1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
27 #include "xcoffsolib.h"
31 extern struct obstack frame_cache_obstack;
35 /* Nonzero if we just simulated a single step break. */
38 /* Breakpoint shadows for the single step instructions will be kept here. */
40 static struct sstep_breaks {
41 /* Address, or 0 if this is not in use. */
43 /* Shadow contents. */
47 /* Static function prototypes */
50 find_toc_address PARAMS ((CORE_ADDR pc));
53 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
56 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
57 struct aix_framedata *fdatap));
60 * Calculate the destination of a branch/jump. Return -1 if not a branch.
63 branch_dest (opcode, instr, pc, safety)
75 absolute = (int) ((instr >> 1) & 1);
79 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
82 if (opcode != 18) /* br conditional */
83 immediate = ((instr & ~3) << 16) >> 16;
87 dest = pc + immediate;
91 ext_op = (instr>>1) & 0x3ff;
93 if (ext_op == 16) /* br conditional register */
94 dest = read_register (LR_REGNUM) & ~3;
96 else if (ext_op == 528) /* br cond to count reg */
98 dest = read_register (CTR_REGNUM) & ~3;
100 /* If we are about to execute a system call, dest is something
101 like 0x22fc or 0x3b00. Upon completion the system call
102 will return to the address in the link register. */
103 if (dest < TEXT_SEGMENT_BASE)
104 dest = read_register (LR_REGNUM) & ~3;
111 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
116 /* AIX does not support PT_STEP. Simulate it. */
122 #define INSNLEN(OPCODE) 4
124 static char breakp[] = BREAKPOINT;
133 read_memory (loc, (char *) &insn, 4);
135 breaks[0] = loc + INSNLEN(insn);
137 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
139 /* Don't put two breakpoints on the same address. */
140 if (breaks[1] == breaks[0])
143 stepBreaks[1].address = 0;
145 for (ii=0; ii < 2; ++ii) {
147 /* ignore invalid breakpoint. */
148 if ( breaks[ii] == -1)
151 read_memory (breaks[ii], stepBreaks[ii].data, 4);
153 write_memory (breaks[ii], breakp, 4);
154 stepBreaks[ii].address = breaks[ii];
160 /* remove step breakpoints. */
161 for (ii=0; ii < 2; ++ii)
162 if (stepBreaks[ii].address != 0)
164 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
168 errno = 0; /* FIXME, don't ignore errors! */
169 /* What errors? {read,write}_memory call error(). */
173 /* return pc value after skipping a function prologue. */
182 if (target_read_memory (pc, buf, 4))
183 return pc; /* Can't access it -- assume no prologue. */
184 op = extract_unsigned_integer (buf, 4);
186 /* Assume that subsequent fetches can fail with low probability. */
188 if (op == 0x7c0802a6) { /* mflr r0 */
190 op = read_memory_integer (pc, 4);
193 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
195 op = read_memory_integer (pc, 4);
198 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
200 op = read_memory_integer (pc, 4);
202 /* At this point, make sure this is not a trampoline function
203 (a function that simply calls another functions, and nothing else).
204 If the next is not a nop, this branch was part of the function
207 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
209 return pc - 4; /* don't skip over this branch */
212 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
213 pc += 4; /* store floating register double */
214 op = read_memory_integer (pc, 4);
217 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
219 op = read_memory_integer (pc, 4);
222 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
223 (tmp == 0x9421) || /* stu r1, NUM(r1) */
224 (tmp == 0x93e1)) /* st r31,NUM(r1) */
227 op = read_memory_integer (pc, 4);
230 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
231 pc += 4; /* l r30, ... */
232 op = read_memory_integer (pc, 4);
235 /* store parameters into stack */
237 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
238 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
239 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
240 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
242 pc += 4; /* store fpr double */
243 op = read_memory_integer (pc, 4);
246 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
247 pc += 4; /* this happens if r31 is used as */
248 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
251 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
252 pc += 4; /* st r4, NUM(r31), ... */
253 op = read_memory_integer (pc, 4);
258 /* I have problems with skipping over __main() that I need to address
259 * sometime. Previously, I used to use misc_function_vector which
260 * didn't work as well as I wanted to be. -MGO */
262 /* If the first thing after skipping a prolog is a branch to a function,
263 this might be a call to an initializer in main(), introduced by gcc2.
