1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "byte-vector.h"
52 #include <unordered_map>
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56 static void default_terminal_info (struct target_ops *, const char *, int);
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 static int default_follow_fork (struct target_ops *self, int follow_child,
72 static void default_mourn_inferior (struct target_ops *self);
74 static int default_search_memory (struct target_ops *ops,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
79 CORE_ADDR *found_addrp);
81 static int default_verify_memory (struct target_ops *self,
83 CORE_ADDR memaddr, ULONGEST size);
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
90 static struct target_ops *find_default_run_target (const char *);
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
116 /* The initial current target, so that there is always a semi-valid
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
122 /* The target stack. */
124 static target_stack g_target_stack;
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
131 current_top_target ()
133 return g_target_stack.top ();
136 /* Command list for target. */
138 static struct cmd_list_element *targetlist = NULL;
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
143 static int trust_readonly = 0;
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
148 static int show_memory_breakpoints = 0;
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
154 int may_write_registers = 1;
156 int may_write_memory = 1;
158 int may_insert_breakpoints = 1;
160 int may_insert_tracepoints = 1;
162 int may_insert_fast_tracepoints = 1;
166 /* Non-zero if we want to see trace of target level stuff. */
168 static unsigned int targetdebug = 0;
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
174 push_target (the_debug_target);
176 unpush_target (the_debug_target);
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
186 /* The user just typed 'target' without the name of a target. */
189 target_command (const char *arg, int from_tty)
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
196 namespace selftests {
198 /* A mock process_stratum target_ops that doesn't read/write registers
201 static const target_info test_target_info = {
203 N_("unit tests target"),
204 N_("You should never see this"),
208 test_target_ops::info () const
210 return test_target_info;
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
216 /* Default target_has_* methods for process_stratum targets. */
219 default_child_has_all_memory ()
221 /* If no inferior selected, then we can't read memory here. */
222 if (inferior_ptid == null_ptid)
229 default_child_has_memory ()
231 /* If no inferior selected, then we can't read memory here. */
232 if (inferior_ptid == null_ptid)
239 default_child_has_stack ()
241 /* If no inferior selected, there's no stack. */
242 if (inferior_ptid == null_ptid)
249 default_child_has_registers ()
251 /* Can't read registers from no inferior. */
252 if (inferior_ptid == null_ptid)
259 default_child_has_execution (ptid_t the_ptid)
261 /* If there's no thread selected, then we can't make it run through
263 if (the_ptid == null_ptid)
271 target_has_all_memory_1 (void)
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
281 target_has_memory_1 (void)
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
291 target_has_stack_1 (void)
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
301 target_has_registers_1 (void)
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
311 target_has_execution_1 (ptid_t the_ptid)
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
321 target_has_execution_current (void)
323 return target_has_execution_1 (inferior_ptid);
326 /* This is used to implement the various target commands. */
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
338 func (args, from_tty);
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
351 struct cmd_list_element *c;
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
379 struct cmd_list_element *c;
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
396 current_top_target ()->kill ();
400 target_load (const char *arg, int from_tty)
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
411 /* See target/target.h. */
414 target_terminal::init (void)
416 current_top_target ()->terminal_init ();
418 m_terminal_state = target_terminal_state::is_ours;
421 /* See target/target.h. */
424 target_terminal::inferior (void)
426 struct ui *ui = current_ui;
428 /* A background resume (``run&'') should leave GDB in control of the
430 if (ui->prompt_state != PROMPT_BLOCKED)
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
443 struct inferior *inf = current_inferior ();
445 if (inf->terminal_state != target_terminal_state::is_inferior)
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
451 m_terminal_state = target_terminal_state::is_inferior;
453 /* If the user hit C-c before, pretend that it was hit right
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
459 /* See target/target.h. */
462 target_terminal::restore_inferior (void)
464 struct ui *ui = current_ui;
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
489 m_terminal_state = target_terminal_state::is_inferior;
491 /* If the user hit C-c before, pretend that it was hit right
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
513 if (inf->terminal_state == target_terminal_state::is_inferior)
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
541 /* See target/target.h. */
544 target_terminal::ours ()
546 struct ui *ui = current_ui;
548 /* See target_terminal::inferior. */
552 if (m_terminal_state == target_terminal_state::is_ours)
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
559 /* See target/target.h. */
562 target_terminal::ours_for_output ()
564 struct ui *ui = current_ui;
566 /* See target_terminal::inferior. */
570 if (!target_terminal::is_inferior ())
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
577 /* See target/target.h. */
580 target_terminal::info (const char *arg, int from_tty)
582 current_top_target ()->terminal_info (arg, from_tty);
588 target_supports_terminal_ours (void)
590 return current_top_target ()->supports_terminal_ours ();
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
603 error (_("You can't do that without a process to debug."));
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
609 printf_unfiltered (_("No saved terminal information.\n"));
612 /* A default implementation for the to_get_ada_task_ptid target method.
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
621 return ptid_t (inferior_ptid.pid (), lwp, tid);
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
627 if (!target_can_execute_reverse)
629 else if (!target_can_async_p ())
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
639 target_stack::push (target_ops *t)
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
659 push_target (struct target_ops *t)
661 g_target_stack.push (t);
667 unpush_target (struct target_ops *t)
669 return g_target_stack.unpush (t);
675 target_stack::unpush (target_ops *t)
677 if (t->to_stratum == dummy_stratum)
678 internal_error (__FILE__, __LINE__,
679 _("Attempt to unpush the dummy target"));
681 gdb_assert (t != NULL);
683 /* Look for the specified target. Note that a target can only occur
684 once in the target stack. */
686 if (m_stack[t->to_stratum] != t)
688 /* If T wasn't pushed, quit. Only open targets should be
693 /* Unchain the target. */
694 m_stack[t->to_stratum] = NULL;
696 if (m_top == t->to_stratum)
697 m_top = t->beneath ()->to_stratum;
699 /* Finally close the target. Note we do this after unchaining, so
700 any target method calls from within the target_close
701 implementation don't end up in T anymore. */
707 /* Unpush TARGET and assert that it worked. */
710 unpush_target_and_assert (struct target_ops *target)
712 if (!unpush_target (target))
714 fprintf_unfiltered (gdb_stderr,
715 "pop_all_targets couldn't find target %s\n",
716 target->shortname ());
717 internal_error (__FILE__, __LINE__,
718 _("failed internal consistency check"));
723 pop_all_targets_above (enum strata above_stratum)
725 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
726 unpush_target_and_assert (current_top_target ());
732 pop_all_targets_at_and_above (enum strata stratum)
734 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
735 unpush_target_and_assert (current_top_target ());
739 pop_all_targets (void)
741 pop_all_targets_above (dummy_stratum);
744 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
747 target_is_pushed (struct target_ops *t)
749 return g_target_stack.is_pushed (t);
752 /* Default implementation of to_get_thread_local_address. */
755 generic_tls_error (void)
757 throw_error (TLS_GENERIC_ERROR,
758 _("Cannot find thread-local variables on this target"));
761 /* Using the objfile specified in OBJFILE, find the address for the
762 current thread's thread-local storage with offset OFFSET. */
764 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
766 volatile CORE_ADDR addr = 0;
767 struct target_ops *target = current_top_target ();
769 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
771 ptid_t ptid = inferior_ptid;
777 /* Fetch the load module address for this objfile. */
778 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
781 addr = target->get_thread_local_address (ptid, lm_addr, offset);
783 /* If an error occurred, print TLS related messages here. Otherwise,
784 throw the error to some higher catcher. */
785 CATCH (ex, RETURN_MASK_ALL)
787 int objfile_is_library = (objfile->flags & OBJF_SHARED);
791 case TLS_NO_LIBRARY_SUPPORT_ERROR:
792 error (_("Cannot find thread-local variables "
793 "in this thread library."));
795 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
796 if (objfile_is_library)
797 error (_("Cannot find shared library `%s' in dynamic"
798 " linker's load module list"), objfile_name (objfile));
800 error (_("Cannot find executable file `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
803 case TLS_NOT_ALLOCATED_YET_ERROR:
804 if (objfile_is_library)
805 error (_("The inferior has not yet allocated storage for"
806 " thread-local variables in\n"
807 "the shared library `%s'\n"
809 objfile_name (objfile), target_pid_to_str (ptid));
811 error (_("The inferior has not yet allocated storage for"
812 " thread-local variables in\n"
813 "the executable `%s'\n"
815 objfile_name (objfile), target_pid_to_str (ptid));
817 case TLS_GENERIC_ERROR:
818 if (objfile_is_library)
819 error (_("Cannot find thread-local storage for %s, "
820 "shared library %s:\n%s"),
821 target_pid_to_str (ptid),
822 objfile_name (objfile), ex.message);
824 error (_("Cannot find thread-local storage for %s, "
825 "executable file %s:\n%s"),
826 target_pid_to_str (ptid),
827 objfile_name (objfile), ex.message);
830 throw_exception (ex);
836 /* It wouldn't be wrong here to try a gdbarch method, too; finding
837 TLS is an ABI-specific thing. But we don't do that yet. */
839 error (_("Cannot find thread-local variables on this target"));
845 target_xfer_status_to_string (enum target_xfer_status status)
847 #define CASE(X) case X: return #X
850 CASE(TARGET_XFER_E_IO);
851 CASE(TARGET_XFER_UNAVAILABLE);
860 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
862 /* target_read_string -- read a null terminated string, up to LEN bytes,
863 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
864 Set *STRING to a pointer to malloc'd memory containing the data; the caller
865 is responsible for freeing it. Return the number of bytes successfully
869 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
870 int len, int *errnop)
876 int buffer_allocated;
878 unsigned int nbytes_read = 0;
882 /* Small for testing. */
883 buffer_allocated = 4;
884 buffer = (char *) xmalloc (buffer_allocated);
889 tlen = MIN (len, 4 - (memaddr & 3));
890 offset = memaddr & 3;
892 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
895 /* The transfer request might have crossed the boundary to an
896 unallocated region of memory. Retry the transfer, requesting
900 errcode = target_read_memory (memaddr, buf, 1);
905 if (bufptr - buffer + tlen > buffer_allocated)
909 bytes = bufptr - buffer;
910 buffer_allocated *= 2;
911 buffer = (char *) xrealloc (buffer, buffer_allocated);
912 bufptr = buffer + bytes;
915 for (i = 0; i < tlen; i++)
917 *bufptr++ = buf[i + offset];
918 if (buf[i + offset] == '\000')
920 nbytes_read += i + 1;
930 string->reset (buffer);
936 struct target_section_table *
937 target_get_section_table (struct target_ops *target)
939 return target->get_section_table ();
942 /* Find a section containing ADDR. */
944 struct target_section *
945 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
947 struct target_section_table *table = target_get_section_table (target);
948 struct target_section *secp;
953 for (secp = table->sections; secp < table->sections_end; secp++)
955 if (addr >= secp->addr && addr < secp->endaddr)
962 /* Helper for the memory xfer routines. Checks the attributes of the
963 memory region of MEMADDR against the read or write being attempted.
