1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
63 @* Creating a Linker Hash Table::
64 @* Adding Symbols to the Hash Table::
65 @* Performing the Final Link::
69 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 Creating a linker hash table
73 @cindex _bfd_link_hash_table_create in target vector
74 @cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
107 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 Adding symbols to the hash table
111 @cindex _bfd_link_add_symbols in target vector
112 @cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
127 @* Differing file formats::
128 @* Adding symbols from an object file::
129 @* Adding symbols from an archive::
133 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 Differing file formats
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
170 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 Adding symbols from an object file
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
188 @findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section_ptr>> for an undefined
196 symbol or <<bfd_com_section_ptr>> for a common symbol.
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
214 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 Adding symbols from an archive
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
225 @findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
266 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 Performing the final link
270 @cindex _bfd_link_final_link in target vector
271 @cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
292 @* Information provided by the linker::
293 @* Relocating the section contents::
294 @* Writing the symbol table::
298 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 Information provided by the linker
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information. They also describe relocs that must be
317 created by the BFD backend, but do not correspond to any input
318 file; this is used to support -Ur, which builds constructors
319 while generating a relocateable object file.
322 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 Relocating the section contents
326 The <<_bfd_final_link>> function should look through the
327 <<link_order>> structures attached to each section of the
328 output file. Each <<link_order>> structure should either be
329 handled specially, or it should be passed to the function
330 <<_bfd_default_link_order>> which will do the right thing
331 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333 For efficiency, a <<link_order>> of type
334 <<bfd_indirect_link_order>> whose associated section belongs
335 to a BFD of the same format as the output BFD must be handled
336 specially. This type of <<link_order>> describes part of an
337 output section in terms of a section belonging to one of the
338 input files. The <<_bfd_final_link>> function should read the
339 contents of the section and any associated relocs, apply the
340 relocs to the section contents, and write out the modified
341 section contents. If performing a relocateable link, the
342 relocs themselves must also be modified and written out.
344 @findex _bfd_relocate_contents
345 @findex _bfd_final_link_relocate
346 The functions <<_bfd_relocate_contents>> and
347 <<_bfd_final_link_relocate>> provide some general support for
348 performing the actual relocations, notably overflow checking.
349 Their arguments include information about the symbol the
350 relocation is against and a <<reloc_howto_type>> argument
351 which describes the relocation to perform. These functions
352 are defined in <<reloc.c>>.
354 The a.out function which handles reading, relocating, and
355 writing section contents is <<aout_link_input_section>>. The
356 actual relocation is done in <<aout_link_input_section_std>>
357 and <<aout_link_input_section_ext>>.
360 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 Writing the symbol table
364 The <<_bfd_final_link>> function must gather all the symbols
365 in the input files and write them out. It must also write out
366 all the symbols in the global hash table. This must be
367 controlled by the <<strip>> and <<discard>> fields of the
368 <<bfd_link_info>> structure.
370 The local symbols of the input files will not have been
371 entered into the linker hash table. The <<_bfd_final_link>>
372 routine must consider each input file and include the symbols
373 in the output file. It may be convenient to do this when
374 looking through the <<link_order>> structures, or it may be
375 done by stepping through the <<input_bfds>> list.
377 The <<_bfd_final_link>> routine must also traverse the global
378 hash table to gather all the externally visible symbols. It
379 is possible that most of the externally visible symbols may be
380 written out when considering the symbols of each input file,
381 but it is still necessary to traverse the hash table since the
382 linker script may have defined some symbols that are not in
383 any of the input files.
385 The <<strip>> field of the <<bfd_link_info>> structure
386 controls which symbols are written out. The possible values
387 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
388 then the <<keep_hash>> field of the <<bfd_link_info>>
389 structure is a hash table of symbols to keep; each symbol
390 should be looked up in this hash table, and only symbols which
391 are present should be included in the output file.
393 If the <<strip>> field of the <<bfd_link_info>> structure
394 permits local symbols to be written out, the <<discard>> field
395 is used to further controls which local symbols are included
396 in the output file. If the value is <<discard_l>>, then all
397 local symbols which begin with a certain prefix are discarded;
398 this prefix is described by the <<lprefix>> and
399 <<lprefix_len>> fields of the <<bfd_link_info>> structure.
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
409 static struct bfd_hash_entry *generic_link_hash_newfunc
410 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
412 static boolean generic_link_read_symbols
414 static boolean generic_link_add_symbols
415 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
416 static boolean generic_link_add_object_symbols
417 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
418 static boolean generic_link_check_archive_element_no_collect
419 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
420 static boolean generic_link_check_archive_element_collect
421 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
422 static boolean generic_link_check_archive_element
423 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
424 static boolean generic_link_add_symbol_list
425 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
427 static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
428 static void set_symbol_from_hash
429 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
430 static boolean generic_add_output_symbol
431 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
432 static boolean default_fill_link_order
433 PARAMS ((bfd *, struct bfd_link_info *, asection *,
434 struct bfd_link_order *));
435 static boolean default_indirect_link_order
436 PARAMS ((bfd *, struct bfd_link_info *, asection *,
437 struct bfd_link_order *, boolean));
439 /* The link hash table structure is defined in bfdlink.h. It provides
440 a base hash table which the backend specific hash tables are built
443 /* Routine to create an entry in the link hash table. */
445 struct bfd_hash_entry *
446 _bfd_link_hash_newfunc (entry, table, string)
447 struct bfd_hash_entry *entry;
448 struct bfd_hash_table *table;
451 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
453 /* Allocate the structure if it has not already been allocated by a
455 if (ret == (struct bfd_link_hash_entry *) NULL)
456 ret = ((struct bfd_link_hash_entry *)
457 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
458 if (ret == (struct bfd_link_hash_entry *) NULL)
461 /* Call the allocation method of the superclass. */
462 ret = ((struct bfd_link_hash_entry *)
463 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
467 /* Initialize the local fields. */
468 ret->type = bfd_link_hash_new;
472 return (struct bfd_hash_entry *) ret;
475 /* Initialize a link hash table. The BFD argument is the one
476 responsible for creating this table. */
479 _bfd_link_hash_table_init (table, abfd, newfunc)
480 struct bfd_link_hash_table *table;
482 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
483 struct bfd_hash_table *,
486 table->creator = abfd->xvec;
487 table->undefs = NULL;
488 table->undefs_tail = NULL;
489 return bfd_hash_table_init (&table->table, newfunc);
492 /* Look up a symbol in a link hash table. If follow is true, we
493 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 struct bfd_link_hash_entry *
497 bfd_link_hash_lookup (table, string, create, copy, follow)
498 struct bfd_link_hash_table *table;
504 struct bfd_link_hash_entry *ret;
506 ret = ((struct bfd_link_hash_entry *)
507 bfd_hash_lookup (&table->table, string, create, copy));
509 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
511 while (ret->type == bfd_link_hash_indirect
512 || ret->type == bfd_link_hash_warning)
519 /* Traverse a generic link hash table. The only reason this is not a
520 macro is to do better type checking. This code presumes that an
521 argument passed as a struct bfd_hash_entry * may be caught as a
522 struct bfd_link_hash_entry * with no explicit cast required on the
526 bfd_link_hash_traverse (table, func, info)
527 struct bfd_link_hash_table *table;
528 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
531 bfd_hash_traverse (&table->table,
532 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
537 /* Add a symbol to the linker hash table undefs list. */
540 bfd_link_add_undef (table, h)
541 struct bfd_link_hash_table *table;
542 struct bfd_link_hash_entry *h;
544 BFD_ASSERT (h->next == NULL);
545 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
546 table->undefs_tail->next = h;
547 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
549 table->undefs_tail = h;
552 /* Routine to create an entry in an generic link hash table. */
554 static struct bfd_hash_entry *
555 generic_link_hash_newfunc (entry, table, string)
556 struct bfd_hash_entry *entry;
557 struct bfd_hash_table *table;
560 struct generic_link_hash_entry *ret =
561 (struct generic_link_hash_entry *) entry;
563 /* Allocate the structure if it has not already been allocated by a
565 if (ret == (struct generic_link_hash_entry *) NULL)
566 ret = ((struct generic_link_hash_entry *)
567 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
568 if (ret == (struct generic_link_hash_entry *) NULL)
571 /* Call the allocation method of the superclass. */
572 ret = ((struct generic_link_hash_entry *)
573 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
578 /* Set local fields. */
579 ret->written = false;
583 return (struct bfd_hash_entry *) ret;
586 /* Create an generic link hash table. */
588 struct bfd_link_hash_table *
589 _bfd_generic_link_hash_table_create (abfd)
592 struct generic_link_hash_table *ret;
594 ret = ((struct generic_link_hash_table *)
595 bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
598 bfd_set_error (bfd_error_no_memory);
599 return (struct bfd_link_hash_table *) NULL;
601 if (! _bfd_link_hash_table_init (&ret->root, abfd,
602 generic_link_hash_newfunc))
605 return (struct bfd_link_hash_table *) NULL;
610 /* Grab the symbols for an object file when doing a generic link. We
611 store the symbols in the outsymbols field. We need to keep them
612 around for the entire link to ensure that we only read them once.
