1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 This file is part of GAS.
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* See comment on md_parse_option for 80960-specific invocation options. */
24 /* There are 4 different lengths of (potentially) symbol-based displacements
25 in the 80960 instruction set, each of which could require address fix-ups
26 and (in the case of external symbols) emission of relocation directives:
29 This is a standard length for the base assembler and requires no
33 This is a non-standard length, but the base assembler has a
34 hook for bit field address fixups: the fixS structure can
35 point to a descriptor of the field, in which case our
36 md_number_to_field() routine gets called to process it.
38 I made the hook a little cleaner by having fix_new() (in the base
39 assembler) return a pointer to the fixS in question. And I made it a
40 little simpler by storing the field size (in this case 13) instead of
41 of a pointer to another structure: 80960 displacements are ALWAYS
42 stored in the low-order bits of a 4-byte word.
44 Since the target of a COBR cannot be external, no relocation
45 directives for this size displacement have to be generated.
46 But the base assembler had to be modified to issue error
47 messages if the symbol did turn out to be external.
50 Fixups are handled as for the 13-bit case (except that 24 is stored
53 The relocation directive generated is the same as that for the 32-bit
54 displacement, except that it's PC-relative (the 32-bit displacement
55 never is). The i80960 version of the linker needs a mod to
56 distinguish and handle the 24-bit case.
59 MEMA formats are always promoted to MEMB (32-bit) if the displacement
60 is based on a symbol, because it could be relocated at link time.
61 The only time we use the 12-bit format is if an absolute value of
62 less than 4096 is specified, in which case we need neither a fixup nor
63 a relocation directive. */
72 #include "opcode/i960.h"
74 #if defined (OBJ_AOUT) || defined (OBJ_BOUT)
76 #define TC_S_IS_SYSPROC(s) ((1<=S_GET_OTHER(s)) && (S_GET_OTHER(s)<=32))
77 #define TC_S_IS_BALNAME(s) (S_GET_OTHER(s) == N_BALNAME)
78 #define TC_S_IS_CALLNAME(s) (S_GET_OTHER(s) == N_CALLNAME)
79 #define TC_S_IS_BADPROC(s) ((S_GET_OTHER(s) != 0) && !TC_S_IS_CALLNAME(s) && !TC_S_IS_BALNAME(s) && !TC_S_IS_SYSPROC(s))
81 #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER((s), (p)+1))
82 #define TC_S_GET_SYSPROC(s) (S_GET_OTHER(s)-1)
84 #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER((s), N_BALNAME))
85 #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER((s), N_CALLNAME))
86 #define TC_S_FORCE_TO_SYSPROC(s) {;}
88 #else /* ! OBJ_A/BOUT */
91 #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS(s) == C_SCALL)
92 #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME(s))
93 #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME(s))
94 #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC(s) && TC_S_GET_SYSPROC(s) < 0 && 31 < TC_S_GET_SYSPROC(s))
96 #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p))
97 #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx)
99 #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME(s))
100 #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME(s))
101 #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS((s), C_SCALL))
103 #else /* ! OBJ_COFF */
105 #define TC_S_IS_SYSPROC(s) 0
107 #define TC_S_IS_BALNAME(s) 0
108 #define TC_S_IS_CALLNAME(s) 0
109 #define TC_S_IS_BADPROC(s) 0
111 #define TC_S_SET_SYSPROC(s, p)
112 #define TC_S_GET_SYSPROC(s) 0
114 #define TC_S_FORCE_TO_BALNAME(s)
115 #define TC_S_FORCE_TO_CALLNAME(s)
116 #define TC_S_FORCE_TO_SYSPROC(s)
118 #error COFF, a.out, b.out, and ELF are the only supported formats.
119 #endif /* ! OBJ_ELF */
120 #endif /* ! OBJ_COFF */
121 #endif /* ! OBJ_A/BOUT */
123 extern char *input_line_pointer;
125 #if !defined (BFD_ASSEMBLER) && !defined (BFD)
127 const int md_reloc_size = sizeof (struct reloc);
129 const int md_reloc_size = sizeof (struct relocation_info);
130 #endif /* OBJ_COFF */
133 /* Local i80960 routines. */
135 static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
136 static char *brlab_next (); /* Return next branch local label */
137 void brtab_emit (); /* Emit br-predict instrumentation table */
138 static void cobr_fmt (); /* Generate COBR instruction */
139 static void ctrl_fmt (); /* Generate CTRL instruction */
140 static char *emit (); /* Emit (internally) binary */
141 static int get_args (); /* Break arguments out of comma-separated list */
142 static void get_cdisp (); /* Handle COBR or CTRL displacement */
143 static char *get_ispec (); /* Find index specification string */
144 static int get_regnum (); /* Translate text to register number */
145 static int i_scan (); /* Lexical scan of instruction source */
146 static void mem_fmt (); /* Generate MEMA or MEMB instruction */
147 static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
148 static void parse_expr (); /* Parse an expression */
149 static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
150 static void parse_memop (); /* Parse a memory operand */
151 static void parse_po (); /* Parse machine-dependent pseudo-op */
152 static void parse_regop (); /* Parse a register operand */
153 static void reg_fmt (); /* Generate a REG format instruction */
154 void reloc_callj (); /* Relocate a 'callj' instruction */
155 static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
156 static void s_leafproc (); /* Process '.leafproc' pseudo-op */
157 static void s_sysproc (); /* Process '.sysproc' pseudo-op */
158 static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
159 static void syntax (); /* Give syntax error */
160 static int targ_has_sfr (); /* Target chip supports spec-func register? */
161 static int targ_has_iclass (); /* Target chip supports instruction set? */
163 /* See md_parse_option() for meanings of these options */
164 static char norelax; /* True if -norelax switch seen */
165 static char instrument_branches; /* True if -b switch seen */
167 /* Characters that always start a comment.
168 If the pre-processor is disabled, these aren't very useful.
170 const char comment_chars[] = "#";
172 /* Characters that only start a comment at the beginning of
173 a line. If the line seems to have the form '# 123 filename'
174 .line and .file directives will appear in the pre-processed output.
176 Note that input_file.c hand checks for '#' at the beginning of the
177 first line of the input file. This is because the compiler outputs
178 #NO_APP at the beginning of its output.
181 /* Also note that comments started like this one will always work. */
183 const char line_comment_chars[] = "";
185 const char line_separator_chars[] = ";";
187 /* Chars that can be used to separate mant from exp in floating point nums */
188 const char EXP_CHARS[] = "eE";
190 /* Chars that mean this number is a floating point constant,
191 as in 0f12.456 or 0d1.2345e12
193 const char FLT_CHARS[] = "fFdDtT";
195 /* Table used by base assembler to relax addresses based on varying length
196 instructions. The fields are:
197 1) most positive reach of this state,
198 2) most negative reach of this state,
199 3) how many bytes this mode will add to the size of the current frag
200 4) which index into the table to try if we can't fit into this one.
202 For i80960, the only application is the (de-)optimization of cobr
203 instructions into separate compare and branch instructions when a 13-bit
204 displacement won't hack it.
206 const relax_typeS md_relax_table[] =
208 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
209 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
210 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
213 static void s_endian PARAMS ((int));
215 /* These are the machine dependent pseudo-ops.
