1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
47 /*#include <sys/user.h> After a.out.h */
58 static int extract_5_load PARAMS ((unsigned int));
60 static unsigned extract_5R_store PARAMS ((unsigned int));
62 static unsigned extract_5r_store PARAMS ((unsigned int));
64 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
65 struct frame_saved_regs *));
67 static int find_proc_framesize PARAMS ((CORE_ADDR));
69 static int find_return_regnum PARAMS ((CORE_ADDR));
71 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
73 static int extract_17 PARAMS ((unsigned int));
75 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
77 static int extract_21 PARAMS ((unsigned));
79 static unsigned deposit_14 PARAMS ((int, unsigned int));
81 static int extract_14 PARAMS ((unsigned));
83 static void unwind_command PARAMS ((char *, int));
85 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
87 static int sign_extend PARAMS ((unsigned int, unsigned int));
89 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
91 static int hppa_alignof PARAMS ((struct type *));
93 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
95 static int is_branch PARAMS ((unsigned long));
97 static int inst_saves_gr PARAMS ((unsigned long));
99 static int inst_saves_fr PARAMS ((unsigned long));
101 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
103 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
105 static int compare_unwind_entries PARAMS ((const void *, const void *));
107 static void read_unwind_info PARAMS ((struct objfile *));
109 static void internalize_unwinds PARAMS ((struct objfile *,
110 struct unwind_table_entry *,
111 asection *, unsigned int,
112 unsigned int, CORE_ADDR));
113 static void pa_print_registers PARAMS ((char *, int, int));
114 static void pa_print_fp_reg PARAMS ((int));
117 /* Routines to extract various sized constants out of hppa
120 /* This assumes that no garbage lies outside of the lower bits of
124 sign_extend (val, bits)
127 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
130 /* For many immediate values the sign bit is the low bit! */
133 low_sign_extend (val, bits)
136 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
139 /* extract the immediate field from a ld{bhw}s instruction */
144 get_field (val, from, to)
145 unsigned val, from, to;
147 val = val >> 31 - to;
148 return val & ((1 << 32 - from) - 1);
152 set_field (val, from, to, new_val)
153 unsigned *val, from, to;
155 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
156 return *val = *val & mask | (new_val << (31 - from));
159 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
165 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
171 extract_5_load (word)
174 return low_sign_extend (word >> 16 & MASK_5, 5);
179 /* extract the immediate field from a st{bhw}s instruction */
182 extract_5_store (word)
185 return low_sign_extend (word & MASK_5, 5);
190 /* extract the immediate field from a break instruction */
193 extract_5r_store (word)
196 return (word & MASK_5);
199 /* extract the immediate field from a {sr}sm instruction */
202 extract_5R_store (word)
205 return (word >> 16 & MASK_5);
208 /* extract an 11 bit immediate field */
216 return low_sign_extend (word & MASK_11, 11);
221 /* extract a 14 bit immediate field */
227 return low_sign_extend (word & MASK_14, 14);
230 /* deposit a 14 bit constant in a word */
233 deposit_14 (opnd, word)
237 unsigned sign = (opnd < 0 ? 1 : 0);
239 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
242 /* extract a 21 bit constant */
252 val = GET_FIELD (word, 20, 20);
254 val |= GET_FIELD (word, 9, 19);
256 val |= GET_FIELD (word, 5, 6);
258 val |= GET_FIELD (word, 0, 4);
260 val |= GET_FIELD (word, 7, 8);
261 return sign_extend (val, 21) << 11;
264 /* deposit a 21 bit constant in a word. Although 21 bit constants are
265 usually the top 21 bits of a 32 bit constant, we assume that only
266 the low 21 bits of opnd are relevant */
269 deposit_21 (opnd, word)
274 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
276 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
278 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
280 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
282 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
286 /* extract a 12 bit constant from branch instructions */
294 return sign_extend (GET_FIELD (word, 19, 28) |
295 GET_FIELD (word, 29, 29) << 10 |
296 (word & 0x1) << 11, 12) << 2;
299 /* Deposit a 17 bit constant in an instruction (like bl). */
302 deposit_17 (opnd, word)
305 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
306 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
307 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
308 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
315 /* extract a 17 bit constant from branch instructions, returning the
316 19 bit signed value. */
322 return sign_extend (GET_FIELD (word, 19, 28) |
323 GET_FIELD (word, 29, 29) << 10 |
324 GET_FIELD (word, 11, 15) << 11 |
325 (word & 0x1) << 16, 17) << 2;
329 /* Compare the start address for two unwind entries returning 1 if
330 the first address is larger than the second, -1 if the second is
331 larger than the first, and zero if they are equal. */
334 compare_unwind_entries (arg1, arg2)
338 const struct unwind_table_entry *a = arg1;
339 const struct unwind_table_entry *b = arg2;
341 if (a->region_start > b->region_start)
343 else if (a->region_start < b->region_start)
350 internalize_unwinds (objfile, table, section, entries, size, text_offset)
351 struct objfile *objfile;
352 struct unwind_table_entry *table;
354 unsigned int entries, size;
355 CORE_ADDR text_offset;
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
363 char *buf = alloca (size);
365 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
367 /* Now internalize the information being careful to handle host/target
369 for (i = 0; i < entries; i++)
371 table[i].region_start = bfd_get_32 (objfile->obfd,
373 table[i].region_start += text_offset;
375 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
376 table[i].region_end += text_offset;
378 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
380 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
381 table[i].Millicode = (tmp >> 30) & 0x1;
382 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
383 table[i].Region_description = (tmp >> 27) & 0x3;
384 table[i].reserved1 = (tmp >> 26) & 0x1;
385 table[i].Entry_SR = (tmp >> 25) & 0x1;
386 table[i].Entry_FR = (tmp >> 21) & 0xf;
387 table[i].Entry_GR = (tmp >> 16) & 0x1f;
388 table[i].Args_stored = (tmp >> 15) & 0x1;
389 table[i].Variable_Frame = (tmp >> 14) & 0x1;
390 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
391 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
392 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
393 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
394 table[i].Ada_Region = (tmp >> 9) & 0x1;
395 table[i].reserved2 = (tmp >> 5) & 0xf;
396 table[i].Save_SP = (tmp >> 4) & 0x1;
397 table[i].Save_RP = (tmp >> 3) & 0x1;
398 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
399 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
400 table[i].Cleanup_defined = tmp & 0x1;
401 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
403 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
404 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
405 table[i].Large_frame = (tmp >> 29) & 0x1;
406 table[i].reserved4 = (tmp >> 27) & 0x3;
407 table[i].Total_frame_size = tmp & 0x7ffffff;
412 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
413 the object file. This info is used mainly by find_unwind_entry() to find
414 out the stack frame size and frame pointer used by procedures. We put
415 everything on the psymbol obstack in the objfile so that it automatically
416 gets freed when the objfile is destroyed. */
419 read_unwind_info (objfile)
420 struct objfile *objfile;
422 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
423 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
424 unsigned index, unwind_entries, elf_unwind_entries;
425 unsigned stub_entries, total_entries;
426 CORE_ADDR text_offset;
427 struct obj_unwind_info *ui;
429 text_offset = ANOFFSET (objfile->section_offsets, 0);
430 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
431 sizeof (struct obj_unwind_info));
437 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
438 section in ELF at the moment. */
439 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
440 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
441 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
443 /* Get sizes and unwind counts for all sections. */
446 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
447 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
457 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
458 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
463 elf_unwind_entries = 0;
468 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
469 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
473 stub_unwind_size = 0;
477 /* Compute total number of unwind entries and their total size. */
478 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
479 total_size = total_entries * sizeof (struct unwind_table_entry);
481 /* Allocate memory for the unwind table. */
482 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
483 ui->last = total_entries - 1;
485 /* Internalize the standard unwind entries. */
487 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
488 unwind_entries, unwind_size, text_offset);
489 index += unwind_entries;
490 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
491 elf_unwind_entries, elf_unwind_size, text_offset);
492 index += elf_unwind_entries;
494 /* Now internalize the stub unwind entries. */
495 if (stub_unwind_size > 0)
498 char *buf = alloca (stub_unwind_size);
500 /* Read in the stub unwind entries. */
501 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
502 0, stub_unwind_size);
504 /* Now convert them into regular unwind entries. */
505 for (i = 0; i < stub_entries; i++, index++)
507 /* Clear out the next unwind entry. */
508 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
510 /* Convert offset & size into region_start and region_end.
