1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
30 #include "gdb_string.h"
32 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
34 /* FIXME: Put this declaration in frame.h. */
35 extern struct obstack frame_cache_obstack;
38 /* Forward declarations. */
40 static alpha_extra_func_info_t push_sigtramp_desc PARAMS ((CORE_ADDR low_addr));
42 static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
44 static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
46 static alpha_extra_func_info_t heuristic_proc_desc PARAMS ((CORE_ADDR,
48 struct frame_info *));
50 static alpha_extra_func_info_t find_proc_desc PARAMS ((CORE_ADDR,
51 struct frame_info *));
54 static int alpha_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
57 static void reinit_frame_cache_sfunc PARAMS ((char *, int,
58 struct cmd_list_element *));
60 static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
61 alpha_extra_func_info_t proc_desc));
63 static int alpha_in_prologue PARAMS ((CORE_ADDR pc,
64 alpha_extra_func_info_t proc_desc));
66 /* Heuristic_proc_start may hunt through the text section for a long
67 time across a 2400 baud serial line. Allows the user to limit this
69 static unsigned int heuristic_fence_post = 0;
71 /* Layout of a stack frame on the alpha:
74 pdr members: | 7th ... nth arg, |
75 | `pushed' by caller. |
77 ----------------|-------------------------------|<-- old_sp == vfp
80 | |localoff | Copies of 1st .. 6th |
81 | | | | | argument if necessary. |
83 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
85 | | | | Locals and temporaries. |
87 | | | |-------------------------------|
89 |-fregoffset | Saved float registers. |
95 | | -------|-------------------------------|
97 | | | Saved registers. |
104 | ----------|-------------------------------|
106 frameoffset | Argument build area, gets |
107 | | 7th ... nth arg for any |
108 | | called procedure. |
110 -------------|-------------------------------|<-- sp
114 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
115 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
116 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.iopt) /* frame for CALL_DUMMY */
117 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
118 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
119 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
120 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
121 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
122 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
123 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
124 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
125 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
126 #define _PROC_MAGIC_ 0x0F0F0F0F
127 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
128 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
130 struct linked_proc_info
132 struct alpha_extra_func_info info;
133 struct linked_proc_info *next;
134 } *linked_proc_desc_table = NULL;
137 /* Under Linux, signal handler invocations can be identified by the
138 designated code sequence that is used to return from a signal
139 handler. In particular, the return address of a signal handler
140 points to the following sequence (the first instruction is quadword
147 Each instruction has a unique encoding, so we simply attempt to
148 match the instruction the pc is pointing to with any of the above
149 instructions. If there is a hit, we know the offset to the start
150 of the designated sequence and can then check whether we really are
151 executing in a designated sequence. If not, -1 is returned,
152 otherwise the offset from the start of the desingated sequence is
155 There is a slight chance of false hits: code could jump into the
156 middle of the designated sequence, in which case there is no
157 guarantee that we are in the middle of a sigreturn syscall. Don't
158 think this will be a problem in praxis, though.
162 alpha_linux_sigtramp_offset (CORE_ADDR pc)
164 unsigned int i[3], w;
167 if (read_memory_nobpt(pc, (char *) &w, 4) != 0)
173 case 0x47de0410: off = 0; break; /* bis $30,$30,$16 */
174 case 0x43ecf400: off = 4; break; /* addq $31,0x67,$0 */
175 case 0x00000083: off = 8; break; /* call_pal callsys */
181 /* designated sequence is not quadword aligned */
185 if (read_memory_nobpt(pc, (char *) i, sizeof(i)) != 0)
188 if (i[0] == 0x47de0410 && i[1] == 0x43ecf400 && i[2] == 0x00000083)
195 /* Under OSF/1, the __sigtramp routine is frameless and has a frame
196 size of zero, but we are able to backtrace through it. */
198 alpha_osf_skip_sigtramp_frame (frame, pc)
199 struct frame_info *frame;
203 find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL, (CORE_ADDR *)NULL);
204 if (IN_SIGTRAMP (pc, name))
211 /* Dynamically create a signal-handler caller procedure descriptor for
212 the signal-handler return code starting at address LOW_ADDR. The
213 descriptor is added to the linked_proc_desc_table. */
215 static alpha_extra_func_info_t
216 push_sigtramp_desc (low_addr)
219 struct linked_proc_info *link;
220 alpha_extra_func_info_t proc_desc;
222 link = (struct linked_proc_info *)
223 xmalloc (sizeof (struct linked_proc_info));
224 link->next = linked_proc_desc_table;
225 linked_proc_desc_table = link;
227 proc_desc = &link->info;
229 proc_desc->numargs = 0;
230 PROC_LOW_ADDR (proc_desc) = low_addr;
231 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
232 PROC_DUMMY_FRAME (proc_desc) = 0;
233 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
234 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
235 PROC_REG_MASK (proc_desc) = 0xffff;
236 PROC_FREG_MASK (proc_desc) = 0xffff;
237 PROC_PC_REG (proc_desc) = 26;
238 PROC_LOCALOFF (proc_desc) = 0;
239 SET_PROC_DESC_IS_DYN_SIGTRAMP (proc_desc);
244 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
248 alpha_find_saved_regs (frame)
249 struct frame_info *frame;
252 CORE_ADDR reg_position;
254 alpha_extra_func_info_t proc_desc;
257 frame->saved_regs = (struct frame_saved_regs *)
258 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
259 memset (frame->saved_regs, 0, sizeof (struct frame_saved_regs));
261 /* If it is the frame for __sigtramp, the saved registers are located
262 in a sigcontext structure somewhere on the stack. __sigtramp
263 passes a pointer to the sigcontext structure on the stack.