964 If the access is permitted returns true, otherwise returns false.
965 REGION_P is an optional output parameter. If not-NULL, it is
966 filled with a pointer to the memory region of MEMADDR. REG_LEN
967 returns LEN trimmed to the end of the region. This is how much the
968 caller can continue requesting, if the access is permitted. A
969 single xfer request must not straddle memory region boundaries. */
972 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
973 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
974 struct mem_region **region_p)
976 struct mem_region *region;
978 region = lookup_mem_region (memaddr);
980 if (region_p != NULL)
983 switch (region->attrib.mode)
986 if (writebuf != NULL)
996 /* We only support writing to flash during "load" for now. */
997 if (writebuf != NULL)
998 error (_("Writing to flash memory forbidden in this context"));
1005 /* region->hi == 0 means there's no upper bound. */
1006 if (memaddr + len < region->hi || region->hi == 0)
1009 *reg_len = region->hi - memaddr;
1014 /* Read memory from more than one valid target. A core file, for
1015 instance, could have some of memory but delegate other bits to
1016 the target below it. So, we must manually try all targets. */
1018 enum target_xfer_status
1019 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1020 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1021 ULONGEST *xfered_len)
1023 enum target_xfer_status res;
1027 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1028 readbuf, writebuf, memaddr, len,
1030 if (res == TARGET_XFER_OK)
1033 /* Stop if the target reports that the memory is not available. */
1034 if (res == TARGET_XFER_UNAVAILABLE)
1037 /* We want to continue past core files to executables, but not
1038 past a running target's memory. */
1039 if (ops->has_all_memory ())
1042 ops = ops->beneath ();
1044 while (ops != NULL);
1046 /* The cache works at the raw memory level. Make sure the cache
1047 gets updated with raw contents no matter what kind of memory
1048 object was originally being written. Note we do write-through
1049 first, so that if it fails, we don't write to the cache contents
1050 that never made it to the target. */
1051 if (writebuf != NULL
1052 && inferior_ptid != null_ptid
1053 && target_dcache_init_p ()
1054 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1056 DCACHE *dcache = target_dcache_get ();
1058 /* Note that writing to an area of memory which wasn't present
1059 in the cache doesn't cause it to be loaded in. */
1060 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1066 /* Perform a partial memory transfer.
1067 For docs see target.h, to_xfer_partial. */
1069 static enum target_xfer_status
1070 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1071 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1072 ULONGEST len, ULONGEST *xfered_len)
1074 enum target_xfer_status res;
1076 struct mem_region *region;
1077 struct inferior *inf;
1079 /* For accesses to unmapped overlay sections, read directly from
1080 files. Must do this first, as MEMADDR may need adjustment. */
1081 if (readbuf != NULL && overlay_debugging)
1083 struct obj_section *section = find_pc_overlay (memaddr);
1085 if (pc_in_unmapped_range (memaddr, section))
1087 struct target_section_table *table
1088 = target_get_section_table (ops);
1089 const char *section_name = section->the_bfd_section->name;
1091 memaddr = overlay_mapped_address (memaddr, section);
1092 return section_table_xfer_memory_partial (readbuf, writebuf,
1093 memaddr, len, xfered_len,
1095 table->sections_end,
1100 /* Try the executable files, if "trust-readonly-sections" is set. */
1101 if (readbuf != NULL && trust_readonly)
1103 struct target_section *secp;
1104 struct target_section_table *table;
1106 secp = target_section_by_addr (ops, memaddr);
1108 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1109 secp->the_bfd_section)
1112 table = target_get_section_table (ops);
1113 return section_table_xfer_memory_partial (readbuf, writebuf,
1114 memaddr, len, xfered_len,
1116 table->sections_end,
1121 /* Try GDB's internal data cache. */
1123 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1125 return TARGET_XFER_E_IO;
1127 if (inferior_ptid != null_ptid)
1128 inf = current_inferior ();
1134 /* The dcache reads whole cache lines; that doesn't play well
1135 with reading from a trace buffer, because reading outside of
1136 the collected memory range fails. */
1137 && get_traceframe_number () == -1
1138 && (region->attrib.cache
1139 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1140 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1142 DCACHE *dcache = target_dcache_get_or_init ();
1144 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1145 reg_len, xfered_len);
1148 /* If none of those methods found the memory we wanted, fall back
1149 to a target partial transfer. Normally a single call to
1150 to_xfer_partial is enough; if it doesn't recognize an object
1151 it will call the to_xfer_partial of the next target down.
1152 But for memory this won't do. Memory is the only target
1153 object which can be read from more than one valid target.
1154 A core file, for instance, could have some of memory but
1155 delegate other bits to the target below it. So, we must
1156 manually try all targets. */
1158 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1161 /* If we still haven't got anything, return the last error. We
1166 /* Perform a partial memory transfer. For docs see target.h,
1169 static enum target_xfer_status
1170 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1171 gdb_byte *readbuf, const gdb_byte *writebuf,
1172 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1174 enum target_xfer_status res;
1176 /* Zero length requests are ok and require no work. */
1178 return TARGET_XFER_EOF;
1180 memaddr = address_significant (target_gdbarch (), memaddr);
1182 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1183 breakpoint insns, thus hiding out from higher layers whether
1184 there are software breakpoints inserted in the code stream. */
1185 if (readbuf != NULL)
1187 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1190 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1191 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1195 /* A large write request is likely to be partially satisfied
1196 by memory_xfer_partial_1. We will continually malloc
1197 and free a copy of the entire write request for breakpoint
1198 shadow handling even though we only end up writing a small
1199 subset of it. Cap writes to a limit specified by the target
1200 to mitigate this. */
1201 len = std::min (ops->get_memory_xfer_limit (), len);
1203 gdb::byte_vector buf (writebuf, writebuf + len);
1204 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1205 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1212 scoped_restore_tmpl<int>
1213 make_scoped_restore_show_memory_breakpoints (int show)
1215 return make_scoped_restore (&show_memory_breakpoints, show);
1218 /* For docs see target.h, to_xfer_partial. */
1220 enum target_xfer_status
1221 target_xfer_partial (struct target_ops *ops,
1222 enum target_object object, const char *annex,
1223 gdb_byte *readbuf, const gdb_byte *writebuf,
1224 ULONGEST offset, ULONGEST len,
1225 ULONGEST *xfered_len)
1227 enum target_xfer_status retval;
1229 /* Transfer is done when LEN is zero. */
1231 return TARGET_XFER_EOF;
1233 if (writebuf && !may_write_memory)
1234 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1235 core_addr_to_string_nz (offset), plongest (len));
1239 /* If this is a memory transfer, let the memory-specific code
1240 have a look at it instead. Memory transfers are more
1242 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1243 || object == TARGET_OBJECT_CODE_MEMORY)
1244 retval = memory_xfer_partial (ops, object, readbuf,
1245 writebuf, offset, len, xfered_len);
1246 else if (object == TARGET_OBJECT_RAW_MEMORY)
1248 /* Skip/avoid accessing the target if the memory region
1249 attributes block the access. Check this here instead of in
1250 raw_memory_xfer_partial as otherwise we'd end up checking
1251 this twice in the case of the memory_xfer_partial path is
1252 taken; once before checking the dcache, and another in the
1253 tail call to raw_memory_xfer_partial. */
1254 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1256 return TARGET_XFER_E_IO;
1258 /* Request the normal memory object from other layers. */
1259 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1263 retval = ops->xfer_partial (object, annex, readbuf,
1264 writebuf, offset, len, xfered_len);
1268 const unsigned char *myaddr = NULL;
1270 fprintf_unfiltered (gdb_stdlog,
1271 "%s:target_xfer_partial "
1272 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1275 (annex ? annex : "(null)"),
1276 host_address_to_string (readbuf),
1277 host_address_to_string (writebuf),
1278 core_addr_to_string_nz (offset),
1279 pulongest (len), retval,
1280 pulongest (*xfered_len));
1286 if (retval == TARGET_XFER_OK && myaddr != NULL)
1290 fputs_unfiltered (", bytes =", gdb_stdlog);
1291 for (i = 0; i < *xfered_len; i++)
1293 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1295 if (targetdebug < 2 && i > 0)
1297 fprintf_unfiltered (gdb_stdlog, " ...");
1300 fprintf_unfiltered (gdb_stdlog, "\n");
1303 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1307 fputc_unfiltered ('\n', gdb_stdlog);
1310 /* Check implementations of to_xfer_partial update *XFERED_LEN
1311 properly. Do assertion after printing debug messages, so that we
1312 can find more clues on assertion failure from debugging messages. */
1313 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1314 gdb_assert (*xfered_len > 0);
1319 /* Read LEN bytes of target memory at address MEMADDR, placing the
1320 results in GDB's memory at MYADDR. Returns either 0 for success or
1321 -1 if any error occurs.