613 If we read them multiple times, we might wind up with relocs and
614 the hash table pointing to different instances of the symbol
618 generic_link_read_symbols (abfd)
621 if (abfd->outsymbols == (asymbol **) NULL)
626 symsize = bfd_get_symtab_upper_bound (abfd);
629 abfd->outsymbols = (asymbol **) bfd_alloc (abfd, symsize);
630 if (abfd->outsymbols == NULL && symsize != 0)
632 bfd_set_error (bfd_error_no_memory);
635 symcount = bfd_canonicalize_symtab (abfd, abfd->outsymbols);
638 abfd->symcount = symcount;
644 /* Generic function to add symbols to from an object file to the
645 global hash table. This version does not automatically collect
646 constructors by name. */
649 _bfd_generic_link_add_symbols (abfd, info)
651 struct bfd_link_info *info;
653 return generic_link_add_symbols (abfd, info, false);
656 /* Generic function to add symbols from an object file to the global
657 hash table. This version automatically collects constructors by
658 name, as the collect2 program does. It should be used for any
659 target which does not provide some other mechanism for setting up
660 constructors and destructors; these are approximately those targets
661 for which gcc uses collect2 and do not support stabs. */
664 _bfd_generic_link_add_symbols_collect (abfd, info)
666 struct bfd_link_info *info;
668 return generic_link_add_symbols (abfd, info, true);
671 /* Add symbols from an object file to the global hash table. */
674 generic_link_add_symbols (abfd, info, collect)
676 struct bfd_link_info *info;
681 switch (bfd_get_format (abfd))
684 ret = generic_link_add_object_symbols (abfd, info, collect);
687 ret = (_bfd_generic_link_add_archive_symbols
690 ? generic_link_check_archive_element_collect
691 : generic_link_check_archive_element_no_collect)));
694 bfd_set_error (bfd_error_wrong_format);
701 /* Add symbols from an object file to the global hash table. */
704 generic_link_add_object_symbols (abfd, info, collect)
706 struct bfd_link_info *info;
709 if (! generic_link_read_symbols (abfd))
711 return generic_link_add_symbol_list (abfd, info,
712 _bfd_generic_link_get_symcount (abfd),
713 _bfd_generic_link_get_symbols (abfd),
717 /* We build a hash table of all symbols defined in an archive. */
719 /* An archive symbol may be defined by multiple archive elements.
720 This linked list is used to hold the elements. */
724 struct archive_list *next;
728 /* An entry in an archive hash table. */
730 struct archive_hash_entry
732 struct bfd_hash_entry root;
733 /* Where the symbol is defined. */
734 struct archive_list *defs;
737 /* An archive hash table itself. */
739 struct archive_hash_table
741 struct bfd_hash_table table;
744 static struct bfd_hash_entry *archive_hash_newfunc
745 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
746 static boolean archive_hash_table_init
747 PARAMS ((struct archive_hash_table *,
748 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
749 struct bfd_hash_table *,
752 /* Create a new entry for an archive hash table. */
754 static struct bfd_hash_entry *
755 archive_hash_newfunc (entry, table, string)
756 struct bfd_hash_entry *entry;
757 struct bfd_hash_table *table;
760 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
762 /* Allocate the structure if it has not already been allocated by a
764 if (ret == (struct archive_hash_entry *) NULL)
765 ret = ((struct archive_hash_entry *)
766 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
767 if (ret == (struct archive_hash_entry *) NULL)
770 /* Call the allocation method of the superclass. */
771 ret = ((struct archive_hash_entry *)
772 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
776 /* Initialize the local fields. */
777 ret->defs = (struct archive_list *) NULL;
780 return (struct bfd_hash_entry *) ret;
783 /* Initialize an archive hash table. */
786 archive_hash_table_init (table, newfunc)
787 struct archive_hash_table *table;
788 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
789 struct bfd_hash_table *,
792 return bfd_hash_table_init (&table->table, newfunc);
795 /* Look up an entry in an archive hash table. */
797 #define archive_hash_lookup(t, string, create, copy) \
798 ((struct archive_hash_entry *) \
799 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
801 /* Allocate space in an archive hash table. */
803 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
805 /* Free an archive hash table. */
807 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
809 /* Generic function to add symbols from an archive file to the global
810 hash file. This function presumes that the archive symbol table
811 has already been read in (this is normally done by the
812 bfd_check_format entry point). It looks through the undefined and
813 common symbols and searches the archive symbol table for them. If
814 it finds an entry, it includes the associated object file in the
817 The old linker looked through the archive symbol table for
818 undefined symbols. We do it the other way around, looking through
819 undefined symbols for symbols defined in the archive. The
820 advantage of the newer scheme is that we only have to look through
821 the list of undefined symbols once, whereas the old method had to
822 re-search the symbol table each time a new object file was added.
824 The CHECKFN argument is used to see if an object file should be
825 included. CHECKFN should set *PNEEDED to true if the object file
826 should be included, and must also call the bfd_link_info
827 add_archive_element callback function and handle adding the symbols
828 to the global hash table. CHECKFN should only return false if some
829 sort of error occurs.