511 Stuff away the stub type into "reserved" fields. */
512 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
514 ui->table[index].region_start += text_offset;
516 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
519 ui->table[index].region_end
520 = ui->table[index].region_start + 4 *
521 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
527 /* Unwind table needs to be kept sorted. */
528 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
529 compare_unwind_entries);
531 /* Keep a pointer to the unwind information. */
532 objfile->obj_private = (PTR) ui;
535 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
536 of the objfiles seeking the unwind table entry for this PC. Each objfile
537 contains a sorted list of struct unwind_table_entry. Since we do a binary
538 search of the unwind tables, we depend upon them to be sorted. */
540 struct unwind_table_entry *
541 find_unwind_entry(pc)
544 int first, middle, last;
545 struct objfile *objfile;
547 ALL_OBJFILES (objfile)
549 struct obj_unwind_info *ui;
551 ui = OBJ_UNWIND_INFO (objfile);
555 read_unwind_info (objfile);
556 ui = OBJ_UNWIND_INFO (objfile);
559 /* First, check the cache */
562 && pc >= ui->cache->region_start
563 && pc <= ui->cache->region_end)
566 /* Not in the cache, do a binary search */
571 while (first <= last)
573 middle = (first + last) / 2;
574 if (pc >= ui->table[middle].region_start
575 && pc <= ui->table[middle].region_end)
577 ui->cache = &ui->table[middle];
578 return &ui->table[middle];
581 if (pc < ui->table[middle].region_start)
586 } /* ALL_OBJFILES() */
590 /* Return the adjustment necessary to make for addresses on the stack
591 as presented by hpread.c.
593 This is necessary because of the stack direction on the PA and the
594 bizarre way in which someone (?) decided they wanted to handle
595 frame pointerless code in GDB. */
597 hpread_adjust_stack_address (func_addr)
600 struct unwind_table_entry *u;
602 u = find_unwind_entry (func_addr);
606 return u->Total_frame_size << 3;
609 /* Called to determine if PC is in an interrupt handler of some
613 pc_in_interrupt_handler (pc)
616 struct unwind_table_entry *u;
617 struct minimal_symbol *msym_us;
619 u = find_unwind_entry (pc);
623 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
624 its frame isn't a pure interrupt frame. Deal with this. */
625 msym_us = lookup_minimal_symbol_by_pc (pc);
627 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
630 /* Called when no unwind descriptor was found for PC. Returns 1 if it
631 appears that PC is in a linker stub. */
634 pc_in_linker_stub (pc)
637 int found_magic_instruction = 0;
641 /* If unable to read memory, assume pc is not in a linker stub. */
642 if (target_read_memory (pc, buf, 4) != 0)
645 /* We are looking for something like
647 ; $$dyncall jams RP into this special spot in the frame (RP')
648 ; before calling the "call stub"
651 ldsid (rp),r1 ; Get space associated with RP into r1
652 mtsp r1,sp ; Move it into space register 0
653 be,n 0(sr0),rp) ; back to your regularly scheduled program
656 /* Maximum known linker stub size is 4 instructions. Search forward
657 from the given PC, then backward. */
658 for (i = 0; i < 4; i++)
660 /* If we hit something with an unwind, stop searching this direction. */
662 if (find_unwind_entry (pc + i * 4) != 0)
665 /* Check for ldsid (rp),r1 which is the magic instruction for a
666 return from a cross-space function call. */
667 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
669 found_magic_instruction = 1;
672 /* Add code to handle long call/branch and argument relocation stubs
676 if (found_magic_instruction != 0)
679 /* Now look backward. */
680 for (i = 0; i < 4; i++)
682 /* If we hit something with an unwind, stop searching this direction. */
684 if (find_unwind_entry (pc - i * 4) != 0)
687 /* Check for ldsid (rp),r1 which is the magic instruction for a
688 return from a cross-space function call. */
689 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
691 found_magic_instruction = 1;
694 /* Add code to handle long call/branch and argument relocation stubs
697 return found_magic_instruction;
701 find_return_regnum(pc)
704 struct unwind_table_entry *u;
706 u = find_unwind_entry (pc);
717 /* Return size of frame, or -1 if we should use a frame pointer. */
719 find_proc_framesize (pc)
722 struct unwind_table_entry *u;
723 struct minimal_symbol *msym_us;
725 u = find_unwind_entry (pc);
729 if (pc_in_linker_stub (pc))
730 /* Linker stubs have a zero size frame. */
736 msym_us = lookup_minimal_symbol_by_pc (pc);
738 /* If Save_SP is set, and we're not in an interrupt or signal caller,
739 then we have a frame pointer. Use it. */
740 if (u->Save_SP && !pc_in_interrupt_handler (pc)
741 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
744 return u->Total_frame_size << 3;
747 /* Return offset from sp at which rp is saved, or 0 if not saved. */
748 static int rp_saved PARAMS ((CORE_ADDR));
754 struct unwind_table_entry *u;
756 u = find_unwind_entry (pc);
760 if (pc_in_linker_stub (pc))
761 /* This is the so-called RP'. */
769 else if (u->stub_type != 0)
771 switch (u->stub_type)
776 case PARAMETER_RELOCATION:
787 frameless_function_invocation (frame)
788 struct frame_info *frame;
790 struct unwind_table_entry *u;
792 u = find_unwind_entry (frame->pc);
797 return (u->Total_frame_size == 0 && u->stub_type == 0);
801 saved_pc_after_call (frame)
802 struct frame_info *frame;
806 struct unwind_table_entry *u;
808 ret_regnum = find_return_regnum (get_frame_pc (frame));
809 pc = read_register (ret_regnum) & ~0x3;
811 /* If PC is in a linker stub, then we need to dig the address
812 the stub will return to out of the stack. */
813 u = find_unwind_entry (pc);
814 if (u && u->stub_type != 0)
815 return FRAME_SAVED_PC (frame);
821 hppa_frame_saved_pc (frame)
822 struct frame_info *frame;
824 CORE_ADDR pc = get_frame_pc (frame);
825 struct unwind_table_entry *u;
827 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
828 at the base of the frame in an interrupt handler. Registers within
829 are saved in the exact same order as GDB numbers registers. How
831 if (pc_in_interrupt_handler (pc))
832 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
834 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
835 /* Deal with signal handler caller frames too. */
836 if (frame->signal_handler_caller)
839 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
844 if (frameless_function_invocation (frame))
848 ret_regnum = find_return_regnum (pc);
850 /* If the next frame is an interrupt frame or a signal
851 handler caller, then we need to look in the saved
852 register area to get the return pointer (the values
853 in the registers may not correspond to anything useful). */
855 && (frame->next->signal_handler_caller
856 || pc_in_interrupt_handler (frame->next->pc)))
858 struct frame_saved_regs saved_regs;
860 get_frame_saved_regs (frame->next, &saved_regs);
861 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
863 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
865 /* Syscalls are really two frames. The syscall stub itself
866 with a return pointer in %rp and the kernel call with
867 a return pointer in %r31. We return the %rp variant
868 if %r31 is the same as frame->pc. */
870 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
873 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
876 pc = read_register (ret_regnum) & ~0x3;
883 rp_offset = rp_saved (pc);
884 /* Similar to code in frameless function case. If the next
885 frame is a signal or interrupt handler, then dig the right
886 information out of the saved register info. */
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
892 struct frame_saved_regs saved_regs;
894 get_frame_saved_regs (frame->next, &saved_regs);
895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
897 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
899 /* Syscalls are really two frames. The syscall stub itself
900 with a return pointer in %rp and the kernel call with
901 a return pointer in %r31. We return the %rp variant
902 if %r31 is the same as frame->pc. */
904 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
909 else if (rp_offset == 0)
910 pc = read_register (RP_REGNUM) & ~0x3;
912 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
915 /* If PC is inside a linker stub, then dig out the address the stub
918 Don't do this for long branch stubs. Why? For some unknown reason
919 _start is marked as a long branch stub in hpux10. */
920 u = find_unwind_entry (pc);
921 if (u && u->stub_type != 0
922 && u->stub_type != LONG_BRANCH)
926 /* If this is a dynamic executable, and we're in a signal handler,
927 then the call chain will eventually point us into the stub for
928 _sigreturn. Unlike most cases, we'll be pointed to the branch
929 to the real sigreturn rather than the code after the real branch!.
