1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 static void extract_string (CORE_ADDR addr, char *buf);
70 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_type_match (struct type *, struct type *, int);
102 static int ada_args_match (struct symbol *, struct value **, int);
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
114 static int is_nonfunction (struct ada_symbol_info *, int);
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 static int num_defns_collected (struct obstack *);
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
127 static struct value *resolve_subexp (struct expression **, int *, int,
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static int is_dynamic_field (struct type *, int);
162 static struct type *to_fixed_variant_branch_type (struct type *,
164 CORE_ADDR, struct value *);
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168 static struct type *to_fixed_range_type (char *, struct value *,
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
174 static struct value *unwrap_value (struct value *);
176 static struct type *constrained_packed_array_type (struct type *, long *);
178 static struct type *decode_constrained_packed_array_type (struct type *);
180 static long decode_packed_array_bitsize (struct type *);
182 static struct value *decode_constrained_packed_array (struct value *);
184 static int ada_is_packed_array_type (struct type *);
186 static int ada_is_unconstrained_packed_array_type (struct type *);
188 static struct value *value_subscript_packed (struct value *, int,
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193 static struct value *coerce_unspec_val_to_type (struct value *,
196 static struct value *get_var_value (char *, char *);
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int wild_match (const char *, int, const char *);
206 static struct value *ada_coerce_ref (struct value *);
208 static LONGEST pos_atr (struct value *);
210 static struct value *value_pos_atr (struct type *, struct value *);
212 static struct value *value_val_atr (struct type *, struct value *);
214 static struct symbol *standard_lookup (const char *, const struct block *,
217 static struct value *ada_search_struct_field (char *, struct value *, int,
220 static struct value *ada_value_primitive_field (struct value *, int, int,
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 static struct value *ada_to_fixed_value (struct value *);
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
235 static struct value *ada_coerce_to_simple_array (struct value *);
237 static int ada_is_direct_array_type (struct type *);
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
242 static void check_size (const struct type *);
244 static struct value *ada_index_struct_field (int, struct value *, int,
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
250 static void aggregate_assign_from_choices (struct value *, struct value *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
255 static void aggregate_assign_positional (struct value *, struct value *,
257 int *, LONGEST *, int *, int,
261 static void aggregate_assign_others (struct value *, struct value *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 static void ada_forward_operator_length (struct expression *, int, int *,
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
313 /* Given DECODED_NAME a string holding a symbol name in its
314 decoded form (ie using the Ada dotted notation), returns
315 its unqualified name. */
318 ada_unqualified_name (const char *decoded_name)
320 const char *result = strrchr (decoded_name, '.');
323 result++; /* Skip the dot... */
325 result = decoded_name;
330 /* Return a string starting with '<', followed by STR, and '>'.
331 The result is good until the next call. */
334 add_angle_brackets (const char *str)
336 static char *result = NULL;
339 result = xstrprintf ("<%s>", str);
344 ada_get_gdb_completer_word_break_characters (void)
346 return ada_completer_word_break_characters;
349 /* Print an array element index using the Ada syntax. */
352 ada_print_array_index (struct value *index_value, struct ui_file *stream,
353 const struct value_print_options *options)
355 LA_VALUE_PRINT (index_value, stream, options);
356 fprintf_filtered (stream, " => ");
359 /* Read the string located at ADDR from the inferior and store the
363 extract_string (CORE_ADDR addr, char *buf)
367 /* Loop, reading one byte at a time, until we reach the '\000'
368 end-of-string marker. */
371 target_read_memory (addr + char_index * sizeof (char),
372 buf + char_index * sizeof (char), sizeof (char));
375 while (buf[char_index - 1] != '\000');
378 /* Assuming VECT points to an array of *SIZE objects of size
379 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
380 updating *SIZE as necessary and returning the (new) array. */
383 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
385 if (*size < min_size)
388 if (*size < min_size)
390 vect = xrealloc (vect, *size * element_size);
395 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
396 suffix of FIELD_NAME beginning "___". */
399 field_name_match (const char *field_name, const char *target)
401 int len = strlen (target);
403 (strncmp (field_name, target, len) == 0
404 && (field_name[len] == '\0'
405 || (strncmp (field_name + len, "___", 3) == 0
406 && strcmp (field_name + strlen (field_name) - 6,
411 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
412 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
413 and return its index. This function also handles fields whose name
414 have ___ suffixes because the compiler sometimes alters their name
415 by adding such a suffix to represent fields with certain constraints.
416 If the field could not be found, return a negative number if
417 MAYBE_MISSING is set. Otherwise raise an error. */
420 ada_get_field_index (const struct type *type, const char *field_name,
424 struct type *struct_type = check_typedef ((struct type *) type);
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
431 error (_("Unable to find field %s in struct %s. Aborting"),
432 field_name, TYPE_NAME (struct_type));
437 /* The length of the prefix of NAME prior to any "___" suffix. */
440 ada_name_prefix_len (const char *name)
446 const char *p = strstr (name, "___");
448 return strlen (name);
454 /* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
458 is_suffix (const char *str, const char *suffix)
464 len2 = strlen (suffix);
465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
468 /* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
471 static struct value *
472 coerce_unspec_val_to_type (struct value *val, struct type *type)
474 type = ada_check_typedef (type);
475 if (value_type (val) == type)
479 struct value *result;
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
485 result = allocate_value (type);
486 set_value_component_location (result, val);
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
489 set_value_address (result, value_address (val));
491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
492 set_value_lazy (result, 1);
494 memcpy (value_contents_raw (result), value_contents (val),
500 static const gdb_byte *
501 cond_offset_host (const gdb_byte *valaddr, long offset)
506 return valaddr + offset;
510 cond_offset_target (CORE_ADDR address, long offset)
515 return address + offset;
518 /* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
523 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
528 lim_warning (const char *format, ...)
531 va_start (args, format);
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
535 vwarning (format, args);
540 /* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
545 check_size (const struct type *type)
547 if (TYPE_LENGTH (type) > varsize_limit)
548 error (_("object size is larger than varsize-limit"));
552 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
556 /* Maximum value of a SIZE-byte signed integer type. */
558 max_of_size (int size)
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
564 /* Minimum value of a SIZE-byte signed integer type. */
566 min_of_size (int size)
568 return -max_of_size (size) - 1;
571 /* Maximum value of a SIZE-byte unsigned integer type. */
573 umax_of_size (int size)
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
579 /* Maximum value of integral type T, as a signed quantity. */
581 max_of_type (struct type *t)
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
586 return max_of_size (TYPE_LENGTH (t));
589 /* Minimum value of integral type T, as a signed quantity. */
591 min_of_type (struct type *t)
593 if (TYPE_UNSIGNED (t))
596 return min_of_size (TYPE_LENGTH (t));
599 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
601 discrete_type_high_bound (struct type *type)
603 switch (TYPE_CODE (type))
605 case TYPE_CODE_RANGE:
606 return TYPE_HIGH_BOUND (type);
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
613 return max_of_type (type);
615 error (_("Unexpected type in discrete_type_high_bound."));
619 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
621 discrete_type_low_bound (struct type *type)
623 switch (TYPE_CODE (type))
625 case TYPE_CODE_RANGE:
626 return TYPE_LOW_BOUND (type);
628 return TYPE_FIELD_BITPOS (type, 0);
633 return min_of_type (type);
635 error (_("Unexpected type in discrete_type_low_bound."));
639 /* The identity on non-range types. For range types, the underlying
640 non-range scalar type. */
643 base_type (struct type *type)
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
649 type = TYPE_TARGET_TYPE (type);
655 /* Language Selection */
657 /* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
660 MAIN_PST is not used. */
663 ada_update_initial_language (enum language lang,
664 struct partial_symtab *main_pst)
666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
667 (struct objfile *) NULL) != NULL)
673 /* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
680 struct minimal_symbol *msym;
681 static char *main_program_name = NULL;
683 /* For Ada, the name of the main procedure is stored in a specific
684 string constant, generated by the binder. Look for that symbol,
685 extract its address, and then read that string. If we didn't find
686 that string, then most probably the main procedure is not written
688 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
692 CORE_ADDR main_program_name_addr;
695 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
696 if (main_program_name_addr == 0)
697 error (_("Invalid address for Ada main program name."));
699 xfree (main_program_name);
700 target_read_string (main_program_name_addr, &main_program_name,
705 return main_program_name;
708 /* The main procedure doesn't seem to be in Ada. */
714 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
717 const struct ada_opname_map ada_opname_table[] = {
718 {"Oadd", "\"+\"", BINOP_ADD},
719 {"Osubtract", "\"-\"", BINOP_SUB},
720 {"Omultiply", "\"*\"", BINOP_MUL},
721 {"Odivide", "\"/\"", BINOP_DIV},
722 {"Omod", "\"mod\"", BINOP_MOD},
723 {"Orem", "\"rem\"", BINOP_REM},
724 {"Oexpon", "\"**\"", BINOP_EXP},
725 {"Olt", "\"<\"", BINOP_LESS},
726 {"Ole", "\"<=\"", BINOP_LEQ},
727 {"Ogt", "\">\"", BINOP_GTR},
728 {"Oge", "\">=\"", BINOP_GEQ},
729 {"Oeq", "\"=\"", BINOP_EQUAL},
730 {"One", "\"/=\"", BINOP_NOTEQUAL},
731 {"Oand", "\"and\"", BINOP_BITWISE_AND},
732 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
733 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
734 {"Oconcat", "\"&\"", BINOP_CONCAT},
735 {"Oabs", "\"abs\"", UNOP_ABS},
736 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
737 {"Oadd", "\"+\"", UNOP_PLUS},
738 {"Osubtract", "\"-\"", UNOP_NEG},
742 /* The "encoded" form of DECODED, according to GNAT conventions.
743 The result is valid until the next call to ada_encode. */
746 ada_encode (const char *decoded)
748 static char *encoding_buffer = NULL;
749 static size_t encoding_buffer_size = 0;
756 GROW_VECT (encoding_buffer, encoding_buffer_size,
757 2 * strlen (decoded) + 10);
760 for (p = decoded; *p != '\0'; p += 1)
764 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
769 const struct ada_opname_map *mapping;
771 for (mapping = ada_opname_table;
772 mapping->encoded != NULL
773 && strncmp (mapping->decoded, p,
774 strlen (mapping->decoded)) != 0; mapping += 1)
776 if (mapping->encoded == NULL)
777 error (_("invalid Ada operator name: %s"), p);
778 strcpy (encoding_buffer + k, mapping->encoded);
779 k += strlen (mapping->encoded);
784 encoding_buffer[k] = *p;
789 encoding_buffer[k] = '\0';
790 return encoding_buffer;
793 /* Return NAME folded to lower case, or, if surrounded by single
794 quotes, unfolded, but with the quotes stripped away. Result good
798 ada_fold_name (const char *name)
800 static char *fold_buffer = NULL;
801 static size_t fold_buffer_size = 0;
803 int len = strlen (name);
804 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
808 strncpy (fold_buffer, name + 1, len - 2);
809 fold_buffer[len - 2] = '\000';
814 for (i = 0; i <= len; i += 1)
815 fold_buffer[i] = tolower (name[i]);
821 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
824 is_lower_alphanum (const char c)
826 return (isdigit (c) || (isalpha (c) && islower (c)));
829 /* Remove either of these suffixes:
834 These are suffixes introduced by the compiler for entities such as
835 nested subprogram for instance, in order to avoid name clashes.
836 They do not serve any purpose for the debugger. */
839 ada_remove_trailing_digits (const char *encoded, int *len)
841 if (*len > 1 && isdigit (encoded[*len - 1]))
844 while (i > 0 && isdigit (encoded[i]))
846 if (i >= 0 && encoded[i] == '.')
848 else if (i >= 0 && encoded[i] == '$')
850 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
852 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
857 /* Remove the suffix introduced by the compiler for protected object
861 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
863 /* Remove trailing N. */
865 /* Protected entry subprograms are broken into two
866 separate subprograms: The first one is unprotected, and has
867 a 'N' suffix; the second is the protected version, and has
868 the 'P' suffix. The second calls the first one after handling
869 the protection. Since the P subprograms are internally generated,
870 we leave these names undecoded, giving the user a clue that this
871 entity is internal. */
874 && encoded[*len - 1] == 'N'
875 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
879 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
882 ada_remove_Xbn_suffix (const char *encoded, int *len)
886 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
889 if (encoded[i] != 'X')
895 if (isalnum (encoded[i-1]))
899 /* If ENCODED follows the GNAT entity encoding conventions, then return
900 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
903 The resulting string is valid until the next call of ada_decode.
904 If the string is unchanged by decoding, the original string pointer
908 ada_decode (const char *encoded)
915 static char *decoding_buffer = NULL;
916 static size_t decoding_buffer_size = 0;
918 /* The name of the Ada main procedure starts with "_ada_".
919 This prefix is not part of the decoded name, so skip this part
920 if we see this prefix. */
921 if (strncmp (encoded, "_ada_", 5) == 0)
924 /* If the name starts with '_', then it is not a properly encoded
925 name, so do not attempt to decode it. Similarly, if the name
926 starts with '<', the name should not be decoded. */
927 if (encoded[0] == '_' || encoded[0] == '<')
930 len0 = strlen (encoded);
932 ada_remove_trailing_digits (encoded, &len0);
933 ada_remove_po_subprogram_suffix (encoded, &len0);
935 /* Remove the ___X.* suffix if present. Do not forget to verify that
936 the suffix is located before the current "end" of ENCODED. We want
937 to avoid re-matching parts of ENCODED that have previously been
938 marked as discarded (by decrementing LEN0). */
939 p = strstr (encoded, "___");
940 if (p != NULL && p - encoded < len0 - 3)
948 /* Remove any trailing TKB suffix. It tells us that this symbol
949 is for the body of a task, but that information does not actually
950 appear in the decoded name. */
952 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
955 /* Remove any trailing TB suffix. The TB suffix is slightly different
956 from the TKB suffix because it is used for non-anonymous task
959 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
962 /* Remove trailing "B" suffixes. */
963 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
965 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
968 /* Make decoded big enough for possible expansion by operator name. */
970 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
971 decoded = decoding_buffer;
973 /* Remove trailing __{digit}+ or trailing ${digit}+. */
975 if (len0 > 1 && isdigit (encoded[len0 - 1]))
978 while ((i >= 0 && isdigit (encoded[i]))
979 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
981 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
983 else if (encoded[i] == '$')
987 /* The first few characters that are not alphabetic are not part
988 of any encoding we use, so we can copy them over verbatim. */
990 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
991 decoded[j] = encoded[i];
996 /* Is this a symbol function? */
997 if (at_start_name && encoded[i] == 'O')
1000 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1002 int op_len = strlen (ada_opname_table[k].encoded);
1003 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1005 && !isalnum (encoded[i + op_len]))
1007 strcpy (decoded + j, ada_opname_table[k].decoded);
1010 j += strlen (ada_opname_table[k].decoded);
1014 if (ada_opname_table[k].encoded != NULL)
1019 /* Replace "TK__" with "__", which will eventually be translated
1020 into "." (just below). */
1022 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1025 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1026 be translated into "." (just below). These are internal names
1027 generated for anonymous blocks inside which our symbol is nested. */
1029 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1030 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1031 && isdigit (encoded [i+4]))
1035 while (k < len0 && isdigit (encoded[k]))
1036 k++; /* Skip any extra digit. */
1038 /* Double-check that the "__B_{DIGITS}+" sequence we found
1039 is indeed followed by "__". */
1040 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1044 /* Remove _E{DIGITS}+[sb] */
1046 /* Just as for protected object subprograms, there are 2 categories
1047 of subprograms created by the compiler for each entry. The first
1048 one implements the actual entry code, and has a suffix following
1049 the convention above; the second one implements the barrier and
1050 uses the same convention as above, except that the 'E' is replaced
1053 Just as above, we do not decode the name of barrier functions
1054 to give the user a clue that the code he is debugging has been
1055 internally generated. */
1057 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1058 && isdigit (encoded[i+2]))
1062 while (k < len0 && isdigit (encoded[k]))
1066 && (encoded[k] == 'b' || encoded[k] == 's'))
1069 /* Just as an extra precaution, make sure that if this
1070 suffix is followed by anything else, it is a '_'.