264 If the stack layout for __sigtramp changes, or if sigcontext offsets
265 change, we might have to update this code. */
266 #ifndef SIGFRAME_PC_OFF
267 #define SIGFRAME_PC_OFF (2 * 8)
268 #define SIGFRAME_REGSAVE_OFF (4 * 8)
269 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
271 if (frame->signal_handler_caller)
273 CORE_ADDR sigcontext_addr;
275 sigcontext_addr = SIGCONTEXT_ADDR (frame);
276 for (ireg = 0; ireg < 32; ireg++)
278 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
279 frame->saved_regs->regs[ireg] = reg_position;
281 for (ireg = 0; ireg < 32; ireg++)
283 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
284 frame->saved_regs->regs[FP0_REGNUM + ireg] = reg_position;
286 frame->saved_regs->regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
290 proc_desc = frame->proc_desc;
291 if (proc_desc == NULL)
292 /* I'm not sure how/whether this can happen. Normally when we can't
293 find a proc_desc, we "synthesize" one using heuristic_proc_desc
294 and set the saved_regs right away. */
297 /* Fill in the offsets for the registers which gen_mask says
300 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
301 mask = PROC_REG_MASK (proc_desc);
303 returnreg = PROC_PC_REG (proc_desc);
305 /* Note that RA is always saved first, regardless of its actual
307 if (mask & (1 << returnreg))
309 frame->saved_regs->regs[returnreg] = reg_position;
311 mask &= ~(1 << returnreg); /* Clear bit for RA so we
312 don't save again later. */
315 for (ireg = 0; ireg <= 31 ; ++ireg)
316 if (mask & (1 << ireg))
318 frame->saved_regs->regs[ireg] = reg_position;
322 /* Fill in the offsets for the registers which float_mask says
325 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
326 mask = PROC_FREG_MASK (proc_desc);
328 for (ireg = 0; ireg <= 31 ; ++ireg)
329 if (mask & (1 << ireg))
331 frame->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
335 frame->saved_regs->regs[PC_REGNUM] = frame->saved_regs->regs[returnreg];
339 read_next_frame_reg(fi, regno)
340 struct frame_info *fi;
343 for (; fi; fi = fi->next)
345 /* We have to get the saved sp from the sigcontext
346 if it is a signal handler frame. */
347 if (regno == SP_REGNUM && !fi->signal_handler_caller)
351 if (fi->saved_regs == NULL)
352 alpha_find_saved_regs (fi);
353 if (fi->saved_regs->regs[regno])
354 return read_memory_integer(fi->saved_regs->regs[regno], 8);
357 return read_register(regno);
361 alpha_frame_saved_pc(frame)
362 struct frame_info *frame;
364 alpha_extra_func_info_t proc_desc = frame->proc_desc;
365 /* We have to get the saved pc from the sigcontext
366 if it is a signal handler frame. */
367 int pcreg = frame->signal_handler_caller ? PC_REGNUM : frame->pc_reg;
369 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
370 return read_memory_integer(frame->frame - 8, 8);
372 return read_next_frame_reg(frame, pcreg);
376 alpha_saved_pc_after_call (frame)
377 struct frame_info *frame;
379 CORE_ADDR pc = frame->pc;
381 alpha_extra_func_info_t proc_desc;
384 /* Skip over shared library trampoline if necessary. */
385 tmp = SKIP_TRAMPOLINE_CODE (pc);
389 proc_desc = find_proc_desc (pc, frame->next);
390 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM;
392 if (frame->signal_handler_caller)
393 return alpha_frame_saved_pc (frame);
395 return read_register (pcreg);
399 static struct alpha_extra_func_info temp_proc_desc;
400 static struct frame_saved_regs temp_saved_regs;
