1 // arm.cc -- arm target support for gold.
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
61 template<bool big_endian>
62 class Output_data_plt_arm;
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
67 template<bool big_endian>
70 template<bool big_endian>
71 class Arm_input_section;
73 class Arm_exidx_cantunwind;
75 class Arm_exidx_merged_section;
77 class Arm_exidx_fixup;
79 template<bool big_endian>
80 class Arm_output_section;
82 class Arm_exidx_input_section;
84 template<bool big_endian>
87 template<bool big_endian>
88 class Arm_relocate_functions;
90 template<bool big_endian>
91 class Arm_output_data_got;
93 template<bool big_endian>
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
110 // The arm target class.
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
119 // There are probably a lot more.
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
141 // Types of instruction templates.
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
155 // Factory methods to create instruction templates in different formats.
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
190 // Accessors. This class is used for read-only objects so no modifiers
195 { return this->data_; }
197 // Return the instruction sequence type of this.
200 { return this->type_; }
202 // Return the ARM relocation type of this.
205 { return this->r_type_; }
209 { return this->reloc_addend_; }
211 // Return size of instruction template in bytes.
215 // Return byte-alignment of instruction template.
220 // We make the constructor private to ensure that only the factory
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
230 // Instruction template type.
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
238 // Macro for generating code to stub types. One entry per long/short
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
262 #define DEF_STUB(x) arm_stub_##x,
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
279 arm_stub_type_last = arm_stub_v4_veneer_bx
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
290 Stub_template(Stub_type, const Insn_template*, size_t);
298 { return this->type_; }
300 // Return an array of instruction templates.
303 { return this->insns_; }
305 // Return size of template in number of instructions.
308 { return this->insn_count_; }
310 // Return size of template in bytes.
313 { return this->size_; }
315 // Return alignment of the stub template.
318 { return this->alignment_; }
320 // Return whether entry point is in thumb mode.
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
325 // Return number of relocations in this template.
328 { return this->relocs_.size(); }
330 // Return index of the I-th instruction with relocation.
332 reloc_insn_index(size_t i) const
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
341 reloc_offset(size_t i) const
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
352 // A Stub_template may not be copied. We want to share templates as much
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
363 // Size of templated instructions in bytes.
365 // Alignment of templated instructions.
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
395 // Return the stub template.
397 stub_template() const
398 { return this->stub_template_; }
400 // Return offset of code stub from beginning of its containing stub table.
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
408 // Set offset of code stub from beginning of its containing stub table.
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
431 // This must be defined in the child class.
433 do_reloc_target(size_t) = 0;
435 // This may be overridden in the child class.
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
442 this->do_fixed_endian_write<false>(view, view_size);
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
452 // A template to implement do_write.
453 template<bool big_endian>
455 do_fixed_endian_write(unsigned char*, section_size_type);
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
466 class Reloc_stub : public Stub
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
473 // Return destination address.
475 destination_address() const
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
481 // Set destination address.
483 set_destination_address(Arm_address address)
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
489 // Reset destination address.
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
532 // Accessors: Keys are meant to be read-only object so no modifiers are
538 { return this->stub_type_; }
540 // Return the local symbol index or invalid_index.
543 { return this->r_sym_; }
545 // Return the symbol if there is one.
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
550 // Return the relobj if there is one.
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
555 // Whether this equals to another key k.
557 eq(const Key& k) const
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
567 // Return a hash value.
571 return (this->stub_type_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
580 // Functors for STL associative containers.
584 operator()(const Key& k) const
585 { return k.hash_value(); }
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
595 // Name of key. This is mainly for debugging.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
613 const Symbol* symbol;
614 const Relobj* relobj;
616 // Addend associated with a reloc.
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
629 friend class Stub_factory;
631 // Return the relocation target address of the i-th relocation in the
634 do_reloc_target(size_t i)
636 // All reloc stub have only one relocation.
638 return this->destination_address_;
642 // Address of destination.
643 Arm_address destination_address_;
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
653 // 3. The branch follows a 32-bit instruction which is not a branch.
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
665 class Cortex_a8_stub : public Stub
671 // Return the object of the code section containing the branch being fixed
675 { return this->relobj_; }
677 // Return the section index of the code section containing the branch being
681 { return this->shndx_; }
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
687 source_address() const
688 { return this->source_address_; }
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
694 destination_address() const
695 { return this->destination_address_; }
697 // Return the instruction being fixed up.
699 original_insn() const
700 { return this->original_insn_; }
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
713 friend class Stub_factory;
715 // Return the relocation target address of the i-th relocation in the
718 do_reloc_target(size_t i)
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
722 // The conditional branch veneer has two relocations.
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 // All other Cortex-A8 stubs have only one relocation.
730 return this->destination_address_;
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
736 do_thumb16_special(size_t);
739 // Object of the code section containing the branch being fixed up.
741 // Section index of the code section containing the branch begin fixed up.
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
759 // Return the associated register.
762 { return this->reg_; }
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
770 friend class Stub_factory;
772 // Return the relocation target address of the i-th relocation in the
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
778 // This may be overridden in the child class.
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 // A template to implement do_write.
790 template<bool big_endian>
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
806 // A register index (r0-r14), which is associated with the stub.
810 // Stub factory class.
815 // Return the unique instance of this class.
816 static const Stub_factory&
819 static Stub_factory singleton;
823 // Make a relocation stub.
825 make_reloc_stub(Stub_type stub_type) const
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
832 // Make a Cortex-A8 stub.
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
847 make_arm_v4bx_stub(uint32_t reg) const
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
868 // A class to hold stubs for the ARM target.
870 template<bool big_endian>
871 class Stub_table : public Output_data
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
886 { return this->owner_; }
888 // Whether this stub table is empty.
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
897 // Return the current data size.
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
940 // Remove all Cortex-A8 stubs.
942 remove_all_cortex_a8_stubs();
944 // Look up a relocation stub using KEY. Return NULL if there is none.
946 find_reloc_stub(const Reloc_stub::Key& key) const
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
955 find_arm_v4bx_stub(const uint32_t reg) const
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
961 // Relocate stubs in this stub table.
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
971 update_data_size_and_addralign();
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
978 // Apply Cortex-A8 workaround to an address range.
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
985 // Write out section contents.
987 do_write(Output_file*);
989 // Return the required alignment.
992 { return this->prev_addralign_; }
994 // Reset address and file offset.
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
999 // Set final data size.
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1005 // Relocate one stub.
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1011 // Unordered map of relocation stubs.
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1044 class Arm_exidx_cantunwind : public Output_section_data
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1051 // Return the object containing the section pointed by this.
1054 { return this->relobj_; }
1056 // Return the section index of the section pointed by this.
1059 { return this->shndx_; }
1063 do_write(Output_file* of)
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1068 this->do_fixed_endian_write<false>(of);
1071 // Write to a map file.
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1080 do_fixed_endian_write(Output_file*);
1082 // The object containing the section pointed by this.
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1111 // Build output contents.
1113 build_contents(const unsigned char*, section_size_type);
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1126 // Write merged section into file OF.
1128 do_write(Output_file* of);
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1145 // A class to wrap an ordinary input section containing executable code.
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1164 // Whether this is a stub table owner.
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1172 { return this->stub_table_; }
1174 // Set the stub_table.
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1185 // Return the original size of the section.
1187 original_size() const
1188 { return this->original_size_; }
1191 // Write data to output file.
1193 do_write(Output_file*);
1195 // Return required alignment of this.
1197 do_addralign() const
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1203 return this->original_addralign_;
1206 // Finalize data size.
1208 set_final_data_size();
1210 // Reset address and file offset.
1212 do_reset_address_and_file_offset();
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1247 unsigned char* original_contents_;
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1253 class Arm_exidx_fixup
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1265 { delete this->section_offset_map_; }
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1283 add_exidx_cantunwind_as_needed();
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1296 // Type of EXIDX unwind entry.
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1312 process_exidx_entry(uint32_t second_word);
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1335 Output_section* first_output_text_section_;
1337 bool merge_exidx_entries_;
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1361 ~Arm_output_section()
1364 // Group input sections for stub generation.
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1374 // Append all input text sections in this into LIST.
1376 append_text_sections_to_list(Text_section_list* list);
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1388 // Link an EXIDX section into its corresponding text section.
1390 set_exidx_section_link();
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1408 class Arm_exidx_input_section
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1421 ~Arm_exidx_input_section()
1424 // Accessors: This is a read-only class.
1426 // Return the object containing this EXIDX input section.
1429 { return this->relobj_; }
1431 // Return the section index of this EXIDX input section.
1434 { return this->shndx_; }
1436 // Return the section index of linked text section in the same object.
1439 { return this->link_; }
1441 // Return size of the EXIDX input section.
1444 { return this->size_; }
1446 // Return address alignment of EXIDX input section.
1449 { return this->addralign_; }
1451 // Return size of the associated text input section.
1454 { return this->text_size_; }
1456 // Whether there are any errors in the EXIDX input section.
1459 { return this->has_errors_; }
1461 // Set has-errors flag.
1464 { this->has_errors_ = true; }
1467 // Object containing this.
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1473 // Size of this. For ARM 32-bit is sufficient.
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1483 // Arm_relobj class.
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1502 { delete this->attributes_section_data_; }
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1529 // Scan all relocation sections for stub generation.
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1534 // Convert regular input section with index SHNDX to a relaxed section.
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1550 // Processor-specific flags in ELF file header. This is valid only after
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1556 // Attribute section data This is the contents of the .ARM.attribute section
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1582 // Whether a section contains any Cortex-A8 workaround.
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1590 // Mark a section that has Cortex-A8 workaround.
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1623 // Whether output local symbol count needs updating.
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1628 // Set output_local_symbol_count_needs_update flag to be true.
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1633 // Update output local symbol count at the end of relaxation.
1635 update_output_local_symbol_count();
1637 // Whether we want to merge processor-specific flags and attributes.
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1642 // Export list of EXIDX section indices.
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1659 // Post constructor setup.
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1671 // Count the local symbols.
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1682 // Read the symbol information.
1684 do_read_symbols(Read_symbols_data* sd);
1686 // Process relocs for garbage collection.
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692 // Whether a section needs to be scanned for relocation stubs.
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1698 // Whether a section is a scannable text section.
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1709 // Scan a section for the Cortex-A8 erratum.
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1737 simple_input_section_output_address(unsigned int, Output_section*);
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1762 bool merge_flags_and_attributes_;
1765 // Arm_dynobj class.
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1778 { delete this->attributes_section_data_; }
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1786 // Processor-specific flags in ELF file header. This is valid only after
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1798 // Read the symbol information.
1800 do_read_symbols(Read_symbols_data* sd);
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1809 // Functor to read reloc addends during stub generation.
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1830 elfcpp::Elf_types<32>::Elf_Swxword
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1845 elfcpp::Elf_types<32>::Elf_Swxword
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1857 class Cortex_a8_reloc
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1868 // Accessors: This is a read-only class.
1870 // Return the relocation stub associated with this relocation if there is
1874 { return this->reloc_stub_; }
1876 // Return the relocation type.
1879 { return this->r_type_; }
1881 // Return the destination address of the relocation. LSB stores the THUMB
1885 { return this->destination_; }
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1894 Arm_address destination_;
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1942 // Write out the GOT table.
1944 do_write(Output_file*);
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1964 // Return the GOT offset.
1967 { return this->got_offset_; }
1972 { return this->r_type_; }
1974 // Whether the symbol is global or not.
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1979 // For a relocation against a global symbol, the global symbol.
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1995 // For a relocation against a local symbol, the local symbol index.
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2015 // For a global symbol, the symbol itself.
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2131 // Whether we force PCI branch veneers.
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2136 // Set PIC veneer flag.
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2141 // Whether we use THUMB-2 instructions.
2143 using_thumb2() const
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2151 // Whether we use THUMB/THUMB-2 instructions only.
2153 using_thumb_only() const
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2170 may_use_arm_nop() const
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2181 // Whether we have THUMB-2 NOP.W instruction.
2183 may_use_thumb2_nop() const
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2193 // Whether we have v4T interworking instructions available.
2195 may_use_v4t_interworking() const
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2204 // Whether we have v5T interworking instructions available.
2206 may_use_v5t_interworking() const
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2226 gc_process_relocs(Symbol_table* symtab,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2238 // Scan the relocations to look for symbol adjustments.
2240 scan_relocs(Symbol_table* symtab,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2252 // Finalize the sections.
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2256 // Return the value to use for a dynamic symbol which requires special
2259 do_dynsym_value(const Symbol*) const;
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2264 do_plt_address_for_global(const Symbol* gsym) const
2265 { return this->plt_section()->address_for_global(gsym); }
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2270 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271 { return this->plt_section()->address_for_local(relobj, symndx); }
2273 // Relocate a section.
2275 relocate_section(const Relocate_info<32, big_endian>*,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 unsigned char* view,
2282 Arm_address view_address,
2283 section_size_type view_size,
2284 const Reloc_symbol_changes*);
2286 // Scan the relocs during a relocatable link.
2288 scan_relocatable_relocs(Symbol_table* symtab,
2290 Sized_relobj_file<32, big_endian>* object,
2291 unsigned int data_shndx,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2295 Output_section* output_section,
2296 bool needs_special_offset_handling,
2297 size_t local_symbol_count,
2298 const unsigned char* plocal_symbols,
2299 Relocatable_relocs*);
2301 // Emit relocations for a section.
2303 relocate_relocs(const Relocate_info<32, big_endian>*,
2304 unsigned int sh_type,
2305 const unsigned char* prelocs,
2307 Output_section* output_section,
2308 typename elfcpp::Elf_types<32>::Elf_Off
2309 offset_in_output_section,
2310 unsigned char* view,
2311 Arm_address view_address,
2312 section_size_type view_size,
2313 unsigned char* reloc_view,
2314 section_size_type reloc_view_size);
2316 // Perform target-specific processing in a relocatable link. This is
2317 // only used if we use the relocation strategy RELOC_SPECIAL.
2319 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2320 unsigned int sh_type,
2321 const unsigned char* preloc_in,
2323 Output_section* output_section,
2324 typename elfcpp::Elf_types<32>::Elf_Off
2325 offset_in_output_section,
2326 unsigned char* view,
2327 typename elfcpp::Elf_types<32>::Elf_Addr
2329 section_size_type view_size,
2330 unsigned char* preloc_out);
2332 // Return whether SYM is defined by the ABI.
2334 do_is_defined_by_abi(const Symbol* sym) const
2335 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337 // Return whether there is a GOT section.
2339 has_got_section() const
2340 { return this->got_ != NULL; }
2342 // Return the size of the GOT section.
2346 gold_assert(this->got_ != NULL);
2347 return this->got_->data_size();
2350 // Return the number of entries in the GOT.
2352 got_entry_count() const
2354 if (!this->has_got_section())
2356 return this->got_size() / 4;
2359 // Return the number of entries in the PLT.
2361 plt_entry_count() const;
2363 // Return the offset of the first non-reserved PLT entry.
2365 first_plt_entry_offset() const;
2367 // Return the size of each PLT entry.
2369 plt_entry_size() const;
2371 // Get the section to use for IRELATIVE relocations, create it if necessary.
2373 rel_irelative_section(Layout*);
2375 // Map platform-specific reloc types
2377 get_real_reloc_type(unsigned int r_type);
2380 // Methods to support stub-generations.
2383 // Return the stub factory
2385 stub_factory() const
2386 { return this->stub_factory_; }
2388 // Make a new Arm_input_section object.
2389 Arm_input_section<big_endian>*
2390 new_arm_input_section(Relobj*, unsigned int);
2392 // Find the Arm_input_section object corresponding to the SHNDX-th input
2393 // section of RELOBJ.
2394 Arm_input_section<big_endian>*
2395 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2397 // Make a new Stub_table
2398 Stub_table<big_endian>*
2399 new_stub_table(Arm_input_section<big_endian>*);
2401 // Scan a section for stub generation.
2403 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2404 const unsigned char*, size_t, Output_section*,
2405 bool, const unsigned char*, Arm_address,
2410 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2411 Output_section*, unsigned char*, Arm_address,
2414 // Get the default ARM target.
2415 static Target_arm<big_endian>*
2418 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2419 && parameters->target().is_big_endian() == big_endian);
2420 return static_cast<Target_arm<big_endian>*>(
2421 parameters->sized_target<32, big_endian>());
2424 // Whether NAME belongs to a mapping symbol.
2426 is_mapping_symbol_name(const char* name)
2430 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2431 && (name[2] == '\0' || name[2] == '.'));
2434 // Whether we work around the Cortex-A8 erratum.
2436 fix_cortex_a8() const
2437 { return this->fix_cortex_a8_; }
2439 // Whether we merge exidx entries in debuginfo.
2441 merge_exidx_entries() const
2442 { return parameters->options().merge_exidx_entries(); }
2444 // Whether we fix R_ARM_V4BX relocation.
2446 // 1 - replace with MOV instruction (armv4 target)
2447 // 2 - make interworking veneer (>= armv4t targets only)
2448 General_options::Fix_v4bx
2450 { return parameters->options().fix_v4bx(); }
2452 // Scan a span of THUMB code section for Cortex-A8 erratum.
2454 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2455 section_size_type, section_size_type,
2456 const unsigned char*, Arm_address);
2458 // Apply Cortex-A8 workaround to a branch.
2460 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2461 unsigned char*, Arm_address);
2464 // Make the PLT-generator object.
2465 Output_data_plt_arm<big_endian>*
2466 make_data_plt(Layout* layout,
2467 Arm_output_data_got<big_endian>* got,
2468 Output_data_space* got_plt,
2469 Output_data_space* got_irelative)
2470 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2472 // Make an ELF object.
2474 do_make_elf_object(const std::string&, Input_file*, off_t,
2475 const elfcpp::Ehdr<32, big_endian>& ehdr);
2478 do_make_elf_object(const std::string&, Input_file*, off_t,
2479 const elfcpp::Ehdr<32, !big_endian>&)
2480 { gold_unreachable(); }
2483 do_make_elf_object(const std::string&, Input_file*, off_t,
2484 const elfcpp::Ehdr<64, false>&)
2485 { gold_unreachable(); }
2488 do_make_elf_object(const std::string&, Input_file*, off_t,
2489 const elfcpp::Ehdr<64, true>&)
2490 { gold_unreachable(); }
2492 // Make an output section.
2494 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2495 elfcpp::Elf_Xword flags)
2496 { return new Arm_output_section<big_endian>(name, type, flags); }
2499 do_adjust_elf_header(unsigned char* view, int len);
2501 // We only need to generate stubs, and hence perform relaxation if we are
2502 // not doing relocatable linking.
2504 do_may_relax() const
2505 { return !parameters->options().relocatable(); }
2508 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2510 // Determine whether an object attribute tag takes an integer, a
2513 do_attribute_arg_type(int tag) const;
2515 // Reorder tags during output.
2517 do_attributes_order(int num) const;
2519 // This is called when the target is selected as the default.
2521 do_select_as_default_target()
2523 // No locking is required since there should only be one default target.
2524 // We cannot have both the big-endian and little-endian ARM targets
2526 gold_assert(arm_reloc_property_table == NULL);
2527 arm_reloc_property_table = new Arm_reloc_property_table();
2530 // Virtual function which is set to return true by a target if
2531 // it can use relocation types to determine if a function's
2532 // pointer is taken.
2534 do_can_check_for_function_pointers() const
2537 // Whether a section called SECTION_NAME may have function pointers to
2538 // sections not eligible for safe ICF folding.
2540 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542 return (!is_prefix_of(".ARM.exidx", section_name)
2543 && !is_prefix_of(".ARM.extab", section_name)
2544 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2548 do_define_standard_symbols(Symbol_table*, Layout*);
2550 virtual Output_data_plt_arm<big_endian>*
2551 do_make_data_plt(Layout* layout,
2552 Arm_output_data_got<big_endian>* got,
2553 Output_data_space* got_plt,
2554 Output_data_space* got_irelative)
2556 gold_assert(got_plt != NULL && got_irelative != NULL);
2557 return new Output_data_plt_arm_standard<big_endian>(
2558 layout, got, got_plt, got_irelative);
2562 // The class which scans relocations.
2567 : issued_non_pic_error_(false)
2571 get_reference_flags(unsigned int r_type);
2574 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2575 Sized_relobj_file<32, big_endian>* object,
2576 unsigned int data_shndx,
2577 Output_section* output_section,
2578 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2579 const elfcpp::Sym<32, big_endian>& lsym,
2583 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2584 Sized_relobj_file<32, big_endian>* object,
2585 unsigned int data_shndx,
2586 Output_section* output_section,
2587 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2591 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2592 Sized_relobj_file<32, big_endian>* ,
2595 const elfcpp::Rel<32, big_endian>& ,
2597 const elfcpp::Sym<32, big_endian>&);
2600 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2601 Sized_relobj_file<32, big_endian>* ,
2604 const elfcpp::Rel<32, big_endian>& ,
2605 unsigned int , Symbol*);
2609 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2610 unsigned int r_type);
2613 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2614 unsigned int r_type, Symbol*);
2617 check_non_pic(Relobj*, unsigned int r_type);
2619 // Almost identical to Symbol::needs_plt_entry except that it also
2620 // handles STT_ARM_TFUNC.
2622 symbol_needs_plt_entry(const Symbol* sym)
2624 // An undefined symbol from an executable does not need a PLT entry.
2625 if (sym->is_undefined() && !parameters->options().shared())
2628 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2631 return (!parameters->doing_static_link()
2632 && (sym->type() == elfcpp::STT_FUNC
2633 || sym->type() == elfcpp::STT_ARM_TFUNC)
2634 && (sym->is_from_dynobj()
2635 || sym->is_undefined()
2636 || sym->is_preemptible()));
2640 possible_function_pointer_reloc(unsigned int r_type);
2642 // Whether a plt entry is needed for ifunc.
2644 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2645 unsigned int r_type);
2647 // Whether we have issued an error about a non-PIC compilation.
2648 bool issued_non_pic_error_;
2651 // The class which implements relocation.
2661 // Return whether the static relocation needs to be applied.
2663 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2664 unsigned int r_type,
2666 Output_section* output_section);
2668 // Do a relocation. Return false if the caller should not issue
2669 // any warnings about this relocation.
2671 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2672 Target_arm*, Output_section*, size_t, const unsigned char*,
2673 const Sized_symbol<32>*, const Symbol_value<32>*,
2674 unsigned char*, Arm_address, section_size_type);
2676 // Return whether we want to pass flag NON_PIC_REF for this
2677 // reloc. This means the relocation type accesses a symbol not via
2680 reloc_is_non_pic(unsigned int r_type)
2684 // These relocation types reference GOT or PLT entries explicitly.
2685 case elfcpp::R_ARM_GOT_BREL:
2686 case elfcpp::R_ARM_GOT_ABS:
2687 case elfcpp::R_ARM_GOT_PREL:
2688 case elfcpp::R_ARM_GOT_BREL12:
2689 case elfcpp::R_ARM_PLT32_ABS:
2690 case elfcpp::R_ARM_TLS_GD32:
2691 case elfcpp::R_ARM_TLS_LDM32:
2692 case elfcpp::R_ARM_TLS_IE32:
2693 case elfcpp::R_ARM_TLS_IE12GP:
2695 // These relocate types may use PLT entries.
2696 case elfcpp::R_ARM_CALL:
2697 case elfcpp::R_ARM_THM_CALL:
2698 case elfcpp::R_ARM_JUMP24:
2699 case elfcpp::R_ARM_THM_JUMP24:
2700 case elfcpp::R_ARM_THM_JUMP19:
2701 case elfcpp::R_ARM_PLT32:
2702 case elfcpp::R_ARM_THM_XPC22:
2703 case elfcpp::R_ARM_PREL31:
2704 case elfcpp::R_ARM_SBREL31:
2713 // Do a TLS relocation.
2714 inline typename Arm_relocate_functions<big_endian>::Status
2715 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2716 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2717 const Sized_symbol<32>*, const Symbol_value<32>*,
2718 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723 // A class which returns the size required for a relocation type,
2724 // used while scanning relocs during a relocatable link.
2725 class Relocatable_size_for_reloc
2729 get_size_for_reloc(unsigned int, Relobj*);
2732 // Adjust TLS relocation type based on the options and whether this
2733 // is a local symbol.
2734 static tls::Tls_optimization
2735 optimize_tls_reloc(bool is_final, int r_type);
2737 // Get the GOT section, creating it if necessary.
2738 Arm_output_data_got<big_endian>*
2739 got_section(Symbol_table*, Layout*);
2741 // Get the GOT PLT section.
2743 got_plt_section() const
2745 gold_assert(this->got_plt_ != NULL);
2746 return this->got_plt_;
2749 // Create the PLT section.
2751 make_plt_section(Symbol_table* symtab, Layout* layout);
2753 // Create a PLT entry for a global symbol.
2755 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2757 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2759 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2760 Sized_relobj_file<32, big_endian>* relobj,
2761 unsigned int local_sym_index);
2763 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2765 define_tls_base_symbol(Symbol_table*, Layout*);
2767 // Create a GOT entry for the TLS module index.
2769 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2770 Sized_relobj_file<32, big_endian>* object);
2772 // Get the PLT section.
2773 const Output_data_plt_arm<big_endian>*
2776 gold_assert(this->plt_ != NULL);
2780 // Get the dynamic reloc section, creating it if necessary.
2782 rel_dyn_section(Layout*);
2784 // Get the section to use for TLS_DESC relocations.
2786 rel_tls_desc_section(Layout*) const;
2788 // Return true if the symbol may need a COPY relocation.
2789 // References from an executable object to non-function symbols
2790 // defined in a dynamic object may need a COPY relocation.
2792 may_need_copy_reloc(Symbol* gsym)
2794 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2795 && gsym->may_need_copy_reloc());
2798 // Add a potential copy relocation.
2800 copy_reloc(Symbol_table* symtab, Layout* layout,
2801 Sized_relobj_file<32, big_endian>* object,
2802 unsigned int shndx, Output_section* output_section,
2803 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2805 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
2806 this->copy_relocs_.copy_reloc(symtab, layout,
2807 symtab->get_sized_symbol<32>(sym),
2808 object, shndx, output_section,
2809 r_type, reloc.get_r_offset(), 0,
2810 this->rel_dyn_section(layout));
2813 // Whether two EABI versions are compatible.
2815 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2817 // Merge processor-specific flags from input object and those in the ELF
2818 // header of the output.
2820 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2822 // Get the secondary compatible architecture.
2824 get_secondary_compatible_arch(const Attributes_section_data*);
2826 // Set the secondary compatible architecture.
2828 set_secondary_compatible_arch(Attributes_section_data*, int);
2831 tag_cpu_arch_combine(const char*, int, int*, int, int);
2833 // Helper to print AEABI enum tag value.
2835 aeabi_enum_name(unsigned int);
2837 // Return string value for TAG_CPU_name.
2839 tag_cpu_name_value(unsigned int);
2841 // Query attributes object to see if integer divide instructions may be
2842 // present in an object.
2844 attributes_accept_div(int arch, int profile,
2845 const Object_attribute* div_attr);
2847 // Query attributes object to see if integer divide instructions are
2848 // forbidden to be in the object. This is not the inverse of
2849 // attributes_accept_div.
2851 attributes_forbid_div(const Object_attribute* div_attr);
2853 // Merge object attributes from input object and those in the output.
2855 merge_object_attributes(const char*, const Attributes_section_data*);
2857 // Helper to get an AEABI object attribute
2859 get_aeabi_object_attribute(int tag) const
2861 Attributes_section_data* pasd = this->attributes_section_data_;
2862 gold_assert(pasd != NULL);
2863 Object_attribute* attr =
2864 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2865 gold_assert(attr != NULL);
2870 // Methods to support stub-generations.
2873 // Group input sections for stub generation.
2875 group_sections(Layout*, section_size_type, bool, const Task*);
2877 // Scan a relocation for stub generation.
2879 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2880 const Sized_symbol<32>*, unsigned int,
2881 const Symbol_value<32>*,
2882 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2884 // Scan a relocation section for stub.
2885 template<int sh_type>
2887 scan_reloc_section_for_stubs(
2888 const Relocate_info<32, big_endian>* relinfo,
2889 const unsigned char* prelocs,
2891 Output_section* output_section,
2892 bool needs_special_offset_handling,
2893 const unsigned char* view,
2894 elfcpp::Elf_types<32>::Elf_Addr view_address,
2897 // Fix .ARM.exidx section coverage.
2899 fix_exidx_coverage(Layout*, const Input_objects*,
2900 Arm_output_section<big_endian>*, Symbol_table*,
2903 // Functors for STL set.
2904 struct output_section_address_less_than
2907 operator()(const Output_section* s1, const Output_section* s2) const
2908 { return s1->address() < s2->address(); }
2911 // Information about this specific target which we pass to the
2912 // general Target structure.
2913 static const Target::Target_info arm_info;
2915 // The types of GOT entries needed for this platform.
2916 // These values are exposed to the ABI in an incremental link.
2917 // Do not renumber existing values without changing the version
2918 // number of the .gnu_incremental_inputs section.
2921 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2922 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2923 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2924 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2925 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2928 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2930 // Map input section to Arm_input_section.
2931 typedef Unordered_map<Section_id,
2932 Arm_input_section<big_endian>*,
2934 Arm_input_section_map;
2936 // Map output addresses to relocs for Cortex-A8 erratum.
2937 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2938 Cortex_a8_relocs_info;
2941 Arm_output_data_got<big_endian>* got_;
2943 Output_data_plt_arm<big_endian>* plt_;
2944 // The GOT PLT section.
2945 Output_data_space* got_plt_;
2946 // The GOT section for IRELATIVE relocations.
2947 Output_data_space* got_irelative_;
2948 // The dynamic reloc section.
2949 Reloc_section* rel_dyn_;
2950 // The section to use for IRELATIVE relocs.
2951 Reloc_section* rel_irelative_;
2952 // Relocs saved to avoid a COPY reloc.
2953 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2954 // Offset of the GOT entry for the TLS module index.
2955 unsigned int got_mod_index_offset_;
2956 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2957 bool tls_base_symbol_defined_;
2958 // Vector of Stub_tables created.
2959 Stub_table_list stub_tables_;
2961 const Stub_factory &stub_factory_;
2962 // Whether we force PIC branch veneers.
2963 bool should_force_pic_veneer_;
2964 // Map for locating Arm_input_sections.
2965 Arm_input_section_map arm_input_section_map_;
2966 // Attributes section data in output.
2967 Attributes_section_data* attributes_section_data_;
2968 // Whether we want to fix code for Cortex-A8 erratum.
2969 bool fix_cortex_a8_;
2970 // Map addresses to relocs for Cortex-A8 erratum.
2971 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2974 template<bool big_endian>
2975 const Target::Target_info Target_arm<big_endian>::arm_info =
2978 big_endian, // is_big_endian
2979 elfcpp::EM_ARM, // machine_code
2980 false, // has_make_symbol
2981 false, // has_resolve
2982 false, // has_code_fill
2983 true, // is_default_stack_executable
2984 false, // can_icf_inline_merge_sections
2986 "/usr/lib/libc.so.1", // dynamic_linker
2987 0x8000, // default_text_segment_address
2988 0x1000, // abi_pagesize (overridable by -z max-page-size)
2989 0x1000, // common_pagesize (overridable by -z common-page-size)
2990 false, // isolate_execinstr
2992 elfcpp::SHN_UNDEF, // small_common_shndx
2993 elfcpp::SHN_UNDEF, // large_common_shndx
2994 0, // small_common_section_flags
2995 0, // large_common_section_flags
2996 ".ARM.attributes", // attributes_section
2997 "aeabi", // attributes_vendor
2998 "_start", // entry_symbol_name
2999 32, // hash_entry_size
3002 // Arm relocate functions class
3005 template<bool big_endian>
3006 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3011 STATUS_OKAY, // No error during relocation.
3012 STATUS_OVERFLOW, // Relocation overflow.
3013 STATUS_BAD_RELOC // Relocation cannot be applied.
3017 typedef Relocate_functions<32, big_endian> Base;
3018 typedef Arm_relocate_functions<big_endian> This;
3020 // Encoding of imm16 argument for movt and movw ARM instructions
3023 // imm16 := imm4 | imm12
3025 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3026 // +-------+---------------+-------+-------+-----------------------+
3027 // | | |imm4 | |imm12 |
3028 // +-------+---------------+-------+-------+-----------------------+
3030 // Extract the relocation addend from VAL based on the ARM
3031 // instruction encoding described above.
3032 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3033 extract_arm_movw_movt_addend(
3034 typename elfcpp::Swap<32, big_endian>::Valtype val)
3036 // According to the Elf ABI for ARM Architecture the immediate
3037 // field is sign-extended to form the addend.
3038 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3041 // Insert X into VAL based on the ARM instruction encoding described
3043 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3044 insert_val_arm_movw_movt(
3045 typename elfcpp::Swap<32, big_endian>::Valtype val,
3046 typename elfcpp::Swap<32, big_endian>::Valtype x)
3050 val |= (x & 0xf000) << 4;
3054 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3057 // imm16 := imm4 | i | imm3 | imm8
3059 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3060 // +---------+-+-----------+-------++-+-----+-------+---------------+
3061 // | |i| |imm4 || |imm3 | |imm8 |
3062 // +---------+-+-----------+-------++-+-----+-------+---------------+
3064 // Extract the relocation addend from VAL based on the Thumb2
3065 // instruction encoding described above.
3066 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3067 extract_thumb_movw_movt_addend(
3068 typename elfcpp::Swap<32, big_endian>::Valtype val)
3070 // According to the Elf ABI for ARM Architecture the immediate
3071 // field is sign-extended to form the addend.
3072 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3073 | ((val >> 15) & 0x0800)
3074 | ((val >> 4) & 0x0700)
3078 // Insert X into VAL based on the Thumb2 instruction encoding
3080 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3081 insert_val_thumb_movw_movt(
3082 typename elfcpp::Swap<32, big_endian>::Valtype val,
3083 typename elfcpp::Swap<32, big_endian>::Valtype x)
3086 val |= (x & 0xf000) << 4;
3087 val |= (x & 0x0800) << 15;
3088 val |= (x & 0x0700) << 4;
3089 val |= (x & 0x00ff);
3093 // Calculate the smallest constant Kn for the specified residual.
3094 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3096 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3102 // Determine the most significant bit in the residual and
3103 // align the resulting value to a 2-bit boundary.
3104 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3106 // The desired shift is now (msb - 6), or zero, whichever
3108 return (((msb - 6) < 0) ? 0 : (msb - 6));
3111 // Calculate the final residual for the specified group index.
3112 // If the passed group index is less than zero, the method will return
3113 // the value of the specified residual without any change.
3114 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3115 static typename elfcpp::Swap<32, big_endian>::Valtype
3116 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3119 for (int n = 0; n <= group; n++)
3121 // Calculate which part of the value to mask.
3122 uint32_t shift = calc_grp_kn(residual);
3123 // Calculate the residual for the next time around.
3124 residual &= ~(residual & (0xff << shift));
3130 // Calculate the value of Gn for the specified group index.
3131 // We return it in the form of an encoded constant-and-rotation.
3132 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3133 static typename elfcpp::Swap<32, big_endian>::Valtype
3134 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3137 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3140 for (int n = 0; n <= group; n++)
3142 // Calculate which part of the value to mask.
3143 shift = calc_grp_kn(residual);
3144 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3145 gn = residual & (0xff << shift);
3146 // Calculate the residual for the next time around.
3149 // Return Gn in the form of an encoded constant-and-rotation.
3150 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3154 // Handle ARM long branches.
3155 static typename This::Status
3156 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3157 unsigned char*, const Sized_symbol<32>*,
3158 const Arm_relobj<big_endian>*, unsigned int,
3159 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3161 // Handle THUMB long branches.
3162 static typename This::Status
3163 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3164 unsigned char*, const Sized_symbol<32>*,
3165 const Arm_relobj<big_endian>*, unsigned int,
3166 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3169 // Return the branch offset of a 32-bit THUMB branch.
3170 static inline int32_t
3171 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3173 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3174 // involving the J1 and J2 bits.
3175 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3176 uint32_t upper = upper_insn & 0x3ffU;
3177 uint32_t lower = lower_insn & 0x7ffU;
3178 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3179 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3180 uint32_t i1 = j1 ^ s ? 0 : 1;
3181 uint32_t i2 = j2 ^ s ? 0 : 1;
3183 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3184 | (upper << 12) | (lower << 1));
3187 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3188 // UPPER_INSN is the original upper instruction of the branch. Caller is
3189 // responsible for overflow checking and BLX offset adjustment.
3190 static inline uint16_t
3191 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3193 uint32_t s = offset < 0 ? 1 : 0;
3194 uint32_t bits = static_cast<uint32_t>(offset);
3195 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3198 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3199 // LOWER_INSN is the original lower instruction of the branch. Caller is
3200 // responsible for overflow checking and BLX offset adjustment.