831 For some formats, such as a.out, it is possible to look through an
832 object file but not actually include it in the link. The
833 archive_pass field in a BFD is used to avoid checking the symbols
834 of an object files too many times. When an object is included in
835 the link, archive_pass is set to -1. If an object is scanned but
836 not included, archive_pass is set to the pass number. The pass
837 number is incremented each time a new object file is included. The
838 pass number is used because when a new object file is included it
839 may create new undefined symbols which cause a previously examined
840 object file to be included. */
843 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
845 struct bfd_link_info *info;
846 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
851 register carsym *arsym;
853 struct archive_hash_table arsym_hash;
855 struct bfd_link_hash_entry **pundef;
857 if (! bfd_has_map (abfd))
859 /* An empty archive is a special case. */
860 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
862 bfd_set_error (bfd_error_no_armap);
866 arsyms = bfd_ardata (abfd)->symdefs;
867 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
869 /* In order to quickly determine whether an symbol is defined in
870 this archive, we build a hash table of the symbols. */
871 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
873 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
875 struct archive_hash_entry *arh;
876 struct archive_list *l, **pp;
878 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
879 if (arh == (struct archive_hash_entry *) NULL)
881 l = ((struct archive_list *)
882 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
886 for (pp = &arh->defs;
887 *pp != (struct archive_list *) NULL;
894 /* The archive_pass field in the archive itself is used to
895 initialize PASS, sine we may search the same archive multiple
897 pass = abfd->archive_pass + 1;
899 /* New undefined symbols are added to the end of the list, so we
900 only need to look through it once. */
901 pundef = &info->hash->undefs;
902 while (*pundef != (struct bfd_link_hash_entry *) NULL)
904 struct bfd_link_hash_entry *h;
905 struct archive_hash_entry *arh;
906 struct archive_list *l;
910 /* When a symbol is defined, it is not necessarily removed from
912 if (h->type != bfd_link_hash_undefined
913 && h->type != bfd_link_hash_common)
915 /* Remove this entry from the list, for general cleanliness
916 and because we are going to look through the list again
917 if we search any more libraries. We can't remove the
918 entry if it is the tail, because that would lose any
919 entries we add to the list later on (it would also cause
920 us to lose track of whether the symbol has been
922 if (*pundef != info->hash->undefs_tail)
923 *pundef = (*pundef)->next;
925 pundef = &(*pundef)->next;
929 /* Look for this symbol in the archive symbol map. */
930 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
931 if (arh == (struct archive_hash_entry *) NULL)
933 pundef = &(*pundef)->next;
937 /* Look at all the objects which define this symbol. */
938 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
943 /* If the symbol has gotten defined along the way, quit. */
944 if (h->type != bfd_link_hash_undefined
945 && h->type != bfd_link_hash_common)
948 element = bfd_get_elt_at_index (abfd, l->indx);
949 if (element == (bfd *) NULL)
952 /* If we've already included this element, or if we've
953 already checked it on this pass, continue. */
954 if (element->archive_pass == -1
955 || element->archive_pass == pass)
958 /* If we can't figure this element out, just ignore it. */
959 if (! bfd_check_format (element, bfd_object))
961 element->archive_pass = -1;
965 /* CHECKFN will see if this element should be included, and
966 go ahead and include it if appropriate. */
967 if (! (*checkfn) (element, info, &needed))
971 element->archive_pass = pass;
974 element->archive_pass = -1;
976 /* Increment the pass count to show that we may need to
977 recheck object files which were already checked. */
982 pundef = &(*pundef)->next;
985 archive_hash_table_free (&arsym_hash);
987 /* Save PASS in case we are called again. */
988 abfd->archive_pass = pass;
993 archive_hash_table_free (&arsym_hash);
997 /* See if we should include an archive element. This version is used
998 when we do not want to automatically collect constructors based on
999 the symbol name, presumably because we have some other mechanism
1000 for finding them. */
1003 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1005 struct bfd_link_info *info;
1008 return generic_link_check_archive_element (abfd, info, pneeded, false);
1011 /* See if we should include an archive element. This version is used
1012 when we want to automatically collect constructors based on the
1013 symbol name, as collect2 does. */
1016 generic_link_check_archive_element_collect (abfd, info, pneeded)
1018 struct bfd_link_info *info;
1021 return generic_link_check_archive_element (abfd, info, pneeded, true);
1024 /* See if we should include an archive element. Optionally collect
1028 generic_link_check_archive_element (abfd, info, pneeded, collect)
1030 struct bfd_link_info *info;
1034 asymbol **pp, **ppend;
1038 if (! generic_link_read_symbols (abfd))
1041 pp = _bfd_generic_link_get_symbols (abfd);
1042 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1043 for (; pp < ppend; pp++)
1046 struct bfd_link_hash_entry *h;
1050 /* We are only interested in globally visible symbols. */
1051 if (! bfd_is_com_section (p->section)
1052 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1055 /* We are only interested if we know something about this
1056 symbol, and it is undefined or common. An undefined weak
1057 symbol (type bfd_link_hash_undefweak) is not considered to be
1058 a reference when pulling files out of an archive. See the
1059 SVR4 ABI, p. 4-27. */
1060 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1062 if (h == (struct bfd_link_hash_entry *) NULL
1063 || (h->type != bfd_link_hash_undefined
1064 && h->type != bfd_link_hash_common))
1067 /* P is a symbol we are looking for. */
1069 if (! bfd_is_com_section (p->section))
1071 bfd_size_type symcount;
1074 /* This object file defines this symbol, so pull it in. */
1075 if (! (*info->callbacks->add_archive_element) (info, abfd,
1076 bfd_asymbol_name (p)))
1078 symcount = _bfd_generic_link_get_symcount (abfd);
1079 symbols = _bfd_generic_link_get_symbols (abfd);
1080 if (! generic_link_add_symbol_list (abfd, info, symcount,
1087 /* P is a common symbol. */
1089 if (h->type == bfd_link_hash_undefined)
1095 symbfd = h->u.undef.abfd;
1096 if (symbfd == (bfd *) NULL)
1098 /* This symbol was created as undefined from outside
1099 BFD. We assume that we should link in the object
1100 file. This is for the -u option in the linker. */
1101 if (! (*info->callbacks->add_archive_element)
1102 (info, abfd, bfd_asymbol_name (p)))
1108 /* Turn the symbol into a common symbol but do not link in
1109 the object file. This is how a.out works. Object
1110 formats that require different semantics must implement
1111 this function differently. This symbol is already on the
1112 undefs list. We add the section to a common section
1113 attached to symbfd to ensure that it is in a BFD which
1114 will be linked in. */
1115 h->type = bfd_link_hash_common;
1117 ((struct bfd_link_hash_common_entry *)
1118 bfd_hash_allocate (&info->hash->table,
1119 sizeof (struct bfd_link_hash_common_entry)));