1071 Otherwise, we matched this sequence by accident. */
1073 || (k < len0 && encoded[k] == '_'))
1078 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1079 the GNAT front-end in protected object subprograms. */
1082 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1084 /* Backtrack a bit up until we reach either the begining of
1085 the encoded name, or "__". Make sure that we only find
1086 digits or lowercase characters. */
1087 const char *ptr = encoded + i - 1;
1089 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1092 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1096 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1098 /* This is a X[bn]* sequence not separated from the previous
1099 part of the name with a non-alpha-numeric character (in other
1100 words, immediately following an alpha-numeric character), then
1101 verify that it is placed at the end of the encoded name. If
1102 not, then the encoding is not valid and we should abort the
1103 decoding. Otherwise, just skip it, it is used in body-nested
1107 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1111 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1113 /* Replace '__' by '.'. */
1121 /* It's a character part of the decoded name, so just copy it
1123 decoded[j] = encoded[i];
1128 decoded[j] = '\000';
1130 /* Decoded names should never contain any uppercase character.
1131 Double-check this, and abort the decoding if we find one. */
1133 for (i = 0; decoded[i] != '\0'; i += 1)
1134 if (isupper (decoded[i]) || decoded[i] == ' ')
1137 if (strcmp (decoded, encoded) == 0)
1143 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1144 decoded = decoding_buffer;
1145 if (encoded[0] == '<')
1146 strcpy (decoded, encoded);
1148 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1153 /* Table for keeping permanent unique copies of decoded names. Once
1154 allocated, names in this table are never released. While this is a
1155 storage leak, it should not be significant unless there are massive
1156 changes in the set of decoded names in successive versions of a
1157 symbol table loaded during a single session. */
1158 static struct htab *decoded_names_store;
1160 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1161 in the language-specific part of GSYMBOL, if it has not been
1162 previously computed. Tries to save the decoded name in the same
1163 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1164 in any case, the decoded symbol has a lifetime at least that of
1166 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1167 const, but nevertheless modified to a semantically equivalent form
1168 when a decoded name is cached in it.
1172 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1175 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1176 if (*resultp == NULL)
1178 const char *decoded = ada_decode (gsymbol->name);
1179 if (gsymbol->obj_section != NULL)
1181 struct objfile *objf = gsymbol->obj_section->objfile;
1182 *resultp = obsavestring (decoded, strlen (decoded),
1183 &objf->objfile_obstack);
1185 /* Sometimes, we can't find a corresponding objfile, in which
1186 case, we put the result on the heap. Since we only decode
1187 when needed, we hope this usually does not cause a
1188 significant memory leak (FIXME). */
1189 if (*resultp == NULL)
1191 char **slot = (char **) htab_find_slot (decoded_names_store,
1194 *slot = xstrdup (decoded);
1203 ada_la_decode (const char *encoded, int options)
1205 return xstrdup (ada_decode (encoded));
1208 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1209 suffixes that encode debugging information or leading _ada_ on
1210 SYM_NAME (see is_name_suffix commentary for the debugging
1211 information that is ignored). If WILD, then NAME need only match a
1212 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1213 either argument is NULL. */
1216 ada_match_name (const char *sym_name, const char *name, int wild)
1218 if (sym_name == NULL || name == NULL)
1221 return wild_match (name, strlen (name), sym_name);
1224 int len_name = strlen (name);
1225 return (strncmp (sym_name, name, len_name) == 0
1226 && is_name_suffix (sym_name + len_name))
1227 || (strncmp (sym_name, "_ada_", 5) == 0
1228 && strncmp (sym_name + 5, name, len_name) == 0
1229 && is_name_suffix (sym_name + len_name + 5));
1236 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1238 static char *bound_name[] = {
1239 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1240 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1243 /* Maximum number of array dimensions we are prepared to handle. */
1245 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1247 /* Like modify_field, but allows bitpos > wordlength. */
1250 modify_general_field (struct type *type, char *addr,
1251 LONGEST fieldval, int bitpos, int bitsize)
1253 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1257 /* The desc_* routines return primitive portions of array descriptors
1260 /* The descriptor or array type, if any, indicated by TYPE; removes
1261 level of indirection, if needed. */
1263 static struct type *
1264 desc_base_type (struct type *type)
1268 type = ada_check_typedef (type);
1270 && (TYPE_CODE (type) == TYPE_CODE_PTR
1271 || TYPE_CODE (type) == TYPE_CODE_REF))
1272 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1277 /* True iff TYPE indicates a "thin" array pointer type. */
1280 is_thin_pntr (struct type *type)
1283 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1284 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1287 /* The descriptor type for thin pointer type TYPE. */
1289 static struct type *
1290 thin_descriptor_type (struct type *type)
1292 struct type *base_type = desc_base_type (type);
1293 if (base_type == NULL)
1295 if (is_suffix (ada_type_name (base_type), "___XVE"))
1299 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1300 if (alt_type == NULL)
1307 /* A pointer to the array data for thin-pointer value VAL. */
1309 static struct value *
1310 thin_data_pntr (struct value *val)
1312 struct type *type = value_type (val);
1313 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1314 data_type = lookup_pointer_type (data_type);
1316 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1317 return value_cast (data_type, value_copy (val));
1319 return value_from_longest (data_type, value_address (val));
1322 /* True iff TYPE indicates a "thick" array pointer type. */
1325 is_thick_pntr (struct type *type)
1327 type = desc_base_type (type);
1328 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1329 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1332 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1333 pointer to one, the type of its bounds data; otherwise, NULL. */
1335 static struct type *
1336 desc_bounds_type (struct type *type)
1340 type = desc_base_type (type);
1344 else if (is_thin_pntr (type))
1346 type = thin_descriptor_type (type);
1349 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1351 return ada_check_typedef (r);
1353 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1355 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1357 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1362 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1363 one, a pointer to its bounds data. Otherwise NULL. */
1365 static struct value *
1366 desc_bounds (struct value *arr)
1368 struct type *type = ada_check_typedef (value_type (arr));
1369 if (is_thin_pntr (type))
1371 struct type *bounds_type =
1372 desc_bounds_type (thin_descriptor_type (type));
1375 if (bounds_type == NULL)
1376 error (_("Bad GNAT array descriptor"));
1378 /* NOTE: The following calculation is not really kosher, but
1379 since desc_type is an XVE-encoded type (and shouldn't be),
1380 the correct calculation is a real pain. FIXME (and fix GCC). */
1381 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1382 addr = value_as_long (arr);
1384 addr = value_address (arr);
1387 value_from_longest (lookup_pointer_type (bounds_type),
1388 addr - TYPE_LENGTH (bounds_type));
1391 else if (is_thick_pntr (type))
1392 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1393 _("Bad GNAT array descriptor"));
1398 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1399 position of the field containing the address of the bounds data. */
1402 fat_pntr_bounds_bitpos (struct type *type)
1404 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1407 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1408 size of the field containing the address of the bounds data. */
1411 fat_pntr_bounds_bitsize (struct type *type)
1413 type = desc_base_type (type);
1415 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1416 return TYPE_FIELD_BITSIZE (type, 1);
1418 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1421 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1422 pointer to one, the type of its array data (a array-with-no-bounds type);
1423 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1426 static struct type *
1427 desc_data_target_type (struct type *type)
1429 type = desc_base_type (type);
1431 /* NOTE: The following is bogus; see comment in desc_bounds. */
1432 if (is_thin_pntr (type))
1433 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1434 else if (is_thick_pntr (type))
1436 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1439 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1440 return TYPE_TARGET_TYPE (data_type);
1446 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1449 static struct value *
1450 desc_data (struct value *arr)
1452 struct type *type = value_type (arr);
1453 if (is_thin_pntr (type))
1454 return thin_data_pntr (arr);
1455 else if (is_thick_pntr (type))
1456 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1457 _("Bad GNAT array descriptor"));
1463 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1464 position of the field containing the address of the data. */
1467 fat_pntr_data_bitpos (struct type *type)
1469 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1472 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1473 size of the field containing the address of the data. */
1476 fat_pntr_data_bitsize (struct type *type)
1478 type = desc_base_type (type);
1480 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1481 return TYPE_FIELD_BITSIZE (type, 0);
1483 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1486 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1487 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1488 bound, if WHICH is 1. The first bound is I=1. */
1490 static struct value *
1491 desc_one_bound (struct value *bounds, int i, int which)
1493 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1494 _("Bad GNAT array descriptor bounds"));
1497 /* If BOUNDS is an array-bounds structure type, return the bit position
1498 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1499 bound, if WHICH is 1. The first bound is I=1. */
1502 desc_bound_bitpos (struct type *type, int i, int which)
1504 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1507 /* If BOUNDS is an array-bounds structure type, return the bit field size
1508 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1509 bound, if WHICH is 1. The first bound is I=1. */
1512 desc_bound_bitsize (struct type *type, int i, int which)
1514 type = desc_base_type (type);
1516 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1517 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1519 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1522 /* If TYPE is the type of an array-bounds structure, the type of its
1523 Ith bound (numbering from 1). Otherwise, NULL. */
1525 static struct type *
1526 desc_index_type (struct type *type, int i)
1528 type = desc_base_type (type);
1530 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1531 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1536 /* The number of index positions in the array-bounds type TYPE.
1537 Return 0 if TYPE is NULL. */
1540 desc_arity (struct type *type)
1542 type = desc_base_type (type);
1545 return TYPE_NFIELDS (type) / 2;
1549 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1550 an array descriptor type (representing an unconstrained array
1554 ada_is_direct_array_type (struct type *type)
1558 type = ada_check_typedef (type);
1559 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1560 || ada_is_array_descriptor_type (type));
1563 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1567 ada_is_array_type (struct type *type)
1570 && (TYPE_CODE (type) == TYPE_CODE_PTR
1571 || TYPE_CODE (type) == TYPE_CODE_REF))
1572 type = TYPE_TARGET_TYPE (type);
1573 return ada_is_direct_array_type (type);
1576 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1579 ada_is_simple_array_type (struct type *type)
1583 type = ada_check_typedef (type);
1584 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1585 || (TYPE_CODE (type) == TYPE_CODE_PTR
1586 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1589 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1592 ada_is_array_descriptor_type (struct type *type)
1594 struct type *data_type = desc_data_target_type (type);
1598 type = ada_check_typedef (type);
1599 return (data_type != NULL
1600 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1601 && desc_arity (desc_bounds_type (type)) > 0);
1604 /* Non-zero iff type is a partially mal-formed GNAT array
1605 descriptor. FIXME: This is to compensate for some problems with
1606 debugging output from GNAT. Re-examine periodically to see if it
1610 ada_is_bogus_array_descriptor (struct type *type)
1614 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1615 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1616 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1617 && !ada_is_array_descriptor_type (type);
1621 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1622 (fat pointer) returns the type of the array data described---specifically,
1623 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1624 in from the descriptor; otherwise, they are left unspecified. If
1625 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1626 returns NULL. The result is simply the type of ARR if ARR is not
1629 ada_type_of_array (struct value *arr, int bounds)
1631 if (ada_is_constrained_packed_array_type (value_type (arr)))
1632 return decode_constrained_packed_array_type (value_type (arr));
1634 if (!ada_is_array_descriptor_type (value_type (arr)))
1635 return value_type (arr);
1639 struct type *array_type =
1640 ada_check_typedef (desc_data_target_type (value_type (arr)));
1642 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1643 TYPE_FIELD_BITSIZE (array_type, 0) =
1644 decode_packed_array_bitsize (value_type (arr));
1650 struct type *elt_type;
1652 struct value *descriptor;
1654 elt_type = ada_array_element_type (value_type (arr), -1);
1655 arity = ada_array_arity (value_type (arr));
1657 if (elt_type == NULL || arity == 0)
1658 return ada_check_typedef (value_type (arr));
1660 descriptor = desc_bounds (arr);
1661 if (value_as_long (descriptor) == 0)
1665 struct type *range_type = alloc_type_copy (value_type (arr));
1666 struct type *array_type = alloc_type_copy (value_type (arr));
1667 struct value *low = desc_one_bound (descriptor, arity, 0);
1668 struct value *high = desc_one_bound (descriptor, arity, 1);
1671 create_range_type (range_type, value_type (low),
1672 longest_to_int (value_as_long (low)),
1673 longest_to_int (value_as_long (high)));
1674 elt_type = create_array_type (array_type, elt_type, range_type);
1676 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1677 TYPE_FIELD_BITSIZE (elt_type, 0) =
1678 decode_packed_array_bitsize (value_type (arr));
1681 return lookup_pointer_type (elt_type);
1685 /* If ARR does not represent an array, returns ARR unchanged.
1686 Otherwise, returns either a standard GDB array with bounds set
1687 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1688 GDB array. Returns NULL if ARR is a null fat pointer. */
1691 ada_coerce_to_simple_array_ptr (struct value *arr)
1693 if (ada_is_array_descriptor_type (value_type (arr)))
1695 struct type *arrType = ada_type_of_array (arr, 1);
1696 if (arrType == NULL)
1698 return value_cast (arrType, value_copy (desc_data (arr)));
1700 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1701 return decode_constrained_packed_array (arr);
1706 /* If ARR does not represent an array, returns ARR unchanged.