3201 static inline uint16_t
3202 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3204 uint32_t s = offset < 0 ? 1 : 0;
3205 uint32_t bits = static_cast<uint32_t>(offset);
3206 return ((lower_insn & ~0x2fffU)
3207 | ((((bits >> 23) & 1) ^ !s) << 13)
3208 | ((((bits >> 22) & 1) ^ !s) << 11)
3209 | ((bits >> 1) & 0x7ffU));
3212 // Return the branch offset of a 32-bit THUMB conditional branch.
3213 static inline int32_t
3214 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3216 uint32_t s = (upper_insn & 0x0400U) >> 10;
3217 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3218 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3219 uint32_t lower = (lower_insn & 0x07ffU);
3220 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3222 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3225 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3226 // instruction. UPPER_INSN is the original upper instruction of the branch.
3227 // Caller is responsible for overflow checking.
3228 static inline uint16_t
3229 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3231 uint32_t s = offset < 0 ? 1 : 0;
3232 uint32_t bits = static_cast<uint32_t>(offset);
3233 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3236 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3237 // instruction. LOWER_INSN is the original lower instruction of the branch.
3238 // The caller is responsible for overflow checking.
3239 static inline uint16_t
3240 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3242 uint32_t bits = static_cast<uint32_t>(offset);
3243 uint32_t j2 = (bits & 0x00080000U) >> 19;
3244 uint32_t j1 = (bits & 0x00040000U) >> 18;
3245 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3247 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3250 // R_ARM_ABS8: S + A
3251 static inline typename This::Status
3252 abs8(unsigned char* view,
3253 const Sized_relobj_file<32, big_endian>* object,
3254 const Symbol_value<32>* psymval)
3256 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3257 Valtype* wv = reinterpret_cast<Valtype*>(view);
3258 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3259 int32_t addend = Bits<8>::sign_extend32(val);
3260 Arm_address x = psymval->value(object, addend);
3261 val = Bits<32>::bit_select32(val, x, 0xffU);
3262 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3264 // R_ARM_ABS8 permits signed or unsigned results.
3265 return (Bits<8>::has_signed_unsigned_overflow32(x)
3266 ? This::STATUS_OVERFLOW
3267 : This::STATUS_OKAY);
3270 // R_ARM_THM_ABS5: S + A
3271 static inline typename This::Status
3272 thm_abs5(unsigned char* view,
3273 const Sized_relobj_file<32, big_endian>* object,
3274 const Symbol_value<32>* psymval)
3276 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3277 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3278 Valtype* wv = reinterpret_cast<Valtype*>(view);
3279 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3280 Reltype addend = (val & 0x7e0U) >> 6;
3281 Reltype x = psymval->value(object, addend);
3282 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3283 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3284 return (Bits<5>::has_overflow32(x)
3285 ? This::STATUS_OVERFLOW
3286 : This::STATUS_OKAY);
3289 // R_ARM_ABS12: S + A
3290 static inline typename This::Status
3291 abs12(unsigned char* view,
3292 const Sized_relobj_file<32, big_endian>* object,
3293 const Symbol_value<32>* psymval)
3295 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3297 Valtype* wv = reinterpret_cast<Valtype*>(view);
3298 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3299 Reltype addend = val & 0x0fffU;
3300 Reltype x = psymval->value(object, addend);
3301 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3302 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3303 return (Bits<12>::has_overflow32(x)
3304 ? This::STATUS_OVERFLOW
3305 : This::STATUS_OKAY);
3308 // R_ARM_ABS16: S + A
3309 static inline typename This::Status
3310 abs16(unsigned char* view,
3311 const Sized_relobj_file<32, big_endian>* object,
3312 const Symbol_value<32>* psymval)
3314 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3315 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3316 int32_t addend = Bits<16>::sign_extend32(val);
3317 Arm_address x = psymval->value(object, addend);
3318 val = Bits<32>::bit_select32(val, x, 0xffffU);
3319 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3321 // R_ARM_ABS16 permits signed or unsigned results.
3322 return (Bits<16>::has_signed_unsigned_overflow32(x)
3323 ? This::STATUS_OVERFLOW
3324 : This::STATUS_OKAY);
3327 // R_ARM_ABS32: (S + A) | T
3328 static inline typename This::Status
3329 abs32(unsigned char* view,
3330 const Sized_relobj_file<32, big_endian>* object,
3331 const Symbol_value<32>* psymval,
3332 Arm_address thumb_bit)
3334 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3335 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3336 Valtype x = psymval->value(object, addend) | thumb_bit;
3337 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3338 return This::STATUS_OKAY;
3341 // R_ARM_REL32: (S + A) | T - P
3342 static inline typename This::Status
3343 rel32(unsigned char* view,
3344 const Sized_relobj_file<32, big_endian>* object,
3345 const Symbol_value<32>* psymval,
3346 Arm_address address,
3347 Arm_address thumb_bit)
3349 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3350 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3351 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3352 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3353 return This::STATUS_OKAY;
3356 // R_ARM_THM_JUMP24: (S + A) | T - P
3357 static typename This::Status
3358 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3359 const Symbol_value<32>* psymval, Arm_address address,
3360 Arm_address thumb_bit);
3362 // R_ARM_THM_JUMP6: S + A – P
3363 static inline typename This::Status
3364 thm_jump6(unsigned char* view,
3365 const Sized_relobj_file<32, big_endian>* object,
3366 const Symbol_value<32>* psymval,
3367 Arm_address address)
3369 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3370 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3371 Valtype* wv = reinterpret_cast<Valtype*>(view);
3372 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3373 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3374 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3375 Reltype x = (psymval->value(object, addend) - address);
3376 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3377 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3378 // CZB does only forward jumps.
3379 return ((x > 0x007e)
3380 ? This::STATUS_OVERFLOW
3381 : This::STATUS_OKAY);
3384 // R_ARM_THM_JUMP8: S + A – P
3385 static inline typename This::Status
3386 thm_jump8(unsigned char* view,
3387 const Sized_relobj_file<32, big_endian>* object,
3388 const Symbol_value<32>* psymval,
3389 Arm_address address)
3391 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3392 Valtype* wv = reinterpret_cast<Valtype*>(view);
3393 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3394 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3395 int32_t x = (psymval->value(object, addend) - address);
3396 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3397 | ((x & 0x01fe) >> 1)));
3398 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3399 return (Bits<9>::has_overflow32(x)
3400 ? This::STATUS_OVERFLOW
3401 : This::STATUS_OKAY);
3404 // R_ARM_THM_JUMP11: S + A – P
3405 static inline typename This::Status
3406 thm_jump11(unsigned char* view,
3407 const Sized_relobj_file<32, big_endian>* object,
3408 const Symbol_value<32>* psymval,
3409 Arm_address address)
3411 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3412 Valtype* wv = reinterpret_cast<Valtype*>(view);
3413 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3414 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3415 int32_t x = (psymval->value(object, addend) - address);
3416 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3417 | ((x & 0x0ffe) >> 1)));
3418 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3419 return (Bits<12>::has_overflow32(x)
3420 ? This::STATUS_OVERFLOW
3421 : This::STATUS_OKAY);
3424 // R_ARM_BASE_PREL: B(S) + A - P
3425 static inline typename This::Status
3426 base_prel(unsigned char* view,
3428 Arm_address address)
3430 Base::rel32(view, origin - address);
3434 // R_ARM_BASE_ABS: B(S) + A
3435 static inline typename This::Status
3436 base_abs(unsigned char* view,
3439 Base::rel32(view, origin);
3443 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3444 static inline typename This::Status
3445 got_brel(unsigned char* view,
3446 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3448 Base::rel32(view, got_offset);
3449 return This::STATUS_OKAY;
3452 // R_ARM_GOT_PREL: GOT(S) + A - P
3453 static inline typename This::Status
3454 got_prel(unsigned char* view,
3455 Arm_address got_entry,
3456 Arm_address address)
3458 Base::rel32(view, got_entry - address);
3459 return This::STATUS_OKAY;
3462 // R_ARM_PREL: (S + A) | T - P
3463 static inline typename This::Status
3464 prel31(unsigned char* view,
3465 const Sized_relobj_file<32, big_endian>* object,
3466 const Symbol_value<32>* psymval,
3467 Arm_address address,
3468 Arm_address thumb_bit)
3470 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3471 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3472 Valtype addend = Bits<31>::sign_extend32(val);
3473 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3474 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3475 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3476 return (Bits<31>::has_overflow32(x)
3477 ? This::STATUS_OVERFLOW
3478 : This::STATUS_OKAY);
3481 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3482 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3483 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3484 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3485 static inline typename This::Status
3486 movw(unsigned char* view,
3487 const Sized_relobj_file<32, big_endian>* object,
3488 const Symbol_value<32>* psymval,
3489 Arm_address relative_address_base,
3490 Arm_address thumb_bit,
3491 bool check_overflow)
3493 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3494 Valtype* wv = reinterpret_cast<Valtype*>(view);
3495 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3496 Valtype addend = This::extract_arm_movw_movt_addend(val);
3497 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3498 - relative_address_base);
3499 val = This::insert_val_arm_movw_movt(val, x);
3500 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3501 return ((check_overflow && Bits<16>::has_overflow32(x))
3502 ? This::STATUS_OVERFLOW
3503 : This::STATUS_OKAY);
3506 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3507 // R_ARM_MOVT_PREL: S + A - P
3508 // R_ARM_MOVT_BREL: S + A - B(S)
3509 static inline typename This::Status
3510 movt(unsigned char* view,
3511 const Sized_relobj_file<32, big_endian>* object,
3512 const Symbol_value<32>* psymval,
3513 Arm_address relative_address_base)
3515 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3516 Valtype* wv = reinterpret_cast<Valtype*>(view);
3517 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3518 Valtype addend = This::extract_arm_movw_movt_addend(val);
3519 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3520 val = This::insert_val_arm_movw_movt(val, x);
3521 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3522 // FIXME: IHI0044D says that we should check for overflow.
3523 return This::STATUS_OKAY;
3526 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3527 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3528 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3529 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3530 static inline typename This::Status
3531 thm_movw(unsigned char* view,
3532 const Sized_relobj_file<32, big_endian>* object,
3533 const Symbol_value<32>* psymval,
3534 Arm_address relative_address_base,
3535 Arm_address thumb_bit,
3536 bool check_overflow)
3538 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3539 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3540 Valtype* wv = reinterpret_cast<Valtype*>(view);
3541 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3542 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3543 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3545 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3546 val = This::insert_val_thumb_movw_movt(val, x);
3547 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3548 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3549 return ((check_overflow && Bits<16>::has_overflow32(x))
3550 ? This::STATUS_OVERFLOW
3551 : This::STATUS_OKAY);
3554 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3555 // R_ARM_THM_MOVT_PREL: S + A - P
3556 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3557 static inline typename This::Status
3558 thm_movt(unsigned char* view,
3559 const Sized_relobj_file<32, big_endian>* object,
3560 const Symbol_value<32>* psymval,
3561 Arm_address relative_address_base)
3563 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3564 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3565 Valtype* wv = reinterpret_cast<Valtype*>(view);
3566 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3567 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3568 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3569 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3570 val = This::insert_val_thumb_movw_movt(val, x);
3571 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3572 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3573 return This::STATUS_OKAY;
3576 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3577 static inline typename This::Status
3578 thm_alu11(unsigned char* view,
3579 const Sized_relobj_file<32, big_endian>* object,
3580 const Symbol_value<32>* psymval,
3581 Arm_address address,
3582 Arm_address thumb_bit)
3584 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3585 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3586 Valtype* wv = reinterpret_cast<Valtype*>(view);
3587 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3588 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3590 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3591 // -----------------------------------------------------------------------
3592 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3593 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3594 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3595 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3596 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3597 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3599 // Determine a sign for the addend.
3600 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3601 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3602 // Thumb2 addend encoding:
3603 // imm12 := i | imm3 | imm8
3604 int32_t addend = (insn & 0xff)
3605 | ((insn & 0x00007000) >> 4)
3606 | ((insn & 0x04000000) >> 15);
3607 // Apply a sign to the added.
3610 int32_t x = (psymval->value(object, addend) | thumb_bit)
3611 - (address & 0xfffffffc);
3612 Reltype val = abs(x);
3613 // Mask out the value and a distinct part of the ADD/SUB opcode
3614 // (bits 7:5 of opword).
3615 insn = (insn & 0xfb0f8f00)
3617 | ((val & 0x700) << 4)
3618 | ((val & 0x800) << 15);
3619 // Set the opcode according to whether the value to go in the
3620 // place is negative.
3624 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3625 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3626 return ((val > 0xfff) ?
3627 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3630 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3631 static inline typename This::Status
3632 thm_pc8(unsigned char* view,
3633 const Sized_relobj_file<32, big_endian>* object,
3634 const Symbol_value<32>* psymval,
3635 Arm_address address)
3637 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3638 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3639 Valtype* wv = reinterpret_cast<Valtype*>(view);
3640 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3641 Reltype addend = ((insn & 0x00ff) << 2);
3642 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3643 Reltype val = abs(x);
3644 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3646 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3647 return ((val > 0x03fc)
3648 ? This::STATUS_OVERFLOW
3649 : This::STATUS_OKAY);
3652 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3653 static inline typename This::Status
3654 thm_pc12(unsigned char* view,
3655 const Sized_relobj_file<32, big_endian>* object,
3656 const Symbol_value<32>* psymval,
3657 Arm_address address)
3659 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3660 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3661 Valtype* wv = reinterpret_cast<Valtype*>(view);
3662 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3663 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3664 // Determine a sign for the addend (positive if the U bit is 1).
3665 const int sign = (insn & 0x00800000) ? 1 : -1;
3666 int32_t addend = (insn & 0xfff);
3667 // Apply a sign to the added.
3670 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3671 Reltype val = abs(x);
3672 // Mask out and apply the value and the U bit.
3673 insn = (insn & 0xff7ff000) | (val & 0xfff);
3674 // Set the U bit according to whether the value to go in the
3675 // place is positive.
3679 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3680 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3681 return ((val > 0xfff) ?
3682 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3686 static inline typename This::Status
3687 v4bx(const Relocate_info<32, big_endian>* relinfo,
3688 unsigned char* view,
3689 const Arm_relobj<big_endian>* object,
3690 const Arm_address address,
3691 const bool is_interworking)
3694 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3695 Valtype* wv = reinterpret_cast<Valtype*>(view);
3696 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3698 // Ensure that we have a BX instruction.
3699 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3700 const uint32_t reg = (val & 0xf);
3701 if (is_interworking && reg != 0xf)
3703 Stub_table<big_endian>* stub_table =
3704 object->stub_table(relinfo->data_shndx);
3705 gold_assert(stub_table != NULL);
3707 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3708 gold_assert(stub != NULL);
3710 int32_t veneer_address =
3711 stub_table->address() + stub->offset() - 8 - address;
3712 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3713 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3714 // Replace with a branch to veneer (B <addr>)
3715 val = (val & 0xf0000000) | 0x0a000000
3716 | ((veneer_address >> 2) & 0x00ffffff);
3720 // Preserve Rm (lowest four bits) and the condition code
3721 // (highest four bits). Other bits encode MOV PC,Rm.
3722 val = (val & 0xf000000f) | 0x01a0f000;
3724 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3725 return This::STATUS_OKAY;
3728 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3729 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3730 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3731 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3732 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3733 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3734 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3735 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3736 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3737 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3738 static inline typename This::Status
3739 arm_grp_alu(unsigned char* view,
3740 const Sized_relobj_file<32, big_endian>* object,
3741 const Symbol_value<32>* psymval,
3743 Arm_address address,
3744 Arm_address thumb_bit,
3745 bool check_overflow)
3747 gold_assert(group >= 0 && group < 3);
3748 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3749 Valtype* wv = reinterpret_cast<Valtype*>(view);
3750 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3752 // ALU group relocations are allowed only for the ADD/SUB instructions.
3753 // (0x00800000 - ADD, 0x00400000 - SUB)
3754 const Valtype opcode = insn & 0x01e00000;
3755 if (opcode != 0x00800000 && opcode != 0x00400000)
3756 return This::STATUS_BAD_RELOC;
3758 // Determine a sign for the addend.
3759 const int sign = (opcode == 0x00800000) ? 1 : -1;
3760 // shifter = rotate_imm * 2
3761 const uint32_t shifter = (insn & 0xf00) >> 7;
3762 // Initial addend value.
3763 int32_t addend = insn & 0xff;
3764 // Rotate addend right by shifter.
3765 addend = (addend >> shifter) | (addend << (32 - shifter));
3766 // Apply a sign to the added.
3769 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3770 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3771 // Check for overflow if required
3773 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3774 return This::STATUS_OVERFLOW;
3776 // Mask out the value and the ADD/SUB part of the opcode; take care
3777 // not to destroy the S bit.
3779 // Set the opcode according to whether the value to go in the
3780 // place is negative.
3781 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3782 // Encode the offset (encoded Gn).
3785 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3786 return This::STATUS_OKAY;
3789 // R_ARM_LDR_PC_G0: S + A - P
3790 // R_ARM_LDR_PC_G1: S + A - P
3791 // R_ARM_LDR_PC_G2: S + A - P
3792 // R_ARM_LDR_SB_G0: S + A - B(S)
3793 // R_ARM_LDR_SB_G1: S + A - B(S)
3794 // R_ARM_LDR_SB_G2: S + A - B(S)
3795 static inline typename This::Status
3796 arm_grp_ldr(unsigned char* view,
3797 const Sized_relobj_file<32, big_endian>* object,
3798 const Symbol_value<32>* psymval,
3800 Arm_address address)
3802 gold_assert(group >= 0 && group < 3);
3803 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3804 Valtype* wv = reinterpret_cast<Valtype*>(view);
3805 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3807 const int sign = (insn & 0x00800000) ? 1 : -1;
3808 int32_t addend = (insn & 0xfff) * sign;
3809 int32_t x = (psymval->value(object, addend) - address);
3810 // Calculate the relevant G(n-1) value to obtain this stage residual.
3812 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3813 if (residual >= 0x1000)
3814 return This::STATUS_OVERFLOW;
3816 // Mask out the value and U bit.
3818 // Set the U bit for non-negative values.
3823 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3824 return This::STATUS_OKAY;
3827 // R_ARM_LDRS_PC_G0: S + A - P
3828 // R_ARM_LDRS_PC_G1: S + A - P
3829 // R_ARM_LDRS_PC_G2: S + A - P
3830 // R_ARM_LDRS_SB_G0: S + A - B(S)
3831 // R_ARM_LDRS_SB_G1: S + A - B(S)
3832 // R_ARM_LDRS_SB_G2: S + A - B(S)
3833 static inline typename This::Status
3834 arm_grp_ldrs(unsigned char* view,
3835 const Sized_relobj_file<32, big_endian>* object,
3836 const Symbol_value<32>* psymval,
3838 Arm_address address)
3840 gold_assert(group >= 0 && group < 3);
3841 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3842 Valtype* wv = reinterpret_cast<Valtype*>(view);
3843 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3845 const int sign = (insn & 0x00800000) ? 1 : -1;
3846 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3847 int32_t x = (psymval->value(object, addend) - address);
3848 // Calculate the relevant G(n-1) value to obtain this stage residual.
3850 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3851 if (residual >= 0x100)
3852 return This::STATUS_OVERFLOW;
3854 // Mask out the value and U bit.
3856 // Set the U bit for non-negative values.
3859 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3861 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3862 return This::STATUS_OKAY;
3865 // R_ARM_LDC_PC_G0: S + A - P
3866 // R_ARM_LDC_PC_G1: S + A - P
3867 // R_ARM_LDC_PC_G2: S + A - P
3868 // R_ARM_LDC_SB_G0: S + A - B(S)
3869 // R_ARM_LDC_SB_G1: S + A - B(S)
3870 // R_ARM_LDC_SB_G2: S + A - B(S)
3871 static inline typename This::Status
3872 arm_grp_ldc(unsigned char* view,
3873 const Sized_relobj_file<32, big_endian>* object,
3874 const Symbol_value<32>* psymval,
3876 Arm_address address)
3878 gold_assert(group >= 0 && group < 3);
3879 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3880 Valtype* wv = reinterpret_cast<Valtype*>(view);
3881 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3883 const int sign = (insn & 0x00800000) ? 1 : -1;
3884 int32_t addend = ((insn & 0xff) << 2) * sign;
3885 int32_t x = (psymval->value(object, addend) - address);
3886 // Calculate the relevant G(n-1) value to obtain this stage residual.
3888 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3889 if ((residual & 0x3) != 0 || residual >= 0x400)
3890 return This::STATUS_OVERFLOW;
3892 // Mask out the value and U bit.
3894 // Set the U bit for non-negative values.
3897 insn |= (residual >> 2);
3899 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3900 return This::STATUS_OKAY;
3904 // Relocate ARM long branches. This handles relocation types
3905 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3906 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3907 // undefined and we do not use PLT in this relocation. In such a case,
3908 // the branch is converted into an NOP.
3910 template<bool big_endian>
3911 typename Arm_relocate_functions<big_endian>::Status
3912 Arm_relocate_functions<big_endian>::arm_branch_common(
3913 unsigned int r_type,
3914 const Relocate_info<32, big_endian>* relinfo,
3915 unsigned char* view,
3916 const Sized_symbol<32>* gsym,
3917 const Arm_relobj<big_endian>* object,
3919 const Symbol_value<32>* psymval,
3920 Arm_address address,
3921 Arm_address thumb_bit,
3922 bool is_weakly_undefined_without_plt)
3924 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3925 Valtype* wv = reinterpret_cast<Valtype*>(view);
3926 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3928 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3929 && ((val & 0x0f000000UL) == 0x0a000000UL);
3930 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3931 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3932 && ((val & 0x0f000000UL) == 0x0b000000UL);
3933 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3934 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3936 // Check that the instruction is valid.
3937 if (r_type == elfcpp::R_ARM_CALL)
3939 if (!insn_is_uncond_bl && !insn_is_blx)
3940 return This::STATUS_BAD_RELOC;
3942 else if (r_type == elfcpp::R_ARM_JUMP24)
3944 if (!insn_is_b && !insn_is_cond_bl)
3945 return This::STATUS_BAD_RELOC;
3947 else if (r_type == elfcpp::R_ARM_PLT32)
3949 if (!insn_is_any_branch)
3950 return This::STATUS_BAD_RELOC;
3952 else if (r_type == elfcpp::R_ARM_XPC25)
3954 // FIXME: AAELF document IH0044C does not say much about it other
3955 // than it being obsolete.
3956 if (!insn_is_any_branch)
3957 return This::STATUS_BAD_RELOC;
3962 // A branch to an undefined weak symbol is turned into a jump to
3963 // the next instruction unless a PLT entry will be created.
3964 // Do the same for local undefined symbols.
3965 // The jump to the next instruction is optimized as a NOP depending
3966 // on the architecture.
3967 const Target_arm<big_endian>* arm_target =
3968 Target_arm<big_endian>::default_target();
3969 if (is_weakly_undefined_without_plt)
3971 gold_assert(!parameters->options().relocatable());
3972 Valtype cond = val & 0xf0000000U;
3973 if (arm_target->may_use_arm_nop())
3974 val = cond | 0x0320f000;
3976 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3977 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3978 return This::STATUS_OKAY;
3981 Valtype addend = Bits<26>::sign_extend32(val << 2);
3982 Valtype branch_target = psymval->value(object, addend);
3983 int32_t branch_offset = branch_target - address;
3985 // We need a stub if the branch offset is too large or if we need
3987 bool may_use_blx = arm_target->may_use_v5t_interworking();
3988 Reloc_stub* stub = NULL;
3990 if (!parameters->options().relocatable()
3991 && (Bits<26>::has_overflow32(branch_offset)
3992 || ((thumb_bit != 0)
3993 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3995 Valtype unadjusted_branch_target = psymval->value(object, 0);
3997 Stub_type stub_type =
3998 Reloc_stub::stub_type_for_reloc(r_type, address,
3999 unadjusted_branch_target,
4001 if (stub_type != arm_stub_none)
4003 Stub_table<big_endian>* stub_table =
4004 object->stub_table(relinfo->data_shndx);
4005 gold_assert(stub_table != NULL);
4007 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4008 stub = stub_table->find_reloc_stub(stub_key);
4009 gold_assert(stub != NULL);
4010 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4011 branch_target = stub_table->address() + stub->offset() + addend;
4012 branch_offset = branch_target - address;
4013 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4017 // At this point, if we still need to switch mode, the instruction
4018 // must either be a BLX or a BL that can be converted to a BLX.
4022 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4023 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4026 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4027 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4028 return (Bits<26>::has_overflow32(branch_offset)
4029 ? This::STATUS_OVERFLOW
4030 : This::STATUS_OKAY);
4033 // Relocate THUMB long branches. This handles relocation types
4034 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4035 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4036 // undefined and we do not use PLT in this relocation. In such a case,
4037 // the branch is converted into an NOP.
4039 template<bool big_endian>
4040 typename Arm_relocate_functions<big_endian>::Status
4041 Arm_relocate_functions<big_endian>::thumb_branch_common(
4042 unsigned int r_type,
4043 const Relocate_info<32, big_endian>* relinfo,
4044 unsigned char* view,
4045 const Sized_symbol<32>* gsym,
4046 const Arm_relobj<big_endian>* object,
4048 const Symbol_value<32>* psymval,
4049 Arm_address address,
4050 Arm_address thumb_bit,
4051 bool is_weakly_undefined_without_plt)
4053 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4054 Valtype* wv = reinterpret_cast<Valtype*>(view);
4055 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4056 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4058 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4060 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4061 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4063 // Check that the instruction is valid.
4064 if (r_type == elfcpp::R_ARM_THM_CALL)
4066 if (!is_bl_insn && !is_blx_insn)
4067 return This::STATUS_BAD_RELOC;
4069 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4071 // This cannot be a BLX.
4073 return This::STATUS_BAD_RELOC;
4075 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4077 // Check for Thumb to Thumb call.
4079 return This::STATUS_BAD_RELOC;
4082 gold_warning(_("%s: Thumb BLX instruction targets "
4083 "thumb function '%s'."),
4084 object->name().c_str(),
4085 (gsym ? gsym->name() : "(local)"));
4086 // Convert BLX to BL.
4087 lower_insn |= 0x1000U;
4093 // A branch to an undefined weak symbol is turned into a jump to
4094 // the next instruction unless a PLT entry will be created.
4095 // The jump to the next instruction is optimized as a NOP.W for
4096 // Thumb-2 enabled architectures.
4097 const Target_arm<big_endian>* arm_target =
4098 Target_arm<big_endian>::default_target();
4099 if (is_weakly_undefined_without_plt)
4101 gold_assert(!parameters->options().relocatable());
4102 if (arm_target->may_use_thumb2_nop())
4104 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4105 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4109 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4110 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4112 return This::STATUS_OKAY;
4115 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4116 Arm_address branch_target = psymval->value(object, addend);
4118 // For BLX, bit 1 of target address comes from bit 1 of base address.
4119 bool may_use_blx = arm_target->may_use_v5t_interworking();
4120 if (thumb_bit == 0 && may_use_blx)
4121 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4123 int32_t branch_offset = branch_target - address;
4125 // We need a stub if the branch offset is too large or if we need
4127 bool thumb2 = arm_target->using_thumb2();
4128 if (!parameters->options().relocatable()
4129 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4130 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4131 || ((thumb_bit == 0)
4132 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4133 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4135 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4137 Stub_type stub_type =
4138 Reloc_stub::stub_type_for_reloc(r_type, address,
4139 unadjusted_branch_target,
4142 if (stub_type != arm_stub_none)
4144 Stub_table<big_endian>* stub_table =
4145 object->stub_table(relinfo->data_shndx);
4146 gold_assert(stub_table != NULL);
4148 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4149 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4150 gold_assert(stub != NULL);
4151 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4152 branch_target = stub_table->address() + stub->offset() + addend;
4153 if (thumb_bit == 0 && may_use_blx)
4154 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4155 branch_offset = branch_target - address;
4159 // At this point, if we still need to switch mode, the instruction
4160 // must either be a BLX or a BL that can be converted to a BLX.
4163 gold_assert(may_use_blx
4164 && (r_type == elfcpp::R_ARM_THM_CALL
4165 || r_type == elfcpp::R_ARM_THM_XPC22));
4166 // Make sure this is a BLX.
4167 lower_insn &= ~0x1000U;
4171 // Make sure this is a BL.
4172 lower_insn |= 0x1000U;
4175 // For a BLX instruction, make sure that the relocation is rounded up
4176 // to a word boundary. This follows the semantics of the instruction
4177 // which specifies that bit 1 of the target address will come from bit
4178 // 1 of the base address.
4179 if ((lower_insn & 0x5000U) == 0x4000U)
4180 gold_assert((branch_offset & 3) == 0);
4182 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4183 // We use the Thumb-2 encoding, which is safe even if dealing with
4184 // a Thumb-1 instruction by virtue of our overflow check above. */
4185 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4186 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4188 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4189 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4191 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4194 ? Bits<25>::has_overflow32(branch_offset)
4195 : Bits<23>::has_overflow32(branch_offset))
4196 ? This::STATUS_OVERFLOW
4197 : This::STATUS_OKAY);
4200 // Relocate THUMB-2 long conditional branches.
4201 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4202 // undefined and we do not use PLT in this relocation. In such a case,
4203 // the branch is converted into an NOP.
4205 template<bool big_endian>
4206 typename Arm_relocate_functions<big_endian>::Status
4207 Arm_relocate_functions<big_endian>::thm_jump19(
4208 unsigned char* view,
4209 const Arm_relobj<big_endian>* object,
4210 const Symbol_value<32>* psymval,
4211 Arm_address address,
4212 Arm_address thumb_bit)
4214 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4215 Valtype* wv = reinterpret_cast<Valtype*>(view);
4216 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4217 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4218 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4220 Arm_address branch_target = psymval->value(object, addend);
4221 int32_t branch_offset = branch_target - address;
4223 // ??? Should handle interworking? GCC might someday try to
4224 // use this for tail calls.
4225 // FIXME: We do support thumb entry to PLT yet.
4228 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4229 return This::STATUS_BAD_RELOC;
4232 // Put RELOCATION back into the insn.
4233 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4234 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4236 // Put the relocated value back in the object file:
4237 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4238 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4240 return (Bits<21>::has_overflow32(branch_offset)
4241 ? This::STATUS_OVERFLOW
4242 : This::STATUS_OKAY);
4245 // Get the GOT section, creating it if necessary.
4247 template<bool big_endian>
4248 Arm_output_data_got<big_endian>*
4249 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4251 if (this->got_ == NULL)
4253 gold_assert(symtab != NULL && layout != NULL);
4255 // When using -z now, we can treat .got as a relro section.
4256 // Without -z now, it is modified after program startup by lazy
4258 bool is_got_relro = parameters->options().now();
4259 Output_section_order got_order = (is_got_relro
4263 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4264 // .got.plt sections in output. The output .got section contains both
4265 // PLT and non-PLT GOT entries.
4266 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4268 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4269 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4270 this->got_, got_order, is_got_relro);
4272 // The old GNU linker creates a .got.plt section. We just
4273 // create another set of data in the .got section. Note that we
4274 // always create a PLT if we create a GOT, although the PLT
4276 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4277 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4278 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4279 this->got_plt_, got_order, is_got_relro);
4281 // The first three entries are reserved.
4282 this->got_plt_->set_current_data_size(3 * 4);
4284 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4285 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4286 Symbol_table::PREDEFINED,
4288 0, 0, elfcpp::STT_OBJECT,
4290 elfcpp::STV_HIDDEN, 0,
4293 // If there are any IRELATIVE relocations, they get GOT entries
4294 // in .got.plt after the jump slot entries.
4295 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4296 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4297 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4298 this->got_irelative_,
4299 got_order, is_got_relro);
4305 // Get the dynamic reloc section, creating it if necessary.
4307 template<bool big_endian>
4308 typename Target_arm<big_endian>::Reloc_section*
4309 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4311 if (this->rel_dyn_ == NULL)
4313 gold_assert(layout != NULL);
4314 // Create both relocation sections in the same place, so as to ensure
4315 // their relative order in the output section.
4316 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4317 this->rel_irelative_ = new Reloc_section(false);
4318 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4319 elfcpp::SHF_ALLOC, this->rel_dyn_,
4320 ORDER_DYNAMIC_RELOCS, false);
4321 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4322 elfcpp::SHF_ALLOC, this->rel_irelative_,
4323 ORDER_DYNAMIC_RELOCS, false);
4325 return this->rel_dyn_;
4329 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4330 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4331 // follow the other dynamic relocations so that they can refer to global
4332 // variables initialized by those relocs.
4334 template<bool big_endian>
4335 typename Target_arm<big_endian>::Reloc_section*
4336 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4338 if (this->rel_irelative_ == NULL)
4340 // Delegate the creation to rel_dyn_section so as to ensure their order in
4341 // the output section.
4342 this->rel_dyn_section(layout);
4343 gold_assert(this->rel_irelative_ != NULL
4344 && (this->rel_dyn_->output_section()
4345 == this->rel_irelative_->output_section()));
4347 return this->rel_irelative_;
4351 // Insn_template methods.
4353 // Return byte size of an instruction template.
4356 Insn_template::size() const
4358 switch (this->type())
4361 case THUMB16_SPECIAL_TYPE:
4372 // Return alignment of an instruction template.
4375 Insn_template::alignment() const
4377 switch (this->type())
4380 case THUMB16_SPECIAL_TYPE:
4391 // Stub_template methods.
4393 Stub_template::Stub_template(
4394 Stub_type type, const Insn_template* insns,
4396 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4397 entry_in_thumb_mode_(false), relocs_()
4401 // Compute byte size and alignment of stub template.
4402 for (size_t i = 0; i < insn_count; i++)
4404 unsigned insn_alignment = insns[i].alignment();
4405 size_t insn_size = insns[i].size();
4406 gold_assert((offset & (insn_alignment - 1)) == 0);
4407 this->alignment_ = std::max(this->alignment_, insn_alignment);
4408 switch (insns[i].type())
4410 case Insn_template::THUMB16_TYPE:
4411 case Insn_template::THUMB16_SPECIAL_TYPE:
4413 this->entry_in_thumb_mode_ = true;
4416 case Insn_template::THUMB32_TYPE:
4417 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4418 this->relocs_.push_back(Reloc(i, offset));
4420 this->entry_in_thumb_mode_ = true;
4423 case Insn_template::ARM_TYPE:
4424 // Handle cases where the target is encoded within the
4426 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4427 this->relocs_.push_back(Reloc(i, offset));
4430 case Insn_template::DATA_TYPE:
4431 // Entry point cannot be data.
4432 gold_assert(i != 0);
4433 this->relocs_.push_back(Reloc(i, offset));
4439 offset += insn_size;
4441 this->size_ = offset;
4446 // Template to implement do_write for a specific target endianness.
4448 template<bool big_endian>
4450 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4452 const Stub_template* stub_template = this->stub_template();
4453 const Insn_template* insns = stub_template->insns();
4455 // FIXME: We do not handle BE8 encoding yet.
4456 unsigned char* pov = view;
4457 for (size_t i = 0; i < stub_template->insn_count(); i++)
4459 switch (insns[i].type())
4461 case Insn_template::THUMB16_TYPE:
4462 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4464 case Insn_template::THUMB16_SPECIAL_TYPE:
4465 elfcpp::Swap<16, big_endian>::writeval(
4467 this->thumb16_special(i));
4469 case Insn_template::THUMB32_TYPE:
4471 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4472 uint32_t lo = insns[i].data() & 0xffff;
4473 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4474 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4477 case Insn_template::ARM_TYPE:
4478 case Insn_template::DATA_TYPE:
4479 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4484 pov += insns[i].size();
4486 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4489 // Reloc_stub::Key methods.
4491 // Dump a Key as a string for debugging.
4494 Reloc_stub::Key::name() const
4496 if (this->r_sym_ == invalid_index)
4498 // Global symbol key name
4499 // <stub-type>:<symbol name>:<addend>.
4500 const std::string sym_name = this->u_.symbol->name();
4501 // We need to print two hex number and two colons. So just add 100 bytes
4502 // to the symbol name size.
4503 size_t len = sym_name.size() + 100;
4504 char* buffer = new char[len];
4505 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4506 sym_name.c_str(), this->addend_);
4507 gold_assert(c > 0 && c < static_cast<int>(len));
4509 return std::string(buffer);
4513 // local symbol key name
4514 // <stub-type>:<object>:<r_sym>:<addend>.
4515 const size_t len = 200;
4517 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4518 this->u_.relobj, this->r_sym_, this->addend_);
4519 gold_assert(c > 0 && c < static_cast<int>(len));
4520 return std::string(buffer);
4524 // Reloc_stub methods.