1120 if (h->u.c.p == NULL)
1123 size = bfd_asymbol_value (p);
1126 power = bfd_log2 (size);
1129 h->u.c.p->alignment_power = power;
1131 if (p->section == bfd_com_section_ptr)
1132 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1134 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1136 h->u.c.p->section->flags = SEC_ALLOC;
1140 /* Adjust the size of the common symbol if necessary. This
1141 is how a.out works. Object formats that require
1142 different semantics must implement this function
1144 if (bfd_asymbol_value (p) > h->u.c.size)
1145 h->u.c.size = bfd_asymbol_value (p);
1149 /* This archive element is not needed. */
1153 /* Add the symbols from an object file to the global hash table. ABFD
1154 is the object file. INFO is the linker information. SYMBOL_COUNT
1155 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1156 is true if constructors should be automatically collected by name
1157 as is done by collect2. */
1160 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1162 struct bfd_link_info *info;
1163 bfd_size_type symbol_count;
1167 asymbol **pp, **ppend;
1170 ppend = symbols + symbol_count;
1171 for (; pp < ppend; pp++)
1177 if ((p->flags & (BSF_INDIRECT
1182 || bfd_is_und_section (bfd_get_section (p))
1183 || bfd_is_com_section (bfd_get_section (p))
1184 || bfd_is_ind_section (bfd_get_section (p)))
1188 struct generic_link_hash_entry *h;
1190 name = bfd_asymbol_name (p);
1191 if ((p->flags & BSF_INDIRECT) != 0
1192 || bfd_is_ind_section (p->section))
1193 string = bfd_asymbol_name ((asymbol *) p->value);
1194 else if ((p->flags & BSF_WARNING) != 0)
1196 /* The name of P is actually the warning string, and the
1197 value is actually a pointer to the symbol to warn
1200 name = bfd_asymbol_name ((asymbol *) p->value);
1206 if (! (_bfd_generic_link_add_one_symbol
1207 (info, abfd, name, p->flags, bfd_get_section (p),
1208 p->value, string, false, collect,
1209 (struct bfd_link_hash_entry **) &h)))
1212 /* If this is a constructor symbol, and the linker didn't do
1213 anything with it, then we want to just pass the symbol
1214 through to the output file. This will happen when
1216 if ((p->flags & BSF_CONSTRUCTOR) != 0
1217 && (h == NULL || h->root.type == bfd_link_hash_new))
1223 /* Save the BFD symbol so that we don't lose any backend
1224 specific information that may be attached to it. We only
1225 want this one if it gives more information than the
1226 existing one; we don't want to replace a defined symbol
1227 with an undefined one. This routine may be called with a
1228 hash table other than the generic hash table, so we only
1229 do this if we are certain that the hash table is a
1231 if (info->hash->creator == abfd->xvec)
1233 if (h->sym == (asymbol *) NULL
1234 || (! bfd_is_und_section (bfd_get_section (p))
1235 && (! bfd_is_com_section (bfd_get_section (p))
1236 || bfd_is_und_section (bfd_get_section (h->sym)))))
1239 /* BSF_OLD_COMMON is a hack to support COFF reloc
1240 reading, and it should go away when the COFF
1241 linker is switched to the new version. */
1242 if (bfd_is_com_section (bfd_get_section (p)))
1243 p->flags |= BSF_OLD_COMMON;
1246 /* Store a back pointer from the symbol to the hash
1247 table entry for the benefit of relaxation code until
1248 it gets rewritten to not use asymbol structures.
1249 Setting this is also used to check whether these
1250 symbols were set up by the generic linker. */
1251 p->udata.p = (PTR) h;
1259 /* We use a state table to deal with adding symbols from an object
1260 file. The first index into the state table describes the symbol
1261 from the object file. The second index into the state table is the
1262 type of the symbol in the hash table. */
1264 /* The symbol from the object file is turned into one of these row
1269 UNDEF_ROW, /* Undefined. */
1270 UNDEFW_ROW, /* Weak undefined. */
1271 DEF_ROW, /* Defined. */
1272 DEFW_ROW, /* Weak defined. */
1273 COMMON_ROW, /* Common. */
1274 INDR_ROW, /* Indirect. */
1275 WARN_ROW, /* Warning. */
1276 SET_ROW /* Member of set. */
1279 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1282 /* The actions to take in the state table. */
1287 UND, /* Mark symbol undefined. */
1288 WEAK, /* Mark symbol weak undefined. */
1289 DEF, /* Mark symbol defined. */
1290 DEFW, /* Mark symbol weak defined. */
1291 COM, /* Mark symbol common. */
1292 REF, /* Mark defined symbol referenced. */
1293 CREF, /* Possibly warn about common reference to defined symbol. */
1294 CDEF, /* Define existing common symbol. */
1295 NOACT, /* No action. */
1296 BIG, /* Mark symbol common using largest size. */
1297 MDEF, /* Multiple definition error. */
1298 MIND, /* Multiple indirect symbols. */
1299 IND, /* Make indirect symbol. */
1300 CIND, /* Make indirect symbol from existing common symbol. */
1301 SET, /* Add value to set. */
1302 MWARN, /* Make warning symbol. */
1303 WARN, /* Issue warning. */
1304 CWARN, /* Warn if referenced, else MWARN. */
1305 CYCLE, /* Repeat with symbol pointed to. */
1306 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1307 WARNC /* Issue warning and then CYCLE. */
1310 /* The state table itself. The first index is a link_row and the
1311 second index is a bfd_link_hash_type. */
1313 static const enum link_action link_action[8][8] =
1315 /* current\prev new undef undefw def defw com indr warn */
1316 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1317 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1318 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1319 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1320 /* COMMON_ROW */ {COM, COM, COM, CREF, CREF, BIG, CREF, WARNC },
1321 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1322 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, CYCLE },
1323 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1326 /* Most of the entries in the LINK_ACTION table are straightforward,
1327 but a few are somewhat subtle.
1329 A reference to an indirect symbol (UNDEF_ROW/indr or
1330 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1331 symbol and to the symbol the indirect symbol points to.
1333 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1334 causes the warning to be issued.
1336 A common definition of an indirect symbol (COMMON_ROW/indr) is
1337 treated as a multiple definition error. Likewise for an indirect
1338 definition of a common symbol (INDR_ROW/com).
1340 An indirect definition of a warning (INDR_ROW/warn) does not cause
1341 the warning to be issued.
1343 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1344 warning is created for the symbol the indirect symbol points to.
1346 Adding an entry to a set does not count as a reference to a set,
1347 and no warning is issued (SET_ROW/warn). */
1349 /* Return the BFD in which a hash entry has been defined, if known. */
1353 struct bfd_link_hash_entry *h;
1355 while (h->type == bfd_link_hash_warning)
1361 case bfd_link_hash_undefined:
1362 case bfd_link_hash_undefweak:
1363 return h->u.undef.abfd;
1364 case bfd_link_hash_defined:
1365 case bfd_link_hash_defweak:
1366 return h->u.def.section->owner;
1367 case bfd_link_hash_common:
1368 return h->u.c.p->section->owner;
1373 /* Add a symbol to the global hash table.
1374 ABFD is the BFD the symbol comes from.
1375 NAME is the name of the symbol.
1376 FLAGS is the BSF_* bits associated with the symbol.
1377 SECTION is the section in which the symbol is defined; this may be
1378 bfd_und_section_ptr or bfd_com_section_ptr.