402 /* This fencepost looks highly suspicious to me. Removing it also
403 seems suspicious as it could affect remote debugging across serial
407 heuristic_proc_start(pc)
410 CORE_ADDR start_pc = pc;
411 CORE_ADDR fence = start_pc - heuristic_fence_post;
413 if (start_pc == 0) return 0;
415 if (heuristic_fence_post == UINT_MAX
416 || fence < VM_MIN_ADDRESS)
417 fence = VM_MIN_ADDRESS;
419 /* search back for previous return */
420 for (start_pc -= 4; ; start_pc -= 4)
421 if (start_pc < fence)
423 /* It's not clear to me why we reach this point when
424 stop_soon_quietly, but with this test, at least we
425 don't print out warnings for every child forked (eg, on
427 if (!stop_soon_quietly)
429 static int blurb_printed = 0;
431 if (fence == VM_MIN_ADDRESS)
432 warning("Hit beginning of text section without finding");
434 warning("Hit heuristic-fence-post without finding");
436 warning("enclosing function for address 0x%lx", pc);
440 This warning occurs if you are debugging a function without any symbols\n\
441 (for example, in a stripped executable). In that case, you may wish to\n\
442 increase the size of the search with the `set heuristic-fence-post' command.\n\
444 Otherwise, you told GDB there was a function where there isn't one, or\n\
445 (more likely) you have encountered a bug in GDB.\n");
452 else if (ABOUT_TO_RETURN(start_pc))
455 start_pc += 4; /* skip return */
459 static alpha_extra_func_info_t
460 heuristic_proc_desc(start_pc, limit_pc, next_frame)
461 CORE_ADDR start_pc, limit_pc;
462 struct frame_info *next_frame;
464 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
467 int has_frame_reg = 0;
468 unsigned long reg_mask = 0;
473 memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
474 memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
475 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
477 if (start_pc + 200 < limit_pc)
478 limit_pc = start_pc + 200;
480 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
486 status = read_memory_nobpt (cur_pc, buf, 4);
488 memory_error (status, cur_pc);
489 word = extract_unsigned_integer (buf, 4);
491 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
494 frame_size += (-word) & 0xffff;
496 /* Exit loop if a positive stack adjustment is found, which
497 usually means that the stack cleanup code in the function
498 epilogue is reached. */
501 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
502 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
504 int reg = (word & 0x03e00000) >> 21;
505 reg_mask |= 1 << reg;
506 temp_saved_regs.regs[reg] = sp + (short)word;
508 /* Starting with OSF/1-3.2C, the system libraries are shipped
509 without local symbols, but they still contain procedure
510 descriptors without a symbol reference. GDB is currently
511 unable to find these procedure descriptors and uses
512 heuristic_proc_desc instead.
513 As some low level compiler support routines (__div*, __add*)
514 use a non-standard return address register, we have to
515 add some heuristics to determine the return address register,
516 or stepping over these routines will fail.
517 Usually the return address register is the first register
518 saved on the stack, but assembler optimization might
519 rearrange the register saves.
520 So we recognize only a few registers (t7, t9, ra) within
521 the procedure prologue as valid return address registers.
522 If we encounter a return instruction, we extract the
523 the return address register from it.