217 This table describes all the machine specific pseudo-ops the assembler
218 has to support. The fields are:
219 pseudo-op name without dot
220 function to call to execute this pseudo-op
221 integer arg to pass to the function
226 const pseudo_typeS md_pseudo_table[] =
229 {"endian", s_endian, 0},
230 {"extended", float_cons, 't'},
231 {"leafproc", parse_po, S_LEAFPROC},
232 {"sysproc", parse_po, S_SYSPROC},
240 /* Macros to extract info from an 'expressionS' structure 'e' */
241 #define adds(e) e.X_add_symbol
242 #define offs(e) e.X_add_number
244 /* Branch-prediction bits for CTRL/COBR format opcodes */
245 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
246 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
247 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
249 /* Some instruction opcodes that we need explicitly */
250 #define BE 0x12000000
251 #define BG 0x11000000
252 #define BGE 0x13000000
253 #define BL 0x14000000
254 #define BLE 0x16000000
255 #define BNE 0x15000000
256 #define BNO 0x10000000
257 #define BO 0x17000000
258 #define CHKBIT 0x5a002700
259 #define CMPI 0x5a002080
260 #define CMPO 0x5a002000
263 #define BAL 0x0b000000
264 #define CALL 0x09000000
265 #define CALLS 0x66003800
266 #define RET 0x0a000000
268 /* These masks are used to build up a set of MEMB mode bits. */
271 #define MEMB_BIT 0x1000
274 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
276 #define MEMA_ABASE 0x2000
278 /* Info from which a MEMA or MEMB format instruction can be generated */
281 /* (First) 32 bits of instruction */
283 /* 0-(none), 12- or, 32-bit displacement needed */
285 /* The expression in the source instruction from which the
286 displacement should be determined. */
292 /* The two pieces of info we need to generate a register operand */
295 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
296 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
297 int n; /* Register number or literal value */
300 /* Number and assembler mnemonic for all registers that can appear in
342 /* Numbers for special-function registers are for assembler internal
343 use only: they are scaled back to range [0-31] for binary output. */
379 /* Numbers for floating point registers are for assembler internal
380 use only: they are scaled back to [0-3] for binary output. */
388 { NULL, 0 }, /* END OF LIST */
391 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
392 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
393 #define IS_FP_REG(n) ((n) >= FP0)
395 /* Number and assembler mnemonic for all registers that can appear as
396 'abase' (indirect addressing) registers. */
438 /* For assembler internal use only: this number never appears in binary
442 { NULL, 0 }, /* END OF LIST */
446 static struct hash_control *op_hash; /* Opcode mnemonics */
447 static struct hash_control *reg_hash; /* Register name hash table */
448 static struct hash_control *areg_hash; /* Abase register hash table */
450 /* Architecture for which we are assembling */
451 #define ARCH_ANY 0 /* Default: no architecture checking done */
458 int architecture = ARCH_ANY; /* Architecture requested on invocation line */
459 int iclasses_seen; /* OR of instruction classes (I_* constants)
460 * for which we've actually assembled
464 /* BRANCH-PREDICTION INSTRUMENTATION
466 The following supports generation of branch-prediction instrumentation
467 (turned on by -b switch). The instrumentation collects counts
468 of branches taken/not-taken for later input to a utility that will
469 set the branch prediction bits of the instructions in accordance with
470 the behavior observed. (Note that the KX series does not have
473 The instrumentation consists of:
475 (1) before and after each conditional branch, a call to an external
476 routine that increments and steps over an inline counter. The
477 counter itself, initialized to 0, immediately follows the call
478 instruction. For each branch, the counter following the branch
479 is the number of times the branch was not taken, and the difference
480 between the counters is the number of times it was taken. An
481 example of an instrumented conditional branch:
489 (2) a table of pointers to the instrumented branches, so that an
490 external postprocessing routine can locate all of the counters.
491 the table begins with a 2-word header: a pointer to the next in
492 a linked list of such tables (initialized to 0); and a count
493 of the number of entries in the table (exclusive of the header.
495 Note that input source code is expected to already contain calls
496 an external routine that will link the branch local table into a
500 /* Number of branches instrumented so far. Also used to generate
501 unique local labels for each instrumented branch. */
504 #define BR_LABEL_BASE "LBRANCH"
505 /* Basename of local labels on instrumented branches, to avoid
506 conflict with compiler- generated local labels. */
508 #define BR_CNT_FUNC "__inc_branch"
509 /* Name of the external routine that will increment (and step over) an
512 #define BR_TAB_NAME "__BRANCH_TABLE__"
513 /* Name of the table of pointers to branches. A local (i.e.,
514 non-external) symbol. */
516 /*****************************************************************************
517 md_begin: One-time initialization.
521 *************************************************************************** */
525 int i; /* Loop counter */
526 const struct i960_opcode *oP; /* Pointer into opcode table */
527 const char *retval; /* Value returned by hash functions */
529 op_hash = hash_new ();
530 reg_hash = hash_new ();
531 areg_hash = hash_new ();
533 /* For some reason, the base assembler uses an empty string for "no
534 error message", instead of a NULL pointer. */
537 for (oP = i960_opcodes; oP->name && !retval; oP++)
538 retval = hash_insert (op_hash, oP->name, (PTR) oP);
540 for (i = 0; regnames[i].reg_name && !retval; i++)
541 retval = hash_insert (reg_hash, regnames[i].reg_name,
542 (char *) ®names[i].reg_num);
544 for (i = 0; aregs[i].areg_name && !retval; i++)
545 retval = hash_insert (areg_hash, aregs[i].areg_name,
546 (char *) &aregs[i].areg_num);
549 as_fatal (_("Hashing returned \"%s\"."), retval);
552 /*****************************************************************************
553 md_assemble: Assemble an instruction
555 Assumptions about the passed-in text:
556 - all comments, labels removed
557 - text is an instruction
558 - all white space compressed to single blanks
559 - all character constants have been replaced with decimal
561 *************************************************************************** */
564 char *textP; /* Source text of instruction */
566 /* Parsed instruction text, containing NO whitespace: arg[0]->opcode
567 mnemonic arg[1-3]->operands, with char constants replaced by
571 int n_ops; /* Number of instruction operands */
572 /* Pointer to instruction description */
573 struct i960_opcode *oP;
574 /* TRUE iff opcode mnemonic included branch-prediction suffix (".f"
577 /* Setting of branch-prediction bit(s) to be OR'd into instruction
578 opcode of CTRL/COBR format instructions. */
581 int n; /* Offset of last character in opcode mnemonic */
583 const char *bp_error_msg = _("branch prediction invalid on this opcode");
585 /* Parse instruction into opcode and operands */
586 memset (args, '\0', sizeof (args));
587 n_ops = i_scan (textP, args);
590 return; /* Error message already issued */
593 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
594 if (!strcmp (args[0], "ldconst"))
596 n_ops = parse_ldconst (args);
603 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
604 n = strlen (args[0]) - 1;
607 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
609 /* We could check here to see if the target architecture
610 supports branch prediction, but why bother? The bit will
611 just be ignored by processors that don't use it. */
613 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
614 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
617 /* Look up opcode mnemonic in table and check number of operands.
618 Check that opcode is legal for the target architecture. If all
619 looks good, assemble instruction. */
620 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
621 if (!oP || !targ_has_iclass (oP->iclass))
623 as_bad (_("invalid opcode, \"%s\"."), args[0]);
626 else if (n_ops != oP->num_ops)
628 as_bad (_("improper number of operands. expecting %d, got %d"),
637 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
638 if (oP->format == FBRA)
640 /* Now generate a 'bno' to same arg */
641 ctrl_fmt (args[1], BNO | bp_bits, 1);
646 cobr_fmt (args, oP->opcode | bp_bits, oP);
651 as_warn (bp_error_msg);
656 if (args[0][0] == 'c' && args[0][1] == 'a')
660 as_warn (bp_error_msg);
662 mem_fmt (args, oP, 1);
672 as_warn (bp_error_msg);
674 mem_fmt (args, oP, 0);
679 as_warn (bp_error_msg);
681 /* Output opcode & set up "fixup" (relocation); flag
682 relocation as 'callj' type. */
683 know (oP->num_ops == 1);
684 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
687 BAD_CASE (oP->format);
691 } /* md_assemble() */
693 /*****************************************************************************
694 md_number_to_chars: convert a number to target byte order
696 *************************************************************************** */
698 md_number_to_chars (buf, value, n)
703 number_to_chars_littleendian (buf, value, n);
706 /*****************************************************************************
707 md_chars_to_number: convert from target byte order to host byte order.
709 *************************************************************************** */
711 md_chars_to_number (val, n)
712 unsigned char *val; /* Value in target byte order */
713 int n; /* Number of bytes in the input */
717 for (retval = 0; n--;)
725 #define MAX_LITTLENUMS 6
726 #define LNUM_SIZE sizeof(LITTLENUM_TYPE)
728 /*****************************************************************************
729 md_atof: convert ascii to floating point
731 Turn a string at input_line_pointer into a floating point constant of type
732 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
733 emitted is returned at 'sizeP'. An error message is returned, or a pointer
734 to an empty message if OK.
736 Note we call the i386 floating point routine, rather than complicating
737 things with more files or symbolic links.
739 *************************************************************************** */
741 md_atof (type, litP, sizeP)
746 LITTLENUM_TYPE words[MAX_LITTLENUMS];
747 LITTLENUM_TYPE *wordP;
767 type = 'x'; /* That's what atof_ieee() understands */
772 return _("Bad call to md_atof()");
775 t = atof_ieee (input_line_pointer, type, words);
778 input_line_pointer = t;
781 *sizeP = prec * LNUM_SIZE;
783 /* Output the LITTLENUMs in REVERSE order in accord with i80960
784 word-order. (Dunno why atof_ieee doesn't do it in the right
785 order in the first place -- probably because it's a hack of
788 for (wordP = words + prec - 1; prec--;)
790 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
791 litP += sizeof (LITTLENUM_TYPE);
797 /*****************************************************************************
800 *************************************************************************** */
802 md_number_to_imm (buf, val, n)
807 md_number_to_chars (buf, val, n);
810 /*****************************************************************************
813 *************************************************************************** */
815 md_number_to_disp (buf, val, n)
820 md_number_to_chars (buf, val, n);
823 /*****************************************************************************
826 Stick a value (an address fixup) into a bit field of
827 previously-generated instruction.