1707 Otherwise, returns a standard GDB array describing ARR (which may
1708 be ARR itself if it already is in the proper form). */
1710 static struct value *
1711 ada_coerce_to_simple_array (struct value *arr)
1713 if (ada_is_array_descriptor_type (value_type (arr)))
1715 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1717 error (_("Bounds unavailable for null array pointer."));
1718 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1719 return value_ind (arrVal);
1721 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1722 return decode_constrained_packed_array (arr);
1727 /* If TYPE represents a GNAT array type, return it translated to an
1728 ordinary GDB array type (possibly with BITSIZE fields indicating
1729 packing). For other types, is the identity. */
1732 ada_coerce_to_simple_array_type (struct type *type)
1734 if (ada_is_constrained_packed_array_type (type))
1735 return decode_constrained_packed_array_type (type);
1737 if (ada_is_array_descriptor_type (type))
1738 return ada_check_typedef (desc_data_target_type (type));
1743 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1746 ada_is_packed_array_type (struct type *type)
1750 type = desc_base_type (type);
1751 type = ada_check_typedef (type);
1753 ada_type_name (type) != NULL
1754 && strstr (ada_type_name (type), "___XP") != NULL;
1757 /* Non-zero iff TYPE represents a standard GNAT constrained
1758 packed-array type. */
1761 ada_is_constrained_packed_array_type (struct type *type)
1763 return ada_is_packed_array_type (type)
1764 && !ada_is_array_descriptor_type (type);
1767 /* Non-zero iff TYPE represents an array descriptor for a
1768 unconstrained packed-array type. */
1771 ada_is_unconstrained_packed_array_type (struct type *type)
1773 return ada_is_packed_array_type (type)
1774 && ada_is_array_descriptor_type (type);
1777 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1778 return the size of its elements in bits. */
1781 decode_packed_array_bitsize (struct type *type)
1783 char *raw_name = ada_type_name (ada_check_typedef (type));
1788 raw_name = ada_type_name (desc_base_type (type));
1793 tail = strstr (raw_name, "___XP");
1795 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1798 (_("could not understand bit size information on packed array"));
1805 /* Given that TYPE is a standard GDB array type with all bounds filled
1806 in, and that the element size of its ultimate scalar constituents
1807 (that is, either its elements, or, if it is an array of arrays, its
1808 elements' elements, etc.) is *ELT_BITS, return an identical type,
1809 but with the bit sizes of its elements (and those of any
1810 constituent arrays) recorded in the BITSIZE components of its
1811 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1814 static struct type *
1815 constrained_packed_array_type (struct type *type, long *elt_bits)
1817 struct type *new_elt_type;
1818 struct type *new_type;
1819 LONGEST low_bound, high_bound;
1821 type = ada_check_typedef (type);
1822 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1825 new_type = alloc_type_copy (type);
1827 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1829 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1830 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1831 TYPE_NAME (new_type) = ada_type_name (type);
1833 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1834 &low_bound, &high_bound) < 0)
1835 low_bound = high_bound = 0;
1836 if (high_bound < low_bound)
1837 *elt_bits = TYPE_LENGTH (new_type) = 0;
1840 *elt_bits *= (high_bound - low_bound + 1);
1841 TYPE_LENGTH (new_type) =
1842 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1845 TYPE_FIXED_INSTANCE (new_type) = 1;
1849 /* The array type encoded by TYPE, where
1850 ada_is_constrained_packed_array_type (TYPE). */
1852 static struct type *
1853 decode_constrained_packed_array_type (struct type *type)
1856 struct block **blocks;
1857 char *raw_name = ada_type_name (ada_check_typedef (type));
1860 struct type *shadow_type;
1865 raw_name = ada_type_name (desc_base_type (type));
1870 name = (char *) alloca (strlen (raw_name) + 1);
1871 tail = strstr (raw_name, "___XP");
1872 type = desc_base_type (type);
1874 memcpy (name, raw_name, tail - raw_name);
1875 name[tail - raw_name] = '\000';
1877 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1878 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1880 lim_warning (_("could not find bounds information on packed array"));
1883 shadow_type = SYMBOL_TYPE (sym);
1884 CHECK_TYPEDEF (shadow_type);
1886 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1888 lim_warning (_("could not understand bounds information on packed array"));
1892 bits = decode_packed_array_bitsize (type);
1893 return constrained_packed_array_type (shadow_type, &bits);
1896 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1897 array, returns a simple array that denotes that array. Its type is a
1898 standard GDB array type except that the BITSIZEs of the array
1899 target types are set to the number of bits in each element, and the
1900 type length is set appropriately. */
1902 static struct value *
1903 decode_constrained_packed_array (struct value *arr)
1907 arr = ada_coerce_ref (arr);
1909 /* If our value is a pointer, then dererence it. Make sure that
1910 this operation does not cause the target type to be fixed, as
1911 this would indirectly cause this array to be decoded. The rest
1912 of the routine assumes that the array hasn't been decoded yet,
1913 so we use the basic "value_ind" routine to perform the dereferencing,
1914 as opposed to using "ada_value_ind". */
1915 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1916 arr = value_ind (arr);
1918 type = decode_constrained_packed_array_type (value_type (arr));
1921 error (_("can't unpack array"));
1925 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1926 && ada_is_modular_type (value_type (arr)))
1928 /* This is a (right-justified) modular type representing a packed
1929 array with no wrapper. In order to interpret the value through
1930 the (left-justified) packed array type we just built, we must
1931 first left-justify it. */
1932 int bit_size, bit_pos;
1935 mod = ada_modulus (value_type (arr)) - 1;
1942 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1943 arr = ada_value_primitive_packed_val (arr, NULL,
1944 bit_pos / HOST_CHAR_BIT,
1945 bit_pos % HOST_CHAR_BIT,
1950 return coerce_unspec_val_to_type (arr, type);
1954 /* The value of the element of packed array ARR at the ARITY indices
1955 given in IND. ARR must be a simple array. */
1957 static struct value *
1958 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1961 int bits, elt_off, bit_off;
1962 long elt_total_bit_offset;
1963 struct type *elt_type;
1967 elt_total_bit_offset = 0;
1968 elt_type = ada_check_typedef (value_type (arr));
1969 for (i = 0; i < arity; i += 1)
1971 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1972 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1974 (_("attempt to do packed indexing of something other than a packed array"));
1977 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1978 LONGEST lowerbound, upperbound;
1981 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1983 lim_warning (_("don't know bounds of array"));
1984 lowerbound = upperbound = 0;
1987 idx = pos_atr (ind[i]);
1988 if (idx < lowerbound || idx > upperbound)
1989 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1990 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1991 elt_total_bit_offset += (idx - lowerbound) * bits;
1992 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1995 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1996 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1998 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2003 /* Non-zero iff TYPE includes negative integer values. */
2006 has_negatives (struct type *type)
2008 switch (TYPE_CODE (type))
2013 return !TYPE_UNSIGNED (type);
2014 case TYPE_CODE_RANGE:
2015 return TYPE_LOW_BOUND (type) < 0;
2020 /* Create a new value of type TYPE from the contents of OBJ starting
2021 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2022 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2023 assigning through the result will set the field fetched from.
2024 VALADDR is ignored unless OBJ is NULL, in which case,
2025 VALADDR+OFFSET must address the start of storage containing the
2026 packed value. The value returned in this case is never an lval.
2027 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2030 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2031 long offset, int bit_offset, int bit_size,
2035 int src, /* Index into the source area */
2036 targ, /* Index into the target area */
2037 srcBitsLeft, /* Number of source bits left to move */
2038 nsrc, ntarg, /* Number of source and target bytes */
2039 unusedLS, /* Number of bits in next significant
2040 byte of source that are unused */
2041 accumSize; /* Number of meaningful bits in accum */
2042 unsigned char *bytes; /* First byte containing data to unpack */
2043 unsigned char *unpacked;
2044 unsigned long accum; /* Staging area for bits being transferred */
2046 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2047 /* Transmit bytes from least to most significant; delta is the direction
2048 the indices move. */
2049 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2051 type = ada_check_typedef (type);
2055 v = allocate_value (type);
2056 bytes = (unsigned char *) (valaddr + offset);
2058 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2061 value_address (obj) + offset);
2062 bytes = (unsigned char *) alloca (len);
2063 read_memory (value_address (v), bytes, len);
2067 v = allocate_value (type);
2068 bytes = (unsigned char *) value_contents (obj) + offset;
2074 set_value_component_location (v, obj);
2075 new_addr = value_address (obj) + offset;
2076 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2077 set_value_bitsize (v, bit_size);
2078 if (value_bitpos (v) >= HOST_CHAR_BIT)
2081 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2083 set_value_address (v, new_addr);
2086 set_value_bitsize (v, bit_size);
2087 unpacked = (unsigned char *) value_contents (v);
2089 srcBitsLeft = bit_size;
2091 ntarg = TYPE_LENGTH (type);
2095 memset (unpacked, 0, TYPE_LENGTH (type));
2098 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2101 if (has_negatives (type)
2102 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2106 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2109 switch (TYPE_CODE (type))
2111 case TYPE_CODE_ARRAY:
2112 case TYPE_CODE_UNION:
2113 case TYPE_CODE_STRUCT:
2114 /* Non-scalar values must be aligned at a byte boundary... */
2116 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2117 /* ... And are placed at the beginning (most-significant) bytes
2119 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2124 targ = TYPE_LENGTH (type) - 1;
2130 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2133 unusedLS = bit_offset;
2136 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2143 /* Mask for removing bits of the next source byte that are not
2144 part of the value. */
2145 unsigned int unusedMSMask =
2146 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2148 /* Sign-extend bits for this byte. */
2149 unsigned int signMask = sign & ~unusedMSMask;
2151 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2152 accumSize += HOST_CHAR_BIT - unusedLS;
2153 if (accumSize >= HOST_CHAR_BIT)
2155 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2156 accumSize -= HOST_CHAR_BIT;
2157 accum >>= HOST_CHAR_BIT;
2161 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2168 accum |= sign << accumSize;
2169 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2170 accumSize -= HOST_CHAR_BIT;
2171 accum >>= HOST_CHAR_BIT;
2179 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2180 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2183 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2184 int src_offset, int n, int bits_big_endian_p)
2186 unsigned int accum, mask;
2187 int accum_bits, chunk_size;
2189 target += targ_offset / HOST_CHAR_BIT;
2190 targ_offset %= HOST_CHAR_BIT;
2191 source += src_offset / HOST_CHAR_BIT;
2192 src_offset %= HOST_CHAR_BIT;
2193 if (bits_big_endian_p)
2195 accum = (unsigned char) *source;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2202 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2203 accum_bits += HOST_CHAR_BIT;
2205 chunk_size = HOST_CHAR_BIT - targ_offset;
2208 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2209 mask = ((1 << chunk_size) - 1) << unused_right;
2212 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2214 accum_bits -= chunk_size;
2221 accum = (unsigned char) *source >> src_offset;
2223 accum_bits = HOST_CHAR_BIT - src_offset;
2227 accum = accum + ((unsigned char) *source << accum_bits);
2228 accum_bits += HOST_CHAR_BIT;
2230 chunk_size = HOST_CHAR_BIT - targ_offset;
2233 mask = ((1 << chunk_size) - 1) << targ_offset;
2234 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2236 accum_bits -= chunk_size;
2237 accum >>= chunk_size;
2244 /* Store the contents of FROMVAL into the location of TOVAL.
2245 Return a new value with the location of TOVAL and contents of
2246 FROMVAL. Handles assignment into packed fields that have
2247 floating-point or non-scalar types. */
2249 static struct value *
2250 ada_value_assign (struct value *toval, struct value *fromval)
2252 struct type *type = value_type (toval);
2253 int bits = value_bitsize (toval);
2255 toval = ada_coerce_ref (toval);
2256 fromval = ada_coerce_ref (fromval);
2258 if (ada_is_direct_array_type (value_type (toval)))
2259 toval = ada_coerce_to_simple_array (toval);
2260 if (ada_is_direct_array_type (value_type (fromval)))
2261 fromval = ada_coerce_to_simple_array (fromval);
2263 if (!deprecated_value_modifiable (toval))
2264 error (_("Left operand of assignment is not a modifiable lvalue."));
2266 if (VALUE_LVAL (toval) == lval_memory
2268 && (TYPE_CODE (type) == TYPE_CODE_FLT
2269 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2271 int len = (value_bitpos (toval)
2272 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2274 char *buffer = (char *) alloca (len);
2276 CORE_ADDR to_addr = value_address (toval);
2278 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2279 fromval = value_cast (type, fromval);
2281 read_memory (to_addr, buffer, len);
2282 from_size = value_bitsize (fromval);
2284 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2285 if (gdbarch_bits_big_endian (get_type_arch (type)))
2286 move_bits (buffer, value_bitpos (toval),
2287 value_contents (fromval), from_size - bits, bits, 1);
2289 move_bits (buffer, value_bitpos (toval),
2290 value_contents (fromval), 0, bits, 0);
2291 write_memory (to_addr, buffer, len);
2292 observer_notify_memory_changed (to_addr, len, buffer);
2294 val = value_copy (toval);
2295 memcpy (value_contents_raw (val), value_contents (fromval),
2296 TYPE_LENGTH (type));
2297 deprecated_set_value_type (val, type);
2302 return value_assign (toval, fromval);
2306 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2307 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2308 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2309 * COMPONENT, and not the inferior's memory. The current contents
2310 * of COMPONENT are ignored. */
2312 value_assign_to_component (struct value *container, struct value *component,
2315 LONGEST offset_in_container =
2316 (LONGEST) (value_address (component) - value_address (container));
2317 int bit_offset_in_container =
2318 value_bitpos (component) - value_bitpos (container);
2321 val = value_cast (value_type (component), val);
2323 if (value_bitsize (component) == 0)
2324 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2326 bits = value_bitsize (component);
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2329 move_bits (value_contents_writeable (container) + offset_in_container,
2330 value_bitpos (container) + bit_offset_in_container,
2331 value_contents (val),
2332 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2335 move_bits (value_contents_writeable (container) + offset_in_container,
2336 value_bitpos (container) + bit_offset_in_container,
2337 value_contents (val), 0, bits, 0);
2340 /* The value of the element of array ARR at the ARITY indices given in IND.