525 FIXME: Rewriting GDB to access the procedure descriptors,
526 e.g. via the minimal symbol table, might obviate this hack. */
528 && cur_pc < (start_pc + 80)
529 && (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM))
532 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
533 pcreg = (word >> 16) & 0x1f;
534 else if (word == 0x47de040f) /* bis sp,sp fp */
539 /* If we haven't found a valid return address register yet,
540 keep searching in the procedure prologue. */
541 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
546 if (read_memory_nobpt (cur_pc, buf, 4))
549 word = extract_unsigned_integer (buf, 4);
551 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
552 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
554 int reg = (word & 0x03e00000) >> 21;
555 if (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM)
561 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
563 pcreg = (word >> 16) & 0x1f;
570 PROC_FRAME_REG(&temp_proc_desc) = GCC_FP_REGNUM;
572 PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM;
573 PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size;
574 PROC_REG_MASK(&temp_proc_desc) = reg_mask;
575 PROC_PC_REG(&temp_proc_desc) = (pcreg == -1) ? RA_REGNUM : pcreg;
576 PROC_LOCALOFF(&temp_proc_desc) = 0; /* XXX - bogus */
577 return &temp_proc_desc;
580 /* This returns the PC of the first inst after the prologue. If we can't
581 find the prologue, then return 0. */
584 after_prologue (pc, proc_desc)
586 alpha_extra_func_info_t proc_desc;
588 struct symtab_and_line sal;
589 CORE_ADDR func_addr, func_end;
592 proc_desc = find_proc_desc (pc, NULL);
596 if (PROC_DESC_IS_DYN_SIGTRAMP (proc_desc))
597 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
599 /* If function is frameless, then we need to do it the hard way. I
600 strongly suspect that frameless always means prologueless... */
601 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
602 && PROC_FRAME_OFFSET (proc_desc) == 0)
606 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
607 return 0; /* Unknown */
609 sal = find_pc_line (func_addr, 0);
611 if (sal.end < func_end)
614 /* The line after the prologue is after the end of the function. In this
615 case, tell the caller to find the prologue the hard way. */
620 /* Return non-zero if we *might* be in a function prologue. Return zero if we
621 are definitively *not* in a function prologue. */
624 alpha_in_prologue (pc, proc_desc)
626 alpha_extra_func_info_t proc_desc;
628 CORE_ADDR after_prologue_pc;
630 after_prologue_pc = after_prologue (pc, proc_desc);
632 if (after_prologue_pc == 0
633 || pc < after_prologue_pc)
639 static alpha_extra_func_info_t
640 find_proc_desc (pc, next_frame)
642 struct frame_info *next_frame;
644 alpha_extra_func_info_t proc_desc;
649 /* Try to get the proc_desc from the linked call dummy proc_descs
650 if the pc is in the call dummy.
651 This is hairy. In the case of nested dummy calls we have to find the
652 right proc_desc, but we might not yet know the frame for the dummy
653 as it will be contained in the proc_desc we are searching for.
654 So we have to find the proc_desc whose frame is closest to the current
657 if (PC_IN_CALL_DUMMY (pc, 0, 0))
659 struct linked_proc_info *link;
660 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
661 alpha_extra_func_info_t found_proc_desc = NULL;
662 long min_distance = LONG_MAX;
664 for (link = linked_proc_desc_table; link; link = link->next)
666 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
667 if (distance > 0 && distance < min_distance)
669 min_distance = distance;
670 found_proc_desc = &link->info;
673 if (found_proc_desc != NULL)
674 return found_proc_desc;
677 b = block_for_pc(pc);
679 find_pc_partial_function (pc, NULL, &startaddr, NULL);
684 if (startaddr > BLOCK_START (b))
685 /* This is the "pathological" case referred to in a comment in
686 print_frame_info. It might be better to move this check into
690 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
694 /* If we never found a PDR for this function in symbol reading, then
695 examine prologues to find the information. */
696 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
701 /* IF this is the topmost frame AND
702 * (this proc does not have debugging information OR
703 * the PC is in the procedure prologue)
704 * THEN create a "heuristic" proc_desc (by analyzing
705 * the actual code) to replace the "official" proc_desc.
707 proc_desc = (alpha_extra_func_info_t)SYMBOL_VALUE(sym);
708 if (next_frame == NULL)
710 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
712 alpha_extra_func_info_t found_heuristic =
713 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
717 PROC_LOCALOFF (found_heuristic) =
718 PROC_LOCALOFF (proc_desc);
719 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
720 proc_desc = found_heuristic;
729 /* Is linked_proc_desc_table really necessary? It only seems to be used
730 by procedure call dummys. However, the procedures being called ought
731 to have their own proc_descs, and even if they don't,
732 heuristic_proc_desc knows how to create them! */
734 register struct linked_proc_info *link;
735 for (link = linked_proc_desc_table; link; link = link->next)
736 if (PROC_LOW_ADDR(&link->info) <= pc
737 && PROC_HIGH_ADDR(&link->info) > pc)
740 /* If PC is inside a dynamically generated sigtramp handler,
741 create and push a procedure descriptor for that code: */
742 offset = DYNAMIC_SIGTRAMP_OFFSET (pc);
744 return push_sigtramp_desc (pc - offset);
746 /* If heuristic_fence_post is non-zero, determine the procedure
747 start address by examining the instructions.