1323 If an error occurs, no guarantee is made about the contents of the data at
1324 MYADDR. In particular, the caller should not depend upon partial reads
1325 filling the buffer with good data. There is no way for the caller to know
1326 how much good data might have been transfered anyway. Callers that can
1327 deal with partial reads should call target_read (which will retry until
1328 it makes no progress, and then return how much was transferred). */
1331 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1333 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1334 myaddr, memaddr, len) == len)
1340 /* See target/target.h. */
1343 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1348 r = target_read_memory (memaddr, buf, sizeof buf);
1351 *result = extract_unsigned_integer (buf, sizeof buf,
1352 gdbarch_byte_order (target_gdbarch ()));
1356 /* Like target_read_memory, but specify explicitly that this is a read
1357 from the target's raw memory. That is, this read bypasses the
1358 dcache, breakpoint shadowing, etc. */
1361 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1363 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1364 myaddr, memaddr, len) == len)
1370 /* Like target_read_memory, but specify explicitly that this is a read from
1371 the target's stack. This may trigger different cache behavior. */
1374 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1376 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1377 myaddr, memaddr, len) == len)
1383 /* Like target_read_memory, but specify explicitly that this is a read from
1384 the target's code. This may trigger different cache behavior. */
1387 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1389 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1390 myaddr, memaddr, len) == len)
1396 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1397 Returns either 0 for success or -1 if any error occurs. If an
1398 error occurs, no guarantee is made about how much data got written.
1399 Callers that can deal with partial writes should call
1403 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1405 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1406 myaddr, memaddr, len) == len)
1412 /* Write LEN bytes from MYADDR to target raw memory at address
1413 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1414 If an error occurs, no guarantee is made about how much data got
1415 written. Callers that can deal with partial writes should call
1419 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1421 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1422 myaddr, memaddr, len) == len)
1428 /* Fetch the target's memory map. */
1430 std::vector<mem_region>
1431 target_memory_map (void)
1433 std::vector<mem_region> result = current_top_target ()->memory_map ();
1434 if (result.empty ())
1437 std::sort (result.begin (), result.end ());
1439 /* Check that regions do not overlap. Simultaneously assign
1440 a numbering for the "mem" commands to use to refer to
1442 mem_region *last_one = NULL;
1443 for (size_t ix = 0; ix < result.size (); ix++)
1445 mem_region *this_one = &result[ix];
1446 this_one->number = ix;
1448 if (last_one != NULL && last_one->hi > this_one->lo)
1450 warning (_("Overlapping regions in memory map: ignoring"));
1451 return std::vector<mem_region> ();
1454 last_one = this_one;
1461 target_flash_erase (ULONGEST address, LONGEST length)
1463 current_top_target ()->flash_erase (address, length);
1467 target_flash_done (void)
1469 current_top_target ()->flash_done ();
1473 show_trust_readonly (struct ui_file *file, int from_tty,
1474 struct cmd_list_element *c, const char *value)
1476 fprintf_filtered (file,
1477 _("Mode for reading from readonly sections is %s.\n"),
1481 /* Target vector read/write partial wrapper functions. */
1483 static enum target_xfer_status
1484 target_read_partial (struct target_ops *ops,
1485 enum target_object object,
1486 const char *annex, gdb_byte *buf,
1487 ULONGEST offset, ULONGEST len,
1488 ULONGEST *xfered_len)
1490 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1494 static enum target_xfer_status
1495 target_write_partial (struct target_ops *ops,
1496 enum target_object object,
1497 const char *annex, const gdb_byte *buf,
1498 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1500 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1504 /* Wrappers to perform the full transfer. */
1506 /* For docs on target_read see target.h. */
1509 target_read (struct target_ops *ops,
1510 enum target_object object,
1511 const char *annex, gdb_byte *buf,
1512 ULONGEST offset, LONGEST len)
1514 LONGEST xfered_total = 0;
1517 /* If we are reading from a memory object, find the length of an addressable
1518 unit for that architecture. */
1519 if (object == TARGET_OBJECT_MEMORY
1520 || object == TARGET_OBJECT_STACK_MEMORY
1521 || object == TARGET_OBJECT_CODE_MEMORY
1522 || object == TARGET_OBJECT_RAW_MEMORY)
1523 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1525 while (xfered_total < len)
1527 ULONGEST xfered_partial;
1528 enum target_xfer_status status;
1530 status = target_read_partial (ops, object, annex,
1531 buf + xfered_total * unit_size,
1532 offset + xfered_total, len - xfered_total,
1535 /* Call an observer, notifying them of the xfer progress? */
1536 if (status == TARGET_XFER_EOF)
1537 return xfered_total;
1538 else if (status == TARGET_XFER_OK)
1540 xfered_total += xfered_partial;
1544 return TARGET_XFER_E_IO;
1550 /* Assuming that the entire [begin, end) range of memory cannot be
1551 read, try to read whatever subrange is possible to read.
1553 The function returns, in RESULT, either zero or one memory block.
1554 If there's a readable subrange at the beginning, it is completely
1555 read and returned. Any further readable subrange will not be read.
1556 Otherwise, if there's a readable subrange at the end, it will be
1557 completely read and returned. Any readable subranges before it
1558 (obviously, not starting at the beginning), will be ignored. In
1559 other cases -- either no readable subrange, or readable subrange(s)
1560 that is neither at the beginning, or end, nothing is returned.
1562 The purpose of this function is to handle a read across a boundary
1563 of accessible memory in a case when memory map is not available.
1564 The above restrictions are fine for this case, but will give
1565 incorrect results if the memory is 'patchy'. However, supporting
1566 'patchy' memory would require trying to read every single byte,
1567 and it seems unacceptable solution. Explicit memory map is
1568 recommended for this case -- and target_read_memory_robust will
1569 take care of reading multiple ranges then. */
1572 read_whatever_is_readable (struct target_ops *ops,
1573 const ULONGEST begin, const ULONGEST end,
1575 std::vector<memory_read_result> *result)
1577 ULONGEST current_begin = begin;
1578 ULONGEST current_end = end;
1580 ULONGEST xfered_len;
1582 /* If we previously failed to read 1 byte, nothing can be done here. */
1583 if (end - begin <= 1)
1586 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1588 /* Check that either first or the last byte is readable, and give up
1589 if not. This heuristic is meant to permit reading accessible memory
1590 at the boundary of accessible region. */
1591 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1592 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1597 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1598 buf.get () + (end - begin) - 1, end - 1, 1,
1599 &xfered_len) == TARGET_XFER_OK)
1607 /* Loop invariant is that the [current_begin, current_end) was previously
1608 found to be not readable as a whole.
1610 Note loop condition -- if the range has 1 byte, we can't divide the range
1611 so there's no point trying further. */
1612 while (current_end - current_begin > 1)
1614 ULONGEST first_half_begin, first_half_end;
1615 ULONGEST second_half_begin, second_half_end;
1617 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1621 first_half_begin = current_begin;
1622 first_half_end = middle;
1623 second_half_begin = middle;
1624 second_half_end = current_end;
1628 first_half_begin = middle;
1629 first_half_end = current_end;
1630 second_half_begin = current_begin;
1631 second_half_end = middle;
1634 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1635 buf.get () + (first_half_begin - begin) * unit_size,
1637 first_half_end - first_half_begin);
1639 if (xfer == first_half_end - first_half_begin)
1641 /* This half reads up fine. So, the error must be in the
1643 current_begin = second_half_begin;
1644 current_end = second_half_end;
1648 /* This half is not readable. Because we've tried one byte, we
1649 know some part of this half if actually readable. Go to the next
1650 iteration to divide again and try to read.