931 Else, try to dig the address the stub will return to in the normal
933 insn = read_memory_integer (pc, 4);
934 if ((insn & 0xfc00e000) == 0xe8000000)
935 return (pc + extract_17 (insn) + 8) & ~0x3;
943 /* We need to correct the PC and the FP for the outermost frame when we are
947 init_extra_frame_info (fromleaf, frame)
949 struct frame_info *frame;
954 if (frame->next && !fromleaf)
957 /* If the next frame represents a frameless function invocation
958 then we have to do some adjustments that are normally done by
959 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
962 /* Find the framesize of *this* frame without peeking at the PC
963 in the current frame structure (it isn't set yet). */
964 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
966 /* Now adjust our base frame accordingly. If we have a frame pointer
967 use it, else subtract the size of this frame from the current
968 frame. (we always want frame->frame to point at the lowest address
971 frame->frame = read_register (FP_REGNUM);
973 frame->frame -= framesize;
977 flags = read_register (FLAGS_REGNUM);
978 if (flags & 2) /* In system call? */
979 frame->pc = read_register (31) & ~0x3;
981 /* The outermost frame is always derived from PC-framesize
983 One might think frameless innermost frames should have
984 a frame->frame that is the same as the parent's frame->frame.
985 That is wrong; frame->frame in that case should be the *high*
986 address of the parent's frame. It's complicated as hell to
987 explain, but the parent *always* creates some stack space for
988 the child. So the child actually does have a frame of some
989 sorts, and its base is the high address in its parent's frame. */
990 framesize = find_proc_framesize(frame->pc);
992 frame->frame = read_register (FP_REGNUM);
994 frame->frame = read_register (SP_REGNUM) - framesize;
997 /* Given a GDB frame, determine the address of the calling function's frame.
998 This will be used to create a new GDB frame struct, and then
999 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1001 This may involve searching through prologues for several functions
1002 at boundaries where GCC calls HP C code, or where code which has
1003 a frame pointer calls code without a frame pointer. */
1007 struct frame_info *frame;
1009 int my_framesize, caller_framesize;
1010 struct unwind_table_entry *u;
1011 CORE_ADDR frame_base;
1012 struct frame_info *tmp_frame;
1014 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1015 are easy; at *sp we have a full save state strucutre which we can
1016 pull the old stack pointer from. Also see frame_saved_pc for
1017 code to dig a saved PC out of the save state structure. */
1018 if (pc_in_interrupt_handler (frame->pc))
1019 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1020 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1021 else if (frame->signal_handler_caller)
1023 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1027 frame_base = frame->frame;
1029 /* Get frame sizes for the current frame and the frame of the
1031 my_framesize = find_proc_framesize (frame->pc);
1032 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
1034 /* If caller does not have a frame pointer, then its frame
1035 can be found at current_frame - caller_framesize. */
1036 if (caller_framesize != -1)
1037 return frame_base - caller_framesize;
1039 /* Both caller and callee have frame pointers and are GCC compiled
1040 (SAVE_SP bit in unwind descriptor is on for both functions.
1041 The previous frame pointer is found at the top of the current frame. */
1042 if (caller_framesize == -1 && my_framesize == -1)
1043 return read_memory_integer (frame_base, 4);
1045 /* Caller has a frame pointer, but callee does not. This is a little
1046 more difficult as GCC and HP C lay out locals and callee register save
1047 areas very differently.
1049 The previous frame pointer could be in a register, or in one of
1050 several areas on the stack.
1052 Walk from the current frame to the innermost frame examining
1053 unwind descriptors to determine if %r3 ever gets saved into the
1054 stack. If so return whatever value got saved into the stack.
1055 If it was never saved in the stack, then the value in %r3 is still
1058 We use information from unwind descriptors to determine if %r3
1059 is saved into the stack (Entry_GR field has this information). */
1064 u = find_unwind_entry (tmp_frame->pc);
1068 /* We could find this information by examining prologues. I don't
1069 think anyone has actually written any tools (not even "strip")
1070 which leave them out of an executable, so maybe this is a moot
1072 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1076 /* Entry_GR specifies the number of callee-saved general registers
1077 saved in the stack. It starts at %r3, so %r3 would be 1. */
1078 if (u->Entry_GR >= 1 || u->Save_SP
1079 || tmp_frame->signal_handler_caller
1080 || pc_in_interrupt_handler (tmp_frame->pc))
1083 tmp_frame = tmp_frame->next;
1088 /* We may have walked down the chain into a function with a frame
1091 && !tmp_frame->signal_handler_caller
1092 && !pc_in_interrupt_handler (tmp_frame->pc))
1093 return read_memory_integer (tmp_frame->frame, 4);
1094 /* %r3 was saved somewhere in the stack. Dig it out. */
1097 struct frame_saved_regs saved_regs;
1101 For optimization purposes many kernels don't have the
1102 callee saved registers into the save_state structure upon
1103 entry into the kernel for a syscall; the optimization
1104 is usually turned off if the process is being traced so
1105 that the debugger can get full register state for the
1108 This scheme works well except for two cases:
1110 * Attaching to a process when the process is in the
1111 kernel performing a system call (debugger can't get
1112 full register state for the inferior process since
1113 the process wasn't being traced when it entered the
1116 * Register state is not complete if the system call
1117 causes the process to core dump.
1120 The following heinous code is an attempt to deal with
1121 the lack of register state in a core dump. It will
1122 fail miserably if the function which performs the
1123 system call has a variable sized stack frame. */
1125 get_frame_saved_regs (tmp_frame, &saved_regs);
1127 /* Abominable hack. */
1128 if (current_target.to_has_execution == 0
1129 && ((saved_regs.regs[FLAGS_REGNUM]
1130 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1132 || (saved_regs.regs[FLAGS_REGNUM] == 0
1133 && read_register (FLAGS_REGNUM) & 0x2)))
1135 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1137 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1139 return frame_base - (u->Total_frame_size << 3);
1142 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1147 struct frame_saved_regs saved_regs;
1149 /* Get the innermost frame. */
1151 while (tmp_frame->next != NULL)
1152 tmp_frame = tmp_frame->next;
1154 get_frame_saved_regs (tmp_frame, &saved_regs);
1155 /* Abominable hack. See above. */
1156 if (current_target.to_has_execution == 0
1157 && ((saved_regs.regs[FLAGS_REGNUM]
1158 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1160 || (saved_regs.regs[FLAGS_REGNUM] == 0
1161 && read_register (FLAGS_REGNUM) & 0x2)))
1163 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1165 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1167 return frame_base - (u->Total_frame_size << 3);
1170 /* The value in %r3 was never saved into the stack (thus %r3 still
1171 holds the value of the previous frame pointer). */
1172 return read_register (FP_REGNUM);
1177 /* To see if a frame chain is valid, see if the caller looks like it
1178 was compiled with gcc. */
1181 frame_chain_valid (chain, thisframe)
1183 struct frame_info *thisframe;
1185 struct minimal_symbol *msym_us;
1186 struct minimal_symbol *msym_start;
1187 struct unwind_table_entry *u, *next_u = NULL;
1188 struct frame_info *next;
1193 u = find_unwind_entry (thisframe->pc);
1198 /* We can't just check that the same of msym_us is "_start", because
1199 someone idiotically decided that they were going to make a Ltext_end
1200 symbol with the same address. This Ltext_end symbol is totally
1201 indistinguishable (as nearly as I can tell) from the symbol for a function
1202 which is (legitimately, since it is in the user's namespace)
1203 named Ltext_end, so we can't just ignore it. */
1204 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1205 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1208 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1211 /* Grrrr. Some new idiot decided that they don't want _start for the
1212 PRO configurations; $START$ calls main directly.... Deal with it. */
1213 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1216 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1219 next = get_next_frame (thisframe);
1221 next_u = find_unwind_entry (next->pc);
1223 /* If this frame does not save SP, has no stack, isn't a stub,
1224 and doesn't "call" an interrupt routine or signal handler caller,
1225 then its not valid. */
1226 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1227 || (thisframe->next && thisframe->next->signal_handler_caller)
1228 || (next_u && next_u->HP_UX_interrupt_marker))
1231 if (pc_in_linker_stub (thisframe->pc))
1238 * These functions deal with saving and restoring register state
1239 * around a function call in the inferior. They keep the stack
1240 * double-word aligned; eventually, on an hp700, the stack will have
1241 * to be aligned to a 64-byte boundary.