748 This allows us to find the start address of static functions which
749 have no symbolic information, as startaddr would have been set to
750 the preceding global function start address by the
751 find_pc_partial_function call above. */
752 if (startaddr == 0 || heuristic_fence_post != 0)
753 startaddr = heuristic_proc_start (pc);
756 heuristic_proc_desc (startaddr, pc, next_frame);
761 alpha_extra_func_info_t cached_proc_desc;
764 alpha_frame_chain(frame)
765 struct frame_info *frame;
767 alpha_extra_func_info_t proc_desc;
768 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
770 if (saved_pc == 0 || inside_entry_file (saved_pc))
773 proc_desc = find_proc_desc(saved_pc, frame);
777 cached_proc_desc = proc_desc;
779 /* Fetch the frame pointer for a dummy frame from the procedure
781 if (PROC_DESC_IS_DUMMY(proc_desc))
782 return (CORE_ADDR) PROC_DUMMY_FRAME(proc_desc);
784 /* If no frame pointer and frame size is zero, we must be at end
785 of stack (or otherwise hosed). If we don't check frame size,
786 we loop forever if we see a zero size frame. */
787 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
788 && PROC_FRAME_OFFSET (proc_desc) == 0
789 /* The previous frame from a sigtramp frame might be frameless
790 and have frame size zero. */
791 && !frame->signal_handler_caller)
792 return FRAME_PAST_SIGTRAMP_FRAME (frame, saved_pc);
794 return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc))
795 + PROC_FRAME_OFFSET(proc_desc);
799 init_extra_frame_info (frame)
800 struct frame_info *frame;
802 /* Use proc_desc calculated in frame_chain */
803 alpha_extra_func_info_t proc_desc =
804 frame->next ? cached_proc_desc : find_proc_desc(frame->pc, frame->next);
806 frame->saved_regs = NULL;
808 frame->pc_reg = RA_REGNUM;
809 frame->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
812 /* Get the locals offset and the saved pc register from the
813 procedure descriptor, they are valid even if we are in the
814 middle of the prologue. */
815 frame->localoff = PROC_LOCALOFF(proc_desc);
816 frame->pc_reg = PROC_PC_REG(proc_desc);
818 /* Fixup frame-pointer - only needed for top frame */
820 /* Fetch the frame pointer for a dummy frame from the procedure
822 if (PROC_DESC_IS_DUMMY(proc_desc))
823 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME(proc_desc);
825 /* This may not be quite right, if proc has a real frame register.
826 Get the value of the frame relative sp, procedure might have been
827 interrupted by a signal at it's very start. */
828 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
829 && !PROC_DESC_IS_DYN_SIGTRAMP (proc_desc))
830 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
832 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
833 + PROC_FRAME_OFFSET (proc_desc);
835 if (proc_desc == &temp_proc_desc)
839 /* Do not set the saved registers for a sigtramp frame,
840 alpha_find_saved_registers will do that for us.
841 We can't use frame->signal_handler_caller, it is not yet set. */
842 find_pc_partial_function (frame->pc, &name,
843 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
844 if (!IN_SIGTRAMP (frame->pc, name))
846 frame->saved_regs = (struct frame_saved_regs*)
847 obstack_alloc (&frame_cache_obstack,
848 sizeof (struct frame_saved_regs));
849 *frame->saved_regs = temp_saved_regs;
850 frame->saved_regs->regs[PC_REGNUM]
851 = frame->saved_regs->regs[RA_REGNUM];
857 /* ALPHA stack frames are almost impenetrable. When execution stops,
858 we basically have to look at symbol information for the function
859 that we stopped in, which tells us *which* register (if any) is
860 the base of the frame pointer, and what offset from that register
861 the frame itself is at.
863 This presents a problem when trying to examine a stack in memory
864 (that isn't executing at the moment), using the "frame" command. We
865 don't have a PC, nor do we have any registers except SP.
867 This routine takes two arguments, SP and PC, and tries to make the
868 cached frames look as if these two arguments defined a frame on the
869 cache. This allows the rest of info frame to extract the important
870 arguments without difficulty. */
873 setup_arbitrary_frame (argc, argv)
878 error ("ALPHA frame specifications require two arguments: sp and pc");
880 return create_new_frame (argv[0], argv[1]);
883 /* The alpha passes the first six arguments in the registers, the rest on
884 the stack. The register arguments are eventually transferred to the
885 argument transfer area immediately below the stack by the called function
886 anyway. So we `push' at least six arguments on the stack, `reload' the
887 argument registers and then adjust the stack pointer to point past the
888 sixth argument. This algorithm simplifies the passing of a large struct
889 which extends from the registers to the stack.