1379 VALUE is the value of the symbol, relative to the section.
1380 STRING is used for either an indirect symbol, in which case it is
1381 the name of the symbol to indirect to, or a warning symbol, in
1382 which case it is the warning string.
1383 COPY is true if NAME or STRING must be copied into locally
1384 allocated memory if they need to be saved.
1385 COLLECT is true if we should automatically collect gcc constructor
1386 or destructor names as collect2 does.
1387 HASHP, if not NULL, is a place to store the created hash table
1388 entry; if *HASHP is not NULL, the caller has already looked up
1389 the hash table entry, and stored it in *HASHP. */
1392 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1393 string, copy, collect, hashp)
1394 struct bfd_link_info *info;
1403 struct bfd_link_hash_entry **hashp;
1406 struct bfd_link_hash_entry *h;
1409 if (bfd_is_ind_section (section)
1410 || (flags & BSF_INDIRECT) != 0)
1412 else if ((flags & BSF_WARNING) != 0)
1414 else if ((flags & BSF_CONSTRUCTOR) != 0)
1416 else if (bfd_is_und_section (section))
1418 if ((flags & BSF_WEAK) != 0)
1423 else if ((flags & BSF_WEAK) != 0)
1425 else if (bfd_is_com_section (section))
1430 if (hashp != NULL && *hashp != NULL)
1433 BFD_ASSERT (strcmp (h->root.string, name) == 0);
1437 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1446 if (info->notice_hash != (struct bfd_hash_table *) NULL
1447 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1448 != (struct bfd_hash_entry *) NULL))
1450 if (! (*info->callbacks->notice) (info, name, abfd, section, value))
1454 if (hashp != (struct bfd_link_hash_entry **) NULL)
1459 enum link_action action;
1462 action = link_action[(int) row][(int) h->type];
1473 /* Make a new undefined symbol. */
1474 h->type = bfd_link_hash_undefined;
1475 h->u.undef.abfd = abfd;
1476 bfd_link_add_undef (info->hash, h);
1480 /* Make a new weak undefined symbol. */
1481 h->type = bfd_link_hash_undefweak;
1482 h->u.undef.abfd = abfd;
1486 /* We have found a definition for a symbol which was
1487 previously common. */
1488 BFD_ASSERT (h->type == bfd_link_hash_common);
1489 if (! ((*info->callbacks->multiple_common)
1491 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1492 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1498 enum bfd_link_order_type oldtype;
1500 /* Define a symbol. */
1503 h->type = bfd_link_hash_defweak;
1505 h->type = bfd_link_hash_defined;
1506 h->u.def.section = section;
1507 h->u.def.value = value;
1509 /* If we have been asked to, we act like collect2 and
1510 identify all functions that might be global
1511 constructors and destructors and pass them up in a
1512 callback. We only do this for certain object file
1513 types, since many object file types can handle this
1515 if (collect && name[0] == '_')
1519 /* A constructor or destructor name starts like this:
1520 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1521 the second are the same character (we accept any
1522 character there, in case a new object file format
1523 comes along with even worse naming restrictions). */
1525 #define CONS_PREFIX "GLOBAL_"
1526 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1532 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1536 c = s[CONS_PREFIX_LEN + 1];
1537 if ((c == 'I' || c == 'D')
1538 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1540 /* If this is a definition of a symbol which
1541 was previously weakly defined, we are in
1542 trouble. We have already added a
1543 constructor entry for the weak defined
1544 symbol, and now we are trying to add one
1545 for the new symbol. Fortunately, this case
1546 should never arise in practice. */
1547 if (oldtype == bfd_link_hash_defweak)
1550 if (! ((*info->callbacks->constructor)
1552 c == 'I' ? true : false,
1553 name, abfd, section, value)))
1563 /* We have found a common definition for a symbol. */
1564 if (h->type == bfd_link_hash_new)
1565 bfd_link_add_undef (info->hash, h);
1566 h->type = bfd_link_hash_common;
1568 ((struct bfd_link_hash_common_entry *)
1569 bfd_hash_allocate (&info->hash->table,
1570 sizeof (struct bfd_link_hash_common_entry)));
1571 if (h->u.c.p == NULL)
1574 h->u.c.size = value;
1576 /* Select a default alignment based on the size. This may
1577 be overridden by the caller. */
1581 power = bfd_log2 (value);
1584 h->u.c.p->alignment_power = power;
1587 /* The section of a common symbol is only used if the common
1588 symbol is actually allocated. It basically provides a
1589 hook for the linker script to decide which output section
1590 the common symbols should be put in. In most cases, the
1591 section of a common symbol will be bfd_com_section_ptr,
1592 the code here will choose a common symbol section named
1593 "COMMON", and the linker script will contain *(COMMON) in
1594 the appropriate place. A few targets use separate common
1595 sections for small symbols, and they require special
1597 if (section == bfd_com_section_ptr)
1599 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1600 h->u.c.p->section->flags = SEC_ALLOC;
1602 else if (section->owner != abfd)
1604 h->u.c.p->section = bfd_make_section_old_way (abfd,
1606 h->u.c.p->section->flags = SEC_ALLOC;
1609 h->u.c.p->section = section;
1613 /* A reference to a defined symbol. */
1614 if (h->next == NULL && info->hash->undefs_tail != h)
1619 /* We have found a common definition for a symbol which
1620 already had a common definition. Use the maximum of the
1622 BFD_ASSERT (h->type == bfd_link_hash_common);
1623 if (! ((*info->callbacks->multiple_common)
1625 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1626 abfd, bfd_link_hash_common, value)))
1628 if (value > h->u.c.size)
1632 h->u.c.size = value;
1634 /* Select a default alignment based on the size. This may
1635 be overridden by the caller. */
1636 power = bfd_log2 (value);
1639 h->u.c.p->alignment_power = power;
1647 /* We have found a common definition for a symbol which
1648 was already defined. FIXME: It would nice if we could
1649 report the BFD which defined an indirect symbol, but we
1650 don't have anywhere to store the information. */
1651 if (h->type == bfd_link_hash_defined
1652 || h->type == bfd_link_hash_defweak)
1653 obfd = h->u.def.section->owner;
1656 if (! ((*info->callbacks->multiple_common)
1657 (info, name, obfd, h->type, (bfd_vma) 0,
1658 abfd, bfd_link_hash_common, value)))
1664 /* Multiple indirect symbols. This is OK if they both point
1665 to the same symbol. */
1666 if (strcmp (h->u.i.link->root.string, string) == 0)
1670 /* Handle a multiple definition. */
1677 case bfd_link_hash_defined:
1678 msec = h->u.def.section;
1679 mval = h->u.def.value;
1681 case bfd_link_hash_indirect:
1682 msec = bfd_ind_section_ptr;
1689 /* Ignore a redefinition of an absolute symbol to the same
1690 value; it's harmless. */