4526 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4527 // LOCATION to DESTINATION.
4528 // This code is based on the arm_type_of_stub function in
4529 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4533 Reloc_stub::stub_type_for_reloc(
4534 unsigned int r_type,
4535 Arm_address location,
4536 Arm_address destination,
4537 bool target_is_thumb)
4539 Stub_type stub_type = arm_stub_none;
4541 // This is a bit ugly but we want to avoid using a templated class for
4542 // big and little endianities.
4544 bool should_force_pic_veneer = parameters->options().pic_veneer();
4547 if (parameters->target().is_big_endian())
4549 const Target_arm<true>* big_endian_target =
4550 Target_arm<true>::default_target();
4551 may_use_blx = big_endian_target->may_use_v5t_interworking();
4552 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4553 thumb2 = big_endian_target->using_thumb2();
4554 thumb_only = big_endian_target->using_thumb_only();
4558 const Target_arm<false>* little_endian_target =
4559 Target_arm<false>::default_target();
4560 may_use_blx = little_endian_target->may_use_v5t_interworking();
4561 should_force_pic_veneer |=
4562 little_endian_target->should_force_pic_veneer();
4563 thumb2 = little_endian_target->using_thumb2();
4564 thumb_only = little_endian_target->using_thumb_only();
4567 int64_t branch_offset;
4568 bool output_is_position_independent =
4569 parameters->options().output_is_position_independent();
4570 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4572 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4573 // base address (instruction address + 4).
4574 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4575 destination = Bits<32>::bit_select32(destination, location, 0x2);
4576 branch_offset = static_cast<int64_t>(destination) - location;
4578 // Handle cases where:
4579 // - this call goes too far (different Thumb/Thumb2 max
4581 // - it's a Thumb->Arm call and blx is not available, or it's a
4582 // Thumb->Arm branch (not bl). A stub is needed in this case.
4584 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4585 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4587 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4588 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4589 || ((!target_is_thumb)
4590 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4591 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4593 if (target_is_thumb)
4598 stub_type = (output_is_position_independent
4599 || should_force_pic_veneer)
4602 && (r_type == elfcpp::R_ARM_THM_CALL))
4603 // V5T and above. Stub starts with ARM code, so
4604 // we must be able to switch mode before
4605 // reaching it, which is only possible for 'bl'
4606 // (ie R_ARM_THM_CALL relocation).
4607 ? arm_stub_long_branch_any_thumb_pic
4608 // On V4T, use Thumb code only.
4609 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4613 && (r_type == elfcpp::R_ARM_THM_CALL))
4614 ? arm_stub_long_branch_any_any // V5T and above.
4615 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4619 stub_type = (output_is_position_independent
4620 || should_force_pic_veneer)
4621 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4622 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4629 // FIXME: We should check that the input section is from an
4630 // object that has interwork enabled.
4632 stub_type = (output_is_position_independent
4633 || should_force_pic_veneer)
4636 && (r_type == elfcpp::R_ARM_THM_CALL))
4637 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4638 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4642 && (r_type == elfcpp::R_ARM_THM_CALL))
4643 ? arm_stub_long_branch_any_any // V5T and above.
4644 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4646 // Handle v4t short branches.
4647 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4648 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4649 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4650 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4654 else if (r_type == elfcpp::R_ARM_CALL
4655 || r_type == elfcpp::R_ARM_JUMP24
4656 || r_type == elfcpp::R_ARM_PLT32)
4658 branch_offset = static_cast<int64_t>(destination) - location;
4659 if (target_is_thumb)
4663 // FIXME: We should check that the input section is from an
4664 // object that has interwork enabled.
4666 // We have an extra 2-bytes reach because of
4667 // the mode change (bit 24 (H) of BLX encoding).
4668 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4669 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4670 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4671 || (r_type == elfcpp::R_ARM_JUMP24)
4672 || (r_type == elfcpp::R_ARM_PLT32))
4674 stub_type = (output_is_position_independent
4675 || should_force_pic_veneer)
4678 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4679 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4683 ? arm_stub_long_branch_any_any // V5T and above.
4684 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4690 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4691 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4693 stub_type = (output_is_position_independent
4694 || should_force_pic_veneer)
4695 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4696 : arm_stub_long_branch_any_any; /// non-PIC.
4704 // Cortex_a8_stub methods.
4706 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4707 // I is the position of the instruction template in the stub template.
4710 Cortex_a8_stub::do_thumb16_special(size_t i)
4712 // The only use of this is to copy condition code from a conditional
4713 // branch being worked around to the corresponding conditional branch in
4715 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4717 uint16_t data = this->stub_template()->insns()[i].data();
4718 gold_assert((data & 0xff00U) == 0xd000U);
4719 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4723 // Stub_factory methods.
4725 Stub_factory::Stub_factory()
4727 // The instruction template sequences are declared as static
4728 // objects and initialized first time the constructor runs.
4730 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4731 // to reach the stub if necessary.
4732 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4734 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4735 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4736 // dcd R_ARM_ABS32(X)
4739 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4741 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4743 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4744 Insn_template::arm_insn(0xe12fff1c), // bx ip
4745 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4746 // dcd R_ARM_ABS32(X)
4749 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4750 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4752 Insn_template::thumb16_insn(0xb401), // push {r0}
4753 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4754 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4755 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4756 Insn_template::thumb16_insn(0x4760), // bx ip
4757 Insn_template::thumb16_insn(0xbf00), // nop
4758 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4759 // dcd R_ARM_ABS32(X)
4762 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4764 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4766 Insn_template::thumb16_insn(0x4778), // bx pc
4767 Insn_template::thumb16_insn(0x46c0), // nop
4768 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4769 Insn_template::arm_insn(0xe12fff1c), // bx ip
4770 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4771 // dcd R_ARM_ABS32(X)
4774 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4776 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4778 Insn_template::thumb16_insn(0x4778), // bx pc
4779 Insn_template::thumb16_insn(0x46c0), // nop
4780 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4781 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4782 // dcd R_ARM_ABS32(X)
4785 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4786 // one, when the destination is close enough.
4787 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4789 Insn_template::thumb16_insn(0x4778), // bx pc
4790 Insn_template::thumb16_insn(0x46c0), // nop
4791 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4794 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4795 // blx to reach the stub if necessary.
4796 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4798 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4799 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4800 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4801 // dcd R_ARM_REL32(X-4)
4804 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4805 // blx to reach the stub if necessary. We can not add into pc;
4806 // it is not guaranteed to mode switch (different in ARMv6 and
4808 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4810 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4811 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4812 Insn_template::arm_insn(0xe12fff1c), // bx ip
4813 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4814 // dcd R_ARM_REL32(X)
4817 // V4T ARM -> ARM long branch stub, PIC.
4818 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4820 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4821 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4822 Insn_template::arm_insn(0xe12fff1c), // bx ip
4823 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4824 // dcd R_ARM_REL32(X)
4827 // V4T Thumb -> ARM long branch stub, PIC.
4828 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4830 Insn_template::thumb16_insn(0x4778), // bx pc
4831 Insn_template::thumb16_insn(0x46c0), // nop
4832 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4833 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4834 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4835 // dcd R_ARM_REL32(X)
4838 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4840 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4842 Insn_template::thumb16_insn(0xb401), // push {r0}
4843 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4844 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4845 Insn_template::thumb16_insn(0x4484), // add ip, r0
4846 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4847 Insn_template::thumb16_insn(0x4760), // bx ip
4848 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4849 // dcd R_ARM_REL32(X)
4852 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4854 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4856 Insn_template::thumb16_insn(0x4778), // bx pc
4857 Insn_template::thumb16_insn(0x46c0), // nop
4858 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4859 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4860 Insn_template::arm_insn(0xe12fff1c), // bx ip
4861 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4862 // dcd R_ARM_REL32(X)
4865 // Cortex-A8 erratum-workaround stubs.
4867 // Stub used for conditional branches (which may be beyond +/-1MB away,
4868 // so we can't use a conditional branch to reach this stub).
4875 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4877 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4878 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4879 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4883 // Stub used for b.w and bl.w instructions.
4885 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4887 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4890 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4892 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4895 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4896 // instruction (which switches to ARM mode) to point to this stub. Jump to
4897 // the real destination using an ARM-mode branch.
4898 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4900 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4903 // Stub used to provide an interworking for R_ARM_V4BX relocation
4904 // (bx r[n] instruction).
4905 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4907 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4908 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4909 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4912 // Fill in the stub template look-up table. Stub templates are constructed
4913 // per instance of Stub_factory for fast look-up without locking
4914 // in a thread-enabled environment.
4916 this->stub_templates_[arm_stub_none] =
4917 new Stub_template(arm_stub_none, NULL, 0);
4919 #define DEF_STUB(x) \
4923 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4924 Stub_type type = arm_stub_##x; \
4925 this->stub_templates_[type] = \
4926 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4934 // Stub_table methods.
4936 // Remove all Cortex-A8 stub.
4938 template<bool big_endian>
4940 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4942 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4943 p != this->cortex_a8_stubs_.end();
4946 this->cortex_a8_stubs_.clear();
4949 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4951 template<bool big_endian>
4953 Stub_table<big_endian>::relocate_stub(
4955 const Relocate_info<32, big_endian>* relinfo,
4956 Target_arm<big_endian>* arm_target,
4957 Output_section* output_section,
4958 unsigned char* view,
4959 Arm_address address,
4960 section_size_type view_size)
4962 const Stub_template* stub_template = stub->stub_template();
4963 if (stub_template->reloc_count() != 0)
4965 // Adjust view to cover the stub only.
4966 section_size_type offset = stub->offset();
4967 section_size_type stub_size = stub_template->size();
4968 gold_assert(offset + stub_size <= view_size);
4970 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4971 address + offset, stub_size);
4975 // Relocate all stubs in this stub table.
4977 template<bool big_endian>
4979 Stub_table<big_endian>::relocate_stubs(
4980 const Relocate_info<32, big_endian>* relinfo,
4981 Target_arm<big_endian>* arm_target,
4982 Output_section* output_section,
4983 unsigned char* view,
4984 Arm_address address,
4985 section_size_type view_size)
4987 // If we are passed a view bigger than the stub table's. we need to
4989 gold_assert(address == this->address()
4991 == static_cast<section_size_type>(this->data_size())));
4993 // Relocate all relocation stubs.
4994 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4995 p != this->reloc_stubs_.end();
4997 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4998 address, view_size);
5000 // Relocate all Cortex-A8 stubs.
5001 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5002 p != this->cortex_a8_stubs_.end();
5004 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5005 address, view_size);
5007 // Relocate all ARM V4BX stubs.
5008 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5009 p != this->arm_v4bx_stubs_.end();
5013 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5014 address, view_size);
5018 // Write out the stubs to file.
5020 template<bool big_endian>
5022 Stub_table<big_endian>::do_write(Output_file* of)
5024 off_t offset = this->offset();
5025 const section_size_type oview_size =
5026 convert_to_section_size_type(this->data_size());
5027 unsigned char* const oview = of->get_output_view(offset, oview_size);
5029 // Write relocation stubs.
5030 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5031 p != this->reloc_stubs_.end();
5034 Reloc_stub* stub = p->second;
5035 Arm_address address = this->address() + stub->offset();
5037 == align_address(address,
5038 stub->stub_template()->alignment()));
5039 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5043 // Write Cortex-A8 stubs.
5044 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045 p != this->cortex_a8_stubs_.end();
5048 Cortex_a8_stub* stub = p->second;
5049 Arm_address address = this->address() + stub->offset();
5051 == align_address(address,
5052 stub->stub_template()->alignment()));
5053 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5057 // Write ARM V4BX relocation stubs.
5058 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5059 p != this->arm_v4bx_stubs_.end();
5065 Arm_address address = this->address() + (*p)->offset();
5067 == align_address(address,
5068 (*p)->stub_template()->alignment()));
5069 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5073 of->write_output_view(this->offset(), oview_size, oview);
5076 // Update the data size and address alignment of the stub table at the end
5077 // of a relaxation pass. Return true if either the data size or the
5078 // alignment changed in this relaxation pass.
5080 template<bool big_endian>
5082 Stub_table<big_endian>::update_data_size_and_addralign()
5084 // Go over all stubs in table to compute data size and address alignment.
5085 off_t size = this->reloc_stubs_size_;
5086 unsigned addralign = this->reloc_stubs_addralign_;
5088 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5089 p != this->cortex_a8_stubs_.end();
5092 const Stub_template* stub_template = p->second->stub_template();
5093 addralign = std::max(addralign, stub_template->alignment());
5094 size = (align_address(size, stub_template->alignment())
5095 + stub_template->size());
5098 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5099 p != this->arm_v4bx_stubs_.end();
5105 const Stub_template* stub_template = (*p)->stub_template();
5106 addralign = std::max(addralign, stub_template->alignment());
5107 size = (align_address(size, stub_template->alignment())
5108 + stub_template->size());
5111 // Check if either data size or alignment changed in this pass.
5112 // Update prev_data_size_ and prev_addralign_. These will be used
5113 // as the current data size and address alignment for the next pass.
5114 bool changed = size != this->prev_data_size_;
5115 this->prev_data_size_ = size;
5117 if (addralign != this->prev_addralign_)
5119 this->prev_addralign_ = addralign;
5124 // Finalize the stubs. This sets the offsets of the stubs within the stub
5125 // table. It also marks all input sections needing Cortex-A8 workaround.
5127 template<bool big_endian>
5129 Stub_table<big_endian>::finalize_stubs()
5131 off_t off = this->reloc_stubs_size_;
5132 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5133 p != this->cortex_a8_stubs_.end();
5136 Cortex_a8_stub* stub = p->second;
5137 const Stub_template* stub_template = stub->stub_template();
5138 uint64_t stub_addralign = stub_template->alignment();
5139 off = align_address(off, stub_addralign);
5140 stub->set_offset(off);
5141 off += stub_template->size();
5143 // Mark input section so that we can determine later if a code section
5144 // needs the Cortex-A8 workaround quickly.
5145 Arm_relobj<big_endian>* arm_relobj =
5146 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5147 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5150 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5151 p != this->arm_v4bx_stubs_.end();
5157 const Stub_template* stub_template = (*p)->stub_template();
5158 uint64_t stub_addralign = stub_template->alignment();
5159 off = align_address(off, stub_addralign);
5160 (*p)->set_offset(off);
5161 off += stub_template->size();
5164 gold_assert(off <= this->prev_data_size_);
5167 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5168 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5169 // of the address range seen by the linker.
5171 template<bool big_endian>
5173 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5174 Target_arm<big_endian>* arm_target,
5175 unsigned char* view,
5176 Arm_address view_address,
5177 section_size_type view_size)
5179 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5180 for (Cortex_a8_stub_list::const_iterator p =
5181 this->cortex_a8_stubs_.lower_bound(view_address);
5182 ((p != this->cortex_a8_stubs_.end())
5183 && (p->first < (view_address + view_size)));
5186 // We do not store the THUMB bit in the LSB of either the branch address
5187 // or the stub offset. There is no need to strip the LSB.
5188 Arm_address branch_address = p->first;
5189 const Cortex_a8_stub* stub = p->second;
5190 Arm_address stub_address = this->address() + stub->offset();
5192 // Offset of the branch instruction relative to this view.
5193 section_size_type offset =
5194 convert_to_section_size_type(branch_address - view_address);
5195 gold_assert((offset + 4) <= view_size);
5197 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5198 view + offset, branch_address);
5202 // Arm_input_section methods.
5204 // Initialize an Arm_input_section.
5206 template<bool big_endian>
5208 Arm_input_section<big_endian>::init()
5210 Relobj* relobj = this->relobj();
5211 unsigned int shndx = this->shndx();
5213 // We have to cache original size, alignment and contents to avoid locking
5214 // the original file.
5215 this->original_addralign_ =
5216 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5218 // This is not efficient but we expect only a small number of relaxed
5219 // input sections for stubs.
5220 section_size_type section_size;
5221 const unsigned char* section_contents =
5222 relobj->section_contents(shndx, §ion_size, false);
5223 this->original_size_ =
5224 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5226 gold_assert(this->original_contents_ == NULL);
5227 this->original_contents_ = new unsigned char[section_size];
5228 memcpy(this->original_contents_, section_contents, section_size);
5230 // We want to make this look like the original input section after
5231 // output sections are finalized.
5232 Output_section* os = relobj->output_section(shndx);
5233 off_t offset = relobj->output_section_offset(shndx);
5234 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5235 this->set_address(os->address() + offset);
5236 this->set_file_offset(os->offset() + offset);
5238 this->set_current_data_size(this->original_size_);
5239 this->finalize_data_size();
5242 template<bool big_endian>
5244 Arm_input_section<big_endian>::do_write(Output_file* of)
5246 // We have to write out the original section content.
5247 gold_assert(this->original_contents_ != NULL);
5248 of->write(this->offset(), this->original_contents_,
5249 this->original_size_);
5251 // If this owns a stub table and it is not empty, write it.
5252 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5253 this->stub_table_->write(of);
5256 // Finalize data size.
5258 template<bool big_endian>
5260 Arm_input_section<big_endian>::set_final_data_size()
5262 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5264 if (this->is_stub_table_owner())
5266 this->stub_table_->finalize_data_size();
5267 off = align_address(off, this->stub_table_->addralign());
5268 off += this->stub_table_->data_size();
5270 this->set_data_size(off);
5273 // Reset address and file offset.
5275 template<bool big_endian>
5277 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5279 // Size of the original input section contents.
5280 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5282 // If this is a stub table owner, account for the stub table size.
5283 if (this->is_stub_table_owner())
5285 Stub_table<big_endian>* stub_table = this->stub_table_;
5287 // Reset the stub table's address and file offset. The
5288 // current data size for child will be updated after that.
5289 stub_table_->reset_address_and_file_offset();
5290 off = align_address(off, stub_table_->addralign());
5291 off += stub_table->current_data_size();
5294 this->set_current_data_size(off);
5297 // Arm_exidx_cantunwind methods.
5299 // Write this to Output file OF for a fixed endianness.
5301 template<bool big_endian>
5303 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5305 off_t offset = this->offset();
5306 const section_size_type oview_size = 8;
5307 unsigned char* const oview = of->get_output_view(offset, oview_size);
5309 Output_section* os = this->relobj_->output_section(this->shndx_);
5310 gold_assert(os != NULL);
5312 Arm_relobj<big_endian>* arm_relobj =
5313 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5314 Arm_address output_offset =
5315 arm_relobj->get_output_section_offset(this->shndx_);
5316 Arm_address section_start;
5317 section_size_type section_size;
5319 // Find out the end of the text section referred by this.
5320 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5322 section_start = os->address() + output_offset;
5323 const Arm_exidx_input_section* exidx_input_section =
5324 arm_relobj->exidx_input_section_by_link(this->shndx_);
5325 gold_assert(exidx_input_section != NULL);
5327 convert_to_section_size_type(exidx_input_section->text_size());
5331 // Currently this only happens for a relaxed section.
5332 const Output_relaxed_input_section* poris =
5333 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5334 gold_assert(poris != NULL);
5335 section_start = poris->address();
5336 section_size = convert_to_section_size_type(poris->data_size());
5339 // We always append this to the end of an EXIDX section.
5340 Arm_address output_address = section_start + section_size;
5342 // Write out the entry. The first word either points to the beginning
5343 // or after the end of a text section. The second word is the special
5344 // EXIDX_CANTUNWIND value.
5345 uint32_t prel31_offset = output_address - this->address();
5346 if (Bits<31>::has_overflow32(offset))
5347 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5348 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5349 prel31_offset & 0x7fffffffU);
5350 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5351 elfcpp::EXIDX_CANTUNWIND);
5353 of->write_output_view(this->offset(), oview_size, oview);
5356 // Arm_exidx_merged_section methods.
5358 // Constructor for Arm_exidx_merged_section.
5359 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5360 // SECTION_OFFSET_MAP points to a section offset map describing how
5361 // parts of the input section are mapped to output. DELETED_BYTES is
5362 // the number of bytes deleted from the EXIDX input section.
5364 Arm_exidx_merged_section::Arm_exidx_merged_section(
5365 const Arm_exidx_input_section& exidx_input_section,
5366 const Arm_exidx_section_offset_map& section_offset_map,
5367 uint32_t deleted_bytes)
5368 : Output_relaxed_input_section(exidx_input_section.relobj(),
5369 exidx_input_section.shndx(),
5370 exidx_input_section.addralign()),
5371 exidx_input_section_(exidx_input_section),
5372 section_offset_map_(section_offset_map)
5374 // If we retain or discard the whole EXIDX input section, we would
5376 gold_assert(deleted_bytes != 0
5377 && deleted_bytes != this->exidx_input_section_.size());
5379 // Fix size here so that we do not need to implement set_final_data_size.
5380 uint32_t size = exidx_input_section.size() - deleted_bytes;
5381 this->set_data_size(size);
5382 this->fix_data_size();
5384 // Allocate buffer for section contents and build contents.
5385 this->section_contents_ = new unsigned char[size];
5388 // Build the contents of a merged EXIDX output section.
5391 Arm_exidx_merged_section::build_contents(
5392 const unsigned char* original_contents,
5393 section_size_type original_size)
5395 // Go over spans of input offsets and write only those that are not
5397 section_offset_type in_start = 0;
5398 section_offset_type out_start = 0;
5399 section_offset_type in_max =
5400 convert_types<section_offset_type>(original_size);
5401 section_offset_type out_max =
5402 convert_types<section_offset_type>(this->data_size());
5403 for (Arm_exidx_section_offset_map::const_iterator p =
5404 this->section_offset_map_.begin();
5405 p != this->section_offset_map_.end();
5408 section_offset_type in_end = p->first;
5409 gold_assert(in_end >= in_start);
5410 section_offset_type out_end = p->second;
5411 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5414 size_t out_chunk_size =
5415 convert_types<size_t>(out_end - out_start + 1);
5417 gold_assert(out_chunk_size == in_chunk_size
5418 && in_end < in_max && out_end < out_max);
5420 memcpy(this->section_contents_ + out_start,
5421 original_contents + in_start,
5423 out_start += out_chunk_size;
5425 in_start += in_chunk_size;
5429 // Given an input OBJECT, an input section index SHNDX within that
5430 // object, and an OFFSET relative to the start of that input
5431 // section, return whether or not the corresponding offset within
5432 // the output section is known. If this function returns true, it
5433 // sets *POUTPUT to the output offset. The value -1 indicates that
5434 // this input offset is being discarded.
5437 Arm_exidx_merged_section::do_output_offset(
5438 const Relobj* relobj,
5440 section_offset_type offset,
5441 section_offset_type* poutput) const
5443 // We only handle offsets for the original EXIDX input section.
5444 if (relobj != this->exidx_input_section_.relobj()
5445 || shndx != this->exidx_input_section_.shndx())
5448 section_offset_type section_size =
5449 convert_types<section_offset_type>(this->exidx_input_section_.size());
5450 if (offset < 0 || offset >= section_size)
5451 // Input offset is out of valid range.
5455 // We need to look up the section offset map to determine the output
5456 // offset. Find the reference point in map that is first offset
5457 // bigger than or equal to this offset.
5458 Arm_exidx_section_offset_map::const_iterator p =
5459 this->section_offset_map_.lower_bound(offset);
5461 // The section offset maps are build such that this should not happen if
5462 // input offset is in the valid range.
5463 gold_assert(p != this->section_offset_map_.end());
5465 // We need to check if this is dropped.
5466 section_offset_type ref = p->first;
5467 section_offset_type mapped_ref = p->second;
5469 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5470 // Offset is present in output.
5471 *poutput = mapped_ref + (offset - ref);
5473 // Offset is discarded owing to EXIDX entry merging.
5480 // Write this to output file OF.
5483 Arm_exidx_merged_section::do_write(Output_file* of)
5485 off_t offset = this->offset();
5486 const section_size_type oview_size = this->data_size();
5487 unsigned char* const oview = of->get_output_view(offset, oview_size);
5489 Output_section* os = this->relobj()->output_section(this->shndx());
5490 gold_assert(os != NULL);
5492 memcpy(oview, this->section_contents_, oview_size);
5493 of->write_output_view(this->offset(), oview_size, oview);
5496 // Arm_exidx_fixup methods.
5498 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5499 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5500 // points to the end of the last seen EXIDX section.
5503 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5505 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5506 && this->last_input_section_ != NULL)
5508 Relobj* relobj = this->last_input_section_->relobj();
5509 unsigned int text_shndx = this->last_input_section_->link();
5510 Arm_exidx_cantunwind* cantunwind =
5511 new Arm_exidx_cantunwind(relobj, text_shndx);
5512 this->exidx_output_section_->add_output_section_data(cantunwind);
5513 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5517 // Process an EXIDX section entry in input. Return whether this entry
5518 // can be deleted in the output. SECOND_WORD in the second word of the
5522 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5525 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5527 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5528 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5529 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5531 else if ((second_word & 0x80000000) != 0)
5533 // Inlined unwinding data. Merge if equal to previous.
5534 delete_entry = (merge_exidx_entries_
5535 && this->last_unwind_type_ == UT_INLINED_ENTRY
5536 && this->last_inlined_entry_ == second_word);
5537 this->last_unwind_type_ = UT_INLINED_ENTRY;
5538 this->last_inlined_entry_ = second_word;
5542 // Normal table entry. In theory we could merge these too,
5543 // but duplicate entries are likely to be much less common.
5544 delete_entry = false;
5545 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5547 return delete_entry;
5550 // Update the current section offset map during EXIDX section fix-up.
5551 // If there is no map, create one. INPUT_OFFSET is the offset of a
5552 // reference point, DELETED_BYTES is the number of deleted by in the
5553 // section so far. If DELETE_ENTRY is true, the reference point and
5554 // all offsets after the previous reference point are discarded.
5557 Arm_exidx_fixup::update_offset_map(
5558 section_offset_type input_offset,
5559 section_size_type deleted_bytes,
5562 if (this->section_offset_map_ == NULL)
5563 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5564 section_offset_type output_offset;
5566 output_offset = Arm_exidx_input_section::invalid_offset;
5568 output_offset = input_offset - deleted_bytes;
5569 (*this->section_offset_map_)[input_offset] = output_offset;
5572 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5573 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5574 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5575 // If some entries are merged, also store a pointer to a newly created
5576 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5577 // owns the map and is responsible for releasing it after use.
5579 template<bool big_endian>
5581 Arm_exidx_fixup::process_exidx_section(
5582 const Arm_exidx_input_section* exidx_input_section,
5583 const unsigned char* section_contents,
5584 section_size_type section_size,
5585 Arm_exidx_section_offset_map** psection_offset_map)
5587 Relobj* relobj = exidx_input_section->relobj();
5588 unsigned shndx = exidx_input_section->shndx();
5590 if ((section_size % 8) != 0)
5592 // Something is wrong with this section. Better not touch it.
5593 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5594 relobj->name().c_str(), shndx);
5595 this->last_input_section_ = exidx_input_section;
5596 this->last_unwind_type_ = UT_NONE;
5600 uint32_t deleted_bytes = 0;
5601 bool prev_delete_entry = false;
5602 gold_assert(this->section_offset_map_ == NULL);
5604 for (section_size_type i = 0; i < section_size; i += 8)
5606 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5608 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5609 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5611 bool delete_entry = this->process_exidx_entry(second_word);
5613 // Entry deletion causes changes in output offsets. We use a std::map
5614 // to record these. And entry (x, y) means input offset x
5615 // is mapped to output offset y. If y is invalid_offset, then x is
5616 // dropped in the output. Because of the way std::map::lower_bound
5617 // works, we record the last offset in a region w.r.t to keeping or
5618 // dropping. If there is no entry (x0, y0) for an input offset x0,
5619 // the output offset y0 of it is determined by the output offset y1 of
5620 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5621 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5623 if (delete_entry != prev_delete_entry && i != 0)
5624 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5626 // Update total deleted bytes for this entry.
5630 prev_delete_entry = delete_entry;
5633 // If section offset map is not NULL, make an entry for the end of
5635 if (this->section_offset_map_ != NULL)
5636 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5638 *psection_offset_map = this->section_offset_map_;
5639 this->section_offset_map_ = NULL;
5640 this->last_input_section_ = exidx_input_section;
5642 // Set the first output text section so that we can link the EXIDX output
5643 // section to it. Ignore any EXIDX input section that is completely merged.
5644 if (this->first_output_text_section_ == NULL
5645 && deleted_bytes != section_size)
5647 unsigned int link = exidx_input_section->link();
5648 Output_section* os = relobj->output_section(link);
5649 gold_assert(os != NULL);
5650 this->first_output_text_section_ = os;
5653 return deleted_bytes;
5656 // Arm_output_section methods.
5658 // Create a stub group for input sections from BEGIN to END. OWNER
5659 // points to the input section to be the owner a new stub table.
5661 template<bool big_endian>
5663 Arm_output_section<big_endian>::create_stub_group(
5664 Input_section_list::const_iterator begin,
5665 Input_section_list::const_iterator end,
5666 Input_section_list::const_iterator owner,
5667 Target_arm<big_endian>* target,
5668 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5671 // We use a different kind of relaxed section in an EXIDX section.
5672 // The static casting from Output_relaxed_input_section to
5673 // Arm_input_section is invalid in an EXIDX section. We are okay
5674 // because we should not be calling this for an EXIDX section.
5675 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5677 // Currently we convert ordinary input sections into relaxed sections only
5678 // at this point but we may want to support creating relaxed input section
5679 // very early. So we check here to see if owner is already a relaxed
5682 Arm_input_section<big_endian>* arm_input_section;
5683 if (owner->is_relaxed_input_section())
5686 Arm_input_section<big_endian>::as_arm_input_section(
5687 owner->relaxed_input_section());
5691 gold_assert(owner->is_input_section());
5692 // Create a new relaxed input section. We need to lock the original
5694 Task_lock_obj<Object> tl(task, owner->relobj());
5696 target->new_arm_input_section(owner->relobj(), owner->shndx());
5697 new_relaxed_sections->push_back(arm_input_section);
5700 // Create a stub table.
5701 Stub_table<big_endian>* stub_table =
5702 target->new_stub_table(arm_input_section);
5704 arm_input_section->set_stub_table(stub_table);
5706 Input_section_list::const_iterator p = begin;
5707 Input_section_list::const_iterator prev_p;
5709 // Look for input sections or relaxed input sections in [begin ... end].
5712 if (p->is_input_section() || p->is_relaxed_input_section())
5714 // The stub table information for input sections live
5715 // in their objects.
5716 Arm_relobj<big_endian>* arm_relobj =
5717 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5718 arm_relobj->set_stub_table(p->shndx(), stub_table);
5722 while (prev_p != end);
5725 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5726 // of stub groups. We grow a stub group by adding input section until the
5727 // size is just below GROUP_SIZE. The last input section will be converted
5728 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5729 // input section after the stub table, effectively double the group size.
5731 // This is similar to the group_sections() function in elf32-arm.c but is
5732 // implemented differently.
5734 template<bool big_endian>
5736 Arm_output_section<big_endian>::group_sections(
5737 section_size_type group_size,
5738 bool stubs_always_after_branch,
5739 Target_arm<big_endian>* target,
5742 // States for grouping.
5745 // No group is being built.
5747 // A group is being built but the stub table is not found yet.
5748 // We keep group a stub group until the size is just under GROUP_SIZE.
5749 // The last input section in the group will be used as the stub table.
5750 FINDING_STUB_SECTION,
5751 // A group is being built and we have already found a stub table.
5752 // We enter this state to grow a stub group by adding input section
5753 // after the stub table. This effectively doubles the group size.
5757 // Any newly created relaxed sections are stored here.
5758 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5760 State state = NO_GROUP;
5761 section_size_type off = 0;
5762 section_size_type group_begin_offset = 0;
5763 section_size_type group_end_offset = 0;
5764 section_size_type stub_table_end_offset = 0;
5765 Input_section_list::const_iterator group_begin =
5766 this->input_sections().end();
5767 Input_section_list::const_iterator stub_table =
5768 this->input_sections().end();
5769 Input_section_list::const_iterator group_end = this->input_sections().end();
5770 for (Input_section_list::const_iterator p = this->input_sections().begin();
5771 p != this->input_sections().end();
5774 section_size_type section_begin_offset =
5775 align_address(off, p->addralign());
5776 section_size_type section_end_offset =
5777 section_begin_offset + p->data_size();
5779 // Check to see if we should group the previously seen sections.
5785 case FINDING_STUB_SECTION:
5786 // Adding this section makes the group larger than GROUP_SIZE.
5787 if (section_end_offset - group_begin_offset >= group_size)
5789 if (stubs_always_after_branch)
5791 gold_assert(group_end != this->input_sections().end());
5792 this->create_stub_group(group_begin, group_end, group_end,
5793 target, &new_relaxed_sections,
5799 // But wait, there's more! Input sections up to
5800 // stub_group_size bytes after the stub table can be
5801 // handled by it too.
5802 state = HAS_STUB_SECTION;
5803 stub_table = group_end;
5804 stub_table_end_offset = group_end_offset;
5809 case HAS_STUB_SECTION:
5810 // Adding this section makes the post stub-section group larger
5812 if (section_end_offset - stub_table_end_offset >= group_size)
5814 gold_assert(group_end != this->input_sections().end());
5815 this->create_stub_group(group_begin, group_end, stub_table,
5816 target, &new_relaxed_sections, task);
5825 // If we see an input section and currently there is no group, start
5826 // a new one. Skip any empty sections. We look at the data size
5827 // instead of calling p->relobj()->section_size() to avoid locking.
5828 if ((p->is_input_section() || p->is_relaxed_input_section())
5829 && (p->data_size() != 0))
5831 if (state == NO_GROUP)
5833 state = FINDING_STUB_SECTION;
5835 group_begin_offset = section_begin_offset;
5838 // Keep track of the last input section seen.
5840 group_end_offset = section_end_offset;
5843 off = section_end_offset;
5846 // Create a stub group for any ungrouped sections.
5847 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5849 gold_assert(group_end != this->input_sections().end());
5850 this->create_stub_group(group_begin, group_end,
5851 (state == FINDING_STUB_SECTION
5854 target, &new_relaxed_sections, task);
5857 // Convert input section into relaxed input section in a batch.
5858 if (!new_relaxed_sections.empty())
5859 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5861 // Update the section offsets
5862 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5864 Arm_relobj<big_endian>* arm_relobj =
5865 Arm_relobj<big_endian>::as_arm_relobj(
5866 new_relaxed_sections[i]->relobj());
5867 unsigned int shndx = new_relaxed_sections[i]->shndx();
5868 // Tell Arm_relobj that this input section is converted.
5869 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5873 // Append non empty text sections in this to LIST in ascending
5874 // order of their position in this.
5876 template<bool big_endian>
5878 Arm_output_section<big_endian>::append_text_sections_to_list(
5879 Text_section_list* list)
5881 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5883 for (Input_section_list::const_iterator p = this->input_sections().begin();
5884 p != this->input_sections().end();
5887 // We only care about plain or relaxed input sections. We also
5888 // ignore any merged sections.
5889 if (p->is_input_section() || p->is_relaxed_input_section())
5890 list->push_back(Text_section_list::value_type(p->relobj(),
5895 template<bool big_endian>
5897 Arm_output_section<big_endian>::fix_exidx_coverage(
5899 const Text_section_list& sorted_text_sections,
5900 Symbol_table* symtab,
5901 bool merge_exidx_entries,
5904 // We should only do this for the EXIDX output section.
5905 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5907 // We don't want the relaxation loop to undo these changes, so we discard
5908 // the current saved states and take another one after the fix-up.
5909 this->discard_states();
5911 // Remove all input sections.
5912 uint64_t address = this->address();
5913 typedef std::list<Output_section::Input_section> Input_section_list;
5914 Input_section_list input_sections;
5915 this->reset_address_and_file_offset();
5916 this->get_input_sections(address, std::string(""), &input_sections);
5918 if (!this->input_sections().empty())
5919 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5921 // Go through all the known input sections and record them.
5922 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5923 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5924 Section_id_hash> Text_to_exidx_map;
5925 Text_to_exidx_map text_to_exidx_map;
5926 for (Input_section_list::const_iterator p = input_sections.begin();
5927 p != input_sections.end();
5930 // This should never happen. At this point, we should only see
5931 // plain EXIDX input sections.
5932 gold_assert(!p->is_relaxed_input_section());
5933 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5936 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5938 // Go over the sorted text sections.
5939 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5940 Section_id_set processed_input_sections;
5941 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5942 p != sorted_text_sections.end();
5945 Relobj* relobj = p->first;
5946 unsigned int shndx = p->second;
5948 Arm_relobj<big_endian>* arm_relobj =
5949 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5950 const Arm_exidx_input_section* exidx_input_section =
5951 arm_relobj->exidx_input_section_by_link(shndx);
5953 // If this text section has no EXIDX section or if the EXIDX section
5954 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5955 // of the last seen EXIDX section.