890 If the called function is returning a structure, the address of the
891 structure to be returned is passed as a hidden first argument. */
894 alpha_push_arguments (nargs, args, sp, struct_return, struct_addr)
899 CORE_ADDR struct_addr;
902 int accumulate_size = struct_return ? 8 : 0;
903 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
904 struct alpha_arg { char *contents; int len; int offset; };
905 struct alpha_arg *alpha_args =
906 (struct alpha_arg*)alloca (nargs * sizeof (struct alpha_arg));
907 register struct alpha_arg *m_arg;
908 char raw_buffer[sizeof (CORE_ADDR)];
909 int required_arg_regs;
911 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
913 value_ptr arg = args[i];
914 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
915 /* Cast argument to long if necessary as the compiler does it too. */
916 switch (TYPE_CODE (arg_type))
921 case TYPE_CODE_RANGE:
923 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
925 arg_type = builtin_type_long;
926 arg = value_cast (arg_type, arg);
932 m_arg->len = TYPE_LENGTH (arg_type);
933 m_arg->offset = accumulate_size;
934 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
935 m_arg->contents = VALUE_CONTENTS(arg);
938 /* Determine required argument register loads, loading an argument register
939 is expensive as it uses three ptrace calls. */
940 required_arg_regs = accumulate_size / 8;
941 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
942 required_arg_regs = ALPHA_NUM_ARG_REGS;
944 /* Make room for the arguments on the stack. */
945 if (accumulate_size < arg_regs_size)
946 accumulate_size = arg_regs_size;
947 sp -= accumulate_size;
949 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
952 /* `Push' arguments on the stack. */
953 for (i = nargs; m_arg--, --i >= 0; )
954 write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
957 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
958 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
961 /* Load the argument registers. */
962 for (i = 0; i < required_arg_regs; i++)
966 val = read_memory_integer (sp + i * 8, 8);
967 write_register (A0_REGNUM + i, val);
968 write_register (FPA0_REGNUM + i, val);
971 return sp + arg_regs_size;
975 alpha_push_dummy_frame()
978 struct linked_proc_info *link;
979 alpha_extra_func_info_t proc_desc;
980 CORE_ADDR sp = read_register (SP_REGNUM);
981 CORE_ADDR save_address;
982 char raw_buffer[MAX_REGISTER_RAW_SIZE];
985 link = (struct linked_proc_info *) xmalloc(sizeof (struct linked_proc_info));
986 link->next = linked_proc_desc_table;
987 linked_proc_desc_table = link;
989 proc_desc = &link->info;
992 * The registers we must save are all those not preserved across
994 * In addition, we must save the PC and RA.
996 * Dummy frame layout:
1006 * Parameter build area
1010 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1011 #define MASK(i,j) (((1L << ((j)+1)) - 1) ^ ((1L << (i)) - 1))
1012 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1013 #define GEN_REG_SAVE_COUNT 24
1014 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1015 #define FLOAT_REG_SAVE_COUNT 23
1016 /* The special register is the PC as we have no bit for it in the save masks.
1017 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1018 #define SPECIAL_REG_SAVE_COUNT 1
1020 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
1021 PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK;
1022 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1023 but keep SP aligned to a multiple of 16. */
1024 PROC_REG_OFFSET(proc_desc) =
1025 - ((8 * (SPECIAL_REG_SAVE_COUNT
1026 + GEN_REG_SAVE_COUNT
1027 + FLOAT_REG_SAVE_COUNT)
1029 PROC_FREG_OFFSET(proc_desc) =
1030 PROC_REG_OFFSET(proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1032 /* Save general registers.
1033 The return address register is the first saved register, all other
1034 registers follow in ascending order.
1035 The PC is saved immediately below the SP. */
1036 save_address = sp + PROC_REG_OFFSET(proc_desc);
1037 store_address (raw_buffer, 8, read_register (RA_REGNUM));
1038 write_memory (save_address, raw_buffer, 8);
1040 mask = PROC_REG_MASK(proc_desc) & 0xffffffffL;
1041 for (ireg = 0; mask; ireg++, mask >>= 1)
1044 if (ireg == RA_REGNUM)
1046 store_address (raw_buffer, 8, read_register (ireg));
1047 write_memory (save_address, raw_buffer, 8);
1051 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1052 write_memory (sp - 8, raw_buffer, 8);
1054 /* Save floating point registers. */
1055 save_address = sp + PROC_FREG_OFFSET(proc_desc);
1056 mask = PROC_FREG_MASK(proc_desc) & 0xffffffffL;
1057 for (ireg = 0; mask; ireg++, mask >>= 1)
1060 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1061 write_memory (save_address, raw_buffer, 8);
1065 /* Set and save the frame address for the dummy.
