missing type entries. Change the
18248 misleading `void' type to something sensible. */
18249 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18251 = objfile_type (objfile)->nodebug_data_symbol;
18253 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18254 /* In the case of DW_TAG_member, we should only be called for
18255 static const members. */
18256 if (die->tag == DW_TAG_member)
18258 /* dwarf2_add_field uses die_is_declaration,
18259 so we do the same. */
18260 gdb_assert (die_is_declaration (die, cu));
18265 dwarf2_const_value (attr, sym, cu);
18266 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18269 if (attr2 && (DW_UNSND (attr2) != 0))
18270 list_to_add = &global_symbols;
18272 list_to_add = cu->list_in_scope;
18276 attr = dwarf2_attr (die, DW_AT_location, cu);
18279 var_decode_location (attr, sym, cu);
18280 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18282 /* Fortran explicitly imports any global symbols to the local
18283 scope by DW_TAG_common_block. */
18284 if (cu->language == language_fortran && die->parent
18285 && die->parent->tag == DW_TAG_common_block)
18288 if (SYMBOL_CLASS (sym) == LOC_STATIC
18289 && SYMBOL_VALUE_ADDRESS (sym) == 0
18290 && !dwarf2_per_objfile->has_section_at_zero)
18292 /* When a static variable is eliminated by the linker,
18293 the corresponding debug information is not stripped
18294 out, but the variable address is set to null;
18295 do not add such variables into symbol table. */
18297 else if (attr2 && (DW_UNSND (attr2) != 0))
18299 /* Workaround gfortran PR debug/40040 - it uses
18300 DW_AT_location for variables in -fPIC libraries which may
18301 get overriden by other libraries/executable and get
18302 a different address. Resolve it by the minimal symbol
18303 which may come from inferior's executable using copy
18304 relocation. Make this workaround only for gfortran as for
18305 other compilers GDB cannot guess the minimal symbol
18306 Fortran mangling kind. */
18307 if (cu->language == language_fortran && die->parent
18308 && die->parent->tag == DW_TAG_module
18310 && startswith (cu->producer, "GNU Fortran "))
18311 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18313 /* A variable with DW_AT_external is never static,
18314 but it may be block-scoped. */
18315 list_to_add = (cu->list_in_scope == &file_symbols
18316 ? &global_symbols : cu->list_in_scope);
18319 list_to_add = cu->list_in_scope;
18323 /* We do not know the address of this symbol.
18324 If it is an external symbol and we have type information
18325 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18326 The address of the variable will then be determined from
18327 the minimal symbol table whenever the variable is
18329 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18331 /* Fortran explicitly imports any global symbols to the local
18332 scope by DW_TAG_common_block. */
18333 if (cu->language == language_fortran && die->parent
18334 && die->parent->tag == DW_TAG_common_block)
18336 /* SYMBOL_CLASS doesn't matter here because
18337 read_common_block is going to reset it. */
18339 list_to_add = cu->list_in_scope;
18341 else if (attr2 && (DW_UNSND (attr2) != 0)
18342 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18344 /* A variable with DW_AT_external is never static, but it
18345 may be block-scoped. */
18346 list_to_add = (cu->list_in_scope == &file_symbols
18347 ? &global_symbols : cu->list_in_scope);
18349 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18351 else if (!die_is_declaration (die, cu))
18353 /* Use the default LOC_OPTIMIZED_OUT class. */
18354 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18356 list_to_add = cu->list_in_scope;
18360 case DW_TAG_formal_parameter:
18361 /* If we are inside a function, mark this as an argument. If
18362 not, we might be looking at an argument to an inlined function
18363 when we do not have enough information to show inlined frames;
18364 pretend it's a local variable in that case so that the user can
18366 if (context_stack_depth > 0
18367 && context_stack[context_stack_depth - 1].name != NULL)
18368 SYMBOL_IS_ARGUMENT (sym) = 1;
18369 attr = dwarf2_attr (die, DW_AT_location, cu);
18372 var_decode_location (attr, sym, cu);
18374 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18377 dwarf2_const_value (attr, sym, cu);
18380 list_to_add = cu->list_in_scope;
18382 case DW_TAG_unspecified_parameters:
18383 /* From varargs functions; gdb doesn't seem to have any
18384 interest in this information, so just ignore it for now.
18387 case DW_TAG_template_type_param:
18389 /* Fall through. */
18390 case DW_TAG_class_type:
18391 case DW_TAG_interface_type:
18392 case DW_TAG_structure_type:
18393 case DW_TAG_union_type:
18394 case DW_TAG_set_type:
18395 case DW_TAG_enumeration_type:
18396 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18397 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18400 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18401 really ever be static objects: otherwise, if you try
18402 to, say, break of a class's method and you're in a file
18403 which doesn't mention that class, it won't work unless
18404 the check for all static symbols in lookup_symbol_aux
18405 saves you. See the OtherFileClass tests in
18406 gdb.c++/namespace.exp. */
18410 list_to_add = (cu->list_in_scope == &file_symbols
18411 && (cu->language == language_cplus
18412 || cu->language == language_java)
18413 ? &global_symbols : cu->list_in_scope);
18415 /* The semantics of C++ state that "struct foo {
18416 ... }" also defines a typedef for "foo". A Java
18417 class declaration also defines a typedef for the
18419 if (cu->language == language_cplus
18420 || cu->language == language_java
18421 || cu->language == language_ada)
18423 /* The symbol's name is already allocated along
18424 with this objfile, so we don't need to
18425 duplicate it for the type. */
18426 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18427 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18432 case DW_TAG_typedef:
18433 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18435 list_to_add = cu->list_in_scope;
18437 case DW_TAG_base_type:
18438 case DW_TAG_subrange_type:
18439 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18440 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18441 list_to_add = cu->list_in_scope;
18443 case DW_TAG_enumerator:
18444 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18447 dwarf2_const_value (attr, sym, cu);
18450 /* NOTE: carlton/2003-11-10: See comment above in the
18451 DW_TAG_class_type, etc. block. */
18453 list_to_add = (cu->list_in_scope == &file_symbols
18454 && (cu->language == language_cplus
18455 || cu->language == language_java)
18456 ? &global_symbols : cu->list_in_scope);
18459 case DW_TAG_imported_declaration:
18460 case DW_TAG_namespace:
18461 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18462 list_to_add = &global_symbols;
18464 case DW_TAG_module:
18465 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18466 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18467 list_to_add = &global_symbols;
18469 case DW_TAG_common_block:
18470 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18471 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18472 add_symbol_to_list (sym, cu->list_in_scope);
18475 /* Not a tag we recognize. Hopefully we aren't processing
18476 trash data, but since we must specifically ignore things
18477 we don't recognize, there is nothing else we should do at
18479 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18480 dwarf_tag_name (die->tag));
18486 sym->hash_next = objfile->template_symbols;
18487 objfile->template_symbols = sym;
18488 list_to_add = NULL;
18491 if (list_to_add != NULL)
18492 add_symbol_to_list (sym, list_to_add);
18494 /* For the benefit of old versions of GCC, check for anonymous
18495 namespaces based on the demangled name. */
18496 if (!cu->processing_has_namespace_info
18497 && cu->language == language_cplus)
18498 cp_scan_for_anonymous_namespaces (sym, objfile);
18503 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18505 static struct symbol *
18506 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18508 return new_symbol_full (die, type, cu, NULL);
18511 /* Given an attr with a DW_FORM_dataN value in host byte order,
18512 zero-extend it as appropriate for the symbol's type. The DWARF
18513 standard (v4) is not entirely clear about the meaning of using
18514 DW_FORM_dataN for a constant with a signed type, where the type is
18515 wider than the data. The conclusion of a discussion on the DWARF
18516 list was that this is unspecified. We choose to always zero-extend
18517 because that is the interpretation long in use by GCC. */
18520 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18521 struct dwarf2_cu *cu, LONGEST *value, int bits)
18523 struct objfile *objfile = cu->objfile;
18524 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18525 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18526 LONGEST l = DW_UNSND (attr);
18528 if (bits < sizeof (*value) * 8)
18530 l &= ((LONGEST) 1 << bits) - 1;
18533 else if (bits == sizeof (*value) * 8)
18537 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18538 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18545 /* Read a constant value from an attribute. Either set *VALUE, or if
18546 the value does not fit in *VALUE, set *BYTES - either already
18547 allocated on the objfile obstack, or newly allocated on OBSTACK,
18548 or, set *BATON, if we translated the constant to a location
18552 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18553 const char *name, struct obstack *obstack,
18554 struct dwarf2_cu *cu,
18555 LONGEST *value, const gdb_byte **bytes,
18556 struct dwarf2_locexpr_baton **baton)
18558 struct objfile *objfile = cu->objfile;
18559 struct comp_unit_head *cu_header = &cu->header;
18560 struct dwarf_block *blk;
18561 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18562 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18568 switch (attr->form)
18571 case DW_FORM_GNU_addr_index:
18575 if (TYPE_LENGTH (type) != cu_header->addr_size)
18576 dwarf2_const_value_length_mismatch_complaint (name,
18577 cu_header->addr_size,
18578 TYPE_LENGTH (type));
18579 /* Symbols of this form are reasonably rare, so we just
18580 piggyback on the existing location code rather than writing
18581 a new implementation of symbol_computed_ops. */
18582 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18583 (*baton)->per_cu = cu->per_cu;
18584 gdb_assert ((*baton)->per_cu);
18586 (*baton)->size = 2 + cu_header->addr_size;
18587 data = obstack_alloc (obstack, (*baton)->size);
18588 (*baton)->data = data;
18590 data[0] = DW_OP_addr;
18591 store_unsigned_integer (&data[1], cu_header->addr_size,
18592 byte_order, DW_ADDR (attr));
18593 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18596 case DW_FORM_string:
18598 case DW_FORM_GNU_str_index:
18599 case DW_FORM_GNU_strp_alt:
18600 /* DW_STRING is already allocated on the objfile obstack, point
18602 *bytes = (const gdb_byte *) DW_STRING (attr);
18604 case DW_FORM_block1:
18605 case DW_FORM_block2:
18606 case DW_FORM_block4:
18607 case DW_FORM_block:
18608 case DW_FORM_exprloc:
18609 blk = DW_BLOCK (attr);
18610 if (TYPE_LENGTH (type) != blk->size)
18611 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18612 TYPE_LENGTH (type));
18613 *bytes = blk->data;
18616 /* The DW_AT_const_value attributes are supposed to carry the
18617 symbol's value "represented as it would be on the target
18618 architecture." By the time we get here, it's already been
18619 converted to host endianness, so we just need to sign- or
18620 zero-extend it as appropriate. */
18621 case DW_FORM_data1:
18622 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18624 case DW_FORM_data2:
18625 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18627 case DW_FORM_data4:
18628 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18630 case DW_FORM_data8:
18631 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18634 case DW_FORM_sdata:
18635 *value = DW_SND (attr);
18638 case DW_FORM_udata:
18639 *value = DW_UNSND (attr);
18643 complaint (&symfile_complaints,
18644 _("unsupported const value attribute form: '%s'"),
18645 dwarf_form_name (attr->form));
18652 /* Copy constant value from an attribute to a symbol. */
18655 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18656 struct dwarf2_cu *cu)
18658 struct objfile *objfile = cu->objfile;
18659 struct comp_unit_head *cu_header = &cu->header;
18661 const gdb_byte *bytes;
18662 struct dwarf2_locexpr_baton *baton;
18664 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18665 SYMBOL_PRINT_NAME (sym),
18666 &objfile->objfile_obstack, cu,
18667 &value, &bytes, &baton);
18671 SYMBOL_LOCATION_BATON (sym) = baton;
18672 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18674 else if (bytes != NULL)
18676 SYMBOL_VALUE_BYTES (sym) = bytes;
18677 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18681 SYMBOL_VALUE (sym) = value;
18682 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18686 /* Return the type of the die in question using its DW_AT_type attribute. */
18688 static struct type *
18689 die_type (struct die_info *die, struct dwarf2_cu *cu)
18691 struct attribute *type_attr;
18693 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18696 /* A missing DW_AT_type represents a void type. */
18697 return objfile_type (cu->objfile)->builtin_void;
18700 return lookup_die_type (die, type_attr, cu);
18703 /* True iff CU's producer generates GNAT Ada auxiliary information
18704 that allows to find parallel types through that information instead
18705 of having to do expensive parallel lookups by type name. */
18708 need_gnat_info (struct dwarf2_cu *cu)
18710 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18711 of GNAT produces this auxiliary information, without any indication
18712 that it is produced. Part of enhancing the FSF version of GNAT
18713 to produce that information will be to put in place an indicator
18714 that we can use in order to determine whether the descriptive type
18715 info is available or not. One suggestion that has been made is
18716 to use a new attribute, attached to the CU die. For now, assume
18717 that the descriptive type info is not available. */
18721 /* Return the auxiliary type of the die in question using its
18722 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18723 attribute is not present. */
18725 static struct type *
18726 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18728 struct attribute *type_attr;
18730 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18734 return lookup_die_type (die, type_attr, cu);
18737 /* If DIE has a descriptive_type attribute, then set the TYPE's
18738 descriptive type accordingly. */
18741 set_descriptive_type (struct type *type, struct die_info *die,
18742 struct dwarf2_cu *cu)
18744 struct type *descriptive_type = die_descriptive_type (die, cu);
18746 if (descriptive_type)
18748 ALLOCATE_GNAT_AUX_TYPE (type);
18749 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18753 /* Return the containing type of the die in question using its
18754 DW_AT_containing_type attribute. */
18756 static struct type *
18757 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18759 struct attribute *type_attr;
18761 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18763 error (_("Dwarf Error: Problem turning containing type into gdb type "
18764 "[in module %s]"), objfile_name (cu->objfile));
18766 return lookup_die_type (die, type_attr, cu);
18769 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18771 static struct type *
18772 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18774 struct objfile *objfile = dwarf2_per_objfile->objfile;
18775 char *message, *saved;
18777 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18778 objfile_name (objfile),
18779 cu->header.offset.sect_off,
18780 die->offset.sect_off);
18781 saved = obstack_copy0 (&objfile->objfile_obstack,
18782 message, strlen (message));
18785 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18788 /* Look up the type of DIE in CU using its type attribute ATTR.
18789 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18790 DW_AT_containing_type.