1691 if (h->type == bfd_link_hash_defined
1692 && bfd_is_abs_section (msec)
1693 && bfd_is_abs_section (section)
1697 if (! ((*info->callbacks->multiple_definition)
1698 (info, name, msec->owner, msec, mval, abfd, section,
1705 /* Create an indirect symbol from an existing common symbol. */
1706 BFD_ASSERT (h->type == bfd_link_hash_common);
1707 if (! ((*info->callbacks->multiple_common)
1709 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1710 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1714 /* Create an indirect symbol. */
1716 struct bfd_link_hash_entry *inh;
1718 /* STRING is the name of the symbol we want to indirect
1720 inh = bfd_link_hash_lookup (info->hash, string, true, copy,
1722 if (inh == (struct bfd_link_hash_entry *) NULL)
1724 if (inh->type == bfd_link_hash_new)
1726 inh->type = bfd_link_hash_undefined;
1727 inh->u.undef.abfd = abfd;
1728 bfd_link_add_undef (info->hash, inh);
1731 /* If the indirect symbol has been referenced, we need to
1732 push the reference down to the symbol we are
1734 if (h->type != bfd_link_hash_new)
1740 h->type = bfd_link_hash_indirect;
1746 /* Add an entry to a set. */
1747 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1748 abfd, section, value))
1753 /* Issue a warning and cycle. */
1754 if (h->u.i.warning != NULL)
1756 if (! (*info->callbacks->warning) (info, h->u.i.warning, name,
1757 abfd, (asection *) NULL,
1760 /* Only issue a warning once. */
1761 h->u.i.warning = NULL;
1765 /* Try again with the referenced symbol. */
1771 /* A reference to an indirect symbol. */
1772 if (h->next == NULL && info->hash->undefs_tail != h)
1779 /* Issue a warning. */
1780 if (! (*info->callbacks->warning) (info, string, name,
1782 (asection *) NULL, (bfd_vma) 0))
1787 /* Warn if this symbol has been referenced already,
1788 otherwise add a warning. A symbol has been referenced if
1789 the next field is not NULL, or it is the tail of the
1790 undefined symbol list. The REF case above helps to
1792 if (h->next != NULL || info->hash->undefs_tail == h)
1794 if (! (*info->callbacks->warning) (info, string, name,
1803 /* Make a warning symbol. */
1805 struct bfd_link_hash_entry *sub;
1807 /* STRING is the warning to give. */
1808 sub = ((struct bfd_link_hash_entry *)
1809 ((*info->hash->table.newfunc)
1810 ((struct bfd_hash_entry *) NULL, &info->hash->table,
1815 sub->type = bfd_link_hash_warning;
1818 sub->u.i.warning = string;
1823 w = bfd_hash_allocate (&info->hash->table,
1824 strlen (string) + 1);
1828 sub->u.i.warning = w;
1831 bfd_hash_replace (&info->hash->table,
1832 (struct bfd_hash_entry *) h,
1833 (struct bfd_hash_entry *) sub);
1845 /* Generic final link routine. */
1848 _bfd_generic_final_link (abfd, info)
1850 struct bfd_link_info *info;
1854 struct bfd_link_order *p;
1856 struct generic_write_global_symbol_info wginfo;
1858 abfd->outsymbols = (asymbol **) NULL;
1862 /* Build the output symbol table. */
1863 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1864 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1867 /* Accumulate the global symbols. */
1869 wginfo.output_bfd = abfd;
1870 wginfo.psymalloc = &outsymalloc;
1871 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1872 _bfd_generic_link_write_global_symbol,
1875 if (info->relocateable)
1877 /* Allocate space for the output relocs for each section. */
1878 for (o = abfd->sections;
1879 o != (asection *) NULL;
1883 for (p = o->link_order_head;
1884 p != (struct bfd_link_order *) NULL;
1887 if (p->type == bfd_section_reloc_link_order
1888 || p->type == bfd_symbol_reloc_link_order)
1890 else if (p->type == bfd_indirect_link_order)
1892 asection *input_section;
1899 input_section = p->u.indirect.section;
1900 input_bfd = input_section->owner;
1901 relsize = bfd_get_reloc_upper_bound (input_bfd,
1905 relocs = (arelent **) malloc ((size_t) relsize);
1906 if (!relocs && relsize != 0)
1908 bfd_set_error (bfd_error_no_memory);
1911 symbols = _bfd_generic_link_get_symbols (input_bfd);
1912 reloc_count = bfd_canonicalize_reloc (input_bfd,
1916 if (reloc_count < 0)
1918 BFD_ASSERT ((unsigned long) reloc_count
1919 == input_section->reloc_count);
1920 o->reloc_count += reloc_count;
1924 if (o->reloc_count > 0)
1926 o->orelocation = ((arelent **)
1929 * sizeof (arelent *))));
1930 if (!o->orelocation)
1932 bfd_set_error (bfd_error_no_memory);
1935 o->flags |= SEC_RELOC;
1936 /* Reset the count so that it can be used as an index
1937 when putting in the output relocs. */
1943 /* Handle all the link order information for the sections. */
1944 for (o = abfd->sections;
1945 o != (asection *) NULL;
1948 for (p = o->link_order_head;
1949 p != (struct bfd_link_order *) NULL;
1954 case bfd_section_reloc_link_order:
1955 case bfd_symbol_reloc_link_order:
1956 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1959 case bfd_indirect_link_order:
1960 if (! default_indirect_link_order (abfd, info, o, p, true))
1964 if (! _bfd_default_link_order (abfd, info, o, p))
1974 /* Add an output symbol to the output BFD. */
1977 generic_add_output_symbol (output_bfd, psymalloc, sym)
1982 if (output_bfd->symcount >= *psymalloc)
1986 if (*psymalloc == 0)
1990 if (output_bfd->outsymbols == (asymbol **) NULL)
1991 newsyms = (asymbol **) malloc (*psymalloc * sizeof (asymbol *));
1993 newsyms = (asymbol **) realloc (output_bfd->outsymbols,
1994 *psymalloc * sizeof (asymbol *));
1995 if (newsyms == (asymbol **) NULL)
1997 bfd_set_error (bfd_error_no_memory);
2000 output_bfd->outsymbols = newsyms;
2003 output_bfd->outsymbols[output_bfd->symcount] = sym;
2004 ++output_bfd->symcount;
2009 /* Handle the symbols for an input BFD. */
2012 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2015 struct bfd_link_info *info;
2021 if (! generic_link_read_symbols (input_bfd))
2024 /* Create a filename symbol if we are supposed to. */
2025 if (info->create_object_symbols_section != (asection *) NULL)
2029 for (sec = input_bfd->sections;
2030 sec != (asection *) NULL;
2033 if (sec->output_section == info->create_object_symbols_section)
2037 newsym = bfd_make_empty_symbol (input_bfd);
2040 newsym->name = input_bfd->filename;
2042 newsym->flags = BSF_LOCAL | BSF_FILE;
2043 newsym->section = sec;
2045 if (! generic_add_output_symbol (output_bfd, psymalloc,
2054 /* Adjust the values of the globally visible symbols, and write out
2056 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2057 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2058 for (; sym_ptr < sym_end; sym_ptr++)
2061 struct generic_link_hash_entry *h;
2064 h = (struct generic_link_hash_entry *) NULL;
2066 if ((sym->flags & (BSF_INDIRECT
2071 || bfd_is_und_section (bfd_get_section (sym))
2072 || bfd_is_com_section (bfd_get_section (sym))
2073 || bfd_is_ind_section (bfd_get_section (sym)))
2075 if (sym->udata.p != NULL)
2076 h = (struct generic_link_hash_entry *) sym->udata.p;