2341 ARR may be either a simple array, GNAT array descriptor, or pointer
2345 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2349 struct type *elt_type;
2351 elt = ada_coerce_to_simple_array (arr);
2353 elt_type = ada_check_typedef (value_type (elt));
2354 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2355 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2356 return value_subscript_packed (elt, arity, ind);
2358 for (k = 0; k < arity; k += 1)
2360 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2361 error (_("too many subscripts (%d expected)"), k);
2362 elt = value_subscript (elt, pos_atr (ind[k]));
2367 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2368 value of the element of *ARR at the ARITY indices given in
2369 IND. Does not read the entire array into memory. */
2371 static struct value *
2372 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2377 for (k = 0; k < arity; k += 1)
2381 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2382 error (_("too many subscripts (%d expected)"), k);
2383 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2385 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2386 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2387 type = TYPE_TARGET_TYPE (type);
2390 return value_ind (arr);
2393 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2394 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2395 elements starting at index LOW. The lower bound of this array is LOW, as
2397 static struct value *
2398 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2401 CORE_ADDR base = value_as_address (array_ptr)
2402 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2403 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2407 struct type *slice_type =
2408 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2409 return value_at_lazy (slice_type, base);
2413 static struct value *
2414 ada_value_slice (struct value *array, int low, int high)
2416 struct type *type = value_type (array);
2417 struct type *index_type =
2418 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2419 struct type *slice_type =
2420 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2421 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2424 /* If type is a record type in the form of a standard GNAT array
2425 descriptor, returns the number of dimensions for type. If arr is a
2426 simple array, returns the number of "array of"s that prefix its
2427 type designation. Otherwise, returns 0. */
2430 ada_array_arity (struct type *type)
2437 type = desc_base_type (type);
2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2441 return desc_arity (desc_bounds_type (type));
2443 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2446 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2452 /* If TYPE is a record type in the form of a standard GNAT array
2453 descriptor or a simple array type, returns the element type for
2454 TYPE after indexing by NINDICES indices, or by all indices if
2455 NINDICES is -1. Otherwise, returns NULL. */
2458 ada_array_element_type (struct type *type, int nindices)
2460 type = desc_base_type (type);
2462 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2465 struct type *p_array_type;
2467 p_array_type = desc_data_target_type (type);
2469 k = ada_array_arity (type);
2473 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2474 if (nindices >= 0 && k > nindices)
2476 while (k > 0 && p_array_type != NULL)
2478 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2481 return p_array_type;
2483 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2485 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2487 type = TYPE_TARGET_TYPE (type);
2496 /* The type of nth index in arrays of given type (n numbering from 1).
2497 Does not examine memory. Throws an error if N is invalid or TYPE
2498 is not an array type. NAME is the name of the Ada attribute being
2499 evaluated ('range, 'first, 'last, or 'length); it is used in building
2500 the error message. */
2502 static struct type *
2503 ada_index_type (struct type *type, int n, const char *name)
2505 struct type *result_type;
2507 type = desc_base_type (type);
2509 if (n < 0 || n > ada_array_arity (type))
2510 error (_("invalid dimension number to '%s"), name);
2512 if (ada_is_simple_array_type (type))
2516 for (i = 1; i < n; i += 1)
2517 type = TYPE_TARGET_TYPE (type);
2518 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2519 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2520 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2521 perhaps stabsread.c would make more sense. */
2522 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2527 result_type = desc_index_type (desc_bounds_type (type), n);
2528 if (result_type == NULL)
2529 error (_("attempt to take bound of something that is not an array"));
2535 /* Given that arr is an array type, returns the lower bound of the
2536 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2537 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2538 array-descriptor type. It works for other arrays with bounds supplied
2539 by run-time quantities other than discriminants. */
2542 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2544 struct type *type, *elt_type, *index_type_desc, *index_type;
2548 gdb_assert (which == 0 || which == 1);
2550 if (ada_is_constrained_packed_array_type (arr_type))
2551 arr_type = decode_constrained_packed_array_type (arr_type);
2553 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2554 return (LONGEST) - which;
2556 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2557 type = TYPE_TARGET_TYPE (arr_type);
2562 for (i = n; i > 1; i--)
2563 elt_type = TYPE_TARGET_TYPE (type);
2565 index_type_desc = ada_find_parallel_type (type, "___XA");
2566 if (index_type_desc != NULL)
2567 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2568 NULL, TYPE_INDEX_TYPE (elt_type));
2570 index_type = TYPE_INDEX_TYPE (elt_type);
2572 switch (TYPE_CODE (index_type))
2574 case TYPE_CODE_RANGE:
2575 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2576 : TYPE_HIGH_BOUND (index_type);
2578 case TYPE_CODE_ENUM:
2579 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2580 : TYPE_FIELD_BITPOS (index_type,
2581 TYPE_NFIELDS (index_type) - 1);
2584 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2590 /* Given that arr is an array value, returns the lower bound of the
2591 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2592 WHICH is 1. This routine will also work for arrays with bounds
2593 supplied by run-time quantities other than discriminants. */
2596 ada_array_bound (struct value *arr, int n, int which)
2598 struct type *arr_type = value_type (arr);
2600 if (ada_is_constrained_packed_array_type (arr_type))
2601 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2602 else if (ada_is_simple_array_type (arr_type))
2603 return ada_array_bound_from_type (arr_type, n, which);
2605 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2608 /* Given that arr is an array value, returns the length of the
2609 nth index. This routine will also work for arrays with bounds
2610 supplied by run-time quantities other than discriminants.
2611 Does not work for arrays indexed by enumeration types with representation
2612 clauses at the moment. */
2615 ada_array_length (struct value *arr, int n)
2617 struct type *arr_type = ada_check_typedef (value_type (arr));
2619 if (ada_is_constrained_packed_array_type (arr_type))
2620 return ada_array_length (decode_constrained_packed_array (arr), n);
2622 if (ada_is_simple_array_type (arr_type))
2623 return (ada_array_bound_from_type (arr_type, n, 1)
2624 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2626 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2627 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2630 /* An empty array whose type is that of ARR_TYPE (an array type),
2631 with bounds LOW to LOW-1. */
2633 static struct value *
2634 empty_array (struct type *arr_type, int low)
2636 struct type *index_type =
2637 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2639 struct type *elt_type = ada_array_element_type (arr_type, 1);
2640 return allocate_value (create_array_type (NULL, elt_type, index_type));
2644 /* Name resolution */
2646 /* The "decoded" name for the user-definable Ada operator corresponding
2650 ada_decoded_op_name (enum exp_opcode op)
2654 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2656 if (ada_opname_table[i].op == op)
2657 return ada_opname_table[i].decoded;
2659 error (_("Could not find operator name for opcode"));
2663 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2664 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2665 undefined namespace) and converts operators that are
2666 user-defined into appropriate function calls. If CONTEXT_TYPE is
2667 non-null, it provides a preferred result type [at the moment, only
2668 type void has any effect---causing procedures to be preferred over
2669 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2670 return type is preferred. May change (expand) *EXP. */
2673 resolve (struct expression **expp, int void_context_p)
2675 struct type *context_type = NULL;
2679 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2681 resolve_subexp (expp, &pc, 1, context_type);
2684 /* Resolve the operator of the subexpression beginning at
2685 position *POS of *EXPP. "Resolving" consists of replacing
2686 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2687 with their resolutions, replacing built-in operators with
2688 function calls to user-defined operators, where appropriate, and,
2689 when DEPROCEDURE_P is non-zero, converting function-valued variables
2690 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2691 are as in ada_resolve, above. */
2693 static struct value *
2694 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2695 struct type *context_type)
2699 struct expression *exp; /* Convenience: == *expp. */
2700 enum exp_opcode op = (*expp)->elts[pc].opcode;
2701 struct value **argvec; /* Vector of operand types (alloca'ed). */
2702 int nargs; /* Number of operands. */
2709 /* Pass one: resolve operands, saving their types and updating *pos,
2714 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2715 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2720 resolve_subexp (expp, pos, 0, NULL);
2722 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2727 resolve_subexp (expp, pos, 0, NULL);
2732 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2735 case OP_ATR_MODULUS:
2745 case TERNOP_IN_RANGE:
2746 case BINOP_IN_BOUNDS:
2752 case OP_DISCRETE_RANGE:
2754 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2763 arg1 = resolve_subexp (expp, pos, 0, NULL);
2765 resolve_subexp (expp, pos, 1, NULL);
2767 resolve_subexp (expp, pos, 1, value_type (arg1));
2784 case BINOP_LOGICAL_AND:
2785 case BINOP_LOGICAL_OR:
2786 case BINOP_BITWISE_AND:
2787 case BINOP_BITWISE_IOR:
2788 case BINOP_BITWISE_XOR:
2791 case BINOP_NOTEQUAL:
2798 case BINOP_SUBSCRIPT:
2806 case UNOP_LOGICAL_NOT:
2822 case OP_INTERNALVAR:
2832 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2835 case STRUCTOP_STRUCT:
2836 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2849 error (_("Unexpected operator during name resolution"));
2852 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2853 for (i = 0; i < nargs; i += 1)
2854 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2858 /* Pass two: perform any resolution on principal operator. */
2865 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2867 struct ada_symbol_info *candidates;
2871 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2872 (exp->elts[pc + 2].symbol),
2873 exp->elts[pc + 1].block, VAR_DOMAIN,
2876 if (n_candidates > 1)
2878 /* Types tend to get re-introduced locally, so if there
2879 are any local symbols that are not types, first filter
2882 for (j = 0; j < n_candidates; j += 1)
2883 switch (SYMBOL_CLASS (candidates[j].sym))
2888 case LOC_REGPARM_ADDR:
2896 if (j < n_candidates)
2899 while (j < n_candidates)
2901 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2903 candidates[j] = candidates[n_candidates - 1];
2912 if (n_candidates == 0)
2913 error (_("No definition found for %s"),
2914 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2915 else if (n_candidates == 1)
2917 else if (deprocedure_p
2918 && !is_nonfunction (candidates, n_candidates))
2920 i = ada_resolve_function
2921 (candidates, n_candidates, NULL, 0,
2922 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2925 error (_("Could not find a match for %s"),
2926 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2930 printf_filtered (_("Multiple matches for %s\n"),
2931 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2932 user_select_syms (candidates, n_candidates, 1);
2936 exp->elts[pc + 1].block = candidates[i].block;
2937 exp->elts[pc + 2].symbol = candidates[i].sym;
2938 if (innermost_block == NULL
2939 || contained_in (candidates[i].block, innermost_block))
2940 innermost_block = candidates[i].block;
2944 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2947 replace_operator_with_call (expp, pc, 0, 0,
2948 exp->elts[pc + 2].symbol,
2949 exp->elts[pc + 1].block);
2956 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2957 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2959 struct ada_symbol_info *candidates;
2963 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2964 (exp->elts[pc + 5].symbol),
2965 exp->elts[pc + 4].block, VAR_DOMAIN,
2967 if (n_candidates == 1)
2971 i = ada_resolve_function
2972 (candidates, n_candidates,
2974 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2977 error (_("Could not find a match for %s"),
2978 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2981 exp->elts[pc + 4].block = candidates[i].block;
2982 exp->elts[pc + 5].symbol = candidates[i].sym;
2983 if (innermost_block == NULL
2984 || contained_in (candidates[i].block, innermost_block))
2985 innermost_block = candidates[i].block;
2996 case BINOP_BITWISE_AND:
2997 case BINOP_BITWISE_IOR:
2998 case BINOP_BITWISE_XOR:
3000 case BINOP_NOTEQUAL:
3008 case UNOP_LOGICAL_NOT:
3010 if (possible_user_operator_p (op, argvec))
3012 struct ada_symbol_info *candidates;
3016 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3017 (struct block *) NULL, VAR_DOMAIN,
3019 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3020 ada_decoded_op_name (op), NULL);
3024 replace_operator_with_call (expp, pc, nargs, 1,
3025 candidates[i].sym, candidates[i].block);
3036 return evaluate_subexp_type (exp, pos);
3039 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3040 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3042 /* The term "match" here is rather loose. The match is heuristic and
3046 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3048 ftype = ada_check_typedef (ftype);
3049 atype = ada_check_typedef (atype);
3051 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3052 ftype = TYPE_TARGET_TYPE (ftype);
3053 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3054 atype = TYPE_TARGET_TYPE (atype);
3056 switch (TYPE_CODE (ftype))
3059 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3061 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3062 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3063 TYPE_TARGET_TYPE (atype), 0);
3066 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3068 case TYPE_CODE_ENUM:
3069 case TYPE_CODE_RANGE:
3070 switch (TYPE_CODE (atype))
3073 case TYPE_CODE_ENUM:
3074 case TYPE_CODE_RANGE:
3080 case TYPE_CODE_ARRAY:
3081 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3082 || ada_is_array_descriptor_type (atype));
3084 case TYPE_CODE_STRUCT:
3085 if (ada_is_array_descriptor_type (ftype))
3086 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3087 || ada_is_array_descriptor_type (atype));
3089 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3090 && !ada_is_array_descriptor_type (atype));
3092 case TYPE_CODE_UNION:
3094 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3098 /* Return non-zero if the formals of FUNC "sufficiently match" the
3099 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3100 may also be an enumeral, in which case it is treated as a 0-
3101 argument function. */
3104 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3107 struct type *func_type = SYMBOL_TYPE (func);
3109 if (SYMBOL_CLASS (func) == LOC_CONST
3110 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3111 return (n_actuals == 0);
3112 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3115 if (TYPE_NFIELDS (func_type) != n_actuals)
3118 for (i = 0; i < n_actuals; i += 1)
3120 if (actuals[i] == NULL)
3124 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3125 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3127 if (!ada_type_match (ftype, atype, 1))
3134 /* False iff function type FUNC_TYPE definitely does not produce a value
3135 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3136 FUNC_TYPE is not a valid function type with a non-null return type
3137 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3140 return_match (struct type *func_type, struct type *context_type)
3142 struct type *return_type;
3144 if (func_type == NULL)
3147 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3148 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3150 return_type = base_type (func_type);
3151 if (return_type == NULL)
3154 context_type = base_type (context_type);
3156 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3157 return context_type == NULL || return_type == context_type;
3158 else if (context_type == NULL)
3159 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3161 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3165 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3166 function (if any) that matches the types of the NARGS arguments in
3167 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3168 that returns that type, then eliminate matches that don't. If
3169 CONTEXT_TYPE is void and there is at least one match that does not
3170 return void, eliminate all matches that do.
3172 Asks the user if there is more than one match remaining. Returns -1
3173 if there is no such symbol or none is selected. NAME is used
3174 solely for messages. May re-arrange and modify SYMS in
3175 the process; the index returned is for the modified vector. */
3178 ada_resolve_function (struct ada_symbol_info syms[],
3179 int nsyms, struct value **args, int nargs,
3180 const char *name, struct type *context_type)
3184 int m; /* Number of hits */
3187 /* In the first pass of the loop, we only accept functions matching
3188 context_type. If none are found, we add a second pass of the loop
3189 where every function is accepted. */
3190 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3192 for (k = 0; k < nsyms; k += 1)
3194 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3196 if (ada_args_match (syms[k].sym, args, nargs)
3197 && (fallback || return_match (type, context_type)))
3209 printf_filtered (_("Multiple matches for %s\n"), name);
3210 user_select_syms (syms, m, 1);
3216 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3217 in a listing of choices during disambiguation (see sort_choices, below).