18791 If there is no type substitute an error marker. */
18793 static struct type *
18794 lookup_die_type (struct die_info *die, const struct attribute *attr,
18795 struct dwarf2_cu *cu)
18797 struct objfile *objfile = cu->objfile;
18798 struct type *this_type;
18800 gdb_assert (attr->name == DW_AT_type
18801 || attr->name == DW_AT_GNAT_descriptive_type
18802 || attr->name == DW_AT_containing_type);
18804 /* First see if we have it cached. */
18806 if (attr->form == DW_FORM_GNU_ref_alt)
18808 struct dwarf2_per_cu_data *per_cu;
18809 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18811 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18812 this_type = get_die_type_at_offset (offset, per_cu);
18814 else if (attr_form_is_ref (attr))
18816 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18818 this_type = get_die_type_at_offset (offset, cu->per_cu);
18820 else if (attr->form == DW_FORM_ref_sig8)
18822 ULONGEST signature = DW_SIGNATURE (attr);
18824 return get_signatured_type (die, signature, cu);
18828 complaint (&symfile_complaints,
18829 _("Dwarf Error: Bad type attribute %s in DIE"
18830 " at 0x%x [in module %s]"),
18831 dwarf_attr_name (attr->name), die->offset.sect_off,
18832 objfile_name (objfile));
18833 return build_error_marker_type (cu, die);
18836 /* If not cached we need to read it in. */
18838 if (this_type == NULL)
18840 struct die_info *type_die = NULL;
18841 struct dwarf2_cu *type_cu = cu;
18843 if (attr_form_is_ref (attr))
18844 type_die = follow_die_ref (die, attr, &type_cu);
18845 if (type_die == NULL)
18846 return build_error_marker_type (cu, die);
18847 /* If we find the type now, it's probably because the type came
18848 from an inter-CU reference and the type's CU got expanded before
18850 this_type = read_type_die (type_die, type_cu);
18853 /* If we still don't have a type use an error marker. */
18855 if (this_type == NULL)
18856 return build_error_marker_type (cu, die);
18861 /* Return the type in DIE, CU.
18862 Returns NULL for invalid types.
18864 This first does a lookup in die_type_hash,
18865 and only reads the die in if necessary.
18867 NOTE: This can be called when reading in partial or full symbols. */
18869 static struct type *
18870 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18872 struct type *this_type;
18874 this_type = get_die_type (die, cu);
18878 return read_type_die_1 (die, cu);
18881 /* Read the type in DIE, CU.
18882 Returns NULL for invalid types. */
18884 static struct type *
18885 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18887 struct type *this_type = NULL;
18891 case DW_TAG_class_type:
18892 case DW_TAG_interface_type:
18893 case DW_TAG_structure_type:
18894 case DW_TAG_union_type:
18895 this_type = read_structure_type (die, cu);
18897 case DW_TAG_enumeration_type:
18898 this_type = read_enumeration_type (die, cu);
18900 case DW_TAG_subprogram:
18901 case DW_TAG_subroutine_type:
18902 case DW_TAG_inlined_subroutine:
18903 this_type = read_subroutine_type (die, cu);
18905 case DW_TAG_array_type:
18906 this_type = read_array_type (die, cu);
18908 case DW_TAG_set_type:
18909 this_type = read_set_type (die, cu);
18911 case DW_TAG_pointer_type:
18912 this_type = read_tag_pointer_type (die, cu);
18914 case DW_TAG_ptr_to_member_type:
18915 this_type = read_tag_ptr_to_member_type (die, cu);
18917 case DW_TAG_reference_type:
18918 this_type = read_tag_reference_type (die, cu);
18920 case DW_TAG_const_type:
18921 this_type = read_tag_const_type (die, cu);
18923 case DW_TAG_volatile_type:
18924 this_type = read_tag_volatile_type (die, cu);
18926 case DW_TAG_restrict_type:
18927 this_type = read_tag_restrict_type (die, cu);
18929 case DW_TAG_string_type:
18930 this_type = read_tag_string_type (die, cu);
18932 case DW_TAG_typedef:
18933 this_type = read_typedef (die, cu);
18935 case DW_TAG_subrange_type:
18936 this_type = read_subrange_type (die, cu);
18938 case DW_TAG_base_type:
18939 this_type = read_base_type (die, cu);
18941 case DW_TAG_unspecified_type:
18942 this_type = read_unspecified_type (die, cu);
18944 case DW_TAG_namespace:
18945 this_type = read_namespace_type (die, cu);
18947 case DW_TAG_module:
18948 this_type = read_module_type (die, cu);
18950 case DW_TAG_atomic_type:
18951 this_type = read_tag_atomic_type (die, cu);
18954 complaint (&symfile_complaints,
18955 _("unexpected tag in read_type_die: '%s'"),
18956 dwarf_tag_name (die->tag));
18963 /* See if we can figure out if the class lives in a namespace. We do
18964 this by looking for a member function; its demangled name will
18965 contain namespace info, if there is any.
18966 Return the computed name or NULL.
18967 Space for the result is allocated on the objfile's obstack.
18968 This is the full-die version of guess_partial_die_structure_name.
18969 In this case we know DIE has no useful parent. */
18972 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18974 struct die_info *spec_die;
18975 struct dwarf2_cu *spec_cu;
18976 struct die_info *child;
18979 spec_die = die_specification (die, &spec_cu);
18980 if (spec_die != NULL)
18986 for (child = die->child;
18988 child = child->sibling)
18990 if (child->tag == DW_TAG_subprogram)
18992 struct attribute *attr;
18994 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18996 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19000 = language_class_name_from_physname (cu->language_defn,
19004 if (actual_name != NULL)
19006 const char *die_name = dwarf2_name (die, cu);
19008 if (die_name != NULL
19009 && strcmp (die_name, actual_name) != 0)
19011 /* Strip off the class name from the full name.
19012 We want the prefix. */
19013 int die_name_len = strlen (die_name);
19014 int actual_name_len = strlen (actual_name);
19016 /* Test for '::' as a sanity check. */
19017 if (actual_name_len > die_name_len + 2
19018 && actual_name[actual_name_len
19019 - die_name_len - 1] == ':')
19021 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19023 actual_name_len - die_name_len - 2);
19026 xfree (actual_name);
19035 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19036 prefix part in such case. See
19037 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19040 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19042 struct attribute *attr;
19045 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19046 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19049 attr = dwarf2_attr (die, DW_AT_name, cu);
19050 if (attr != NULL && DW_STRING (attr) != NULL)
19053 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19055 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19056 if (attr == NULL || DW_STRING (attr) == NULL)
19059 /* dwarf2_name had to be already called. */
19060 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19062 /* Strip the base name, keep any leading namespaces/classes. */
19063 base = strrchr (DW_STRING (attr), ':');
19064 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19067 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19068 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19071 /* Return the name of the namespace/class that DIE is defined within,
19072 or "" if we can't tell. The caller should not xfree the result.
19074 For example, if we're within the method foo() in the following
19084 then determine_prefix on foo's die will return "N::C". */
19086 static const char *
19087 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19089 struct die_info *parent, *spec_die;
19090 struct dwarf2_cu *spec_cu;
19091 struct type *parent_type;
19094 if (cu->language != language_cplus && cu->language != language_java
19095 && cu->language != language_fortran)
19098 retval = anonymous_struct_prefix (die, cu);
19102 /* We have to be careful in the presence of DW_AT_specification.
19103 For example, with GCC 3.4, given the code
19107 // Definition of N::foo.
19111 then we'll have a tree of DIEs like this:
19113 1: DW_TAG_compile_unit
19114 2: DW_TAG_namespace // N
19115 3: DW_TAG_subprogram // declaration of N::foo
19116 4: DW_TAG_subprogram // definition of N::foo
19117 DW_AT_specification // refers to die #3
19119 Thus, when processing die #4, we have to pretend that we're in
19120 the context of its DW_AT_specification, namely the contex of die
19123 spec_die = die_specification (die, &spec_cu);
19124 if (spec_die == NULL)
19125 parent = die->parent;
19128 parent = spec_die->parent;
19132 if (parent == NULL)
19134 else if (parent->building_fullname)
19137 const char *parent_name;
19139 /* It has been seen on RealView 2.2 built binaries,
19140 DW_TAG_template_type_param types actually _defined_ as
19141 children of the parent class:
19144 template class <class Enum> Class{};
19145 Class<enum E> class_e;
19147 1: DW_TAG_class_type (Class)
19148 2: DW_TAG_enumeration_type (E)
19149 3: DW_TAG_enumerator (enum1:0)
19150 3: DW_TAG_enumerator (enum2:1)
19152 2: DW_TAG_template_type_param
19153 DW_AT_type DW_FORM_ref_udata (E)
19155 Besides being broken debug info, it can put GDB into an
19156 infinite loop. Consider:
19158 When we're building the full name for Class<E>, we'll start
19159 at Class, and go look over its template type parameters,
19160 finding E. We'll then try to build the full name of E, and
19161 reach here. We're now trying to build the full name of E,
19162 and look over the parent DIE for containing scope. In the
19163 broken case, if we followed the parent DIE of E, we'd again
19164 find Class, and once again go look at its template type
19165 arguments, etc., etc. Simply don't consider such parent die
19166 as source-level parent of this die (it can't be, the language
19167 doesn't allow it), and break the loop here. */
19168 name = dwarf2_name (die, cu);
19169 parent_name = dwarf2_name (parent, cu);
19170 complaint (&symfile_complaints,
19171 _("template param type '%s' defined within parent '%s'"),
19172 name ? name : "<unknown>",
19173 parent_name ? parent_name : "<unknown>");
19177 switch (parent->tag)
19179 case DW_TAG_namespace:
19180 parent_type = read_type_die (parent, cu);
19181 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19182 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19183 Work around this problem here. */
19184 if (cu->language == language_cplus
19185 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19187 /* We give a name to even anonymous namespaces. */
19188 return TYPE_TAG_NAME (parent_type);
19189 case DW_TAG_class_type:
19190 case DW_TAG_interface_type:
19191 case DW_TAG_structure_type:
19192 case DW_TAG_union_type:
19193 case DW_TAG_module:
19194 parent_type = read_type_die (parent, cu);
19195 if (TYPE_TAG_NAME (parent_type) != NULL)
19196 return TYPE_TAG_NAME (parent_type);
19198 /* An anonymous structure is only allowed non-static data
19199 members; no typedefs, no member functions, et cetera.
19200 So it does not need a prefix. */
19202 case DW_TAG_compile_unit:
19203 case DW_TAG_partial_unit:
19204 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19205 if (cu->language == language_cplus
19206 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19207 && die->child != NULL
19208 && (die->tag == DW_TAG_class_type
19209 || die->tag == DW_TAG_structure_type
19210 || die->tag == DW_TAG_union_type))
19212 char *name = guess_full_die_structure_name (die, cu);
19217 case DW_TAG_enumeration_type:
19218 parent_type = read_type_die (parent, cu);
19219 if (TYPE_DECLARED_CLASS (parent_type))
19221 if (TYPE_TAG_NAME (parent_type) != NULL)
19222 return TYPE_TAG_NAME (parent_type);
19225 /* Fall through. */
19227 return determine_prefix (parent, cu);
19231 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19232 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19233 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19234 an obconcat, otherwise allocate storage for the result. The CU argument is
19235 used to determine the language and hence, the appropriate separator. */
19237 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19240 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19241 int physname, struct dwarf2_cu *cu)
19243 const char *lead = "";
19246 if (suffix == NULL || suffix[0] == '\0'
19247 || prefix == NULL || prefix[0] == '\0')
19249 else if (cu->language == language_java)
19251 else if (cu->language == language_fortran && physname)
19253 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19254 DW_AT_MIPS_linkage_name is preferred and used instead. */
19262 if (prefix == NULL)
19264 if (suffix == NULL)
19270 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19272 strcpy (retval, lead);
19273 strcat (retval, prefix);
19274 strcat (retval, sep);
19275 strcat (retval, suffix);
19280 /* We have an obstack. */
19281 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19285 /* Return sibling of die, NULL if no sibling. */
19287 static struct die_info *
19288 sibling_die (struct die_info *die)
19290 return die->sibling;
19293 /* Get name of a die, return NULL if not found. */
19295 static const char *
19296 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19297 struct obstack *obstack)
19299 if (name && cu->language == language_cplus)
19301 char *canon_name = cp_canonicalize_string (name);
19303 if (canon_name != NULL)
19305 if (strcmp (canon_name, name) != 0)
19306 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19307 xfree (canon_name);
19314 /* Get name of a die, return NULL if not found.
19315 Anonymous namespaces are converted to their magic string. */
19317 static const char *
19318 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19320 struct attribute *attr;
19322 attr = dwarf2_attr (die, DW_AT_name, cu);
19323 if ((!attr || !DW_STRING (attr))
19324 && die->tag != DW_TAG_namespace
19325 && die->tag != DW_TAG_class_type
19326 && die->tag != DW_TAG_interface_type
19327 && die->tag != DW_TAG_structure_type
19328 && die->tag != DW_TAG_union_type)
19333 case DW_TAG_compile_unit:
19334 case DW_TAG_partial_unit:
19335 /* Compilation units have a DW_AT_name that is a filename, not
19336 a source language identifier. */
19337 case DW_TAG_enumeration_type:
19338 case DW_TAG_enumerator:
19339 /* These tags always have simple identifiers already; no need
19340 to canonicalize them. */
19341 return DW_STRING (attr);
19343 case DW_TAG_namespace:
19344 if (attr != NULL && DW_STRING (attr) != NULL)
19345 return DW_STRING (attr);
19346 return CP_ANONYMOUS_NAMESPACE_STR;
19348 case DW_TAG_subprogram:
19349 /* Java constructors will all be named "<init>", so return
19350 the class name when we see this special case. */
19351 if (cu->language == language_java
19352 && DW_STRING (attr) != NULL
19353 && strcmp (DW_STRING (attr), "<init>") == 0)
19355 struct dwarf2_cu *spec_cu = cu;
19356 struct die_info *spec_die;
19358 /* GCJ will output '<init>' for Java constructor names.
19359 For this special case, return the name of the parent class. */
19361 /* GCJ may output subprogram DIEs with AT_specification set.
19362 If so, use the name of the specified DIE. */
19363 spec_die = die_specification (die, &spec_cu);
19364 if (spec_die != NULL)
19365 return dwarf2_name (spec_die, spec_cu);
19370 if (die->tag == DW_TAG_class_type)
19371 return dwarf2_name (die, cu);
19373 while (die->tag != DW_TAG_compile_unit
19374 && die->tag != DW_TAG_partial_unit);
19378 case DW_TAG_class_type:
19379 case DW_TAG_interface_type:
19380 case DW_TAG_structure_type:
19381 case DW_TAG_union_type:
19382 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19383 structures or unions. These were of the form "._%d" in GCC 4.1,
19384 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19385 and GCC 4.4. We work around this problem by ignoring these. */
19386 if (attr && DW_STRING (attr)
19387 && (startswith (DW_STRING (attr), "._")
19388 || startswith (DW_STRING (attr), "<anonymous")))
19391 /* GCC might emit a nameless typedef that has a linkage name. See
19392 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19393 if (!attr || DW_STRING (attr) == NULL)
19395 char *demangled = NULL;
19397 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19399 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19401 if (attr == NULL || DW_STRING (attr) == NULL)
19404 /* Avoid demangling DW_STRING (attr) the second time on a second
19405 call for the same DIE. */
19406 if (!DW_STRING_IS_CANONICAL (attr))
19407 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19413 /* FIXME: we already did this for the partial symbol... */
19415 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19416 demangled, strlen (demangled));
19417 DW_STRING_IS_CANONICAL (attr) = 1;
19420 /* Strip any leading namespaces/classes, keep only the base name.