1066 This is tricky. The only registers that are suitable for a frame save
1067 are those that are preserved across procedure calls (s0-s6). But if
1068 a read system call is interrupted and then a dummy call is made
1069 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1070 is satisfied. Then it returns with the s0-s6 registers set to the values
1071 on entry to the read system call and our dummy frame pointer would be
1072 destroyed. So we save the dummy frame in the proc_desc and handle the
1073 retrieval of the frame pointer of a dummy specifically. The frame register
1074 is set to the virtual frame (pseudo) register, it's value will always
1075 be read as zero and will help us to catch any errors in the dummy frame
1077 PROC_DUMMY_FRAME(proc_desc) = sp;
1078 PROC_FRAME_REG(proc_desc) = FP_REGNUM;
1079 PROC_FRAME_OFFSET(proc_desc) = 0;
1080 sp += PROC_REG_OFFSET(proc_desc);
1081 write_register (SP_REGNUM, sp);
1083 PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS ();
1084 PROC_HIGH_ADDR(proc_desc) = PROC_LOW_ADDR(proc_desc) + 4;
1086 SET_PROC_DESC_IS_DUMMY(proc_desc);
1087 PROC_PC_REG(proc_desc) = RA_REGNUM;
1093 register int regnum;
1094 struct frame_info *frame = get_current_frame ();
1095 CORE_ADDR new_sp = frame->frame;
1097 alpha_extra_func_info_t proc_desc = frame->proc_desc;
1099 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
1100 if (frame->saved_regs == NULL)
1101 alpha_find_saved_regs (frame);
1104 for (regnum = 32; --regnum >= 0; )
1105 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
1106 write_register (regnum,
1107 read_memory_integer (frame->saved_regs->regs[regnum],
1109 for (regnum = 32; --regnum >= 0; )
1110 if (PROC_FREG_MASK(proc_desc) & (1 << regnum))
1111 write_register (regnum + FP0_REGNUM,
1112 read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], 8));
1114 write_register (SP_REGNUM, new_sp);
1115 flush_cached_frames ();
1117 if (proc_desc && (PROC_DESC_IS_DUMMY(proc_desc)
1118 || PROC_DESC_IS_DYN_SIGTRAMP (proc_desc)))
1120 struct linked_proc_info *pi_ptr, *prev_ptr;
1122 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1124 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1126 if (&pi_ptr->info == proc_desc)
1131 error ("Can't locate dummy extra frame info\n");
1133 if (prev_ptr != NULL)
1134 prev_ptr->next = pi_ptr->next;
1136 linked_proc_desc_table = pi_ptr->next;
1142 /* To skip prologues, I use this predicate. Returns either PC itself
1143 if the code at PC does not look like a function prologue; otherwise
1144 returns an address that (if we're lucky) follows the prologue. If
1145 LENIENT, then we must skip everything which is involved in setting
1146 up the frame (it's OK to skip more, just so long as we don't skip
1147 anything which might clobber the registers which are being saved.
1148 Currently we must not skip more on the alpha, but we might the lenient
1152 alpha_skip_prologue (pc, lenient)
1158 CORE_ADDR post_prologue_pc;
1161 #ifdef GDB_TARGET_HAS_SHARED_LIBS
1162 /* Silently return the unaltered pc upon memory errors.
1163 This could happen on OSF/1 if decode_line_1 tries to skip the
1164 prologue for quickstarted shared library functions when the
1165 shared library is not yet mapped in.
1166 Reading target memory is slow over serial lines, so we perform
1167 this check only if the target has shared libraries. */
1168 if (target_read_memory (pc, buf, 4))
1172 /* See if we can determine the end of the prologue via the symbol table.