829 *************************************************************************** */
831 md_number_to_field (instrP, val, bfixP)
832 char *instrP; /* Pointer to instruction to be fixed */
833 long val; /* Address fixup value */
834 bit_fixS *bfixP; /* Description of bit field to be fixed up */
836 int numbits; /* Length of bit field to be fixed */
837 long instr; /* 32-bit instruction to be fixed-up */
838 long sign; /* 0 or -1, according to sign bit of 'val' */
840 /* Convert instruction back to host byte order. */
841 instr = md_chars_to_number (instrP, 4);
843 /* Surprise! -- we stored the number of bits to be modified rather
844 than a pointer to a structure. */
845 numbits = (int) bfixP;
848 /* This is a no-op, stuck here by reloc_callj() */
852 know ((numbits == 13) || (numbits == 24));
854 /* Propagate sign bit of 'val' for the given number of bits. Result
855 should be all 0 or all 1. */
856 sign = val >> ((int) numbits - 1);
857 if (((val < 0) && (sign != -1))
858 || ((val > 0) && (sign != 0)))
860 as_bad (_("Fixup of %ld too large for field width of %d"),
865 /* Put bit field into instruction and write back in target
868 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */
870 md_number_to_chars (instrP, instr, 4);
872 } /* md_number_to_field() */
875 /*****************************************************************************
877 Invocation line includes a switch not recognized by the base assembler.
878 See if it's a processor-specific option. For the 960, these are:
881 Conditional branch instructions that require displacements
882 greater than 13 bits (or that have external targets) should
883 generate errors. The default is to replace each such
884 instruction with the corresponding compare (or chkbit) and
885 branch instructions. Note that the Intel "j" cobr directives
886 are ALWAYS "de-optimized" in this way when necessary,
887 regardless of the setting of this option.
890 Add code to collect information about branches taken, for
891 later optimization of branch prediction bits by a separate
892 tool. COBR and CNTL format instructions have branch
893 prediction bits (in the CX architecture); if "BR" represents
894 an instruction in one of these classes, the following rep-
895 resents the code generated by the assembler:
897 call <increment routine>
898 .word 0 # pre-counter
900 call <increment routine>
901 .word 0 # post-counter
903 A table of all such "Labels" is also generated.
905 -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
906 Select the 80960 architecture. Instructions or features not
907 supported by the selected architecture cause fatal errors.
908 The default is to generate code for any instruction or feature
909 that is supported by SOME version of the 960 (even if this
910 means mixing architectures!).
912 ****************************************************************************/
914 CONST char *md_shortopts = "A:b";
915 struct option md_longopts[] =
917 #define OPTION_LINKRELAX (OPTION_MD_BASE)
918 {"linkrelax", no_argument, NULL, OPTION_LINKRELAX},
919 {"link-relax", no_argument, NULL, OPTION_LINKRELAX},
920 #define OPTION_NORELAX (OPTION_MD_BASE + 1)
921 {"norelax", no_argument, NULL, OPTION_NORELAX},
922 {"no-relax", no_argument, NULL, OPTION_NORELAX},
923 {NULL, no_argument, NULL, 0}
925 size_t md_longopts_size = sizeof (md_longopts);
932 static const struct tabentry arch_tab[] =
936 {"SA", ARCH_KA}, /* Synonym for KA */
937 {"SB", ARCH_KB}, /* Synonym for KB */
938 {"KC", ARCH_MC}, /* Synonym for MC */
947 md_parse_option (c, arg)
953 case OPTION_LINKRELAX:
955 flag_keep_locals = 1;
963 instrument_branches = 1;
968 const struct tabentry *tp;
971 for (tp = arch_tab; tp->flag != NULL; tp++)
972 if (!strcmp (p, tp->flag))
975 if (tp->flag == NULL)
977 as_bad (_("invalid architecture %s"), p);
981 architecture = tp->arch;
993 md_show_usage (stream)
997 fprintf (stream, _("I960 options:\n"));
998 for (i = 0; arch_tab[i].flag; i++)
999 fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag);
1000 fprintf (stream, _("\n\
1001 specify variant of 960 architecture\n\
1002 -b add code to collect statistics about branches taken\n\
1003 -link-relax preserve individual alignment directives so linker\n\
1004 can do relaxing (b.out format only)\n\
1005 -no-relax don't alter compare-and-branch instructions for\n\
1006 long displacements\n"));
1010 /*****************************************************************************
1012 Called by base assembler after address relaxation is finished: modify
1013 variable fragments according to how much relaxation was done.
1015 If the fragment substate is still 1, a 13-bit displacement was enough
1016 to reach the symbol in question. Set up an address fixup, but otherwise
1017 leave the cobr instruction alone.
1019 If the fragment substate is 2, a 13-bit displacement was not enough.
1020 Replace the cobr with a two instructions (a compare and a branch).
1022 *************************************************************************** */
1023 #ifndef BFD_ASSEMBLER
1025 md_convert_frag (headers, seg, fragP)
1026 object_headers *headers;
1031 md_convert_frag (abfd, sec, fragP)
1037 fixS *fixP; /* Structure describing needed address fix */
1039 switch (fragP->fr_subtype)
1042 /* LEAVE SINGLE COBR INSTRUCTION */
1043 fixP = fix_new (fragP,
1044 fragP->fr_opcode - fragP->fr_literal,
1051 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
1054 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1058 BAD_CASE (fragP->fr_subtype);
1063 /*****************************************************************************
1064 md_estimate_size_before_relax: How much does it look like *fragP will grow?
1066 Called by base assembler just before address relaxation.
1067 Return the amount by which the fragment will grow.
1069 Any symbol that is now undefined will not become defined; cobr's
1070 based on undefined symbols will have to be replaced with a compare
1071 instruction and a branch instruction, and the code fragment will grow
1074 *************************************************************************** */
1076 md_estimate_size_before_relax (fragP, segment_type)
1077 register fragS *fragP;
1078 register segT segment_type;
1080 /* If symbol is undefined in this segment, go to "relaxed" state
1081 (compare and branch instructions instead of cobr) right now. */
1082 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
1088 } /* md_estimate_size_before_relax() */
1090 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
1092 /*****************************************************************************
1094 This routine exists in order to overcome machine byte-order problems
1095 when dealing with bit-field entries in the relocation_info struct.
1097 But relocation info will be used on the host machine only (only
1098 executable code is actually downloaded to the i80960). Therefore,
1099 we leave it in host byte order.
1101 The above comment is no longer true. This routine now really
1102 does do the reordering (Ian Taylor 28 Aug 92).
1104 *************************************************************************** */
1107 md_ri_to_chars (where, ri)
1109 struct relocation_info *ri;
1111 md_number_to_chars (where, ri->r_address,
1112 sizeof (ri->r_address));
1113 where[4] = ri->r_index & 0x0ff;
1114 where[5] = (ri->r_index >> 8) & 0x0ff;
1115 where[6] = (ri->r_index >> 16) & 0x0ff;
1116 where[7] = ((ri->r_pcrel << 0)
1117 | (ri->r_length << 1)
1118 | (ri->r_extern << 3)
1121 | (ri->r_callj << 6));
1124 #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */
1127 /* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER */
1129 /*****************************************************************************
1130 brcnt_emit: Emit code to increment inline branch counter.
1132 See the comments above the declaration of 'br_cnt' for details on
1133 branch-prediction instrumentation.
1134 *************************************************************************** */
1138 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */
1139 emit (0); /* Emit inline counter to be incremented */
1142 /*****************************************************************************
1143 brlab_next: generate the next branch local label
1145 See the comments above the declaration of 'br_cnt' for details on
1146 branch-prediction instrumentation.
1147 *************************************************************************** */
1151 static char buf[20];
1153 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1157 /*****************************************************************************
1158 brtab_emit: generate the fetch-prediction branch table.
1160 See the comments above the declaration of 'br_cnt' for details on
1161 branch-prediction instrumentation.
1163 The code emitted here would be functionally equivalent to the following
1164 example assembler source.
1169 .word 0 # link to next table
1170 .word 3 # length of table
1171 .word LBRANCH0 # 1st entry in table proper
1174 **************************************************************************** */
1180 char *p; /* Where the binary was output to */
1181 /* Pointer to description of deferred address fixup. */
1184 if (!instrument_branches)
1189 subseg_set (data_section, 0); /* .data */
1190 frag_align (2, 0, 0); /* .align 2 */
1191 record_alignment (now_seg, 2);
1192 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
1193 emit (0); /* .word 0 #link to next table */
1194 emit (br_cnt); /* .word n #length of table */
1196 for (i = 0; i < br_cnt; i++)
1198 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
1200 fixP = fix_new (frag_now,
1201 p - frag_now->fr_literal,
1210 /*****************************************************************************
1211 cobr_fmt: generate a COBR-format instruction
1213 *************************************************************************** */
1216 cobr_fmt (arg, opcode, oP)
1217 /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1219 /* Opcode, with branch-prediction bits already set if necessary. */
1221 /* Pointer to description of instruction. */
1222 struct i960_opcode *oP;
1224 long instr; /* 32-bit instruction */
1225 struct regop regop; /* Description of register operand */
1226 int n; /* Number of operands */
1227 int var_frag; /* 1 if varying length code fragment should
1228 * be emitted; 0 if an address fix
1229 * should be emitted.