264 We'd like to skip over it as well. Fortunately, xlc does some extra
265 work before calling a function right after a prologue, thus we can
266 single out such gcc2 behaviour. */
269 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
270 op = read_memory_integer (pc+4, 4);
272 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
274 /* check and see if we are in main. If so, skip over this initializer
277 tmp = find_pc_misc_function (pc);
278 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
288 /*************************************************************************
289 Support for creating pushind a dummy frame into the stack, and popping
291 *************************************************************************/
293 /* The total size of dummy frame is 436, which is;
298 and 24 extra bytes for the callee's link area. The last 24 bytes
299 for the link area might not be necessary, since it will be taken
300 care of by push_arguments(). */
302 #define DUMMY_FRAME_SIZE 436
304 #define DUMMY_FRAME_ADDR_SIZE 10
306 /* Make sure you initialize these in somewhere, in case gdb gives up what it
307 was debugging and starts debugging something else. FIXMEibm */
309 static int dummy_frame_count = 0;
310 static int dummy_frame_size = 0;
311 static CORE_ADDR *dummy_frame_addr = 0;
313 extern int stop_stack_dummy;
315 /* push a dummy frame into stack, save all register. Currently we are saving
316 only gpr's and fpr's, which is not good enough! FIXMEmgo */
326 /* Same thing, target byte order. */
331 target_fetch_registers (-1);
333 if (dummy_frame_count >= dummy_frame_size) {
334 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
335 if (dummy_frame_addr)
336 dummy_frame_addr = (CORE_ADDR*) xrealloc
337 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
339 dummy_frame_addr = (CORE_ADDR*)
340 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
343 sp = read_register(SP_REGNUM);
344 pc = read_register(PC_REGNUM);
345 memcpy (pc_targ, (char *) &pc, 4);
347 dummy_frame_addr [dummy_frame_count++] = sp;
349 /* Be careful! If the stack pointer is not decremented first, then kernel
350 thinks he is free to use the space underneath it. And kernel actually
351 uses that area for IPC purposes when executing ptrace(2) calls. So
352 before writing register values into the new frame, decrement and update
353 %sp first in order to secure your frame. */
355 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
357 /* gdb relies on the state of current_frame. We'd better update it,
358 otherwise things like do_registers_info() wouldn't work properly! */
360 flush_cached_frames ();
361 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
363 /* save program counter in link register's space. */
364 write_memory (sp+8, pc_targ, 4);
366 /* save all floating point and general purpose registers here. */
369 for (ii = 0; ii < 32; ++ii)
370 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
373 for (ii=1; ii <=32; ++ii)
374 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
376 /* so far, 32*2 + 32 words = 384 bytes have been written.
377 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
379 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
380 write_memory (sp-384-(ii*4),
381 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
384 /* Save sp or so called back chain right here. */
385 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
386 sp -= DUMMY_FRAME_SIZE;
388 /* And finally, this is the back chain. */
389 write_memory (sp+8, pc_targ, 4);
393 /* Pop a dummy frame.
395 In rs6000 when we push a dummy frame, we save all of the registers. This
396 is usually done before user calls a function explicitly.
398 After a dummy frame is pushed, some instructions are copied into stack,
399 and stack pointer is decremented even more. Since we don't have a frame
400 pointer to get back to the parent frame of the dummy, we start having
401 trouble poping it. Therefore, we keep a dummy frame stack, keeping
402 addresses of dummy frames as such. When poping happens and when we
403 detect that was a dummy frame, we pop it back to its parent by using
404 dummy frame stack (`dummy_frame_addr' array).