1245 push_dummy_frame (inf_status)
1246 struct inferior_status *inf_status;
1248 CORE_ADDR sp, pc, pcspace;
1249 register int regnum;
1253 /* Oh, what a hack. If we're trying to perform an inferior call
1254 while the inferior is asleep, we have to make sure to clear
1255 the "in system call" bit in the flag register (the call will
1256 start after the syscall returns, so we're no longer in the system
1257 call!) This state is kept in "inf_status", change it there.
1259 We also need a number of horrid hacks to deal with lossage in the
1260 PC queue registers (apparently they're not valid when the in syscall
1262 pc = target_read_pc (inferior_pid);
1263 int_buffer = read_register (FLAGS_REGNUM);
1264 if (int_buffer & 0x2)
1268 memcpy (inf_status->registers, &int_buffer, 4);
1269 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1271 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1273 sid = (pc >> 30) & 0x3;
1275 pcspace = read_register (SR4_REGNUM);
1277 pcspace = read_register (SR4_REGNUM + 4 + sid);
1278 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1280 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1284 pcspace = read_register (PCSQ_HEAD_REGNUM);
1286 /* Space for "arguments"; the RP goes in here. */
1287 sp = read_register (SP_REGNUM) + 48;
1288 int_buffer = read_register (RP_REGNUM) | 0x3;
1289 write_memory (sp - 20, (char *)&int_buffer, 4);
1291 int_buffer = read_register (FP_REGNUM);
1292 write_memory (sp, (char *)&int_buffer, 4);
1294 write_register (FP_REGNUM, sp);
1298 for (regnum = 1; regnum < 32; regnum++)
1299 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1300 sp = push_word (sp, read_register (regnum));
1304 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1306 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1307 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1309 sp = push_word (sp, read_register (IPSW_REGNUM));
1310 sp = push_word (sp, read_register (SAR_REGNUM));
1311 sp = push_word (sp, pc);
1312 sp = push_word (sp, pcspace);
1313 sp = push_word (sp, pc + 4);
1314 sp = push_word (sp, pcspace);
1315 write_register (SP_REGNUM, sp);
1319 find_dummy_frame_regs (frame, frame_saved_regs)
1320 struct frame_info *frame;
1321 struct frame_saved_regs *frame_saved_regs;
1323 CORE_ADDR fp = frame->frame;
1326 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1327 frame_saved_regs->regs[FP_REGNUM] = fp;
1328 frame_saved_regs->regs[1] = fp + 8;
1330 for (fp += 12, i = 3; i < 32; i++)
1334 frame_saved_regs->regs[i] = fp;
1340 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1341 frame_saved_regs->regs[i] = fp;
1343 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1344 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1345 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1346 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1347 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1348 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1354 register struct frame_info *frame = get_current_frame ();
1355 register CORE_ADDR fp, npc, target_pc;
1356 register int regnum;
1357 struct frame_saved_regs fsr;
1360 fp = FRAME_FP (frame);
1361 get_frame_saved_regs (frame, &fsr);
1363 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1364 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1365 restore_pc_queue (&fsr);
1368 for (regnum = 31; regnum > 0; regnum--)
1369 if (fsr.regs[regnum])
1370 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1372 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1373 if (fsr.regs[regnum])
1375 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1376 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1379 if (fsr.regs[IPSW_REGNUM])
1380 write_register (IPSW_REGNUM,
1381 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1383 if (fsr.regs[SAR_REGNUM])
1384 write_register (SAR_REGNUM,
1385 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1387 /* If the PC was explicitly saved, then just restore it. */
1388 if (fsr.regs[PCOQ_TAIL_REGNUM])
1390 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1391 write_register (PCOQ_TAIL_REGNUM, npc);
1393 /* Else use the value in %rp to set the new PC. */
1396 npc = read_register (RP_REGNUM);
1400 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1402 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1403 write_register (SP_REGNUM, fp - 48);
1405 write_register (SP_REGNUM, fp);
1407 /* The PC we just restored may be inside a return trampoline. If so
1408 we want to restart the inferior and run it through the trampoline.
1410 Do this by setting a momentary breakpoint at the location the
1411 trampoline returns to.
1413 Don't skip through the trampoline if we're popping a dummy frame. */
1414 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1415 if (target_pc && !fsr.regs[IPSW_REGNUM])
1417 struct symtab_and_line sal;
1418 struct breakpoint *breakpoint;
1419 struct cleanup *old_chain;
1421 /* Set up our breakpoint. Set it to be silent as the MI code
1422 for "return_command" will print the frame we returned to. */
1423 sal = find_pc_line (target_pc, 0);
1425 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1426 breakpoint->silent = 1;
1428 /* So we can clean things up. */
1429 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1431 /* Start up the inferior. */
1432 clear_proceed_status ();
1433 proceed_to_finish = 1;
1434 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1436 /* Perform our cleanups. */
1437 do_cleanups (old_chain);
1439 flush_cached_frames ();
1443 * After returning to a dummy on the stack, restore the instruction
1444 * queue space registers. */
1447 restore_pc_queue (fsr)
1448 struct frame_saved_regs *fsr;
1450 CORE_ADDR pc = read_pc ();
1451 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1452 struct target_waitstatus w;
1455 /* Advance past break instruction in the call dummy. */
1456 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1457 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1460 * HPUX doesn't let us set the space registers or the space
1461 * registers of the PC queue through ptrace. Boo, hiss.
1462 * Conveniently, the call dummy has this sequence of instructions
1467 * So, load up the registers and single step until we are in the
1471 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1472 write_register (22, new_pc);
1474 for (insn_count = 0; insn_count < 3; insn_count++)
1476 /* FIXME: What if the inferior gets a signal right now? Want to
1477 merge this into wait_for_inferior (as a special kind of
1478 watchpoint? By setting a breakpoint at the end? Is there
1479 any other choice? Is there *any* way to do this stuff with
1480 ptrace() or some equivalent?). */
1482 target_wait (inferior_pid, &w);
1484 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1486 stop_signal = w.value.sig;
1487 terminal_ours_for_output ();
1488 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1489 target_signal_to_name (stop_signal),
1490 target_signal_to_string (stop_signal));
1491 gdb_flush (gdb_stdout);
1495 target_terminal_ours ();
1496 target_fetch_registers (-1);
1501 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1506 CORE_ADDR struct_addr;
1508 /* array of arguments' offsets */
1509 int *offset = (int *)alloca(nargs * sizeof (int));
1513 for (i = 0; i < nargs; i++)
1515 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1517 /* value must go at proper alignment. Assume alignment is a
1519 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1520 if (cum % alignment)
1521 cum = (cum + alignment) & -alignment;
1524 sp += max ((cum + 7) & -8, 16);
1526 for (i = 0; i < nargs; i++)
1527 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1528 TYPE_LENGTH (VALUE_TYPE (args[i])));
1531 write_register (28, struct_addr);
1536 * Insert the specified number of args and function address
1537 * into a call sequence of the above form stored at DUMMYNAME.
1539 * On the hppa we need to call the stack dummy through $$dyncall.