1173 If so, then return either PC, or the PC after the prologue, whichever
1176 post_prologue_pc = after_prologue (pc, NULL);
1178 if (post_prologue_pc != 0)
1179 return max (pc, post_prologue_pc);
1181 /* Can't determine prologue from the symbol table, need to examine
1184 /* Skip the typical prologue instructions. These are the stack adjustment
1185 instruction and the instructions that save registers on the stack
1186 or in the gcc frame. */
1187 for (offset = 0; offset < 100; offset += 4)
1191 status = read_memory_nobpt (pc + offset, buf, 4);
1193 memory_error (status, pc + offset);
1194 inst = extract_unsigned_integer (buf, 4);
1196 /* The alpha has no delay slots. But let's keep the lenient stuff,
1197 we might need it for something else in the future. */
1201 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1203 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1205 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1207 else if ((inst & 0xfc1f0000) == 0xb41e0000
1208 && (inst & 0xffff0000) != 0xb7fe0000)
1209 continue; /* stq reg,n($sp) */
1211 else if ((inst & 0xfc1f0000) == 0x9c1e0000
1212 && (inst & 0xffff0000) != 0x9ffe0000)
1213 continue; /* stt reg,n($sp) */
1215 else if (inst == 0x47de040f) /* bis sp,sp,fp */
1224 /* Is address PC in the prologue (loosely defined) for function at
1228 alpha_in_lenient_prologue (startaddr, pc)
1229 CORE_ADDR startaddr;
1232 CORE_ADDR end_prologue = alpha_skip_prologue (startaddr, 1);
1233 return pc >= startaddr && pc < end_prologue;
1237 /* The alpha needs a conversion between register and memory format if
1238 the register is a floating point register and
1239 memory format is float, as the register format must be double
1241 memory format is an integer with 4 bytes or less, as the representation
1242 of integers in floating point registers is different. */
1244 alpha_register_convert_to_virtual (regnum, valtype, raw_buffer, virtual_buffer)
1246 struct type *valtype;
1248 char *virtual_buffer;
1250 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1252 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1256 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1258 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1259 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1261 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1264 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1265 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1266 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1269 error ("Cannot retrieve value from floating point register");
1273 alpha_register_convert_to_raw (valtype, regnum, virtual_buffer, raw_buffer)
1274 struct type *valtype;
1276 char *virtual_buffer;
1279 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1281 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1285 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1287 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1288 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1290 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1293 if (TYPE_UNSIGNED (valtype))
1294 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1296 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1297 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1298 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1301 error ("Cannot store value in floating point register");
1304 /* Given a return value in `regbuf' with a type `valtype',
1305 extract and copy its value into `valbuf'. */
1308 alpha_extract_return_value (valtype, regbuf, valbuf)
1309 struct type *valtype;
1310 char regbuf[REGISTER_BYTES];
1313 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1314 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1315 regbuf + REGISTER_BYTE (FP0_REGNUM),
1318 memcpy (valbuf, regbuf + REGISTER_BYTE (V0_REGNUM), TYPE_LENGTH (valtype));
1321 /* Given a return value in `regbuf' with a type `valtype',
1322 write its value into the appropriate register. */
1325 alpha_store_return_value (valtype, valbuf)
1326 struct type *valtype;
1329 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1330 int regnum = V0_REGNUM;
1331 int length = TYPE_LENGTH (valtype);
1333 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1335 regnum = FP0_REGNUM;
1336 length = REGISTER_RAW_SIZE (regnum);
1337 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1340 memcpy (raw_buffer, valbuf, length);
1342 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1345 /* Just like reinit_frame_cache, but with the right arguments to be
1346 callable as an sfunc. */
1349 reinit_frame_cache_sfunc (args, from_tty, c)
1352 struct cmd_list_element *c;
1354 reinit_frame_cache ();
1357 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1358 to find a convenient place in the text segment to stick a breakpoint to
1359 detect the completion of a target function call (ala call_function_by_hand).
1363 alpha_call_dummy_address ()
1366 struct minimal_symbol *sym;
1368 entry = entry_point_address ();
1373 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1375 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1378 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1382 _initialize_alpha_tdep ()
1384 struct cmd_list_element *c;
1386 tm_print_insn = print_insn_alpha;
1388 /* Let the user set the fence post for heuristic_proc_start. */
1390 /* We really would like to have both "0" and "unlimited" work, but
1391 command.c doesn't deal with that. So make it a var_zinteger
1392 because the user can always use "999999" or some such for unlimited. */
1393 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1394 (char *) &heuristic_fence_post,
1396 Set the distance searched for the start of a function.\n\
1397 If you are debugging a stripped executable, GDB needs to search through the\n\
1398 program for the start of a function. This command sets the distance of the\n\
1399 search. The only need to set it is when debugging a stripped executable.",
1401 /* We need to throw away the frame cache when we set this, since it
1402 might change our ability to get backtraces. */
1403 c->function.sfunc = reinit_frame_cache_sfunc;
1404 add_show_from_set (c, &showlist);