406 FIXME: This whole concept is broken. You should be able to detect
407 a dummy stack frame *on the user's stack itself*. When you do,
408 then you know the format of that stack frame -- including its
409 saved SP register! There should *not* be a separate stack in the
417 sp = dummy_frame_addr [--dummy_frame_count];
419 /* restore all fpr's. */
420 for (ii = 1; ii <= 32; ++ii)
421 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
423 /* restore all gpr's */
424 for (ii=1; ii <= 32; ++ii) {
425 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
428 /* restore the rest of the registers. */
429 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
430 read_memory (sp-384-(ii*4),
431 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
433 read_memory (sp-(DUMMY_FRAME_SIZE-8),
434 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
436 /* when a dummy frame was being pushed, we had to decrement %sp first, in
437 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
438 one we should restore. Change it with the one we need. */
440 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
442 /* Now we can restore all registers. */
444 target_store_registers (-1);
446 flush_cached_frames ();
447 set_current_frame (create_new_frame (sp, pc));
451 /* pop the innermost frame, go back to the caller. */
456 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
457 struct aix_framedata fdata;
458 FRAME fr = get_current_frame ();
464 if (stop_stack_dummy && dummy_frame_count) {
469 /* figure out previous %pc value. If the function is frameless, it is
470 still in the link register, otherwise walk the frames and retrieve the
471 saved %pc value in the previous frame. */
473 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
474 function_frame_info (addr, &fdata);
476 prev_sp = read_memory_integer (sp, 4);
478 lr = read_register (LR_REGNUM);
480 lr = read_memory_integer (prev_sp+8, 4);
482 /* reset %pc value. */
483 write_register (PC_REGNUM, lr);
485 /* reset register values if any was saved earlier. */
486 addr = prev_sp - fdata.offset;
488 if (fdata.saved_gpr != -1)
489 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
490 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
494 if (fdata.saved_fpr != -1)
495 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
496 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
500 write_register (SP_REGNUM, prev_sp);
501 target_store_registers (-1);
502 flush_cached_frames ();
503 set_current_frame (create_new_frame (prev_sp, lr));
506 /* fixup the call sequence of a dummy function, with the real function address.
507 its argumets will be passed by gdb. */
510 fix_call_dummy(dummyname, pc, fun, nargs, type)
514 int nargs; /* not used */
515 int type; /* not used */
517 #define TOC_ADDR_OFFSET 20
518 #define TARGET_ADDR_OFFSET 28
521 CORE_ADDR target_addr;
525 tocvalue = find_toc_address (target_addr);
527 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
528 ii = (ii & 0xffff0000) | (tocvalue >> 16);
529 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
531 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
532 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
533 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
535 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
536 ii = (ii & 0xffff0000) | (target_addr >> 16);
537 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
539 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
540 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
541 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
545 /* return information about a function frame.
546 in struct aix_frameinfo fdata:
547 - frameless is TRUE, if function does not have a frame.
548 - nosavedpc is TRUE, if function does not save %pc value in its frame.
549 - offset is the number of bytes used in the frame to save registers.
550 - saved_gpr is the number of the first saved gpr.
551 - saved_fpr is the number of the first saved fpr.
552 - alloca_reg is the number of the register used for alloca() handling.
556 function_frame_info (pc, fdata)
558 struct aix_framedata *fdata;
561 register unsigned int op;
564 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
565 fdata->frameless = 1;
567 op = read_memory_integer (pc, 4);
568 if (op == 0x7c0802a6) { /* mflr r0 */
570 op = read_memory_integer (pc, 4);
571 fdata->nosavedpc = 0;
572 fdata->frameless = 0;
574 else /* else, pc is not saved */
575 fdata->nosavedpc = 1;
577 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
579 op = read_memory_integer (pc, 4);
580 fdata->frameless = 0;
583 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
585 op = read_memory_integer (pc, 4);
586 /* At this point, make sure this is not a trampoline function
587 (a function that simply calls another functions, and nothing else).