19421 DW_AT_name for named DIEs does not contain the prefixes. */
19422 base = strrchr (DW_STRING (attr), ':');
19423 if (base && base > DW_STRING (attr) && base[-1] == ':')
19426 return DW_STRING (attr);
19435 if (!DW_STRING_IS_CANONICAL (attr))
19438 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19439 &cu->objfile->per_bfd->storage_obstack);
19440 DW_STRING_IS_CANONICAL (attr) = 1;
19442 return DW_STRING (attr);
19445 /* Return the die that this die in an extension of, or NULL if there
19446 is none. *EXT_CU is the CU containing DIE on input, and the CU
19447 containing the return value on output. */
19449 static struct die_info *
19450 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19452 struct attribute *attr;
19454 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19458 return follow_die_ref (die, attr, ext_cu);
19461 /* Convert a DIE tag into its string name. */
19463 static const char *
19464 dwarf_tag_name (unsigned tag)
19466 const char *name = get_DW_TAG_name (tag);
19469 return "DW_TAG_<unknown>";
19474 /* Convert a DWARF attribute code into its string name. */
19476 static const char *
19477 dwarf_attr_name (unsigned attr)
19481 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19482 if (attr == DW_AT_MIPS_fde)
19483 return "DW_AT_MIPS_fde";
19485 if (attr == DW_AT_HP_block_index)
19486 return "DW_AT_HP_block_index";
19489 name = get_DW_AT_name (attr);
19492 return "DW_AT_<unknown>";
19497 /* Convert a DWARF value form code into its string name. */
19499 static const char *
19500 dwarf_form_name (unsigned form)
19502 const char *name = get_DW_FORM_name (form);
19505 return "DW_FORM_<unknown>";
19511 dwarf_bool_name (unsigned mybool)
19519 /* Convert a DWARF type code into its string name. */
19521 static const char *
19522 dwarf_type_encoding_name (unsigned enc)
19524 const char *name = get_DW_ATE_name (enc);
19527 return "DW_ATE_<unknown>";
19533 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19537 print_spaces (indent, f);
19538 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19539 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19541 if (die->parent != NULL)
19543 print_spaces (indent, f);
19544 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19545 die->parent->offset.sect_off);
19548 print_spaces (indent, f);
19549 fprintf_unfiltered (f, " has children: %s\n",
19550 dwarf_bool_name (die->child != NULL));
19552 print_spaces (indent, f);
19553 fprintf_unfiltered (f, " attributes:\n");
19555 for (i = 0; i < die->num_attrs; ++i)
19557 print_spaces (indent, f);
19558 fprintf_unfiltered (f, " %s (%s) ",
19559 dwarf_attr_name (die->attrs[i].name),
19560 dwarf_form_name (die->attrs[i].form));
19562 switch (die->attrs[i].form)
19565 case DW_FORM_GNU_addr_index:
19566 fprintf_unfiltered (f, "address: ");
19567 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19569 case DW_FORM_block2:
19570 case DW_FORM_block4:
19571 case DW_FORM_block:
19572 case DW_FORM_block1:
19573 fprintf_unfiltered (f, "block: size %s",
19574 pulongest (DW_BLOCK (&die->attrs[i])->size));
19576 case DW_FORM_exprloc:
19577 fprintf_unfiltered (f, "expression: size %s",
19578 pulongest (DW_BLOCK (&die->attrs[i])->size));
19580 case DW_FORM_ref_addr:
19581 fprintf_unfiltered (f, "ref address: ");
19582 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19584 case DW_FORM_GNU_ref_alt:
19585 fprintf_unfiltered (f, "alt ref address: ");
19586 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19592 case DW_FORM_ref_udata:
19593 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19594 (long) (DW_UNSND (&die->attrs[i])));
19596 case DW_FORM_data1:
19597 case DW_FORM_data2:
19598 case DW_FORM_data4:
19599 case DW_FORM_data8:
19600 case DW_FORM_udata:
19601 case DW_FORM_sdata:
19602 fprintf_unfiltered (f, "constant: %s",
19603 pulongest (DW_UNSND (&die->attrs[i])));
19605 case DW_FORM_sec_offset:
19606 fprintf_unfiltered (f, "section offset: %s",
19607 pulongest (DW_UNSND (&die->attrs[i])));
19609 case DW_FORM_ref_sig8:
19610 fprintf_unfiltered (f, "signature: %s",
19611 hex_string (DW_SIGNATURE (&die->attrs[i])));
19613 case DW_FORM_string:
19615 case DW_FORM_GNU_str_index:
19616 case DW_FORM_GNU_strp_alt:
19617 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19618 DW_STRING (&die->attrs[i])
19619 ? DW_STRING (&die->attrs[i]) : "",
19620 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19623 if (DW_UNSND (&die->attrs[i]))
19624 fprintf_unfiltered (f, "flag: TRUE");
19626 fprintf_unfiltered (f, "flag: FALSE");
19628 case DW_FORM_flag_present:
19629 fprintf_unfiltered (f, "flag: TRUE");
19631 case DW_FORM_indirect:
19632 /* The reader will have reduced the indirect form to
19633 the "base form" so this form should not occur. */
19634 fprintf_unfiltered (f,
19635 "unexpected attribute form: DW_FORM_indirect");
19638 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19639 die->attrs[i].form);
19642 fprintf_unfiltered (f, "\n");
19647 dump_die_for_error (struct die_info *die)
19649 dump_die_shallow (gdb_stderr, 0, die);
19653 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19655 int indent = level * 4;
19657 gdb_assert (die != NULL);
19659 if (level >= max_level)
19662 dump_die_shallow (f, indent, die);
19664 if (die->child != NULL)
19666 print_spaces (indent, f);
19667 fprintf_unfiltered (f, " Children:");
19668 if (level + 1 < max_level)
19670 fprintf_unfiltered (f, "\n");
19671 dump_die_1 (f, level + 1, max_level, die->child);
19675 fprintf_unfiltered (f,
19676 " [not printed, max nesting level reached]\n");
19680 if (die->sibling != NULL && level > 0)
19682 dump_die_1 (f, level, max_level, die->sibling);
19686 /* This is called from the pdie macro in gdbinit.in.
19687 It's not static so gcc will keep a copy callable from gdb. */
19690 dump_die (struct die_info *die, int max_level)
19692 dump_die_1 (gdb_stdlog, 0, max_level, die);
19696 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19700 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19706 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19710 dwarf2_get_ref_die_offset (const struct attribute *attr)
19712 sect_offset retval = { DW_UNSND (attr) };
19714 if (attr_form_is_ref (attr))
19717 retval.sect_off = 0;
19718 complaint (&symfile_complaints,
19719 _("unsupported die ref attribute form: '%s'"),
19720 dwarf_form_name (attr->form));
19724 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19725 * the value held by the attribute is not constant. */
19728 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19730 if (attr->form == DW_FORM_sdata)
19731 return DW_SND (attr);
19732 else if (attr->form == DW_FORM_udata
19733 || attr->form == DW_FORM_data1
19734 || attr->form == DW_FORM_data2
19735 || attr->form == DW_FORM_data4
19736 || attr->form == DW_FORM_data8)
19737 return DW_UNSND (attr);
19740 complaint (&symfile_complaints,
19741 _("Attribute value is not a constant (%s)"),
19742 dwarf_form_name (attr->form));
19743 return default_value;
19747 /* Follow reference or signature attribute ATTR of SRC_DIE.
19748 On entry *REF_CU is the CU of SRC_DIE.
19749 On exit *REF_CU is the CU of the result. */
19751 static struct die_info *
19752 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19753 struct dwarf2_cu **ref_cu)
19755 struct die_info *die;
19757 if (attr_form_is_ref (attr))
19758 die = follow_die_ref (src_die, attr, ref_cu);
19759 else if (attr->form == DW_FORM_ref_sig8)
19760 die = follow_die_sig (src_die, attr, ref_cu);
19763 dump_die_for_error (src_die);
19764 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19765 objfile_name ((*ref_cu)->objfile));
19771 /* Follow reference OFFSET.
19772 On entry *REF_CU is the CU of the source die referencing OFFSET.
19773 On exit *REF_CU is the CU of the result.
19774 Returns NULL if OFFSET is invalid. */
19776 static struct die_info *
19777 follow_die_offset (sect_offset offset, int offset_in_dwz,
19778 struct dwarf2_cu **ref_cu)
19780 struct die_info temp_die;
19781 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19783 gdb_assert (cu->per_cu != NULL);
19787 if (cu->per_cu->is_debug_types)
19789 /* .debug_types CUs cannot reference anything outside their CU.
19790 If they need to, they have to reference a signatured type via
19791 DW_FORM_ref_sig8. */
19792 if (! offset_in_cu_p (&cu->header, offset))
19795 else if (offset_in_dwz != cu->per_cu->is_dwz
19796 || ! offset_in_cu_p (&cu->header, offset))
19798 struct dwarf2_per_cu_data *per_cu;
19800 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19803 /* If necessary, add it to the queue and load its DIEs. */
19804 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19805 load_full_comp_unit (per_cu, cu->language);
19807 target_cu = per_cu->cu;
19809 else if (cu->dies == NULL)
19811 /* We're loading full DIEs during partial symbol reading. */
19812 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19813 load_full_comp_unit (cu->per_cu, language_minimal);
19816 *ref_cu = target_cu;
19817 temp_die.offset = offset;
19818 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19821 /* Follow reference attribute ATTR of SRC_DIE.
19822 On entry *REF_CU is the CU of SRC_DIE.
19823 On exit *REF_CU is the CU of the result. */
19825 static struct die_info *
19826 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19827 struct dwarf2_cu **ref_cu)
19829 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19830 struct dwarf2_cu *cu = *ref_cu;
19831 struct die_info *die;
19833 die = follow_die_offset (offset,
19834 (attr->form == DW_FORM_GNU_ref_alt
19835 || cu->per_cu->is_dwz),
19838 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19839 "at 0x%x [in module %s]"),
19840 offset.sect_off, src_die->offset.sect_off,
19841 objfile_name (cu->objfile));
19846 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19847 Returned value is intended for DW_OP_call*. Returned
19848 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19850 struct dwarf2_locexpr_baton
19851 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19852 struct dwarf2_per_cu_data *per_cu,
19853 CORE_ADDR (*get_frame_pc) (void *baton),
19856 struct dwarf2_cu *cu;
19857 struct die_info *die;
19858 struct attribute *attr;
19859 struct dwarf2_locexpr_baton retval;
19861 dw2_setup (per_cu->objfile);
19863 if (per_cu->cu == NULL)
19867 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19869 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19870 offset.sect_off, objfile_name (per_cu->objfile));
19872 attr = dwarf2_attr (die, DW_AT_location, cu);
19875 /* DWARF: "If there is no such attribute, then there is no effect.".
19876 DATA is ignored if SIZE is 0. */
19878 retval.data = NULL;
19881 else if (attr_form_is_section_offset (attr))
19883 struct dwarf2_loclist_baton loclist_baton;
19884 CORE_ADDR pc = (*get_frame_pc) (baton);
19887 fill_in_loclist_baton (cu, &loclist_baton, attr);
19889 retval.data = dwarf2_find_location_expression (&loclist_baton,
19891 retval.size = size;
19895 if (!attr_form_is_block (attr))
19896 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19897 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19898 offset.sect_off, objfile_name (per_cu->objfile));
19900 retval.data = DW_BLOCK (attr)->data;
19901 retval.size = DW_BLOCK (attr)->size;
19903 retval.per_cu = cu->per_cu;
19905 age_cached_comp_units ();
19910 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19913 struct dwarf2_locexpr_baton
19914 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19915 struct dwarf2_per_cu_data *per_cu,
19916 CORE_ADDR (*get_frame_pc) (void *baton),
19919 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19921 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19924 /* Write a constant of a given type as target-ordered bytes into
19927 static const gdb_byte *
19928 write_constant_as_bytes (struct obstack *obstack,
19929 enum bfd_endian byte_order,
19936 *len = TYPE_LENGTH (type);
19937 result = obstack_alloc (obstack, *len);
19938 store_unsigned_integer (result, *len, byte_order, value);
19943 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19944 pointer to the constant bytes and set LEN to the length of the
19945 data. If memory is needed, allocate it on OBSTACK. If the DIE
19946 does not have a DW_AT_const_value, return NULL. */
19949 dwarf2_fetch_constant_bytes (sect_offset offset,
19950 struct dwarf2_per_cu_data *per_cu,
19951 struct obstack *obstack,
19954 struct dwarf2_cu *cu;
19955 struct die_info *die;
19956 struct attribute *attr;
19957 const gdb_byte *result = NULL;
19960 enum bfd_endian byte_order;
19962 dw2_setup (per_cu->objfile);
19964 if (per_cu->cu == NULL)
19968 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19970 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19971 offset.sect_off, objfile_name (per_cu->objfile));
19974 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19978 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19979 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19981 switch (attr->form)
19984 case DW_FORM_GNU_addr_index:
19988 *len = cu->header.addr_size;
19989 tem = obstack_alloc (obstack, *len);
19990 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19994 case DW_FORM_string:
19996 case DW_FORM_GNU_str_index:
19997 case DW_FORM_GNU_strp_alt:
19998 /* DW_STRING is already allocated on the objfile obstack, point
20000 result = (const gdb_byte *) DW_STRING (attr);
20001 *len = strlen (DW_STRING (attr));
20003 case DW_FORM_block1:
20004 case DW_FORM_block2:
20005 case DW_FORM_block4:
20006 case DW_FORM_block:
20007 case DW_FORM_exprloc:
20008 result = DW_BLOCK (attr)->data;
20009 *len = DW_BLOCK (attr)->size;
20012 /* The DW_AT_const_value attributes are supposed to carry the
20013 symbol's value "represented as it would be on the target
20014 architecture." By the time we get here, it's already been
20015 converted to host endianness, so we just need to sign- or
20016 zero-extend it as appropriate. */
20017 case DW_FORM_data1:
20018 type = die_type (die, cu);
20019 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20020 if (result == NULL)
20021 result = write_constant_as_bytes (obstack, byte_order,
20024 case DW_FORM_data2:
20025 type = die_type (die, cu);
20026 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20027 if (result == NULL)
20028 result = write_constant_as_bytes (obstack, byte_order,
20031 case DW_FORM_data4:
20032 type = die_type (die, cu);
20033 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20034 if (result == NULL)
20035 result = write_constant_as_bytes (obstack, byte_order,
20038 case DW_FORM_data8:
20039 type = die_type (die, cu);
20040 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20041 if (result == NULL)
20042 result = write_constant_as_bytes (obstack, byte_order,
20046 case DW_FORM_sdata:
20047 type = die_type (die, cu);
20048 result = write_constant_as_bytes (obstack, byte_order,
20049 type, DW_SND (attr), len);
20052 case DW_FORM_udata:
20053 type = die_type (die, cu);
20054 result = write_constant_as_bytes (obstack, byte_order,
20055 type, DW_UNSND (attr), len);
20059 complaint (&symfile_complaints,
20060 _("unsupported const value attribute form: '%s'"),
20061 dwarf_form_name (attr->form));
20068 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20072 dwarf2_get_die_type (cu_offset die_offset,
20073 struct dwarf2_per_cu_data *per_cu)
20075 sect_offset die_offset_sect;
20077 dw2_setup (per_cu->objfile);
20079 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20080 return get_die_type_at_offset (die_offset_sect, per_cu);
20083 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20084 On entry *REF_CU is the CU of SRC_DIE.