5956 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5958 exidx_fixup.add_exidx_cantunwind_as_needed();
5962 Relobj* exidx_relobj = exidx_input_section->relobj();
5963 unsigned int exidx_shndx = exidx_input_section->shndx();
5964 Section_id sid(exidx_relobj, exidx_shndx);
5965 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5966 if (iter == text_to_exidx_map.end())
5968 // This is odd. We have not seen this EXIDX input section before.
5969 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5970 // issue a warning instead. We assume the user knows what he
5971 // or she is doing. Otherwise, this is an error.
5972 if (layout->script_options()->saw_sections_clause())
5973 gold_warning(_("unwinding may not work because EXIDX input section"
5974 " %u of %s is not in EXIDX output section"),
5975 exidx_shndx, exidx_relobj->name().c_str());
5977 gold_error(_("unwinding may not work because EXIDX input section"
5978 " %u of %s is not in EXIDX output section"),
5979 exidx_shndx, exidx_relobj->name().c_str());
5981 exidx_fixup.add_exidx_cantunwind_as_needed();
5985 // We need to access the contents of the EXIDX section, lock the
5987 Task_lock_obj<Object> tl(task, exidx_relobj);
5988 section_size_type exidx_size;
5989 const unsigned char* exidx_contents =
5990 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5992 // Fix up coverage and append input section to output data list.
5993 Arm_exidx_section_offset_map* section_offset_map = NULL;
5994 uint32_t deleted_bytes =
5995 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5998 §ion_offset_map);
6000 if (deleted_bytes == exidx_input_section->size())
6002 // The whole EXIDX section got merged. Remove it from output.
6003 gold_assert(section_offset_map == NULL);
6004 exidx_relobj->set_output_section(exidx_shndx, NULL);
6006 // All local symbols defined in this input section will be dropped.
6007 // We need to adjust output local symbol count.
6008 arm_relobj->set_output_local_symbol_count_needs_update();
6010 else if (deleted_bytes > 0)
6012 // Some entries are merged. We need to convert this EXIDX input
6013 // section into a relaxed section.
6014 gold_assert(section_offset_map != NULL);
6016 Arm_exidx_merged_section* merged_section =
6017 new Arm_exidx_merged_section(*exidx_input_section,
6018 *section_offset_map, deleted_bytes);
6019 merged_section->build_contents(exidx_contents, exidx_size);
6021 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6022 this->add_relaxed_input_section(layout, merged_section, secname);
6023 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6025 // All local symbols defined in discarded portions of this input
6026 // section will be dropped. We need to adjust output local symbol
6028 arm_relobj->set_output_local_symbol_count_needs_update();
6032 // Just add back the EXIDX input section.
6033 gold_assert(section_offset_map == NULL);
6034 const Output_section::Input_section* pis = iter->second;
6035 gold_assert(pis->is_input_section());
6036 this->add_script_input_section(*pis);
6039 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6042 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6043 exidx_fixup.add_exidx_cantunwind_as_needed();
6045 // Remove any known EXIDX input sections that are not processed.
6046 for (Input_section_list::const_iterator p = input_sections.begin();
6047 p != input_sections.end();
6050 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6051 == processed_input_sections.end())
6053 // We discard a known EXIDX section because its linked
6054 // text section has been folded by ICF. We also discard an
6055 // EXIDX section with error, the output does not matter in this
6056 // case. We do this to avoid triggering asserts.
6057 Arm_relobj<big_endian>* arm_relobj =
6058 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6059 const Arm_exidx_input_section* exidx_input_section =
6060 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6061 gold_assert(exidx_input_section != NULL);
6062 if (!exidx_input_section->has_errors())
6064 unsigned int text_shndx = exidx_input_section->link();
6065 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6068 // Remove this from link. We also need to recount the
6070 p->relobj()->set_output_section(p->shndx(), NULL);
6071 arm_relobj->set_output_local_symbol_count_needs_update();
6075 // Link exidx output section to the first seen output section and
6076 // set correct entry size.
6077 this->set_link_section(exidx_fixup.first_output_text_section());
6078 this->set_entsize(8);
6080 // Make changes permanent.
6081 this->save_states();
6082 this->set_section_offsets_need_adjustment();
6085 // Link EXIDX output sections to text output sections.
6087 template<bool big_endian>
6089 Arm_output_section<big_endian>::set_exidx_section_link()
6091 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6092 if (!this->input_sections().empty())
6094 Input_section_list::const_iterator p = this->input_sections().begin();
6095 Arm_relobj<big_endian>* arm_relobj =
6096 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6097 unsigned exidx_shndx = p->shndx();
6098 const Arm_exidx_input_section* exidx_input_section =
6099 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6100 gold_assert(exidx_input_section != NULL);
6101 unsigned int text_shndx = exidx_input_section->link();
6102 Output_section* os = arm_relobj->output_section(text_shndx);
6103 this->set_link_section(os);
6107 // Arm_relobj methods.
6109 // Determine if an input section is scannable for stub processing. SHDR is
6110 // the header of the section and SHNDX is the section index. OS is the output
6111 // section for the input section and SYMTAB is the global symbol table used to
6112 // look up ICF information.
6114 template<bool big_endian>
6116 Arm_relobj<big_endian>::section_is_scannable(
6117 const elfcpp::Shdr<32, big_endian>& shdr,
6119 const Output_section* os,
6120 const Symbol_table* symtab)
6122 // Skip any empty sections, unallocated sections or sections whose
6123 // type are not SHT_PROGBITS.
6124 if (shdr.get_sh_size() == 0
6125 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6126 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6129 // Skip any discarded or ICF'ed sections.
6130 if (os == NULL || symtab->is_section_folded(this, shndx))
6133 // If this requires special offset handling, check to see if it is
6134 // a relaxed section. If this is not, then it is a merged section that
6135 // we cannot handle.
6136 if (this->is_output_section_offset_invalid(shndx))
6138 const Output_relaxed_input_section* poris =
6139 os->find_relaxed_input_section(this, shndx);
6147 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6148 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6150 template<bool big_endian>
6152 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6153 const elfcpp::Shdr<32, big_endian>& shdr,
6154 const Relobj::Output_sections& out_sections,
6155 const Symbol_table* symtab,
6156 const unsigned char* pshdrs)
6158 unsigned int sh_type = shdr.get_sh_type();
6159 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6162 // Ignore empty section.
6163 off_t sh_size = shdr.get_sh_size();
6167 // Ignore reloc section with unexpected symbol table. The
6168 // error will be reported in the final link.
6169 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6172 unsigned int reloc_size;
6173 if (sh_type == elfcpp::SHT_REL)
6174 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6176 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6178 // Ignore reloc section with unexpected entsize or uneven size.
6179 // The error will be reported in the final link.
6180 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6183 // Ignore reloc section with bad info. This error will be
6184 // reported in the final link.
6185 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6186 if (index >= this->shnum())
6189 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6190 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6191 return this->section_is_scannable(text_shdr, index,
6192 out_sections[index], symtab);
6195 // Return the output address of either a plain input section or a relaxed
6196 // input section. SHNDX is the section index. We define and use this
6197 // instead of calling Output_section::output_address because that is slow
6198 // for large output.
6200 template<bool big_endian>
6202 Arm_relobj<big_endian>::simple_input_section_output_address(
6206 if (this->is_output_section_offset_invalid(shndx))
6208 const Output_relaxed_input_section* poris =
6209 os->find_relaxed_input_section(this, shndx);
6210 // We do not handle merged sections here.
6211 gold_assert(poris != NULL);
6212 return poris->address();
6215 return os->address() + this->get_output_section_offset(shndx);
6218 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6219 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6221 template<bool big_endian>
6223 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6224 const elfcpp::Shdr<32, big_endian>& shdr,
6227 const Symbol_table* symtab)
6229 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6232 // If the section does not cross any 4K-boundaries, it does not need to
6234 Arm_address address = this->simple_input_section_output_address(shndx, os);
6235 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6241 // Scan a section for Cortex-A8 workaround.
6243 template<bool big_endian>
6245 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6246 const elfcpp::Shdr<32, big_endian>& shdr,
6249 Target_arm<big_endian>* arm_target)
6251 // Look for the first mapping symbol in this section. It should be
6253 Mapping_symbol_position section_start(shndx, 0);
6254 typename Mapping_symbols_info::const_iterator p =
6255 this->mapping_symbols_info_.lower_bound(section_start);
6257 // There are no mapping symbols for this section. Treat it as a data-only
6259 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6262 Arm_address output_address =
6263 this->simple_input_section_output_address(shndx, os);
6265 // Get the section contents.
6266 section_size_type input_view_size = 0;
6267 const unsigned char* input_view =
6268 this->section_contents(shndx, &input_view_size, false);
6270 // We need to go through the mapping symbols to determine what to
6271 // scan. There are two reasons. First, we should look at THUMB code and
6272 // THUMB code only. Second, we only want to look at the 4K-page boundary
6273 // to speed up the scanning.
6275 while (p != this->mapping_symbols_info_.end()
6276 && p->first.first == shndx)
6278 typename Mapping_symbols_info::const_iterator next =
6279 this->mapping_symbols_info_.upper_bound(p->first);
6281 // Only scan part of a section with THUMB code.
6282 if (p->second == 't')
6284 // Determine the end of this range.
6285 section_size_type span_start =
6286 convert_to_section_size_type(p->first.second);
6287 section_size_type span_end;
6288 if (next != this->mapping_symbols_info_.end()
6289 && next->first.first == shndx)
6290 span_end = convert_to_section_size_type(next->first.second);
6292 span_end = convert_to_section_size_type(shdr.get_sh_size());
6294 if (((span_start + output_address) & ~0xfffUL)
6295 != ((span_end + output_address - 1) & ~0xfffUL))
6297 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6298 span_start, span_end,
6308 // Scan relocations for stub generation.
6310 template<bool big_endian>
6312 Arm_relobj<big_endian>::scan_sections_for_stubs(
6313 Target_arm<big_endian>* arm_target,
6314 const Symbol_table* symtab,
6315 const Layout* layout)
6317 unsigned int shnum = this->shnum();
6318 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6320 // Read the section headers.
6321 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6325 // To speed up processing, we set up hash tables for fast lookup of
6326 // input offsets to output addresses.
6327 this->initialize_input_to_output_maps();
6329 const Relobj::Output_sections& out_sections(this->output_sections());
6331 Relocate_info<32, big_endian> relinfo;
6332 relinfo.symtab = symtab;
6333 relinfo.layout = layout;
6334 relinfo.object = this;
6336 // Do relocation stubs scanning.
6337 const unsigned char* p = pshdrs + shdr_size;
6338 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6340 const elfcpp::Shdr<32, big_endian> shdr(p);
6341 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6344 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6345 Arm_address output_offset = this->get_output_section_offset(index);
6346 Arm_address output_address;
6347 if (output_offset != invalid_address)
6348 output_address = out_sections[index]->address() + output_offset;
6351 // Currently this only happens for a relaxed section.
6352 const Output_relaxed_input_section* poris =
6353 out_sections[index]->find_relaxed_input_section(this, index);
6354 gold_assert(poris != NULL);
6355 output_address = poris->address();
6358 // Get the relocations.
6359 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6363 // Get the section contents. This does work for the case in which
6364 // we modify the contents of an input section. We need to pass the
6365 // output view under such circumstances.
6366 section_size_type input_view_size = 0;
6367 const unsigned char* input_view =
6368 this->section_contents(index, &input_view_size, false);
6370 relinfo.reloc_shndx = i;
6371 relinfo.data_shndx = index;
6372 unsigned int sh_type = shdr.get_sh_type();
6373 unsigned int reloc_size;
6374 if (sh_type == elfcpp::SHT_REL)
6375 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6377 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6379 Output_section* os = out_sections[index];
6380 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6381 shdr.get_sh_size() / reloc_size,
6383 output_offset == invalid_address,
6384 input_view, output_address,
6389 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6390 // after its relocation section, if there is one, is processed for
6391 // relocation stubs. Merging this loop with the one above would have been
6392 // complicated since we would have had to make sure that relocation stub
6393 // scanning is done first.
6394 if (arm_target->fix_cortex_a8())
6396 const unsigned char* p = pshdrs + shdr_size;
6397 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6399 const elfcpp::Shdr<32, big_endian> shdr(p);
6400 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6403 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6408 // After we've done the relocations, we release the hash tables,
6409 // since we no longer need them.
6410 this->free_input_to_output_maps();
6413 // Count the local symbols. The ARM backend needs to know if a symbol
6414 // is a THUMB function or not. For global symbols, it is easy because
6415 // the Symbol object keeps the ELF symbol type. For local symbol it is
6416 // harder because we cannot access this information. So we override the
6417 // do_count_local_symbol in parent and scan local symbols to mark
6418 // THUMB functions. This is not the most efficient way but I do not want to
6419 // slow down other ports by calling a per symbol target hook inside
6420 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6422 template<bool big_endian>
6424 Arm_relobj<big_endian>::do_count_local_symbols(
6425 Stringpool_template<char>* pool,
6426 Stringpool_template<char>* dynpool)
6428 // We need to fix-up the values of any local symbols whose type are
6431 // Ask parent to count the local symbols.
6432 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6433 const unsigned int loccount = this->local_symbol_count();
6437 // Initialize the thumb function bit-vector.
6438 std::vector<bool> empty_vector(loccount, false);
6439 this->local_symbol_is_thumb_function_.swap(empty_vector);
6441 // Read the symbol table section header.
6442 const unsigned int symtab_shndx = this->symtab_shndx();
6443 elfcpp::Shdr<32, big_endian>
6444 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6445 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6447 // Read the local symbols.
6448 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6449 gold_assert(loccount == symtabshdr.get_sh_info());
6450 off_t locsize = loccount * sym_size;
6451 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6452 locsize, true, true);
6454 // For mapping symbol processing, we need to read the symbol names.
6455 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6456 if (strtab_shndx >= this->shnum())
6458 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6462 elfcpp::Shdr<32, big_endian>
6463 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6464 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6466 this->error(_("symbol table name section has wrong type: %u"),
6467 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6470 const char* pnames =
6471 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6472 strtabshdr.get_sh_size(),
6475 // Loop over the local symbols and mark any local symbols pointing
6476 // to THUMB functions.
6478 // Skip the first dummy symbol.
6480 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6481 this->local_values();
6482 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6484 elfcpp::Sym<32, big_endian> sym(psyms);
6485 elfcpp::STT st_type = sym.get_st_type();
6486 Symbol_value<32>& lv((*plocal_values)[i]);
6487 Arm_address input_value = lv.input_value();
6489 // Check to see if this is a mapping symbol.
6490 const char* sym_name = pnames + sym.get_st_name();
6491 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6494 unsigned int input_shndx =
6495 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6496 gold_assert(is_ordinary);
6498 // Strip of LSB in case this is a THUMB symbol.
6499 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6500 this->mapping_symbols_info_[msp] = sym_name[1];
6503 if (st_type == elfcpp::STT_ARM_TFUNC
6504 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6506 // This is a THUMB function. Mark this and canonicalize the
6507 // symbol value by setting LSB.
6508 this->local_symbol_is_thumb_function_[i] = true;
6509 if ((input_value & 1) == 0)
6510 lv.set_input_value(input_value | 1);
6515 // Relocate sections.
6516 template<bool big_endian>
6518 Arm_relobj<big_endian>::do_relocate_sections(
6519 const Symbol_table* symtab,
6520 const Layout* layout,
6521 const unsigned char* pshdrs,
6523 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6525 // Call parent to relocate sections.
6526 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6527 pshdrs, of, pviews);
6529 // We do not generate stubs if doing a relocatable link.
6530 if (parameters->options().relocatable())
6533 // Relocate stub tables.
6534 unsigned int shnum = this->shnum();
6536 Target_arm<big_endian>* arm_target =
6537 Target_arm<big_endian>::default_target();
6539 Relocate_info<32, big_endian> relinfo;
6540 relinfo.symtab = symtab;
6541 relinfo.layout = layout;
6542 relinfo.object = this;
6544 for (unsigned int i = 1; i < shnum; ++i)
6546 Arm_input_section<big_endian>* arm_input_section =
6547 arm_target->find_arm_input_section(this, i);
6549 if (arm_input_section != NULL
6550 && arm_input_section->is_stub_table_owner()
6551 && !arm_input_section->stub_table()->empty())
6553 // We cannot discard a section if it owns a stub table.
6554 Output_section* os = this->output_section(i);
6555 gold_assert(os != NULL);
6557 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6558 relinfo.reloc_shdr = NULL;
6559 relinfo.data_shndx = i;
6560 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6562 gold_assert((*pviews)[i].view != NULL);
6564 // We are passed the output section view. Adjust it to cover the
6566 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6567 gold_assert((stub_table->address() >= (*pviews)[i].address)
6568 && ((stub_table->address() + stub_table->data_size())
6569 <= (*pviews)[i].address + (*pviews)[i].view_size));
6571 off_t offset = stub_table->address() - (*pviews)[i].address;
6572 unsigned char* view = (*pviews)[i].view + offset;
6573 Arm_address address = stub_table->address();
6574 section_size_type view_size = stub_table->data_size();
6576 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6580 // Apply Cortex A8 workaround if applicable.
6581 if (this->section_has_cortex_a8_workaround(i))
6583 unsigned char* view = (*pviews)[i].view;
6584 Arm_address view_address = (*pviews)[i].address;
6585 section_size_type view_size = (*pviews)[i].view_size;
6586 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6588 // Adjust view to cover section.
6589 Output_section* os = this->output_section(i);
6590 gold_assert(os != NULL);
6591 Arm_address section_address =
6592 this->simple_input_section_output_address(i, os);
6593 uint64_t section_size = this->section_size(i);
6595 gold_assert(section_address >= view_address
6596 && ((section_address + section_size)
6597 <= (view_address + view_size)));
6599 unsigned char* section_view = view + (section_address - view_address);
6601 // Apply the Cortex-A8 workaround to the output address range
6602 // corresponding to this input section.
6603 stub_table->apply_cortex_a8_workaround_to_address_range(
6612 // Find the linked text section of an EXIDX section by looking at the first
6613 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6614 // must be linked to its associated code section via the sh_link field of
6615 // its section header. However, some tools are broken and the link is not
6616 // always set. LD just drops such an EXIDX section silently, causing the
6617 // associated code not unwindabled. Here we try a little bit harder to
6618 // discover the linked code section.
6620 // PSHDR points to the section header of a relocation section of an EXIDX
6621 // section. If we can find a linked text section, return true and
6622 // store the text section index in the location PSHNDX. Otherwise
6625 template<bool big_endian>
6627 Arm_relobj<big_endian>::find_linked_text_section(
6628 const unsigned char* pshdr,
6629 const unsigned char* psyms,
6630 unsigned int* pshndx)
6632 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6634 // If there is no relocation, we cannot find the linked text section.
6636 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6637 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6639 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6640 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6642 // Get the relocations.
6643 const unsigned char* prelocs =
6644 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6646 // Find the REL31 relocation for the first word of the first EXIDX entry.
6647 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6649 Arm_address r_offset;
6650 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6651 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6653 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6654 r_info = reloc.get_r_info();
6655 r_offset = reloc.get_r_offset();
6659 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6660 r_info = reloc.get_r_info();
6661 r_offset = reloc.get_r_offset();
6664 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6665 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6668 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6670 || r_sym >= this->local_symbol_count()
6674 // This is the relocation for the first word of the first EXIDX entry.
6675 // We expect to see a local section symbol.
6676 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6677 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6678 if (sym.get_st_type() == elfcpp::STT_SECTION)
6682 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6683 gold_assert(is_ordinary);
6693 // Make an EXIDX input section object for an EXIDX section whose index is
6694 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6695 // is the section index of the linked text section.
6697 template<bool big_endian>
6699 Arm_relobj<big_endian>::make_exidx_input_section(
6701 const elfcpp::Shdr<32, big_endian>& shdr,
6702 unsigned int text_shndx,
6703 const elfcpp::Shdr<32, big_endian>& text_shdr)
6705 // Create an Arm_exidx_input_section object for this EXIDX section.
6706 Arm_exidx_input_section* exidx_input_section =
6707 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6708 shdr.get_sh_addralign(),
6709 text_shdr.get_sh_size());
6711 gold_assert(this->exidx_section_map_[shndx] == NULL);
6712 this->exidx_section_map_[shndx] = exidx_input_section;
6714 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6716 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6717 this->section_name(shndx).c_str(), shndx, text_shndx,
6718 this->name().c_str());
6719 exidx_input_section->set_has_errors();
6721 else if (this->exidx_section_map_[text_shndx] != NULL)
6723 unsigned other_exidx_shndx =
6724 this->exidx_section_map_[text_shndx]->shndx();
6725 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6727 this->section_name(shndx).c_str(), shndx,
6728 this->section_name(other_exidx_shndx).c_str(),
6729 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6730 text_shndx, this->name().c_str());
6731 exidx_input_section->set_has_errors();
6734 this->exidx_section_map_[text_shndx] = exidx_input_section;
6736 // Check section flags of text section.
6737 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6739 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6741 this->section_name(shndx).c_str(), shndx,
6742 this->section_name(text_shndx).c_str(), text_shndx,
6743 this->name().c_str());
6744 exidx_input_section->set_has_errors();
6746 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6747 // I would like to make this an error but currently ld just ignores
6749 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6751 this->section_name(shndx).c_str(), shndx,
6752 this->section_name(text_shndx).c_str(), text_shndx,
6753 this->name().c_str());
6756 // Read the symbol information.
6758 template<bool big_endian>
6760 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6762 // Call parent class to read symbol information.
6763 this->base_read_symbols(sd);
6765 // If this input file is a binary file, it has no processor
6766 // specific flags and attributes section.
6767 Input_file::Format format = this->input_file()->format();
6768 if (format != Input_file::FORMAT_ELF)
6770 gold_assert(format == Input_file::FORMAT_BINARY);
6771 this->merge_flags_and_attributes_ = false;
6775 // Read processor-specific flags in ELF file header.
6776 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6777 elfcpp::Elf_sizes<32>::ehdr_size,
6779 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6780 this->processor_specific_flags_ = ehdr.get_e_flags();
6782 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6784 std::vector<unsigned int> deferred_exidx_sections;
6785 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6786 const unsigned char* pshdrs = sd->section_headers->data();
6787 const unsigned char* ps = pshdrs + shdr_size;
6788 bool must_merge_flags_and_attributes = false;
6789 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6791 elfcpp::Shdr<32, big_endian> shdr(ps);
6793 // Sometimes an object has no contents except the section name string
6794 // table and an empty symbol table with the undefined symbol. We
6795 // don't want to merge processor-specific flags from such an object.
6796 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6798 // Symbol table is not empty.
6799 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6800 elfcpp::Elf_sizes<32>::sym_size;
6801 if (shdr.get_sh_size() > sym_size)
6802 must_merge_flags_and_attributes = true;
6804 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6805 // If this is neither an empty symbol table nor a string table,
6807 must_merge_flags_and_attributes = true;
6809 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6811 gold_assert(this->attributes_section_data_ == NULL);
6812 section_offset_type section_offset = shdr.get_sh_offset();
6813 section_size_type section_size =
6814 convert_to_section_size_type(shdr.get_sh_size());
6815 const unsigned char* view =
6816 this->get_view(section_offset, section_size, true, false);
6817 this->attributes_section_data_ =
6818 new Attributes_section_data(view, section_size);
6820 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6822 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6823 if (text_shndx == elfcpp::SHN_UNDEF)
6824 deferred_exidx_sections.push_back(i);
6827 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6828 + text_shndx * shdr_size);
6829 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6831 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6832 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6833 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6834 this->section_name(i).c_str(), this->name().c_str());
6839 if (!must_merge_flags_and_attributes)
6841 gold_assert(deferred_exidx_sections.empty());
6842 this->merge_flags_and_attributes_ = false;
6846 // Some tools are broken and they do not set the link of EXIDX sections.
6847 // We look at the first relocation to figure out the linked sections.
6848 if (!deferred_exidx_sections.empty())
6850 // We need to go over the section headers again to find the mapping
6851 // from sections being relocated to their relocation sections. This is
6852 // a bit inefficient as we could do that in the loop above. However,
6853 // we do not expect any deferred EXIDX sections normally. So we do not
6854 // want to slow down the most common path.
6855 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6856 Reloc_map reloc_map;
6857 ps = pshdrs + shdr_size;
6858 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6860 elfcpp::Shdr<32, big_endian> shdr(ps);
6861 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6862 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6864 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6865 if (info_shndx >= this->shnum())
6866 gold_error(_("relocation section %u has invalid info %u"),
6868 Reloc_map::value_type value(info_shndx, i);
6869 std::pair<Reloc_map::iterator, bool> result =
6870 reloc_map.insert(value);
6872 gold_error(_("section %u has multiple relocation sections "
6874 info_shndx, i, reloc_map[info_shndx]);
6878 // Read the symbol table section header.
6879 const unsigned int symtab_shndx = this->symtab_shndx();
6880 elfcpp::Shdr<32, big_endian>
6881 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6882 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6884 // Read the local symbols.
6885 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6886 const unsigned int loccount = this->local_symbol_count();
6887 gold_assert(loccount == symtabshdr.get_sh_info());
6888 off_t locsize = loccount * sym_size;
6889 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6890 locsize, true, true);
6892 // Process the deferred EXIDX sections.
6893 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6895 unsigned int shndx = deferred_exidx_sections[i];
6896 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6897 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6898 Reloc_map::const_iterator it = reloc_map.find(shndx);
6899 if (it != reloc_map.end())
6900 find_linked_text_section(pshdrs + it->second * shdr_size,
6901 psyms, &text_shndx);
6902 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6903 + text_shndx * shdr_size);
6904 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6909 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6910 // sections for unwinding. These sections are referenced implicitly by
6911 // text sections linked in the section headers. If we ignore these implicit
6912 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6913 // will be garbage-collected incorrectly. Hence we override the same function
6914 // in the base class to handle these implicit references.
6916 template<bool big_endian>
6918 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6920 Read_relocs_data* rd)
6922 // First, call base class method to process relocations in this object.
6923 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6925 // If --gc-sections is not specified, there is nothing more to do.
6926 // This happens when --icf is used but --gc-sections is not.
6927 if (!parameters->options().gc_sections())
6930 unsigned int shnum = this->shnum();
6931 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6932 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6936 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6937 // to these from the linked text sections.
6938 const unsigned char* ps = pshdrs + shdr_size;
6939 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6941 elfcpp::Shdr<32, big_endian> shdr(ps);
6942 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6944 // Found an .ARM.exidx section, add it to the set of reachable
6945 // sections from its linked text section.
6946 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6947 symtab->gc()->add_reference(this, text_shndx, this, i);
6952 // Update output local symbol count. Owing to EXIDX entry merging, some local
6953 // symbols will be removed in output. Adjust output local symbol count
6954 // accordingly. We can only changed the static output local symbol count. It
6955 // is too late to change the dynamic symbols.
6957 template<bool big_endian>
6959 Arm_relobj<big_endian>::update_output_local_symbol_count()
6961 // Caller should check that this needs updating. We want caller checking
6962 // because output_local_symbol_count_needs_update() is most likely inlined.
6963 gold_assert(this->output_local_symbol_count_needs_update_);
6965 gold_assert(this->symtab_shndx() != -1U);
6966 if (this->symtab_shndx() == 0)
6968 // This object has no symbols. Weird but legal.
6972 // Read the symbol table section header.
6973 const unsigned int symtab_shndx = this->symtab_shndx();
6974 elfcpp::Shdr<32, big_endian>
6975 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6976 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6978 // Read the local symbols.
6979 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6980 const unsigned int loccount = this->local_symbol_count();
6981 gold_assert(loccount == symtabshdr.get_sh_info());
6982 off_t locsize = loccount * sym_size;
6983 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6984 locsize, true, true);
6986 // Loop over the local symbols.
6988 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6990 const Output_sections& out_sections(this->output_sections());
6991 unsigned int shnum = this->shnum();
6992 unsigned int count = 0;
6993 // Skip the first, dummy, symbol.
6995 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6997 elfcpp::Sym<32, big_endian> sym(psyms);
6999 Symbol_value<32>& lv((*this->local_values())[i]);
7001 // This local symbol was already discarded by do_count_local_symbols.
7002 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7006 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7011 Output_section* os = out_sections[shndx];
7013 // This local symbol no longer has an output section. Discard it.
7016 lv.set_no_output_symtab_entry();
7020 // Currently we only discard parts of EXIDX input sections.
7021 // We explicitly check for a merged EXIDX input section to avoid
7022 // calling Output_section_data::output_offset unless necessary.
7023 if ((this->get_output_section_offset(shndx) == invalid_address)
7024 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7026 section_offset_type output_offset =
7027 os->output_offset(this, shndx, lv.input_value());
7028 if (output_offset == -1)
7030 // This symbol is defined in a part of an EXIDX input section
7031 // that is discarded due to entry merging.
7032 lv.set_no_output_symtab_entry();
7041 this->set_output_local_symbol_count(count);
7042 this->output_local_symbol_count_needs_update_ = false;
7045 // Arm_dynobj methods.
7047 // Read the symbol information.
7049 template<bool big_endian>
7051 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7053 // Call parent class to read symbol information.
7054 this->base_read_symbols(sd);
7056 // Read processor-specific flags in ELF file header.
7057 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7058 elfcpp::Elf_sizes<32>::ehdr_size,
7060 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7061 this->processor_specific_flags_ = ehdr.get_e_flags();
7063 // Read the attributes section if there is one.
7064 // We read from the end because gas seems to put it near the end of
7065 // the section headers.
7066 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7067 const unsigned char* ps =
7068 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7069 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7071 elfcpp::Shdr<32, big_endian> shdr(ps);
7072 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7074 section_offset_type section_offset = shdr.get_sh_offset();
7075 section_size_type section_size =
7076 convert_to_section_size_type(shdr.get_sh_size());
7077 const unsigned char* view =
7078 this->get_view(section_offset, section_size, true, false);
7079 this->attributes_section_data_ =
7080 new Attributes_section_data(view, section_size);
7086 // Stub_addend_reader methods.
7088 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7090 template<bool big_endian>
7091 elfcpp::Elf_types<32>::Elf_Swxword
7092 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7093 unsigned int r_type,
7094 const unsigned char* view,
7095 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7097 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7101 case elfcpp::R_ARM_CALL:
7102 case elfcpp::R_ARM_JUMP24:
7103 case elfcpp::R_ARM_PLT32:
7105 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7106 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7107 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7108 return Bits<26>::sign_extend32(val << 2);
7111 case elfcpp::R_ARM_THM_CALL:
7112 case elfcpp::R_ARM_THM_JUMP24:
7113 case elfcpp::R_ARM_THM_XPC22:
7115 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7116 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7117 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7118 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7119 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7122 case elfcpp::R_ARM_THM_JUMP19:
7124 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7125 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7126 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7127 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7128 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7136 // Arm_output_data_got methods.
7138 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7139 // The first one is initialized to be 1, which is the module index for
7140 // the main executable and the second one 0. A reloc of the type
7141 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7142 // be applied by gold. GSYM is a global symbol.
7144 template<bool big_endian>
7146 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7147 unsigned int got_type,
7150 if (gsym->has_got_offset(got_type))
7153 // We are doing a static link. Just mark it as belong to module 1,
7155 unsigned int got_offset = this->add_constant(1);
7156 gsym->set_got_offset(got_type, got_offset);
7157 got_offset = this->add_constant(0);
7158 this->static_relocs_.push_back(Static_reloc(got_offset,
7159 elfcpp::R_ARM_TLS_DTPOFF32,
7163 // Same as the above but for a local symbol.
7165 template<bool big_endian>
7167 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7168 unsigned int got_type,
7169 Sized_relobj_file<32, big_endian>* object,
7172 if (object->local_has_got_offset(index, got_type))
7175 // We are doing a static link. Just mark it as belong to module 1,
7177 unsigned int got_offset = this->add_constant(1);
7178 object->set_local_got_offset(index, got_type, got_offset);
7179 got_offset = this->add_constant(0);
7180 this->static_relocs_.push_back(Static_reloc(got_offset,
7181 elfcpp::R_ARM_TLS_DTPOFF32,
7185 template<bool big_endian>
7187 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7189 // Call parent to write out GOT.
7190 Output_data_got<32, big_endian>::do_write(of);
7192 // We are done if there is no fix up.
7193 if (this->static_relocs_.empty())
7196 gold_assert(parameters->doing_static_link());
7198 const off_t offset = this->offset();
7199 const section_size_type oview_size =
7200 convert_to_section_size_type(this->data_size());
7201 unsigned char* const oview = of->get_output_view(offset, oview_size);
7203 Output_segment* tls_segment = this->layout_->tls_segment();
7204 gold_assert(tls_segment != NULL);
7206 // The thread pointer $tp points to the TCB, which is followed by the
7207 // TLS. So we need to adjust $tp relative addressing by this amount.
7208 Arm_address aligned_tcb_size =
7209 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7211 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7213 Static_reloc& reloc(this->static_relocs_[i]);
7216 if (!reloc.symbol_is_global())
7218 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7219 const Symbol_value<32>* psymval =
7220 reloc.relobj()->local_symbol(reloc.index());
7222 // We are doing static linking. Issue an error and skip this
7223 // relocation if the symbol is undefined or in a discarded_section.
7225 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7226 if ((shndx == elfcpp::SHN_UNDEF)
7228 && shndx != elfcpp::SHN_UNDEF
7229 && !object->is_section_included(shndx)
7230 && !this->symbol_table_->is_section_folded(object, shndx)))
7232 gold_error(_("undefined or discarded local symbol %u from "
7233 " object %s in GOT"),
7234 reloc.index(), reloc.relobj()->name().c_str());
7238 value = psymval->value(object, 0);
7242 const Symbol* gsym = reloc.symbol();
7243 gold_assert(gsym != NULL);
7244 if (gsym->is_forwarder())
7245 gsym = this->symbol_table_->resolve_forwards(gsym);
7247 // We are doing static linking. Issue an error and skip this
7248 // relocation if the symbol is undefined or in a discarded_section
7249 // unless it is a weakly_undefined symbol.
7250 if ((gsym->is_defined_in_discarded_section()
7251 || gsym->is_undefined())
7252 && !gsym->is_weak_undefined())
7254 gold_error(_("undefined or discarded symbol %s in GOT"),
7259 if (!gsym->is_weak_undefined())
7261 const Sized_symbol<32>* sym =
7262 static_cast<const Sized_symbol<32>*>(gsym);
7263 value = sym->value();
7269 unsigned got_offset = reloc.got_offset();
7270 gold_assert(got_offset < oview_size);
7272 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7273 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7275 switch (reloc.r_type())
7277 case elfcpp::R_ARM_TLS_DTPOFF32:
7280 case elfcpp::R_ARM_TLS_TPOFF32:
7281 x = value + aligned_tcb_size;
7286 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7289 of->write_output_view(offset, oview_size, oview);
7292 // A class to handle the PLT data.
7293 // This is an abstract base class that handles most of the linker details
7294 // but does not know the actual contents of PLT entries. The derived
7295 // classes below fill in those details.
7297 template<bool big_endian>
7298 class Output_data_plt_arm : public Output_section_data
7301 // Unlike aarch64, which records symbol value in "addend" field of relocations
7302 // and could be done at the same time an IRelative reloc is created for the
7303 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7304 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7305 // to keep necessary symbol information for later use in do_write. We usually
7306 // have only a very limited number of ifuncs, so the extra data required here
7309 struct IRelative_data
7311 IRelative_data(Sized_symbol<32>* sized_symbol)
7312 : symbol_is_global_(true)
7314 u_.global = sized_symbol;
7317 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7319 : symbol_is_global_(false)
7321 u_.local.relobj = relobj;
7322 u_.local.index = index;
7327 Sized_symbol<32>* global;
7331 Sized_relobj_file<32, big_endian>* relobj;
7336 bool symbol_is_global_;
7339 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7342 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7343 Arm_output_data_got<big_endian>* got,
7344 Output_data_space* got_plt,
7345 Output_data_space* got_irelative);
7347 // Add an entry to the PLT.
7349 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7351 // Add the relocation for a plt entry.
7353 add_relocation(Symbol_table* symtab, Layout* layout,
7354 Symbol* gsym, unsigned int got_offset);
7356 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7358 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7359 Sized_relobj_file<32, big_endian>* relobj,
7360 unsigned int local_sym_index);
7362 // Return the .rel.plt section data.
7363 const Reloc_section*
7365 { return this->rel_; }
7367 // Return the PLT relocation container for IRELATIVE.