1652 We don't handle the other half, because this function only tries
1653 to read a single readable subrange. */
1654 current_begin = first_half_begin;
1655 current_end = first_half_end;
1661 /* The [begin, current_begin) range has been read. */
1662 result->emplace_back (begin, current_end, std::move (buf));
1666 /* The [current_end, end) range has been read. */
1667 LONGEST region_len = end - current_end;
1669 gdb::unique_xmalloc_ptr<gdb_byte> data
1670 ((gdb_byte *) xmalloc (region_len * unit_size));
1671 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1672 region_len * unit_size);
1673 result->emplace_back (current_end, end, std::move (data));
1677 std::vector<memory_read_result>
1678 read_memory_robust (struct target_ops *ops,
1679 const ULONGEST offset, const LONGEST len)
1681 std::vector<memory_read_result> result;
1682 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1684 LONGEST xfered_total = 0;
1685 while (xfered_total < len)
1687 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1690 /* If there is no explicit region, a fake one should be created. */
1691 gdb_assert (region);
1693 if (region->hi == 0)
1694 region_len = len - xfered_total;
1696 region_len = region->hi - offset;
1698 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1700 /* Cannot read this region. Note that we can end up here only
1701 if the region is explicitly marked inaccessible, or
1702 'inaccessible-by-default' is in effect. */
1703 xfered_total += region_len;
1707 LONGEST to_read = std::min (len - xfered_total, region_len);
1708 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1709 ((gdb_byte *) xmalloc (to_read * unit_size));
1711 LONGEST xfered_partial =
1712 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1713 offset + xfered_total, to_read);
1714 /* Call an observer, notifying them of the xfer progress? */
1715 if (xfered_partial <= 0)
1717 /* Got an error reading full chunk. See if maybe we can read
1719 read_whatever_is_readable (ops, offset + xfered_total,
1720 offset + xfered_total + to_read,
1721 unit_size, &result);
1722 xfered_total += to_read;
1726 result.emplace_back (offset + xfered_total,
1727 offset + xfered_total + xfered_partial,
1728 std::move (buffer));
1729 xfered_total += xfered_partial;
1739 /* An alternative to target_write with progress callbacks. */
1742 target_write_with_progress (struct target_ops *ops,
1743 enum target_object object,
1744 const char *annex, const gdb_byte *buf,
1745 ULONGEST offset, LONGEST len,
1746 void (*progress) (ULONGEST, void *), void *baton)
1748 LONGEST xfered_total = 0;
1751 /* If we are writing to a memory object, find the length of an addressable
1752 unit for that architecture. */
1753 if (object == TARGET_OBJECT_MEMORY
1754 || object == TARGET_OBJECT_STACK_MEMORY
1755 || object == TARGET_OBJECT_CODE_MEMORY
1756 || object == TARGET_OBJECT_RAW_MEMORY)
1757 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1759 /* Give the progress callback a chance to set up. */
1761 (*progress) (0, baton);
1763 while (xfered_total < len)
1765 ULONGEST xfered_partial;
1766 enum target_xfer_status status;
1768 status = target_write_partial (ops, object, annex,
1769 buf + xfered_total * unit_size,
1770 offset + xfered_total, len - xfered_total,
1773 if (status != TARGET_XFER_OK)
1774 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1777 (*progress) (xfered_partial, baton);
1779 xfered_total += xfered_partial;
1785 /* For docs on target_write see target.h. */
1788 target_write (struct target_ops *ops,
1789 enum target_object object,
1790 const char *annex, const gdb_byte *buf,
1791 ULONGEST offset, LONGEST len)
1793 return target_write_with_progress (ops, object, annex, buf, offset, len,
1797 /* Help for target_read_alloc and target_read_stralloc. See their comments
1800 template <typename T>
1801 gdb::optional<gdb::def_vector<T>>
1802 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1805 gdb::def_vector<T> buf;
1807 const int chunk = 4096;
1809 /* This function does not have a length parameter; it reads the
1810 entire OBJECT). Also, it doesn't support objects fetched partly
1811 from one target and partly from another (in a different stratum,
1812 e.g. a core file and an executable). Both reasons make it
1813 unsuitable for reading memory. */
1814 gdb_assert (object != TARGET_OBJECT_MEMORY);
1816 /* Start by reading up to 4K at a time. The target will throttle
1817 this number down if necessary. */
1820 ULONGEST xfered_len;
1821 enum target_xfer_status status;
1823 buf.resize (buf_pos + chunk);
1825 status = target_read_partial (ops, object, annex,
1826 (gdb_byte *) &buf[buf_pos],
1830 if (status == TARGET_XFER_EOF)
1832 /* Read all there was. */
1833 buf.resize (buf_pos);
1836 else if (status != TARGET_XFER_OK)
1838 /* An error occurred. */
1842 buf_pos += xfered_len;
1850 gdb::optional<gdb::byte_vector>
1851 target_read_alloc (struct target_ops *ops, enum target_object object,
1854 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1859 gdb::optional<gdb::char_vector>
1860 target_read_stralloc (struct target_ops *ops, enum target_object object,
1863 gdb::optional<gdb::char_vector> buf
1864 = target_read_alloc_1<char> (ops, object, annex);
1869 if (buf->back () != '\0')
1870 buf->push_back ('\0');
1872 /* Check for embedded NUL bytes; but allow trailing NULs. */
1873 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1874 it != buf->end (); it++)
1877 warning (_("target object %d, annex %s, "
1878 "contained unexpected null characters"),
1879 (int) object, annex ? annex : "(none)");
1886 /* Memory transfer methods. */
1889 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1892 /* This method is used to read from an alternate, non-current
1893 target. This read must bypass the overlay support (as symbols
1894 don't match this target), and GDB's internal cache (wrong cache
1895 for this target). */
1896 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1898 memory_error (TARGET_XFER_E_IO, addr);
1902 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1903 int len, enum bfd_endian byte_order)
1905 gdb_byte buf[sizeof (ULONGEST)];
1907 gdb_assert (len <= sizeof (buf));
1908 get_target_memory (ops, addr, buf, len);
1909 return extract_unsigned_integer (buf, len, byte_order);
1915 target_insert_breakpoint (struct gdbarch *gdbarch,
1916 struct bp_target_info *bp_tgt)
1918 if (!may_insert_breakpoints)
1920 warning (_("May not insert breakpoints"));
1924 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1930 target_remove_breakpoint (struct gdbarch *gdbarch,
1931 struct bp_target_info *bp_tgt,
1932 enum remove_bp_reason reason)
1934 /* This is kind of a weird case to handle, but the permission might
1935 have been changed after breakpoints were inserted - in which case
1936 we should just take the user literally and assume that any
1937 breakpoints should be left in place. */
1938 if (!may_insert_breakpoints)
1940 warning (_("May not remove breakpoints"));
1944 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1948 info_target_command (const char *args, int from_tty)
1950 int has_all_mem = 0;
1952 if (symfile_objfile != NULL)
1953 printf_unfiltered (_("Symbols from \"%s\".\n"),
1954 objfile_name (symfile_objfile));
1956 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1958 if (!t->has_memory ())
1961 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1964 printf_unfiltered (_("\tWhile running this, "
1965 "GDB does not access memory from...\n"));
1966 printf_unfiltered ("%s:\n", t->longname ());
1968 has_all_mem = t->has_all_memory ();
1972 /* This function is called before any new inferior is created, e.g.
1973 by running a program, attaching, or connecting to a target.
1974 It cleans up any state from previous invocations which might
1975 change between runs. This is a subset of what target_preopen
1976 resets (things which might change between targets). */
1979 target_pre_inferior (int from_tty)
1981 /* Clear out solib state. Otherwise the solib state of the previous
1982 inferior might have survived and is entirely wrong for the new
1983 target. This has been observed on GNU/Linux using glibc 2.3. How
1995 Cannot access memory at address 0xdeadbeef
1998 /* In some OSs, the shared library list is the same/global/shared
1999 across inferiors. If code is shared between processes, so are
2000 memory regions and features. */
2001 if (!gdbarch_has_global_solist (target_gdbarch ()))
2003 no_shared_libraries (NULL, from_tty);
2005 invalidate_target_mem_regions ();
2007 target_clear_description ();
2010 /* attach_flag may be set if the previous process associated with
2011 the inferior was attached to. */
2012 current_inferior ()->attach_flag = 0;
2014 current_inferior ()->highest_thread_num = 0;
2016 agent_capability_invalidate ();
2019 /* Callback for iterate_over_inferiors. Gets rid of the given
2023 dispose_inferior (struct inferior *inf, void *args)
2025 thread_info *thread = any_thread_of_inferior (inf);
2028 switch_to_thread (thread);
2030 /* Core inferiors actually should be detached, not killed. */
2031 if (target_has_execution)
2034 target_detach (inf, 0);
2040 /* This is to be called by the open routine before it does
2044 target_preopen (int from_tty)
2048 if (have_inferiors ())
2051 || !have_live_inferiors ()
2052 || query (_("A program is being debugged already. Kill it? ")))
2053 iterate_over_inferiors (dispose_inferior, NULL);
2055 error (_("Program not killed."));
2058 /* Calling target_kill may remove the target from the stack. But if
2059 it doesn't (which seems like a win for UDI), remove it now. */
2060 /* Leave the exec target, though. The user may be switching from a
2061 live process to a core of the same program. */
2062 pop_all_targets_above (file_stratum);
2064 target_pre_inferior (from_tty);
2070 target_detach (inferior *inf, int from_tty)
2072 /* As long as some to_detach implementations rely on the current_inferior
2073 (either directly, or indirectly, like through target_gdbarch or by
2074 reading memory), INF needs to be the current inferior. When that
2075 requirement will become no longer true, then we can remove this
2077 gdb_assert (inf == current_inferior ());
2079 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2080 /* Don't remove global breakpoints here. They're removed on
2081 disconnection from the target. */
2084 /* If we're in breakpoints-always-inserted mode, have to remove
2085 breakpoints before detaching. */
2086 remove_breakpoints_inf (current_inferior ());
2088 prepare_for_detach ();
2090 current_top_target ()->detach (inf, from_tty);
2094 target_disconnect (const char *args, int from_tty)
2096 /* If we're in breakpoints-always-inserted mode or if breakpoints
2097 are global across processes, we have to remove them before
2099 remove_breakpoints ();
2101 current_top_target ()->disconnect (args, from_tty);
2104 /* See target/target.h. */
2107 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2109 return current_top_target ()->wait (ptid, status, options);
2115 default_target_wait (struct target_ops *ops,
2116 ptid_t ptid, struct target_waitstatus *status,
2119 status->kind = TARGET_WAITKIND_IGNORE;
2120 return minus_one_ptid;
2124 target_pid_to_str (ptid_t ptid)
2126 return current_top_target ()->pid_to_str (ptid);
2130 target_thread_name (struct thread_info *info)
2132 return current_top_target ()->thread_name (info);
2135 struct thread_info *
2136 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2138 struct inferior *inf)
2140 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2145 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2147 target_dcache_invalidate ();
2149 current_top_target ()->resume (ptid, step, signal);
2151 registers_changed_ptid (ptid);
2152 /* We only set the internal executing state here. The user/frontend
2153 running state is set at a higher level. This also clears the
2154 thread's stop_pc as side effect. */
2155 set_executing (ptid, 1);
2156 clear_inline_frame_state (ptid);
2159 /* If true, target_commit_resume is a nop. */
2160 static int defer_target_commit_resume;
2165 target_commit_resume (void)
2167 if (defer_target_commit_resume)
2170 current_top_target ()->commit_resume ();
2175 scoped_restore_tmpl<int>
2176 make_scoped_defer_target_commit_resume ()
2178 return make_scoped_restore (&defer_target_commit_resume, 1);
2182 target_pass_signals (int numsigs, unsigned char *pass_signals)
2184 current_top_target ()->pass_signals (numsigs, pass_signals);
2188 target_program_signals (int numsigs, unsigned char *program_signals)
2190 current_top_target ()->program_signals (numsigs, program_signals);
2194 default_follow_fork (struct target_ops *self, int follow_child,
2197 /* Some target returned a fork event, but did not know how to follow it. */
2198 internal_error (__FILE__, __LINE__,
2199 _("could not find a target to follow fork"));
2202 /* Look through the list of possible targets for a target that can
2206 target_follow_fork (int follow_child, int detach_fork)
2208 return current_top_target ()->follow_fork (follow_child, detach_fork);
2211 /* Target wrapper for follow exec hook. */
2214 target_follow_exec (struct inferior *inf, char *execd_pathname)
2216 current_top_target ()->follow_exec (inf, execd_pathname);
2220 default_mourn_inferior (struct target_ops *self)
2222 internal_error (__FILE__, __LINE__,
2223 _("could not find a target to follow mourn inferior"));
2227 target_mourn_inferior (ptid_t ptid)
2229 gdb_assert (ptid == inferior_ptid);
2230 current_top_target ()->mourn_inferior ();
2232 /* We no longer need to keep handles on any of the object files.