20085 On exit *REF_CU is the CU of the result.
20086 Returns NULL if the referenced DIE isn't found. */
20088 static struct die_info *
20089 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20090 struct dwarf2_cu **ref_cu)
20092 struct objfile *objfile = (*ref_cu)->objfile;
20093 struct die_info temp_die;
20094 struct dwarf2_cu *sig_cu;
20095 struct die_info *die;
20097 /* While it might be nice to assert sig_type->type == NULL here,
20098 we can get here for DW_AT_imported_declaration where we need
20099 the DIE not the type. */
20101 /* If necessary, add it to the queue and load its DIEs. */
20103 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20104 read_signatured_type (sig_type);
20106 sig_cu = sig_type->per_cu.cu;
20107 gdb_assert (sig_cu != NULL);
20108 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20109 temp_die.offset = sig_type->type_offset_in_section;
20110 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20111 temp_die.offset.sect_off);
20114 /* For .gdb_index version 7 keep track of included TUs.
20115 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20116 if (dwarf2_per_objfile->index_table != NULL
20117 && dwarf2_per_objfile->index_table->version <= 7)
20119 VEC_safe_push (dwarf2_per_cu_ptr,
20120 (*ref_cu)->per_cu->imported_symtabs,
20131 /* Follow signatured type referenced by ATTR in SRC_DIE.
20132 On entry *REF_CU is the CU of SRC_DIE.
20133 On exit *REF_CU is the CU of the result.
20134 The result is the DIE of the type.
20135 If the referenced type cannot be found an error is thrown. */
20137 static struct die_info *
20138 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20139 struct dwarf2_cu **ref_cu)
20141 ULONGEST signature = DW_SIGNATURE (attr);
20142 struct signatured_type *sig_type;
20143 struct die_info *die;
20145 gdb_assert (attr->form == DW_FORM_ref_sig8);
20147 sig_type = lookup_signatured_type (*ref_cu, signature);
20148 /* sig_type will be NULL if the signatured type is missing from
20150 if (sig_type == NULL)
20152 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20153 " from DIE at 0x%x [in module %s]"),
20154 hex_string (signature), src_die->offset.sect_off,
20155 objfile_name ((*ref_cu)->objfile));
20158 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20161 dump_die_for_error (src_die);
20162 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20163 " from DIE at 0x%x [in module %s]"),
20164 hex_string (signature), src_die->offset.sect_off,
20165 objfile_name ((*ref_cu)->objfile));
20171 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20172 reading in and processing the type unit if necessary. */
20174 static struct type *
20175 get_signatured_type (struct die_info *die, ULONGEST signature,
20176 struct dwarf2_cu *cu)
20178 struct signatured_type *sig_type;
20179 struct dwarf2_cu *type_cu;
20180 struct die_info *type_die;
20183 sig_type = lookup_signatured_type (cu, signature);
20184 /* sig_type will be NULL if the signatured type is missing from
20186 if (sig_type == NULL)
20188 complaint (&symfile_complaints,
20189 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20190 " from DIE at 0x%x [in module %s]"),
20191 hex_string (signature), die->offset.sect_off,
20192 objfile_name (dwarf2_per_objfile->objfile));
20193 return build_error_marker_type (cu, die);
20196 /* If we already know the type we're done. */
20197 if (sig_type->type != NULL)
20198 return sig_type->type;
20201 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20202 if (type_die != NULL)
20204 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20205 is created. This is important, for example, because for c++ classes
20206 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20207 type = read_type_die (type_die, type_cu);
20210 complaint (&symfile_complaints,
20211 _("Dwarf Error: Cannot build signatured type %s"
20212 " referenced from DIE at 0x%x [in module %s]"),
20213 hex_string (signature), die->offset.sect_off,
20214 objfile_name (dwarf2_per_objfile->objfile));
20215 type = build_error_marker_type (cu, die);
20220 complaint (&symfile_complaints,
20221 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20222 " from DIE at 0x%x [in module %s]"),
20223 hex_string (signature), die->offset.sect_off,
20224 objfile_name (dwarf2_per_objfile->objfile));
20225 type = build_error_marker_type (cu, die);
20227 sig_type->type = type;
20232 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20233 reading in and processing the type unit if necessary. */
20235 static struct type *
20236 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20237 struct dwarf2_cu *cu) /* ARI: editCase function */
20239 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20240 if (attr_form_is_ref (attr))
20242 struct dwarf2_cu *type_cu = cu;
20243 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20245 return read_type_die (type_die, type_cu);
20247 else if (attr->form == DW_FORM_ref_sig8)
20249 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20253 complaint (&symfile_complaints,
20254 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20255 " at 0x%x [in module %s]"),
20256 dwarf_form_name (attr->form), die->offset.sect_off,
20257 objfile_name (dwarf2_per_objfile->objfile));
20258 return build_error_marker_type (cu, die);
20262 /* Load the DIEs associated with type unit PER_CU into memory. */
20265 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20267 struct signatured_type *sig_type;
20269 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20270 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20272 /* We have the per_cu, but we need the signatured_type.
20273 Fortunately this is an easy translation. */
20274 gdb_assert (per_cu->is_debug_types);
20275 sig_type = (struct signatured_type *) per_cu;
20277 gdb_assert (per_cu->cu == NULL);
20279 read_signatured_type (sig_type);
20281 gdb_assert (per_cu->cu != NULL);
20284 /* die_reader_func for read_signatured_type.
20285 This is identical to load_full_comp_unit_reader,
20286 but is kept separate for now. */
20289 read_signatured_type_reader (const struct die_reader_specs *reader,
20290 const gdb_byte *info_ptr,
20291 struct die_info *comp_unit_die,
20295 struct dwarf2_cu *cu = reader->cu;
20297 gdb_assert (cu->die_hash == NULL);
20299 htab_create_alloc_ex (cu->header.length / 12,
20303 &cu->comp_unit_obstack,
20304 hashtab_obstack_allocate,
20305 dummy_obstack_deallocate);
20308 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20309 &info_ptr, comp_unit_die);
20310 cu->dies = comp_unit_die;
20311 /* comp_unit_die is not stored in die_hash, no need. */
20313 /* We try not to read any attributes in this function, because not
20314 all CUs needed for references have been loaded yet, and symbol
20315 table processing isn't initialized. But we have to set the CU language,
20316 or we won't be able to build types correctly.
20317 Similarly, if we do not read the producer, we can not apply
20318 producer-specific interpretation. */
20319 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20322 /* Read in a signatured type and build its CU and DIEs.
20323 If the type is a stub for the real type in a DWO file,
20324 read in the real type from the DWO file as well. */
20327 read_signatured_type (struct signatured_type *sig_type)
20329 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20331 gdb_assert (per_cu->is_debug_types);
20332 gdb_assert (per_cu->cu == NULL);
20334 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20335 read_signatured_type_reader, NULL);
20336 sig_type->per_cu.tu_read = 1;
20339 /* Decode simple location descriptions.
20340 Given a pointer to a dwarf block that defines a location, compute
20341 the location and return the value.
20343 NOTE drow/2003-11-18: This function is called in two situations
20344 now: for the address of static or global variables (partial symbols
20345 only) and for offsets into structures which are expected to be
20346 (more or less) constant. The partial symbol case should go away,
20347 and only the constant case should remain. That will let this
20348 function complain more accurately. A few special modes are allowed
20349 without complaint for global variables (for instance, global
20350 register values and thread-local values).
20352 A location description containing no operations indicates that the
20353 object is optimized out. The return value is 0 for that case.
20354 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20355 callers will only want a very basic result and this can become a
20358 Note that stack[0] is unused except as a default error return. */
20361 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20363 struct objfile *objfile = cu->objfile;
20365 size_t size = blk->size;
20366 const gdb_byte *data = blk->data;
20367 CORE_ADDR stack[64];
20369 unsigned int bytes_read, unsnd;
20375 stack[++stacki] = 0;
20414 stack[++stacki] = op - DW_OP_lit0;
20449 stack[++stacki] = op - DW_OP_reg0;
20451 dwarf2_complex_location_expr_complaint ();
20455 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20457 stack[++stacki] = unsnd;
20459 dwarf2_complex_location_expr_complaint ();
20463 stack[++stacki] = read_address (objfile->obfd, &data[i],
20468 case DW_OP_const1u:
20469 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20473 case DW_OP_const1s:
20474 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20478 case DW_OP_const2u:
20479 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20483 case DW_OP_const2s:
20484 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20488 case DW_OP_const4u:
20489 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20493 case DW_OP_const4s:
20494 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20498 case DW_OP_const8u:
20499 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20504 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20510 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20515 stack[stacki + 1] = stack[stacki];
20520 stack[stacki - 1] += stack[stacki];
20524 case DW_OP_plus_uconst:
20525 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20531 stack[stacki - 1] -= stack[stacki];
20536 /* If we're not the last op, then we definitely can't encode
20537 this using GDB's address_class enum. This is valid for partial
20538 global symbols, although the variable's address will be bogus
20541 dwarf2_complex_location_expr_complaint ();
20544 case DW_OP_GNU_push_tls_address:
20545 /* The top of the stack has the offset from the beginning
20546 of the thread control block at which the variable is located. */
20547 /* Nothing should follow this operator, so the top of stack would
20549 /* This is valid for partial global symbols, but the variable's
20550 address will be bogus in the psymtab. Make it always at least
20551 non-zero to not look as a variable garbage collected by linker
20552 which have DW_OP_addr 0. */
20554 dwarf2_complex_location_expr_complaint ();
20558 case DW_OP_GNU_uninit:
20561 case DW_OP_GNU_addr_index:
20562 case DW_OP_GNU_const_index:
20563 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20570 const char *name = get_DW_OP_name (op);
20573 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20576 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20580 return (stack[stacki]);
20583 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20584 outside of the allocated space. Also enforce minimum>0. */
20585 if (stacki >= ARRAY_SIZE (stack) - 1)
20587 complaint (&symfile_complaints,
20588 _("location description stack overflow"));
20594 complaint (&symfile_complaints,
20595 _("location description stack underflow"));
20599 return (stack[stacki]);
20602 /* memory allocation interface */
20604 static struct dwarf_block *
20605 dwarf_alloc_block (struct dwarf2_cu *cu)
20607 struct dwarf_block *blk;
20609 blk = (struct dwarf_block *)
20610 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20614 static struct die_info *
20615 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20617 struct die_info *die;
20618 size_t size = sizeof (struct die_info);
20621 size += (num_attrs - 1) * sizeof (struct attribute);
20623 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20624 memset (die, 0, sizeof (struct die_info));
20629 /* Macro support. */
20631 /* Return file name relative to the compilation directory of file number I in
20632 *LH's file name table. The result is allocated using xmalloc; the caller is
20633 responsible for freeing it. */
20636 file_file_name (int file, struct line_header *lh)
20638 /* Is the file number a valid index into the line header's file name
20639 table? Remember that file numbers start with one, not zero. */
20640 if (1 <= file && file <= lh->num_file_names)
20642 struct file_entry *fe = &lh->file_names[file - 1];
20644 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20645 || lh->include_dirs == NULL)
20646 return xstrdup (fe->name);
20647 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20652 /* The compiler produced a bogus file number. We can at least
20653 record the macro definitions made in the file, even if we
20654 won't be able to find the file by name. */
20655 char fake_name[80];
20657 xsnprintf (fake_name, sizeof (fake_name),
20658 "<bad macro file number %d>", file);
20660 complaint (&symfile_complaints,
20661 _("bad file number in macro information (%d)"),
20664 return xstrdup (fake_name);
20668 /* Return the full name of file number I in *LH's file name table.
20669 Use COMP_DIR as the name of the current directory of the
20670 compilation. The result is allocated using xmalloc; the caller is
20671 responsible for freeing it. */
20673 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20675 /* Is the file number a valid index into the line header's file name
20676 table? Remember that file numbers start with one, not zero. */
20677 if (1 <= file && file <= lh->num_file_names)
20679 char *relative = file_file_name (file, lh);
20681 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20683 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20686 return file_file_name (file, lh);
20690 static struct macro_source_file *
20691 macro_start_file (int file, int line,
20692 struct macro_source_file *current_file,
20693 struct line_header *lh)
20695 /* File name relative to the compilation directory of this source file. */
20696 char *file_name = file_file_name (file, lh);
20698 if (! current_file)
20700 /* Note: We don't create a macro table for this compilation unit
20701 at all until we actually get a filename. */
20702 struct macro_table *macro_table = get_macro_table ();
20704 /* If we have no current file, then this must be the start_file
20705 directive for the compilation unit's main source file. */
20706 current_file = macro_set_main (macro_table, file_name);
20707 macro_define_special (macro_table);
20710 current_file = macro_include (current_file, line, file_name);
20714 return current_file;
20718 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20719 followed by a null byte. */
20721 copy_string (const char *buf, int len)
20723 char *s = xmalloc (len + 1);
20725 memcpy (s, buf, len);
20731 static const char *
20732 consume_improper_spaces (const char *p, const char *body)
20736 complaint (&symfile_complaints,
20737 _("macro definition contains spaces "
20738 "in formal argument list:\n`%s'"),
20750 parse_macro_definition (struct macro_source_file *file, int line,
20755 /* The body string takes one of two forms. For object-like macro
20756 definitions, it should be:
20758 <macro name> " " <definition>
20760 For function-like macro definitions, it should be:
20762 <macro name> "() " <definition>
20764 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20766 Spaces may appear only where explicitly indicated, and in the
20769 The Dwarf 2 spec says that an object-like macro's name is always
20770 followed by a space, but versions of GCC around March 2002 omit
20771 the space when the macro's definition is the empty string.
20773 The Dwarf 2 spec says that there should be no spaces between the
20774 formal arguments in a function-like macro's formal argument list,
20775 but versions of GCC around March 2002 include spaces after the
20779 /* Find the extent of the macro name. The macro name is terminated
20780 by either a space or null character (for an object-like macro) or
20781 an opening paren (for a function-like macro). */
20782 for (p = body; *p; p++)
20783 if (*p == ' ' || *p == '(')
20786 if (*p == ' ' || *p == '\0')
20788 /* It's an object-like macro. */
20789 int name_len = p - body;
20790 char *name = copy_string (body, name_len);
20791 const char *replacement;
20794 replacement = body + name_len + 1;
20797 dwarf2_macro_malformed_definition_complaint (body);
20798 replacement = body + name_len;
20801 macro_define_object (file, line, name, replacement);
20805 else if (*p == '(')
20807 /* It's a function-like macro. */
20808 char *name = copy_string (body, p - body);
20811 char **argv = xmalloc (argv_size * sizeof (*argv));
20815 p = consume_improper_spaces (p, body);
20817 /* Parse the formal argument list. */
20818 while (*p && *p != ')')
20820 /* Find the extent of the current argument name. */
20821 const char *arg_start = p;
20823 while (*p && *p != ',' && *p != ')' && *p != ' ')
20826 if (! *p || p == arg_start)
20827 dwarf2_macro_malformed_definition_complaint (body);
20830 /* Make sure argv has room for the new argument. */
20831 if (argc >= argv_size)
20834 argv = xrealloc (argv, argv_size * sizeof (*argv));
20837 argv[argc++] = copy_string (arg_start, p - arg_start);
20840 p = consume_improper_spaces (p, body);
20842 /* Consume the comma, if present. */
20847 p = consume_improper_spaces (p, body);
20856 /* Perfectly formed definition, no complaints. */
20857 macro_define_function (file, line, name,
20858 argc, (const char **) argv,
20860 else if (*p == '\0')
20862 /* Complain, but do define it. */
20863 dwarf2_macro_malformed_definition_complaint (body);
20864 macro_define_function (file, line, name,
20865 argc, (const char **) argv,
20869 /* Just complain. */
20870 dwarf2_macro_malformed_definition_complaint (body);
20873 /* Just complain. */
20874 dwarf2_macro_malformed_definition_complaint (body);
20880 for (i = 0; i < argc; i++)
20886 dwarf2_macro_malformed_definition_complaint (body);
20889 /* Skip some bytes from BYTES according to the form given in FORM.