7369 rel_irelative(Symbol_table*, Layout*);
7371 // Return the number of PLT entries.
7374 { return this->count_ + this->irelative_count_; }
7376 // Return the offset of the first non-reserved PLT entry.
7378 first_plt_entry_offset() const
7379 { return this->do_first_plt_entry_offset(); }
7381 // Return the size of a PLT entry.
7383 get_plt_entry_size() const
7384 { return this->do_get_plt_entry_size(); }
7386 // Return the PLT address for globals.
7388 address_for_global(const Symbol*) const;
7390 // Return the PLT address for locals.
7392 address_for_local(const Relobj*, unsigned int symndx) const;
7395 // Fill in the first PLT entry.
7397 fill_first_plt_entry(unsigned char* pov,
7398 Arm_address got_address,
7399 Arm_address plt_address)
7400 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7403 fill_plt_entry(unsigned char* pov,
7404 Arm_address got_address,
7405 Arm_address plt_address,
7406 unsigned int got_offset,
7407 unsigned int plt_offset)
7408 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7410 virtual unsigned int
7411 do_first_plt_entry_offset() const = 0;
7413 virtual unsigned int
7414 do_get_plt_entry_size() const = 0;
7417 do_fill_first_plt_entry(unsigned char* pov,
7418 Arm_address got_address,
7419 Arm_address plt_address) = 0;
7422 do_fill_plt_entry(unsigned char* pov,
7423 Arm_address got_address,
7424 Arm_address plt_address,
7425 unsigned int got_offset,
7426 unsigned int plt_offset) = 0;
7429 do_adjust_output_section(Output_section* os);
7431 // Write to a map file.
7433 do_print_to_mapfile(Mapfile* mapfile) const
7434 { mapfile->print_output_data(this, _("** PLT")); }
7437 // Set the final size.
7439 set_final_data_size()
7441 this->set_data_size(this->first_plt_entry_offset()
7442 + ((this->count_ + this->irelative_count_)
7443 * this->get_plt_entry_size()));
7446 // Write out the PLT data.
7448 do_write(Output_file*);
7450 // Record irelative symbol data.
7451 void insert_irelative_data(const IRelative_data& idata)
7452 { irelative_data_vec_.push_back(idata); }
7454 // The reloc section.
7455 Reloc_section* rel_;
7456 // The IRELATIVE relocs, if necessary. These must follow the
7457 // regular PLT relocations.
7458 Reloc_section* irelative_rel_;
7459 // The .got section.
7460 Arm_output_data_got<big_endian>* got_;
7461 // The .got.plt section.
7462 Output_data_space* got_plt_;
7463 // The part of the .got.plt section used for IRELATIVE relocs.
7464 Output_data_space* got_irelative_;
7465 // The number of PLT entries.
7466 unsigned int count_;
7467 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7468 // follow the regular PLT entries.
7469 unsigned int irelative_count_;
7470 // Vector for irelative data.
7471 typedef std::vector<IRelative_data> IRelative_data_vec;
7472 IRelative_data_vec irelative_data_vec_;
7475 // Create the PLT section. The ordinary .got section is an argument,
7476 // since we need to refer to the start. We also create our own .got
7477 // section just for PLT entries.
7479 template<bool big_endian>
7480 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7481 Layout* layout, uint64_t addralign,
7482 Arm_output_data_got<big_endian>* got,
7483 Output_data_space* got_plt,
7484 Output_data_space* got_irelative)
7485 : Output_section_data(addralign), irelative_rel_(NULL),
7486 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7487 count_(0), irelative_count_(0)
7489 this->rel_ = new Reloc_section(false);
7490 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7491 elfcpp::SHF_ALLOC, this->rel_,
7492 ORDER_DYNAMIC_PLT_RELOCS, false);
7495 template<bool big_endian>
7497 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7502 // Add an entry to the PLT.
7504 template<bool big_endian>
7506 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7510 gold_assert(!gsym->has_plt_offset());
7512 unsigned int* entry_count;
7513 Output_section_data_build* got;
7515 // We have 2 different types of plt entry here, normal and ifunc.
7517 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7518 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7520 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7521 // second 12, third 24 ... etc.
7523 // IFunc plt entries *always* come after *normal* plt entries.
7525 // Notice, when computing the plt address of a certain symbol, "plt_address +
7526 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7527 // target->plt_address_for_local() instead.
7529 int begin_offset = 0;
7530 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7531 && gsym->can_use_relative_reloc(false))
7533 entry_count = &this->irelative_count_;
7534 got = this->got_irelative_;
7535 // For irelative plt entries, offset is relative to the end of normal plt
7536 // entries, so it starts from 0.
7538 // Record symbol information.
7539 this->insert_irelative_data(
7540 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7544 entry_count = &this->count_;
7545 got = this->got_plt_;
7546 // Note that for normal plt entries, when setting the PLT offset we skip
7547 // the initial reserved PLT entry.
7548 begin_offset = this->first_plt_entry_offset();
7551 gsym->set_plt_offset(begin_offset
7552 + (*entry_count) * this->get_plt_entry_size());
7556 section_offset_type got_offset = got->current_data_size();
7558 // Every PLT entry needs a GOT entry which points back to the PLT
7559 // entry (this will be changed by the dynamic linker, normally
7560 // lazily when the function is called).
7561 got->set_current_data_size(got_offset + 4);
7563 // Every PLT entry needs a reloc.
7564 this->add_relocation(symtab, layout, gsym, got_offset);
7566 // Note that we don't need to save the symbol. The contents of the
7567 // PLT are independent of which symbols are used. The symbols only
7568 // appear in the relocations.
7571 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7574 template<bool big_endian>
7576 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7577 Symbol_table* symtab,
7579 Sized_relobj_file<32, big_endian>* relobj,
7580 unsigned int local_sym_index)
7582 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7584 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7585 // no longer correct. Use target->plt_address_for_local() instead.
7586 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7587 ++this->irelative_count_;
7589 section_offset_type got_offset = this->got_irelative_->current_data_size();
7591 // Every PLT entry needs a GOT entry which points back to the PLT
7593 this->got_irelative_->set_current_data_size(got_offset + 4);
7596 // Every PLT entry needs a reloc.
7597 Reloc_section* rel = this->rel_irelative(symtab, layout);
7598 rel->add_symbolless_local_addend(relobj, local_sym_index,
7599 elfcpp::R_ARM_IRELATIVE,
7600 this->got_irelative_, got_offset);
7605 // Add the relocation for a PLT entry.
7607 template<bool big_endian>
7609 Output_data_plt_arm<big_endian>::add_relocation(
7610 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7612 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7613 && gsym->can_use_relative_reloc(false))
7615 Reloc_section* rel = this->rel_irelative(symtab, layout);
7616 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7617 this->got_irelative_, got_offset);
7621 gsym->set_needs_dynsym_entry();
7622 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7628 // Create the irelative relocation data.
7630 template<bool big_endian>
7631 typename Output_data_plt_arm<big_endian>::Reloc_section*
7632 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7635 if (this->irelative_rel_ == NULL)
7637 // Since irelative relocations goes into 'rel.dyn', we delegate the
7638 // creation of irelative_rel_ to where rel_dyn section gets created.
7639 Target_arm<big_endian>* arm_target =
7640 Target_arm<big_endian>::default_target();
7641 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7643 // Make sure we have a place for the TLSDESC relocations, in
7644 // case we see any later on.
7645 // this->rel_tlsdesc(layout);
7646 if (parameters->doing_static_link())
7648 // A statically linked executable will only have a .rel.plt section to
7649 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7650 // will use these symbols to locate the IRELATIVE relocs at program
7652 symtab->define_in_output_data("__rel_iplt_start", NULL,
7653 Symbol_table::PREDEFINED,
7654 this->irelative_rel_, 0, 0,
7655 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7656 elfcpp::STV_HIDDEN, 0, false, true);
7657 symtab->define_in_output_data("__rel_iplt_end", NULL,
7658 Symbol_table::PREDEFINED,
7659 this->irelative_rel_, 0, 0,
7660 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7661 elfcpp::STV_HIDDEN, 0, true, true);
7664 return this->irelative_rel_;
7668 // Return the PLT address for a global symbol.
7670 template<bool big_endian>
7672 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7674 uint64_t begin_offset = 0;
7675 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7676 && gsym->can_use_relative_reloc(false))
7678 begin_offset = (this->first_plt_entry_offset() +
7679 this->count_ * this->get_plt_entry_size());
7681 return this->address() + begin_offset + gsym->plt_offset();
7685 // Return the PLT address for a local symbol. These are always
7686 // IRELATIVE relocs.
7688 template<bool big_endian>
7690 Output_data_plt_arm<big_endian>::address_for_local(
7691 const Relobj* object,
7692 unsigned int r_sym) const
7694 return (this->address()
7695 + this->first_plt_entry_offset()
7696 + this->count_ * this->get_plt_entry_size()
7697 + object->local_plt_offset(r_sym));
7701 template<bool big_endian>
7702 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7705 Output_data_plt_arm_standard(Layout* layout,
7706 Arm_output_data_got<big_endian>* got,
7707 Output_data_space* got_plt,
7708 Output_data_space* got_irelative)
7709 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7713 // Return the offset of the first non-reserved PLT entry.
7714 virtual unsigned int
7715 do_first_plt_entry_offset() const
7716 { return sizeof(first_plt_entry); }
7718 // Return the size of a PLT entry.
7719 virtual unsigned int
7720 do_get_plt_entry_size() const
7721 { return sizeof(plt_entry); }
7724 do_fill_first_plt_entry(unsigned char* pov,
7725 Arm_address got_address,
7726 Arm_address plt_address);
7729 do_fill_plt_entry(unsigned char* pov,
7730 Arm_address got_address,
7731 Arm_address plt_address,
7732 unsigned int got_offset,
7733 unsigned int plt_offset);
7736 // Template for the first PLT entry.
7737 static const uint32_t first_plt_entry[5];
7739 // Template for subsequent PLT entries.
7740 static const uint32_t plt_entry[3];
7744 // FIXME: This is not very flexible. Right now this has only been tested
7745 // on armv5te. If we are to support additional architecture features like
7746 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7748 // The first entry in the PLT.
7749 template<bool big_endian>
7750 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7752 0xe52de004, // str lr, [sp, #-4]!
7753 0xe59fe004, // ldr lr, [pc, #4]
7754 0xe08fe00e, // add lr, pc, lr
7755 0xe5bef008, // ldr pc, [lr, #8]!
7756 0x00000000, // &GOT[0] - .
7759 template<bool big_endian>
7761 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7763 Arm_address got_address,
7764 Arm_address plt_address)
7766 // Write first PLT entry. All but the last word are constants.
7767 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7768 / sizeof(plt_entry[0]));
7769 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7770 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7771 // Last word in first PLT entry is &GOT[0] - .
7772 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7773 got_address - (plt_address + 16));
7776 // Subsequent entries in the PLT.
7778 template<bool big_endian>
7779 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7781 0xe28fc600, // add ip, pc, #0xNN00000
7782 0xe28cca00, // add ip, ip, #0xNN000
7783 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7786 template<bool big_endian>
7788 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7790 Arm_address got_address,
7791 Arm_address plt_address,
7792 unsigned int got_offset,
7793 unsigned int plt_offset)
7795 int32_t offset = ((got_address + got_offset)
7796 - (plt_address + plt_offset + 8));
7798 gold_assert(offset >= 0 && offset < 0x0fffffff);
7799 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7800 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7801 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7802 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7803 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7804 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7807 // Write out the PLT. This uses the hand-coded instructions above,
7808 // and adjusts them as needed. This is all specified by the arm ELF
7809 // Processor Supplement.
7811 template<bool big_endian>
7813 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7815 const off_t offset = this->offset();
7816 const section_size_type oview_size =
7817 convert_to_section_size_type(this->data_size());
7818 unsigned char* const oview = of->get_output_view(offset, oview_size);
7820 const off_t got_file_offset = this->got_plt_->offset();
7821 gold_assert(got_file_offset + this->got_plt_->data_size()
7822 == this->got_irelative_->offset());
7823 const section_size_type got_size =
7824 convert_to_section_size_type(this->got_plt_->data_size()
7825 + this->got_irelative_->data_size());
7826 unsigned char* const got_view = of->get_output_view(got_file_offset,
7828 unsigned char* pov = oview;
7830 Arm_address plt_address = this->address();
7831 Arm_address got_address = this->got_plt_->address();
7833 // Write first PLT entry.
7834 this->fill_first_plt_entry(pov, got_address, plt_address);
7835 pov += this->first_plt_entry_offset();
7837 unsigned char* got_pov = got_view;
7839 memset(got_pov, 0, 12);
7842 unsigned int plt_offset = this->first_plt_entry_offset();
7843 unsigned int got_offset = 12;
7844 const unsigned int count = this->count_ + this->irelative_count_;
7845 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
7846 for (unsigned int i = 0;
7849 pov += this->get_plt_entry_size(),
7851 plt_offset += this->get_plt_entry_size(),
7854 // Set and adjust the PLT entry itself.
7855 this->fill_plt_entry(pov, got_address, plt_address,
7856 got_offset, plt_offset);
7859 if (i < this->count_)
7861 // For non-irelative got entries, the value is the beginning of plt.
7862 value = plt_address;
7866 // For irelative got entries, the value is the (global/local) symbol
7868 const IRelative_data& idata =
7869 this->irelative_data_vec_[i - this->count_];
7870 if (idata.symbol_is_global_)
7872 // Set the entry in the GOT for irelative symbols. The content is
7873 // the address of the ifunc, not the address of plt start.
7874 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7875 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7876 value = sized_symbol->value();
7880 value = idata.u_.local.relobj->local_symbol_value(
7881 idata.u_.local.index, 0);
7884 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
7887 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7888 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7890 of->write_output_view(offset, oview_size, oview);
7891 of->write_output_view(got_file_offset, got_size, got_view);
7895 // Create a PLT entry for a global symbol.
7897 template<bool big_endian>
7899 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7902 if (gsym->has_plt_offset())
7905 if (this->plt_ == NULL)
7906 this->make_plt_section(symtab, layout);
7908 this->plt_->add_entry(symtab, layout, gsym);
7912 // Create the PLT section.
7913 template<bool big_endian>
7915 Target_arm<big_endian>::make_plt_section(
7916 Symbol_table* symtab, Layout* layout)
7918 if (this->plt_ == NULL)
7920 // Create the GOT section first.
7921 this->got_section(symtab, layout);
7923 // GOT for irelatives is create along with got.plt.
7924 gold_assert(this->got_ != NULL
7925 && this->got_plt_ != NULL
7926 && this->got_irelative_ != NULL);
7927 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7928 this->got_irelative_);
7930 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7932 | elfcpp::SHF_EXECINSTR),
7933 this->plt_, ORDER_PLT, false);
7934 symtab->define_in_output_data("$a", NULL,
7935 Symbol_table::PREDEFINED,
7937 0, 0, elfcpp::STT_NOTYPE,
7939 elfcpp::STV_DEFAULT, 0,
7945 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7947 template<bool big_endian>
7949 Target_arm<big_endian>::make_local_ifunc_plt_entry(
7950 Symbol_table* symtab, Layout* layout,
7951 Sized_relobj_file<32, big_endian>* relobj,
7952 unsigned int local_sym_index)
7954 if (relobj->local_has_plt_offset(local_sym_index))
7956 if (this->plt_ == NULL)
7957 this->make_plt_section(symtab, layout);
7958 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7961 relobj->set_local_plt_offset(local_sym_index, plt_offset);
7965 // Return the number of entries in the PLT.
7967 template<bool big_endian>
7969 Target_arm<big_endian>::plt_entry_count() const
7971 if (this->plt_ == NULL)
7973 return this->plt_->entry_count();
7976 // Return the offset of the first non-reserved PLT entry.
7978 template<bool big_endian>
7980 Target_arm<big_endian>::first_plt_entry_offset() const
7982 return this->plt_->first_plt_entry_offset();
7985 // Return the size of each PLT entry.
7987 template<bool big_endian>
7989 Target_arm<big_endian>::plt_entry_size() const
7991 return this->plt_->get_plt_entry_size();
7994 // Get the section to use for TLS_DESC relocations.
7996 template<bool big_endian>
7997 typename Target_arm<big_endian>::Reloc_section*
7998 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8000 return this->plt_section()->rel_tls_desc(layout);
8003 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8005 template<bool big_endian>
8007 Target_arm<big_endian>::define_tls_base_symbol(
8008 Symbol_table* symtab,
8011 if (this->tls_base_symbol_defined_)
8014 Output_segment* tls_segment = layout->tls_segment();
8015 if (tls_segment != NULL)
8017 bool is_exec = parameters->options().output_is_executable();
8018 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8019 Symbol_table::PREDEFINED,
8023 elfcpp::STV_HIDDEN, 0,
8025 ? Symbol::SEGMENT_END
8026 : Symbol::SEGMENT_START),
8029 this->tls_base_symbol_defined_ = true;
8032 // Create a GOT entry for the TLS module index.
8034 template<bool big_endian>
8036 Target_arm<big_endian>::got_mod_index_entry(
8037 Symbol_table* symtab,
8039 Sized_relobj_file<32, big_endian>* object)
8041 if (this->got_mod_index_offset_ == -1U)
8043 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8044 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8045 unsigned int got_offset;
8046 if (!parameters->doing_static_link())
8048 got_offset = got->add_constant(0);
8049 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8050 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8055 // We are doing a static link. Just mark it as belong to module 1,
8057 got_offset = got->add_constant(1);
8060 got->add_constant(0);
8061 this->got_mod_index_offset_ = got_offset;
8063 return this->got_mod_index_offset_;
8066 // Optimize the TLS relocation type based on what we know about the
8067 // symbol. IS_FINAL is true if the final address of this symbol is
8068 // known at link time.
8070 template<bool big_endian>
8071 tls::Tls_optimization
8072 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8074 // FIXME: Currently we do not do any TLS optimization.
8075 return tls::TLSOPT_NONE;
8078 // Get the Reference_flags for a particular relocation.
8080 template<bool big_endian>
8082 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8086 case elfcpp::R_ARM_NONE:
8087 case elfcpp::R_ARM_V4BX:
8088 case elfcpp::R_ARM_GNU_VTENTRY:
8089 case elfcpp::R_ARM_GNU_VTINHERIT:
8090 // No symbol reference.
8093 case elfcpp::R_ARM_ABS32:
8094 case elfcpp::R_ARM_ABS16:
8095 case elfcpp::R_ARM_ABS12:
8096 case elfcpp::R_ARM_THM_ABS5:
8097 case elfcpp::R_ARM_ABS8:
8098 case elfcpp::R_ARM_BASE_ABS:
8099 case elfcpp::R_ARM_MOVW_ABS_NC:
8100 case elfcpp::R_ARM_MOVT_ABS:
8101 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8102 case elfcpp::R_ARM_THM_MOVT_ABS:
8103 case elfcpp::R_ARM_ABS32_NOI:
8104 return Symbol::ABSOLUTE_REF;
8106 case elfcpp::R_ARM_REL32:
8107 case elfcpp::R_ARM_LDR_PC_G0:
8108 case elfcpp::R_ARM_SBREL32:
8109 case elfcpp::R_ARM_THM_PC8:
8110 case elfcpp::R_ARM_BASE_PREL:
8111 case elfcpp::R_ARM_MOVW_PREL_NC:
8112 case elfcpp::R_ARM_MOVT_PREL:
8113 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8114 case elfcpp::R_ARM_THM_MOVT_PREL:
8115 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8116 case elfcpp::R_ARM_THM_PC12:
8117 case elfcpp::R_ARM_REL32_NOI:
8118 case elfcpp::R_ARM_ALU_PC_G0_NC:
8119 case elfcpp::R_ARM_ALU_PC_G0:
8120 case elfcpp::R_ARM_ALU_PC_G1_NC:
8121 case elfcpp::R_ARM_ALU_PC_G1:
8122 case elfcpp::R_ARM_ALU_PC_G2:
8123 case elfcpp::R_ARM_LDR_PC_G1:
8124 case elfcpp::R_ARM_LDR_PC_G2:
8125 case elfcpp::R_ARM_LDRS_PC_G0:
8126 case elfcpp::R_ARM_LDRS_PC_G1:
8127 case elfcpp::R_ARM_LDRS_PC_G2:
8128 case elfcpp::R_ARM_LDC_PC_G0:
8129 case elfcpp::R_ARM_LDC_PC_G1:
8130 case elfcpp::R_ARM_LDC_PC_G2:
8131 case elfcpp::R_ARM_ALU_SB_G0_NC:
8132 case elfcpp::R_ARM_ALU_SB_G0:
8133 case elfcpp::R_ARM_ALU_SB_G1_NC:
8134 case elfcpp::R_ARM_ALU_SB_G1:
8135 case elfcpp::R_ARM_ALU_SB_G2:
8136 case elfcpp::R_ARM_LDR_SB_G0:
8137 case elfcpp::R_ARM_LDR_SB_G1:
8138 case elfcpp::R_ARM_LDR_SB_G2:
8139 case elfcpp::R_ARM_LDRS_SB_G0:
8140 case elfcpp::R_ARM_LDRS_SB_G1:
8141 case elfcpp::R_ARM_LDRS_SB_G2:
8142 case elfcpp::R_ARM_LDC_SB_G0:
8143 case elfcpp::R_ARM_LDC_SB_G1:
8144 case elfcpp::R_ARM_LDC_SB_G2:
8145 case elfcpp::R_ARM_MOVW_BREL_NC:
8146 case elfcpp::R_ARM_MOVT_BREL:
8147 case elfcpp::R_ARM_MOVW_BREL:
8148 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8149 case elfcpp::R_ARM_THM_MOVT_BREL:
8150 case elfcpp::R_ARM_THM_MOVW_BREL:
8151 case elfcpp::R_ARM_GOTOFF32:
8152 case elfcpp::R_ARM_GOTOFF12:
8153 case elfcpp::R_ARM_SBREL31:
8154 return Symbol::RELATIVE_REF;
8156 case elfcpp::R_ARM_PLT32:
8157 case elfcpp::R_ARM_CALL:
8158 case elfcpp::R_ARM_JUMP24:
8159 case elfcpp::R_ARM_THM_CALL:
8160 case elfcpp::R_ARM_THM_JUMP24:
8161 case elfcpp::R_ARM_THM_JUMP19:
8162 case elfcpp::R_ARM_THM_JUMP6:
8163 case elfcpp::R_ARM_THM_JUMP11:
8164 case elfcpp::R_ARM_THM_JUMP8:
8165 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8166 // in unwind tables. It may point to functions via PLTs.
8167 // So we treat it like call/jump relocations above.
8168 case elfcpp::R_ARM_PREL31:
8169 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8171 case elfcpp::R_ARM_GOT_BREL:
8172 case elfcpp::R_ARM_GOT_ABS:
8173 case elfcpp::R_ARM_GOT_PREL:
8175 return Symbol::ABSOLUTE_REF;
8177 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8178 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8179 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8180 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8181 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8182 return Symbol::TLS_REF;
8184 case elfcpp::R_ARM_TARGET1:
8185 case elfcpp::R_ARM_TARGET2:
8186 case elfcpp::R_ARM_COPY:
8187 case elfcpp::R_ARM_GLOB_DAT:
8188 case elfcpp::R_ARM_JUMP_SLOT:
8189 case elfcpp::R_ARM_RELATIVE:
8190 case elfcpp::R_ARM_PC24:
8191 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8192 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8193 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8195 // Not expected. We will give an error later.
8200 // Report an unsupported relocation against a local symbol.
8202 template<bool big_endian>
8204 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8205 Sized_relobj_file<32, big_endian>* object,
8206 unsigned int r_type)
8208 gold_error(_("%s: unsupported reloc %u against local symbol"),
8209 object->name().c_str(), r_type);
8212 // We are about to emit a dynamic relocation of type R_TYPE. If the
8213 // dynamic linker does not support it, issue an error. The GNU linker
8214 // only issues a non-PIC error for an allocated read-only section.
8215 // Here we know the section is allocated, but we don't know that it is
8216 // read-only. But we check for all the relocation types which the
8217 // glibc dynamic linker supports, so it seems appropriate to issue an
8218 // error even if the section is not read-only.
8220 template<bool big_endian>
8222 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8223 unsigned int r_type)
8227 // These are the relocation types supported by glibc for ARM.
8228 case elfcpp::R_ARM_RELATIVE:
8229 case elfcpp::R_ARM_COPY:
8230 case elfcpp::R_ARM_GLOB_DAT:
8231 case elfcpp::R_ARM_JUMP_SLOT:
8232 case elfcpp::R_ARM_ABS32:
8233 case elfcpp::R_ARM_ABS32_NOI:
8234 case elfcpp::R_ARM_IRELATIVE:
8235 case elfcpp::R_ARM_PC24:
8236 // FIXME: The following 3 types are not supported by Android's dynamic
8238 case elfcpp::R_ARM_TLS_DTPMOD32:
8239 case elfcpp::R_ARM_TLS_DTPOFF32:
8240 case elfcpp::R_ARM_TLS_TPOFF32:
8245 // This prevents us from issuing more than one error per reloc
8246 // section. But we can still wind up issuing more than one
8247 // error per object file.
8248 if (this->issued_non_pic_error_)
8250 const Arm_reloc_property* reloc_property =
8251 arm_reloc_property_table->get_reloc_property(r_type);
8252 gold_assert(reloc_property != NULL);
8253 object->error(_("requires unsupported dynamic reloc %s; "
8254 "recompile with -fPIC"),
8255 reloc_property->name().c_str());
8256 this->issued_non_pic_error_ = true;
8260 case elfcpp::R_ARM_NONE:
8266 // Return whether we need to make a PLT entry for a relocation of the
8267 // given type against a STT_GNU_IFUNC symbol.
8269 template<bool big_endian>
8271 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8272 Sized_relobj_file<32, big_endian>* object,
8273 unsigned int r_type)
8275 int flags = Scan::get_reference_flags(r_type);
8276 if (flags & Symbol::TLS_REF)
8278 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8279 object->name().c_str(), r_type);
8286 // Scan a relocation for a local symbol.
8287 // FIXME: This only handles a subset of relocation types used by Android
8288 // on ARM v5te devices.
8290 template<bool big_endian>
8292 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8295 Sized_relobj_file<32, big_endian>* object,
8296 unsigned int data_shndx,
8297 Output_section* output_section,
8298 const elfcpp::Rel<32, big_endian>& reloc,
8299 unsigned int r_type,
8300 const elfcpp::Sym<32, big_endian>& lsym,
8306 r_type = get_real_reloc_type(r_type);
8308 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8309 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8310 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8312 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8313 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8318 case elfcpp::R_ARM_NONE:
8319 case elfcpp::R_ARM_V4BX:
8320 case elfcpp::R_ARM_GNU_VTENTRY:
8321 case elfcpp::R_ARM_GNU_VTINHERIT:
8324 case elfcpp::R_ARM_ABS32:
8325 case elfcpp::R_ARM_ABS32_NOI:
8326 // If building a shared library (or a position-independent
8327 // executable), we need to create a dynamic relocation for
8328 // this location. The relocation applied at link time will
8329 // apply the link-time value, so we flag the location with
8330 // an R_ARM_RELATIVE relocation so the dynamic loader can
8331 // relocate it easily.
8332 if (parameters->options().output_is_position_independent())
8334 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8335 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8336 // If we are to add more other reloc types than R_ARM_ABS32,
8337 // we need to add check_non_pic(object, r_type) here.
8338 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8339 output_section, data_shndx,
8340 reloc.get_r_offset(), is_ifunc);
8344 case elfcpp::R_ARM_ABS16:
8345 case elfcpp::R_ARM_ABS12:
8346 case elfcpp::R_ARM_THM_ABS5:
8347 case elfcpp::R_ARM_ABS8:
8348 case elfcpp::R_ARM_BASE_ABS:
8349 case elfcpp::R_ARM_MOVW_ABS_NC:
8350 case elfcpp::R_ARM_MOVT_ABS:
8351 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8352 case elfcpp::R_ARM_THM_MOVT_ABS:
8353 // If building a shared library (or a position-independent
8354 // executable), we need to create a dynamic relocation for
8355 // this location. Because the addend needs to remain in the
8356 // data section, we need to be careful not to apply this
8357 // relocation statically.
8358 if (parameters->options().output_is_position_independent())
8360 check_non_pic(object, r_type);
8361 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8362 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8363 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8364 rel_dyn->add_local(object, r_sym, r_type, output_section,
8365 data_shndx, reloc.get_r_offset());
8368 gold_assert(lsym.get_st_value() == 0);
8369 unsigned int shndx = lsym.get_st_shndx();
8371 shndx = object->adjust_sym_shndx(r_sym, shndx,
8374 object->error(_("section symbol %u has bad shndx %u"),
8377 rel_dyn->add_local_section(object, shndx,
8378 r_type, output_section,
8379 data_shndx, reloc.get_r_offset());
8384 case elfcpp::R_ARM_REL32:
8385 case elfcpp::R_ARM_LDR_PC_G0:
8386 case elfcpp::R_ARM_SBREL32:
8387 case elfcpp::R_ARM_THM_CALL:
8388 case elfcpp::R_ARM_THM_PC8:
8389 case elfcpp::R_ARM_BASE_PREL:
8390 case elfcpp::R_ARM_PLT32:
8391 case elfcpp::R_ARM_CALL:
8392 case elfcpp::R_ARM_JUMP24:
8393 case elfcpp::R_ARM_THM_JUMP24:
8394 case elfcpp::R_ARM_SBREL31:
8395 case elfcpp::R_ARM_PREL31:
8396 case elfcpp::R_ARM_MOVW_PREL_NC:
8397 case elfcpp::R_ARM_MOVT_PREL:
8398 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8399 case elfcpp::R_ARM_THM_MOVT_PREL:
8400 case elfcpp::R_ARM_THM_JUMP19:
8401 case elfcpp::R_ARM_THM_JUMP6:
8402 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8403 case elfcpp::R_ARM_THM_PC12:
8404 case elfcpp::R_ARM_REL32_NOI:
8405 case elfcpp::R_ARM_ALU_PC_G0_NC:
8406 case elfcpp::R_ARM_ALU_PC_G0:
8407 case elfcpp::R_ARM_ALU_PC_G1_NC:
8408 case elfcpp::R_ARM_ALU_PC_G1:
8409 case elfcpp::R_ARM_ALU_PC_G2:
8410 case elfcpp::R_ARM_LDR_PC_G1:
8411 case elfcpp::R_ARM_LDR_PC_G2:
8412 case elfcpp::R_ARM_LDRS_PC_G0:
8413 case elfcpp::R_ARM_LDRS_PC_G1:
8414 case elfcpp::R_ARM_LDRS_PC_G2:
8415 case elfcpp::R_ARM_LDC_PC_G0:
8416 case elfcpp::R_ARM_LDC_PC_G1:
8417 case elfcpp::R_ARM_LDC_PC_G2:
8418 case elfcpp::R_ARM_ALU_SB_G0_NC:
8419 case elfcpp::R_ARM_ALU_SB_G0:
8420 case elfcpp::R_ARM_ALU_SB_G1_NC:
8421 case elfcpp::R_ARM_ALU_SB_G1:
8422 case elfcpp::R_ARM_ALU_SB_G2:
8423 case elfcpp::R_ARM_LDR_SB_G0:
8424 case elfcpp::R_ARM_LDR_SB_G1:
8425 case elfcpp::R_ARM_LDR_SB_G2:
8426 case elfcpp::R_ARM_LDRS_SB_G0:
8427 case elfcpp::R_ARM_LDRS_SB_G1:
8428 case elfcpp::R_ARM_LDRS_SB_G2:
8429 case elfcpp::R_ARM_LDC_SB_G0:
8430 case elfcpp::R_ARM_LDC_SB_G1:
8431 case elfcpp::R_ARM_LDC_SB_G2:
8432 case elfcpp::R_ARM_MOVW_BREL_NC:
8433 case elfcpp::R_ARM_MOVT_BREL:
8434 case elfcpp::R_ARM_MOVW_BREL:
8435 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8436 case elfcpp::R_ARM_THM_MOVT_BREL:
8437 case elfcpp::R_ARM_THM_MOVW_BREL:
8438 case elfcpp::R_ARM_THM_JUMP11:
8439 case elfcpp::R_ARM_THM_JUMP8:
8440 // We don't need to do anything for a relative addressing relocation
8441 // against a local symbol if it does not reference the GOT.
8444 case elfcpp::R_ARM_GOTOFF32:
8445 case elfcpp::R_ARM_GOTOFF12:
8446 // We need a GOT section:
8447 target->got_section(symtab, layout);
8450 case elfcpp::R_ARM_GOT_BREL:
8451 case elfcpp::R_ARM_GOT_PREL:
8453 // The symbol requires a GOT entry.
8454 Arm_output_data_got<big_endian>* got =
8455 target->got_section(symtab, layout);
8456 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8457 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8459 // If we are generating a shared object, we need to add a
8460 // dynamic RELATIVE relocation for this symbol's GOT entry.
8461 if (parameters->options().output_is_position_independent())
8463 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8464 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8465 rel_dyn->add_local_relative(
8466 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8467 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8473 case elfcpp::R_ARM_TARGET1:
8474 case elfcpp::R_ARM_TARGET2:
8475 // This should have been mapped to another type already.
8477 case elfcpp::R_ARM_COPY:
8478 case elfcpp::R_ARM_GLOB_DAT:
8479 case elfcpp::R_ARM_JUMP_SLOT:
8480 case elfcpp::R_ARM_RELATIVE:
8481 // These are relocations which should only be seen by the
8482 // dynamic linker, and should never be seen here.
8483 gold_error(_("%s: unexpected reloc %u in object file"),
8484 object->name().c_str(), r_type);
8488 // These are initial TLS relocs, which are expected when
8490 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8491 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8492 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8493 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8494 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8496 bool output_is_shared = parameters->options().shared();
8497 const tls::Tls_optimization optimized_type
8498 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8502 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8503 if (optimized_type == tls::TLSOPT_NONE)
8505 // Create a pair of GOT entries for the module index and
8506 // dtv-relative offset.
8507 Arm_output_data_got<big_endian>* got
8508 = target->got_section(symtab, layout);
8509 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8510 unsigned int shndx = lsym.get_st_shndx();
8512 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8515 object->error(_("local symbol %u has bad shndx %u"),
8520 if (!parameters->doing_static_link())
8521 got->add_local_pair_with_rel(object, r_sym, shndx,
8523 target->rel_dyn_section(layout),
8524 elfcpp::R_ARM_TLS_DTPMOD32);
8526 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8530 // FIXME: TLS optimization not supported yet.
8534 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8535 if (optimized_type == tls::TLSOPT_NONE)
8537 // Create a GOT entry for the module index.
8538 target->got_mod_index_entry(symtab, layout, object);
8541 // FIXME: TLS optimization not supported yet.
8545 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8548 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8549 layout->set_has_static_tls();
8550 if (optimized_type == tls::TLSOPT_NONE)
8552 // Create a GOT entry for the tp-relative offset.
8553 Arm_output_data_got<big_endian>* got
8554 = target->got_section(symtab, layout);
8555 unsigned int r_sym =
8556 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8557 if (!parameters->doing_static_link())
8558 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8559 target->rel_dyn_section(layout),
8560 elfcpp::R_ARM_TLS_TPOFF32);
8561 else if (!object->local_has_got_offset(r_sym,
8562 GOT_TYPE_TLS_OFFSET))
8564 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8565 unsigned int got_offset =
8566 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8567 got->add_static_reloc(got_offset,
8568 elfcpp::R_ARM_TLS_TPOFF32, object,
8573 // FIXME: TLS optimization not supported yet.
8577 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8578 layout->set_has_static_tls();
8579 if (output_is_shared)
8581 // We need to create a dynamic relocation.
8582 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8583 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8584 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8585 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8586 output_section, data_shndx,
8587 reloc.get_r_offset());
8597 case elfcpp::R_ARM_PC24:
8598 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8599 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8600 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8602 unsupported_reloc_local(object, r_type);
8607 // Report an unsupported relocation against a global symbol.
8609 template<bool big_endian>
8611 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8612 Sized_relobj_file<32, big_endian>* object,
8613 unsigned int r_type,
8616 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8617 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8620 template<bool big_endian>
8622 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8623 unsigned int r_type)
8627 case elfcpp::R_ARM_PC24:
8628 case elfcpp::R_ARM_THM_CALL:
8629 case elfcpp::R_ARM_PLT32:
8630 case elfcpp::R_ARM_CALL:
8631 case elfcpp::R_ARM_JUMP24:
8632 case elfcpp::R_ARM_THM_JUMP24:
8633 case elfcpp::R_ARM_SBREL31:
8634 case elfcpp::R_ARM_PREL31:
8635 case elfcpp::R_ARM_THM_JUMP19:
8636 case elfcpp::R_ARM_THM_JUMP6:
8637 case elfcpp::R_ARM_THM_JUMP11:
8638 case elfcpp::R_ARM_THM_JUMP8:
8639 // All the relocations above are branches except SBREL31 and PREL31.