1237 /* First operand (if any) of a COBR is always a register
1238 operand. Parse it. */
1239 parse_regop (®op, arg[1], oP->operand[0]);
1240 instr |= (regop.n << 19) | (regop.mode << 13);
1244 /* Second operand (if any) of a COBR is always a register
1245 operand. Parse it. */
1246 parse_regop (®op, arg[2], oP->operand[1]);
1247 instr |= (regop.n << 14) | regop.special;
1257 if (instrument_branches)
1260 colon (brlab_next ());
1263 /* A third operand to a COBR is always a displacement. Parse
1264 it; if it's relaxable (a cobr "j" directive, or any cobr
1265 other than bbs/bbc when the "-norelax" option is not in use)
1266 set up a variable code fragment; otherwise set up an address
1268 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1269 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1271 if (instrument_branches)
1278 /*****************************************************************************
1279 ctrl_fmt: generate a CTRL-format instruction
1281 *************************************************************************** */
1284 ctrl_fmt (targP, opcode, num_ops)
1285 char *targP; /* Pointer to text of lone operand (if any) */
1286 long opcode; /* Template of instruction */
1287 int num_ops; /* Number of operands */
1289 int instrument; /* TRUE iff we should add instrumentation to track
1290 * how often the branch is taken
1295 emit (opcode); /* Output opcode */
1300 instrument = instrument_branches && (opcode != CALL)
1301 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1306 colon (brlab_next ());
1309 /* The operand MUST be an ip-relative displacment. Parse it
1310 * and set up address fix for the instruction we just output.
1312 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1322 /*****************************************************************************
1323 emit: output instruction binary
1325 Output instruction binary, in target byte order, 4 bytes at a time.
1326 Return pointer to where it was placed.
1328 *************************************************************************** */
1332 long instr; /* Word to be output, host byte order */
1334 char *toP; /* Where to output it */
1336 toP = frag_more (4); /* Allocate storage */
1337 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */
1341 /*****************************************************************************
1342 get_args: break individual arguments out of comma-separated list
1345 - all comments and labels have been removed
1346 - all strings of whitespace have been collapsed to a single blank.
1347 - all character constants ('x') have been replaced with decimal
1350 args[0] is untouched. args[1] points to first operand, etc. All args:
1351 - are NULL-terminated
1352 - contain no whitespace
1355 Number of operands (0,1,2, or 3) or -1 on error.
1357 *************************************************************************** */
1360 /* Pointer to comma-separated operands; MUCKED BY US */
1362 /* Output arg: pointers to operands placed in args[1-3]. MUST
1363 ACCOMMODATE 4 ENTRIES (args[0-3]). */
1366 register int n; /* Number of operands */
1369 /* Skip lead white space */
1383 /* Squeze blanks out by moving non-blanks toward start of string.
1384 * Isolate operands, whenever comma is found.
1391 && (! isalnum ((unsigned char) p[1])
1392 || ! isalnum ((unsigned char) p[-1])))
1400 /* Start of operand */
1403 as_bad (_("too many operands"));
1406 *to++ = '\0'; /* Terminate argument */
1407 args[++n] = to; /* Start next argument */
1420 /*****************************************************************************
1421 get_cdisp: handle displacement for a COBR or CTRL instruction.
1423 Parse displacement for a COBR or CTRL instruction.
1425 If successful, output the instruction opcode and set up for it,
1426 depending on the arg 'var_frag', either:
1427 o an address fixup to be done when all symbol values are known, or
1428 o a varying length code fragment, with address fixup info. This
1429 will be done for cobr instructions that may have to be relaxed
1430 in to compare/branch instructions (8 bytes) if the final
1431 address displacement is greater than 13 bits.
1433 ****************************************************************************/
1436 get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
1437 /* displacement as specified in source instruction */
1439 /* "COBR" or "CTRL" (for use in error message) */
1441 /* Instruction needing the displacement */
1443 /* # bits of displacement (13 for COBR, 24 for CTRL) */
1445 /* 1 if varying length code fragment should be emitted;
1446 * 0 if an address fix should be emitted.
1449 /* 1 if callj relocation should be done; else 0 */
1452 expressionS e; /* Parsed expression */
1453 fixS *fixP; /* Structure describing needed address fix */
1454 char *outP; /* Where instruction binary is output to */
1458 parse_expr (dispP, &e);
1462 as_bad (_("expression syntax error"));
1465 if (S_GET_SEGMENT (e.X_add_symbol) == now_seg
1466 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
1470 outP = frag_more (8); /* Allocate worst-case storage */
1471 md_number_to_chars (outP, instr, 4);
1472 frag_variant (rs_machine_dependent, 4, 4, 1,
1473 adds (e), offs (e), outP);
1477 /* Set up a new fix structure, so address can be updated
1478 * when all symbol values are known.
1480 outP = emit (instr);
1481 fixP = fix_new (frag_now,
1482 outP - frag_now->fr_literal,
1489 fixP->fx_tcbit = callj;
1491 /* We want to modify a bit field when the address is
1492 * known. But we don't need all the garbage in the
1493 * bit_fix structure. So we're going to lie and store
1494 * the number of bits affected instead of a pointer.
1496 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1500 as_bad (_("attempt to branch into different segment"));
1504 as_bad (_("target of %s instruction must be a label"), ifmtP);
1509 /*****************************************************************************
1510 get_ispec: parse a memory operand for an index specification
1512 Here, an "index specification" is taken to be anything surrounded
1513 by square brackets and NOT followed by anything else.
1515 If it's found, detach it from the input string, remove the surrounding
1516 square brackets, and return a pointer to it. Otherwise, return NULL.
1518 *************************************************************************** */
1522 /* Pointer to memory operand from source instruction, no white space. */
1525 /* Points to start of index specification. */
1527 /* Points to end of index specification. */
1530 /* Find opening square bracket, if any. */
1531 start = strchr (textP, '[');
1536 /* Eliminate '[', detach from rest of operand */
1539 end = strchr (start, ']');
1543 as_bad (_("unmatched '['"));
1548 /* Eliminate ']' and make sure it was the last thing
1552 if (*(end + 1) != '\0')
1554 as_bad (_("garbage after index spec ignored"));
1561 /*****************************************************************************
1564 Look up a (suspected) register name in the register table and return the
1565 associated register number (or -1 if not found).
1567 *************************************************************************** */
1570 get_regnum (regname)
1571 char *regname; /* Suspected register name */
1575 rP = (int *) hash_find (reg_hash, regname);
1576 return (rP == NULL) ? -1 : *rP;
1579 /*****************************************************************************
1580 i_scan: perform lexical scan of ascii assembler instruction.
1583 - input string is an i80960 instruction (not a pseudo-op)
1584 - all comments and labels have been removed
1585 - all strings of whitespace have been collapsed to a single blank.
1588 args[0] points to opcode, other entries point to operands. All strings:
1589 - are NULL-terminated
1590 - contain no whitespace
1591 - have character constants ('x') replaced with a decimal number
1594 Number of operands (0,1,2, or 3) or -1 on error.
1596 *************************************************************************** */
1599 /* Pointer to ascii instruction; MUCKED BY US. */
1601 /* Output arg: pointers to opcode and operands placed here. MUST
1602 ACCOMMODATE 4 ENTRIES. */
1606 /* Isolate opcode */
1610 } /* Skip lead space, if any */
1612 for (; *iP != ' '; iP++)
1616 /* There are no operands */
1619 /* We never moved: there was no opcode either! */
1620 as_bad (_("missing opcode"));
1626 *iP++ = '\0'; /* Terminate opcode */
1627 return (get_args (iP, args));
1630 /*****************************************************************************
1631 mem_fmt: generate a MEMA- or MEMB-format instruction
1633 *************************************************************************** */
1635 mem_fmt (args, oP, callx)
1636 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1637 struct i960_opcode *oP; /* Pointer to description of instruction */
1638 int callx; /* Is this a callx opcode */
1640 int i; /* Loop counter */
1641 struct regop regop; /* Description of register operand */
1642 char opdesc; /* Operand descriptor byte */
1643 memS instr; /* Description of binary to be output */
1644 char *outP; /* Where the binary was output to */
1645 expressionS expr; /* Parsed expression */
1646 /* ->description of deferred address fixup */
1650 /* COFF support isn't in place yet for callx relaxing. */
1654 memset (&instr, '\0', sizeof (memS));
1655 instr.opcode = oP->opcode;
1657 /* Process operands. */
1658 for (i = 1; i <= oP->num_ops; i++)
1660 opdesc = oP->operand[i - 1];
1664 parse_memop (&instr, args[i], oP->format);
1668 parse_regop (®op, args[i], opdesc);
1669 instr.opcode |= regop.n << 19;
1673 /* Parse the displacement; this must be done before emitting the
1674 opcode, in case it is an expression using `.'. */
1675 parse_expr (instr.e, &expr);
1678 outP = emit (instr.opcode);
1680 if (instr.disp == 0)
1685 /* Process the displacement */
1689 as_bad (_("expression syntax error"));
1693 if (instr.disp == 32)
1695 (void) emit (offs (expr)); /* Output displacement */
1699 /* 12-bit displacement */
1700 if (offs (expr) & ~0xfff)
1702 /* Won't fit in 12 bits: convert already-output
1703 * instruction to MEMB format, output
1706 mema_to_memb (outP);
1707 (void) emit (offs (expr));
1711 /* WILL fit in 12 bits: OR into opcode and
1712 * overwrite the binary we already put out
1714 instr.opcode |= offs (expr);
1715 md_number_to_chars (outP, instr.opcode, 4);
1721 if (instr.disp == 12)
1723 /* Displacement is dependent on a symbol, whose value
1724 * may change at link time. We HAVE to reserve 32 bits.