2077 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2079 /* This case normally means that the main linker code
2080 deliberately ignored this constructor symbol. We
2081 should just pass it through. This will screw up if
2082 the constructor symbol is from a different,
2083 non-generic, object file format, but the case will
2084 only arise when linking with -r, which will probably
2085 fail anyhow, since there will be no way to represent
2086 the relocs in the output format being used. */
2090 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2091 bfd_asymbol_name (sym),
2092 false, false, true);
2094 if (h != (struct generic_link_hash_entry *) NULL)
2096 /* Force all references to this symbol to point to
2097 the same area in memory. It is possible that
2098 this routine will be called with a hash table
2099 other than a generic hash table, so we double
2101 if (info->hash->creator == input_bfd->xvec)
2103 if (h->sym != (asymbol *) NULL)
2104 *sym_ptr = sym = h->sym;
2107 switch (h->root.type)
2110 case bfd_link_hash_new:
2112 case bfd_link_hash_undefined:
2114 case bfd_link_hash_undefweak:
2115 sym->flags |= BSF_WEAK;
2117 case bfd_link_hash_indirect:
2118 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2120 case bfd_link_hash_defined:
2121 sym->flags |= BSF_GLOBAL;
2122 sym->flags &=~ BSF_CONSTRUCTOR;
2123 sym->value = h->root.u.def.value;
2124 sym->section = h->root.u.def.section;
2126 case bfd_link_hash_defweak:
2127 sym->flags |= BSF_WEAK;
2128 sym->flags &=~ BSF_CONSTRUCTOR;
2129 sym->value = h->root.u.def.value;
2130 sym->section = h->root.u.def.section;
2132 case bfd_link_hash_common:
2133 sym->value = h->root.u.c.size;
2134 sym->flags |= BSF_GLOBAL;
2135 if (! bfd_is_com_section (sym->section))
2137 BFD_ASSERT (bfd_is_und_section (sym->section));
2138 sym->section = bfd_com_section_ptr;
2140 /* We do not set the section of the symbol to
2141 h->root.u.c.p->section. That value was saved so
2142 that we would know where to allocate the symbol
2143 if it was defined. In this case the type is
2144 still bfd_link_hash_common, so we did not define
2145 it, so we do not want to use that section. */
2151 /* This switch is straight from the old code in
2152 write_file_locals in ldsym.c. */
2153 if (info->strip == strip_some
2154 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2156 == (struct bfd_hash_entry *) NULL))
2158 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2160 /* If this symbol is marked as occurring now, rather
2161 than at the end, output it now. This is used for
2162 COFF C_EXT FCN symbols. FIXME: There must be a
2164 if (bfd_asymbol_bfd (sym) == input_bfd
2165 && (sym->flags & BSF_NOT_AT_END) != 0)
2170 else if (bfd_is_ind_section (sym->section))
2172 else if ((sym->flags & BSF_DEBUGGING) != 0)
2174 if (info->strip == strip_none)
2179 else if (bfd_is_und_section (sym->section)
2180 || bfd_is_com_section (sym->section))
2182 else if ((sym->flags & BSF_LOCAL) != 0)
2184 if ((sym->flags & BSF_WARNING) != 0)
2188 switch (info->discard)
2195 if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
2196 && (info->lprefix_len == 1
2197 || strncmp (bfd_asymbol_name (sym), info->lprefix,
2198 info->lprefix_len) == 0))
2209 else if ((sym->flags & BSF_CONSTRUCTOR))
2211 if (info->strip != strip_all)
2221 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2223 if (h != (struct generic_link_hash_entry *) NULL)
2231 /* Set the section and value of a generic BFD symbol based on a linker
2232 hash table entry. */
2235 set_symbol_from_hash (sym, h)
2237 struct bfd_link_hash_entry *h;
2244 case bfd_link_hash_new:
2245 /* This can happen when a constructor symbol is seen but we are
2246 not building constructors. */
2247 if (sym->section != NULL)
2249 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2253 sym->flags |= BSF_CONSTRUCTOR;
2254 sym->section = bfd_abs_section_ptr;
2258 case bfd_link_hash_undefined:
2259 sym->section = bfd_und_section_ptr;
2262 case bfd_link_hash_undefweak:
2263 sym->section = bfd_und_section_ptr;
2265 sym->flags |= BSF_WEAK;
2267 case bfd_link_hash_defined:
2268 sym->section = h->u.def.section;
2269 sym->value = h->u.def.value;
2271 case bfd_link_hash_defweak:
2272 sym->flags |= BSF_WEAK;
2273 sym->section = h->u.def.section;
2274 sym->value = h->u.def.value;
2276 case bfd_link_hash_common:
2277 sym->value = h->u.c.size;
2278 if (sym->section == NULL)
2279 sym->section = bfd_com_section_ptr;
2280 else if (! bfd_is_com_section (sym->section))
2282 BFD_ASSERT (bfd_is_und_section (sym->section));
2283 sym->section = bfd_com_section_ptr;
2285 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2287 case bfd_link_hash_indirect:
2288 case bfd_link_hash_warning:
2289 /* FIXME: What should we do here? */
2294 /* Write out a global symbol, if it hasn't already been written out.
2295 This is called for each symbol in the hash table. */
2298 _bfd_generic_link_write_global_symbol (h, data)
2299 struct generic_link_hash_entry *h;
2302 struct generic_write_global_symbol_info *wginfo =
2303 (struct generic_write_global_symbol_info *) data;
2311 if (wginfo->info->strip == strip_all
2312 || (wginfo->info->strip == strip_some
2313 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2314 false, false) == NULL))
2317 if (h->sym != (asymbol *) NULL)
2320 BFD_ASSERT (strcmp (bfd_asymbol_name (sym), h->root.root.string) == 0);
2324 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2327 sym->name = h->root.root.string;
2331 set_symbol_from_hash (sym, &h->root);
2333 sym->flags |= BSF_GLOBAL;
2335 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2338 /* FIXME: No way to return failure. */
2345 /* Create a relocation. */
2348 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2350 struct bfd_link_info *info;
2352 struct bfd_link_order *link_order;
2356 if (! info->relocateable)
2358 if (sec->orelocation == (arelent **) NULL)
2361 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2362 if (r == (arelent *) NULL)
2364 bfd_set_error (bfd_error_no_memory);
2368 r->address = link_order->offset;
2369 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2372 bfd_set_error (bfd_error_bad_value);
2376 /* Get the symbol to use for the relocation. */
2377 if (link_order->type == bfd_section_reloc_link_order)
2378 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2381 struct generic_link_hash_entry *h;
2383 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2384 link_order->u.reloc.p->u.name,
2385 false, false, true);
2386 if (h == (struct generic_link_hash_entry *) NULL
2389 if (! ((*info->callbacks->unattached_reloc)
2390 (info, link_order->u.reloc.p->u.name,
2391 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2393 bfd_set_error (bfd_error_bad_value);
2396 r->sym_ptr_ptr = &h->sym;
2399 /* If this is an inplace reloc, write the addend to the object file.