8643 // Be conservative and assume this is a function pointer.
8648 template<bool big_endian>
8650 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8653 Target_arm<big_endian>* target,
8654 Sized_relobj_file<32, big_endian>*,
8657 const elfcpp::Rel<32, big_endian>&,
8658 unsigned int r_type,
8659 const elfcpp::Sym<32, big_endian>&)
8661 r_type = target->get_real_reloc_type(r_type);
8662 return possible_function_pointer_reloc(r_type);
8665 template<bool big_endian>
8667 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8670 Target_arm<big_endian>* target,
8671 Sized_relobj_file<32, big_endian>*,
8674 const elfcpp::Rel<32, big_endian>&,
8675 unsigned int r_type,
8678 // GOT is not a function.
8679 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8682 r_type = target->get_real_reloc_type(r_type);
8683 return possible_function_pointer_reloc(r_type);
8686 // Scan a relocation for a global symbol.
8688 template<bool big_endian>
8690 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8693 Sized_relobj_file<32, big_endian>* object,
8694 unsigned int data_shndx,
8695 Output_section* output_section,
8696 const elfcpp::Rel<32, big_endian>& reloc,
8697 unsigned int r_type,
8700 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8701 // section. We check here to avoid creating a dynamic reloc against
8702 // _GLOBAL_OFFSET_TABLE_.
8703 if (!target->has_got_section()
8704 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8705 target->got_section(symtab, layout);
8707 // A STT_GNU_IFUNC symbol may require a PLT entry.
8708 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8709 && this->reloc_needs_plt_for_ifunc(object, r_type))
8710 target->make_plt_entry(symtab, layout, gsym);
8712 r_type = get_real_reloc_type(r_type);
8715 case elfcpp::R_ARM_NONE:
8716 case elfcpp::R_ARM_V4BX:
8717 case elfcpp::R_ARM_GNU_VTENTRY:
8718 case elfcpp::R_ARM_GNU_VTINHERIT:
8721 case elfcpp::R_ARM_ABS32:
8722 case elfcpp::R_ARM_ABS16:
8723 case elfcpp::R_ARM_ABS12:
8724 case elfcpp::R_ARM_THM_ABS5:
8725 case elfcpp::R_ARM_ABS8:
8726 case elfcpp::R_ARM_BASE_ABS:
8727 case elfcpp::R_ARM_MOVW_ABS_NC:
8728 case elfcpp::R_ARM_MOVT_ABS:
8729 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8730 case elfcpp::R_ARM_THM_MOVT_ABS:
8731 case elfcpp::R_ARM_ABS32_NOI:
8732 // Absolute addressing relocations.
8734 // Make a PLT entry if necessary.
8735 if (this->symbol_needs_plt_entry(gsym))
8737 target->make_plt_entry(symtab, layout, gsym);
8738 // Since this is not a PC-relative relocation, we may be
8739 // taking the address of a function. In that case we need to
8740 // set the entry in the dynamic symbol table to the address of
8742 if (gsym->is_from_dynobj() && !parameters->options().shared())
8743 gsym->set_needs_dynsym_value();
8745 // Make a dynamic relocation if necessary.
8746 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8748 if (!parameters->options().output_is_position_independent()
8749 && gsym->may_need_copy_reloc())
8751 target->copy_reloc(symtab, layout, object,
8752 data_shndx, output_section, gsym, reloc);
8754 else if ((r_type == elfcpp::R_ARM_ABS32
8755 || r_type == elfcpp::R_ARM_ABS32_NOI)
8756 && gsym->type() == elfcpp::STT_GNU_IFUNC
8757 && gsym->can_use_relative_reloc(false)
8758 && !gsym->is_from_dynobj()
8759 && !gsym->is_undefined()
8760 && !gsym->is_preemptible())
8762 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8763 // symbol. This makes a function address in a PIE executable
8764 // match the address in a shared library that it links against.
8765 Reloc_section* rel_irelative =
8766 target->rel_irelative_section(layout);
8767 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8768 rel_irelative->add_symbolless_global_addend(
8769 gsym, r_type, output_section, object,
8770 data_shndx, reloc.get_r_offset());
8772 else if ((r_type == elfcpp::R_ARM_ABS32
8773 || r_type == elfcpp::R_ARM_ABS32_NOI)
8774 && gsym->can_use_relative_reloc(false))
8776 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8777 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8778 output_section, object,
8779 data_shndx, reloc.get_r_offset());
8783 check_non_pic(object, r_type);
8784 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8785 rel_dyn->add_global(gsym, r_type, output_section, object,
8786 data_shndx, reloc.get_r_offset());
8792 case elfcpp::R_ARM_GOTOFF32:
8793 case elfcpp::R_ARM_GOTOFF12:
8794 // We need a GOT section.
8795 target->got_section(symtab, layout);
8798 case elfcpp::R_ARM_REL32:
8799 case elfcpp::R_ARM_LDR_PC_G0:
8800 case elfcpp::R_ARM_SBREL32:
8801 case elfcpp::R_ARM_THM_PC8:
8802 case elfcpp::R_ARM_BASE_PREL:
8803 case elfcpp::R_ARM_MOVW_PREL_NC:
8804 case elfcpp::R_ARM_MOVT_PREL:
8805 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8806 case elfcpp::R_ARM_THM_MOVT_PREL:
8807 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8808 case elfcpp::R_ARM_THM_PC12:
8809 case elfcpp::R_ARM_REL32_NOI:
8810 case elfcpp::R_ARM_ALU_PC_G0_NC:
8811 case elfcpp::R_ARM_ALU_PC_G0:
8812 case elfcpp::R_ARM_ALU_PC_G1_NC:
8813 case elfcpp::R_ARM_ALU_PC_G1:
8814 case elfcpp::R_ARM_ALU_PC_G2:
8815 case elfcpp::R_ARM_LDR_PC_G1:
8816 case elfcpp::R_ARM_LDR_PC_G2:
8817 case elfcpp::R_ARM_LDRS_PC_G0:
8818 case elfcpp::R_ARM_LDRS_PC_G1:
8819 case elfcpp::R_ARM_LDRS_PC_G2:
8820 case elfcpp::R_ARM_LDC_PC_G0:
8821 case elfcpp::R_ARM_LDC_PC_G1:
8822 case elfcpp::R_ARM_LDC_PC_G2:
8823 case elfcpp::R_ARM_ALU_SB_G0_NC:
8824 case elfcpp::R_ARM_ALU_SB_G0:
8825 case elfcpp::R_ARM_ALU_SB_G1_NC:
8826 case elfcpp::R_ARM_ALU_SB_G1:
8827 case elfcpp::R_ARM_ALU_SB_G2:
8828 case elfcpp::R_ARM_LDR_SB_G0:
8829 case elfcpp::R_ARM_LDR_SB_G1:
8830 case elfcpp::R_ARM_LDR_SB_G2:
8831 case elfcpp::R_ARM_LDRS_SB_G0:
8832 case elfcpp::R_ARM_LDRS_SB_G1:
8833 case elfcpp::R_ARM_LDRS_SB_G2:
8834 case elfcpp::R_ARM_LDC_SB_G0:
8835 case elfcpp::R_ARM_LDC_SB_G1:
8836 case elfcpp::R_ARM_LDC_SB_G2:
8837 case elfcpp::R_ARM_MOVW_BREL_NC:
8838 case elfcpp::R_ARM_MOVT_BREL:
8839 case elfcpp::R_ARM_MOVW_BREL:
8840 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8841 case elfcpp::R_ARM_THM_MOVT_BREL:
8842 case elfcpp::R_ARM_THM_MOVW_BREL:
8843 // Relative addressing relocations.
8845 // Make a dynamic relocation if necessary.
8846 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8848 if (parameters->options().output_is_executable()
8849 && target->may_need_copy_reloc(gsym))
8851 target->copy_reloc(symtab, layout, object,
8852 data_shndx, output_section, gsym, reloc);
8856 check_non_pic(object, r_type);
8857 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8858 rel_dyn->add_global(gsym, r_type, output_section, object,
8859 data_shndx, reloc.get_r_offset());
8865 case elfcpp::R_ARM_THM_CALL:
8866 case elfcpp::R_ARM_PLT32:
8867 case elfcpp::R_ARM_CALL:
8868 case elfcpp::R_ARM_JUMP24:
8869 case elfcpp::R_ARM_THM_JUMP24:
8870 case elfcpp::R_ARM_SBREL31:
8871 case elfcpp::R_ARM_PREL31:
8872 case elfcpp::R_ARM_THM_JUMP19:
8873 case elfcpp::R_ARM_THM_JUMP6:
8874 case elfcpp::R_ARM_THM_JUMP11:
8875 case elfcpp::R_ARM_THM_JUMP8:
8876 // All the relocation above are branches except for the PREL31 ones.
8877 // A PREL31 relocation can point to a personality function in a shared
8878 // library. In that case we want to use a PLT because we want to
8879 // call the personality routine and the dynamic linkers we care about
8880 // do not support dynamic PREL31 relocations. An REL31 relocation may
8881 // point to a function whose unwinding behaviour is being described but
8882 // we will not mistakenly generate a PLT for that because we should use
8883 // a local section symbol.
8885 // If the symbol is fully resolved, this is just a relative
8886 // local reloc. Otherwise we need a PLT entry.
8887 if (gsym->final_value_is_known())
8889 // If building a shared library, we can also skip the PLT entry
8890 // if the symbol is defined in the output file and is protected
8892 if (gsym->is_defined()
8893 && !gsym->is_from_dynobj()
8894 && !gsym->is_preemptible())
8896 target->make_plt_entry(symtab, layout, gsym);
8899 case elfcpp::R_ARM_GOT_BREL:
8900 case elfcpp::R_ARM_GOT_ABS:
8901 case elfcpp::R_ARM_GOT_PREL:
8903 // The symbol requires a GOT entry.
8904 Arm_output_data_got<big_endian>* got =
8905 target->got_section(symtab, layout);
8906 if (gsym->final_value_is_known())
8908 // For a STT_GNU_IFUNC symbol we want the PLT address.
8909 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8910 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8912 got->add_global(gsym, GOT_TYPE_STANDARD);
8916 // If this symbol is not fully resolved, we need to add a
8917 // GOT entry with a dynamic relocation.
8918 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8919 if (gsym->is_from_dynobj()
8920 || gsym->is_undefined()
8921 || gsym->is_preemptible()
8922 || (gsym->visibility() == elfcpp::STV_PROTECTED
8923 && parameters->options().shared())
8924 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8925 && parameters->options().output_is_position_independent()))
8926 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8927 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8930 // For a STT_GNU_IFUNC symbol we want to write the PLT
8931 // offset into the GOT, so that function pointer
8932 // comparisons work correctly.
8934 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8935 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8938 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8939 // Tell the dynamic linker to use the PLT address
8940 // when resolving relocations.
8941 if (gsym->is_from_dynobj()
8942 && !parameters->options().shared())
8943 gsym->set_needs_dynsym_value();
8946 rel_dyn->add_global_relative(
8947 gsym, elfcpp::R_ARM_RELATIVE, got,
8948 gsym->got_offset(GOT_TYPE_STANDARD));
8954 case elfcpp::R_ARM_TARGET1:
8955 case elfcpp::R_ARM_TARGET2:
8956 // These should have been mapped to other types already.
8958 case elfcpp::R_ARM_COPY:
8959 case elfcpp::R_ARM_GLOB_DAT:
8960 case elfcpp::R_ARM_JUMP_SLOT:
8961 case elfcpp::R_ARM_RELATIVE:
8962 // These are relocations which should only be seen by the
8963 // dynamic linker, and should never be seen here.
8964 gold_error(_("%s: unexpected reloc %u in object file"),
8965 object->name().c_str(), r_type);
8968 // These are initial tls relocs, which are expected when
8970 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8971 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8972 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8973 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8974 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8976 const bool is_final = gsym->final_value_is_known();
8977 const tls::Tls_optimization optimized_type
8978 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8981 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8982 if (optimized_type == tls::TLSOPT_NONE)
8984 // Create a pair of GOT entries for the module index and
8985 // dtv-relative offset.
8986 Arm_output_data_got<big_endian>* got
8987 = target->got_section(symtab, layout);
8988 if (!parameters->doing_static_link())
8989 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8990 target->rel_dyn_section(layout),
8991 elfcpp::R_ARM_TLS_DTPMOD32,
8992 elfcpp::R_ARM_TLS_DTPOFF32);
8994 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8997 // FIXME: TLS optimization not supported yet.
9001 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9002 if (optimized_type == tls::TLSOPT_NONE)
9004 // Create a GOT entry for the module index.
9005 target->got_mod_index_entry(symtab, layout, object);
9008 // FIXME: TLS optimization not supported yet.
9012 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9015 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9016 layout->set_has_static_tls();
9017 if (optimized_type == tls::TLSOPT_NONE)
9019 // Create a GOT entry for the tp-relative offset.
9020 Arm_output_data_got<big_endian>* got
9021 = target->got_section(symtab, layout);
9022 if (!parameters->doing_static_link())
9023 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9024 target->rel_dyn_section(layout),
9025 elfcpp::R_ARM_TLS_TPOFF32);
9026 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9028 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9029 unsigned int got_offset =
9030 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9031 got->add_static_reloc(got_offset,
9032 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9036 // FIXME: TLS optimization not supported yet.
9040 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9041 layout->set_has_static_tls();
9042 if (parameters->options().shared())
9044 // We need to create a dynamic relocation.
9045 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9046 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9047 output_section, object,
9048 data_shndx, reloc.get_r_offset());
9058 case elfcpp::R_ARM_PC24:
9059 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9060 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9061 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9063 unsupported_reloc_global(object, r_type, gsym);
9068 // Process relocations for gc.
9070 template<bool big_endian>
9072 Target_arm<big_endian>::gc_process_relocs(
9073 Symbol_table* symtab,
9075 Sized_relobj_file<32, big_endian>* object,
9076 unsigned int data_shndx,
9078 const unsigned char* prelocs,
9080 Output_section* output_section,
9081 bool needs_special_offset_handling,
9082 size_t local_symbol_count,
9083 const unsigned char* plocal_symbols)
9085 typedef Target_arm<big_endian> Arm;
9086 typedef typename Target_arm<big_endian>::Scan Scan;
9088 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
9089 typename Target_arm::Relocatable_size_for_reloc>(
9098 needs_special_offset_handling,
9103 // Scan relocations for a section.
9105 template<bool big_endian>
9107 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9109 Sized_relobj_file<32, big_endian>* object,
9110 unsigned int data_shndx,
9111 unsigned int sh_type,
9112 const unsigned char* prelocs,
9114 Output_section* output_section,
9115 bool needs_special_offset_handling,
9116 size_t local_symbol_count,
9117 const unsigned char* plocal_symbols)
9119 typedef typename Target_arm<big_endian>::Scan Scan;
9120 if (sh_type == elfcpp::SHT_RELA)
9122 gold_error(_("%s: unsupported RELA reloc section"),
9123 object->name().c_str());
9127 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
9136 needs_special_offset_handling,
9141 // Finalize the sections.
9143 template<bool big_endian>
9145 Target_arm<big_endian>::do_finalize_sections(
9147 const Input_objects* input_objects,
9150 bool merged_any_attributes = false;
9151 // Merge processor-specific flags.
9152 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9153 p != input_objects->relobj_end();
9156 Arm_relobj<big_endian>* arm_relobj =
9157 Arm_relobj<big_endian>::as_arm_relobj(*p);
9158 if (arm_relobj->merge_flags_and_attributes())
9160 this->merge_processor_specific_flags(
9162 arm_relobj->processor_specific_flags());
9163 this->merge_object_attributes(arm_relobj->name().c_str(),
9164 arm_relobj->attributes_section_data());
9165 merged_any_attributes = true;
9169 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9170 p != input_objects->dynobj_end();
9173 Arm_dynobj<big_endian>* arm_dynobj =
9174 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9175 this->merge_processor_specific_flags(
9177 arm_dynobj->processor_specific_flags());
9178 this->merge_object_attributes(arm_dynobj->name().c_str(),
9179 arm_dynobj->attributes_section_data());
9180 merged_any_attributes = true;
9183 // Create an empty uninitialized attribute section if we still don't have it
9184 // at this moment. This happens if there is no attributes sections in all
9186 if (this->attributes_section_data_ == NULL)
9187 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9189 const Object_attribute* cpu_arch_attr =
9190 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9191 // Check if we need to use Cortex-A8 workaround.
9192 if (parameters->options().user_set_fix_cortex_a8())
9193 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9196 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9197 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9199 const Object_attribute* cpu_arch_profile_attr =
9200 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9201 this->fix_cortex_a8_ =
9202 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9203 && (cpu_arch_profile_attr->int_value() == 'A'
9204 || cpu_arch_profile_attr->int_value() == 0));
9207 // Check if we can use V4BX interworking.
9208 // The V4BX interworking stub contains BX instruction,
9209 // which is not specified for some profiles.
9210 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9211 && !this->may_use_v4t_interworking())
9212 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9213 "the target profile does not support BX instruction"));
9215 // Fill in some more dynamic tags.
9216 const Reloc_section* rel_plt = (this->plt_ == NULL
9218 : this->plt_->rel_plt());
9219 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9220 this->rel_dyn_, true, false);
9222 // Emit any relocs we saved in an attempt to avoid generating COPY
9224 if (this->copy_relocs_.any_saved_relocs())
9225 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9227 // Handle the .ARM.exidx section.
9228 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9230 if (!parameters->options().relocatable())
9232 if (exidx_section != NULL
9233 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9235 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9236 // the .ARM.exidx section.
9237 if (!layout->script_options()->saw_phdrs_clause())
9239 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9242 Output_segment* exidx_segment =
9243 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9244 exidx_segment->add_output_section_to_nonload(exidx_section,
9250 // Create an .ARM.attributes section if we have merged any attributes
9252 if (merged_any_attributes)
9254 Output_attributes_section_data* attributes_section =
9255 new Output_attributes_section_data(*this->attributes_section_data_);
9256 layout->add_output_section_data(".ARM.attributes",
9257 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9258 attributes_section, ORDER_INVALID,
9262 // Fix up links in section EXIDX headers.
9263 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9264 p != layout->section_list().end();
9266 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9268 Arm_output_section<big_endian>* os =
9269 Arm_output_section<big_endian>::as_arm_output_section(*p);
9270 os->set_exidx_section_link();
9274 // Return whether a direct absolute static relocation needs to be applied.
9275 // In cases where Scan::local() or Scan::global() has created
9276 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9277 // of the relocation is carried in the data, and we must not
9278 // apply the static relocation.
9280 template<bool big_endian>
9282 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9283 const Sized_symbol<32>* gsym,
9284 unsigned int r_type,
9286 Output_section* output_section)
9288 // If the output section is not allocated, then we didn't call
9289 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9291 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9294 int ref_flags = Scan::get_reference_flags(r_type);
9296 // For local symbols, we will have created a non-RELATIVE dynamic
9297 // relocation only if (a) the output is position independent,
9298 // (b) the relocation is absolute (not pc- or segment-relative), and
9299 // (c) the relocation is not 32 bits wide.
9301 return !(parameters->options().output_is_position_independent()
9302 && (ref_flags & Symbol::ABSOLUTE_REF)
9305 // For global symbols, we use the same helper routines used in the
9306 // scan pass. If we did not create a dynamic relocation, or if we
9307 // created a RELATIVE dynamic relocation, we should apply the static
9309 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9310 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9311 && gsym->can_use_relative_reloc(ref_flags
9312 & Symbol::FUNCTION_CALL);
9313 return !has_dyn || is_rel;
9316 // Perform a relocation.
9318 template<bool big_endian>
9320 Target_arm<big_endian>::Relocate::relocate(
9321 const Relocate_info<32, big_endian>* relinfo,
9324 Output_section* output_section,
9326 const unsigned char* preloc,
9327 const Sized_symbol<32>* gsym,
9328 const Symbol_value<32>* psymval,
9329 unsigned char* view,
9330 Arm_address address,
9331 section_size_type view_size)
9336 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9338 const elfcpp::Rel<32, big_endian> rel(preloc);
9339 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
9340 r_type = get_real_reloc_type(r_type);
9341 const Arm_reloc_property* reloc_property =
9342 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9343 if (reloc_property == NULL)
9345 std::string reloc_name =
9346 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9347 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9348 _("cannot relocate %s in object file"),
9349 reloc_name.c_str());
9353 const Arm_relobj<big_endian>* object =
9354 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9356 // If the final branch target of a relocation is THUMB instruction, this
9357 // is 1. Otherwise it is 0.
9358 Arm_address thumb_bit = 0;
9359 Symbol_value<32> symval;
9360 bool is_weakly_undefined_without_plt = false;
9361 bool have_got_offset = false;
9362 unsigned int got_offset = 0;
9364 // If the relocation uses the GOT entry of a symbol instead of the symbol
9365 // itself, we don't care about whether the symbol is defined or what kind
9367 if (reloc_property->uses_got_entry())
9369 // Get the GOT offset.
9370 // The GOT pointer points to the end of the GOT section.
9371 // We need to subtract the size of the GOT section to get
9372 // the actual offset to use in the relocation.
9373 // TODO: We should move GOT offset computing code in TLS relocations
9377 case elfcpp::R_ARM_GOT_BREL:
9378 case elfcpp::R_ARM_GOT_PREL:
9381 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9382 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9383 - target->got_size());
9387 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9388 gold_assert(object->local_has_got_offset(r_sym,
9389 GOT_TYPE_STANDARD));
9390 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9391 - target->got_size());
9393 have_got_offset = true;
9400 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9404 // This is a global symbol. Determine if we use PLT and if the
9405 // final target is THUMB.
9406 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9408 // This uses a PLT, change the symbol value.
9409 symval.set_output_value(target->plt_address_for_global(gsym));
9412 else if (gsym->is_weak_undefined())
9414 // This is a weakly undefined symbol and we do not use PLT
9415 // for this relocation. A branch targeting this symbol will
9416 // be converted into an NOP.
9417 is_weakly_undefined_without_plt = true;
9419 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9421 // This relocation uses the symbol value but the symbol is
9422 // undefined. Exit early and have the caller reporting an
9428 // Set thumb bit if symbol:
9429 // -Has type STT_ARM_TFUNC or
9430 // -Has type STT_FUNC, is defined and with LSB in value set.
9432 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9433 || (gsym->type() == elfcpp::STT_FUNC
9434 && !gsym->is_undefined()
9435 && ((psymval->value(object, 0) & 1) != 0)))
9442 // This is a local symbol. Determine if the final target is THUMB.
9443 // We saved this information when all the local symbols were read.
9444 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9445 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9446 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9448 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9450 symval.set_output_value(
9451 target->plt_address_for_local(object, r_sym));
9458 // This is a fake relocation synthesized for a stub. It does not have
9459 // a real symbol. We just look at the LSB of the symbol value to
9460 // determine if the target is THUMB or not.
9461 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9464 // Strip LSB if this points to a THUMB target.
9466 && reloc_property->uses_thumb_bit()
9467 && ((psymval->value(object, 0) & 1) != 0))
9469 Arm_address stripped_value =
9470 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9471 symval.set_output_value(stripped_value);
9475 // To look up relocation stubs, we need to pass the symbol table index of
9477 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9479 // Get the addressing origin of the output segment defining the
9480 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9481 Arm_address sym_origin = 0;
9482 if (reloc_property->uses_symbol_base())
9484 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9485 // R_ARM_BASE_ABS with the NULL symbol will give the
9486 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9487 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9488 sym_origin = target->got_plt_section()->address();
9489 else if (gsym == NULL)
9491 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9492 sym_origin = gsym->output_segment()->vaddr();
9493 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9494 sym_origin = gsym->output_data()->address();
9496 // TODO: Assumes the segment base to be zero for the global symbols
9497 // till the proper support for the segment-base-relative addressing
9498 // will be implemented. This is consistent with GNU ld.
9501 // For relative addressing relocation, find out the relative address base.
9502 Arm_address relative_address_base = 0;
9503 switch(reloc_property->relative_address_base())
9505 case Arm_reloc_property::RAB_NONE:
9506 // Relocations with relative address bases RAB_TLS and RAB_tp are
9507 // handled by relocate_tls. So we do not need to do anything here.
9508 case Arm_reloc_property::RAB_TLS:
9509 case Arm_reloc_property::RAB_tp:
9511 case Arm_reloc_property::RAB_B_S:
9512 relative_address_base = sym_origin;
9514 case Arm_reloc_property::RAB_GOT_ORG:
9515 relative_address_base = target->got_plt_section()->address();
9517 case Arm_reloc_property::RAB_P:
9518 relative_address_base = address;
9520 case Arm_reloc_property::RAB_Pa:
9521 relative_address_base = address & 0xfffffffcU;
9527 typename Arm_relocate_functions::Status reloc_status =
9528 Arm_relocate_functions::STATUS_OKAY;
9529 bool check_overflow = reloc_property->checks_overflow();
9532 case elfcpp::R_ARM_NONE:
9535 case elfcpp::R_ARM_ABS8:
9536 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9537 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9540 case elfcpp::R_ARM_ABS12:
9541 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9542 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9545 case elfcpp::R_ARM_ABS16:
9546 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9547 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9550 case elfcpp::R_ARM_ABS32:
9551 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9552 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9556 case elfcpp::R_ARM_ABS32_NOI:
9557 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9558 // No thumb bit for this relocation: (S + A)
9559 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9563 case elfcpp::R_ARM_MOVW_ABS_NC:
9564 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9565 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9570 case elfcpp::R_ARM_MOVT_ABS:
9571 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9572 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9575 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9576 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9577 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9578 0, thumb_bit, false);
9581 case elfcpp::R_ARM_THM_MOVT_ABS:
9582 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9583 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9587 case elfcpp::R_ARM_MOVW_PREL_NC:
9588 case elfcpp::R_ARM_MOVW_BREL_NC:
9589 case elfcpp::R_ARM_MOVW_BREL:
9591 Arm_relocate_functions::movw(view, object, psymval,
9592 relative_address_base, thumb_bit,
9596 case elfcpp::R_ARM_MOVT_PREL:
9597 case elfcpp::R_ARM_MOVT_BREL:
9599 Arm_relocate_functions::movt(view, object, psymval,
9600 relative_address_base);
9603 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9604 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9605 case elfcpp::R_ARM_THM_MOVW_BREL:
9607 Arm_relocate_functions::thm_movw(view, object, psymval,
9608 relative_address_base,
9609 thumb_bit, check_overflow);
9612 case elfcpp::R_ARM_THM_MOVT_PREL:
9613 case elfcpp::R_ARM_THM_MOVT_BREL:
9615 Arm_relocate_functions::thm_movt(view, object, psymval,
9616 relative_address_base);
9619 case elfcpp::R_ARM_REL32:
9620 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9621 address, thumb_bit);
9624 case elfcpp::R_ARM_THM_ABS5:
9625 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9626 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9629 // Thumb long branches.
9630 case elfcpp::R_ARM_THM_CALL:
9631 case elfcpp::R_ARM_THM_XPC22:
9632 case elfcpp::R_ARM_THM_JUMP24:
9634 Arm_relocate_functions::thumb_branch_common(
9635 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9636 thumb_bit, is_weakly_undefined_without_plt);
9639 case elfcpp::R_ARM_GOTOFF32:
9641 Arm_address got_origin;
9642 got_origin = target->got_plt_section()->address();
9643 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9644 got_origin, thumb_bit);
9648 case elfcpp::R_ARM_BASE_PREL:
9649 gold_assert(gsym != NULL);
9651 Arm_relocate_functions::base_prel(view, sym_origin, address);
9654 case elfcpp::R_ARM_BASE_ABS:
9655 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9656 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9659 case elfcpp::R_ARM_GOT_BREL:
9660 gold_assert(have_got_offset);
9661 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9664 case elfcpp::R_ARM_GOT_PREL:
9665 gold_assert(have_got_offset);
9666 // Get the address origin for GOT PLT, which is allocated right
9667 // after the GOT section, to calculate an absolute address of
9668 // the symbol GOT entry (got_origin + got_offset).
9669 Arm_address got_origin;
9670 got_origin = target->got_plt_section()->address();
9671 reloc_status = Arm_relocate_functions::got_prel(view,
9672 got_origin + got_offset,
9676 case elfcpp::R_ARM_PLT32:
9677 case elfcpp::R_ARM_CALL:
9678 case elfcpp::R_ARM_JUMP24:
9679 case elfcpp::R_ARM_XPC25:
9680 gold_assert(gsym == NULL
9681 || gsym->has_plt_offset()
9682 || gsym->final_value_is_known()
9683 || (gsym->is_defined()
9684 && !gsym->is_from_dynobj()
9685 && !gsym->is_preemptible()));
9687 Arm_relocate_functions::arm_branch_common(
9688 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9689 thumb_bit, is_weakly_undefined_without_plt);
9692 case elfcpp::R_ARM_THM_JUMP19:
9694 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9698 case elfcpp::R_ARM_THM_JUMP6:
9700 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9703 case elfcpp::R_ARM_THM_JUMP8:
9705 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9708 case elfcpp::R_ARM_THM_JUMP11:
9710 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9713 case elfcpp::R_ARM_PREL31:
9714 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9715 address, thumb_bit);
9718 case elfcpp::R_ARM_V4BX:
9719 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9721 const bool is_v4bx_interworking =
9722 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9724 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9725 is_v4bx_interworking);
9729 case elfcpp::R_ARM_THM_PC8:
9731 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9734 case elfcpp::R_ARM_THM_PC12:
9736 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9739 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9741 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9745 case elfcpp::R_ARM_ALU_PC_G0_NC:
9746 case elfcpp::R_ARM_ALU_PC_G0:
9747 case elfcpp::R_ARM_ALU_PC_G1_NC:
9748 case elfcpp::R_ARM_ALU_PC_G1:
9749 case elfcpp::R_ARM_ALU_PC_G2:
9750 case elfcpp::R_ARM_ALU_SB_G0_NC:
9751 case elfcpp::R_ARM_ALU_SB_G0:
9752 case elfcpp::R_ARM_ALU_SB_G1_NC:
9753 case elfcpp::R_ARM_ALU_SB_G1:
9754 case elfcpp::R_ARM_ALU_SB_G2:
9756 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9757 reloc_property->group_index(),
9758 relative_address_base,
9759 thumb_bit, check_overflow);
9762 case elfcpp::R_ARM_LDR_PC_G0:
9763 case elfcpp::R_ARM_LDR_PC_G1:
9764 case elfcpp::R_ARM_LDR_PC_G2:
9765 case elfcpp::R_ARM_LDR_SB_G0:
9766 case elfcpp::R_ARM_LDR_SB_G1:
9767 case elfcpp::R_ARM_LDR_SB_G2:
9769 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9770 reloc_property->group_index(),
9771 relative_address_base);
9774 case elfcpp::R_ARM_LDRS_PC_G0:
9775 case elfcpp::R_ARM_LDRS_PC_G1:
9776 case elfcpp::R_ARM_LDRS_PC_G2:
9777 case elfcpp::R_ARM_LDRS_SB_G0:
9778 case elfcpp::R_ARM_LDRS_SB_G1:
9779 case elfcpp::R_ARM_LDRS_SB_G2:
9781 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9782 reloc_property->group_index(),
9783 relative_address_base);
9786 case elfcpp::R_ARM_LDC_PC_G0:
9787 case elfcpp::R_ARM_LDC_PC_G1:
9788 case elfcpp::R_ARM_LDC_PC_G2:
9789 case elfcpp::R_ARM_LDC_SB_G0:
9790 case elfcpp::R_ARM_LDC_SB_G1:
9791 case elfcpp::R_ARM_LDC_SB_G2:
9793 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9794 reloc_property->group_index(),
9795 relative_address_base);
9798 // These are initial tls relocs, which are expected when
9800 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9801 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9802 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9803 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9804 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9806 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9807 view, address, view_size);
9810 // The known and unknown unsupported and/or deprecated relocations.
9811 case elfcpp::R_ARM_PC24:
9812 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9813 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9814 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9816 // Just silently leave the method. We should get an appropriate error
9817 // message in the scan methods.
9821 // Report any errors.
9822 switch (reloc_status)
9824 case Arm_relocate_functions::STATUS_OKAY:
9826 case Arm_relocate_functions::STATUS_OVERFLOW:
9827 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9828 _("relocation overflow in %s"),
9829 reloc_property->name().c_str());
9831 case Arm_relocate_functions::STATUS_BAD_RELOC:
9832 gold_error_at_location(
9836 _("unexpected opcode while processing relocation %s"),
9837 reloc_property->name().c_str());
9846 // Perform a TLS relocation.
9848 template<bool big_endian>
9849 inline typename Arm_relocate_functions<big_endian>::Status
9850 Target_arm<big_endian>::Relocate::relocate_tls(
9851 const Relocate_info<32, big_endian>* relinfo,
9852 Target_arm<big_endian>* target,
9854 const elfcpp::Rel<32, big_endian>& rel,
9855 unsigned int r_type,
9856 const Sized_symbol<32>* gsym,
9857 const Symbol_value<32>* psymval,
9858 unsigned char* view,
9859 elfcpp::Elf_types<32>::Elf_Addr address,
9860 section_size_type /*view_size*/ )
9862 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9863 typedef Relocate_functions<32, big_endian> RelocFuncs;
9864 Output_segment* tls_segment = relinfo->layout->tls_segment();
9866 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9868 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9870 const bool is_final = (gsym == NULL
9871 ? !parameters->options().shared()
9872 : gsym->final_value_is_known());
9873 const tls::Tls_optimization optimized_type
9874 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9877 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9879 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9880 unsigned int got_offset;
9883 gold_assert(gsym->has_got_offset(got_type));
9884 got_offset = gsym->got_offset(got_type) - target->got_size();
9888 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9889 gold_assert(object->local_has_got_offset(r_sym, got_type));
9890 got_offset = (object->local_got_offset(r_sym, got_type)
9891 - target->got_size());
9893 if (optimized_type == tls::TLSOPT_NONE)
9895 Arm_address got_entry =
9896 target->got_plt_section()->address() + got_offset;
9898 // Relocate the field with the PC relative offset of the pair of
9900 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9901 return ArmRelocFuncs::STATUS_OKAY;
9906 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9907 if (optimized_type == tls::TLSOPT_NONE)
9909 // Relocate the field with the offset of the GOT entry for
9910 // the module index.
9911 unsigned int got_offset;
9912 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9913 - target->got_size());
9914 Arm_address got_entry =
9915 target->got_plt_section()->address() + got_offset;
9917 // Relocate the field with the PC relative offset of the pair of
9919 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9920 return ArmRelocFuncs::STATUS_OKAY;
9924 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9925 RelocFuncs::rel32_unaligned(view, value);
9926 return ArmRelocFuncs::STATUS_OKAY;
9928 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9929 if (optimized_type == tls::TLSOPT_NONE)
9931 // Relocate the field with the offset of the GOT entry for
9932 // the tp-relative offset of the symbol.
9933 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9934 unsigned int got_offset;
9937 gold_assert(gsym->has_got_offset(got_type));
9938 got_offset = gsym->got_offset(got_type);
9942 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9943 gold_assert(object->local_has_got_offset(r_sym, got_type));
9944 got_offset = object->local_got_offset(r_sym, got_type);
9947 // All GOT offsets are relative to the end of the GOT.
9948 got_offset -= target->got_size();
9950 Arm_address got_entry =
9951 target->got_plt_section()->address() + got_offset;
9953 // Relocate the field with the PC relative offset of the GOT entry.
9954 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9955 return ArmRelocFuncs::STATUS_OKAY;
9959 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9960 // If we're creating a shared library, a dynamic relocation will
9961 // have been created for this location, so do not apply it now.
9962 if (!parameters->options().shared())
9964 gold_assert(tls_segment != NULL);
9966 // $tp points to the TCB, which is followed by the TLS, so we
9967 // need to add TCB size to the offset.
9968 Arm_address aligned_tcb_size =
9969 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9970 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9973 return ArmRelocFuncs::STATUS_OKAY;
9979 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9980 _("unsupported reloc %u"),
9982 return ArmRelocFuncs::STATUS_BAD_RELOC;
9985 // Relocate section data.
9987 template<bool big_endian>
9989 Target_arm<big_endian>::relocate_section(
9990 const Relocate_info<32, big_endian>* relinfo,
9991 unsigned int sh_type,
9992 const unsigned char* prelocs,
9994 Output_section* output_section,
9995 bool needs_special_offset_handling,
9996 unsigned char* view,
9997 Arm_address address,
9998 section_size_type view_size,
9999 const Reloc_symbol_changes* reloc_symbol_changes)
10001 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10002 gold_assert(sh_type == elfcpp::SHT_REL);
10004 // See if we are relocating a relaxed input section. If so, the view
10005 // covers the whole output section and we need to adjust accordingly.