2233 Make sure to release them to avoid unnecessarily locking any
2234 of them while we're not actually debugging. */
2235 bfd_cache_close_all ();
2238 /* Look for a target which can describe architectural features, starting
2239 from TARGET. If we find one, return its description. */
2241 const struct target_desc *
2242 target_read_description (struct target_ops *target)
2244 return target->read_description ();
2247 /* This implements a basic search of memory, reading target memory and
2248 performing the search here (as opposed to performing the search in on the
2249 target side with, for example, gdbserver). */
2252 simple_search_memory (struct target_ops *ops,
2253 CORE_ADDR start_addr, ULONGEST search_space_len,
2254 const gdb_byte *pattern, ULONGEST pattern_len,
2255 CORE_ADDR *found_addrp)
2257 /* NOTE: also defined in find.c testcase. */
2258 #define SEARCH_CHUNK_SIZE 16000
2259 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2260 /* Buffer to hold memory contents for searching. */
2261 unsigned search_buf_size;
2263 search_buf_size = chunk_size + pattern_len - 1;
2265 /* No point in trying to allocate a buffer larger than the search space. */
2266 if (search_space_len < search_buf_size)
2267 search_buf_size = search_space_len;
2269 gdb::byte_vector search_buf (search_buf_size);
2271 /* Prime the search buffer. */
2273 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2274 search_buf.data (), start_addr, search_buf_size)
2277 warning (_("Unable to access %s bytes of target "
2278 "memory at %s, halting search."),
2279 pulongest (search_buf_size), hex_string (start_addr));
2283 /* Perform the search.
2285 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2286 When we've scanned N bytes we copy the trailing bytes to the start and
2287 read in another N bytes. */
2289 while (search_space_len >= pattern_len)
2291 gdb_byte *found_ptr;
2292 unsigned nr_search_bytes
2293 = std::min (search_space_len, (ULONGEST) search_buf_size);
2295 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2296 pattern, pattern_len);
2298 if (found_ptr != NULL)
2300 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2302 *found_addrp = found_addr;
2306 /* Not found in this chunk, skip to next chunk. */
2308 /* Don't let search_space_len wrap here, it's unsigned. */
2309 if (search_space_len >= chunk_size)
2310 search_space_len -= chunk_size;
2312 search_space_len = 0;
2314 if (search_space_len >= pattern_len)
2316 unsigned keep_len = search_buf_size - chunk_size;
2317 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2320 /* Copy the trailing part of the previous iteration to the front
2321 of the buffer for the next iteration. */
2322 gdb_assert (keep_len == pattern_len - 1);
2323 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2325 nr_to_read = std::min (search_space_len - keep_len,
2326 (ULONGEST) chunk_size);
2328 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2329 &search_buf[keep_len], read_addr,
2330 nr_to_read) != nr_to_read)
2332 warning (_("Unable to access %s bytes of target "
2333 "memory at %s, halting search."),
2334 plongest (nr_to_read),
2335 hex_string (read_addr));
2339 start_addr += chunk_size;
2348 /* Default implementation of memory-searching. */
2351 default_search_memory (struct target_ops *self,
2352 CORE_ADDR start_addr, ULONGEST search_space_len,
2353 const gdb_byte *pattern, ULONGEST pattern_len,
2354 CORE_ADDR *found_addrp)
2356 /* Start over from the top of the target stack. */
2357 return simple_search_memory (current_top_target (),
2358 start_addr, search_space_len,
2359 pattern, pattern_len, found_addrp);
2362 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2363 sequence of bytes in PATTERN with length PATTERN_LEN.
2365 The result is 1 if found, 0 if not found, and -1 if there was an error
2366 requiring halting of the search (e.g. memory read error).
2367 If the pattern is found the address is recorded in FOUND_ADDRP. */
2370 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2371 const gdb_byte *pattern, ULONGEST pattern_len,
2372 CORE_ADDR *found_addrp)
2374 return current_top_target ()->search_memory (start_addr, search_space_len,
2375 pattern, pattern_len, found_addrp);
2378 /* Look through the currently pushed targets. If none of them will
2379 be able to restart the currently running process, issue an error
2383 target_require_runnable (void)
2385 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2387 /* If this target knows how to create a new program, then
2388 assume we will still be able to after killing the current
2389 one. Either killing and mourning will not pop T, or else
2390 find_default_run_target will find it again. */
2391 if (t->can_create_inferior ())
2394 /* Do not worry about targets at certain strata that can not
2395 create inferiors. Assume they will be pushed again if
2396 necessary, and continue to the process_stratum. */
2397 if (t->to_stratum > process_stratum)
2400 error (_("The \"%s\" target does not support \"run\". "
2401 "Try \"help target\" or \"continue\"."),
2405 /* This function is only called if the target is running. In that
2406 case there should have been a process_stratum target and it
2407 should either know how to create inferiors, or not... */
2408 internal_error (__FILE__, __LINE__, _("No targets found"));
2411 /* Whether GDB is allowed to fall back to the default run target for
2412 "run", "attach", etc. when no target is connected yet. */
2413 static int auto_connect_native_target = 1;
2416 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2417 struct cmd_list_element *c, const char *value)
2419 fprintf_filtered (file,
2420 _("Whether GDB may automatically connect to the "
2421 "native target is %s.\n"),
2425 /* A pointer to the target that can respond to "run" or "attach".
2426 Native targets are always singletons and instantiated early at GDB
2428 static target_ops *the_native_target;
2433 set_native_target (target_ops *target)
2435 if (the_native_target != NULL)
2436 internal_error (__FILE__, __LINE__,
2437 _("native target already set (\"%s\")."),
2438 the_native_target->longname ());
2440 the_native_target = target;
2446 get_native_target ()
2448 return the_native_target;
2451 /* Look through the list of possible targets for a target that can
2452 execute a run or attach command without any other data. This is
2453 used to locate the default process stratum.
2455 If DO_MESG is not NULL, the result is always valid (error() is
2456 called for errors); else, return NULL on error. */
2458 static struct target_ops *
2459 find_default_run_target (const char *do_mesg)
2461 if (auto_connect_native_target && the_native_target != NULL)
2462 return the_native_target;
2464 if (do_mesg != NULL)
2465 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2472 find_attach_target (void)
2474 /* If a target on the current stack can attach, use it. */
2475 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2477 if (t->can_attach ())
2481 /* Otherwise, use the default run target for attaching. */
2482 return find_default_run_target ("attach");
2488 find_run_target (void)
2490 /* If a target on the current stack can run, use it. */
2491 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2493 if (t->can_create_inferior ())
2497 /* Otherwise, use the default run target. */
2498 return find_default_run_target ("run");
2502 target_ops::info_proc (const char *args, enum info_proc_what what)
2507 /* Implement the "info proc" command. */
2510 target_info_proc (const char *args, enum info_proc_what what)
2512 struct target_ops *t;
2514 /* If we're already connected to something that can get us OS
2515 related data, use it. Otherwise, try using the native
2517 t = find_target_at (process_stratum);
2519 t = find_default_run_target (NULL);
2521 for (; t != NULL; t = t->beneath ())
2523 if (t->info_proc (args, what))
2526 fprintf_unfiltered (gdb_stdlog,
2527 "target_info_proc (\"%s\", %d)\n", args, what);
2537 find_default_supports_disable_randomization (struct target_ops *self)
2539 struct target_ops *t;
2541 t = find_default_run_target (NULL);
2543 return t->supports_disable_randomization ();
2548 target_supports_disable_randomization (void)
2550 return current_top_target ()->supports_disable_randomization ();
2553 /* See target/target.h. */
2556 target_supports_multi_process (void)
2558 return current_top_target ()->supports_multi_process ();
2563 gdb::optional<gdb::char_vector>
2564 target_get_osdata (const char *type)
2566 struct target_ops *t;
2568 /* If we're already connected to something that can get us OS
2569 related data, use it. Otherwise, try using the native
2571 t = find_target_at (process_stratum);
2573 t = find_default_run_target ("get OS data");
2578 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2581 static struct address_space *
2582 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2584 struct inferior *inf;
2586 /* Fall-back to the "main" address space of the inferior. */
2587 inf = find_inferior_ptid (ptid);
2589 if (inf == NULL || inf->aspace == NULL)
2590 internal_error (__FILE__, __LINE__,
2591 _("Can't determine the current "
2592 "address space of thread %s\n"),
2593 target_pid_to_str (ptid));
2598 /* Determine the current address space of thread PTID. */
2600 struct address_space *
2601 target_thread_address_space (ptid_t ptid)
2603 struct address_space *aspace;
2605 aspace = current_top_target ()->thread_address_space (ptid);
2606 gdb_assert (aspace != NULL);
2614 target_ops::beneath () const
2616 return g_target_stack.find_beneath (this);
2620 target_ops::close ()
2625 target_ops::can_attach ()
2631 target_ops::attach (const char *, int)
2633 gdb_assert_not_reached ("target_ops::attach called");
2637 target_ops::can_create_inferior ()
2643 target_ops::create_inferior (const char *, const std::string &,
2646 gdb_assert_not_reached ("target_ops::create_inferior called");
2650 target_ops::can_run ()
2658 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2667 /* Target file operations. */
2669 static struct target_ops *
2670 default_fileio_target (void)
2672 struct target_ops *t;
2674 /* If we're already connected to something that can perform
2675 file I/O, use it. Otherwise, try using the native target. */
2676 t = find_target_at (process_stratum);
2679 return find_default_run_target ("file I/O");
2682 /* File handle for target file operations. */
2686 /* The target on which this file is open. NULL if the target is
2687 meanwhile closed while the handle is open. */
2690 /* The file descriptor on the target. */