20890 Returns the new pointer. */
20892 static const gdb_byte *
20893 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20894 enum dwarf_form form,
20895 unsigned int offset_size,
20896 struct dwarf2_section_info *section)
20898 unsigned int bytes_read;
20902 case DW_FORM_data1:
20907 case DW_FORM_data2:
20911 case DW_FORM_data4:
20915 case DW_FORM_data8:
20919 case DW_FORM_string:
20920 read_direct_string (abfd, bytes, &bytes_read);
20921 bytes += bytes_read;
20924 case DW_FORM_sec_offset:
20926 case DW_FORM_GNU_strp_alt:
20927 bytes += offset_size;
20930 case DW_FORM_block:
20931 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20932 bytes += bytes_read;
20935 case DW_FORM_block1:
20936 bytes += 1 + read_1_byte (abfd, bytes);
20938 case DW_FORM_block2:
20939 bytes += 2 + read_2_bytes (abfd, bytes);
20941 case DW_FORM_block4:
20942 bytes += 4 + read_4_bytes (abfd, bytes);
20945 case DW_FORM_sdata:
20946 case DW_FORM_udata:
20947 case DW_FORM_GNU_addr_index:
20948 case DW_FORM_GNU_str_index:
20949 bytes = gdb_skip_leb128 (bytes, buffer_end);
20952 dwarf2_section_buffer_overflow_complaint (section);
20960 complaint (&symfile_complaints,
20961 _("invalid form 0x%x in `%s'"),
20962 form, get_section_name (section));
20970 /* A helper for dwarf_decode_macros that handles skipping an unknown
20971 opcode. Returns an updated pointer to the macro data buffer; or,
20972 on error, issues a complaint and returns NULL. */
20974 static const gdb_byte *
20975 skip_unknown_opcode (unsigned int opcode,
20976 const gdb_byte **opcode_definitions,
20977 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20979 unsigned int offset_size,
20980 struct dwarf2_section_info *section)
20982 unsigned int bytes_read, i;
20984 const gdb_byte *defn;
20986 if (opcode_definitions[opcode] == NULL)
20988 complaint (&symfile_complaints,
20989 _("unrecognized DW_MACFINO opcode 0x%x"),
20994 defn = opcode_definitions[opcode];
20995 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20996 defn += bytes_read;
20998 for (i = 0; i < arg; ++i)
21000 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
21002 if (mac_ptr == NULL)
21004 /* skip_form_bytes already issued the complaint. */
21012 /* A helper function which parses the header of a macro section.
21013 If the macro section is the extended (for now called "GNU") type,
21014 then this updates *OFFSET_SIZE. Returns a pointer to just after
21015 the header, or issues a complaint and returns NULL on error. */
21017 static const gdb_byte *
21018 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21020 const gdb_byte *mac_ptr,
21021 unsigned int *offset_size,
21022 int section_is_gnu)
21024 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21026 if (section_is_gnu)
21028 unsigned int version, flags;
21030 version = read_2_bytes (abfd, mac_ptr);
21033 complaint (&symfile_complaints,
21034 _("unrecognized version `%d' in .debug_macro section"),
21040 flags = read_1_byte (abfd, mac_ptr);
21042 *offset_size = (flags & 1) ? 8 : 4;
21044 if ((flags & 2) != 0)
21045 /* We don't need the line table offset. */
21046 mac_ptr += *offset_size;
21048 /* Vendor opcode descriptions. */
21049 if ((flags & 4) != 0)
21051 unsigned int i, count;
21053 count = read_1_byte (abfd, mac_ptr);
21055 for (i = 0; i < count; ++i)
21057 unsigned int opcode, bytes_read;
21060 opcode = read_1_byte (abfd, mac_ptr);
21062 opcode_definitions[opcode] = mac_ptr;
21063 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21064 mac_ptr += bytes_read;
21073 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21074 including DW_MACRO_GNU_transparent_include. */
21077 dwarf_decode_macro_bytes (bfd *abfd,
21078 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21079 struct macro_source_file *current_file,
21080 struct line_header *lh,
21081 struct dwarf2_section_info *section,
21082 int section_is_gnu, int section_is_dwz,
21083 unsigned int offset_size,
21084 htab_t include_hash)
21086 struct objfile *objfile = dwarf2_per_objfile->objfile;
21087 enum dwarf_macro_record_type macinfo_type;
21088 int at_commandline;
21089 const gdb_byte *opcode_definitions[256];
21091 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21092 &offset_size, section_is_gnu);
21093 if (mac_ptr == NULL)
21095 /* We already issued a complaint. */
21099 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21100 GDB is still reading the definitions from command line. First
21101 DW_MACINFO_start_file will need to be ignored as it was already executed
21102 to create CURRENT_FILE for the main source holding also the command line
21103 definitions. On first met DW_MACINFO_start_file this flag is reset to
21104 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21106 at_commandline = 1;
21110 /* Do we at least have room for a macinfo type byte? */
21111 if (mac_ptr >= mac_end)
21113 dwarf2_section_buffer_overflow_complaint (section);
21117 macinfo_type = read_1_byte (abfd, mac_ptr);
21120 /* Note that we rely on the fact that the corresponding GNU and
21121 DWARF constants are the same. */
21122 switch (macinfo_type)
21124 /* A zero macinfo type indicates the end of the macro
21129 case DW_MACRO_GNU_define:
21130 case DW_MACRO_GNU_undef:
21131 case DW_MACRO_GNU_define_indirect:
21132 case DW_MACRO_GNU_undef_indirect:
21133 case DW_MACRO_GNU_define_indirect_alt:
21134 case DW_MACRO_GNU_undef_indirect_alt:
21136 unsigned int bytes_read;
21141 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21142 mac_ptr += bytes_read;
21144 if (macinfo_type == DW_MACRO_GNU_define
21145 || macinfo_type == DW_MACRO_GNU_undef)
21147 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21148 mac_ptr += bytes_read;
21152 LONGEST str_offset;
21154 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21155 mac_ptr += offset_size;
21157 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21158 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21161 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21163 body = read_indirect_string_from_dwz (dwz, str_offset);
21166 body = read_indirect_string_at_offset (abfd, str_offset);
21169 is_define = (macinfo_type == DW_MACRO_GNU_define
21170 || macinfo_type == DW_MACRO_GNU_define_indirect
21171 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21172 if (! current_file)
21174 /* DWARF violation as no main source is present. */
21175 complaint (&symfile_complaints,
21176 _("debug info with no main source gives macro %s "
21178 is_define ? _("definition") : _("undefinition"),
21182 if ((line == 0 && !at_commandline)
21183 || (line != 0 && at_commandline))
21184 complaint (&symfile_complaints,
21185 _("debug info gives %s macro %s with %s line %d: %s"),
21186 at_commandline ? _("command-line") : _("in-file"),
21187 is_define ? _("definition") : _("undefinition"),
21188 line == 0 ? _("zero") : _("non-zero"), line, body);
21191 parse_macro_definition (current_file, line, body);
21194 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21195 || macinfo_type == DW_MACRO_GNU_undef_indirect
21196 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21197 macro_undef (current_file, line, body);
21202 case DW_MACRO_GNU_start_file:
21204 unsigned int bytes_read;
21207 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21208 mac_ptr += bytes_read;
21209 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21210 mac_ptr += bytes_read;
21212 if ((line == 0 && !at_commandline)
21213 || (line != 0 && at_commandline))
21214 complaint (&symfile_complaints,
21215 _("debug info gives source %d included "
21216 "from %s at %s line %d"),
21217 file, at_commandline ? _("command-line") : _("file"),
21218 line == 0 ? _("zero") : _("non-zero"), line);
21220 if (at_commandline)
21222 /* This DW_MACRO_GNU_start_file was executed in the
21224 at_commandline = 0;
21227 current_file = macro_start_file (file, line, current_file, lh);
21231 case DW_MACRO_GNU_end_file:
21232 if (! current_file)
21233 complaint (&symfile_complaints,
21234 _("macro debug info has an unmatched "
21235 "`close_file' directive"));
21238 current_file = current_file->included_by;
21239 if (! current_file)
21241 enum dwarf_macro_record_type next_type;
21243 /* GCC circa March 2002 doesn't produce the zero
21244 type byte marking the end of the compilation
21245 unit. Complain if it's not there, but exit no
21248 /* Do we at least have room for a macinfo type byte? */
21249 if (mac_ptr >= mac_end)
21251 dwarf2_section_buffer_overflow_complaint (section);
21255 /* We don't increment mac_ptr here, so this is just
21257 next_type = read_1_byte (abfd, mac_ptr);
21258 if (next_type != 0)
21259 complaint (&symfile_complaints,
21260 _("no terminating 0-type entry for "
21261 "macros in `.debug_macinfo' section"));
21268 case DW_MACRO_GNU_transparent_include:
21269 case DW_MACRO_GNU_transparent_include_alt:
21273 bfd *include_bfd = abfd;
21274 struct dwarf2_section_info *include_section = section;
21275 struct dwarf2_section_info alt_section;
21276 const gdb_byte *include_mac_end = mac_end;
21277 int is_dwz = section_is_dwz;
21278 const gdb_byte *new_mac_ptr;
21280 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21281 mac_ptr += offset_size;
21283 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21285 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21287 dwarf2_read_section (objfile, &dwz->macro);
21289 include_section = &dwz->macro;
21290 include_bfd = get_section_bfd_owner (include_section);
21291 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21295 new_mac_ptr = include_section->buffer + offset;
21296 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21300 /* This has actually happened; see
21301 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21302 complaint (&symfile_complaints,
21303 _("recursive DW_MACRO_GNU_transparent_include in "
21304 ".debug_macro section"));
21308 *slot = (void *) new_mac_ptr;
21310 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21311 include_mac_end, current_file, lh,
21312 section, section_is_gnu, is_dwz,
21313 offset_size, include_hash);
21315 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21320 case DW_MACINFO_vendor_ext:
21321 if (!section_is_gnu)
21323 unsigned int bytes_read;
21326 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21327 mac_ptr += bytes_read;
21328 read_direct_string (abfd, mac_ptr, &bytes_read);
21329 mac_ptr += bytes_read;
21331 /* We don't recognize any vendor extensions. */
21337 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21338 mac_ptr, mac_end, abfd, offset_size,
21340 if (mac_ptr == NULL)
21344 } while (macinfo_type != 0);
21348 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21349 int section_is_gnu)
21351 struct objfile *objfile = dwarf2_per_objfile->objfile;
21352 struct line_header *lh = cu->line_header;
21354 const gdb_byte *mac_ptr, *mac_end;
21355 struct macro_source_file *current_file = 0;
21356 enum dwarf_macro_record_type macinfo_type;
21357 unsigned int offset_size = cu->header.offset_size;
21358 const gdb_byte *opcode_definitions[256];
21359 struct cleanup *cleanup;
21360 htab_t include_hash;
21362 struct dwarf2_section_info *section;
21363 const char *section_name;
21365 if (cu->dwo_unit != NULL)
21367 if (section_is_gnu)
21369 section = &cu->dwo_unit->dwo_file->sections.macro;
21370 section_name = ".debug_macro.dwo";
21374 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21375 section_name = ".debug_macinfo.dwo";
21380 if (section_is_gnu)
21382 section = &dwarf2_per_objfile->macro;
21383 section_name = ".debug_macro";
21387 section = &dwarf2_per_objfile->macinfo;
21388 section_name = ".debug_macinfo";
21392 dwarf2_read_section (objfile, section);
21393 if (section->buffer == NULL)
21395 complaint (&symfile_complaints, _("missing %s section"), section_name);
21398 abfd = get_section_bfd_owner (section);
21400 /* First pass: Find the name of the base filename.
21401 This filename is needed in order to process all macros whose definition
21402 (or undefinition) comes from the command line. These macros are defined
21403 before the first DW_MACINFO_start_file entry, and yet still need to be
21404 associated to the base file.
21406 To determine the base file name, we scan the macro definitions until we
21407 reach the first DW_MACINFO_start_file entry. We then initialize
21408 CURRENT_FILE accordingly so that any macro definition found before the
21409 first DW_MACINFO_start_file can still be associated to the base file. */
21411 mac_ptr = section->buffer + offset;
21412 mac_end = section->buffer + section->size;
21414 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21415 &offset_size, section_is_gnu);
21416 if (mac_ptr == NULL)
21418 /* We already issued a complaint. */
21424 /* Do we at least have room for a macinfo type byte? */
21425 if (mac_ptr >= mac_end)
21427 /* Complaint is printed during the second pass as GDB will probably
21428 stop the first pass earlier upon finding
21429 DW_MACINFO_start_file. */
21433 macinfo_type = read_1_byte (abfd, mac_ptr);
21436 /* Note that we rely on the fact that the corresponding GNU and
21437 DWARF constants are the same. */
21438 switch (macinfo_type)
21440 /* A zero macinfo type indicates the end of the macro
21445 case DW_MACRO_GNU_define:
21446 case DW_MACRO_GNU_undef:
21447 /* Only skip the data by MAC_PTR. */
21449 unsigned int bytes_read;
21451 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21452 mac_ptr += bytes_read;
21453 read_direct_string (abfd, mac_ptr, &bytes_read);
21454 mac_ptr += bytes_read;
21458 case DW_MACRO_GNU_start_file:
21460 unsigned int bytes_read;
21463 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21464 mac_ptr += bytes_read;
21465 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21466 mac_ptr += bytes_read;
21468 current_file = macro_start_file (file, line, current_file, lh);
21472 case DW_MACRO_GNU_end_file:
21473 /* No data to skip by MAC_PTR. */
21476 case DW_MACRO_GNU_define_indirect:
21477 case DW_MACRO_GNU_undef_indirect:
21478 case DW_MACRO_GNU_define_indirect_alt:
21479 case DW_MACRO_GNU_undef_indirect_alt:
21481 unsigned int bytes_read;
21483 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21484 mac_ptr += bytes_read;
21485 mac_ptr += offset_size;
21489 case DW_MACRO_GNU_transparent_include:
21490 case DW_MACRO_GNU_transparent_include_alt:
21491 /* Note that, according to the spec, a transparent include
21492 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21493 skip this opcode. */
21494 mac_ptr += offset_size;
21497 case DW_MACINFO_vendor_ext:
21498 /* Only skip the data by MAC_PTR. */
21499 if (!section_is_gnu)
21501 unsigned int bytes_read;
21503 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21504 mac_ptr += bytes_read;
21505 read_direct_string (abfd, mac_ptr, &bytes_read);
21506 mac_ptr += bytes_read;
21511 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21512 mac_ptr, mac_end, abfd, offset_size,
21514 if (mac_ptr == NULL)
21518 } while (macinfo_type != 0 && current_file == NULL);
21520 /* Second pass: Process all entries.