10006 if (needs_special_offset_handling)
10008 const Output_relaxed_input_section* poris =
10009 output_section->find_relaxed_input_section(relinfo->object,
10010 relinfo->data_shndx);
10013 Arm_address section_address = poris->address();
10014 section_size_type section_size = poris->data_size();
10016 gold_assert((section_address >= address)
10017 && ((section_address + section_size)
10018 <= (address + view_size)));
10020 off_t offset = section_address - address;
10023 view_size = section_size;
10027 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
10028 Arm_relocate, gold::Default_comdat_behavior>(
10034 needs_special_offset_handling,
10038 reloc_symbol_changes);
10041 // Return the size of a relocation while scanning during a relocatable
10044 template<bool big_endian>
10046 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10047 unsigned int r_type,
10050 r_type = get_real_reloc_type(r_type);
10051 const Arm_reloc_property* arp =
10052 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10054 return arp->size();
10057 std::string reloc_name =
10058 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10059 gold_error(_("%s: unexpected %s in object file"),
10060 object->name().c_str(), reloc_name.c_str());
10065 // Scan the relocs during a relocatable link.
10067 template<bool big_endian>
10069 Target_arm<big_endian>::scan_relocatable_relocs(
10070 Symbol_table* symtab,
10072 Sized_relobj_file<32, big_endian>* object,
10073 unsigned int data_shndx,
10074 unsigned int sh_type,
10075 const unsigned char* prelocs,
10076 size_t reloc_count,
10077 Output_section* output_section,
10078 bool needs_special_offset_handling,
10079 size_t local_symbol_count,
10080 const unsigned char* plocal_symbols,
10081 Relocatable_relocs* rr)
10083 gold_assert(sh_type == elfcpp::SHT_REL);
10085 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
10086 Relocatable_size_for_reloc> Scan_relocatable_relocs;
10088 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10089 Scan_relocatable_relocs>(
10097 needs_special_offset_handling,
10098 local_symbol_count,
10103 // Emit relocations for a section.
10105 template<bool big_endian>
10107 Target_arm<big_endian>::relocate_relocs(
10108 const Relocate_info<32, big_endian>* relinfo,
10109 unsigned int sh_type,
10110 const unsigned char* prelocs,
10111 size_t reloc_count,
10112 Output_section* output_section,
10113 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10114 unsigned char* view,
10115 Arm_address view_address,
10116 section_size_type view_size,
10117 unsigned char* reloc_view,
10118 section_size_type reloc_view_size)
10120 gold_assert(sh_type == elfcpp::SHT_REL);
10122 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
10127 offset_in_output_section,
10135 // Perform target-specific processing in a relocatable link. This is
10136 // only used if we use the relocation strategy RELOC_SPECIAL.
10138 template<bool big_endian>
10140 Target_arm<big_endian>::relocate_special_relocatable(
10141 const Relocate_info<32, big_endian>* relinfo,
10142 unsigned int sh_type,
10143 const unsigned char* preloc_in,
10145 Output_section* output_section,
10146 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10147 unsigned char* view,
10148 elfcpp::Elf_types<32>::Elf_Addr view_address,
10150 unsigned char* preloc_out)
10152 // We can only handle REL type relocation sections.
10153 gold_assert(sh_type == elfcpp::SHT_REL);
10155 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10156 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10158 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10160 const Arm_relobj<big_endian>* object =
10161 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10162 const unsigned int local_count = object->local_symbol_count();
10164 Reltype reloc(preloc_in);
10165 Reltype_write reloc_write(preloc_out);
10167 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10168 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10169 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10171 const Arm_reloc_property* arp =
10172 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10173 gold_assert(arp != NULL);
10175 // Get the new symbol index.
10176 // We only use RELOC_SPECIAL strategy in local relocations.
10177 gold_assert(r_sym < local_count);
10179 // We are adjusting a section symbol. We need to find
10180 // the symbol table index of the section symbol for
10181 // the output section corresponding to input section
10182 // in which this symbol is defined.
10184 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10185 gold_assert(is_ordinary);
10186 Output_section* os = object->output_section(shndx);
10187 gold_assert(os != NULL);
10188 gold_assert(os->needs_symtab_index());
10189 unsigned int new_symndx = os->symtab_index();
10191 // Get the new offset--the location in the output section where
10192 // this relocation should be applied.
10194 Arm_address offset = reloc.get_r_offset();
10195 Arm_address new_offset;
10196 if (offset_in_output_section != invalid_address)
10197 new_offset = offset + offset_in_output_section;
10200 section_offset_type sot_offset =
10201 convert_types<section_offset_type, Arm_address>(offset);
10202 section_offset_type new_sot_offset =
10203 output_section->output_offset(object, relinfo->data_shndx,
10205 gold_assert(new_sot_offset != -1);
10206 new_offset = new_sot_offset;
10209 // In an object file, r_offset is an offset within the section.
10210 // In an executable or dynamic object, generated by
10211 // --emit-relocs, r_offset is an absolute address.
10212 if (!parameters->options().relocatable())
10214 new_offset += view_address;
10215 if (offset_in_output_section != invalid_address)
10216 new_offset -= offset_in_output_section;
10219 reloc_write.put_r_offset(new_offset);
10220 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10222 // Handle the reloc addend.
10223 // The relocation uses a section symbol in the input file.
10224 // We are adjusting it to use a section symbol in the output
10225 // file. The input section symbol refers to some address in
10226 // the input section. We need the relocation in the output
10227 // file to refer to that same address. This adjustment to
10228 // the addend is the same calculation we use for a simple
10229 // absolute relocation for the input section symbol.
10231 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10233 // Handle THUMB bit.
10234 Symbol_value<32> symval;
10235 Arm_address thumb_bit =
10236 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10238 && arp->uses_thumb_bit()
10239 && ((psymval->value(object, 0) & 1) != 0))
10241 Arm_address stripped_value =
10242 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10243 symval.set_output_value(stripped_value);
10247 unsigned char* paddend = view + offset;
10248 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10249 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10252 case elfcpp::R_ARM_ABS8:
10253 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10257 case elfcpp::R_ARM_ABS12:
10258 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10262 case elfcpp::R_ARM_ABS16:
10263 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10267 case elfcpp::R_ARM_THM_ABS5:
10268 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10273 case elfcpp::R_ARM_MOVW_ABS_NC:
10274 case elfcpp::R_ARM_MOVW_PREL_NC:
10275 case elfcpp::R_ARM_MOVW_BREL_NC:
10276 case elfcpp::R_ARM_MOVW_BREL:
10277 reloc_status = Arm_relocate_functions<big_endian>::movw(
10278 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10281 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10282 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10283 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10284 case elfcpp::R_ARM_THM_MOVW_BREL:
10285 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10286 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10289 case elfcpp::R_ARM_THM_CALL:
10290 case elfcpp::R_ARM_THM_XPC22:
10291 case elfcpp::R_ARM_THM_JUMP24:
10293 Arm_relocate_functions<big_endian>::thumb_branch_common(
10294 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10298 case elfcpp::R_ARM_PLT32:
10299 case elfcpp::R_ARM_CALL:
10300 case elfcpp::R_ARM_JUMP24:
10301 case elfcpp::R_ARM_XPC25:
10303 Arm_relocate_functions<big_endian>::arm_branch_common(
10304 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10308 case elfcpp::R_ARM_THM_JUMP19:
10310 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10311 psymval, 0, thumb_bit);
10314 case elfcpp::R_ARM_THM_JUMP6:
10316 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10320 case elfcpp::R_ARM_THM_JUMP8:
10322 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10326 case elfcpp::R_ARM_THM_JUMP11:
10328 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10332 case elfcpp::R_ARM_PREL31:
10334 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10338 case elfcpp::R_ARM_THM_PC8:
10340 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10344 case elfcpp::R_ARM_THM_PC12:
10346 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10350 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10352 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10356 // These relocation truncate relocation results so we cannot handle them
10357 // in a relocatable link.
10358 case elfcpp::R_ARM_MOVT_ABS:
10359 case elfcpp::R_ARM_THM_MOVT_ABS:
10360 case elfcpp::R_ARM_MOVT_PREL:
10361 case elfcpp::R_ARM_MOVT_BREL:
10362 case elfcpp::R_ARM_THM_MOVT_PREL:
10363 case elfcpp::R_ARM_THM_MOVT_BREL:
10364 case elfcpp::R_ARM_ALU_PC_G0_NC:
10365 case elfcpp::R_ARM_ALU_PC_G0:
10366 case elfcpp::R_ARM_ALU_PC_G1_NC:
10367 case elfcpp::R_ARM_ALU_PC_G1:
10368 case elfcpp::R_ARM_ALU_PC_G2:
10369 case elfcpp::R_ARM_ALU_SB_G0_NC:
10370 case elfcpp::R_ARM_ALU_SB_G0:
10371 case elfcpp::R_ARM_ALU_SB_G1_NC:
10372 case elfcpp::R_ARM_ALU_SB_G1:
10373 case elfcpp::R_ARM_ALU_SB_G2:
10374 case elfcpp::R_ARM_LDR_PC_G0:
10375 case elfcpp::R_ARM_LDR_PC_G1:
10376 case elfcpp::R_ARM_LDR_PC_G2:
10377 case elfcpp::R_ARM_LDR_SB_G0:
10378 case elfcpp::R_ARM_LDR_SB_G1:
10379 case elfcpp::R_ARM_LDR_SB_G2:
10380 case elfcpp::R_ARM_LDRS_PC_G0:
10381 case elfcpp::R_ARM_LDRS_PC_G1:
10382 case elfcpp::R_ARM_LDRS_PC_G2:
10383 case elfcpp::R_ARM_LDRS_SB_G0:
10384 case elfcpp::R_ARM_LDRS_SB_G1:
10385 case elfcpp::R_ARM_LDRS_SB_G2:
10386 case elfcpp::R_ARM_LDC_PC_G0:
10387 case elfcpp::R_ARM_LDC_PC_G1:
10388 case elfcpp::R_ARM_LDC_PC_G2:
10389 case elfcpp::R_ARM_LDC_SB_G0:
10390 case elfcpp::R_ARM_LDC_SB_G1:
10391 case elfcpp::R_ARM_LDC_SB_G2:
10392 gold_error(_("cannot handle %s in a relocatable link"),
10393 arp->name().c_str());
10397 gold_unreachable();
10400 // Report any errors.
10401 switch (reloc_status)
10403 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10405 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10406 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10407 _("relocation overflow in %s"),
10408 arp->name().c_str());
10410 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10411 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10412 _("unexpected opcode while processing relocation %s"),
10413 arp->name().c_str());
10416 gold_unreachable();
10420 // Return the value to use for a dynamic symbol which requires special
10421 // treatment. This is how we support equality comparisons of function
10422 // pointers across shared library boundaries, as described in the
10423 // processor specific ABI supplement.
10425 template<bool big_endian>
10427 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10429 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10430 return this->plt_address_for_global(gsym);
10433 // Map platform-specific relocs to real relocs
10435 template<bool big_endian>
10437 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10441 case elfcpp::R_ARM_TARGET1:
10442 // This is either R_ARM_ABS32 or R_ARM_REL32;
10443 return elfcpp::R_ARM_ABS32;
10445 case elfcpp::R_ARM_TARGET2:
10446 // This can be any reloc type but usually is R_ARM_GOT_PREL
10447 return elfcpp::R_ARM_GOT_PREL;
10454 // Whether if two EABI versions V1 and V2 are compatible.
10456 template<bool big_endian>
10458 Target_arm<big_endian>::are_eabi_versions_compatible(
10459 elfcpp::Elf_Word v1,
10460 elfcpp::Elf_Word v2)
10462 // v4 and v5 are the same spec before and after it was released,
10463 // so allow mixing them.
10464 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10465 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10466 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10472 // Combine FLAGS from an input object called NAME and the processor-specific
10473 // flags in the ELF header of the output. Much of this is adapted from the
10474 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10475 // in bfd/elf32-arm.c.
10477 template<bool big_endian>
10479 Target_arm<big_endian>::merge_processor_specific_flags(
10480 const std::string& name,
10481 elfcpp::Elf_Word flags)
10483 if (this->are_processor_specific_flags_set())
10485 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10487 // Nothing to merge if flags equal to those in output.
10488 if (flags == out_flags)
10491 // Complain about various flag mismatches.
10492 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10493 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10494 if (!this->are_eabi_versions_compatible(version1, version2)
10495 && parameters->options().warn_mismatch())
10496 gold_error(_("Source object %s has EABI version %d but output has "
10497 "EABI version %d."),
10499 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10500 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10504 // If the input is the default architecture and had the default
10505 // flags then do not bother setting the flags for the output
10506 // architecture, instead allow future merges to do this. If no
10507 // future merges ever set these flags then they will retain their
10508 // uninitialised values, which surprise surprise, correspond
10509 // to the default values.
10513 // This is the first time, just copy the flags.
10514 // We only copy the EABI version for now.
10515 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10519 // Adjust ELF file header.
10520 template<bool big_endian>
10522 Target_arm<big_endian>::do_adjust_elf_header(
10523 unsigned char* view,
10526 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10528 elfcpp::Ehdr<32, big_endian> ehdr(view);
10529 elfcpp::Elf_Word flags = this->processor_specific_flags();
10530 unsigned char e_ident[elfcpp::EI_NIDENT];
10531 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10533 if (elfcpp::arm_eabi_version(flags)
10534 == elfcpp::EF_ARM_EABI_UNKNOWN)
10535 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10537 e_ident[elfcpp::EI_OSABI] = 0;
10538 e_ident[elfcpp::EI_ABIVERSION] = 0;
10540 // FIXME: Do EF_ARM_BE8 adjustment.
10542 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10544 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10546 elfcpp::Elf_Half type = ehdr.get_e_type();
10547 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10549 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10550 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10551 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10553 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10554 this->set_processor_specific_flags(flags);
10557 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10558 oehdr.put_e_ident(e_ident);
10559 oehdr.put_e_flags(this->processor_specific_flags());
10562 // do_make_elf_object to override the same function in the base class.
10563 // We need to use a target-specific sub-class of
10564 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10565 // Hence we need to have our own ELF object creation.
10567 template<bool big_endian>
10569 Target_arm<big_endian>::do_make_elf_object(
10570 const std::string& name,
10571 Input_file* input_file,
10572 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10574 int et = ehdr.get_e_type();
10575 // ET_EXEC files are valid input for --just-symbols/-R,
10576 // and we treat them as relocatable objects.
10577 if (et == elfcpp::ET_REL
10578 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10580 Arm_relobj<big_endian>* obj =
10581 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10585 else if (et == elfcpp::ET_DYN)
10587 Sized_dynobj<32, big_endian>* obj =
10588 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10594 gold_error(_("%s: unsupported ELF file type %d"),
10600 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10601 // Returns -1 if no architecture could be read.
10602 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10604 template<bool big_endian>
10606 Target_arm<big_endian>::get_secondary_compatible_arch(
10607 const Attributes_section_data* pasd)
10609 const Object_attribute* known_attributes =
10610 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10612 // Note: the tag and its argument below are uleb128 values, though
10613 // currently-defined values fit in one byte for each.
10614 const std::string& sv =
10615 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10617 && sv.data()[0] == elfcpp::Tag_CPU_arch
10618 && (sv.data()[1] & 128) != 128)
10619 return sv.data()[1];
10621 // This tag is "safely ignorable", so don't complain if it looks funny.
10625 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10626 // The tag is removed if ARCH is -1.
10627 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10629 template<bool big_endian>
10631 Target_arm<big_endian>::set_secondary_compatible_arch(
10632 Attributes_section_data* pasd,
10635 Object_attribute* known_attributes =
10636 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10640 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10644 // Note: the tag and its argument below are uleb128 values, though
10645 // currently-defined values fit in one byte for each.
10647 sv[0] = elfcpp::Tag_CPU_arch;
10648 gold_assert(arch != 0);
10652 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10655 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10657 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10659 template<bool big_endian>
10661 Target_arm<big_endian>::tag_cpu_arch_combine(
10664 int* secondary_compat_out,
10666 int secondary_compat)
10668 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10669 static const int v6t2[] =
10671 T(V6T2), // PRE_V4.
10681 static const int v6k[] =
10694 static const int v7[] =
10708 static const int v6_m[] =
10723 static const int v6s_m[] =
10739 static const int v7e_m[] =
10746 T(V7E_M), // V5TEJ.
10753 T(V7E_M), // V6S_M.
10756 static const int v8[] =
10774 static const int v4t_plus_v6_m[] =
10781 T(V5TEJ), // V5TEJ.
10788 T(V6S_M), // V6S_M.
10789 T(V7E_M), // V7E_M.
10791 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10793 static const int* comb[] =
10802 // Pseudo-architecture.
10806 // Check we've not got a higher architecture than we know about.
10808 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10810 gold_error(_("%s: unknown CPU architecture"), name);
10814 // Override old tag if we have a Tag_also_compatible_with on the output.
10816 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10817 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10818 oldtag = T(V4T_PLUS_V6_M);
10820 // And override the new tag if we have a Tag_also_compatible_with on the
10823 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10824 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10825 newtag = T(V4T_PLUS_V6_M);
10827 // Architectures before V6KZ add features monotonically.
10828 int tagh = std::max(oldtag, newtag);
10829 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10832 int tagl = std::min(oldtag, newtag);
10833 int result = comb[tagh - T(V6T2)][tagl];
10835 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10836 // as the canonical version.
10837 if (result == T(V4T_PLUS_V6_M))
10840 *secondary_compat_out = T(V6_M);
10843 *secondary_compat_out = -1;
10847 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10848 name, oldtag, newtag);
10856 // Helper to print AEABI enum tag value.
10858 template<bool big_endian>
10860 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10862 static const char* aeabi_enum_names[] =
10863 { "", "variable-size", "32-bit", "" };
10864 const size_t aeabi_enum_names_size =
10865 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10867 if (value < aeabi_enum_names_size)
10868 return std::string(aeabi_enum_names[value]);
10872 sprintf(buffer, "<unknown value %u>", value);
10873 return std::string(buffer);
10877 // Return the string value to store in TAG_CPU_name.
10879 template<bool big_endian>
10881 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10883 static const char* name_table[] = {
10884 // These aren't real CPU names, but we can't guess
10885 // that from the architecture version alone.
10902 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10904 if (value < name_table_size)
10905 return std::string(name_table[value]);
10909 sprintf(buffer, "<unknown CPU value %u>", value);
10910 return std::string(buffer);
10914 // Query attributes object to see if integer divide instructions may be
10915 // present in an object.
10917 template<bool big_endian>
10919 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10920 const Object_attribute* div_attr)
10922 switch (div_attr->int_value())
10925 // Integer divide allowed if instruction contained in
10927 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10929 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10935 // Integer divide explicitly prohibited.
10939 // Unrecognised case - treat as allowing divide everywhere.
10941 // Integer divide allowed in ARM state.
10946 // Query attributes object to see if integer divide instructions are
10947 // forbidden to be in the object. This is not the inverse of
10948 // attributes_accept_div.
10950 template<bool big_endian>
10952 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10954 return div_attr->int_value() == 1;
10957 // Merge object attributes from input file called NAME with those of the
10958 // output. The input object attributes are in the object pointed by PASD.
10960 template<bool big_endian>
10962 Target_arm<big_endian>::merge_object_attributes(
10964 const Attributes_section_data* pasd)
10966 // Return if there is no attributes section data.
10970 // If output has no object attributes, just copy.
10971 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10972 if (this->attributes_section_data_ == NULL)
10974 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10975 Object_attribute* out_attr =
10976 this->attributes_section_data_->known_attributes(vendor);
10978 // We do not output objects with Tag_MPextension_use_legacy - we move
10979 // the attribute's value to Tag_MPextension_use. */
10980 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10982 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10983 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10984 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10986 gold_error(_("%s has both the current and legacy "
10987 "Tag_MPextension_use attributes"),
10991 out_attr[elfcpp::Tag_MPextension_use] =
10992 out_attr[elfcpp::Tag_MPextension_use_legacy];
10993 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10994 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11000 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11001 Object_attribute* out_attr =
11002 this->attributes_section_data_->known_attributes(vendor);
11004 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11005 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11006 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11008 // Ignore mismatches if the object doesn't use floating point. */
11009 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11010 == elfcpp::AEABI_FP_number_model_none
11011 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11012 != elfcpp::AEABI_FP_number_model_none
11013 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11014 == elfcpp::AEABI_VFP_args_compatible))
11015 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11016 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11017 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11018 != elfcpp::AEABI_FP_number_model_none
11019 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11020 != elfcpp::AEABI_VFP_args_compatible
11021 && parameters->options().warn_mismatch())
11022 gold_error(_("%s uses VFP register arguments, output does not"),
11026 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11028 // Merge this attribute with existing attributes.
11031 case elfcpp::Tag_CPU_raw_name:
11032 case elfcpp::Tag_CPU_name:
11033 // These are merged after Tag_CPU_arch.
11036 case elfcpp::Tag_ABI_optimization_goals:
11037 case elfcpp::Tag_ABI_FP_optimization_goals:
11038 // Use the first value seen.
11041 case elfcpp::Tag_CPU_arch:
11043 unsigned int saved_out_attr = out_attr->int_value();
11044 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11045 int secondary_compat =
11046 this->get_secondary_compatible_arch(pasd);
11047 int secondary_compat_out =
11048 this->get_secondary_compatible_arch(
11049 this->attributes_section_data_);
11050 out_attr[i].set_int_value(
11051 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11052 &secondary_compat_out,
11053 in_attr[i].int_value(),
11054 secondary_compat));
11055 this->set_secondary_compatible_arch(this->attributes_section_data_,
11056 secondary_compat_out);
11058 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11059 if (out_attr[i].int_value() == saved_out_attr)
11060 ; // Leave the names alone.
11061 else if (out_attr[i].int_value() == in_attr[i].int_value())
11063 // The output architecture has been changed to match the
11064 // input architecture. Use the input names.
11065 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11066 in_attr[elfcpp::Tag_CPU_name].string_value());
11067 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11068 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11072 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11073 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11076 // If we still don't have a value for Tag_CPU_name,
11077 // make one up now. Tag_CPU_raw_name remains blank.
11078 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11080 const std::string cpu_name =
11081 this->tag_cpu_name_value(out_attr[i].int_value());
11082 // FIXME: If we see an unknown CPU, this will be set
11083 // to "<unknown CPU n>", where n is the attribute value.
11084 // This is different from BFD, which leaves the name alone.
11085 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11090 case elfcpp::Tag_ARM_ISA_use:
11091 case elfcpp::Tag_THUMB_ISA_use:
11092 case elfcpp::Tag_WMMX_arch:
11093 case elfcpp::Tag_Advanced_SIMD_arch:
11094 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11095 case elfcpp::Tag_ABI_FP_rounding:
11096 case elfcpp::Tag_ABI_FP_exceptions:
11097 case elfcpp::Tag_ABI_FP_user_exceptions:
11098 case elfcpp::Tag_ABI_FP_number_model:
11099 case elfcpp::Tag_VFP_HP_extension:
11100 case elfcpp::Tag_CPU_unaligned_access:
11101 case elfcpp::Tag_T2EE_use:
11102 case elfcpp::Tag_Virtualization_use:
11103 case elfcpp::Tag_MPextension_use:
11104 // Use the largest value specified.
11105 if (in_attr[i].int_value() > out_attr[i].int_value())
11106 out_attr[i].set_int_value(in_attr[i].int_value());
11109 case elfcpp::Tag_ABI_align8_preserved:
11110 case elfcpp::Tag_ABI_PCS_RO_data:
11111 // Use the smallest value specified.
11112 if (in_attr[i].int_value() < out_attr[i].int_value())
11113 out_attr[i].set_int_value(in_attr[i].int_value());
11116 case elfcpp::Tag_ABI_align8_needed:
11117 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11118 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11119 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11122 // This error message should be enabled once all non-conforming
11123 // binaries in the toolchain have had the attributes set
11125 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11129 case elfcpp::Tag_ABI_FP_denormal:
11130 case elfcpp::Tag_ABI_PCS_GOT_use:
11132 // These tags have 0 = don't care, 1 = strong requirement,
11133 // 2 = weak requirement.
11134 static const int order_021[3] = {0, 2, 1};
11136 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11137 // value if greater than 2 (for future-proofing).
11138 if ((in_attr[i].int_value() > 2
11139 && in_attr[i].int_value() > out_attr[i].int_value())
11140 || (in_attr[i].int_value() <= 2
11141 && out_attr[i].int_value() <= 2
11142 && (order_021[in_attr[i].int_value()]
11143 > order_021[out_attr[i].int_value()])))
11144 out_attr[i].set_int_value(in_attr[i].int_value());
11148 case elfcpp::Tag_CPU_arch_profile:
11149 if (out_attr[i].int_value() != in_attr[i].int_value())
11151 // 0 will merge with anything.
11152 // 'A' and 'S' merge to 'A'.
11153 // 'R' and 'S' merge to 'R'.
11154 // 'M' and 'A|R|S' is an error.
11155 if (out_attr[i].int_value() == 0
11156 || (out_attr[i].int_value() == 'S'
11157 && (in_attr[i].int_value() == 'A'
11158 || in_attr[i].int_value() == 'R')))
11159 out_attr[i].set_int_value(in_attr[i].int_value());
11160 else if (in_attr[i].int_value() == 0
11161 || (in_attr[i].int_value() == 'S'
11162 && (out_attr[i].int_value() == 'A'
11163 || out_attr[i].int_value() == 'R')))
11165 else if (parameters->options().warn_mismatch())
11168 (_("conflicting architecture profiles %c/%c"),
11169 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11170 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11174 case elfcpp::Tag_VFP_arch:
11176 static const struct
11180 } vfp_versions[7] =
11191 // Values greater than 6 aren't defined, so just pick the
11193 if (in_attr[i].int_value() > 6
11194 && in_attr[i].int_value() > out_attr[i].int_value())
11196 *out_attr = *in_attr;
11199 // The output uses the superset of input features
11200 // (ISA version) and registers.
11201 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11202 vfp_versions[out_attr[i].int_value()].ver);
11203 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11204 vfp_versions[out_attr[i].int_value()].regs);
11205 // This assumes all possible supersets are also a valid
11208 for (newval = 6; newval > 0; newval--)
11210 if (regs == vfp_versions[newval].regs
11211 && ver == vfp_versions[newval].ver)
11214 out_attr[i].set_int_value(newval);
11217 case elfcpp::Tag_PCS_config:
11218 if (out_attr[i].int_value() == 0)
11219 out_attr[i].set_int_value(in_attr[i].int_value());
11220 else if (in_attr[i].int_value() != 0
11221 && out_attr[i].int_value() != 0
11222 && parameters->options().warn_mismatch())
11224 // It's sometimes ok to mix different configs, so this is only
11226 gold_warning(_("%s: conflicting platform configuration"), name);
11229 case elfcpp::Tag_ABI_PCS_R9_use:
11230 if (in_attr[i].int_value() != out_attr[i].int_value()
11231 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11232 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11233 && parameters->options().warn_mismatch())
11235 gold_error(_("%s: conflicting use of R9"), name);
11237 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11238 out_attr[i].set_int_value(in_attr[i].int_value());
11240 case elfcpp::Tag_ABI_PCS_RW_data:
11241 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11242 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11243 != elfcpp::AEABI_R9_SB)
11244 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11245 != elfcpp::AEABI_R9_unused)
11246 && parameters->options().warn_mismatch())
11248 gold_error(_("%s: SB relative addressing conflicts with use "
11252 // Use the smallest value specified.
11253 if (in_attr[i].int_value() < out_attr[i].int_value())
11254 out_attr[i].set_int_value(in_attr[i].int_value());
11256 case elfcpp::Tag_ABI_PCS_wchar_t:
11257 if (out_attr[i].int_value()
11258 && in_attr[i].int_value()
11259 && out_attr[i].int_value() != in_attr[i].int_value()
11260 && parameters->options().warn_mismatch()
11261 && parameters->options().wchar_size_warning())
11263 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11264 "use %u-byte wchar_t; use of wchar_t values "
11265 "across objects may fail"),
11266 name, in_attr[i].int_value(),
11267 out_attr[i].int_value());
11269 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11270 out_attr[i].set_int_value(in_attr[i].int_value());
11272 case elfcpp::Tag_ABI_enum_size:
11273 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11275 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11276 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11278 // The existing object is compatible with anything.
11279 // Use whatever requirements the new object has.
11280 out_attr[i].set_int_value(in_attr[i].int_value());
11282 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11283 && out_attr[i].int_value() != in_attr[i].int_value()
11284 && parameters->options().warn_mismatch()
11285 && parameters->options().enum_size_warning())
11287 unsigned int in_value = in_attr[i].int_value();
11288 unsigned int out_value = out_attr[i].int_value();
11289 gold_warning(_("%s uses %s enums yet the output is to use "
11290 "%s enums; use of enum values across objects "
11293 this->aeabi_enum_name(in_value).c_str(),
11294 this->aeabi_enum_name(out_value).c_str());
11298 case elfcpp::Tag_ABI_VFP_args:
11301 case elfcpp::Tag_ABI_WMMX_args:
11302 if (in_attr[i].int_value() != out_attr[i].int_value()
11303 && parameters->options().warn_mismatch())
11305 gold_error(_("%s uses iWMMXt register arguments, output does "
11310 case Object_attribute::Tag_compatibility:
11311 // Merged in target-independent code.
11313 case elfcpp::Tag_ABI_HardFP_use:
11314 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11315 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11316 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11317 out_attr[i].set_int_value(3);
11318 else if (in_attr[i].int_value() > out_attr[i].int_value())
11319 out_attr[i].set_int_value(in_attr[i].int_value());
11321 case elfcpp::Tag_ABI_FP_16bit_format:
11322 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11324 if (in_attr[i].int_value() != out_attr[i].int_value()
11325 && parameters->options().warn_mismatch())
11326 gold_error(_("fp16 format mismatch between %s and output"),
11329 if (in_attr[i].int_value() != 0)
11330 out_attr[i].set_int_value(in_attr[i].int_value());
11333 case elfcpp::Tag_DIV_use:
11335 // A value of zero on input means that the divide
11336 // instruction may be used if available in the base
11337 // architecture as specified via Tag_CPU_arch and
11338 // Tag_CPU_arch_profile. A value of 1 means that the user
11339 // did not want divide instructions. A value of 2
11340 // explicitly means that divide instructions were allowed
11341 // in ARM and Thumb state.
11343 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11345 int profile = this->
11346 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11348 if (in_attr[i].int_value() == out_attr[i].int_value())
11352 else if (attributes_forbid_div(&in_attr[i])
11353 && !attributes_accept_div(arch, profile, &out_attr[i]))
11354 out_attr[i].set_int_value(1);
11355 else if (attributes_forbid_div(&out_attr[i])
11356 && attributes_accept_div(arch, profile, &in_attr[i]))
11357 out_attr[i].set_int_value(in_attr[i].int_value());
11358 else if (in_attr[i].int_value() == 2)
11359 out_attr[i].set_int_value(in_attr[i].int_value());
11363 case elfcpp::Tag_MPextension_use_legacy:
11364 // We don't output objects with Tag_MPextension_use_legacy - we
11365 // move the value to Tag_MPextension_use.
11366 if (in_attr[i].int_value() != 0
11367 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11369 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11370 != in_attr[i].int_value())
11372 gold_error(_("%s has has both the current and legacy "
11373 "Tag_MPextension_use attributes"),
11378 if (in_attr[i].int_value()
11379 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11380 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11384 case elfcpp::Tag_nodefaults:
11385 // This tag is set if it exists, but the value is unused (and is
11386 // typically zero). We don't actually need to do anything here -
11387 // the merge happens automatically when the type flags are merged
11390 case elfcpp::Tag_also_compatible_with:
11391 // Already done in Tag_CPU_arch.
11393 case elfcpp::Tag_conformance:
11394 // Keep the attribute if it matches. Throw it away otherwise.
11395 // No attribute means no claim to conform.
11396 if (in_attr[i].string_value() != out_attr[i].string_value())
11397 out_attr[i].set_string_value("");
11402 const char* err_object = NULL;
11404 // The "known_obj_attributes" table does contain some undefined
11405 // attributes. Ensure that there are unused.
11406 if (out_attr[i].int_value() != 0
11407 || out_attr[i].string_value() != "")
11408 err_object = "output";
11409 else if (in_attr[i].int_value() != 0
11410 || in_attr[i].string_value() != "")
11413 if (err_object != NULL
11414 && parameters->options().warn_mismatch())
11416 // Attribute numbers >=64 (mod 128) can be safely ignored.
11417 if ((i & 127) < 64)
11418 gold_error(_("%s: unknown mandatory EABI object attribute "
11422 gold_warning(_("%s: unknown EABI object attribute %d"),
11426 // Only pass on attributes that match in both inputs.
11427 if (!in_attr[i].matches(out_attr[i]))
11429 out_attr[i].set_int_value(0);
11430 out_attr[i].set_string_value("");
11435 // If out_attr was copied from in_attr then it won't have a type yet.
11436 if (in_attr[i].type() && !out_attr[i].type())
11437 out_attr[i].set_type(in_attr[i].type());
11440 // Merge Tag_compatibility attributes and any common GNU ones.
11441 this->attributes_section_data_->merge(name, pasd);
11443 // Check for any attributes not known on ARM.
11444 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11445 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11446 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11447 Other_attributes* out_other_attributes =
11448 this->attributes_section_data_->other_attributes(vendor);
11449 Other_attributes::iterator out_iter = out_other_attributes->begin();
11451 while (in_iter != in_other_attributes->end()
11452 || out_iter != out_other_attributes->end())
11454 const char* err_object = NULL;
11457 // The tags for each list are in numerical order.
11458 // If the tags are equal, then merge.
11459 if (out_iter != out_other_attributes->end()
11460 && (in_iter == in_other_attributes->end()
11461 || in_iter->first > out_iter->first))
11463 // This attribute only exists in output. We can't merge, and we
11464 // don't know what the tag means, so delete it.
11465 err_object = "output";
11466 err_tag = out_iter->first;
11467 int saved_tag = out_iter->first;
11468 delete out_iter->second;
11469 out_other_attributes->erase(out_iter);
11470 out_iter = out_other_attributes->upper_bound(saved_tag);
11472 else if (in_iter != in_other_attributes->end()
11473 && (out_iter != out_other_attributes->end()
11474 || in_iter->first < out_iter->first))
11476 // This attribute only exists in input. We can't merge, and we
11477 // don't know what the tag means, so ignore it.
11479 err_tag = in_iter->first;
11482 else // The tags are equal.
11484 // As present, all attributes in the list are unknown, and
11485 // therefore can't be merged meaningfully.
11486 err_object = "output";
11487 err_tag = out_iter->first;
11489 // Only pass on attributes that match in both inputs.
11490 if (!in_iter->second->matches(*(out_iter->second)))
11492 // No match. Delete the attribute.
11493 int saved_tag = out_iter->first;
11494 delete out_iter->second;
11495 out_other_attributes->erase(out_iter);
11496 out_iter = out_other_attributes->upper_bound(saved_tag);
11500 // Matched. Keep the attribute and move to the next.
11506 if (err_object && parameters->options().warn_mismatch())
11508 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11509 if ((err_tag & 127) < 64)
11511 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11512 err_object, err_tag);
11516 gold_warning(_("%s: unknown EABI object attribute %d"),
11517 err_object, err_tag);
11523 // Stub-generation methods for Target_arm.
11525 // Make a new Arm_input_section object.
11527 template<bool big_endian>
11528 Arm_input_section<big_endian>*
11529 Target_arm<big_endian>::new_arm_input_section(
11531 unsigned int shndx)
11533 Section_id sid(relobj, shndx);
11535 Arm_input_section<big_endian>* arm_input_section =
11536 new Arm_input_section<big_endian>(relobj, shndx);
11537 arm_input_section->init();
11539 // Register new Arm_input_section in map for look-up.
11540 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11541 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11543 // Make sure that it we have not created another Arm_input_section
11544 // for this input section already.
11545 gold_assert(ins.second);
11547 return arm_input_section;
11550 // Find the Arm_input_section object corresponding to the SHNDX-th input
11551 // section of RELOBJ.
11553 template<bool big_endian>
11554 Arm_input_section<big_endian>*
11555 Target_arm<big_endian>::find_arm_input_section(
11557 unsigned int shndx) const
11559 Section_id sid(relobj, shndx);
11560 typename Arm_input_section_map::const_iterator p =
11561 this->arm_input_section_map_.find(sid);
11562 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11565 // Make a new stub table.