1540 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1541 * real_pc, which is the location where gdb should start up the
1542 * inferior to do the function call.
1546 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1555 CORE_ADDR dyncall_addr;
1556 struct minimal_symbol *msymbol;
1557 struct minimal_symbol *trampoline;
1558 int flags = read_register (FLAGS_REGNUM);
1559 struct unwind_table_entry *u;
1562 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1563 if (msymbol == NULL)
1564 error ("Can't find an address for $$dyncall trampoline");
1566 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1568 /* FUN could be a procedure label, in which case we have to get
1569 its real address and the value of its GOT/DP. */
1572 /* Get the GOT/DP value for the target function. It's
1573 at *(fun+4). Note the call dummy is *NOT* allowed to
1574 trash %r19 before calling the target function. */
1575 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1577 /* Now get the real address for the function we are calling, it's
1579 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1584 #ifndef GDB_TARGET_IS_PA_ELF
1585 /* FUN could be either an export stub, or the real address of a
1586 function in a shared library. We must call an import stub
1587 rather than the export stub or real function for lazy binding
1588 to work correctly. */
1589 if (som_solib_get_got_by_pc (fun))
1591 struct objfile *objfile;
1592 struct minimal_symbol *funsymbol, *stub_symbol;
1593 CORE_ADDR newfun = 0;
1595 funsymbol = lookup_minimal_symbol_by_pc (fun);
1597 error ("Unable to find minimal symbol for target fucntion.\n");
1599 /* Search all the object files for an import symbol with the
1601 ALL_OBJFILES (objfile)
1603 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1605 /* Found a symbol with the right name. */
1608 struct unwind_table_entry *u;
1609 /* It must be a shared library trampoline. */
1610 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1613 /* It must also be an import stub. */
1614 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1615 if (!u || u->stub_type != IMPORT)
1618 /* OK. Looks like the correct import stub. */
1619 newfun = SYMBOL_VALUE (stub_symbol);
1624 write_register (19, som_solib_get_got_by_pc (fun));
1629 /* If we are calling an import stub (eg calling into a dynamic library)
1630 then have sr4export call the magic __d_plt_call routine which is linked
1631 in from end.o. (You can't use _sr4export to call the import stub as
1632 the value in sp-24 will get fried and you end up returning to the
1633 wrong location. You can't call the import stub directly as the code
1634 to bind the PLT entry to a function can't return to a stack address.) */
1635 u = find_unwind_entry (fun);
1636 if (u && u->stub_type == IMPORT)
1640 /* Prefer __gcc_plt_call over the HP supplied routine because
1641 __gcc_plt_call works for any number of arguments. */
1642 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1643 if (trampoline == NULL)
1644 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1646 if (trampoline == NULL)
1647 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1649 /* This is where sr4export will jump to. */
1650 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1652 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1654 /* We have to store the address of the stub in __shlib_funcptr. */
1655 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1656 (struct objfile *)NULL);
1657 if (msymbol == NULL)
1658 error ("Can't find an address for __shlib_funcptr");
1660 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1662 /* We want sr4export to call __d_plt_call, so we claim it is
1663 the final target. Clear trampoline. */
1669 /* Store upper 21 bits of function address into ldil. fun will either be
1670 the final target (most cases) or __d_plt_call when calling into a shared
1671 library and __gcc_plt_call is not available. */
1672 store_unsigned_integer
1673 (&dummy[FUNC_LDIL_OFFSET],
1675 deposit_21 (fun >> 11,
1676 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1677 INSTRUCTION_SIZE)));
1679 /* Store lower 11 bits of function address into ldo */
1680 store_unsigned_integer
1681 (&dummy[FUNC_LDO_OFFSET],
1683 deposit_14 (fun & MASK_11,
1684 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1685 INSTRUCTION_SIZE)));
1686 #ifdef SR4EXPORT_LDIL_OFFSET
1689 CORE_ADDR trampoline_addr;
1691 /* We may still need sr4export's address too. */
1693 if (trampoline == NULL)
1695 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1696 if (msymbol == NULL)
1697 error ("Can't find an address for _sr4export trampoline");
1699 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1702 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1705 /* Store upper 21 bits of trampoline's address into ldil */
1706 store_unsigned_integer
1707 (&dummy[SR4EXPORT_LDIL_OFFSET],
1709 deposit_21 (trampoline_addr >> 11,
1710 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1711 INSTRUCTION_SIZE)));
1713 /* Store lower 11 bits of trampoline's address into ldo */
1714 store_unsigned_integer
1715 (&dummy[SR4EXPORT_LDO_OFFSET],
1717 deposit_14 (trampoline_addr & MASK_11,
1718 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1719 INSTRUCTION_SIZE)));
1723 write_register (22, pc);
1725 /* If we are in a syscall, then we should call the stack dummy
1726 directly. $$dyncall is not needed as the kernel sets up the
1727 space id registers properly based on the value in %r31. In
1728 fact calling $$dyncall will not work because the value in %r22
1729 will be clobbered on the syscall exit path.
1731 Similarly if the current PC is in a shared library. Note however,
1732 this scheme won't work if the shared library isn't mapped into
1733 the same space as the stack. */
1736 #ifndef GDB_TARGET_IS_PA_ELF
1737 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1741 return dyncall_addr;
1745 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1749 target_read_pc (pid)
1752 int flags = read_register_pid (FLAGS_REGNUM, pid);
1754 /* The following test does not belong here. It is OS-specific, and belongs
1756 /* Test SS_INSYSCALL */
1758 return read_register_pid (31, pid) & ~0x3;
1760 return read_register_pid (PC_REGNUM, pid) & ~0x3;
1763 /* Write out the PC. If currently in a syscall, then also write the new
1764 PC value into %r31. */
1767 target_write_pc (v, pid)
1771 int flags = read_register_pid (FLAGS_REGNUM, pid);
1773 /* The following test does not belong here. It is OS-specific, and belongs
1775 /* If in a syscall, then set %r31. Also make sure to get the
1776 privilege bits set correctly. */
1777 /* Test SS_INSYSCALL */
1779 write_register_pid (31, v | 0x3, pid);
1781 write_register_pid (PC_REGNUM, v, pid);
1782 write_register_pid (NPC_REGNUM, v + 4, pid);
1785 /* return the alignment of a type in bytes. Structures have the maximum
1786 alignment required by their fields. */
1792 int max_align, align, i;
1793 CHECK_TYPEDEF (type);
1794 switch (TYPE_CODE (type))
1799 return TYPE_LENGTH (type);
1800 case TYPE_CODE_ARRAY:
1801 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1802 case TYPE_CODE_STRUCT:
1803 case TYPE_CODE_UNION:
1805 for (i = 0; i < TYPE_NFIELDS (type); i++)
1807 /* Bit fields have no real alignment. */
1808 if (!TYPE_FIELD_BITPOS (type, i))
1810 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1811 max_align = max (max_align, align);
1820 /* Print the register regnum, or all registers if regnum is -1 */
1823 pa_do_registers_info (regnum, fpregs)
1827 char raw_regs [REGISTER_BYTES];
1830 for (i = 0; i < NUM_REGS; i++)
1831 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1833 pa_print_registers (raw_regs, regnum, fpregs);
1834 else if (regnum < FP0_REGNUM)
1835 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1836 REGISTER_BYTE (regnum)));
1838 pa_print_fp_reg (regnum);
1842 pa_print_registers (raw_regs, regnum, fpregs)
1850 for (i = 0; i < 18; i++)
1852 for (j = 0; j < 4; j++)
1855 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1856 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1858 printf_unfiltered ("\n");
1862 for (i = 72; i < NUM_REGS; i++)
1863 pa_print_fp_reg (i);
1870 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1871 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1873 /* Get 32bits of data. */
1874 read_relative_register_raw_bytes (i, raw_buffer);
1876 /* Put it in the buffer. No conversions are ever necessary. */
1877 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1879 fputs_filtered (reg_names[i], gdb_stdout);
1880 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1881 fputs_filtered ("(single precision) ", gdb_stdout);
1883 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1884 1, 0, Val_pretty_default);
1885 printf_filtered ("\n");
1887 /* If "i" is even, then this register can also be a double-precision
1888 FP register. Dump it out as such. */
1891 /* Get the data in raw format for the 2nd half. */
1892 read_relative_register_raw_bytes (i + 1, raw_buffer);
1894 /* Copy it into the appropriate part of the virtual buffer. */
1895 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1896 REGISTER_RAW_SIZE (i));
1898 /* Dump it as a double. */
1899 fputs_filtered (reg_names[i], gdb_stdout);
1900 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1901 fputs_filtered ("(double precision) ", gdb_stdout);
1903 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1904 1, 0, Val_pretty_default);
1905 printf_filtered ("\n");
1909 /* Return one if PC is in the call path of a trampoline, else return zero.