588 If the next is not a nop, this branch was part of the function
591 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
593 return; /* prologue is over */
594 fdata->frameless = 0;
597 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
598 pc += 4; /* store floating register double */
599 op = read_memory_integer (pc, 4);
600 fdata->frameless = 0;
603 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
605 fdata->saved_gpr = (op >> 21) & 0x1f;
608 tmp2 = (~0 &~ 0xffff) | tmp2;
612 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
613 if ( fdata->saved_fpr > 0)
614 fdata->saved_fpr = 32 - fdata->saved_fpr;
616 fdata->saved_fpr = -1;
618 fdata->offset = tmp2;
620 op = read_memory_integer (pc, 4);
621 fdata->frameless = 0;
624 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
625 (tmp == 0x9421) || /* stu r1, NUM(r1) */
626 (tmp == 0x93e1)) /* st r31, NUM(r1) */
630 /* gcc takes a short cut and uses this instruction to save r31 only. */
634 /* fatal ("Unrecognized prolog."); */
635 printf_unfiltered ("Unrecognized prolog!\n");
637 fdata->saved_gpr = 31;
640 tmp2 = - ((~0 &~ 0xffff) | tmp2);
641 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
642 if ( fdata->saved_fpr > 0)
643 fdata->saved_fpr = 32 - fdata->saved_fpr;
645 fdata->saved_fpr = -1;
647 fdata->offset = tmp2;
650 op = read_memory_integer (pc, 4);
651 fdata->frameless = 0;
654 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
655 pc += 4; /* l r30, ... */
656 op = read_memory_integer (pc, 4);
657 fdata->frameless = 0;
660 /* store parameters into stack */
662 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
663 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
664 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
665 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
667 pc += 4; /* store fpr double */
668 op = read_memory_integer (pc, 4);
669 fdata->frameless = 0;
672 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
673 fdata->alloca_reg = 31;
674 fdata->frameless = 0;
679 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
680 eight words of the argument list (that might be less than eight parameters if
681 some parameters occupy more than one word) are passed in r3..r11 registers.
682 float and double parameters are passed in fpr's, in addition to that. Rest of
683 the parameters if any are passed in user stack. There might be cases in which
684 half of the parameter is copied into registers, the other half is pushed into
687 If the function is returning a structure, then the return address is passed
688 in r3, then the first 7 words of the parametes can be passed in registers,
692 push_arguments (nargs, args, sp, struct_return, struct_addr)
697 CORE_ADDR struct_addr;
700 int argno; /* current argument number */
701 int argbytes; /* current argument byte */
702 char tmp_buffer [50];
704 int f_argno = 0; /* current floating point argno */
706 CORE_ADDR saved_sp, pc;
708 if ( dummy_frame_count <= 0)
709 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
711 /* The first eight words of ther arguments are passed in registers. Copy
714 If the function is returning a `struct', then the first word (which
715 will be passed in r3) is used for struct return address. In that
716 case we should advance one word and start from r4 register to copy
719 ii = struct_return ? 1 : 0;
721 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
723 arg = value_arg_coerce (args[argno]);
724 len = TYPE_LENGTH (VALUE_TYPE (arg));
726 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
728 /* floating point arguments are passed in fpr's, as well as gpr's.
729 There are 13 fpr's reserved for passing parameters. At this point
730 there is no way we would run out of them. */
734 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
736 memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
743 /* Argument takes more than one register. */
744 while (argbytes < len) {
746 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
747 memcpy (®isters[REGISTER_BYTE(ii+3)],
748 ((char*)VALUE_CONTENTS (arg))+argbytes,
749 (len - argbytes) > 4 ? 4 : len - argbytes);
753 goto ran_out_of_registers_for_arguments;
758 else { /* Argument can fit in one register. No problem. */
759 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
760 memcpy (®isters[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
765 ran_out_of_registers_for_arguments:
767 /* location for 8 parameters are always reserved. */
770 /* another six words for back chain, TOC register, link register, etc. */
773 /* if there are more arguments, allocate space for them in
774 the stack, then push them starting from the ninth one. */
776 if ((argno < nargs) || argbytes) {
781 space += ((len - argbytes + 3) & -4);
787 for (; jj < nargs; ++jj) {
788 val = value_arg_coerce (args[jj]);
789 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
792 /* add location required for the rest of the parameters */
793 space = (space + 7) & -8;
796 /* This is another instance we need to be concerned about securing our
797 stack space. If we write anything underneath %sp (r1), we might conflict
798 with the kernel who thinks he is free to use this area. So, update %sp
799 first before doing anything else. */
801 write_register (SP_REGNUM, sp);
803 /* if the last argument copied into the registers didn't fit there
804 completely, push the rest of it into stack. */
808 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
810 ii += ((len - argbytes + 3) & -4) / 4;
813 /* push the rest of the arguments into stack. */
814 for (; argno < nargs; ++argno) {
816 arg = value_arg_coerce (args[argno]);
817 len = TYPE_LENGTH (VALUE_TYPE (arg));
820 /* float types should be passed in fpr's, as well as in the stack. */
821 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
825 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
827 memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
832 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
833 ii += ((len + 3) & -4) / 4;
837 /* Secure stack areas first, before doing anything else. */
838 write_register (SP_REGNUM, sp);
840 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
841 read_memory (saved_sp, tmp_buffer, 24);
842 write_memory (sp, tmp_buffer, 24);
844 write_memory (sp, &saved_sp, 4); /* set back chain properly */
846 target_store_registers (-1);
850 /* a given return value in `regbuf' with a type `valtype', extract and copy its
851 value into `valbuf' */
854 extract_return_value (valtype, regbuf, valbuf)
855 struct type *valtype;
856 char regbuf[REGISTER_BYTES];
860 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
863 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
864 We need to truncate the return value into float size (4 byte) if
867 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
868 memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
869 TYPE_LENGTH (valtype));
871 memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
873 memcpy (valbuf, &ff, sizeof(float));
877 /* return value is copied starting from r3. */
878 memcpy (valbuf, ®buf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
882 /* keep structure return address in this variable.