11567 template<bool big_endian>
11568 Stub_table<big_endian>*
11569 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11571 Stub_table<big_endian>* stub_table =
11572 new Stub_table<big_endian>(owner);
11573 this->stub_tables_.push_back(stub_table);
11575 stub_table->set_address(owner->address() + owner->data_size());
11576 stub_table->set_file_offset(owner->offset() + owner->data_size());
11577 stub_table->finalize_data_size();
11582 // Scan a relocation for stub generation.
11584 template<bool big_endian>
11586 Target_arm<big_endian>::scan_reloc_for_stub(
11587 const Relocate_info<32, big_endian>* relinfo,
11588 unsigned int r_type,
11589 const Sized_symbol<32>* gsym,
11590 unsigned int r_sym,
11591 const Symbol_value<32>* psymval,
11592 elfcpp::Elf_types<32>::Elf_Swxword addend,
11593 Arm_address address)
11595 const Arm_relobj<big_endian>* arm_relobj =
11596 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11598 bool target_is_thumb;
11599 Symbol_value<32> symval;
11602 // This is a global symbol. Determine if we use PLT and if the
11603 // final target is THUMB.
11604 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11606 // This uses a PLT, change the symbol value.
11607 symval.set_output_value(this->plt_address_for_global(gsym));
11609 target_is_thumb = false;
11611 else if (gsym->is_undefined())
11612 // There is no need to generate a stub symbol is undefined.
11617 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11618 || (gsym->type() == elfcpp::STT_FUNC
11619 && !gsym->is_undefined()
11620 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11625 // This is a local symbol. Determine if the final target is THUMB.
11626 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11629 // Strip LSB if this points to a THUMB target.
11630 const Arm_reloc_property* reloc_property =
11631 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11632 gold_assert(reloc_property != NULL);
11633 if (target_is_thumb
11634 && reloc_property->uses_thumb_bit()
11635 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11637 Arm_address stripped_value =
11638 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11639 symval.set_output_value(stripped_value);
11643 // Get the symbol value.
11644 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11646 // Owing to pipelining, the PC relative branches below actually skip
11647 // two instructions when the branch offset is 0.
11648 Arm_address destination;
11651 case elfcpp::R_ARM_CALL:
11652 case elfcpp::R_ARM_JUMP24:
11653 case elfcpp::R_ARM_PLT32:
11655 destination = value + addend + 8;
11657 case elfcpp::R_ARM_THM_CALL:
11658 case elfcpp::R_ARM_THM_XPC22:
11659 case elfcpp::R_ARM_THM_JUMP24:
11660 case elfcpp::R_ARM_THM_JUMP19:
11662 destination = value + addend + 4;
11665 gold_unreachable();
11668 Reloc_stub* stub = NULL;
11669 Stub_type stub_type =
11670 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11672 if (stub_type != arm_stub_none)
11674 // Try looking up an existing stub from a stub table.
11675 Stub_table<big_endian>* stub_table =
11676 arm_relobj->stub_table(relinfo->data_shndx);
11677 gold_assert(stub_table != NULL);
11679 // Locate stub by destination.
11680 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11682 // Create a stub if there is not one already
11683 stub = stub_table->find_reloc_stub(stub_key);
11686 // create a new stub and add it to stub table.
11687 stub = this->stub_factory().make_reloc_stub(stub_type);
11688 stub_table->add_reloc_stub(stub, stub_key);
11691 // Record the destination address.
11692 stub->set_destination_address(destination
11693 | (target_is_thumb ? 1 : 0));
11696 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11697 if (this->fix_cortex_a8_
11698 && (r_type == elfcpp::R_ARM_THM_JUMP24
11699 || r_type == elfcpp::R_ARM_THM_JUMP19
11700 || r_type == elfcpp::R_ARM_THM_CALL
11701 || r_type == elfcpp::R_ARM_THM_XPC22)
11702 && (address & 0xfffU) == 0xffeU)
11704 // Found a candidate. Note we haven't checked the destination is
11705 // within 4K here: if we do so (and don't create a record) we can't
11706 // tell that a branch should have been relocated when scanning later.
11707 this->cortex_a8_relocs_info_[address] =
11708 new Cortex_a8_reloc(stub, r_type,
11709 destination | (target_is_thumb ? 1 : 0));
11713 // This function scans a relocation sections for stub generation.
11714 // The template parameter Relocate must be a class type which provides
11715 // a single function, relocate(), which implements the machine
11716 // specific part of a relocation.
11718 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11719 // SHT_REL or SHT_RELA.
11721 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11722 // of relocs. OUTPUT_SECTION is the output section.
11723 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11724 // mapped to output offsets.
11726 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11727 // VIEW_SIZE is the size. These refer to the input section, unless
11728 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11729 // the output section.
11731 template<bool big_endian>
11732 template<int sh_type>
11734 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11735 const Relocate_info<32, big_endian>* relinfo,
11736 const unsigned char* prelocs,
11737 size_t reloc_count,
11738 Output_section* output_section,
11739 bool needs_special_offset_handling,
11740 const unsigned char* view,
11741 elfcpp::Elf_types<32>::Elf_Addr view_address,
11744 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11745 const int reloc_size =
11746 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11748 Arm_relobj<big_endian>* arm_object =
11749 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11750 unsigned int local_count = arm_object->local_symbol_count();
11752 gold::Default_comdat_behavior default_comdat_behavior;
11753 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11755 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11757 Reltype reloc(prelocs);
11759 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11760 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11761 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11763 r_type = this->get_real_reloc_type(r_type);
11765 // Only a few relocation types need stubs.
11766 if ((r_type != elfcpp::R_ARM_CALL)
11767 && (r_type != elfcpp::R_ARM_JUMP24)
11768 && (r_type != elfcpp::R_ARM_PLT32)
11769 && (r_type != elfcpp::R_ARM_THM_CALL)
11770 && (r_type != elfcpp::R_ARM_THM_XPC22)
11771 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11772 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11773 && (r_type != elfcpp::R_ARM_V4BX))
11776 section_offset_type offset =
11777 convert_to_section_size_type(reloc.get_r_offset());
11779 if (needs_special_offset_handling)
11781 offset = output_section->output_offset(relinfo->object,
11782 relinfo->data_shndx,
11788 // Create a v4bx stub if --fix-v4bx-interworking is used.
11789 if (r_type == elfcpp::R_ARM_V4BX)
11791 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11793 // Get the BX instruction.
11794 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11795 const Valtype* wv =
11796 reinterpret_cast<const Valtype*>(view + offset);
11797 elfcpp::Elf_types<32>::Elf_Swxword insn =
11798 elfcpp::Swap<32, big_endian>::readval(wv);
11799 const uint32_t reg = (insn & 0xf);
11803 // Try looking up an existing stub from a stub table.
11804 Stub_table<big_endian>* stub_table =
11805 arm_object->stub_table(relinfo->data_shndx);
11806 gold_assert(stub_table != NULL);
11808 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11810 // create a new stub and add it to stub table.
11811 Arm_v4bx_stub* stub =
11812 this->stub_factory().make_arm_v4bx_stub(reg);
11813 gold_assert(stub != NULL);
11814 stub_table->add_arm_v4bx_stub(stub);
11822 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11823 elfcpp::Elf_types<32>::Elf_Swxword addend =
11824 stub_addend_reader(r_type, view + offset, reloc);
11826 const Sized_symbol<32>* sym;
11828 Symbol_value<32> symval;
11829 const Symbol_value<32> *psymval;
11830 bool is_defined_in_discarded_section;
11831 unsigned int shndx;
11832 if (r_sym < local_count)
11835 psymval = arm_object->local_symbol(r_sym);
11837 // If the local symbol belongs to a section we are discarding,
11838 // and that section is a debug section, try to find the
11839 // corresponding kept section and map this symbol to its
11840 // counterpart in the kept section. The symbol must not
11841 // correspond to a section we are folding.
11843 shndx = psymval->input_shndx(&is_ordinary);
11844 is_defined_in_discarded_section =
11846 && shndx != elfcpp::SHN_UNDEF
11847 && !arm_object->is_section_included(shndx)
11848 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11850 // We need to compute the would-be final value of this local
11852 if (!is_defined_in_discarded_section)
11854 typedef Sized_relobj_file<32, big_endian> ObjType;
11855 typename ObjType::Compute_final_local_value_status status =
11856 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11858 if (status == ObjType::CFLV_OK)
11860 // Currently we cannot handle a branch to a target in
11861 // a merged section. If this is the case, issue an error
11862 // and also free the merge symbol value.
11863 if (!symval.has_output_value())
11865 const std::string& section_name =
11866 arm_object->section_name(shndx);
11867 arm_object->error(_("cannot handle branch to local %u "
11868 "in a merged section %s"),
11869 r_sym, section_name.c_str());
11875 // We cannot determine the final value.
11882 const Symbol* gsym;
11883 gsym = arm_object->global_symbol(r_sym);
11884 gold_assert(gsym != NULL);
11885 if (gsym->is_forwarder())
11886 gsym = relinfo->symtab->resolve_forwards(gsym);
11888 sym = static_cast<const Sized_symbol<32>*>(gsym);
11889 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11890 symval.set_output_symtab_index(sym->symtab_index());
11892 symval.set_no_output_symtab_entry();
11894 // We need to compute the would-be final value of this global
11896 const Symbol_table* symtab = relinfo->symtab;
11897 const Sized_symbol<32>* sized_symbol =
11898 symtab->get_sized_symbol<32>(gsym);
11899 Symbol_table::Compute_final_value_status status;
11900 Arm_address value =
11901 symtab->compute_final_value<32>(sized_symbol, &status);
11903 // Skip this if the symbol has not output section.
11904 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11906 symval.set_output_value(value);
11908 if (gsym->type() == elfcpp::STT_TLS)
11909 symval.set_is_tls_symbol();
11910 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11911 symval.set_is_ifunc_symbol();
11914 is_defined_in_discarded_section =
11915 (gsym->is_defined_in_discarded_section()
11916 && gsym->is_undefined());
11920 Symbol_value<32> symval2;
11921 if (is_defined_in_discarded_section)
11923 if (comdat_behavior == CB_UNDETERMINED)
11925 std::string name = arm_object->section_name(relinfo->data_shndx);
11926 comdat_behavior = default_comdat_behavior.get(name.c_str());
11928 if (comdat_behavior == CB_PRETEND)
11930 // FIXME: This case does not work for global symbols.
11931 // We have no place to store the original section index.
11932 // Fortunately this does not matter for comdat sections,
11933 // only for sections explicitly discarded by a linker
11936 typename elfcpp::Elf_types<32>::Elf_Addr value =
11937 arm_object->map_to_kept_section(shndx, &found);
11939 symval2.set_output_value(value + psymval->input_value());
11941 symval2.set_output_value(0);
11945 if (comdat_behavior == CB_WARNING)
11946 gold_warning_at_location(relinfo, i, offset,
11947 _("relocation refers to discarded "
11949 symval2.set_output_value(0);
11951 symval2.set_no_output_symtab_entry();
11952 psymval = &symval2;
11955 // If symbol is a section symbol, we don't know the actual type of
11956 // destination. Give up.
11957 if (psymval->is_section_symbol())
11960 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11961 addend, view_address + offset);
11965 // Scan an input section for stub generation.
11967 template<bool big_endian>
11969 Target_arm<big_endian>::scan_section_for_stubs(
11970 const Relocate_info<32, big_endian>* relinfo,
11971 unsigned int sh_type,
11972 const unsigned char* prelocs,
11973 size_t reloc_count,
11974 Output_section* output_section,
11975 bool needs_special_offset_handling,
11976 const unsigned char* view,
11977 Arm_address view_address,
11978 section_size_type view_size)
11980 if (sh_type == elfcpp::SHT_REL)
11981 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11986 needs_special_offset_handling,
11990 else if (sh_type == elfcpp::SHT_RELA)
11991 // We do not support RELA type relocations yet. This is provided for
11993 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11998 needs_special_offset_handling,
12003 gold_unreachable();
12006 // Group input sections for stub generation.
12008 // We group input sections in an output section so that the total size,
12009 // including any padding space due to alignment is smaller than GROUP_SIZE
12010 // unless the only input section in group is bigger than GROUP_SIZE already.
12011 // Then an ARM stub table is created to follow the last input section
12012 // in group. For each group an ARM stub table is created an is placed
12013 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12014 // extend the group after the stub table.
12016 template<bool big_endian>
12018 Target_arm<big_endian>::group_sections(
12020 section_size_type group_size,
12021 bool stubs_always_after_branch,
12024 // Group input sections and insert stub table
12025 Layout::Section_list section_list;
12026 layout->get_executable_sections(§ion_list);
12027 for (Layout::Section_list::const_iterator p = section_list.begin();
12028 p != section_list.end();
12031 Arm_output_section<big_endian>* output_section =
12032 Arm_output_section<big_endian>::as_arm_output_section(*p);
12033 output_section->group_sections(group_size, stubs_always_after_branch,
12038 // Relaxation hook. This is where we do stub generation.
12040 template<bool big_endian>
12042 Target_arm<big_endian>::do_relax(
12044 const Input_objects* input_objects,
12045 Symbol_table* symtab,
12049 // No need to generate stubs if this is a relocatable link.
12050 gold_assert(!parameters->options().relocatable());
12052 // If this is the first pass, we need to group input sections into
12054 bool done_exidx_fixup = false;
12055 typedef typename Stub_table_list::iterator Stub_table_iterator;
12058 // Determine the stub group size. The group size is the absolute
12059 // value of the parameter --stub-group-size. If --stub-group-size
12060 // is passed a negative value, we restrict stubs to be always after
12061 // the stubbed branches.
12062 int32_t stub_group_size_param =
12063 parameters->options().stub_group_size();
12064 bool stubs_always_after_branch = stub_group_size_param < 0;
12065 section_size_type stub_group_size = abs(stub_group_size_param);
12067 if (stub_group_size == 1)
12070 // Thumb branch range is +-4MB has to be used as the default
12071 // maximum size (a given section can contain both ARM and Thumb
12072 // code, so the worst case has to be taken into account). If we are
12073 // fixing cortex-a8 errata, the branch range has to be even smaller,
12074 // since wide conditional branch has a range of +-1MB only.
12076 // This value is 48K less than that, which allows for 4096
12077 // 12-byte stubs. If we exceed that, then we will fail to link.
12078 // The user will have to relink with an explicit group size
12080 stub_group_size = 4145152;
12083 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12084 // page as the first half of a 32-bit branch straddling two 4K pages.
12085 // This is a crude way of enforcing that. In addition, long conditional
12086 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12087 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12088 // cortex-A8 stubs from long conditional branches.
12089 if (this->fix_cortex_a8_)
12091 stubs_always_after_branch = true;
12092 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12093 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12096 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12098 // Also fix .ARM.exidx section coverage.
12099 Arm_output_section<big_endian>* exidx_output_section = NULL;
12100 for (Layout::Section_list::const_iterator p =
12101 layout->section_list().begin();
12102 p != layout->section_list().end();
12104 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12106 if (exidx_output_section == NULL)
12107 exidx_output_section =
12108 Arm_output_section<big_endian>::as_arm_output_section(*p);
12110 // We cannot handle this now.
12111 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12112 "non-relocatable link"),
12113 exidx_output_section->name(),
12117 if (exidx_output_section != NULL)
12119 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12121 done_exidx_fixup = true;
12126 // If this is not the first pass, addresses and file offsets have
12127 // been reset at this point, set them here.
12128 for (Stub_table_iterator sp = this->stub_tables_.begin();
12129 sp != this->stub_tables_.end();
12132 Arm_input_section<big_endian>* owner = (*sp)->owner();
12133 off_t off = align_address(owner->original_size(),
12134 (*sp)->addralign());
12135 (*sp)->set_address_and_file_offset(owner->address() + off,
12136 owner->offset() + off);
12140 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12141 // beginning of each relaxation pass, just blow away all the stubs.
12142 // Alternatively, we could selectively remove only the stubs and reloc
12143 // information for code sections that have moved since the last pass.
12144 // That would require more book-keeping.
12145 if (this->fix_cortex_a8_)
12147 // Clear all Cortex-A8 reloc information.
12148 for (typename Cortex_a8_relocs_info::const_iterator p =
12149 this->cortex_a8_relocs_info_.begin();
12150 p != this->cortex_a8_relocs_info_.end();
12153 this->cortex_a8_relocs_info_.clear();
12155 // Remove all Cortex-A8 stubs.
12156 for (Stub_table_iterator sp = this->stub_tables_.begin();
12157 sp != this->stub_tables_.end();
12159 (*sp)->remove_all_cortex_a8_stubs();
12162 // Scan relocs for relocation stubs
12163 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12164 op != input_objects->relobj_end();
12167 Arm_relobj<big_endian>* arm_relobj =
12168 Arm_relobj<big_endian>::as_arm_relobj(*op);
12169 // Lock the object so we can read from it. This is only called
12170 // single-threaded from Layout::finalize, so it is OK to lock.
12171 Task_lock_obj<Object> tl(task, arm_relobj);
12172 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12175 // Check all stub tables to see if any of them have their data sizes
12176 // or addresses alignments changed. These are the only things that
12178 bool any_stub_table_changed = false;
12179 Unordered_set<const Output_section*> sections_needing_adjustment;
12180 for (Stub_table_iterator sp = this->stub_tables_.begin();
12181 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12184 if ((*sp)->update_data_size_and_addralign())
12186 // Update data size of stub table owner.
12187 Arm_input_section<big_endian>* owner = (*sp)->owner();
12188 uint64_t address = owner->address();
12189 off_t offset = owner->offset();
12190 owner->reset_address_and_file_offset();
12191 owner->set_address_and_file_offset(address, offset);
12193 sections_needing_adjustment.insert(owner->output_section());
12194 any_stub_table_changed = true;
12198 // Output_section_data::output_section() returns a const pointer but we
12199 // need to update output sections, so we record all output sections needing
12200 // update above and scan the sections here to find out what sections need
12202 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12203 p != layout->section_list().end();
12206 if (sections_needing_adjustment.find(*p)
12207 != sections_needing_adjustment.end())
12208 (*p)->set_section_offsets_need_adjustment();
12211 // Stop relaxation if no EXIDX fix-up and no stub table change.
12212 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12214 // Finalize the stubs in the last relaxation pass.
12215 if (!continue_relaxation)
12217 for (Stub_table_iterator sp = this->stub_tables_.begin();
12218 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12220 (*sp)->finalize_stubs();
12222 // Update output local symbol counts of objects if necessary.
12223 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12224 op != input_objects->relobj_end();
12227 Arm_relobj<big_endian>* arm_relobj =
12228 Arm_relobj<big_endian>::as_arm_relobj(*op);
12230 // Update output local symbol counts. We need to discard local
12231 // symbols defined in parts of input sections that are discarded by
12233 if (arm_relobj->output_local_symbol_count_needs_update())
12235 // We need to lock the object's file to update it.
12236 Task_lock_obj<Object> tl(task, arm_relobj);
12237 arm_relobj->update_output_local_symbol_count();
12242 return continue_relaxation;
12245 // Relocate a stub.
12247 template<bool big_endian>
12249 Target_arm<big_endian>::relocate_stub(
12251 const Relocate_info<32, big_endian>* relinfo,
12252 Output_section* output_section,
12253 unsigned char* view,
12254 Arm_address address,
12255 section_size_type view_size)
12258 const Stub_template* stub_template = stub->stub_template();
12259 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12261 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12262 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12264 unsigned int r_type = insn->r_type();
12265 section_size_type reloc_offset = stub_template->reloc_offset(i);
12266 section_size_type reloc_size = insn->size();
12267 gold_assert(reloc_offset + reloc_size <= view_size);
12269 // This is the address of the stub destination.
12270 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12271 Symbol_value<32> symval;
12272 symval.set_output_value(target);
12274 // Synthesize a fake reloc just in case. We don't have a symbol so
12276 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12277 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12278 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12279 reloc_write.put_r_offset(reloc_offset);
12280 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12282 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12283 this->fake_relnum_for_stubs, reloc_buffer,
12284 NULL, &symval, view + reloc_offset,
12285 address + reloc_offset, reloc_size);
12289 // Determine whether an object attribute tag takes an integer, a
12292 template<bool big_endian>
12294 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12296 if (tag == Object_attribute::Tag_compatibility)
12297 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12298 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12299 else if (tag == elfcpp::Tag_nodefaults)
12300 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12301 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12302 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12303 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12305 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12307 return ((tag & 1) != 0
12308 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12309 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12312 // Reorder attributes.
12314 // The ABI defines that Tag_conformance should be emitted first, and that
12315 // Tag_nodefaults should be second (if either is defined). This sets those
12316 // two positions, and bumps up the position of all the remaining tags to
12319 template<bool big_endian>
12321 Target_arm<big_endian>::do_attributes_order(int num) const
12323 // Reorder the known object attributes in output. We want to move
12324 // Tag_conformance to position 4 and Tag_conformance to position 5
12325 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12327 return elfcpp::Tag_conformance;
12329 return elfcpp::Tag_nodefaults;
12330 if ((num - 2) < elfcpp::Tag_nodefaults)
12332 if ((num - 1) < elfcpp::Tag_conformance)
12337 // Scan a span of THUMB code for Cortex-A8 erratum.
12339 template<bool big_endian>
12341 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12342 Arm_relobj<big_endian>* arm_relobj,
12343 unsigned int shndx,
12344 section_size_type span_start,
12345 section_size_type span_end,
12346 const unsigned char* view,
12347 Arm_address address)
12349 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12351 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12352 // The branch target is in the same 4KB region as the
12353 // first half of the branch.
12354 // The instruction before the branch is a 32-bit
12355 // length non-branch instruction.
12356 section_size_type i = span_start;
12357 bool last_was_32bit = false;
12358 bool last_was_branch = false;
12359 while (i < span_end)
12361 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12362 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12363 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12364 bool is_blx = false, is_b = false;
12365 bool is_bl = false, is_bcc = false;
12367 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12370 // Load the rest of the insn (in manual-friendly order).
12371 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12373 // Encoding T4: B<c>.W.
12374 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12375 // Encoding T1: BL<c>.W.
12376 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12377 // Encoding T2: BLX<c>.W.
12378 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12379 // Encoding T3: B<c>.W (not permitted in IT block).
12380 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12381 && (insn & 0x07f00000U) != 0x03800000U);
12384 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12386 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12387 // page boundary and it follows 32-bit non-branch instruction,
12388 // we need to work around.
12389 if (is_32bit_branch
12390 && ((address + i) & 0xfffU) == 0xffeU
12392 && !last_was_branch)
12394 // Check to see if there is a relocation stub for this branch.
12395 bool force_target_arm = false;
12396 bool force_target_thumb = false;
12397 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12398 Cortex_a8_relocs_info::const_iterator p =
12399 this->cortex_a8_relocs_info_.find(address + i);
12401 if (p != this->cortex_a8_relocs_info_.end())
12403 cortex_a8_reloc = p->second;
12404 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12406 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12407 && !target_is_thumb)
12408 force_target_arm = true;
12409 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12410 && target_is_thumb)
12411 force_target_thumb = true;
12415 Stub_type stub_type = arm_stub_none;
12417 // Check if we have an offending branch instruction.
12418 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12419 uint16_t lower_insn = insn & 0xffffU;
12420 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12422 if (cortex_a8_reloc != NULL
12423 && cortex_a8_reloc->reloc_stub() != NULL)
12424 // We've already made a stub for this instruction, e.g.
12425 // it's a long branch or a Thumb->ARM stub. Assume that
12426 // stub will suffice to work around the A8 erratum (see
12427 // setting of always_after_branch above).
12431 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12433 stub_type = arm_stub_a8_veneer_b_cond;
12435 else if (is_b || is_bl || is_blx)
12437 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12442 stub_type = (is_blx
12443 ? arm_stub_a8_veneer_blx
12445 ? arm_stub_a8_veneer_bl
12446 : arm_stub_a8_veneer_b));
12449 if (stub_type != arm_stub_none)
12451 Arm_address pc_for_insn = address + i + 4;
12453 // The original instruction is a BL, but the target is
12454 // an ARM instruction. If we were not making a stub,
12455 // the BL would have been converted to a BLX. Use the
12456 // BLX stub instead in that case.
12457 if (this->may_use_v5t_interworking() && force_target_arm
12458 && stub_type == arm_stub_a8_veneer_bl)
12460 stub_type = arm_stub_a8_veneer_blx;
12464 // Conversely, if the original instruction was
12465 // BLX but the target is Thumb mode, use the BL stub.
12466 else if (force_target_thumb
12467 && stub_type == arm_stub_a8_veneer_blx)
12469 stub_type = arm_stub_a8_veneer_bl;
12477 // If we found a relocation, use the proper destination,
12478 // not the offset in the (unrelocated) instruction.
12479 // Note this is always done if we switched the stub type above.
12480 if (cortex_a8_reloc != NULL)
12481 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12483 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12485 // Add a new stub if destination address in in the same page.
12486 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12488 Cortex_a8_stub* stub =
12489 this->stub_factory_.make_cortex_a8_stub(stub_type,
12493 Stub_table<big_endian>* stub_table =
12494 arm_relobj->stub_table(shndx);
12495 gold_assert(stub_table != NULL);
12496 stub_table->add_cortex_a8_stub(address + i, stub);
12501 i += insn_32bit ? 4 : 2;
12502 last_was_32bit = insn_32bit;
12503 last_was_branch = is_32bit_branch;
12507 // Apply the Cortex-A8 workaround.
12509 template<bool big_endian>
12511 Target_arm<big_endian>::apply_cortex_a8_workaround(
12512 const Cortex_a8_stub* stub,
12513 Arm_address stub_address,
12514 unsigned char* insn_view,
12515 Arm_address insn_address)
12517 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12518 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12519 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12520 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12521 off_t branch_offset = stub_address - (insn_address + 4);
12523 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12524 switch (stub->stub_template()->type())
12526 case arm_stub_a8_veneer_b_cond:
12527 // For a conditional branch, we re-write it to be an unconditional
12528 // branch to the stub. We use the THUMB-2 encoding here.
12529 upper_insn = 0xf000U;
12530 lower_insn = 0xb800U;
12532 case arm_stub_a8_veneer_b:
12533 case arm_stub_a8_veneer_bl:
12534 case arm_stub_a8_veneer_blx:
12535 if ((lower_insn & 0x5000U) == 0x4000U)
12536 // For a BLX instruction, make sure that the relocation is
12537 // rounded up to a word boundary. This follows the semantics of
12538 // the instruction which specifies that bit 1 of the target
12539 // address will come from bit 1 of the base address.
12540 branch_offset = (branch_offset + 2) & ~3;
12542 // Put BRANCH_OFFSET back into the insn.
12543 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12544 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12545 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12549 gold_unreachable();
12552 // Put the relocated value back in the object file:
12553 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12554 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12557 // Target selector for ARM. Note this is never instantiated directly.
12558 // It's only used in Target_selector_arm_nacl, below.
12560 template<bool big_endian>
12561 class Target_selector_arm : public Target_selector
12564 Target_selector_arm()
12565 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12566 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12567 (big_endian ? "armelfb" : "armelf"))
12571 do_instantiate_target()
12572 { return new Target_arm<big_endian>(); }
12575 // Fix .ARM.exidx section coverage.
12577 template<bool big_endian>
12579 Target_arm<big_endian>::fix_exidx_coverage(
12581 const Input_objects* input_objects,
12582 Arm_output_section<big_endian>* exidx_section,
12583 Symbol_table* symtab,
12586 // We need to look at all the input sections in output in ascending
12587 // order of of output address. We do that by building a sorted list
12588 // of output sections by addresses. Then we looks at the output sections
12589 // in order. The input sections in an output section are already sorted
12590 // by addresses within the output section.
12592 typedef std::set<Output_section*, output_section_address_less_than>
12593 Sorted_output_section_list;
12594 Sorted_output_section_list sorted_output_sections;
12596 // Find out all the output sections of input sections pointed by
12597 // EXIDX input sections.
12598 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12599 p != input_objects->relobj_end();
12602 Arm_relobj<big_endian>* arm_relobj =
12603 Arm_relobj<big_endian>::as_arm_relobj(*p);
12604 std::vector<unsigned int> shndx_list;
12605 arm_relobj->get_exidx_shndx_list(&shndx_list);
12606 for (size_t i = 0; i < shndx_list.size(); ++i)
12608 const Arm_exidx_input_section* exidx_input_section =
12609 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12610 gold_assert(exidx_input_section != NULL);
12611 if (!exidx_input_section->has_errors())
12613 unsigned int text_shndx = exidx_input_section->link();
12614 Output_section* os = arm_relobj->output_section(text_shndx);
12615 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12616 sorted_output_sections.insert(os);
12621 // Go over the output sections in ascending order of output addresses.
12622 typedef typename Arm_output_section<big_endian>::Text_section_list
12624 Text_section_list sorted_text_sections;
12625 for (typename Sorted_output_section_list::iterator p =
12626 sorted_output_sections.begin();
12627 p != sorted_output_sections.end();
12630 Arm_output_section<big_endian>* arm_output_section =
12631 Arm_output_section<big_endian>::as_arm_output_section(*p);
12632 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12635 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12636 merge_exidx_entries(), task);
12639 template<bool big_endian>
12641 Target_arm<big_endian>::do_define_standard_symbols(
12642 Symbol_table* symtab,
12645 // Handle the .ARM.exidx section.
12646 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12648 if (exidx_section != NULL)
12650 // Create __exidx_start and __exidx_end symbols.
12651 symtab->define_in_output_data("__exidx_start",
12653 Symbol_table::PREDEFINED,
12657 elfcpp::STT_NOTYPE,
12658 elfcpp::STB_GLOBAL,
12659 elfcpp::STV_HIDDEN,
12661 false, // offset_is_from_end
12662 true); // only_if_ref
12664 symtab->define_in_output_data("__exidx_end",
12666 Symbol_table::PREDEFINED,
12670 elfcpp::STT_NOTYPE,
12671 elfcpp::STB_GLOBAL,
12672 elfcpp::STV_HIDDEN,
12674 true, // offset_is_from_end
12675 true); // only_if_ref
12679 // Define __exidx_start and __exidx_end even when .ARM.exidx
12680 // section is missing to match ld's behaviour.
12681 symtab->define_as_constant("__exidx_start", NULL,
12682 Symbol_table::PREDEFINED,
12683 0, 0, elfcpp::STT_OBJECT,
12684 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12686 symtab->define_as_constant("__exidx_end", NULL,
12687 Symbol_table::PREDEFINED,
12688 0, 0, elfcpp::STT_OBJECT,
12689 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12694 // NaCl variant. It uses different PLT contents.
12696 template<bool big_endian>
12697 class Output_data_plt_arm_nacl;
12699 template<bool big_endian>
12700 class Target_arm_nacl : public Target_arm<big_endian>
12704 : Target_arm<big_endian>(&arm_nacl_info)
12708 virtual Output_data_plt_arm<big_endian>*
12711 Arm_output_data_got<big_endian>* got,
12712 Output_data_space* got_plt,
12713 Output_data_space* got_irelative)
12714 { return new Output_data_plt_arm_nacl<big_endian>(
12715 layout, got, got_plt, got_irelative); }
12718 static const Target::Target_info arm_nacl_info;
12721 template<bool big_endian>
12722 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12725 big_endian, // is_big_endian
12726 elfcpp::EM_ARM, // machine_code
12727 false, // has_make_symbol
12728 false, // has_resolve
12729 false, // has_code_fill
12730 true, // is_default_stack_executable
12731 false, // can_icf_inline_merge_sections
12733 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12734 0x20000, // default_text_segment_address
12735 0x10000, // abi_pagesize (overridable by -z max-page-size)
12736 0x10000, // common_pagesize (overridable by -z common-page-size)
12737 true, // isolate_execinstr
12738 0x10000000, // rosegment_gap
12739 elfcpp::SHN_UNDEF, // small_common_shndx
12740 elfcpp::SHN_UNDEF, // large_common_shndx
12741 0, // small_common_section_flags
12742 0, // large_common_section_flags
12743 ".ARM.attributes", // attributes_section
12744 "aeabi", // attributes_vendor
12745 "_start", // entry_symbol_name
12746 32, // hash_entry_size
12749 template<bool big_endian>
12750 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12753 Output_data_plt_arm_nacl(
12755 Arm_output_data_got<big_endian>* got,
12756 Output_data_space* got_plt,
12757 Output_data_space* got_irelative)
12758 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
12762 // Return the offset of the first non-reserved PLT entry.
12763 virtual unsigned int
12764 do_first_plt_entry_offset() const
12765 { return sizeof(first_plt_entry); }
12767 // Return the size of a PLT entry.
12768 virtual unsigned int
12769 do_get_plt_entry_size() const
12770 { return sizeof(plt_entry); }
12773 do_fill_first_plt_entry(unsigned char* pov,
12774 Arm_address got_address,
12775 Arm_address plt_address);
12778 do_fill_plt_entry(unsigned char* pov,
12779 Arm_address got_address,
12780 Arm_address plt_address,
12781 unsigned int got_offset,
12782 unsigned int plt_offset);
12785 inline uint32_t arm_movw_immediate(uint32_t value)
12787 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12790 inline uint32_t arm_movt_immediate(uint32_t value)
12792 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12795 // Template for the first PLT entry.
12796 static const uint32_t first_plt_entry[16];
12798 // Template for subsequent PLT entries.
12799 static const uint32_t plt_entry[4];
12802 // The first entry in the PLT.
12803 template<bool big_endian>
12804 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12807 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12808 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12809 0xe08cc00f, // add ip, ip, pc
12810 0xe52dc008, // str ip, [sp, #-8]!
12812 0xe3ccc103, // bic ip, ip, #0xc0000000
12813 0xe59cc000, // ldr ip, [ip]
12814 0xe3ccc13f, // bic ip, ip, #0xc000000f
12815 0xe12fff1c, // bx ip
12821 0xe50dc004, // str ip, [sp, #-4]
12823 0xe3ccc103, // bic ip, ip, #0xc0000000
12824 0xe59cc000, // ldr ip, [ip]
12825 0xe3ccc13f, // bic ip, ip, #0xc000000f
12826 0xe12fff1c, // bx ip
12829 template<bool big_endian>
12831 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12832 unsigned char* pov,
12833 Arm_address got_address,
12834 Arm_address plt_address)
12836 // Write first PLT entry. All but first two words are constants.
12837 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12838 / sizeof(first_plt_entry[0]));
12840 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12842 elfcpp::Swap<32, big_endian>::writeval
12843 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12844 elfcpp::Swap<32, big_endian>::writeval
12845 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12847 for (size_t i = 2; i < num_first_plt_words; ++i)
12848 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12851 // Subsequent entries in the PLT.
12853 template<bool big_endian>
12854 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12856 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12857 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12858 0xe08cc00f, // add ip, ip, pc
12859 0xea000000, // b .Lplt_tail
12862 template<bool big_endian>
12864 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12865 unsigned char* pov,
12866 Arm_address got_address,
12867 Arm_address plt_address,
12868 unsigned int got_offset,
12869 unsigned int plt_offset)
12871 // Calculate the displacement between the PLT slot and the
12872 // common tail that's part of the special initial PLT slot.
12873 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12874 - (plt_address + plt_offset
12875 + sizeof(plt_entry) + sizeof(uint32_t)));
12876 gold_assert((tail_displacement & 3) == 0);
12877 tail_displacement >>= 2;
12879 gold_assert ((tail_displacement & 0xff000000) == 0
12880 || (-tail_displacement & 0xff000000) == 0);
12882 // Calculate the displacement between the PLT slot and the entry
12883 // in the GOT. The offset accounts for the value produced by
12884 // adding to pc in the penultimate instruction of the PLT stub.
12885 const int32_t got_displacement = (got_address + got_offset
12886 - (plt_address + sizeof(plt_entry)));
12888 elfcpp::Swap<32, big_endian>::writeval
12889 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12890 elfcpp::Swap<32, big_endian>::writeval
12891 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12892 elfcpp::Swap<32, big_endian>::writeval
12893 (pov + 8, plt_entry[2]);
12894 elfcpp::Swap<32, big_endian>::writeval
12895 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12898 // Target selectors.
12900 template<bool big_endian>
12901 class Target_selector_arm_nacl
12902 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12903 Target_arm_nacl<big_endian> >
12906 Target_selector_arm_nacl()
12907 : Target_selector_nacl<Target_selector_arm<big_endian>,
12908 Target_arm_nacl<big_endian> >(
12910 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12911 big_endian ? "armelfb_nacl" : "armelf_nacl")
12915 Target_selector_arm_nacl<false> target_selector_arm;
12916 Target_selector_arm_nacl<true> target_selector_armbe;
12918 } // End anonymous namespace.