1725 * Convert already-output opcode to MEMB format.
1727 mema_to_memb (outP);
1730 /* Output 0 displacement and set up address fixup for when
1731 * this symbol's value becomes known.
1733 outP = emit ((long) 0);
1734 fixP = fix_new_exp (frag_now,
1735 outP - frag_now->fr_literal,
1740 /* Steve's linker relaxing hack. Mark this 32-bit relocation as
1741 being in the instruction stream, specifically as part of a callx
1743 fixP->fx_bsr = callx;
1748 /*****************************************************************************
1749 mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1751 There are 2 possible MEMA formats:
1753 - displacement + abase
1755 They are distinguished by the setting of the MEMA_ABASE bit.
1757 *************************************************************************** */
1759 mema_to_memb (opcodeP)
1760 char *opcodeP; /* Where to find the opcode, in target byte order */
1762 long opcode; /* Opcode in host byte order */
1763 long mode; /* Mode bits for MEMB instruction */
1765 opcode = md_chars_to_number (opcodeP, 4);
1766 know (!(opcode & MEMB_BIT));
1768 mode = MEMB_BIT | D_BIT;
1769 if (opcode & MEMA_ABASE)
1774 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1775 opcode |= mode; /* Set MEMB mode bits */
1777 md_number_to_chars (opcodeP, opcode, 4);
1778 } /* mema_to_memb() */
1780 /*****************************************************************************
1781 parse_expr: parse an expression
1783 Use base assembler's expression parser to parse an expression.
1784 It, unfortunately, runs off a global which we have to save/restore
1785 in order to make it work for us.
1787 An empty expression string is treated as an absolute 0.
1789 Sets O_illegal regardless of expression evaluation if entire input
1790 string is not consumed in the evaluation -- tolerate no dangling junk!
1792 *************************************************************************** */
1794 parse_expr (textP, expP)
1795 char *textP; /* Text of expression to be parsed */
1796 expressionS *expP; /* Where to put the results of parsing */
1798 char *save_in; /* Save global here */
1805 /* Treat empty string as absolute 0 */
1806 expP->X_add_symbol = expP->X_op_symbol = NULL;
1807 expP->X_add_number = 0;
1808 expP->X_op = O_constant;
1812 save_in = input_line_pointer; /* Save global */
1813 input_line_pointer = textP; /* Make parser work for us */
1815 (void) expression (expP);
1816 if ((size_t) (input_line_pointer - textP) != strlen (textP))
1818 /* Did not consume all of the input */
1819 expP->X_op = O_illegal;
1821 symP = expP->X_add_symbol;
1822 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
1824 /* Register name in an expression */
1825 /* FIXME: this isn't much of a check any more. */
1826 expP->X_op = O_illegal;
1829 input_line_pointer = save_in; /* Restore global */
1833 /*****************************************************************************
1835 Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1838 Assumes the input consists of:
1839 arg[0] opcode mnemonic ('ldconst')
1840 arg[1] first operand (constant)
1841 arg[2] name of register to be loaded
1843 Replaces opcode and/or operands as appropriate.
1845 Returns the new number of arguments, or -1 on failure.
1847 *************************************************************************** */
1851 char *arg[]; /* See above */
1853 int n; /* Constant to be loaded */
1854 int shift; /* Shift count for "shlo" instruction */
1855 static char buf[5]; /* Literal for first operand */
1856 static char buf2[5]; /* Literal for second operand */
1857 expressionS e; /* Parsed expression */
1859 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1861 parse_expr (arg[1], &e);
1865 /* We're dependent on one or more symbols -- use "lda" */
1870 /* Try the following mappings:
1871 * ldconst 0,<reg> ->mov 0,<reg>
1872 * ldconst 31,<reg> ->mov 31,<reg>
1873 * ldconst 32,<reg> ->addo 1,31,<reg>
1874 * ldconst 62,<reg> ->addo 31,31,<reg>
1875 * ldconst 64,<reg> ->shlo 8,3,<reg>
1876 * ldconst -1,<reg> ->subo 1,0,<reg>
1877 * ldconst -31,<reg>->subo 31,0,<reg>
1879 * anthing else becomes:
1883 if ((0 <= n) && (n <= 31))
1888 else if ((-31 <= n) && (n <= -1))
1892 sprintf (buf, "%d", -n);
1897 else if ((32 <= n) && (n <= 62))
1902 sprintf (buf, "%d", n - 31);
1906 else if ((shift = shift_ok (n)) != 0)
1910 sprintf (buf, "%d", shift);
1912 sprintf (buf2, "%d", n >> shift);
1923 as_bad (_("invalid constant"));
1927 return (arg[3] == 0) ? 2 : 3;
1930 /*****************************************************************************
1931 parse_memop: parse a memory operand
1933 This routine is based on the observation that the 4 mode bits of the
1934 MEMB format, taken individually, have fairly consistent meaning:
1936 M3 (bit 13): 1 if displacement is present (D_BIT)
1937 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1938 M1 (bit 11): 1 if index is present (I_BIT)
1939 M0 (bit 10): 1 if abase is present (A_BIT)
1941 So we parse the memory operand and set bits in the mode as we find
1942 things. Then at the end, if we go to MEMB format, we need only set
1943 the MEMB bit (M2) and our mode is built for us.
1945 Unfortunately, I said "fairly consistent". The exceptions:
1948 0100 Would seem illegal, but means "abase-only".
1950 0101 Would seem to mean "abase-only" -- it means IP-relative.
1951 Must be converted to 0100.
1953 0110 Would seem to mean "index-only", but is reserved.
1954 We turn on the D bit and provide a 0 displacement.
1956 The other thing to observe is that we parse from the right, peeling
1957 things * off as we go: first any index spec, then any abase, then
1960 *************************************************************************** */
1963 parse_memop (memP, argP, optype)
1964 memS *memP; /* Where to put the results */
1965 char *argP; /* Text of the operand to be parsed */
1966 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
1968 char *indexP; /* Pointer to index specification with "[]" removed */
1969 char *p; /* Temp char pointer */
1970 char iprel_flag; /* True if this is an IP-relative operand */
1971 int regnum; /* Register number */
1972 /* Scale factor: 1,2,4,8, or 16. Later converted to internal format
1973 (0,1,2,3,4 respectively). */
1975 int mode; /* MEMB mode bits */
1976 int *intP; /* Pointer to register number */
1978 /* The following table contains the default scale factors for each
1979 type of memory instruction. It is accessed using (optype-MEM1)
1980 as an index -- thus it assumes the 'optype' constants are
1981 assigned consecutive values, in the order they appear in this
1983 static const int def_scale[] =
1989 -1, /* MEM12 -- no valid default */
1993 iprel_flag = mode = 0;
1995 /* Any index present? */
1996 indexP = get_ispec (argP);
1999 p = strchr (indexP, '*');
2002 /* No explicit scale -- use default for this instruction
2003 type and assembler mode. */
2007 /* GNU960 compatibility */
2008 scale = def_scale[optype - MEM1];
2012 *p++ = '\0'; /* Eliminate '*' */
2014 /* Now indexP->a '\0'-terminated register name,
2015 * and p->a scale factor.