1911 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1912 just shared library trampolines (import, export). */
1915 in_solib_call_trampoline (pc, name)
1919 struct minimal_symbol *minsym;
1920 struct unwind_table_entry *u;
1921 static CORE_ADDR dyncall = 0;
1922 static CORE_ADDR sr4export = 0;
1924 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1927 /* First see if PC is in one of the two C-library trampolines. */
1930 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1932 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1939 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1941 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1946 if (pc == dyncall || pc == sr4export)
1949 /* Get the unwind descriptor corresponding to PC, return zero
1950 if no unwind was found. */
1951 u = find_unwind_entry (pc);
1955 /* If this isn't a linker stub, then return now. */
1956 if (u->stub_type == 0)
1959 /* By definition a long-branch stub is a call stub. */
1960 if (u->stub_type == LONG_BRANCH)
1963 /* The call and return path execute the same instructions within
1964 an IMPORT stub! So an IMPORT stub is both a call and return
1966 if (u->stub_type == IMPORT)
1969 /* Parameter relocation stubs always have a call path and may have a
1971 if (u->stub_type == PARAMETER_RELOCATION
1972 || u->stub_type == EXPORT)
1976 /* Search forward from the current PC until we hit a branch
1977 or the end of the stub. */
1978 for (addr = pc; addr <= u->region_end; addr += 4)
1982 insn = read_memory_integer (addr, 4);
1984 /* Does it look like a bl? If so then it's the call path, if
1985 we find a bv or be first, then we're on the return path. */
1986 if ((insn & 0xfc00e000) == 0xe8000000)
1988 else if ((insn & 0xfc00e001) == 0xe800c000
1989 || (insn & 0xfc000000) == 0xe0000000)
1993 /* Should never happen. */
1994 warning ("Unable to find branch in parameter relocation stub.\n");
1998 /* Unknown stub type. For now, just return zero. */
2002 /* Return one if PC is in the return path of a trampoline, else return zero.
2004 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2005 just shared library trampolines (import, export). */
2008 in_solib_return_trampoline (pc, name)
2012 struct unwind_table_entry *u;
2014 /* Get the unwind descriptor corresponding to PC, return zero
2015 if no unwind was found. */
2016 u = find_unwind_entry (pc);
2020 /* If this isn't a linker stub or it's just a long branch stub, then
2022 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
2025 /* The call and return path execute the same instructions within
2026 an IMPORT stub! So an IMPORT stub is both a call and return
2028 if (u->stub_type == IMPORT)
2031 /* Parameter relocation stubs always have a call path and may have a
2033 if (u->stub_type == PARAMETER_RELOCATION
2034 || u->stub_type == EXPORT)
2038 /* Search forward from the current PC until we hit a branch
2039 or the end of the stub. */
2040 for (addr = pc; addr <= u->region_end; addr += 4)
2044 insn = read_memory_integer (addr, 4);
2046 /* Does it look like a bl? If so then it's the call path, if
2047 we find a bv or be first, then we're on the return path. */
2048 if ((insn & 0xfc00e000) == 0xe8000000)
2050 else if ((insn & 0xfc00e001) == 0xe800c000
2051 || (insn & 0xfc000000) == 0xe0000000)
2055 /* Should never happen. */
2056 warning ("Unable to find branch in parameter relocation stub.\n");
2060 /* Unknown stub type. For now, just return zero. */
2065 /* Figure out if PC is in a trampoline, and if so find out where
2066 the trampoline will jump to. If not in a trampoline, return zero.
2068 Simple code examination probably is not a good idea since the code
2069 sequences in trampolines can also appear in user code.
2071 We use unwinds and information from the minimal symbol table to
2072 determine when we're in a trampoline. This won't work for ELF
2073 (yet) since it doesn't create stub unwind entries. Whether or
2074 not ELF will create stub unwinds or normal unwinds for linker
2075 stubs is still being debated.
2077 This should handle simple calls through dyncall or sr4export,
2078 long calls, argument relocation stubs, and dyncall/sr4export
2079 calling an argument relocation stub. It even handles some stubs
2080 used in dynamic executables. */
2083 skip_trampoline_code (pc, name)
2088 long prev_inst, curr_inst, loc;
2089 static CORE_ADDR dyncall = 0;
2090 static CORE_ADDR sr4export = 0;
2091 struct minimal_symbol *msym;
2092 struct unwind_table_entry *u;
2094 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2099 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2101 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2108 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2110 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2115 /* Addresses passed to dyncall may *NOT* be the actual address
2116 of the function. So we may have to do something special. */
2119 pc = (CORE_ADDR) read_register (22);
2121 /* If bit 30 (counting from the left) is on, then pc is the address of
2122 the PLT entry for this function, not the address of the function
2123 itself. Bit 31 has meaning too, but only for MPE. */
2125 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2127 else if (pc == sr4export)
2128 pc = (CORE_ADDR) (read_register (22));
2130 /* Get the unwind descriptor corresponding to PC, return zero
2131 if no unwind was found. */
2132 u = find_unwind_entry (pc);
2136 /* If this isn't a linker stub, then return now. */
2137 if (u->stub_type == 0)
2138 return orig_pc == pc ? 0 : pc & ~0x3;
2140 /* It's a stub. Search for a branch and figure out where it goes.
2141 Note we have to handle multi insn branch sequences like ldil;ble.
2142 Most (all?) other branches can be determined by examining the contents
2143 of certain registers and the stack. */
2149 /* Make sure we haven't walked outside the range of this stub. */
2150 if (u != find_unwind_entry (loc))
2152 warning ("Unable to find branch in linker stub");
2153 return orig_pc == pc ? 0 : pc & ~0x3;
2156 prev_inst = curr_inst;
2157 curr_inst = read_memory_integer (loc, 4);
2159 /* Does it look like a branch external using %r1? Then it's the
2160 branch from the stub to the actual function. */
2161 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2163 /* Yup. See if the previous instruction loaded
2164 a value into %r1. If so compute and return the jump address. */
2165 if ((prev_inst & 0xffe00000) == 0x20200000)
2166 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2169 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2170 return orig_pc == pc ? 0 : pc & ~0x3;
2174 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2175 import stub to an export stub.
2177 It is impossible to determine the target of the branch via
2178 simple examination of instructions and/or data (consider
2179 that the address in the plabel may be the address of the
2180 bind-on-reference routine in the dynamic loader).
2182 So we have try an alternative approach.
2184 Get the name of the symbol at our current location; it should
2185 be a stub symbol with the same name as the symbol in the
2188 Then lookup a minimal symbol with the same name; we should
2189 get the minimal symbol for the target routine in the shared
2190 library as those take precedence of import/export stubs. */
2191 if (curr_inst == 0xe2a00000)
2193 struct minimal_symbol *stubsym, *libsym;
2195 stubsym = lookup_minimal_symbol_by_pc (loc);
2196 if (stubsym == NULL)
2198 warning ("Unable to find symbol for 0x%x", loc);
2199 return orig_pc == pc ? 0 : pc & ~0x3;
2202 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2205 warning ("Unable to find library symbol for %s\n",
2206 SYMBOL_NAME (stubsym));
2207 return orig_pc == pc ? 0 : pc & ~0x3;
2210 return SYMBOL_VALUE (libsym);
2213 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2214 branch from the stub to the actual function. */
2215 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2216 || (curr_inst & 0xffe0e000) == 0xe8000000)
2217 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2219 /* Does it look like bv (rp)? Note this depends on the
2220 current stack pointer being the same as the stack
2221 pointer in the stub itself! This is a branch on from the
2222 stub back to the original caller. */
2223 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2225 /* Yup. See if the previous instruction loaded
2227 if (prev_inst == 0x4bc23ff1)
2228 return (read_memory_integer
2229 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2232 warning ("Unable to find restore of %%rp before bv (%%rp).");
2233 return orig_pc == pc ? 0 : pc & ~0x3;
2237 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2238 the original caller from the stub. Used in dynamic executables. */
2239 else if (curr_inst == 0xe0400002)
2241 /* The value we jump to is sitting in sp - 24. But that's
2242 loaded several instructions before the be instruction.