21522 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21523 command-line macro definitions/undefinitions. This flag is unset when we
21524 reach the first DW_MACINFO_start_file entry. */
21526 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21527 NULL, xcalloc, xfree);
21528 cleanup = make_cleanup_htab_delete (include_hash);
21529 mac_ptr = section->buffer + offset;
21530 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21531 *slot = (void *) mac_ptr;
21532 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21533 current_file, lh, section,
21534 section_is_gnu, 0, offset_size, include_hash);
21535 do_cleanups (cleanup);
21538 /* Check if the attribute's form is a DW_FORM_block*
21539 if so return true else false. */
21542 attr_form_is_block (const struct attribute *attr)
21544 return (attr == NULL ? 0 :
21545 attr->form == DW_FORM_block1
21546 || attr->form == DW_FORM_block2
21547 || attr->form == DW_FORM_block4
21548 || attr->form == DW_FORM_block
21549 || attr->form == DW_FORM_exprloc);
21552 /* Return non-zero if ATTR's value is a section offset --- classes
21553 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21554 You may use DW_UNSND (attr) to retrieve such offsets.
21556 Section 7.5.4, "Attribute Encodings", explains that no attribute
21557 may have a value that belongs to more than one of these classes; it
21558 would be ambiguous if we did, because we use the same forms for all
21562 attr_form_is_section_offset (const struct attribute *attr)
21564 return (attr->form == DW_FORM_data4
21565 || attr->form == DW_FORM_data8
21566 || attr->form == DW_FORM_sec_offset);
21569 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21570 zero otherwise. When this function returns true, you can apply
21571 dwarf2_get_attr_constant_value to it.
21573 However, note that for some attributes you must check
21574 attr_form_is_section_offset before using this test. DW_FORM_data4
21575 and DW_FORM_data8 are members of both the constant class, and of
21576 the classes that contain offsets into other debug sections
21577 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21578 that, if an attribute's can be either a constant or one of the
21579 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21580 taken as section offsets, not constants. */
21583 attr_form_is_constant (const struct attribute *attr)
21585 switch (attr->form)
21587 case DW_FORM_sdata:
21588 case DW_FORM_udata:
21589 case DW_FORM_data1:
21590 case DW_FORM_data2:
21591 case DW_FORM_data4:
21592 case DW_FORM_data8:
21600 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21601 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21604 attr_form_is_ref (const struct attribute *attr)
21606 switch (attr->form)
21608 case DW_FORM_ref_addr:
21613 case DW_FORM_ref_udata:
21614 case DW_FORM_GNU_ref_alt:
21621 /* Return the .debug_loc section to use for CU.
21622 For DWO files use .debug_loc.dwo. */
21624 static struct dwarf2_section_info *
21625 cu_debug_loc_section (struct dwarf2_cu *cu)
21628 return &cu->dwo_unit->dwo_file->sections.loc;
21629 return &dwarf2_per_objfile->loc;
21632 /* A helper function that fills in a dwarf2_loclist_baton. */
21635 fill_in_loclist_baton (struct dwarf2_cu *cu,
21636 struct dwarf2_loclist_baton *baton,
21637 const struct attribute *attr)
21639 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21641 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21643 baton->per_cu = cu->per_cu;
21644 gdb_assert (baton->per_cu);
21645 /* We don't know how long the location list is, but make sure we
21646 don't run off the edge of the section. */
21647 baton->size = section->size - DW_UNSND (attr);
21648 baton->data = section->buffer + DW_UNSND (attr);
21649 baton->base_address = cu->base_address;
21650 baton->from_dwo = cu->dwo_unit != NULL;
21654 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21655 struct dwarf2_cu *cu, int is_block)
21657 struct objfile *objfile = dwarf2_per_objfile->objfile;
21658 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21660 if (attr_form_is_section_offset (attr)
21661 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21662 the section. If so, fall through to the complaint in the
21664 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21666 struct dwarf2_loclist_baton *baton;
21668 baton = obstack_alloc (&objfile->objfile_obstack,
21669 sizeof (struct dwarf2_loclist_baton));
21671 fill_in_loclist_baton (cu, baton, attr);
21673 if (cu->base_known == 0)
21674 complaint (&symfile_complaints,
21675 _("Location list used without "
21676 "specifying the CU base address."));
21678 SYMBOL_ACLASS_INDEX (sym) = (is_block
21679 ? dwarf2_loclist_block_index
21680 : dwarf2_loclist_index);
21681 SYMBOL_LOCATION_BATON (sym) = baton;
21685 struct dwarf2_locexpr_baton *baton;
21687 baton = obstack_alloc (&objfile->objfile_obstack,
21688 sizeof (struct dwarf2_locexpr_baton));
21689 baton->per_cu = cu->per_cu;
21690 gdb_assert (baton->per_cu);
21692 if (attr_form_is_block (attr))
21694 /* Note that we're just copying the block's data pointer
21695 here, not the actual data. We're still pointing into the
21696 info_buffer for SYM's objfile; right now we never release
21697 that buffer, but when we do clean up properly this may
21699 baton->size = DW_BLOCK (attr)->size;
21700 baton->data = DW_BLOCK (attr)->data;
21704 dwarf2_invalid_attrib_class_complaint ("location description",
21705 SYMBOL_NATURAL_NAME (sym));
21709 SYMBOL_ACLASS_INDEX (sym) = (is_block
21710 ? dwarf2_locexpr_block_index
21711 : dwarf2_locexpr_index);
21712 SYMBOL_LOCATION_BATON (sym) = baton;
21716 /* Return the OBJFILE associated with the compilation unit CU. If CU
21717 came from a separate debuginfo file, then the master objfile is
21721 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21723 struct objfile *objfile = per_cu->objfile;
21725 /* Return the master objfile, so that we can report and look up the
21726 correct file containing this variable. */
21727 if (objfile->separate_debug_objfile_backlink)
21728 objfile = objfile->separate_debug_objfile_backlink;
21733 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21734 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21735 CU_HEADERP first. */
21737 static const struct comp_unit_head *
21738 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21739 struct dwarf2_per_cu_data *per_cu)
21741 const gdb_byte *info_ptr;
21744 return &per_cu->cu->header;
21746 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21748 memset (cu_headerp, 0, sizeof (*cu_headerp));
21749 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21754 /* Return the address size given in the compilation unit header for CU. */
21757 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21759 struct comp_unit_head cu_header_local;
21760 const struct comp_unit_head *cu_headerp;
21762 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21764 return cu_headerp->addr_size;
21767 /* Return the offset size given in the compilation unit header for CU. */
21770 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21772 struct comp_unit_head cu_header_local;
21773 const struct comp_unit_head *cu_headerp;
21775 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21777 return cu_headerp->offset_size;
21780 /* See its dwarf2loc.h declaration. */
21783 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21785 struct comp_unit_head cu_header_local;
21786 const struct comp_unit_head *cu_headerp;
21788 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21790 if (cu_headerp->version == 2)
21791 return cu_headerp->addr_size;
21793 return cu_headerp->offset_size;
21796 /* Return the text offset of the CU. The returned offset comes from
21797 this CU's objfile. If this objfile came from a separate debuginfo
21798 file, then the offset may be different from the corresponding
21799 offset in the parent objfile. */
21802 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21804 struct objfile *objfile = per_cu->objfile;
21806 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21809 /* Locate the .debug_info compilation unit from CU's objfile which contains
21810 the DIE at OFFSET. Raises an error on failure. */
21812 static struct dwarf2_per_cu_data *
21813 dwarf2_find_containing_comp_unit (sect_offset offset,
21814 unsigned int offset_in_dwz,
21815 struct objfile *objfile)
21817 struct dwarf2_per_cu_data *this_cu;
21819 const sect_offset *cu_off;
21822 high = dwarf2_per_objfile->n_comp_units - 1;
21825 struct dwarf2_per_cu_data *mid_cu;
21826 int mid = low + (high - low) / 2;
21828 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21829 cu_off = &mid_cu->offset;
21830 if (mid_cu->is_dwz > offset_in_dwz
21831 || (mid_cu->is_dwz == offset_in_dwz
21832 && cu_off->sect_off >= offset.sect_off))
21837 gdb_assert (low == high);
21838 this_cu = dwarf2_per_objfile->all_comp_units[low];
21839 cu_off = &this_cu->offset;
21840 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21842 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21843 error (_("Dwarf Error: could not find partial DIE containing "
21844 "offset 0x%lx [in module %s]"),
21845 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21847 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21848 <= offset.sect_off);
21849 return dwarf2_per_objfile->all_comp_units[low-1];
21853 this_cu = dwarf2_per_objfile->all_comp_units[low];
21854 if (low == dwarf2_per_objfile->n_comp_units - 1
21855 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21856 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21857 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21862 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21865 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21867 memset (cu, 0, sizeof (*cu));
21869 cu->per_cu = per_cu;
21870 cu->objfile = per_cu->objfile;
21871 obstack_init (&cu->comp_unit_obstack);
21874 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21877 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21878 enum language pretend_language)
21880 struct attribute *attr;
21882 /* Set the language we're debugging. */
21883 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21885 set_cu_language (DW_UNSND (attr), cu);
21888 cu->language = pretend_language;
21889 cu->language_defn = language_def (cu->language);
21892 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21894 cu->producer = DW_STRING (attr);
21897 /* Release one cached compilation unit, CU. We unlink it from the tree
21898 of compilation units, but we don't remove it from the read_in_chain;
21899 the caller is responsible for that.
21900 NOTE: DATA is a void * because this function is also used as a
21901 cleanup routine. */
21904 free_heap_comp_unit (void *data)
21906 struct dwarf2_cu *cu = data;
21908 gdb_assert (cu->per_cu != NULL);
21909 cu->per_cu->cu = NULL;
21912 obstack_free (&cu->comp_unit_obstack, NULL);
21917 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21918 when we're finished with it. We can't free the pointer itself, but be
21919 sure to unlink it from the cache. Also release any associated storage. */
21922 free_stack_comp_unit (void *data)
21924 struct dwarf2_cu *cu = data;
21926 gdb_assert (cu->per_cu != NULL);
21927 cu->per_cu->cu = NULL;
21930 obstack_free (&cu->comp_unit_obstack, NULL);
21931 cu->partial_dies = NULL;
21934 /* Free all cached compilation units. */
21937 free_cached_comp_units (void *data)
21939 struct dwarf2_per_cu_data *per_cu, **last_chain;
21941 per_cu = dwarf2_per_objfile->read_in_chain;
21942 last_chain = &dwarf2_per_objfile->read_in_chain;
21943 while (per_cu != NULL)
21945 struct dwarf2_per_cu_data *next_cu;
21947 next_cu = per_cu->cu->read_in_chain;
21949 free_heap_comp_unit (per_cu->cu);
21950 *last_chain = next_cu;
21956 /* Increase the age counter on each cached compilation unit, and free
21957 any that are too old. */
21960 age_cached_comp_units (void)
21962 struct dwarf2_per_cu_data *per_cu, **last_chain;
21964 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21965 per_cu = dwarf2_per_objfile->read_in_chain;
21966 while (per_cu != NULL)
21968 per_cu->cu->last_used ++;
21969 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21970 dwarf2_mark (per_cu->cu);
21971 per_cu = per_cu->cu->read_in_chain;
21974 per_cu = dwarf2_per_objfile->read_in_chain;
21975 last_chain = &dwarf2_per_objfile->read_in_chain;
21976 while (per_cu != NULL)
21978 struct dwarf2_per_cu_data *next_cu;
21980 next_cu = per_cu->cu->read_in_chain;
21982 if (!per_cu->cu->mark)
21984 free_heap_comp_unit (per_cu->cu);
21985 *last_chain = next_cu;
21988 last_chain = &per_cu->cu->read_in_chain;
21994 /* Remove a single compilation unit from the cache. */
21997 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21999 struct dwarf2_per_cu_data *per_cu, **last_chain;
22001 per_cu = dwarf2_per_objfile->read_in_chain;
22002 last_chain = &dwarf2_per_objfile->read_in_chain;
22003 while (per_cu != NULL)
22005 struct dwarf2_per_cu_data *next_cu;
22007 next_cu = per_cu->cu->read_in_chain;
22009 if (per_cu == target_per_cu)
22011 free_heap_comp_unit (per_cu->cu);
22013 *last_chain = next_cu;
22017 last_chain = &per_cu->cu->read_in_chain;
22023 /* Release all extra memory associated with OBJFILE. */
22026 dwarf2_free_objfile (struct objfile *objfile)
22028 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22030 if (dwarf2_per_objfile == NULL)
22033 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22034 free_cached_comp_units (NULL);
22036 if (dwarf2_per_objfile->quick_file_names_table)
22037 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22039 if (dwarf2_per_objfile->line_header_hash)
22040 htab_delete (dwarf2_per_objfile->line_header_hash);
22042 /* Everything else should be on the objfile obstack. */
22045 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22046 We store these in a hash table separate from the DIEs, and preserve them
22047 when the DIEs are flushed out of cache.
22049 The CU "per_cu" pointer is needed because offset alone is not enough to
22050 uniquely identify the type. A file may have multiple .debug_types sections,
22051 or the type may come from a DWO file. Furthermore, while it's more logical
22052 to use per_cu->section+offset, with Fission the section with the data is in
22053 the DWO file but we don't know that section at the point we need it.
22054 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22055 because we can enter the lookup routine, get_die_type_at_offset, from
22056 outside this file, and thus won't necessarily have PER_CU->cu.
22057 Fortunately, PER_CU is stable for the life of the objfile. */
22059 struct dwarf2_per_cu_offset_and_type
22061 const struct dwarf2_per_cu_data *per_cu;
22062 sect_offset offset;
22066 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22069 per_cu_offset_and_type_hash (const void *item)
22071 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22073 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22076 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22079 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22081 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22082 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22084 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22085 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22088 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22089 table if necessary. For convenience, return TYPE.
22091 The DIEs reading must have careful ordering to:
22092 * Not cause infite loops trying to read in DIEs as a prerequisite for
22093 reading current DIE.
22094 * Not trying to dereference contents of still incompletely read in types
22095 while reading in other DIEs.
22096 * Enable referencing still incompletely read in types just by a pointer to
22097 the type without accessing its fields.
22099 Therefore caller should follow these rules:
22100 * Try to fetch any prerequisite types we may need to build this DIE type
22101 before building the type and calling set_die_type.
22102 * After building type call set_die_type for current DIE as soon as
22103 possible before fetching more types to complete the current type.
22104 * Make the type as complete as possible before fetching more types. */
22106 static struct type *
22107 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22109 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22110 struct objfile *objfile = cu->objfile;
22111 struct attribute *attr;
22112 struct dynamic_prop prop;
22114 /* For Ada types, make sure that the gnat-specific data is always
22115 initialized (if not already set). There are a few types where
22116 we should not be doing so, because the type-specific area is
22117 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22118 where the type-specific area is used to store the floatformat).