2693 /* Check whether this fileio_fh_t represents a closed file. */
2696 return target_fd < 0;
2700 /* Vector of currently open file handles. The value returned by
2701 target_fileio_open and passed as the FD argument to other
2702 target_fileio_* functions is an index into this vector. This
2703 vector's entries are never freed; instead, files are marked as
2704 closed, and the handle becomes available for reuse. */
2705 static std::vector<fileio_fh_t> fileio_fhandles;
2707 /* Index into fileio_fhandles of the lowest handle that might be
2708 closed. This permits handle reuse without searching the whole
2709 list each time a new file is opened. */
2710 static int lowest_closed_fd;
2712 /* Invalidate the target associated with open handles that were open
2713 on target TARG, since we're about to close (and maybe destroy) the
2714 target. The handles remain open from the client's perspective, but
2715 trying to do anything with them other than closing them will fail
2719 fileio_handles_invalidate_target (target_ops *targ)
2721 for (fileio_fh_t &fh : fileio_fhandles)
2722 if (fh.target == targ)
2726 /* Acquire a target fileio file descriptor. */
2729 acquire_fileio_fd (target_ops *target, int target_fd)
2731 /* Search for closed handles to reuse. */
2732 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2734 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2736 if (fh.is_closed ())
2740 /* Push a new handle if no closed handles were found. */
2741 if (lowest_closed_fd == fileio_fhandles.size ())
2742 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2744 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2746 /* Should no longer be marked closed. */
2747 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2749 /* Return its index, and start the next lookup at
2751 return lowest_closed_fd++;
2754 /* Release a target fileio file descriptor. */
2757 release_fileio_fd (int fd, fileio_fh_t *fh)
2760 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2763 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2765 static fileio_fh_t *
2766 fileio_fd_to_fh (int fd)
2768 return &fileio_fhandles[fd];
2772 /* Default implementations of file i/o methods. We don't want these
2773 to delegate automatically, because we need to know which target
2774 supported the method, in order to call it directly from within
2775 pread/pwrite, etc. */
2778 target_ops::fileio_open (struct inferior *inf, const char *filename,
2779 int flags, int mode, int warn_if_slow,
2782 *target_errno = FILEIO_ENOSYS;
2787 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2788 ULONGEST offset, int *target_errno)
2790 *target_errno = FILEIO_ENOSYS;
2795 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2796 ULONGEST offset, int *target_errno)
2798 *target_errno = FILEIO_ENOSYS;
2803 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2805 *target_errno = FILEIO_ENOSYS;
2810 target_ops::fileio_close (int fd, int *target_errno)
2812 *target_errno = FILEIO_ENOSYS;
2817 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2820 *target_errno = FILEIO_ENOSYS;
2824 gdb::optional<std::string>
2825 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2828 *target_errno = FILEIO_ENOSYS;
2832 /* Helper for target_fileio_open and
2833 target_fileio_open_warn_if_slow. */
2836 target_fileio_open_1 (struct inferior *inf, const char *filename,
2837 int flags, int mode, int warn_if_slow,
2840 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2842 int fd = t->fileio_open (inf, filename, flags, mode,
2843 warn_if_slow, target_errno);
2845 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2851 fd = acquire_fileio_fd (t, fd);
2854 fprintf_unfiltered (gdb_stdlog,
2855 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2857 inf == NULL ? 0 : inf->num,
2858 filename, flags, mode,
2860 fd != -1 ? 0 : *target_errno);
2864 *target_errno = FILEIO_ENOSYS;
2871 target_fileio_open (struct inferior *inf, const char *filename,
2872 int flags, int mode, int *target_errno)
2874 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2881 target_fileio_open_warn_if_slow (struct inferior *inf,
2882 const char *filename,
2883 int flags, int mode, int *target_errno)
2885 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2892 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2893 ULONGEST offset, int *target_errno)
2895 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2898 if (fh->is_closed ())
2899 *target_errno = EBADF;
2900 else if (fh->target == NULL)
2901 *target_errno = EIO;
2903 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2904 len, offset, target_errno);
2907 fprintf_unfiltered (gdb_stdlog,
2908 "target_fileio_pwrite (%d,...,%d,%s) "
2910 fd, len, pulongest (offset),
2911 ret, ret != -1 ? 0 : *target_errno);
2918 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2919 ULONGEST offset, int *target_errno)
2921 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2924 if (fh->is_closed ())
2925 *target_errno = EBADF;
2926 else if (fh->target == NULL)
2927 *target_errno = EIO;
2929 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2930 len, offset, target_errno);
2933 fprintf_unfiltered (gdb_stdlog,
2934 "target_fileio_pread (%d,...,%d,%s) "
2936 fd, len, pulongest (offset),
2937 ret, ret != -1 ? 0 : *target_errno);
2944 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2946 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2949 if (fh->is_closed ())
2950 *target_errno = EBADF;
2951 else if (fh->target == NULL)
2952 *target_errno = EIO;
2954 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2957 fprintf_unfiltered (gdb_stdlog,
2958 "target_fileio_fstat (%d) = %d (%d)\n",
2959 fd, ret, ret != -1 ? 0 : *target_errno);
2966 target_fileio_close (int fd, int *target_errno)
2968 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2971 if (fh->is_closed ())
2972 *target_errno = EBADF;
2975 if (fh->target != NULL)
2976 ret = fh->target->fileio_close (fh->target_fd,
2980 release_fileio_fd (fd, fh);
2984 fprintf_unfiltered (gdb_stdlog,
2985 "target_fileio_close (%d) = %d (%d)\n",
2986 fd, ret, ret != -1 ? 0 : *target_errno);
2993 target_fileio_unlink (struct inferior *inf, const char *filename,
2996 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2998 int ret = t->fileio_unlink (inf, filename, target_errno);
3000 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3004 fprintf_unfiltered (gdb_stdlog,
3005 "target_fileio_unlink (%d,%s)"
3007 inf == NULL ? 0 : inf->num, filename,
3008 ret, ret != -1 ? 0 : *target_errno);
3012 *target_errno = FILEIO_ENOSYS;
3018 gdb::optional<std::string>
3019 target_fileio_readlink (struct inferior *inf, const char *filename,
3022 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3024 gdb::optional<std::string> ret
3025 = t->fileio_readlink (inf, filename, target_errno);
3027 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3031 fprintf_unfiltered (gdb_stdlog,
3032 "target_fileio_readlink (%d,%s)"
3034 inf == NULL ? 0 : inf->num,
3035 filename, ret ? ret->c_str () : "(nil)",
3036 ret ? 0 : *target_errno);
3040 *target_errno = FILEIO_ENOSYS;
3044 /* Like scoped_fd, but specific to target fileio. */
3046 class scoped_target_fd
3049 explicit scoped_target_fd (int fd) noexcept
3054 ~scoped_target_fd ()
3060 target_fileio_close (m_fd, &target_errno);
3064 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3066 int get () const noexcept
3075 /* Read target file FILENAME, in the filesystem as seen by INF. If
3076 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3077 remote targets, the remote stub). Store the result in *BUF_P and
3078 return the size of the transferred data. PADDING additional bytes
3079 are available in *BUF_P. This is a helper function for
3080 target_fileio_read_alloc; see the declaration of that function for
3081 more information. */
3084 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3085 gdb_byte **buf_p, int padding)
3087 size_t buf_alloc, buf_pos;
3092 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3093 0700, &target_errno));
3094 if (fd.get () == -1)
3097 /* Start by reading up to 4K at a time. The target will throttle
3098 this number down if necessary. */
3100 buf = (gdb_byte *) xmalloc (buf_alloc);
3104 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3105 buf_alloc - buf_pos - padding, buf_pos,
3109 /* An error occurred. */
3115 /* Read all there was. */
3125 /* If the buffer is filling up, expand it. */
3126 if (buf_alloc < buf_pos * 2)
3129 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3139 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3142 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3147 gdb::unique_xmalloc_ptr<char>
3148 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3152 LONGEST i, transferred;
3154 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3155 bufstr = (char *) buffer;
3157 if (transferred < 0)
3158 return gdb::unique_xmalloc_ptr<char> (nullptr);
3160 if (transferred == 0)
3161 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3163 bufstr[transferred] = 0;
3165 /* Check for embedded NUL bytes; but allow trailing NULs. */
3166 for (i = strlen (bufstr); i < transferred; i++)
3169 warning (_("target file %s "
3170 "contained unexpected null characters"),
3175 return gdb::unique_xmalloc_ptr<char> (bufstr);
3180 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3181 CORE_ADDR addr, int len)
3183 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3187 default_watchpoint_addr_within_range (struct target_ops *target,
3189 CORE_ADDR start, int length)
3191 return addr >= start && addr < start + length;
3194 static struct gdbarch *
3195 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3197 inferior *inf = find_inferior_ptid (ptid);
3198 gdb_assert (inf != NULL);
3199 return inf->gdbarch;
3205 target_stack::find_beneath (const target_ops *t) const
3207 /* Look for a non-empty slot at stratum levels beneath T's. */
3208 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3209 if (m_stack[stratum] != NULL)
3210 return m_stack[stratum];
3218 find_target_at (enum strata stratum)
3220 return g_target_stack.at (stratum);
3228 target_announce_detach (int from_tty)
3231 const char *exec_file;
3236 exec_file = get_exec_file (0);
3237 if (exec_file == NULL)
3240 pid = inferior_ptid.pid ();
3241 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3242 target_pid_to_str (ptid_t (pid)));
3243 gdb_flush (gdb_stdout);
3246 /* The inferior process has died. Long live the inferior! */
3249 generic_mourn_inferior (void)
3251 inferior *inf = current_inferior ();