2018 if (!strcmp (p, "16"))
2022 else if (strchr ("1248", *p) && (p[1] == '\0'))
2032 regnum = get_regnum (indexP); /* Get index reg. # */
2033 if (!IS_RG_REG (regnum))
2035 as_bad (_("invalid index register"));
2039 /* Convert scale to its binary encoding */
2058 as_bad (_("invalid scale factor"));
2062 memP->opcode |= scale | regnum; /* Set index bits in opcode */
2063 mode |= I_BIT; /* Found a valid index spec */
2066 /* Any abase (Register Indirect) specification present? */
2067 if ((p = strrchr (argP, '(')) != NULL)
2069 /* "(" is there -- does it start a legal abase spec? If not, it
2070 could be part of a displacement expression. */
2071 intP = (int *) hash_find (areg_hash, p);
2074 /* Got an abase here */
2076 *p = '\0'; /* discard register spec */
2077 if (regnum == IPREL)
2079 /* We have to specialcase ip-rel mode */
2084 memP->opcode |= regnum << 14;
2090 /* Any expression present? */
2097 /* Special-case ip-relative addressing */
2106 memP->opcode |= 5 << 10; /* IP-relative mode */
2112 /* Handle all other modes */
2116 /* Go with MEMA instruction format for now (grow to MEMB later
2117 if 12 bits is not enough for the displacement). MEMA format
2118 has a single mode bit: set it to indicate that abase is
2120 memP->opcode |= MEMA_ABASE;
2125 /* Go with MEMA instruction format for now (grow to MEMB later
2126 if 12 bits is not enough for the displacement). */
2131 /* For some reason, the bit string for this mode is not
2132 consistent: it should be 0 (exclusive of the MEMB bit), so we
2133 set it "by hand" here. */
2134 memP->opcode |= MEMB_BIT;
2138 /* set MEMB bit in mode, and OR in mode bits */
2139 memP->opcode |= mode | MEMB_BIT;
2143 /* Treat missing displacement as displacement of 0. */
2145 /* Fall into next case. */
2146 case D_BIT | A_BIT | I_BIT:
2148 /* set MEMB bit in mode, and OR in mode bits */
2149 memP->opcode |= mode | MEMB_BIT;
2159 /*****************************************************************************
2160 parse_po: parse machine-dependent pseudo-op
2162 This is a top-level routine for machine-dependent pseudo-ops. It slurps
2163 up the rest of the input line, breaks out the individual arguments,
2164 and dispatches them to the correct handler.
2165 *************************************************************************** */
2169 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
2171 /* Pointers operands, with no embedded whitespace.
2172 arg[0] unused, arg[1-3]->operands */
2174 int n_ops; /* Number of operands */
2175 char *p; /* Pointer to beginning of unparsed argument string */
2176 char eol; /* Character that indicated end of line */
2178 extern char is_end_of_line[];
2180 /* Advance input pointer to end of line. */
2181 p = input_line_pointer;
2182 while (!is_end_of_line[(unsigned char) *input_line_pointer])
2184 input_line_pointer++;
2186 eol = *input_line_pointer; /* Save end-of-line char */
2187 *input_line_pointer = '\0'; /* Terminate argument list */
2189 /* Parse out operands */
2190 n_ops = get_args (p, args);
2196 /* Dispatch to correct handler */
2200 s_sysproc (n_ops, args);
2203 s_leafproc (n_ops, args);
2210 /* Restore eol, so line numbers get updated correctly. Base
2211 assembler assumes we leave input pointer pointing at char
2212 following the eol. */
2213 *input_line_pointer++ = eol;
2216 /*****************************************************************************
2217 parse_regop: parse a register operand.
2219 In case of illegal operand, issue a message and return some valid
2220 information so instruction processing can continue.
2221 *************************************************************************** */
2224 parse_regop (regopP, optext, opdesc)
2225 struct regop *regopP; /* Where to put description of register operand */
2226 char *optext; /* Text of operand */
2227 char opdesc; /* Descriptor byte: what's legal for this operand */
2229 int n; /* Register number */
2230 expressionS e; /* Parsed expression */
2232 /* See if operand is a register */
2233 n = get_regnum (optext);
2238 /* global or local register */
2239 if (!REG_ALIGN (opdesc, n))
2241 as_bad (_("unaligned register"));
2245 regopP->special = 0;
2248 else if (IS_FP_REG (n) && FP_OK (opdesc))
2250 /* Floating point register, and it's allowed */
2251 regopP->n = n - FP0;
2253 regopP->special = 0;
2256 else if (IS_SF_REG (n) && SFR_OK (opdesc))
2258 /* Special-function register, and it's allowed */
2259 regopP->n = n - SF0;
2261 regopP->special = 1;
2262 if (!targ_has_sfr (regopP->n))
2264 as_bad (_("no such sfr in this architecture"));
2269 else if (LIT_OK (opdesc))
2271 /* How about a literal? */
2273 regopP->special = 0;
2275 { /* floating point literal acceptable */
2276 /* Skip over 0f, 0d, or 0e prefix */
2277 if ((optext[0] == '0')
2278 && (optext[1] >= 'd')
2279 && (optext[1] <= 'f'))
2284 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
2289 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
2297 { /* fixed point literal acceptable */
2298 parse_expr (optext, &e);
2299 if (e.X_op != O_constant
2300 || (offs (e) < 0) || (offs (e) > 31))
2302 as_bad (_("illegal literal"));
2305 regopP->n = offs (e);
2310 /* Nothing worked */
2312 regopP->mode = 0; /* Register r0 is always a good one */
2314 regopP->special = 0;
2315 } /* parse_regop() */
2317 /*****************************************************************************
2318 reg_fmt: generate a REG-format instruction
2320 *************************************************************************** */
2323 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2324 struct i960_opcode *oP; /* Pointer to description of instruction */
2326 long instr; /* Binary to be output */
2327 struct regop regop; /* Description of register operand */
2328 int n_ops; /* Number of operands */
2331 n_ops = oP->num_ops;
2335 parse_regop (®op, args[1], oP->operand[0]);
2337 if ((n_ops == 1) && !(instr & M3))
2339 /* 1-operand instruction in which the dst field should
2340 * be used (instead of src1).
2345 regop.mode = regop.special;
2352 /* regop.n goes in bit 0, needs no shifting */
2354 regop.special <<= 5;
2356 instr |= regop.n | regop.mode | regop.special;
2361 parse_regop (®op, args[2], oP->operand[1]);
2363 if ((n_ops == 2) && !(instr & M3))
2365 /* 2-operand instruction in which the dst field should
2366 * be used instead of src2).
2371 regop.mode = regop.special;
2380 regop.special <<= 6;
2382 instr |= regop.n | regop.mode | regop.special;
2386 parse_regop (®op, args[3], oP->operand[2]);
2389 regop.mode = regop.special;
2391 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2396 /*****************************************************************************
2398 Replace cobr instruction in a code fragment with equivalent branch and
2399 compare instructions, so it can reach beyond a 13-bit displacement.
2400 Set up an address fix/relocation for the new branch instruction.
2402 *************************************************************************** */
2404 /* This "conditional jump" table maps cobr instructions into
2405 equivalent compare and branch opcodes. */
2414 { /* COBR OPCODE: */
2415 { CHKBIT, BNO }, /* 0x30 - bbc */
2416 { CMPO, BG }, /* 0x31 - cmpobg */
2417 { CMPO, BE }, /* 0x32 - cmpobe */
2418 { CMPO, BGE }, /* 0x33 - cmpobge */
2419 { CMPO, BL }, /* 0x34 - cmpobl */
2420 { CMPO, BNE }, /* 0x35 - cmpobne */
2421 { CMPO, BLE }, /* 0x36 - cmpoble */
2422 { CHKBIT, BO }, /* 0x37 - bbs */
2423 { CMPI, BNO }, /* 0x38 - cmpibno */
2424 { CMPI, BG }, /* 0x39 - cmpibg */
2425 { CMPI, BE }, /* 0x3a - cmpibe */
2426 { CMPI, BGE }, /* 0x3b - cmpibge */
2427 { CMPI, BL }, /* 0x3c - cmpibl */
2428 { CMPI, BNE }, /* 0x3d - cmpibne */
2429 { CMPI, BLE }, /* 0x3e - cmpible */
2430 { CMPI, BO }, /* 0x3f - cmpibo */
2436 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2437 * the cobr instruction, which comes at the
2438 * end of the code fragment.
2441 int opcode, src1, src2, m1, s2;
2442 /* Bit fields from cobr instruction */
2443 long bp_bits; /* Branch prediction bits from cobr instruction */
2444 long instr; /* A single i960 instruction */
2445 /* ->instruction to be replaced */
2447 fixS *fixP; /* Relocation that can be done at assembly time */
2449 /* PICK UP & PARSE COBR INSTRUCTION */
2450 iP = fragP->fr_opcode;
2451 instr = md_chars_to_number (iP, 4);
2452 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2453 src1 = (instr >> 19) & 0x1f;
2454 m1 = (instr >> 13) & 1;
2456 src2 = (instr >> 14) & 0x1f;
2457 bp_bits = instr & BP_MASK;
2459 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2460 instr = coj[opcode].compare
2461 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2462 md_number_to_chars (iP, instr, 4);
2464 /* OUTPUT BRANCH INSTRUCTION */
2465 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
2467 /* SET UP ADDRESS FIXUP/RELOCATION */
2468 fixP = fix_new (fragP,
2469 iP + 4 - fragP->fr_literal,
2476 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2482 /*****************************************************************************
2483 reloc_callj: Relocate a 'callj' instruction
2485 This is a "non-(GNU)-standard" machine-dependent hook. The base
2486 assembler calls it when it decides it can relocate an address at
2487 assembly time instead of emitting a relocation directive.