22119 But this is not a problem, because the gnat-specific information
22120 is actually not needed for these types. */
22121 if (need_gnat_info (cu)
22122 && TYPE_CODE (type) != TYPE_CODE_FUNC
22123 && TYPE_CODE (type) != TYPE_CODE_FLT
22124 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22125 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22126 && TYPE_CODE (type) != TYPE_CODE_METHOD
22127 && !HAVE_GNAT_AUX_INFO (type))
22128 INIT_GNAT_SPECIFIC (type);
22130 /* Read DW_AT_data_location and set in type. */
22131 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22132 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22133 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22135 if (dwarf2_per_objfile->die_type_hash == NULL)
22137 dwarf2_per_objfile->die_type_hash =
22138 htab_create_alloc_ex (127,
22139 per_cu_offset_and_type_hash,
22140 per_cu_offset_and_type_eq,
22142 &objfile->objfile_obstack,
22143 hashtab_obstack_allocate,
22144 dummy_obstack_deallocate);
22147 ofs.per_cu = cu->per_cu;
22148 ofs.offset = die->offset;
22150 slot = (struct dwarf2_per_cu_offset_and_type **)
22151 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22153 complaint (&symfile_complaints,
22154 _("A problem internal to GDB: DIE 0x%x has type already set"),
22155 die->offset.sect_off);
22156 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22161 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22162 or return NULL if the die does not have a saved type. */
22164 static struct type *
22165 get_die_type_at_offset (sect_offset offset,
22166 struct dwarf2_per_cu_data *per_cu)
22168 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22170 if (dwarf2_per_objfile->die_type_hash == NULL)
22173 ofs.per_cu = per_cu;
22174 ofs.offset = offset;
22175 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22182 /* Look up the type for DIE in CU in die_type_hash,
22183 or return NULL if DIE does not have a saved type. */
22185 static struct type *
22186 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22188 return get_die_type_at_offset (die->offset, cu->per_cu);
22191 /* Add a dependence relationship from CU to REF_PER_CU. */
22194 dwarf2_add_dependence (struct dwarf2_cu *cu,
22195 struct dwarf2_per_cu_data *ref_per_cu)
22199 if (cu->dependencies == NULL)
22201 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22202 NULL, &cu->comp_unit_obstack,
22203 hashtab_obstack_allocate,
22204 dummy_obstack_deallocate);
22206 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22208 *slot = ref_per_cu;
22211 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22212 Set the mark field in every compilation unit in the
22213 cache that we must keep because we are keeping CU. */
22216 dwarf2_mark_helper (void **slot, void *data)
22218 struct dwarf2_per_cu_data *per_cu;
22220 per_cu = (struct dwarf2_per_cu_data *) *slot;
22222 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22223 reading of the chain. As such dependencies remain valid it is not much
22224 useful to track and undo them during QUIT cleanups. */
22225 if (per_cu->cu == NULL)
22228 if (per_cu->cu->mark)
22230 per_cu->cu->mark = 1;
22232 if (per_cu->cu->dependencies != NULL)
22233 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22238 /* Set the mark field in CU and in every other compilation unit in the
22239 cache that we must keep because we are keeping CU. */
22242 dwarf2_mark (struct dwarf2_cu *cu)
22247 if (cu->dependencies != NULL)
22248 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22252 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22256 per_cu->cu->mark = 0;
22257 per_cu = per_cu->cu->read_in_chain;
22261 /* Trivial hash function for partial_die_info: the hash value of a DIE
22262 is its offset in .debug_info for this objfile. */
22265 partial_die_hash (const void *item)
22267 const struct partial_die_info *part_die = item;
22269 return part_die->offset.sect_off;
22272 /* Trivial comparison function for partial_die_info structures: two DIEs
22273 are equal if they have the same offset. */
22276 partial_die_eq (const void *item_lhs, const void *item_rhs)
22278 const struct partial_die_info *part_die_lhs = item_lhs;
22279 const struct partial_die_info *part_die_rhs = item_rhs;
22281 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22284 static struct cmd_list_element *set_dwarf2_cmdlist;
22285 static struct cmd_list_element *show_dwarf2_cmdlist;
22288 set_dwarf2_cmd (char *args, int from_tty)
22290 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22295 show_dwarf2_cmd (char *args, int from_tty)
22297 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22300 /* Free data associated with OBJFILE, if necessary. */
22303 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22305 struct dwarf2_per_objfile *data = d;
22308 /* Make sure we don't accidentally use dwarf2_per_objfile while
22310 dwarf2_per_objfile = NULL;
22312 for (ix = 0; ix < data->n_comp_units; ++ix)
22313 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22315 for (ix = 0; ix < data->n_type_units; ++ix)
22316 VEC_free (dwarf2_per_cu_ptr,
22317 data->all_type_units[ix]->per_cu.imported_symtabs);
22318 xfree (data->all_type_units);
22320 VEC_free (dwarf2_section_info_def, data->types);
22322 if (data->dwo_files)
22323 free_dwo_files (data->dwo_files, objfile);
22324 if (data->dwp_file)
22325 gdb_bfd_unref (data->dwp_file->dbfd);
22327 if (data->dwz_file && data->dwz_file->dwz_bfd)
22328 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22332 /* The "save gdb-index" command. */
22334 /* The contents of the hash table we create when building the string
22336 struct strtab_entry
22338 offset_type offset;
22342 /* Hash function for a strtab_entry.
22344 Function is used only during write_hash_table so no index format backward
22345 compatibility is needed. */
22348 hash_strtab_entry (const void *e)
22350 const struct strtab_entry *entry = e;
22351 return mapped_index_string_hash (INT_MAX, entry->str);
22354 /* Equality function for a strtab_entry. */
22357 eq_strtab_entry (const void *a, const void *b)
22359 const struct strtab_entry *ea = a;
22360 const struct strtab_entry *eb = b;
22361 return !strcmp (ea->str, eb->str);
22364 /* Create a strtab_entry hash table. */
22367 create_strtab (void)
22369 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22370 xfree, xcalloc, xfree);
22373 /* Add a string to the constant pool. Return the string's offset in
22377 add_string (htab_t table, struct obstack *cpool, const char *str)
22380 struct strtab_entry entry;
22381 struct strtab_entry *result;
22384 slot = htab_find_slot (table, &entry, INSERT);
22389 result = XNEW (struct strtab_entry);
22390 result->offset = obstack_object_size (cpool);
22392 obstack_grow_str0 (cpool, str);
22395 return result->offset;
22398 /* An entry in the symbol table. */
22399 struct symtab_index_entry
22401 /* The name of the symbol. */
22403 /* The offset of the name in the constant pool. */
22404 offset_type index_offset;
22405 /* A sorted vector of the indices of all the CUs that hold an object
22407 VEC (offset_type) *cu_indices;
22410 /* The symbol table. This is a power-of-2-sized hash table. */
22411 struct mapped_symtab
22413 offset_type n_elements;
22415 struct symtab_index_entry **data;
22418 /* Hash function for a symtab_index_entry. */
22421 hash_symtab_entry (const void *e)
22423 const struct symtab_index_entry *entry = e;
22424 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22425 sizeof (offset_type) * VEC_length (offset_type,
22426 entry->cu_indices),
22430 /* Equality function for a symtab_index_entry. */
22433 eq_symtab_entry (const void *a, const void *b)
22435 const struct symtab_index_entry *ea = a;
22436 const struct symtab_index_entry *eb = b;
22437 int len = VEC_length (offset_type, ea->cu_indices);
22438 if (len != VEC_length (offset_type, eb->cu_indices))
22440 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22441 VEC_address (offset_type, eb->cu_indices),
22442 sizeof (offset_type) * len);
22445 /* Destroy a symtab_index_entry. */
22448 delete_symtab_entry (void *p)
22450 struct symtab_index_entry *entry = p;
22451 VEC_free (offset_type, entry->cu_indices);
22455 /* Create a hash table holding symtab_index_entry objects. */
22458 create_symbol_hash_table (void)
22460 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22461 delete_symtab_entry, xcalloc, xfree);
22464 /* Create a new mapped symtab object. */
22466 static struct mapped_symtab *
22467 create_mapped_symtab (void)
22469 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22470 symtab->n_elements = 0;
22471 symtab->size = 1024;
22472 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22476 /* Destroy a mapped_symtab. */
22479 cleanup_mapped_symtab (void *p)
22481 struct mapped_symtab *symtab = p;
22482 /* The contents of the array are freed when the other hash table is
22484 xfree (symtab->data);
22488 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22491 Function is used only during write_hash_table so no index format backward
22492 compatibility is needed. */
22494 static struct symtab_index_entry **
22495 find_slot (struct mapped_symtab *symtab, const char *name)
22497 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22499 index = hash & (symtab->size - 1);
22500 step = ((hash * 17) & (symtab->size - 1)) | 1;
22504 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22505 return &symtab->data[index];
22506 index = (index + step) & (symtab->size - 1);
22510 /* Expand SYMTAB's hash table. */
22513 hash_expand (struct mapped_symtab *symtab)
22515 offset_type old_size = symtab->size;
22517 struct symtab_index_entry **old_entries = symtab->data;
22520 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22522 for (i = 0; i < old_size; ++i)
22524 if (old_entries[i])
22526 struct symtab_index_entry **slot = find_slot (symtab,
22527 old_entries[i]->name);
22528 *slot = old_entries[i];
22532 xfree (old_entries);
22535 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22536 CU_INDEX is the index of the CU in which the symbol appears.
22537 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22540 add_index_entry (struct mapped_symtab *symtab, const char *name,
22541 int is_static, gdb_index_symbol_kind kind,
22542 offset_type cu_index)
22544 struct symtab_index_entry **slot;
22545 offset_type cu_index_and_attrs;
22547 ++symtab->n_elements;
22548 if (4 * symtab->n_elements / 3 >= symtab->size)
22549 hash_expand (symtab);
22551 slot = find_slot (symtab, name);
22554 *slot = XNEW (struct symtab_index_entry);
22555 (*slot)->name = name;
22556 /* index_offset is set later. */
22557 (*slot)->cu_indices = NULL;
22560 cu_index_and_attrs = 0;
22561 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22562 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22563 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22565 /* We don't want to record an index value twice as we want to avoid the
22567 We process all global symbols and then all static symbols
22568 (which would allow us to avoid the duplication by only having to check
22569 the last entry pushed), but a symbol could have multiple kinds in one CU.
22570 To keep things simple we don't worry about the duplication here and
22571 sort and uniqufy the list after we've processed all symbols. */
22572 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22575 /* qsort helper routine for uniquify_cu_indices. */
22578 offset_type_compare (const void *ap, const void *bp)
22580 offset_type a = *(offset_type *) ap;
22581 offset_type b = *(offset_type *) bp;
22583 return (a > b) - (b > a);
22586 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22589 uniquify_cu_indices (struct mapped_symtab *symtab)
22593 for (i = 0; i < symtab->size; ++i)
22595 struct symtab_index_entry *entry = symtab->data[i];
22598 && entry->cu_indices != NULL)
22600 unsigned int next_to_insert, next_to_check;
22601 offset_type last_value;
22603 qsort (VEC_address (offset_type, entry->cu_indices),
22604 VEC_length (offset_type, entry->cu_indices),
22605 sizeof (offset_type), offset_type_compare);
22607 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22608 next_to_insert = 1;
22609 for (next_to_check = 1;
22610 next_to_check < VEC_length (offset_type, entry->cu_indices);
22613 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22616 last_value = VEC_index (offset_type, entry->cu_indices,
22618 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22623 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22628 /* Add a vector of indices to the constant pool. */
22631 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22632 struct symtab_index_entry *entry)
22636 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22639 offset_type len = VEC_length (offset_type, entry->cu_indices);
22640 offset_type val = MAYBE_SWAP (len);
22645 entry->index_offset = obstack_object_size (cpool);
22647 obstack_grow (cpool, &val, sizeof (val));
22649 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22652 val = MAYBE_SWAP (iter);
22653 obstack_grow (cpool, &val, sizeof (val));
22658 struct symtab_index_entry *old_entry = *slot;
22659 entry->index_offset = old_entry->index_offset;
22662 return entry->index_offset;
22665 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22666 constant pool entries going into the obstack CPOOL. */
22669 write_hash_table (struct mapped_symtab *symtab,
22670 struct obstack *output, struct obstack *cpool)
22673 htab_t symbol_hash_table;
22676 symbol_hash_table = create_symbol_hash_table ();
22677 str_table = create_strtab ();
22679 /* We add all the index vectors to the constant pool first, to
22680 ensure alignment is ok. */
22681 for (i = 0; i < symtab->size; ++i)
22683 if (symtab->data[i])
22684 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22687 /* Now write out the hash table. */
22688 for (i = 0; i < symtab->size; ++i)
22690 offset_type str_off, vec_off;
22692 if (symtab->data[i])
22694 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22695 vec_off = symtab->data[i]->index_offset;
22699 /* While 0 is a valid constant pool index, it is not valid
22700 to have 0 for both offsets. */
22705 str_off = MAYBE_SWAP (str_off);
22706 vec_off = MAYBE_SWAP (vec_off);
22708 obstack_grow (output, &str_off, sizeof (str_off));
22709 obstack_grow (output, &vec_off, sizeof (vec_off));
22712 htab_delete (str_table);
22713 htab_delete (symbol_hash_table);
22716 /* Struct to map psymtab to CU index in the index file. */
22717 struct psymtab_cu_index_map
22719 struct partial_symtab *psymtab;
22720 unsigned int cu_index;
22724 hash_psymtab_cu_index (const void *item)
22726 const struct psymtab_cu_index_map *map = item;
22728 return htab_hash_pointer (map->psymtab);
22732 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22734 const struct psymtab_cu_index_map *lhs = item_lhs;
22735 const struct psymtab_cu_index_map *rhs = item_rhs;
22737 return lhs->psymtab == rhs->psymtab;
22740 /* Helper struct for building the address table. */
22741 struct addrmap_index_data
22743 struct objfile *objfile;
22744 struct obstack *addr_obstack;
22745 htab_t cu_index_htab;
22747 /* Non-zero if the previous_* fields are valid.
22748 We can't write an entry until we see the next entry (since it is only then
22749 that we know the end of the entry). */
22750 int previous_valid;
22751 /* Index of the CU in the table of all CUs in the index file. */
22752 unsigned int previous_cu_index;
22753 /* Start address of the CU. */
22754 CORE_ADDR previous_cu_start;
22757 /* Write an address entry to OBSTACK. */
22760 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22761 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22763 offset_type cu_index_to_write;
22765 CORE_ADDR baseaddr;
22767 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22769 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22770 obstack_grow (obstack, addr, 8);
22771 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22772 obstack_grow (obstack, addr, 8);
22773 cu_index_to_write = MAYBE_SWAP (cu_index);
22774 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22777 /* Worker function for traversing an addrmap to build the address table. */
22780 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22782 struct addrmap_index_data *data = datap;
22783 struct partial_symtab *pst = obj;
22785 if (data->previous_valid)
22786 add_address_entry (data->objfile, data->addr_obstack,
22787 data->previous_cu_start, start_addr,
22788 data->previous_cu_index);
22790 data->previous_cu_start = start_addr;
22793 struct psymtab_cu_index_map find_map, *map;
22794 find_map.psymtab = pst;
22795 map = htab_find (data->cu_index_htab, &find_map);
22796 gdb_assert (map != NULL);
22797 data->previous_cu_index = map->cu_index;
22798 data->previous_valid = 1;
22801 data->previous_valid = 0;
22806 /* Write OBJFILE's address map to OBSTACK.