3253 inferior_ptid = null_ptid;
3255 /* Mark breakpoints uninserted in case something tries to delete a
3256 breakpoint while we delete the inferior's threads (which would
3257 fail, since the inferior is long gone). */
3258 mark_breakpoints_out ();
3261 exit_inferior (inf);
3263 /* Note this wipes step-resume breakpoints, so needs to be done
3264 after exit_inferior, which ends up referencing the step-resume
3265 breakpoints through clear_thread_inferior_resources. */
3266 breakpoint_init_inferior (inf_exited);
3268 registers_changed ();
3270 reopen_exec_file ();
3271 reinit_frame_cache ();
3273 if (deprecated_detach_hook)
3274 deprecated_detach_hook ();
3277 /* Convert a normal process ID to a string. Returns the string in a
3281 normal_pid_to_str (ptid_t ptid)
3283 static char buf[32];
3285 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3290 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3292 return normal_pid_to_str (ptid);
3295 /* Error-catcher for target_find_memory_regions. */
3297 dummy_find_memory_regions (struct target_ops *self,
3298 find_memory_region_ftype ignore1, void *ignore2)
3300 error (_("Command not implemented for this target."));
3304 /* Error-catcher for target_make_corefile_notes. */
3306 dummy_make_corefile_notes (struct target_ops *self,
3307 bfd *ignore1, int *ignore2)
3309 error (_("Command not implemented for this target."));
3313 #include "target-delegates.c"
3316 static const target_info dummy_target_info = {
3322 dummy_target::dummy_target ()
3324 to_stratum = dummy_stratum;
3327 debug_target::debug_target ()
3329 to_stratum = debug_stratum;
3333 dummy_target::info () const
3335 return dummy_target_info;
3339 debug_target::info () const
3341 return beneath ()->info ();
3347 target_close (struct target_ops *targ)
3349 gdb_assert (!target_is_pushed (targ));
3351 fileio_handles_invalidate_target (targ);
3356 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3360 target_thread_alive (ptid_t ptid)
3362 return current_top_target ()->thread_alive (ptid);
3366 target_update_thread_list (void)
3368 current_top_target ()->update_thread_list ();
3372 target_stop (ptid_t ptid)
3376 warning (_("May not interrupt or stop the target, ignoring attempt"));
3380 current_top_target ()->stop (ptid);
3388 warning (_("May not interrupt or stop the target, ignoring attempt"));
3392 current_top_target ()->interrupt ();
3398 target_pass_ctrlc (void)
3400 current_top_target ()->pass_ctrlc ();
3406 default_target_pass_ctrlc (struct target_ops *ops)
3408 target_interrupt ();
3411 /* See target/target.h. */
3414 target_stop_and_wait (ptid_t ptid)
3416 struct target_waitstatus status;
3417 int was_non_stop = non_stop;
3422 memset (&status, 0, sizeof (status));
3423 target_wait (ptid, &status, 0);
3425 non_stop = was_non_stop;
3428 /* See target/target.h. */
3431 target_continue_no_signal (ptid_t ptid)
3433 target_resume (ptid, 0, GDB_SIGNAL_0);
3436 /* See target/target.h. */
3439 target_continue (ptid_t ptid, enum gdb_signal signal)
3441 target_resume (ptid, 0, signal);
3444 /* Concatenate ELEM to LIST, a comma separate list, and return the
3445 result. The LIST incoming argument is released. */
3448 str_comma_list_concat_elem (char *list, const char *elem)
3451 return xstrdup (elem);
3453 return reconcat (list, list, ", ", elem, (char *) NULL);
3456 /* Helper for target_options_to_string. If OPT is present in
3457 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3458 Returns the new resulting string. OPT is removed from
3462 do_option (int *target_options, char *ret,
3463 int opt, const char *opt_str)
3465 if ((*target_options & opt) != 0)
3467 ret = str_comma_list_concat_elem (ret, opt_str);
3468 *target_options &= ~opt;
3475 target_options_to_string (int target_options)
3479 #define DO_TARG_OPTION(OPT) \
3480 ret = do_option (&target_options, ret, OPT, #OPT)
3482 DO_TARG_OPTION (TARGET_WNOHANG);
3484 if (target_options != 0)
3485 ret = str_comma_list_concat_elem (ret, "unknown???");
3493 target_fetch_registers (struct regcache *regcache, int regno)
3495 current_top_target ()->fetch_registers (regcache, regno);
3497 regcache->debug_print_register ("target_fetch_registers", regno);
3501 target_store_registers (struct regcache *regcache, int regno)
3503 if (!may_write_registers)
3504 error (_("Writing to registers is not allowed (regno %d)"), regno);
3506 current_top_target ()->store_registers (regcache, regno);
3509 regcache->debug_print_register ("target_store_registers", regno);
3514 target_core_of_thread (ptid_t ptid)
3516 return current_top_target ()->core_of_thread (ptid);
3520 simple_verify_memory (struct target_ops *ops,
3521 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3523 LONGEST total_xfered = 0;
3525 while (total_xfered < size)
3527 ULONGEST xfered_len;
3528 enum target_xfer_status status;
3530 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3532 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3533 buf, NULL, lma + total_xfered, howmuch,
3535 if (status == TARGET_XFER_OK
3536 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3538 total_xfered += xfered_len;
3547 /* Default implementation of memory verification. */
3550 default_verify_memory (struct target_ops *self,
3551 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3553 /* Start over from the top of the target stack. */
3554 return simple_verify_memory (current_top_target (),
3555 data, memaddr, size);
3559 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3561 return current_top_target ()->verify_memory (data, memaddr, size);
3564 /* The documentation for this function is in its prototype declaration in
3568 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3569 enum target_hw_bp_type rw)
3571 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3574 /* The documentation for this function is in its prototype declaration in
3578 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3579 enum target_hw_bp_type rw)
3581 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3584 /* The documentation for this function is in its prototype declaration
3588 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3590 return current_top_target ()->masked_watch_num_registers (addr, mask);
3593 /* The documentation for this function is in its prototype declaration
3597 target_ranged_break_num_registers (void)
3599 return current_top_target ()->ranged_break_num_registers ();
3604 struct btrace_target_info *
3605 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3607 return current_top_target ()->enable_btrace (ptid, conf);
3613 target_disable_btrace (struct btrace_target_info *btinfo)
3615 current_top_target ()->disable_btrace (btinfo);
3621 target_teardown_btrace (struct btrace_target_info *btinfo)
3623 current_top_target ()->teardown_btrace (btinfo);
3629 target_read_btrace (struct btrace_data *btrace,
3630 struct btrace_target_info *btinfo,
3631 enum btrace_read_type type)
3633 return current_top_target ()->read_btrace (btrace, btinfo, type);
3638 const struct btrace_config *
3639 target_btrace_conf (const struct btrace_target_info *btinfo)
3641 return current_top_target ()->btrace_conf (btinfo);
3647 target_stop_recording (void)
3649 current_top_target ()->stop_recording ();
3655 target_save_record (const char *filename)
3657 current_top_target ()->save_record (filename);
3663 target_supports_delete_record ()
3665 return current_top_target ()->supports_delete_record ();
3671 target_delete_record (void)
3673 current_top_target ()->delete_record ();
3679 target_record_method (ptid_t ptid)
3681 return current_top_target ()->record_method (ptid);
3687 target_record_is_replaying (ptid_t ptid)
3689 return current_top_target ()->record_is_replaying (ptid);
3695 target_record_will_replay (ptid_t ptid, int dir)
3697 return current_top_target ()->record_will_replay (ptid, dir);
3703 target_record_stop_replaying (void)
3705 current_top_target ()->record_stop_replaying ();
3711 target_goto_record_begin (void)
3713 current_top_target ()->goto_record_begin ();
3719 target_goto_record_end (void)
3721 current_top_target ()->goto_record_end ();
3727 target_goto_record (ULONGEST insn)
3729 current_top_target ()->goto_record (insn);
3735 target_insn_history (int size, gdb_disassembly_flags flags)
3737 current_top_target ()->insn_history (size, flags);
3743 target_insn_history_from (ULONGEST from, int size,
3744 gdb_disassembly_flags flags)
3746 current_top_target ()->insn_history_from (from, size, flags);
3752 target_insn_history_range (ULONGEST begin, ULONGEST end,
3753 gdb_disassembly_flags flags)
3755 current_top_target ()->insn_history_range (begin, end, flags);
3761 target_call_history (int size, record_print_flags flags)
3763 current_top_target ()->call_history (size, flags);
3769 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3771 current_top_target ()->call_history_from (begin, size, flags);
3777 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3779 current_top_target ()->call_history_range (begin, end, flags);
3784 const struct frame_unwind *
3785 target_get_unwinder (void)
3787 return current_top_target ()->get_unwinder ();
3792 const struct frame_unwind *
3793 target_get_tailcall_unwinder (void)
3795 return current_top_target ()->get_tailcall_unwinder ();
3801 target_prepare_to_generate_core (void)
3803 current_top_target ()->prepare_to_generate_core ();
3809 target_done_generating_core (void)
3811 current_top_target ()->done_generating_core ();
3816 static char targ_desc[] =
3817 "Names of targets and files being debugged.\nShows the entire \
3818 stack of targets currently in use (including the exec-file,\n\
3819 core-file, and process, if any), as well as the symbol file name.";
3822 default_rcmd (struct target_ops *self, const char *command,
3823 struct ui_file *output)
3825 error (_("\"monitor\" command not supported by this target."));
3829 do_monitor_command (const char *cmd, int from_tty)
3831 target_rcmd (cmd, gdb_stdtarg);
3834 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3838 flash_erase_command (const char *cmd, int from_tty)
3840 /* Used to communicate termination of flash operations to the target. */
3841 bool found_flash_region = false;
3842 struct gdbarch *gdbarch = target_gdbarch ();
3844 std::vector<mem_region> mem_regions = target_memory_map ();
3846 /* Iterate over all memory regions. */
3847 for (const mem_region &m : mem_regions)
3849 /* Is this a flash memory region? */
3850 if (m.attrib.mode == MEM_FLASH)
3852 found_flash_region = true;
3853 target_flash_erase (m.lo, m.hi - m.lo);