883 FIXME: This is a horrid kludge which should not be allowed to continue
884 living. This only allows a single nested call to a structure-returning
887 CORE_ADDR rs6000_struct_return_address;
890 /* Indirect function calls use a piece of trampoline code to do context
891 switching, i.e. to set the new TOC table. Skip such code if we are on
892 its first instruction (as when we have single-stepped to here).
893 Result is desired PC to step until, or NULL if we are not in
897 skip_trampoline_code (pc)
900 register unsigned int ii, op;
902 static unsigned trampoline_code[] = {
903 0x800b0000, /* l r0,0x0(r11) */
904 0x90410014, /* st r2,0x14(r1) */
905 0x7c0903a6, /* mtctr r0 */
906 0x804b0004, /* l r2,0x4(r11) */
907 0x816b0008, /* l r11,0x8(r11) */
908 0x4e800420, /* bctr */
913 for (ii=0; trampoline_code[ii]; ++ii) {
914 op = read_memory_integer (pc + (ii*4), 4);
915 if (op != trampoline_code [ii])
918 ii = read_register (11); /* r11 holds destination addr */
919 pc = read_memory_integer (ii, 4); /* (r11) value */
924 /* Determines whether the function FI has a frame on the stack or not.
925 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
926 second argument of 0, and from the FRAME_SAVED_PC macro with a
927 second argument of 1. */
930 frameless_function_invocation (fi, pcsaved)
931 struct frame_info *fi;
934 CORE_ADDR func_start;
935 struct aix_framedata fdata;
937 if (fi->next != NULL)
938 /* Don't even think about framelessness except on the innermost frame. */
939 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
940 a signal happens while executing in a frameless function). */
943 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
945 /* If we failed to find the start of the function, it is a mistake
946 to inspect the instructions. */
951 function_frame_info (func_start, &fdata);
952 return pcsaved ? fdata.nosavedpc : fdata.frameless;
956 /* If saved registers of frame FI are not known yet, read and cache them.
957 &FDATAP contains aix_framedata; TDATAP can be NULL,
958 in which case the framedata are read. */
961 frame_get_cache_fsr (fi, fdatap)
962 struct frame_info *fi;
963 struct aix_framedata *fdatap;
966 CORE_ADDR frame_addr;
967 struct aix_framedata work_fdata;
972 if (fdatap == NULL) {
973 fdatap = &work_fdata;
974 function_frame_info (get_pc_function_start (fi->pc), fdatap);
977 fi->cache_fsr = (struct frame_saved_regs *)
978 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
979 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
981 if (fi->prev && fi->prev->frame)
982 frame_addr = fi->prev->frame;
984 frame_addr = read_memory_integer (fi->frame, 4);
986 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
987 All fpr's from saved_fpr to fp31 are saved right underneath caller
988 stack pointer, starting from fp31 first. */
990 if (fdatap->saved_fpr >= 0) {
991 for (ii=31; ii >= fdatap->saved_fpr; --ii)
992 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
993 frame_addr -= (32 - fdatap->saved_fpr) * 8;
996 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
997 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
998 starting from r31 first. */
1000 if (fdatap->saved_gpr >= 0)
1001 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1002 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1005 /* Return the address of a frame. This is the inital %sp value when the frame
1006 was first allocated. For functions calling alloca(), it might be saved in
1007 an alloca register. */
1010 frame_initial_stack_address (fi)
1011 struct frame_info *fi;
1014 struct aix_framedata fdata;
1015 struct frame_info *callee_fi;
1017 /* if the initial stack pointer (frame address) of this frame is known,
1021 return fi->initial_sp;
1023 /* find out if this function is using an alloca register.. */
1025 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1027 /* if saved registers of this frame are not known yet, read and cache them. */