2400 Otherwise, store it in the reloc addend. */
2401 if (! r->howto->partial_inplace)
2402 r->addend = link_order->u.reloc.p->addend;
2406 bfd_reloc_status_type rstat;
2410 size = bfd_get_reloc_size (r->howto);
2411 buf = (bfd_byte *) bfd_zmalloc (size);
2412 if (buf == (bfd_byte *) NULL)
2414 bfd_set_error (bfd_error_no_memory);
2417 rstat = _bfd_relocate_contents (r->howto, abfd,
2418 link_order->u.reloc.p->addend, buf);
2424 case bfd_reloc_outofrange:
2426 case bfd_reloc_overflow:
2427 if (! ((*info->callbacks->reloc_overflow)
2429 (link_order->type == bfd_section_reloc_link_order
2430 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2431 : link_order->u.reloc.p->u.name),
2432 r->howto->name, link_order->u.reloc.p->addend,
2433 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2440 ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2441 (file_ptr) link_order->offset, size);
2449 sec->orelocation[sec->reloc_count] = r;
2455 /* Allocate a new link_order for a section. */
2457 struct bfd_link_order *
2458 bfd_new_link_order (abfd, section)
2462 struct bfd_link_order *new;
2464 new = ((struct bfd_link_order *)
2465 bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
2468 bfd_set_error (bfd_error_no_memory);
2472 new->type = bfd_undefined_link_order;
2475 new->next = (struct bfd_link_order *) NULL;
2477 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2478 section->link_order_tail->next = new;
2480 section->link_order_head = new;
2481 section->link_order_tail = new;
2486 /* Default link order processing routine. Note that we can not handle
2487 the reloc_link_order types here, since they depend upon the details
2488 of how the particular backends generates relocs. */
2491 _bfd_default_link_order (abfd, info, sec, link_order)
2493 struct bfd_link_info *info;
2495 struct bfd_link_order *link_order;
2497 switch (link_order->type)
2499 case bfd_undefined_link_order:
2500 case bfd_section_reloc_link_order:
2501 case bfd_symbol_reloc_link_order:
2504 case bfd_indirect_link_order:
2505 return default_indirect_link_order (abfd, info, sec, link_order,
2507 case bfd_fill_link_order:
2508 return default_fill_link_order (abfd, info, sec, link_order);
2509 case bfd_data_link_order:
2510 return bfd_set_section_contents (abfd, sec,
2511 (PTR) link_order->u.data.contents,
2512 (file_ptr) link_order->offset,
2517 /* Default routine to handle a bfd_fill_link_order. */
2521 default_fill_link_order (abfd, info, sec, link_order)
2523 struct bfd_link_info *info;
2525 struct bfd_link_order *link_order;
2533 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2535 size = (size_t) link_order->size;
2536 space = (char *) malloc (size);
2537 if (space == NULL && size != 0)
2539 bfd_set_error (bfd_error_no_memory);
2543 fill = link_order->u.fill.value;
2544 for (i = 0; i < size; i += 2)
2545 space[i] = fill >> 8;
2546 for (i = 1; i < size; i += 2)
2548 result = bfd_set_section_contents (abfd, sec, space,
2549 (file_ptr) link_order->offset,
2555 /* Default routine to handle a bfd_indirect_link_order. */
2558 default_indirect_link_order (output_bfd, info, output_section, link_order,
2561 struct bfd_link_info *info;
2562 asection *output_section;
2563 struct bfd_link_order *link_order;
2564 boolean generic_linker;
2566 asection *input_section;
2568 bfd_byte *contents = NULL;
2569 bfd_byte *new_contents;
2571 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2573 if (link_order->size == 0)
2576 input_section = link_order->u.indirect.section;
2577 input_bfd = input_section->owner;
2579 BFD_ASSERT (input_section->output_section == output_section);
2580 BFD_ASSERT (input_section->output_offset == link_order->offset);
2581 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2583 if (info->relocateable
2584 && input_section->reloc_count > 0
2585 && output_section->orelocation == (arelent **) NULL)
2587 /* Space has not been allocated for the output relocations.
2588 This can happen when we are called by a specific backend
2589 because somebody is attempting to link together different
2590 types of object files. Handling this case correctly is
2591 difficult, and sometimes impossible. */
2595 if (! generic_linker)
2600 /* Get the canonical symbols. The generic linker will always
2601 have retrieved them by this point, but we are being called by
2602 a specific linker, presumably because we are linking
2603 different types of object files together. */
2604 if (! generic_link_read_symbols (input_bfd))
2607 /* Since we have been called by a specific linker, rather than
2608 the generic linker, the values of the symbols will not be
2609 right. They will be the values as seen in the input file,
2610 not the values of the final link. We need to fix them up
2611 before we can relocate the section. */
2612 sympp = _bfd_generic_link_get_symbols (input_bfd);
2613 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2614 for (; sympp < symppend; sympp++)
2617 struct bfd_link_hash_entry *h;
2621 if ((sym->flags & (BSF_INDIRECT
2626 || bfd_is_und_section (bfd_get_section (sym))
2627 || bfd_is_com_section (bfd_get_section (sym))
2628 || bfd_is_ind_section (bfd_get_section (sym)))
2630 /* sym->udata may have been set by
2631 generic_link_add_symbol_list. */
2632 if (sym->udata.p != NULL)
2633 h = (struct bfd_link_hash_entry *) sym->udata.p;
2635 h = bfd_link_hash_lookup (info->hash,
2636 bfd_asymbol_name (sym),
2637 false, false, true);
2639 set_symbol_from_hash (sym, h);
2644 /* Get and relocate the section contents. */
2645 contents = ((bfd_byte *)
2646 malloc ((size_t) bfd_section_size (input_bfd, input_section)));
2647 if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2649 bfd_set_error (bfd_error_no_memory);
2652 new_contents = (bfd_get_relocated_section_contents
2653 (output_bfd, info, link_order, contents, info->relocateable,
2654 _bfd_generic_link_get_symbols (input_bfd)));
2658 /* Output the section contents. */
2659 if (! bfd_set_section_contents (output_bfd, output_section,
2661 link_order->offset, link_order->size))
2664 if (contents != NULL)
2669 if (contents != NULL)
2674 /* A little routine to count the number of relocs in a link_order
2678 _bfd_count_link_order_relocs (link_order)
2679 struct bfd_link_order *link_order;
2681 register unsigned int c;
2682 register struct bfd_link_order *l;
2685 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2687 if (l->type == bfd_section_reloc_link_order
2688 || l->type == bfd_symbol_reloc_link_order)
2697 bfd_link_split_section
2700 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2703 Return nonzero if @var{sec} should be split during a
2704 reloceatable or final link.
2706 .#define bfd_link_split_section(abfd, sec) \
2707 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2715 _bfd_generic_link_split_section (abfd, sec)