3855 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3857 current_uiout->message (_("Erasing flash memory region at address "));
3858 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3859 current_uiout->message (", size = ");
3860 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3861 current_uiout->message ("\n");
3865 /* Did we do any flash operations? If so, we need to finalize them. */
3866 if (found_flash_region)
3867 target_flash_done ();
3869 current_uiout->message (_("No flash memory regions found.\n"));
3872 /* Print the name of each layers of our target stack. */
3875 maintenance_print_target_stack (const char *cmd, int from_tty)
3877 printf_filtered (_("The current target stack is:\n"));
3879 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3881 if (t->to_stratum == debug_stratum)
3883 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3890 target_async (int enable)
3892 infrun_async (enable);
3893 current_top_target ()->async (enable);
3899 target_thread_events (int enable)
3901 current_top_target ()->thread_events (enable);
3904 /* Controls if targets can report that they can/are async. This is
3905 just for maintainers to use when debugging gdb. */
3906 int target_async_permitted = 1;
3908 /* The set command writes to this variable. If the inferior is
3909 executing, target_async_permitted is *not* updated. */
3910 static int target_async_permitted_1 = 1;
3913 maint_set_target_async_command (const char *args, int from_tty,
3914 struct cmd_list_element *c)
3916 if (have_live_inferiors ())
3918 target_async_permitted_1 = target_async_permitted;
3919 error (_("Cannot change this setting while the inferior is running."));
3922 target_async_permitted = target_async_permitted_1;
3926 maint_show_target_async_command (struct ui_file *file, int from_tty,
3927 struct cmd_list_element *c,
3930 fprintf_filtered (file,
3931 _("Controlling the inferior in "
3932 "asynchronous mode is %s.\n"), value);
3935 /* Return true if the target operates in non-stop mode even with "set
3939 target_always_non_stop_p (void)
3941 return current_top_target ()->always_non_stop_p ();
3947 target_is_non_stop_p (void)
3950 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3951 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3952 && target_always_non_stop_p ()));
3955 /* Controls if targets can report that they always run in non-stop
3956 mode. This is just for maintainers to use when debugging gdb. */
3957 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3959 /* The set command writes to this variable. If the inferior is
3960 executing, target_non_stop_enabled is *not* updated. */
3961 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3963 /* Implementation of "maint set target-non-stop". */
3966 maint_set_target_non_stop_command (const char *args, int from_tty,
3967 struct cmd_list_element *c)
3969 if (have_live_inferiors ())
3971 target_non_stop_enabled_1 = target_non_stop_enabled;
3972 error (_("Cannot change this setting while the inferior is running."));
3975 target_non_stop_enabled = target_non_stop_enabled_1;
3978 /* Implementation of "maint show target-non-stop". */
3981 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3982 struct cmd_list_element *c,
3985 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3986 fprintf_filtered (file,
3987 _("Whether the target is always in non-stop mode "
3988 "is %s (currently %s).\n"), value,
3989 target_always_non_stop_p () ? "on" : "off");
3991 fprintf_filtered (file,
3992 _("Whether the target is always in non-stop mode "
3993 "is %s.\n"), value);
3996 /* Temporary copies of permission settings. */
3998 static int may_write_registers_1 = 1;
3999 static int may_write_memory_1 = 1;
4000 static int may_insert_breakpoints_1 = 1;
4001 static int may_insert_tracepoints_1 = 1;
4002 static int may_insert_fast_tracepoints_1 = 1;
4003 static int may_stop_1 = 1;
4005 /* Make the user-set values match the real values again. */
4008 update_target_permissions (void)
4010 may_write_registers_1 = may_write_registers;
4011 may_write_memory_1 = may_write_memory;
4012 may_insert_breakpoints_1 = may_insert_breakpoints;
4013 may_insert_tracepoints_1 = may_insert_tracepoints;
4014 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4015 may_stop_1 = may_stop;
4018 /* The one function handles (most of) the permission flags in the same
4022 set_target_permissions (const char *args, int from_tty,
4023 struct cmd_list_element *c)
4025 if (target_has_execution)
4027 update_target_permissions ();
4028 error (_("Cannot change this setting while the inferior is running."));
4031 /* Make the real values match the user-changed values. */
4032 may_write_registers = may_write_registers_1;
4033 may_insert_breakpoints = may_insert_breakpoints_1;
4034 may_insert_tracepoints = may_insert_tracepoints_1;
4035 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4036 may_stop = may_stop_1;
4037 update_observer_mode ();
4040 /* Set memory write permission independently of observer mode. */
4043 set_write_memory_permission (const char *args, int from_tty,
4044 struct cmd_list_element *c)
4046 /* Make the real values match the user-changed values. */
4047 may_write_memory = may_write_memory_1;
4048 update_observer_mode ();
4052 initialize_targets (void)
4054 the_dummy_target = new dummy_target ();
4055 push_target (the_dummy_target);
4057 the_debug_target = new debug_target ();
4059 add_info ("target", info_target_command, targ_desc);
4060 add_info ("files", info_target_command, targ_desc);
4062 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4063 Set target debugging."), _("\
4064 Show target debugging."), _("\
4065 When non-zero, target debugging is enabled. Higher numbers are more\n\
4069 &setdebuglist, &showdebuglist);
4071 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4072 &trust_readonly, _("\
4073 Set mode for reading from readonly sections."), _("\
4074 Show mode for reading from readonly sections."), _("\
4075 When this mode is on, memory reads from readonly sections (such as .text)\n\
4076 will be read from the object file instead of from the target. This will\n\
4077 result in significant performance improvement for remote targets."),
4079 show_trust_readonly,
4080 &setlist, &showlist);
4082 add_com ("monitor", class_obscure, do_monitor_command,
4083 _("Send a command to the remote monitor (remote targets only)."));
4085 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4086 _("Print the name of each layer of the internal target stack."),
4087 &maintenanceprintlist);
4089 add_setshow_boolean_cmd ("target-async", no_class,
4090 &target_async_permitted_1, _("\
4091 Set whether gdb controls the inferior in asynchronous mode."), _("\
4092 Show whether gdb controls the inferior in asynchronous mode."), _("\
4093 Tells gdb whether to control the inferior in asynchronous mode."),
4094 maint_set_target_async_command,
4095 maint_show_target_async_command,
4096 &maintenance_set_cmdlist,
4097 &maintenance_show_cmdlist);
4099 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4100 &target_non_stop_enabled_1, _("\
4101 Set whether gdb always controls the inferior in non-stop mode."), _("\
4102 Show whether gdb always controls the inferior in non-stop mode."), _("\
4103 Tells gdb whether to control the inferior in non-stop mode."),
4104 maint_set_target_non_stop_command,
4105 maint_show_target_non_stop_command,
4106 &maintenance_set_cmdlist,
4107 &maintenance_show_cmdlist);
4109 add_setshow_boolean_cmd ("may-write-registers", class_support,
4110 &may_write_registers_1, _("\
4111 Set permission to write into registers."), _("\
4112 Show permission to write into registers."), _("\
4113 When this permission is on, GDB may write into the target's registers.\n\
4114 Otherwise, any sort of write attempt will result in an error."),
4115 set_target_permissions, NULL,
4116 &setlist, &showlist);
4118 add_setshow_boolean_cmd ("may-write-memory", class_support,
4119 &may_write_memory_1, _("\
4120 Set permission to write into target memory."), _("\
4121 Show permission to write into target memory."), _("\
4122 When this permission is on, GDB may write into the target's memory.\n\
4123 Otherwise, any sort of write attempt will result in an error."),
4124 set_write_memory_permission, NULL,
4125 &setlist, &showlist);
4127 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4128 &may_insert_breakpoints_1, _("\
4129 Set permission to insert breakpoints in the target."), _("\
4130 Show permission to insert breakpoints in the target."), _("\
4131 When this permission is on, GDB may insert breakpoints in the program.\n\
4132 Otherwise, any sort of insertion attempt will result in an error."),
4133 set_target_permissions, NULL,
4134 &setlist, &showlist);
4136 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4137 &may_insert_tracepoints_1, _("\
4138 Set permission to insert tracepoints in the target."), _("\
4139 Show permission to insert tracepoints in the target."), _("\
4140 When this permission is on, GDB may insert tracepoints in the program.\n\
4141 Otherwise, any sort of insertion attempt will result in an error."),
4142 set_target_permissions, NULL,
4143 &setlist, &showlist);
4145 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4146 &may_insert_fast_tracepoints_1, _("\
4147 Set permission to insert fast tracepoints in the target."), _("\
4148 Show permission to insert fast tracepoints in the target."), _("\
4149 When this permission is on, GDB may insert fast tracepoints.\n\
4150 Otherwise, any sort of insertion attempt will result in an error."),
4151 set_target_permissions, NULL,
4152 &setlist, &showlist);
4154 add_setshow_boolean_cmd ("may-interrupt", class_support,
4156 Set permission to interrupt or signal the target."), _("\
4157 Show permission to interrupt or signal the target."), _("\
4158 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4159 Otherwise, any attempt to interrupt or stop will be ignored."),
4160 set_target_permissions, NULL,
4161 &setlist, &showlist);
4163 add_com ("flash-erase", no_class, flash_erase_command,
4164 _("Erase all flash memory regions."));
4166 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4167 &auto_connect_native_target, _("\
4168 Set whether GDB may automatically connect to the native target."), _("\
4169 Show whether GDB may automatically connect to the native target."), _("\
4170 When on, and GDB is not connected to a target yet, GDB\n\
4171 attempts \"run\" and other commands with the native target."),
4172 NULL, show_auto_connect_native_target,
4173 &setlist, &showlist);