2243 I guess we could check for the previous instruction being
2244 mtsp %r1,%sr0 if we want to do sanity checking. */
2245 return (read_memory_integer
2246 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2249 /* Haven't found the branch yet, but we're still in the stub.
2255 /* For the given instruction (INST), return any adjustment it makes
2256 to the stack pointer or zero for no adjustment.
2258 This only handles instructions commonly found in prologues. */
2261 prologue_inst_adjust_sp (inst)
2264 /* This must persist across calls. */
2265 static int save_high21;
2267 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2268 if ((inst & 0xffffc000) == 0x37de0000)
2269 return extract_14 (inst);
2272 if ((inst & 0xffe00000) == 0x6fc00000)
2273 return extract_14 (inst);
2275 /* addil high21,%r1; ldo low11,(%r1),%r30)
2276 save high bits in save_high21 for later use. */
2277 if ((inst & 0xffe00000) == 0x28200000)
2279 save_high21 = extract_21 (inst);
2283 if ((inst & 0xffff0000) == 0x343e0000)
2284 return save_high21 + extract_14 (inst);
2286 /* fstws as used by the HP compilers. */
2287 if ((inst & 0xffffffe0) == 0x2fd01220)
2288 return extract_5_load (inst);
2290 /* No adjustment. */
2294 /* Return nonzero if INST is a branch of some kind, else return zero. */
2324 /* Return the register number for a GR which is saved by INST or
2325 zero it INST does not save a GR. */
2328 inst_saves_gr (inst)
2331 /* Does it look like a stw? */
2332 if ((inst >> 26) == 0x1a)
2333 return extract_5R_store (inst);
2335 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2336 if ((inst >> 26) == 0x1b)
2337 return extract_5R_store (inst);
2339 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2341 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2342 return extract_5R_store (inst);
2347 /* Return the register number for a FR which is saved by INST or
2348 zero it INST does not save a FR.
2350 Note we only care about full 64bit register stores (that's the only
2351 kind of stores the prologue will use).
2353 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2356 inst_saves_fr (inst)
2359 if ((inst & 0xfc00dfc0) == 0x2c001200)
2360 return extract_5r_store (inst);
2364 /* Advance PC across any function entry prologue instructions
2365 to reach some "real" code.
2367 Use information in the unwind table to determine what exactly should
2368 be in the prologue. */
2375 CORE_ADDR orig_pc = pc;
2376 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2377 unsigned long args_stored, status, i, restart_gr, restart_fr;
2378 struct unwind_table_entry *u;
2384 u = find_unwind_entry (pc);
2388 /* If we are not at the beginning of a function, then return now. */
2389 if ((pc & ~0x3) != u->region_start)
2392 /* This is how much of a frame adjustment we need to account for. */
2393 stack_remaining = u->Total_frame_size << 3;
2395 /* Magic register saves we want to know about. */
2396 save_rp = u->Save_RP;
2397 save_sp = u->Save_SP;
2399 /* An indication that args may be stored into the stack. Unfortunately
2400 the HPUX compilers tend to set this in cases where no args were
2404 /* Turn the Entry_GR field into a bitmask. */
2406 for (i = 3; i < u->Entry_GR + 3; i++)
2408 /* Frame pointer gets saved into a special location. */
2409 if (u->Save_SP && i == FP_REGNUM)
2412 save_gr |= (1 << i);
2414 save_gr &= ~restart_gr;
2416 /* Turn the Entry_FR field into a bitmask too. */
2418 for (i = 12; i < u->Entry_FR + 12; i++)
2419 save_fr |= (1 << i);
2420 save_fr &= ~restart_fr;
2422 /* Loop until we find everything of interest or hit a branch.
2424 For unoptimized GCC code and for any HP CC code this will never ever
2425 examine any user instructions.
2427 For optimzied GCC code we're faced with problems. GCC will schedule
2428 its prologue and make prologue instructions available for delay slot
2429 filling. The end result is user code gets mixed in with the prologue
2430 and a prologue instruction may be in the delay slot of the first branch
2433 Some unexpected things are expected with debugging optimized code, so
2434 we allow this routine to walk past user instructions in optimized
2436 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2439 unsigned int reg_num;
2440 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2441 unsigned long old_save_rp, old_save_sp, next_inst;
2443 /* Save copies of all the triggers so we can compare them later
2445 old_save_gr = save_gr;
2446 old_save_fr = save_fr;
2447 old_save_rp = save_rp;
2448 old_save_sp = save_sp;
2449 old_stack_remaining = stack_remaining;
2451 status = target_read_memory (pc, buf, 4);
2452 inst = extract_unsigned_integer (buf, 4);
2458 /* Note the interesting effects of this instruction. */
2459 stack_remaining -= prologue_inst_adjust_sp (inst);
2461 /* There is only one instruction used for saving RP into the stack. */
2462 if (inst == 0x6bc23fd9)
2465 /* This is the only way we save SP into the stack. At this time
2466 the HP compilers never bother to save SP into the stack. */
2467 if ((inst & 0xffffc000) == 0x6fc10000)
2470 /* Account for general and floating-point register saves. */
2471 reg_num = inst_saves_gr (inst);
2472 save_gr &= ~(1 << reg_num);
2474 /* Ugh. Also account for argument stores into the stack.
2475 Unfortunately args_stored only tells us that some arguments
2476 where stored into the stack. Not how many or what kind!
2478 This is a kludge as on the HP compiler sets this bit and it
2479 never does prologue scheduling. So once we see one, skip past
2480 all of them. We have similar code for the fp arg stores below.
2482 FIXME. Can still die if we have a mix of GR and FR argument
2484 if (reg_num >= 23 && reg_num <= 26)
2486 while (reg_num >= 23 && reg_num <= 26)
2489 status = target_read_memory (pc, buf, 4);
2490 inst = extract_unsigned_integer (buf, 4);
2493 reg_num = inst_saves_gr (inst);
2499 reg_num = inst_saves_fr (inst);
2500 save_fr &= ~(1 << reg_num);
2502 status = target_read_memory (pc + 4, buf, 4);
2503 next_inst = extract_unsigned_integer (buf, 4);
2509 /* We've got to be read to handle the ldo before the fp register
2511 if ((inst & 0xfc000000) == 0x34000000
2512 && inst_saves_fr (next_inst) >= 4
2513 && inst_saves_fr (next_inst) <= 7)
2515 /* So we drop into the code below in a reasonable state. */
2516 reg_num = inst_saves_fr (next_inst);
2520 /* Ugh. Also account for argument stores into the stack.