3218 The idea is that overloadings of a subprogram name from the
3219 same package should sort in their source order. We settle for ordering
3220 such symbols by their trailing number (__N or $N). */
3223 encoded_ordered_before (char *N0, char *N1)
3227 else if (N0 == NULL)
3232 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3234 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3236 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3237 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3241 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3244 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3246 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3247 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3249 return (strcmp (N0, N1) < 0);
3253 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3257 sort_choices (struct ada_symbol_info syms[], int nsyms)
3260 for (i = 1; i < nsyms; i += 1)
3262 struct ada_symbol_info sym = syms[i];
3265 for (j = i - 1; j >= 0; j -= 1)
3267 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3268 SYMBOL_LINKAGE_NAME (sym.sym)))
3270 syms[j + 1] = syms[j];
3276 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3277 by asking the user (if necessary), returning the number selected,
3278 and setting the first elements of SYMS items. Error if no symbols
3281 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3282 to be re-integrated one of these days. */
3285 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3288 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3290 int first_choice = (max_results == 1) ? 1 : 2;
3291 const char *select_mode = multiple_symbols_select_mode ();
3293 if (max_results < 1)
3294 error (_("Request to select 0 symbols!"));
3298 if (select_mode == multiple_symbols_cancel)
3300 canceled because the command is ambiguous\n\
3301 See set/show multiple-symbol."));
3303 /* If select_mode is "all", then return all possible symbols.
3304 Only do that if more than one symbol can be selected, of course.
3305 Otherwise, display the menu as usual. */
3306 if (select_mode == multiple_symbols_all && max_results > 1)
3309 printf_unfiltered (_("[0] cancel\n"));
3310 if (max_results > 1)
3311 printf_unfiltered (_("[1] all\n"));
3313 sort_choices (syms, nsyms);
3315 for (i = 0; i < nsyms; i += 1)
3317 if (syms[i].sym == NULL)
3320 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3322 struct symtab_and_line sal =
3323 find_function_start_sal (syms[i].sym, 1);
3324 if (sal.symtab == NULL)
3325 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3330 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3331 SYMBOL_PRINT_NAME (syms[i].sym),
3332 sal.symtab->filename, sal.line);
3338 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3339 && SYMBOL_TYPE (syms[i].sym) != NULL
3340 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3341 struct symtab *symtab = syms[i].sym->symtab;
3343 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3344 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3346 SYMBOL_PRINT_NAME (syms[i].sym),
3347 symtab->filename, SYMBOL_LINE (syms[i].sym));
3348 else if (is_enumeral
3349 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3351 printf_unfiltered (("[%d] "), i + first_choice);
3352 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3354 printf_unfiltered (_("'(%s) (enumeral)\n"),
3355 SYMBOL_PRINT_NAME (syms[i].sym));
3357 else if (symtab != NULL)
3358 printf_unfiltered (is_enumeral
3359 ? _("[%d] %s in %s (enumeral)\n")
3360 : _("[%d] %s at %s:?\n"),
3362 SYMBOL_PRINT_NAME (syms[i].sym),
3365 printf_unfiltered (is_enumeral
3366 ? _("[%d] %s (enumeral)\n")
3367 : _("[%d] %s at ?\n"),
3369 SYMBOL_PRINT_NAME (syms[i].sym));
3373 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3376 for (i = 0; i < n_chosen; i += 1)
3377 syms[i] = syms[chosen[i]];
3382 /* Read and validate a set of numeric choices from the user in the
3383 range 0 .. N_CHOICES-1. Place the results in increasing
3384 order in CHOICES[0 .. N-1], and return N.
3386 The user types choices as a sequence of numbers on one line
3387 separated by blanks, encoding them as follows:
3389 + A choice of 0 means to cancel the selection, throwing an error.
3390 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3391 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3393 The user is not allowed to choose more than MAX_RESULTS values.
3395 ANNOTATION_SUFFIX, if present, is used to annotate the input
3396 prompts (for use with the -f switch). */
3399 get_selections (int *choices, int n_choices, int max_results,
3400 int is_all_choice, char *annotation_suffix)
3405 int first_choice = is_all_choice ? 2 : 1;
3407 prompt = getenv ("PS2");
3411 args = command_line_input (prompt, 0, annotation_suffix);
3414 error_no_arg (_("one or more choice numbers"));
3418 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3419 order, as given in args. Choices are validated. */
3425 while (isspace (*args))
3427 if (*args == '\0' && n_chosen == 0)
3428 error_no_arg (_("one or more choice numbers"));
3429 else if (*args == '\0')
3432 choice = strtol (args, &args2, 10);
3433 if (args == args2 || choice < 0
3434 || choice > n_choices + first_choice - 1)
3435 error (_("Argument must be choice number"));
3439 error (_("cancelled"));
3441 if (choice < first_choice)
3443 n_chosen = n_choices;
3444 for (j = 0; j < n_choices; j += 1)
3448 choice -= first_choice;
3450 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3454 if (j < 0 || choice != choices[j])
3457 for (k = n_chosen - 1; k > j; k -= 1)
3458 choices[k + 1] = choices[k];
3459 choices[j + 1] = choice;
3464 if (n_chosen > max_results)
3465 error (_("Select no more than %d of the above"), max_results);
3470 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3471 on the function identified by SYM and BLOCK, and taking NARGS
3472 arguments. Update *EXPP as needed to hold more space. */
3475 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3476 int oplen, struct symbol *sym,
3477 struct block *block)
3479 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3480 symbol, -oplen for operator being replaced). */
3481 struct expression *newexp = (struct expression *)
3482 xmalloc (sizeof (struct expression)
3483 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3484 struct expression *exp = *expp;
3486 newexp->nelts = exp->nelts + 7 - oplen;
3487 newexp->language_defn = exp->language_defn;
3488 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3489 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3490 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3492 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3493 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3495 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3496 newexp->elts[pc + 4].block = block;
3497 newexp->elts[pc + 5].symbol = sym;
3503 /* Type-class predicates */
3505 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3509 numeric_type_p (struct type *type)
3515 switch (TYPE_CODE (type))
3520 case TYPE_CODE_RANGE:
3521 return (type == TYPE_TARGET_TYPE (type)
3522 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3529 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3532 integer_type_p (struct type *type)
3538 switch (TYPE_CODE (type))
3542 case TYPE_CODE_RANGE:
3543 return (type == TYPE_TARGET_TYPE (type)
3544 || integer_type_p (TYPE_TARGET_TYPE (type)));
3551 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3554 scalar_type_p (struct type *type)
3560 switch (TYPE_CODE (type))
3563 case TYPE_CODE_RANGE:
3564 case TYPE_CODE_ENUM:
3573 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3576 discrete_type_p (struct type *type)
3582 switch (TYPE_CODE (type))
3585 case TYPE_CODE_RANGE:
3586 case TYPE_CODE_ENUM:
3587 case TYPE_CODE_BOOL:
3595 /* Returns non-zero if OP with operands in the vector ARGS could be
3596 a user-defined function. Errs on the side of pre-defined operators
3597 (i.e., result 0). */
3600 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3602 struct type *type0 =
3603 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3604 struct type *type1 =
3605 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3619 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3623 case BINOP_BITWISE_AND:
3624 case BINOP_BITWISE_IOR:
3625 case BINOP_BITWISE_XOR:
3626 return (!(integer_type_p (type0) && integer_type_p (type1)));
3629 case BINOP_NOTEQUAL:
3634 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3637 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3640 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3644 case UNOP_LOGICAL_NOT:
3646 return (!numeric_type_p (type0));
3655 1. In the following, we assume that a renaming type's name may
3656 have an ___XD suffix. It would be nice if this went away at some
3658 2. We handle both the (old) purely type-based representation of
3659 renamings and the (new) variable-based encoding. At some point,
3660 it is devoutly to be hoped that the former goes away
3661 (FIXME: hilfinger-2007-07-09).
3662 3. Subprogram renamings are not implemented, although the XRS
3663 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3665 /* If SYM encodes a renaming,
3667 <renaming> renames <renamed entity>,
3669 sets *LEN to the length of the renamed entity's name,
3670 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3671 the string describing the subcomponent selected from the renamed
3672 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3673 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3674 are undefined). Otherwise, returns a value indicating the category
3675 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3676 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3677 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3678 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3679 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3680 may be NULL, in which case they are not assigned.
3682 [Currently, however, GCC does not generate subprogram renamings.] */
3684 enum ada_renaming_category
3685 ada_parse_renaming (struct symbol *sym,
3686 const char **renamed_entity, int *len,
3687 const char **renaming_expr)
3689 enum ada_renaming_category kind;
3694 return ADA_NOT_RENAMING;
3695 switch (SYMBOL_CLASS (sym))
3698 return ADA_NOT_RENAMING;
3700 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3701 renamed_entity, len, renaming_expr);
3705 case LOC_OPTIMIZED_OUT:
3706 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3708 return ADA_NOT_RENAMING;
3712 kind = ADA_OBJECT_RENAMING;
3716 kind = ADA_EXCEPTION_RENAMING;
3720 kind = ADA_PACKAGE_RENAMING;
3724 kind = ADA_SUBPROGRAM_RENAMING;
3728 return ADA_NOT_RENAMING;
3732 if (renamed_entity != NULL)
3733 *renamed_entity = info;
3734 suffix = strstr (info, "___XE");
3735 if (suffix == NULL || suffix == info)
3736 return ADA_NOT_RENAMING;
3738 *len = strlen (info) - strlen (suffix);
3740 if (renaming_expr != NULL)
3741 *renaming_expr = suffix;
3745 /* Assuming TYPE encodes a renaming according to the old encoding in
3746 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3747 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3748 ADA_NOT_RENAMING otherwise. */
3749 static enum ada_renaming_category
3750 parse_old_style_renaming (struct type *type,
3751 const char **renamed_entity, int *len,
3752 const char **renaming_expr)
3754 enum ada_renaming_category kind;
3759 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3760 || TYPE_NFIELDS (type) != 1)
3761 return ADA_NOT_RENAMING;
3763 name = type_name_no_tag (type);
3765 return ADA_NOT_RENAMING;
3767 name = strstr (name, "___XR");
3769 return ADA_NOT_RENAMING;
3774 kind = ADA_OBJECT_RENAMING;
3777 kind = ADA_EXCEPTION_RENAMING;
3780 kind = ADA_PACKAGE_RENAMING;
3783 kind = ADA_SUBPROGRAM_RENAMING;
3786 return ADA_NOT_RENAMING;
3789 info = TYPE_FIELD_NAME (type, 0);
3791 return ADA_NOT_RENAMING;
3792 if (renamed_entity != NULL)
3793 *renamed_entity = info;
3794 suffix = strstr (info, "___XE");
3795 if (renaming_expr != NULL)
3796 *renaming_expr = suffix + 5;
3797 if (suffix == NULL || suffix == info)
3798 return ADA_NOT_RENAMING;
3800 *len = suffix - info;
3806 /* Evaluation: Function Calls */
3808 /* Return an lvalue containing the value VAL. This is the identity on
3809 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3810 on the stack, using and updating *SP as the stack pointer, and
3811 returning an lvalue whose value_address points to the copy. */
3813 static struct value *
3814 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3816 if (! VALUE_LVAL (val))
3818 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3820 /* The following is taken from the structure-return code in
3821 call_function_by_hand. FIXME: Therefore, some refactoring seems
3823 if (gdbarch_inner_than (gdbarch, 1, 2))
3825 /* Stack grows downward. Align SP and value_address (val) after
3826 reserving sufficient space. */
3828 if (gdbarch_frame_align_p (gdbarch))
3829 *sp = gdbarch_frame_align (gdbarch, *sp);
3830 set_value_address (val, *sp);
3834 /* Stack grows upward. Align the frame, allocate space, and
3835 then again, re-align the frame. */
3836 if (gdbarch_frame_align_p (gdbarch))
3837 *sp = gdbarch_frame_align (gdbarch, *sp);
3838 set_value_address (val, *sp);
3840 if (gdbarch_frame_align_p (gdbarch))
3841 *sp = gdbarch_frame_align (gdbarch, *sp);
3843 VALUE_LVAL (val) = lval_memory;
3845 write_memory (value_address (val), value_contents_raw (val), len);
3851 /* Return the value ACTUAL, converted to be an appropriate value for a
3852 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3853 allocating any necessary descriptors (fat pointers), or copies of
3854 values not residing in memory, updating it as needed. */
3857 ada_convert_actual (struct value *actual, struct type *formal_type0,
3858 struct gdbarch *gdbarch, CORE_ADDR *sp)
3860 struct type *actual_type = ada_check_typedef (value_type (actual));
3861 struct type *formal_type = ada_check_typedef (formal_type0);
3862 struct type *formal_target =
3863 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3864 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3865 struct type *actual_target =
3866 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3867 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3869 if (ada_is_array_descriptor_type (formal_target)
3870 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3871 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3872 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3873 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3875 struct value *result;
3876 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3877 && ada_is_array_descriptor_type (actual_target))
3878 result = desc_data (actual);
3879 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3881 if (VALUE_LVAL (actual) != lval_memory)
3884 actual_type = ada_check_typedef (value_type (actual));
3885 val = allocate_value (actual_type);
3886 memcpy ((char *) value_contents_raw (val),
3887 (char *) value_contents (actual),
3888 TYPE_LENGTH (actual_type));
3889 actual = ensure_lval (val, gdbarch, sp);
3891 result = value_addr (actual);
3895 return value_cast_pointers (formal_type, result);
3897 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3898 return ada_value_ind (actual);
3904 /* Push a descriptor of type TYPE for array value ARR on the stack at
3905 *SP, updating *SP to reflect the new descriptor. Return either
3906 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3907 to-descriptor type rather than a descriptor type), a struct value *
3908 representing a pointer to this descriptor. */
3910 static struct value *
3911 make_array_descriptor (struct type *type, struct value *arr,
3912 struct gdbarch *gdbarch, CORE_ADDR *sp)
3914 struct type *bounds_type = desc_bounds_type (type);
3915 struct type *desc_type = desc_base_type (type);
3916 struct value *descriptor = allocate_value (desc_type);
3917 struct value *bounds = allocate_value (bounds_type);
3920 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3922 modify_general_field (value_type (bounds),
3923 value_contents_writeable (bounds),
3924 ada_array_bound (arr, i, 0),
3925 desc_bound_bitpos (bounds_type, i, 0),
3926 desc_bound_bitsize (bounds_type, i, 0));
3927 modify_general_field (value_type (bounds),
3928 value_contents_writeable (bounds),
3929 ada_array_bound (arr, i, 1),
3930 desc_bound_bitpos (bounds_type, i, 1),
3931 desc_bound_bitsize (bounds_type, i, 1));
3934 bounds = ensure_lval (bounds, gdbarch, sp);
3936 modify_general_field (value_type (descriptor),
3937 value_contents_writeable (descriptor),
3938 value_address (ensure_lval (arr, gdbarch, sp)),
3939 fat_pntr_data_bitpos (desc_type),
3940 fat_pntr_data_bitsize (desc_type));
3942 modify_general_field (value_type (descriptor),
3943 value_contents_writeable (descriptor),
3944 value_address (bounds),
3945 fat_pntr_bounds_bitpos (desc_type),
3946 fat_pntr_bounds_bitsize (desc_type));
3948 descriptor = ensure_lval (descriptor, gdbarch, sp);
3950 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3951 return value_addr (descriptor);
3956 /* Dummy definitions for an experimental caching module that is not
3957 * used in the public sources. */
3960 lookup_cached_symbol (const char *name, domain_enum namespace,
3961 struct symbol **sym, struct block **block)
3967 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3968 struct block *block)
3974 /* Return the result of a standard (literal, C-like) lookup of NAME in
3975 given DOMAIN, visible from lexical block BLOCK. */
3977 static struct symbol *
3978 standard_lookup (const char *name, const struct block *block,
3983 if (lookup_cached_symbol (name, domain, &sym, NULL))
3985 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3986 cache_symbol (name, domain, sym, block_found);
3991 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3992 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3993 since they contend in overloading in the same way. */
3995 is_nonfunction (struct ada_symbol_info syms[], int n)
3999 for (i = 0; i < n; i += 1)
4000 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4001 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4002 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4008 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4009 struct types. Otherwise, they may not. */
4012 equiv_types (struct type *type0, struct type *type1)
4016 if (type0 == NULL || type1 == NULL
4017 || TYPE_CODE (type0) != TYPE_CODE (type1))
4019 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4020 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4021 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4022 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4028 /* True iff SYM0 represents the same entity as SYM1, or one that is
4029 no more defined than that of SYM1. */
4032 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4036 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4037 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4040 switch (SYMBOL_CLASS (sym0))
4046 struct type *type0 = SYMBOL_TYPE (sym0);
4047 struct type *type1 = SYMBOL_TYPE (sym1);
4048 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4049 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4050 int len0 = strlen (name0);
4052 TYPE_CODE (type0) == TYPE_CODE (type1)
4053 && (equiv_types (type0, type1)
4054 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4055 && strncmp (name1 + len0, "___XV", 5) == 0));
4058 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4059 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4065 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4066 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4069 add_defn_to_vec (struct obstack *obstackp,
4071 struct block *block)
4075 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4077 /* Do not try to complete stub types, as the debugger is probably
4078 already scanning all symbols matching a certain name at the
4079 time when this function is called. Trying to replace the stub
4080 type by its associated full type will cause us to restart a scan
4081 which may lead to an infinite recursion. Instead, the client
4082 collecting the matching symbols will end up collecting several
4083 matches, with at least one of them complete. It can then filter
4084 out the stub ones if needed. */
4086 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4088 if (lesseq_defined_than (sym, prevDefns[i].sym))
4090 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4092 prevDefns[i].sym = sym;
4093 prevDefns[i].block = block;
4099 struct ada_symbol_info info;
4103 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4107 /* Number of ada_symbol_info structures currently collected in
4108 current vector in *OBSTACKP. */
4111 num_defns_collected (struct obstack *obstackp)
4113 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4116 /* Vector of ada_symbol_info structures currently collected in current
4117 vector in *OBSTACKP. If FINISH, close off the vector and return
4118 its final address. */
4120 static struct ada_symbol_info *
4121 defns_collected (struct obstack *obstackp, int finish)
4124 return obstack_finish (obstackp);
4126 return (struct ada_symbol_info *) obstack_base (obstackp);
4129 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4130 Check the global symbols if GLOBAL, the static symbols if not.