2489 Check to see if the relocation involves a 'callj' instruction to a:
2490 sysproc: Replace the default 'call' instruction with a 'calls'
2491 leafproc: Replace the default 'call' instruction with a 'bal'.
2492 other proc: Do nothing.
2494 See b.out.h for details on the 'n_other' field in a symbol structure.
2497 Assumes the caller has already figured out, in the case of a leafproc,
2498 to use the 'bal' entry point, and has substituted that symbol into the
2499 passed fixup structure.
2501 *************************************************************************** */
2504 /* Relocation that can be done at assembly time */
2507 /* Points to the binary for the instruction being relocated. */
2510 if (!fixP->fx_tcbit)
2512 /* This wasn't a callj instruction in the first place */
2516 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2518 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2520 /* Symbol is a .sysproc: replace 'call' with 'calls'. System
2521 procedure number is (other-1). */
2522 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2524 /* Nothing else needs to be done for this instruction. Make
2525 sure 'md_number_to_field()' will perform a no-op. */
2526 fixP->fx_bit_fixP = (bit_fixS *) 1;
2529 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2531 /* Should not happen: see block comment above */
2532 as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy));
2534 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2536 /* Replace 'call' with 'bal'; both instructions have the same
2537 format, so calling code should complete relocation as if
2538 nothing happened here. */
2539 md_number_to_chars (where, BAL, 4);
2541 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2543 as_bad (_("Looks like a proc, but can't tell what kind.\n"));
2544 } /* switch on proc type */
2546 /* else Symbol is neither a sysproc nor a leafproc */
2549 /*****************************************************************************
2550 s_leafproc: process .leafproc pseudo-op
2552 .leafproc takes two arguments, the second one is optional:
2553 arg[1]: name of 'call' entry point to leaf procedure
2554 arg[2]: name of 'bal' entry point to leaf procedure
2556 If the two arguments are identical, or if the second one is missing,
2557 the first argument is taken to be the 'bal' entry point.
2559 If there are 2 distinct arguments, we must make sure that the 'bal'
2560 entry point immediately follows the 'call' entry point in the linked
2563 *************************************************************************** */
2565 s_leafproc (n_ops, args)
2566 int n_ops; /* Number of operands */
2567 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2569 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2570 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2572 if ((n_ops != 1) && (n_ops != 2))
2574 as_bad (_("should have 1 or 2 operands"));
2576 } /* Check number of arguments */
2578 /* Find or create symbol for 'call' entry point. */
2579 callP = symbol_find_or_make (args[1]);
2581 if (TC_S_IS_CALLNAME (callP))
2583 as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP));
2586 /* If that was the only argument, use it as the 'bal' entry point.
2587 * Otherwise, mark it as the 'call' entry point and find or create
2588 * another symbol for the 'bal' entry point.
2590 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2592 TC_S_FORCE_TO_BALNAME (callP);
2597 TC_S_FORCE_TO_CALLNAME (callP);
2599 balP = symbol_find_or_make (args[2]);
2600 if (TC_S_IS_CALLNAME (balP))
2602 as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP));
2604 TC_S_FORCE_TO_BALNAME (balP);
2607 tc_set_bal_of_call (callP, balP);
2609 } /* if only one arg, or the args are the same */
2613 s_sysproc: process .sysproc pseudo-op
2615 .sysproc takes two arguments:
2616 arg[1]: name of entry point to system procedure
2617 arg[2]: 'entry_num' (index) of system procedure in the range
2620 For [ab].out, we store the 'entrynum' in the 'n_other' field of
2621 the symbol. Since that entry is normally 0, we bias 'entrynum'
2622 by adding 1 to it. It must be unbiased before it is used. */
2624 s_sysproc (n_ops, args)
2625 int n_ops; /* Number of operands */
2626 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2633 as_bad (_("should have two operands"));
2635 } /* bad arg count */
2637 /* Parse "entry_num" argument and check it for validity. */
2638 parse_expr (args[2], &exp);
2639 if (exp.X_op != O_constant
2641 || (offs (exp) > 31))
2643 as_bad (_("'entry_num' must be absolute number in [0,31]"));
2647 /* Find/make symbol and stick entry number (biased by +1) into it */
2648 symP = symbol_find_or_make (args[1]);
2650 if (TC_S_IS_SYSPROC (symP))
2652 as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP));
2655 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */
2656 TC_S_FORCE_TO_SYSPROC (symP);
2659 /*****************************************************************************
2661 Determine if a "shlo" instruction can be used to implement a "ldconst".
2662 This means that some number X < 32 can be shifted left to produce the
2663 constant of interest.
2665 Return the shift count, or 0 if we can't do it.
2666 Caller calculates X by shifting original constant right 'shift' places.
2668 *************************************************************************** */
2672 int n; /* The constant of interest */
2674 int shift; /* The shift count */
2678 /* Can't do it for negative numbers */
2682 /* Shift 'n' right until a 1 is about to be lost */
2683 for (shift = 0; (n & 1) == 0; shift++)
2695 /* syntax: issue syntax error */
2700 as_bad (_("syntax error"));
2705 Return TRUE iff the target architecture supports the specified
2706 special-function register (sfr). */
2711 int n; /* Number (0-31) of sfr */
2713 switch (architecture)
2721 return ((0 <= n) && (n <= 4));
2724 return ((0 <= n) && (n <= 2));
2730 Return TRUE iff the target architecture supports the indicated
2731 class of instructions. */
2734 targ_has_iclass (ic)
2735 /* Instruction class; one of:
2736 I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2
2740 iclasses_seen |= ic;
2741 switch (architecture)
2744 return ic & (I_BASE | I_KX);
2746 return ic & (I_BASE | I_KX | I_FP | I_DEC);
2748 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2750 return ic & (I_BASE | I_CX | I_CX2 | I_CASIM);
2752 return ic & (I_BASE | I_CX2 | I_JX);
2754 return ic & (I_BASE | I_CX2 | I_JX | I_HX);
2756 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
2757 && (iclasses_seen & (I_CX | I_CX2)))
2759 as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)"));
2760 iclasses_seen &= ~ic;
2766 /* Handle the MRI .endian pseudo-op. */
2775 name = input_line_pointer;
2776 c = get_symbol_end ();
2777 if (strcasecmp (name, "little") == 0)
2779 else if (strcasecmp (name, "big") == 0)
2780 as_bad (_("big endian mode is not supported"));
2782 as_warn (_("ignoring unrecognized .endian type `%s'"), name);
2784 *input_line_pointer = c;
2786 demand_empty_rest_of_line ();
2789 /* We have no need to default values of symbols. */
2793 md_undefined_symbol (name)
2799 /* Exactly what point is a PC-relative offset relative TO?