1030 frame_get_cache_fsr (fi, &fdata);
1032 /* If no alloca register used, then fi->frame is the value of the %sp for
1033 this frame, and it is good enough. */
1035 if (fdata.alloca_reg < 0) {
1036 fi->initial_sp = fi->frame;
1037 return fi->initial_sp;
1040 /* This function has an alloca register. If this is the top-most frame
1041 (with the lowest address), the value in alloca register is good. */
1044 return fi->initial_sp = read_register (fdata.alloca_reg);
1046 /* Otherwise, this is a caller frame. Callee has usually already saved
1047 registers, but there are exceptions (such as when the callee
1048 has no parameters). Find the address in which caller's alloca
1049 register is saved. */
1051 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1053 if (!callee_fi->cache_fsr)
1054 frame_get_cache_fsr (callee_fi, NULL);
1056 /* this is the address in which alloca register is saved. */
1058 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1060 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1061 return fi->initial_sp;
1064 /* Go look into deeper levels of the frame chain to see if any one of
1065 the callees has saved alloca register. */
1068 /* If alloca register was not saved, by the callee (or any of its callees)
1069 then the value in the register is still good. */
1071 return fi->initial_sp = read_register (fdata.alloca_reg);
1075 rs6000_frame_chain (thisframe)
1076 struct frame_info *thisframe;
1079 if (inside_entry_file ((thisframe)->pc))
1081 if (thisframe->signal_handler_caller)
1083 /* This was determined by experimentation on AIX 3.2. Perhaps
1084 it corresponds to some offset in /usr/include/sys/user.h or
1085 something like that. Using some system include file would
1086 have the advantage of probably being more robust in the face
1087 of OS upgrades, but the disadvantage of being wrong for
1090 #define SIG_FRAME_FP_OFFSET 284
1091 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1094 fp = read_memory_integer ((thisframe)->frame, 4);
1099 /* Keep an array of load segment information and their TOC table addresses.
1100 This info will be useful when calling a shared library function by hand. */
1103 CORE_ADDR textorg, dataorg;
1104 unsigned long toc_offset;
1107 #define LOADINFOLEN 10
1109 static struct loadinfo *loadinfo = NULL;
1110 static int loadinfolen = 0;
1111 static int loadinfotocindex = 0;
1112 static int loadinfotextindex = 0;
1116 xcoff_init_loadinfo ()
1118 loadinfotocindex = 0;
1119 loadinfotextindex = 0;
1121 if (loadinfolen == 0) {
1122 loadinfo = (struct loadinfo *)
1123 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1124 loadinfolen = LOADINFOLEN;
1129 /* FIXME -- this is never called! */
1137 loadinfotocindex = 0;
1138 loadinfotextindex = 0;
1141 /* this is called from xcoffread.c */
1144 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1146 while (loadinfotocindex >= loadinfolen) {
1147 loadinfolen += LOADINFOLEN;
1148 loadinfo = (struct loadinfo *)
1149 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1151 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1155 add_text_to_loadinfo (textaddr, dataaddr)
1159 while (loadinfotextindex >= loadinfolen) {
1160 loadinfolen += LOADINFOLEN;
1161 loadinfo = (struct loadinfo *)
1162 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1164 loadinfo [loadinfotextindex].textorg = textaddr;
1165 loadinfo [loadinfotextindex].dataorg = dataaddr;
1166 ++loadinfotextindex;
1170 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1171 of a member of this array are correlated with the "toc_offset"
1172 element of the same member. But they are sequentially assigned in wildly
1173 different places, and probably there is no correlation. FIXME! */
1176 find_toc_address (pc)
1179 int ii, toc_entry, tocbase = 0;
1181 for (ii=0; ii < loadinfotextindex; ++ii)
1182 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1184 tocbase = loadinfo[ii].textorg;
1187 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;