4131 Do wild-card match if WILD. */
4133 static struct partial_symbol *
4134 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4135 int global, domain_enum namespace, int wild)
4137 struct partial_symbol **start;
4138 int name_len = strlen (name);
4139 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4148 pst->objfile->global_psymbols.list + pst->globals_offset :
4149 pst->objfile->static_psymbols.list + pst->statics_offset);
4153 for (i = 0; i < length; i += 1)
4155 struct partial_symbol *psym = start[i];
4157 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4158 SYMBOL_DOMAIN (psym), namespace)
4159 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4173 int M = (U + i) >> 1;
4174 struct partial_symbol *psym = start[M];
4175 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4177 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4179 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4190 struct partial_symbol *psym = start[i];
4192 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4193 SYMBOL_DOMAIN (psym), namespace))
4195 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4203 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4217 int M = (U + i) >> 1;
4218 struct partial_symbol *psym = start[M];
4219 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4221 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4223 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4234 struct partial_symbol *psym = start[i];
4236 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4237 SYMBOL_DOMAIN (psym), namespace))
4241 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4244 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4246 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4256 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4266 /* Return a minimal symbol matching NAME according to Ada decoding
4267 rules. Returns NULL if there is no such minimal symbol. Names
4268 prefixed with "standard__" are handled specially: "standard__" is
4269 first stripped off, and only static and global symbols are searched. */
4271 struct minimal_symbol *
4272 ada_lookup_simple_minsym (const char *name)
4274 struct objfile *objfile;
4275 struct minimal_symbol *msymbol;
4278 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4280 name += sizeof ("standard__") - 1;
4284 wild_match = (strstr (name, "__") == NULL);
4286 ALL_MSYMBOLS (objfile, msymbol)
4288 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4289 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4296 /* For all subprograms that statically enclose the subprogram of the
4297 selected frame, add symbols matching identifier NAME in DOMAIN
4298 and their blocks to the list of data in OBSTACKP, as for
4299 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4303 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4304 const char *name, domain_enum namespace,
4309 /* True if TYPE is definitely an artificial type supplied to a symbol
4310 for which no debugging information was given in the symbol file. */
4313 is_nondebugging_type (struct type *type)
4315 char *name = ada_type_name (type);
4316 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4319 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4320 duplicate other symbols in the list (The only case I know of where
4321 this happens is when object files containing stabs-in-ecoff are
4322 linked with files containing ordinary ecoff debugging symbols (or no
4323 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4324 Returns the number of items in the modified list. */
4327 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4336 /* If two symbols have the same name and one of them is a stub type,
4337 the get rid of the stub. */
4339 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4340 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4342 for (j = 0; j < nsyms; j++)
4345 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4346 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4347 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4348 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4353 /* Two symbols with the same name, same class and same address
4354 should be identical. */
4356 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4357 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4358 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4360 for (j = 0; j < nsyms; j += 1)
4363 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4364 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4365 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4366 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4367 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4368 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4375 for (j = i + 1; j < nsyms; j += 1)
4376 syms[j - 1] = syms[j];
4385 /* Given a type that corresponds to a renaming entity, use the type name
4386 to extract the scope (package name or function name, fully qualified,
4387 and following the GNAT encoding convention) where this renaming has been
4388 defined. The string returned needs to be deallocated after use. */
4391 xget_renaming_scope (struct type *renaming_type)
4393 /* The renaming types adhere to the following convention:
4394 <scope>__<rename>___<XR extension>.
4395 So, to extract the scope, we search for the "___XR" extension,
4396 and then backtrack until we find the first "__". */
4398 const char *name = type_name_no_tag (renaming_type);
4399 char *suffix = strstr (name, "___XR");
4404 /* Now, backtrack a bit until we find the first "__". Start looking
4405 at suffix - 3, as the <rename> part is at least one character long. */
4407 for (last = suffix - 3; last > name; last--)
4408 if (last[0] == '_' && last[1] == '_')
4411 /* Make a copy of scope and return it. */
4413 scope_len = last - name;
4414 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4416 strncpy (scope, name, scope_len);
4417 scope[scope_len] = '\0';
4422 /* Return nonzero if NAME corresponds to a package name. */
4425 is_package_name (const char *name)
4427 /* Here, We take advantage of the fact that no symbols are generated
4428 for packages, while symbols are generated for each function.
4429 So the condition for NAME represent a package becomes equivalent
4430 to NAME not existing in our list of symbols. There is only one
4431 small complication with library-level functions (see below). */
4435 /* If it is a function that has not been defined at library level,
4436 then we should be able to look it up in the symbols. */
4437 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4440 /* Library-level function names start with "_ada_". See if function
4441 "_ada_" followed by NAME can be found. */
4443 /* Do a quick check that NAME does not contain "__", since library-level
4444 functions names cannot contain "__" in them. */
4445 if (strstr (name, "__") != NULL)
4448 fun_name = xstrprintf ("_ada_%s", name);
4450 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4453 /* Return nonzero if SYM corresponds to a renaming entity that is
4454 not visible from FUNCTION_NAME. */
4457 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4461 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4464 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4466 make_cleanup (xfree, scope);
4468 /* If the rename has been defined in a package, then it is visible. */
4469 if (is_package_name (scope))
4472 /* Check that the rename is in the current function scope by checking
4473 that its name starts with SCOPE. */
4475 /* If the function name starts with "_ada_", it means that it is
4476 a library-level function. Strip this prefix before doing the
4477 comparison, as the encoding for the renaming does not contain
4479 if (strncmp (function_name, "_ada_", 5) == 0)
4482 return (strncmp (function_name, scope, strlen (scope)) != 0);
4485 /* Remove entries from SYMS that corresponds to a renaming entity that
4486 is not visible from the function associated with CURRENT_BLOCK or
4487 that is superfluous due to the presence of more specific renaming
4488 information. Places surviving symbols in the initial entries of
4489 SYMS and returns the number of surviving symbols.
4492 First, in cases where an object renaming is implemented as a
4493 reference variable, GNAT may produce both the actual reference
4494 variable and the renaming encoding. In this case, we discard the
4497 Second, GNAT emits a type following a specified encoding for each renaming
4498 entity. Unfortunately, STABS currently does not support the definition
4499 of types that are local to a given lexical block, so all renamings types
4500 are emitted at library level. As a consequence, if an application
4501 contains two renaming entities using the same name, and a user tries to
4502 print the value of one of these entities, the result of the ada symbol
4503 lookup will also contain the wrong renaming type.
4505 This function partially covers for this limitation by attempting to
4506 remove from the SYMS list renaming symbols that should be visible
4507 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4508 method with the current information available. The implementation
4509 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4511 - When the user tries to print a rename in a function while there
4512 is another rename entity defined in a package: Normally, the
4513 rename in the function has precedence over the rename in the
4514 package, so the latter should be removed from the list. This is
4515 currently not the case.
4517 - This function will incorrectly remove valid renames if
4518 the CURRENT_BLOCK corresponds to a function which symbol name
4519 has been changed by an "Export" pragma. As a consequence,
4520 the user will be unable to print such rename entities. */
4523 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4524 int nsyms, const struct block *current_block)
4526 struct symbol *current_function;
4527 char *current_function_name;
4529 int is_new_style_renaming;
4531 /* If there is both a renaming foo___XR... encoded as a variable and
4532 a simple variable foo in the same block, discard the latter.
4533 First, zero out such symbols, then compress. */
4534 is_new_style_renaming = 0;
4535 for (i = 0; i < nsyms; i += 1)
4537 struct symbol *sym = syms[i].sym;
4538 struct block *block = syms[i].block;
4542 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4544 name = SYMBOL_LINKAGE_NAME (sym);
4545 suffix = strstr (name, "___XR");
4549 int name_len = suffix - name;
4551 is_new_style_renaming = 1;
4552 for (j = 0; j < nsyms; j += 1)
4553 if (i != j && syms[j].sym != NULL
4554 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4556 && block == syms[j].block)
4560 if (is_new_style_renaming)
4564 for (j = k = 0; j < nsyms; j += 1)
4565 if (syms[j].sym != NULL)
4573 /* Extract the function name associated to CURRENT_BLOCK.
4574 Abort if unable to do so. */
4576 if (current_block == NULL)
4579 current_function = block_linkage_function (current_block);
4580 if (current_function == NULL)
4583 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4584 if (current_function_name == NULL)
4587 /* Check each of the symbols, and remove it from the list if it is
4588 a type corresponding to a renaming that is out of the scope of
4589 the current block. */
4594 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4595 == ADA_OBJECT_RENAMING
4596 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4599 for (j = i + 1; j < nsyms; j += 1)
4600 syms[j - 1] = syms[j];
4610 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4611 whose name and domain match NAME and DOMAIN respectively.
4612 If no match was found, then extend the search to "enclosing"
4613 routines (in other words, if we're inside a nested function,
4614 search the symbols defined inside the enclosing functions).
4616 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4619 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4620 struct block *block, domain_enum domain,
4623 int block_depth = 0;
4625 while (block != NULL)
4628 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4630 /* If we found a non-function match, assume that's the one. */
4631 if (is_nonfunction (defns_collected (obstackp, 0),
4632 num_defns_collected (obstackp)))
4635 block = BLOCK_SUPERBLOCK (block);
4638 /* If no luck so far, try to find NAME as a local symbol in some lexically
4639 enclosing subprogram. */
4640 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4641 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4644 /* Add to OBSTACKP all non-local symbols whose name and domain match
4645 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4646 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4649 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4650 domain_enum domain, int global,
4653 struct objfile *objfile;
4654 struct partial_symtab *ps;
4656 ALL_PSYMTABS (objfile, ps)
4660 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4662 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4663 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4665 if (s == NULL || !s->primary)
4667 ada_add_block_symbols (obstackp,
4668 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4669 name, domain, objfile, wild_match);
4674 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4675 scope and in global scopes, returning the number of matches. Sets
4676 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4677 indicating the symbols found and the blocks and symbol tables (if
4678 any) in which they were found. This vector are transient---good only to
4679 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4680 symbol match within the nest of blocks whose innermost member is BLOCK0,
4681 is the one match returned (no other matches in that or
4682 enclosing blocks is returned). If there are any matches in or
4683 surrounding BLOCK0, then these alone are returned. Otherwise, the
4684 search extends to global and file-scope (static) symbol tables.