22807 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22808 in the index file. */
22811 write_address_map (struct objfile *objfile, struct obstack *obstack,
22812 htab_t cu_index_htab)
22814 struct addrmap_index_data addrmap_index_data;
22816 /* When writing the address table, we have to cope with the fact that
22817 the addrmap iterator only provides the start of a region; we have to
22818 wait until the next invocation to get the start of the next region. */
22820 addrmap_index_data.objfile = objfile;
22821 addrmap_index_data.addr_obstack = obstack;
22822 addrmap_index_data.cu_index_htab = cu_index_htab;
22823 addrmap_index_data.previous_valid = 0;
22825 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22826 &addrmap_index_data);
22828 /* It's highly unlikely the last entry (end address = 0xff...ff)
22829 is valid, but we should still handle it.
22830 The end address is recorded as the start of the next region, but that
22831 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22833 if (addrmap_index_data.previous_valid)
22834 add_address_entry (objfile, obstack,
22835 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22836 addrmap_index_data.previous_cu_index);
22839 /* Return the symbol kind of PSYM. */
22841 static gdb_index_symbol_kind
22842 symbol_kind (struct partial_symbol *psym)
22844 domain_enum domain = PSYMBOL_DOMAIN (psym);
22845 enum address_class aclass = PSYMBOL_CLASS (psym);
22853 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22855 return GDB_INDEX_SYMBOL_KIND_TYPE;
22857 case LOC_CONST_BYTES:
22858 case LOC_OPTIMIZED_OUT:
22860 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22862 /* Note: It's currently impossible to recognize psyms as enum values
22863 short of reading the type info. For now punt. */
22864 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22866 /* There are other LOC_FOO values that one might want to classify
22867 as variables, but dwarf2read.c doesn't currently use them. */
22868 return GDB_INDEX_SYMBOL_KIND_OTHER;
22870 case STRUCT_DOMAIN:
22871 return GDB_INDEX_SYMBOL_KIND_TYPE;
22873 return GDB_INDEX_SYMBOL_KIND_OTHER;
22877 /* Add a list of partial symbols to SYMTAB. */
22880 write_psymbols (struct mapped_symtab *symtab,
22882 struct partial_symbol **psymp,
22884 offset_type cu_index,
22887 for (; count-- > 0; ++psymp)
22889 struct partial_symbol *psym = *psymp;
22892 if (SYMBOL_LANGUAGE (psym) == language_ada)
22893 error (_("Ada is not currently supported by the index"));
22895 /* Only add a given psymbol once. */
22896 slot = htab_find_slot (psyms_seen, psym, INSERT);
22899 gdb_index_symbol_kind kind = symbol_kind (psym);
22902 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22903 is_static, kind, cu_index);
22908 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22909 exception if there is an error. */
22912 write_obstack (FILE *file, struct obstack *obstack)
22914 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22916 != obstack_object_size (obstack))
22917 error (_("couldn't data write to file"));
22920 /* Unlink a file if the argument is not NULL. */
22923 unlink_if_set (void *p)
22925 char **filename = p;
22927 unlink (*filename);
22930 /* A helper struct used when iterating over debug_types. */
22931 struct signatured_type_index_data
22933 struct objfile *objfile;
22934 struct mapped_symtab *symtab;
22935 struct obstack *types_list;
22940 /* A helper function that writes a single signatured_type to an
22944 write_one_signatured_type (void **slot, void *d)
22946 struct signatured_type_index_data *info = d;
22947 struct signatured_type *entry = (struct signatured_type *) *slot;
22948 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22951 write_psymbols (info->symtab,
22953 info->objfile->global_psymbols.list
22954 + psymtab->globals_offset,
22955 psymtab->n_global_syms, info->cu_index,
22957 write_psymbols (info->symtab,
22959 info->objfile->static_psymbols.list
22960 + psymtab->statics_offset,
22961 psymtab->n_static_syms, info->cu_index,
22964 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22965 entry->per_cu.offset.sect_off);
22966 obstack_grow (info->types_list, val, 8);
22967 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22968 entry->type_offset_in_tu.cu_off);
22969 obstack_grow (info->types_list, val, 8);
22970 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22971 obstack_grow (info->types_list, val, 8);
22978 /* Recurse into all "included" dependencies and write their symbols as
22979 if they appeared in this psymtab. */
22982 recursively_write_psymbols (struct objfile *objfile,
22983 struct partial_symtab *psymtab,
22984 struct mapped_symtab *symtab,
22986 offset_type cu_index)
22990 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22991 if (psymtab->dependencies[i]->user != NULL)
22992 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22993 symtab, psyms_seen, cu_index);
22995 write_psymbols (symtab,
22997 objfile->global_psymbols.list + psymtab->globals_offset,
22998 psymtab->n_global_syms, cu_index,
23000 write_psymbols (symtab,
23002 objfile->static_psymbols.list + psymtab->statics_offset,
23003 psymtab->n_static_syms, cu_index,
23007 /* Create an index file for OBJFILE in the directory DIR. */
23010 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23012 struct cleanup *cleanup;
23013 char *filename, *cleanup_filename;
23014 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23015 struct obstack cu_list, types_cu_list;
23018 struct mapped_symtab *symtab;
23019 offset_type val, size_of_contents, total_len;
23022 htab_t cu_index_htab;
23023 struct psymtab_cu_index_map *psymtab_cu_index_map;
23025 if (dwarf2_per_objfile->using_index)
23026 error (_("Cannot use an index to create the index"));
23028 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23029 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23031 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23034 if (stat (objfile_name (objfile), &st) < 0)
23035 perror_with_name (objfile_name (objfile));
23037 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23038 INDEX_SUFFIX, (char *) NULL);
23039 cleanup = make_cleanup (xfree, filename);
23041 out_file = gdb_fopen_cloexec (filename, "wb");
23043 error (_("Can't open `%s' for writing"), filename);
23045 cleanup_filename = filename;
23046 make_cleanup (unlink_if_set, &cleanup_filename);
23048 symtab = create_mapped_symtab ();
23049 make_cleanup (cleanup_mapped_symtab, symtab);
23051 obstack_init (&addr_obstack);
23052 make_cleanup_obstack_free (&addr_obstack);
23054 obstack_init (&cu_list);
23055 make_cleanup_obstack_free (&cu_list);
23057 obstack_init (&types_cu_list);
23058 make_cleanup_obstack_free (&types_cu_list);
23060 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23061 NULL, xcalloc, xfree);
23062 make_cleanup_htab_delete (psyms_seen);
23064 /* While we're scanning CU's create a table that maps a psymtab pointer
23065 (which is what addrmap records) to its index (which is what is recorded
23066 in the index file). This will later be needed to write the address
23068 cu_index_htab = htab_create_alloc (100,
23069 hash_psymtab_cu_index,
23070 eq_psymtab_cu_index,
23071 NULL, xcalloc, xfree);
23072 make_cleanup_htab_delete (cu_index_htab);
23073 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23074 xmalloc (sizeof (struct psymtab_cu_index_map)
23075 * dwarf2_per_objfile->n_comp_units);
23076 make_cleanup (xfree, psymtab_cu_index_map);
23078 /* The CU list is already sorted, so we don't need to do additional
23079 work here. Also, the debug_types entries do not appear in
23080 all_comp_units, but only in their own hash table. */
23081 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23083 struct dwarf2_per_cu_data *per_cu
23084 = dwarf2_per_objfile->all_comp_units[i];
23085 struct partial_symtab *psymtab = per_cu->v.psymtab;
23087 struct psymtab_cu_index_map *map;
23090 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23091 It may be referenced from a local scope but in such case it does not
23092 need to be present in .gdb_index. */
23093 if (psymtab == NULL)
23096 if (psymtab->user == NULL)
23097 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23099 map = &psymtab_cu_index_map[i];
23100 map->psymtab = psymtab;
23102 slot = htab_find_slot (cu_index_htab, map, INSERT);
23103 gdb_assert (slot != NULL);
23104 gdb_assert (*slot == NULL);
23107 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23108 per_cu->offset.sect_off);
23109 obstack_grow (&cu_list, val, 8);
23110 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23111 obstack_grow (&cu_list, val, 8);
23114 /* Dump the address map. */
23115 write_address_map (objfile, &addr_obstack, cu_index_htab);
23117 /* Write out the .debug_type entries, if any. */
23118 if (dwarf2_per_objfile->signatured_types)
23120 struct signatured_type_index_data sig_data;
23122 sig_data.objfile = objfile;
23123 sig_data.symtab = symtab;
23124 sig_data.types_list = &types_cu_list;
23125 sig_data.psyms_seen = psyms_seen;
23126 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23127 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23128 write_one_signatured_type, &sig_data);
23131 /* Now that we've processed all symbols we can shrink their cu_indices
23133 uniquify_cu_indices (symtab);
23135 obstack_init (&constant_pool);
23136 make_cleanup_obstack_free (&constant_pool);
23137 obstack_init (&symtab_obstack);
23138 make_cleanup_obstack_free (&symtab_obstack);
23139 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23141 obstack_init (&contents);
23142 make_cleanup_obstack_free (&contents);
23143 size_of_contents = 6 * sizeof (offset_type);
23144 total_len = size_of_contents;
23146 /* The version number. */
23147 val = MAYBE_SWAP (8);
23148 obstack_grow (&contents, &val, sizeof (val));
23150 /* The offset of the CU list from the start of the file. */
23151 val = MAYBE_SWAP (total_len);
23152 obstack_grow (&contents, &val, sizeof (val));
23153 total_len += obstack_object_size (&cu_list);
23155 /* The offset of the types CU list from the start of the file. */
23156 val = MAYBE_SWAP (total_len);
23157 obstack_grow (&contents, &val, sizeof (val));
23158 total_len += obstack_object_size (&types_cu_list);
23160 /* The offset of the address table from the start of the file. */
23161 val = MAYBE_SWAP (total_len);
23162 obstack_grow (&contents, &val, sizeof (val));
23163 total_len += obstack_object_size (&addr_obstack);
23165 /* The offset of the symbol table from the start of the file. */
23166 val = MAYBE_SWAP (total_len);
23167 obstack_grow (&contents, &val, sizeof (val));
23168 total_len += obstack_object_size (&symtab_obstack);
23170 /* The offset of the constant pool from the start of the file. */
23171 val = MAYBE_SWAP (total_len);
23172 obstack_grow (&contents, &val, sizeof (val));
23173 total_len += obstack_object_size (&constant_pool);
23175 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23177 write_obstack (out_file, &contents);
23178 write_obstack (out_file, &cu_list);
23179 write_obstack (out_file, &types_cu_list);
23180 write_obstack (out_file, &addr_obstack);
23181 write_obstack (out_file, &symtab_obstack);
23182 write_obstack (out_file, &constant_pool);
23186 /* We want to keep the file, so we set cleanup_filename to NULL
23187 here. See unlink_if_set. */
23188 cleanup_filename = NULL;
23190 do_cleanups (cleanup);
23193 /* Implementation of the `save gdb-index' command.
23195 Note that the file format used by this command is documented in the
23196 GDB manual. Any changes here must be documented there. */
23199 save_gdb_index_command (char *arg, int from_tty)
23201 struct objfile *objfile;
23204 error (_("usage: save gdb-index DIRECTORY"));
23206 ALL_OBJFILES (objfile)
23210 /* If the objfile does not correspond to an actual file, skip it. */
23211 if (stat (objfile_name (objfile), &st) < 0)
23214 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23215 if (dwarf2_per_objfile)
23220 write_psymtabs_to_index (objfile, arg);
23222 CATCH (except, RETURN_MASK_ERROR)
23224 exception_fprintf (gdb_stderr, except,
23225 _("Error while writing index for `%s': "),
23226 objfile_name (objfile));
23235 int dwarf2_always_disassemble;
23238 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23239 struct cmd_list_element *c, const char *value)
23241 fprintf_filtered (file,
23242 _("Whether to always disassemble "
23243 "DWARF expressions is %s.\n"),
23248 show_check_physname (struct ui_file *file, int from_tty,
23249 struct cmd_list_element *c, const char *value)
23251 fprintf_filtered (file,
23252 _("Whether to check \"physname\" is %s.\n"),
23256 void _initialize_dwarf2_read (void);
23259 _initialize_dwarf2_read (void)
23261 struct cmd_list_element *c;
23263 dwarf2_objfile_data_key
23264 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23266 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23267 Set DWARF 2 specific variables.\n\
23268 Configure DWARF 2 variables such as the cache size"),
23269 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23270 0/*allow-unknown*/, &maintenance_set_cmdlist);
23272 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23273 Show DWARF 2 specific variables\n\
23274 Show DWARF 2 variables such as the cache size"),
23275 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23276 0/*allow-unknown*/, &maintenance_show_cmdlist);
23278 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23279 &dwarf2_max_cache_age, _("\
23280 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23281 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23282 A higher limit means that cached compilation units will be stored\n\
23283 in memory longer, and more total memory will be used. Zero disables\n\
23284 caching, which can slow down startup."),
23286 show_dwarf2_max_cache_age,
23287 &set_dwarf2_cmdlist,
23288 &show_dwarf2_cmdlist);
23290 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23291 &dwarf2_always_disassemble, _("\
23292 Set whether `info address' always disassembles DWARF expressions."), _("\
23293 Show whether `info address' always disassembles DWARF expressions."), _("\
23294 When enabled, DWARF expressions are always printed in an assembly-like\n\
23295 syntax. When disabled, expressions will be printed in a more\n\
23296 conversational style, when possible."),
23298 show_dwarf2_always_disassemble,
23299 &set_dwarf2_cmdlist,
23300 &show_dwarf2_cmdlist);
23302 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23303 Set debugging of the dwarf2 reader."), _("\
23304 Show debugging of the dwarf2 reader."), _("\
23305 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23306 reading and symtab expansion. A value of 1 (one) provides basic\n\
23307 information. A value greater than 1 provides more verbose information."),
23310 &setdebuglist, &showdebuglist);
23312 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23313 Set debugging of the dwarf2 DIE reader."), _("\
23314 Show debugging of the dwarf2 DIE reader."), _("\
23315 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23316 The value is the maximum depth to print."),
23319 &setdebuglist, &showdebuglist);
23321 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23322 Set cross-checking of \"physname\" code against demangler."), _("\
23323 Show cross-checking of \"physname\" code against demangler."), _("\
23324 When enabled, GDB's internal \"physname\" code is checked against\n\
23326 NULL, show_check_physname,
23327 &setdebuglist, &showdebuglist);
23329 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23330 no_class, &use_deprecated_index_sections, _("\
23331 Set whether to use deprecated gdb_index sections."), _("\
23332 Show whether to use deprecated gdb_index sections."), _("\
23333 When enabled, deprecated .gdb_index sections are used anyway.\n\
23334 Normally they are ignored either because of a missing feature or\n\
23335 performance issue.\n\
23336 Warning: This option must be enabled before gdb reads the file."),
23339 &setlist, &showlist);
23341 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23343 Save a gdb-index file.\n\
23344 Usage: save gdb-index DIRECTORY"),
23346 set_cmd_completer (c, filename_completer);
23348 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23349 &dwarf2_locexpr_funcs);
23350 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23351 &dwarf2_loclist_funcs);
23353 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23354 &dwarf2_block_frame_base_locexpr_funcs);
23355 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23356 &dwarf2_block_frame_base_loclist_funcs);