2800 On the i960, they're relative to the address of the instruction,
2801 which we have set up as the address of the fixup too. */
2803 md_pcrel_from (fixP)
2806 return fixP->fx_where + fixP->fx_frag->fr_address;
2809 #ifdef BFD_ASSEMBLER
2811 md_apply_fix (fixP, valp)
2816 md_apply_fix (fixP, val)
2821 #ifdef BFD_ASSEMBLER
2824 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2826 if (!fixP->fx_bit_fixP)
2828 #ifndef BFD_ASSEMBLER
2829 /* For callx, we always want to write out zero, and emit a
2830 symbolic relocation. */
2834 fixP->fx_addnumber = val;
2837 md_number_to_imm (place, val, fixP->fx_size, fixP);
2840 md_number_to_field (place, val, fixP->fx_bit_fixP);
2842 #ifdef BFD_ASSEMBLER
2847 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2849 tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
2852 relax_addressT segment_address_in_file;
2854 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
2855 struct relocation_info ri;
2858 memset ((char *) &ri, '\0', sizeof (ri));
2859 symbolP = fixP->fx_addsy;
2860 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2861 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2862 /* These two 'cuz of NS32K */
2863 ri.r_callj = fixP->fx_tcbit;
2864 if (fixP->fx_bit_fixP)
2867 ri.r_length = nbytes_r_length[fixP->fx_size];
2868 ri.r_pcrel = fixP->fx_pcrel;
2869 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2871 if (fixP->fx_r_type != NO_RELOC)
2873 switch (fixP->fx_r_type)
2878 ri.r_length = fixP->fx_size - 1;
2892 else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
2895 ri.r_index = symbolP->sy_number;
2900 ri.r_index = S_GET_TYPE (symbolP);
2903 /* Output the relocation information in machine-dependent form. */
2904 md_ri_to_chars (where, &ri);
2907 #endif /* OBJ_AOUT or OBJ_BOUT */
2909 #if defined (OBJ_COFF) && defined (BFD)
2911 tc_coff_fix2rtype (fixP)
2917 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
2920 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
2928 tc_coff_sizemachdep (frag)
2932 return frag->fr_next->fr_address - frag->fr_address;
2938 /* Align an address by rounding it up to the specified boundary. */
2940 md_section_align (seg, addr)
2942 valueT addr; /* Address to be rounded up */
2945 #ifdef BFD_ASSEMBLER
2946 align = bfd_get_section_alignment (stdoutput, seg);
2948 align = section_alignment[(int) seg];
2950 return (addr + (1 << align) - 1) & (-1 << align);
2953 extern int coff_flags;
2957 tc_headers_hook (headers)
2958 object_headers *headers;
2960 switch (architecture)
2963 coff_flags |= F_I960KA;
2967 coff_flags |= F_I960KB;
2971 coff_flags |= F_I960MC;
2975 coff_flags |= F_I960CA;
2979 coff_flags |= F_I960JX;
2983 coff_flags |= F_I960HX;
2987 if (iclasses_seen == I_BASE)
2988 coff_flags |= F_I960CORE;
2989 else if (iclasses_seen & I_CX)
2990 coff_flags |= F_I960CA;
2991 else if (iclasses_seen & I_HX)
2992 coff_flags |= F_I960HX;
2993 else if (iclasses_seen & I_JX)
2994 coff_flags |= F_I960JX;
2995 else if (iclasses_seen & I_CX2)
2996 coff_flags |= F_I960CA;
2997 else if (iclasses_seen & I_MIL)
2998 coff_flags |= F_I960MC;
2999 else if (iclasses_seen & (I_DEC | I_FP))
3000 coff_flags |= F_I960KB;
3002 coff_flags |= F_I960KA;
3006 if (flag_readonly_data_in_text)
3008 headers->filehdr.f_magic = I960RWMAGIC;
3009 headers->aouthdr.magic = OMAGIC;
3013 headers->filehdr.f_magic = I960ROMAGIC;
3014 headers->aouthdr.magic = NMAGIC;
3015 } /* set magic numbers */
3018 #endif /* OBJ_COFF */
3020 #ifndef BFD_ASSEMBLER
3022 /* Things going on here:
3024 For bout, We need to assure a couple of simplifying
3025 assumptions about leafprocs for the linker: the leafproc
3026 entry symbols will be defined in the same assembly in
3027 which they're declared with the '.leafproc' directive;
3028 and if a leafproc has both 'call' and 'bal' entry points
3029 they are both global or both local.
3031 For coff, the call symbol has a second aux entry that
3032 contains the bal entry point. The bal symbol becomes a
3035 For coff representation, the call symbol has a second aux entry that
3036 contains the bal entry point. The bal symbol becomes a label. */
3039 tc_crawl_symbol_chain (headers)
3040 object_headers *headers;
3044 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
3047 if (TC_S_IS_SYSPROC (symbolP))
3049 /* second aux entry already contains the sysproc number */
3050 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3051 S_SET_STORAGE_CLASS (symbolP, C_SCALL);
3052 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3054 } /* rewrite sysproc */
3055 #endif /* OBJ_COFF */
3057 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
3060 } /* Not a leafproc symbol */
3062 if (!S_IS_DEFINED (symbolP))
3064 as_bad (_("leafproc symbol '%s' undefined"), S_GET_NAME (symbolP));
3065 } /* undefined leaf */
3067 if (TC_S_IS_CALLNAME (symbolP))
3069 symbolS *balP = tc_get_bal_of_call (symbolP);
3070 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
3072 S_SET_EXTERNAL (symbolP);
3073 S_SET_EXTERNAL (balP);
3074 as_warn (_("Warning: making leafproc entries %s and %s both global\n"),
3075 S_GET_NAME (symbolP), S_GET_NAME (balP));
3076 } /* externality mismatch */
3078 } /* walk the symbol chain */
3081 #endif /* ! BFD_ASSEMBLER */
3083 /* For aout or bout, the bal immediately follows the call.
3085 For coff, we cheat and store a pointer to the bal symbol in the
3086 second aux entry of the call. */
3097 tc_set_bal_of_call (callP, balP)
3101 know (TC_S_IS_CALLNAME (callP));
3102 know (TC_S_IS_BALNAME (balP));
3106 callP->sy_tc = balP;
3107 S_SET_NUMBER_AUXILIARY (callP, 2);
3109 #else /* ! OBJ_COFF */
3112 /* If the 'bal' entry doesn't immediately follow the 'call'
3113 * symbol, unlink it from the symbol list and re-insert it.
3115 if (symbol_next (callP) != balP)
3117 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
3118 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
3119 } /* if not in order */
3121 #else /* ! OBJ_ABOUT */
3122 as_fatal ("Only supported for a.out, b.out, or COFF");
3123 #endif /* ! OBJ_ABOUT */
3124 #endif /* ! OBJ_COFF */
3128 tc_get_bal_of_call (callP)
3133 know (TC_S_IS_CALLNAME (callP));
3136 retval = callP->sy_tc;
3139 retval = symbol_next (callP);
3141 as_fatal ("Only supported for a.out, b.out, or COFF");
3142 #endif /* ! OBJ_ABOUT */
3143 #endif /* ! OBJ_COFF */
3145 know (TC_S_IS_BALNAME (retval));
3147 } /* _tc_get_bal_of_call() */
3150 tc_coff_symbol_emit_hook (symbolP)
3153 if (TC_S_IS_CALLNAME (symbolP))
3156 symbolS *balP = tc_get_bal_of_call (symbolP);
3159 /* second aux entry contains the bal entry point */
3160 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3162 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
3163 if (S_GET_STORAGE_CLASS (symbolP) == C_EXT)
3164 S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT);
3166 S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT);
3167 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3168 /* fix up the bal symbol */
3169 S_SET_STORAGE_CLASS (balP, C_LABEL);
3170 #endif /* OBJ_COFF */
3171 } /* only on calls */
3175 i960_handle_align (fragp)
3183 as_bad (_("option --link-relax is only supported in b.out format"));
3189 /* The text section "ends" with another alignment reloc, to which we
3190 aren't adding padding. */
3191 if (fragp->fr_next == text_last_frag
3192 || fragp->fr_next == data_last_frag)
3195 /* alignment directive */
3196 fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
3197 (int) fragp->fr_type);
3198 #endif /* OBJ_BOUT */
3202 i960_validate_fix (fixP, this_segment_type, add_symbolPP)
3204 segT this_segment_type;
3205 symbolS **add_symbolPP;
3207 #define add_symbolP (*add_symbolPP)
3208 if (fixP->fx_tcbit && TC_S_IS_CALLNAME (add_symbolP))
3210 /* Relocation should be done via the associated 'bal'
3211 entry point symbol. */
3213 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (add_symbolP)))
3215 as_bad (_("No 'bal' entry point for leafproc %s"),
3216 S_GET_NAME (add_symbolP));
3219 fixP->fx_addsy = add_symbolP = tc_get_bal_of_call (add_symbolP);
3222 /* Still have to work out other conditions for these tests. */
3226 as_bad (_("callj to difference of two symbols"));
3230 if ((int) fixP->fx_bit_fixP == 13)
3232 /* This is a COBR instruction. They have only a 13-bit
3233 displacement and are only to be used for local branches:
3234 flag as error, don't generate relocation. */
3235 as_bad (_("can't use COBR format with external label"));
3236 fixP->fx_addsy = NULL; /* No relocations please. */
3245 #ifdef BFD_ASSEMBLER
3250 tc_bfd_fix2rtype (fixP)
3258 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
3259 return BFD_RELOC_32;
3261 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
3262 return BFD_RELOC_24_PCREL;
3268 /* Translate internal representation of relocation info to BFD target
3271 FIXME: To what extent can we get all relevant targets to use this? */
3274 tc_gen_reloc (section, fixP)
3280 reloc = (arelent *) xmalloc (sizeof (arelent));
3282 /* HACK: Is this right? */
3283 fixP->fx_r_type = tc_bfd_fix2rtype (fixP);
3285 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
3286 if (reloc->howto == (reloc_howto_type *) NULL)
3288 as_bad_where (fixP->fx_file, fixP->fx_line,
3289 "internal error: can't export reloc type %d (`%s')",
3291 bfd_get_reloc_code_name (fixP->fx_r_type));
3295 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
3297 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
3298 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
3299 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
3300 reloc->addend = fixP->fx_addnumber;
3305 /* end from cgen.c */
3307 #endif /* BFD_ASSEMBLER */
3309 /* end of tc-i960.c */