4685 Names prefixed with "standard__" are handled specially: "standard__"
4686 is first stripped off, and only static and global symbols are searched. */
4689 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4690 domain_enum namespace,
4691 struct ada_symbol_info **results)
4694 struct block *block;
4700 obstack_free (&symbol_list_obstack, NULL);
4701 obstack_init (&symbol_list_obstack);
4705 /* Search specified block and its superiors. */
4707 wild_match = (strstr (name0, "__") == NULL);
4709 block = (struct block *) block0; /* FIXME: No cast ought to be
4710 needed, but adding const will
4711 have a cascade effect. */
4713 /* Special case: If the user specifies a symbol name inside package
4714 Standard, do a non-wild matching of the symbol name without
4715 the "standard__" prefix. This was primarily introduced in order
4716 to allow the user to specifically access the standard exceptions
4717 using, for instance, Standard.Constraint_Error when Constraint_Error
4718 is ambiguous (due to the user defining its own Constraint_Error
4719 entity inside its program). */
4720 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4724 name = name0 + sizeof ("standard__") - 1;
4727 /* Check the non-global symbols. If we have ANY match, then we're done. */
4729 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4731 if (num_defns_collected (&symbol_list_obstack) > 0)
4734 /* No non-global symbols found. Check our cache to see if we have
4735 already performed this search before. If we have, then return
4739 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4742 add_defn_to_vec (&symbol_list_obstack, sym, block);
4746 /* Search symbols from all global blocks. */
4748 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4751 /* Now add symbols from all per-file blocks if we've gotten no hits
4752 (not strictly correct, but perhaps better than an error). */
4754 if (num_defns_collected (&symbol_list_obstack) == 0)
4755 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4759 ndefns = num_defns_collected (&symbol_list_obstack);
4760 *results = defns_collected (&symbol_list_obstack, 1);
4762 ndefns = remove_extra_symbols (*results, ndefns);
4765 cache_symbol (name0, namespace, NULL, NULL);
4767 if (ndefns == 1 && cacheIfUnique)
4768 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4770 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4776 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4777 domain_enum namespace, struct block **block_found)
4779 struct ada_symbol_info *candidates;
4782 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4784 if (n_candidates == 0)
4787 if (block_found != NULL)
4788 *block_found = candidates[0].block;
4790 return fixup_symbol_section (candidates[0].sym, NULL);
4793 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4794 scope and in global scopes, or NULL if none. NAME is folded and
4795 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4796 choosing the first symbol if there are multiple choices.
4797 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4798 table in which the symbol was found (in both cases, these
4799 assignments occur only if the pointers are non-null). */
4801 ada_lookup_symbol (const char *name, const struct block *block0,
4802 domain_enum namespace, int *is_a_field_of_this)
4804 if (is_a_field_of_this != NULL)
4805 *is_a_field_of_this = 0;
4808 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4809 block0, namespace, NULL);
4812 static struct symbol *
4813 ada_lookup_symbol_nonlocal (const char *name,
4814 const char *linkage_name,
4815 const struct block *block,
4816 const domain_enum domain)
4818 if (linkage_name == NULL)
4819 linkage_name = name;
4820 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4825 /* True iff STR is a possible encoded suffix of a normal Ada name
4826 that is to be ignored for matching purposes. Suffixes of parallel
4827 names (e.g., XVE) are not included here. Currently, the possible suffixes
4828 are given by any of the regular expressions:
4830 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4831 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4832 _E[0-9]+[bs]$ [protected object entry suffixes]
4833 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4835 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4836 match is performed. This sequence is used to differentiate homonyms,
4837 is an optional part of a valid name suffix. */
4840 is_name_suffix (const char *str)
4843 const char *matching;
4844 const int len = strlen (str);
4846 /* Skip optional leading __[0-9]+. */
4848 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4851 while (isdigit (str[0]))
4857 if (str[0] == '.' || str[0] == '$')
4860 while (isdigit (matching[0]))
4862 if (matching[0] == '\0')
4868 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4871 while (isdigit (matching[0]))
4873 if (matching[0] == '\0')
4878 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4879 with a N at the end. Unfortunately, the compiler uses the same
4880 convention for other internal types it creates. So treating
4881 all entity names that end with an "N" as a name suffix causes
4882 some regressions. For instance, consider the case of an enumerated
4883 type. To support the 'Image attribute, it creates an array whose
4885 Having a single character like this as a suffix carrying some
4886 information is a bit risky. Perhaps we should change the encoding
4887 to be something like "_N" instead. In the meantime, do not do
4888 the following check. */
4889 /* Protected Object Subprograms */
4890 if (len == 1 && str [0] == 'N')
4895 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4898 while (isdigit (matching[0]))
4900 if ((matching[0] == 'b' || matching[0] == 's')
4901 && matching [1] == '\0')
4905 /* ??? We should not modify STR directly, as we are doing below. This
4906 is fine in this case, but may become problematic later if we find
4907 that this alternative did not work, and want to try matching
4908 another one from the begining of STR. Since we modified it, we
4909 won't be able to find the begining of the string anymore! */
4913 while (str[0] != '_' && str[0] != '\0')
4915 if (str[0] != 'n' && str[0] != 'b')
4921 if (str[0] == '\000')
4926 if (str[1] != '_' || str[2] == '\000')
4930 if (strcmp (str + 3, "JM") == 0)
4932 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4933 the LJM suffix in favor of the JM one. But we will
4934 still accept LJM as a valid suffix for a reasonable
4935 amount of time, just to allow ourselves to debug programs
4936 compiled using an older version of GNAT. */
4937 if (strcmp (str + 3, "LJM") == 0)
4941 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4942 || str[4] == 'U' || str[4] == 'P')
4944 if (str[4] == 'R' && str[5] != 'T')
4948 if (!isdigit (str[2]))
4950 for (k = 3; str[k] != '\0'; k += 1)
4951 if (!isdigit (str[k]) && str[k] != '_')
4955 if (str[0] == '$' && isdigit (str[1]))
4957 for (k = 2; str[k] != '\0'; k += 1)
4958 if (!isdigit (str[k]) && str[k] != '_')
4965 /* Return non-zero if the string starting at NAME and ending before
4966 NAME_END contains no capital letters. */
4969 is_valid_name_for_wild_match (const char *name0)
4971 const char *decoded_name = ada_decode (name0);
4974 /* If the decoded name starts with an angle bracket, it means that
4975 NAME0 does not follow the GNAT encoding format. It should then
4976 not be allowed as a possible wild match. */
4977 if (decoded_name[0] == '<')
4980 for (i=0; decoded_name[i] != '\0'; i++)
4981 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4987 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4988 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4989 informational suffixes of NAME (i.e., for which is_name_suffix is
4993 wild_match (const char *patn0, int patn_len, const char *name0)
5000 match = strstr (start, patn0);
5005 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5006 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5007 && is_name_suffix (match + patn_len))
5008 return (match == name0 || is_valid_name_for_wild_match (name0));
5013 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5014 vector *defn_symbols, updating the list of symbols in OBSTACKP
5015 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5016 OBJFILE is the section containing BLOCK.
5017 SYMTAB is recorded with each symbol added. */
5020 ada_add_block_symbols (struct obstack *obstackp,
5021 struct block *block, const char *name,
5022 domain_enum domain, struct objfile *objfile,
5025 struct dict_iterator iter;
5026 int name_len = strlen (name);
5027 /* A matching argument symbol, if any. */
5028 struct symbol *arg_sym;
5029 /* Set true when we find a matching non-argument symbol. */
5038 ALL_BLOCK_SYMBOLS (block, iter, sym)
5040 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5041 SYMBOL_DOMAIN (sym), domain)
5042 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5044 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5046 else if (SYMBOL_IS_ARGUMENT (sym))
5051 add_defn_to_vec (obstackp,
5052 fixup_symbol_section (sym, objfile),
5060 ALL_BLOCK_SYMBOLS (block, iter, sym)
5062 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5063 SYMBOL_DOMAIN (sym), domain))
5065 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5067 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5069 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5071 if (SYMBOL_IS_ARGUMENT (sym))
5076 add_defn_to_vec (obstackp,
5077 fixup_symbol_section (sym, objfile),
5086 if (!found_sym && arg_sym != NULL)
5088 add_defn_to_vec (obstackp,
5089 fixup_symbol_section (arg_sym, objfile),
5098 ALL_BLOCK_SYMBOLS (block, iter, sym)
5100 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5101 SYMBOL_DOMAIN (sym), domain))
5105 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5108 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5110 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5115 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5117 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5119 if (SYMBOL_IS_ARGUMENT (sym))
5124 add_defn_to_vec (obstackp,
5125 fixup_symbol_section (sym, objfile),
5133 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5134 They aren't parameters, right? */
5135 if (!found_sym && arg_sym != NULL)
5137 add_defn_to_vec (obstackp,
5138 fixup_symbol_section (arg_sym, objfile),
5145 /* Symbol Completion */
5147 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5148 name in a form that's appropriate for the completion. The result
5149 does not need to be deallocated, but is only good until the next call.
5151 TEXT_LEN is equal to the length of TEXT.
5152 Perform a wild match if WILD_MATCH is set.
5153 ENCODED should be set if TEXT represents the start of a symbol name
5154 in its encoded form. */
5157 symbol_completion_match (const char *sym_name,
5158 const char *text, int text_len,
5159 int wild_match, int encoded)
5162 const int verbatim_match = (text[0] == '<');
5167 /* Strip the leading angle bracket. */
5172 /* First, test against the fully qualified name of the symbol. */
5174 if (strncmp (sym_name, text, text_len) == 0)
5177 if (match && !encoded)
5179 /* One needed check before declaring a positive match is to verify
5180 that iff we are doing a verbatim match, the decoded version
5181 of the symbol name starts with '<'. Otherwise, this symbol name
5182 is not a suitable completion. */
5183 const char *sym_name_copy = sym_name;
5184 int has_angle_bracket;
5186 sym_name = ada_decode (sym_name);
5187 has_angle_bracket = (sym_name[0] == '<');
5188 match = (has_angle_bracket == verbatim_match);
5189 sym_name = sym_name_copy;
5192 if (match && !verbatim_match)
5194 /* When doing non-verbatim match, another check that needs to
5195 be done is to verify that the potentially matching symbol name
5196 does not include capital letters, because the ada-mode would
5197 not be able to understand these symbol names without the
5198 angle bracket notation. */
5201 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5206 /* Second: Try wild matching... */
5208 if (!match && wild_match)
5210 /* Since we are doing wild matching, this means that TEXT
5211 may represent an unqualified symbol name. We therefore must
5212 also compare TEXT against the unqualified name of the symbol. */
5213 sym_name = ada_unqualified_name (ada_decode (sym_name));
5215 if (strncmp (sym_name, text, text_len) == 0)
5219 /* Finally: If we found a mach, prepare the result to return. */
5225 sym_name = add_angle_brackets (sym_name);
5228 sym_name = ada_decode (sym_name);
5233 typedef char *char_ptr;
5234 DEF_VEC_P (char_ptr);
5236 /* A companion function to ada_make_symbol_completion_list().
5237 Check if SYM_NAME represents a symbol which name would be suitable
5238 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5239 it is appended at the end of the given string vector SV.
5241 ORIG_TEXT is the string original string from the user command
5242 that needs to be completed. WORD is the entire command on which
5243 completion should be performed. These two parameters are used to
5244 determine which part of the symbol name should be added to the
5246 if WILD_MATCH is set, then wild matching is performed.
5247 ENCODED should be set if TEXT represents a symbol name in its
5248 encoded formed (in which case the completion should also be
5252 symbol_completion_add (VEC(char_ptr) **sv,
5253 const char *sym_name,
5254 const char *text, int text_len,
5255 const char *orig_text, const char *word,
5256 int wild_match, int encoded)
5258 const char *match = symbol_completion_match (sym_name, text, text_len,
5259 wild_match, encoded);
5265 /* We found a match, so add the appropriate completion to the given
5268 if (word == orig_text)
5270 completion = xmalloc (strlen (match) + 5);
5271 strcpy (completion, match);
5273 else if (word > orig_text)
5275 /* Return some portion of sym_name. */
5276 completion = xmalloc (strlen (match) + 5);
5277 strcpy (completion, match + (word - orig_text));
5281 /* Return some of ORIG_TEXT plus sym_name. */
5282 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5283 strncpy (completion, word, orig_text - word);
5284 completion[orig_text - word] = '\0';
5285 strcat (completion, match);
5288 VEC_safe_push (char_ptr, *sv, completion);
5291 /* Return a list of possible symbol names completing TEXT0. The list
5292 is NULL terminated. WORD is the entire command on which completion
5296 ada_make_symbol_completion_list (char *text0, char *word)
5302 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5305 struct partial_symtab *ps;
5306 struct minimal_symbol *msymbol;
5307 struct objfile *objfile;
5308 struct block *b, *surrounding_static_block = 0;
5310 struct dict_iterator iter;
5312 if (text0[0] == '<')
5314 text = xstrdup (text0);
5315 make_cleanup (xfree, text);
5316 text_len = strlen (text);
5322 text = xstrdup (ada_encode (text0));
5323 make_cleanup (xfree, text);
5324 text_len = strlen (text);
5325 for (i = 0; i < text_len; i++)
5326 text[i] = tolower (text[i]);
5328 encoded = (strstr (text0, "__") != NULL);
5329 /* If the name contains a ".", then the user is entering a fully
5330 qualified entity name, and the match must not be done in wild
5331 mode. Similarly, if the user wants to complete what looks like
5332 an encoded name, the match must not be done in wild mode. */
5333 wild_match = (strchr (text0, '.') == NULL && !encoded);
5336 /* First, look at the partial symtab symbols. */
5337 ALL_PSYMTABS (objfile, ps)
5339 struct partial_symbol **psym;
5341 /* If the psymtab's been read in we'll get it when we search
5342 through the blockvector. */
5346 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5347 psym < (objfile->global_psymbols.list + ps->globals_offset
5348 + ps->n_global_syms); psym++)
5351 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5352 text, text_len, text0, word,
5353 wild_match, encoded);
5356 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5357 psym < (objfile->static_psymbols.list + ps->statics_offset
5358 + ps->n_static_syms); psym++)
5361 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5362 text, text_len, text0, word,
5363 wild_match, encoded);
5367 /* At this point scan through the misc symbol vectors and add each
5368 symbol you find to the list. Eventually we want to ignore
5369 anything that isn't a text symbol (everything else will be
5370 handled by the psymtab code above). */
5372 ALL_MSYMBOLS (objfile, msymbol)
5375 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5376 text, text_len, text0, word, wild_match, encoded);
5379 /* Search upwards from currently selected frame (so that we can
5380 complete on local vars. */
5382 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5384 if (!BLOCK_SUPERBLOCK (b))
5385 surrounding_static_block = b; /* For elmin of dups */
5387 ALL_BLOCK_SYMBOLS (b, iter, sym)
5389 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5390 text, text_len, text0, word,
5391 wild_match, encoded);
5395 /* Go through the symtabs and check the externs and statics for
5396 symbols which match. */
5398 ALL_SYMTABS (objfile, s)
5401 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5402 ALL_BLOCK_SYMBOLS (b, iter, sym)
5404 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5405 text, text_len, text0, word,
5406 wild_match, encoded);
5410 ALL_SYMTABS (objfile, s)
5413 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5414 /* Don't do this block twice. */
5415 if (b == surrounding_static_block)
5417 ALL_BLOCK_SYMBOLS (b, iter, sym)
5419 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5420 text, text_len, text0, word,
5421 wild_match, encoded);
5425 /* Append the closing NULL entry. */
5426 VEC_safe_push (char_ptr, completions, NULL);
5428 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5429 return the copy. It's unfortunate that we have to make a copy
5430 of an array that we're about to destroy, but there is nothing much
5431 we can do about it. Fortunately, it's typically not a very large
5434 const size_t completions_size =
5435 VEC_length (char_ptr, completions) * sizeof (char *);
5436 char **result = malloc (completions_size);
5438 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5440 VEC_free (char_ptr, completions);
5447 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5448 for tagged types. */
5451 ada_is_dispatch_table_ptr_type (struct type *type)
5455 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5458 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5462 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5465 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5466 to be invisible to users. */
5469 ada_is_ignored_field (struct type *type, int field_num)
5471 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5474 /* Check the name of that field. */
5476 const char *name = TYPE_FIELD_NAME (type, field_num);
5478 /* Anonymous field names should not be printed.