2521 This is a kludge as on the HP compiler sets this bit and it
2522 never does prologue scheduling. So once we see one, skip past
2524 if (reg_num >= 4 && reg_num <= 7)
2526 while (reg_num >= 4 && reg_num <= 7)
2529 status = target_read_memory (pc, buf, 4);
2530 inst = extract_unsigned_integer (buf, 4);
2533 if ((inst & 0xfc000000) != 0x34000000)
2535 status = target_read_memory (pc + 4, buf, 4);
2536 next_inst = extract_unsigned_integer (buf, 4);
2539 reg_num = inst_saves_fr (next_inst);
2545 /* Quit if we hit any kind of branch. This can happen if a prologue
2546 instruction is in the delay slot of the first call/branch. */
2547 if (is_branch (inst))
2550 /* What a crock. The HP compilers set args_stored even if no
2551 arguments were stored into the stack (boo hiss). This could
2552 cause this code to then skip a bunch of user insns (up to the
2555 To combat this we try to identify when args_stored was bogusly
2556 set and clear it. We only do this when args_stored is nonzero,
2557 all other resources are accounted for, and nothing changed on
2560 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2561 && old_save_gr == save_gr && old_save_fr == save_fr
2562 && old_save_rp == save_rp && old_save_sp == save_sp
2563 && old_stack_remaining == stack_remaining)
2570 /* We've got a tenative location for the end of the prologue. However
2571 because of limitations in the unwind descriptor mechanism we may
2572 have went too far into user code looking for the save of a register
2573 that does not exist. So, if there registers we expected to be saved
2574 but never were, mask them out and restart.
2576 This should only happen in optimized code, and should be very rare. */
2577 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
2580 restart_gr = save_gr;
2581 restart_fr = save_fr;
2588 /* Put here the code to store, into a struct frame_saved_regs,
2589 the addresses of the saved registers of frame described by FRAME_INFO.
2590 This includes special registers such as pc and fp saved in special
2591 ways in the stack frame. sp is even more special:
2592 the address we return for it IS the sp for the next frame. */
2595 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2596 struct frame_info *frame_info;
2597 struct frame_saved_regs *frame_saved_regs;
2600 struct unwind_table_entry *u;
2601 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2606 /* Zero out everything. */
2607 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2609 /* Call dummy frames always look the same, so there's no need to
2610 examine the dummy code to determine locations of saved registers;
2611 instead, let find_dummy_frame_regs fill in the correct offsets
2612 for the saved registers. */
2613 if ((frame_info->pc >= frame_info->frame
2614 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2615 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2617 find_dummy_frame_regs (frame_info, frame_saved_regs);
2619 /* Interrupt handlers are special too. They lay out the register
2620 state in the exact same order as the register numbers in GDB. */
2621 if (pc_in_interrupt_handler (frame_info->pc))
2623 for (i = 0; i < NUM_REGS; i++)
2625 /* SP is a little special. */
2627 frame_saved_regs->regs[SP_REGNUM]
2628 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2630 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2635 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2636 /* Handle signal handler callers. */
2637 if (frame_info->signal_handler_caller)
2639 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2644 /* Get the starting address of the function referred to by the PC
2646 pc = get_pc_function_start (frame_info->pc);
2649 u = find_unwind_entry (pc);
2653 /* This is how much of a frame adjustment we need to account for. */
2654 stack_remaining = u->Total_frame_size << 3;
2656 /* Magic register saves we want to know about. */
2657 save_rp = u->Save_RP;
2658 save_sp = u->Save_SP;
2660 /* Turn the Entry_GR field into a bitmask. */
2662 for (i = 3; i < u->Entry_GR + 3; i++)
2664 /* Frame pointer gets saved into a special location. */
2665 if (u->Save_SP && i == FP_REGNUM)
2668 save_gr |= (1 << i);
2671 /* Turn the Entry_FR field into a bitmask too. */
2673 for (i = 12; i < u->Entry_FR + 12; i++)
2674 save_fr |= (1 << i);
2676 /* The frame always represents the value of %sp at entry to the
2677 current function (and is thus equivalent to the "saved" stack
2679 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2681 /* Loop until we find everything of interest or hit a branch.
2683 For unoptimized GCC code and for any HP CC code this will never ever
2684 examine any user instructions.
2686 For optimzied GCC code we're faced with problems. GCC will schedule
2687 its prologue and make prologue instructions available for delay slot
2688 filling. The end result is user code gets mixed in with the prologue
2689 and a prologue instruction may be in the delay slot of the first branch
2692 Some unexpected things are expected with debugging optimized code, so
2693 we allow this routine to walk past user instructions in optimized
2695 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2697 status = target_read_memory (pc, buf, 4);
2698 inst = extract_unsigned_integer (buf, 4);
2704 /* Note the interesting effects of this instruction. */
2705 stack_remaining -= prologue_inst_adjust_sp (inst);
2707 /* There is only one instruction used for saving RP into the stack. */
2708 if (inst == 0x6bc23fd9)
2711 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2714 /* Just note that we found the save of SP into the stack. The
2715 value for frame_saved_regs was computed above. */
2716 if ((inst & 0xffffc000) == 0x6fc10000)
2719 /* Account for general and floating-point register saves. */
2720 reg = inst_saves_gr (inst);
2721 if (reg >= 3 && reg <= 18
2722 && (!u->Save_SP || reg != FP_REGNUM))
2724 save_gr &= ~(1 << reg);
2726 /* stwm with a positive displacement is a *post modify*. */
2727 if ((inst >> 26) == 0x1b
2728 && extract_14 (inst) >= 0)
2729 frame_saved_regs->regs[reg] = frame_info->frame;
2732 /* Handle code with and without frame pointers. */
2734 frame_saved_regs->regs[reg]
2735 = frame_info->frame + extract_14 (inst);
2737 frame_saved_regs->regs[reg]
2738 = frame_info->frame + (u->Total_frame_size << 3)
2739 + extract_14 (inst);
2744 /* GCC handles callee saved FP regs a little differently.
2746 It emits an instruction to put the value of the start of
2747 the FP store area into %r1. It then uses fstds,ma with
2748 a basereg of %r1 for the stores.
2750 HP CC emits them at the current stack pointer modifying
2751 the stack pointer as it stores each register. */
2753 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2754 if ((inst & 0xffffc000) == 0x34610000
2755 || (inst & 0xffffc000) == 0x37c10000)
2756 fp_loc = extract_14 (inst);
2758 reg = inst_saves_fr (inst);
2759 if (reg >= 12 && reg <= 21)
2761 /* Note +4 braindamage below is necessary because the FP status
2762 registers are internally 8 registers rather than the expected
2764 save_fr &= ~(1 << reg);
2767 /* 1st HP CC FP register store. After this instruction
2768 we've set enough state that the GCC and HPCC code are
2769 both handled in the same manner. */
2770 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2775 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2776 = frame_info->frame + fp_loc;
2781 /* Quit if we hit any kind of branch. This can happen if a prologue
2782 instruction is in the delay slot of the first call/branch. */
2783 if (is_branch (inst))
2791 #ifdef MAINTENANCE_CMDS
2794 unwind_command (exp, from_tty)
2799 struct unwind_table_entry *u;
2801 /* If we have an expression, evaluate it and use it as the address. */
2803 if (exp != 0 && *exp != 0)
2804 address = parse_and_eval_address (exp);
2808 u = find_unwind_entry (address);
2812 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2816 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2818 printf_unfiltered ("\tregion_start = ");
2819 print_address (u->region_start, gdb_stdout);
2821 printf_unfiltered ("\n\tregion_end = ");
2822 print_address (u->region_end, gdb_stdout);
2825 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2827 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2830 printf_unfiltered ("\n\tflags =");
2831 pif (Cannot_unwind);
2833 pif (Millicode_save_sr0);
2836 pif (Variable_Frame);
2837 pif (Separate_Package_Body);
2838 pif (Frame_Extension_Millicode);
2839 pif (Stack_Overflow_Check);
2840 pif (Two_Instruction_SP_Increment);
2844 pif (Save_MRP_in_frame);
2845 pif (extn_ptr_defined);
2846 pif (Cleanup_defined);
2847 pif (MPE_XL_interrupt_marker);
2848 pif (HP_UX_interrupt_marker);
2851 putchar_unfiltered ('\n');
2854 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2856 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2859 pin (Region_description);
2862 pin (Total_frame_size);
2864 #endif /* MAINTENANCE_CMDS */
2867 _initialize_hppa_tdep ()
2869 tm_print_insn = print_insn_hppa;
2871 #ifdef MAINTENANCE_CMDS
2872 add_cmd ("unwind", class_maintenance, unwind_command,
2873 "Print unwind table entry at given address.",
2874 &maintenanceprintlist);
2875 #endif /* MAINTENANCE_CMDS */