5479 brobecker/2007-02-20: I don't think this can actually happen
5480 but we don't want to print the value of annonymous fields anyway. */
5484 /* A field named "_parent" is internally generated by GNAT for
5485 tagged types, and should not be printed either. */
5486 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5490 /* If this is the dispatch table of a tagged type, then ignore. */
5491 if (ada_is_tagged_type (type, 1)
5492 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5495 /* Not a special field, so it should not be ignored. */
5499 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5500 pointer or reference type whose ultimate target has a tag field. */
5503 ada_is_tagged_type (struct type *type, int refok)
5505 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5508 /* True iff TYPE represents the type of X'Tag */
5511 ada_is_tag_type (struct type *type)
5513 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5517 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5518 return (name != NULL
5519 && strcmp (name, "ada__tags__dispatch_table") == 0);
5523 /* The type of the tag on VAL. */
5526 ada_tag_type (struct value *val)
5528 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5531 /* The value of the tag on VAL. */
5534 ada_value_tag (struct value *val)
5536 return ada_value_struct_elt (val, "_tag", 0);
5539 /* The value of the tag on the object of type TYPE whose contents are
5540 saved at VALADDR, if it is non-null, or is at memory address
5543 static struct value *
5544 value_tag_from_contents_and_address (struct type *type,
5545 const gdb_byte *valaddr,
5548 int tag_byte_offset, dummy1, dummy2;
5549 struct type *tag_type;
5550 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5553 const gdb_byte *valaddr1 = ((valaddr == NULL)
5555 : valaddr + tag_byte_offset);
5556 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5558 return value_from_contents_and_address (tag_type, valaddr1, address1);
5563 static struct type *
5564 type_from_tag (struct value *tag)
5566 const char *type_name = ada_tag_name (tag);
5567 if (type_name != NULL)
5568 return ada_find_any_type (ada_encode (type_name));
5579 static int ada_tag_name_1 (void *);
5580 static int ada_tag_name_2 (struct tag_args *);
5582 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5583 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5584 The value stored in ARGS->name is valid until the next call to
5588 ada_tag_name_1 (void *args0)
5590 struct tag_args *args = (struct tag_args *) args0;
5591 static char name[1024];
5595 val = ada_value_struct_elt (args->tag, "tsd", 1);
5597 return ada_tag_name_2 (args);
5598 val = ada_value_struct_elt (val, "expanded_name", 1);
5601 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5602 for (p = name; *p != '\0'; p += 1)
5609 /* Utility function for ada_tag_name_1 that tries the second
5610 representation for the dispatch table (in which there is no
5611 explicit 'tsd' field in the referent of the tag pointer, and instead
5612 the tsd pointer is stored just before the dispatch table. */
5615 ada_tag_name_2 (struct tag_args *args)
5617 struct type *info_type;
5618 static char name[1024];
5620 struct value *val, *valp;
5623 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5624 if (info_type == NULL)
5626 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5627 valp = value_cast (info_type, args->tag);
5630 val = value_ind (value_ptradd (valp, -1));
5633 val = ada_value_struct_elt (val, "expanded_name", 1);
5636 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5637 for (p = name; *p != '\0'; p += 1)
5644 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5648 ada_tag_name (struct value *tag)
5650 struct tag_args args;
5651 if (!ada_is_tag_type (value_type (tag)))
5655 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5659 /* The parent type of TYPE, or NULL if none. */
5662 ada_parent_type (struct type *type)
5666 type = ada_check_typedef (type);
5668 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5672 if (ada_is_parent_field (type, i))
5674 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5676 /* If the _parent field is a pointer, then dereference it. */
5677 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5678 parent_type = TYPE_TARGET_TYPE (parent_type);
5679 /* If there is a parallel XVS type, get the actual base type. */
5680 parent_type = ada_get_base_type (parent_type);
5682 return ada_check_typedef (parent_type);
5688 /* True iff field number FIELD_NUM of structure type TYPE contains the
5689 parent-type (inherited) fields of a derived type. Assumes TYPE is
5690 a structure type with at least FIELD_NUM+1 fields. */
5693 ada_is_parent_field (struct type *type, int field_num)
5695 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5696 return (name != NULL
5697 && (strncmp (name, "PARENT", 6) == 0
5698 || strncmp (name, "_parent", 7) == 0));
5701 /* True iff field number FIELD_NUM of structure type TYPE is a
5702 transparent wrapper field (which should be silently traversed when doing
5703 field selection and flattened when printing). Assumes TYPE is a
5704 structure type with at least FIELD_NUM+1 fields. Such fields are always
5708 ada_is_wrapper_field (struct type *type, int field_num)
5710 const char *name = TYPE_FIELD_NAME (type, field_num);
5711 return (name != NULL
5712 && (strncmp (name, "PARENT", 6) == 0
5713 || strcmp (name, "REP") == 0
5714 || strncmp (name, "_parent", 7) == 0
5715 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5718 /* True iff field number FIELD_NUM of structure or union type TYPE
5719 is a variant wrapper. Assumes TYPE is a structure type with at least
5720 FIELD_NUM+1 fields. */
5723 ada_is_variant_part (struct type *type, int field_num)
5725 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5726 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5727 || (is_dynamic_field (type, field_num)
5728 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5729 == TYPE_CODE_UNION)));
5732 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5733 whose discriminants are contained in the record type OUTER_TYPE,
5734 returns the type of the controlling discriminant for the variant.
5735 May return NULL if the type could not be found. */
5738 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5740 char *name = ada_variant_discrim_name (var_type);
5741 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5744 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5745 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5746 represents a 'when others' clause; otherwise 0. */
5749 ada_is_others_clause (struct type *type, int field_num)
5751 const char *name = TYPE_FIELD_NAME (type, field_num);
5752 return (name != NULL && name[0] == 'O');
5755 /* Assuming that TYPE0 is the type of the variant part of a record,
5756 returns the name of the discriminant controlling the variant.
5757 The value is valid until the next call to ada_variant_discrim_name. */
5760 ada_variant_discrim_name (struct type *type0)
5762 static char *result = NULL;
5763 static size_t result_len = 0;
5766 const char *discrim_end;
5767 const char *discrim_start;
5769 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5770 type = TYPE_TARGET_TYPE (type0);
5774 name = ada_type_name (type);
5776 if (name == NULL || name[0] == '\000')
5779 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5782 if (strncmp (discrim_end, "___XVN", 6) == 0)
5785 if (discrim_end == name)
5788 for (discrim_start = discrim_end; discrim_start != name + 3;
5791 if (discrim_start == name + 1)
5793 if ((discrim_start > name + 3
5794 && strncmp (discrim_start - 3, "___", 3) == 0)
5795 || discrim_start[-1] == '.')
5799 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5800 strncpy (result, discrim_start, discrim_end - discrim_start);
5801 result[discrim_end - discrim_start] = '\0';
5805 /* Scan STR for a subtype-encoded number, beginning at position K.
5806 Put the position of the character just past the number scanned in
5807 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5808 Return 1 if there was a valid number at the given position, and 0
5809 otherwise. A "subtype-encoded" number consists of the absolute value
5810 in decimal, followed by the letter 'm' to indicate a negative number.
5811 Assumes 0m does not occur. */
5814 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5818 if (!isdigit (str[k]))
5821 /* Do it the hard way so as not to make any assumption about
5822 the relationship of unsigned long (%lu scan format code) and
5825 while (isdigit (str[k]))
5827 RU = RU * 10 + (str[k] - '0');
5834 *R = (-(LONGEST) (RU - 1)) - 1;
5840 /* NOTE on the above: Technically, C does not say what the results of
5841 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5842 number representable as a LONGEST (although either would probably work
5843 in most implementations). When RU>0, the locution in the then branch
5844 above is always equivalent to the negative of RU. */
5851 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5852 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5853 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5856 ada_in_variant (LONGEST val, struct type *type, int field_num)
5858 const char *name = TYPE_FIELD_NAME (type, field_num);
5871 if (!ada_scan_number (name, p + 1, &W, &p))
5880 if (!ada_scan_number (name, p + 1, &L, &p)
5881 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5883 if (val >= L && val <= U)
5895 /* FIXME: Lots of redundancy below. Try to consolidate. */
5897 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5898 ARG_TYPE, extract and return the value of one of its (non-static)
5899 fields. FIELDNO says which field. Differs from value_primitive_field
5900 only in that it can handle packed values of arbitrary type. */
5902 static struct value *
5903 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5904 struct type *arg_type)
5908 arg_type = ada_check_typedef (arg_type);
5909 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5911 /* Handle packed fields. */
5913 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5915 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5916 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5918 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5919 offset + bit_pos / 8,
5920 bit_pos % 8, bit_size, type);
5923 return value_primitive_field (arg1, offset, fieldno, arg_type);
5926 /* Find field with name NAME in object of type TYPE. If found,
5927 set the following for each argument that is non-null:
5928 - *FIELD_TYPE_P to the field's type;
5929 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5930 an object of that type;
5931 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5932 - *BIT_SIZE_P to its size in bits if the field is packed, and
5934 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5935 fields up to but not including the desired field, or by the total
5936 number of fields if not found. A NULL value of NAME never
5937 matches; the function just counts visible fields in this case.
5939 Returns 1 if found, 0 otherwise. */
5942 find_struct_field (char *name, struct type *type, int offset,
5943 struct type **field_type_p,
5944 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5949 type = ada_check_typedef (type);
5951 if (field_type_p != NULL)
5952 *field_type_p = NULL;
5953 if (byte_offset_p != NULL)
5955 if (bit_offset_p != NULL)
5957 if (bit_size_p != NULL)
5960 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5962 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5963 int fld_offset = offset + bit_pos / 8;
5964 char *t_field_name = TYPE_FIELD_NAME (type, i);
5966 if (t_field_name == NULL)
5969 else if (name != NULL && field_name_match (t_field_name, name))
5971 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5972 if (field_type_p != NULL)
5973 *field_type_p = TYPE_FIELD_TYPE (type, i);
5974 if (byte_offset_p != NULL)
5975 *byte_offset_p = fld_offset;
5976 if (bit_offset_p != NULL)
5977 *bit_offset_p = bit_pos % 8;
5978 if (bit_size_p != NULL)
5979 *bit_size_p = bit_size;
5982 else if (ada_is_wrapper_field (type, i))
5984 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5985 field_type_p, byte_offset_p, bit_offset_p,
5986 bit_size_p, index_p))
5989 else if (ada_is_variant_part (type, i))
5991 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5994 struct type *field_type
5995 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5997 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5999 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6001 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6002 field_type_p, byte_offset_p,
6003 bit_offset_p, bit_size_p, index_p))
6007 else if (index_p != NULL)
6013 /* Number of user-visible fields in record type TYPE. */
6016 num_visible_fields (struct type *type)
6020 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6024 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6025 and search in it assuming it has (class) type TYPE.
6026 If found, return value, else return NULL.
6028 Searches recursively through wrapper fields (e.g., '_parent'). */
6030 static struct value *
6031 ada_search_struct_field (char *name, struct value *arg, int offset,
6035 type = ada_check_typedef (type);
6037 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6039 char *t_field_name = TYPE_FIELD_NAME (type, i);
6041 if (t_field_name == NULL)
6044 else if (field_name_match (t_field_name, name))
6045 return ada_value_primitive_field (arg, offset, i, type);
6047 else if (ada_is_wrapper_field (type, i))
6049 struct value *v = /* Do not let indent join lines here. */
6050 ada_search_struct_field (name, arg,
6051 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6052 TYPE_FIELD_TYPE (type, i));
6057 else if (ada_is_variant_part (type, i))
6059 /* PNH: Do we ever get here? See find_struct_field. */
6061 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6062 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6064 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6066 struct value *v = ada_search_struct_field /* Force line break. */
6068 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6069 TYPE_FIELD_TYPE (field_type, j));
6078 static struct value *ada_index_struct_field_1 (int *, struct value *,
6079 int, struct type *);
6082 /* Return field #INDEX in ARG, where the index is that returned by
6083 * find_struct_field through its INDEX_P argument. Adjust the address
6084 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6085 * If found, return value, else return NULL. */
6087 static struct value *
6088 ada_index_struct_field (int index, struct value *arg, int offset,
6091 return ada_index_struct_field_1 (&index, arg, offset, type);
6095 /* Auxiliary function for ada_index_struct_field. Like
6096 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6099 static struct value *
6100 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6104 type = ada_check_typedef (type);
6106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6108 if (TYPE_FIELD_NAME (type, i) == NULL)
6110 else if (ada_is_wrapper_field (type, i))
6112 struct value *v = /* Do not let indent join lines here. */
6113 ada_index_struct_field_1 (index_p, arg,
6114 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6115 TYPE_FIELD_TYPE (type, i));
6120 else if (ada_is_variant_part (type, i))
6122 /* PNH: Do we ever get here? See ada_search_struct_field,
6123 find_struct_field. */
6124 error (_("Cannot assign this kind of variant record"));
6126 else if (*index_p == 0)
6127 return ada_value_primitive_field (arg, offset, i, type);
6134 /* Given ARG, a value of type (pointer or reference to a)*
6135 structure/union, extract the component named NAME from the ultimate
6136 target structure/union and return it as a value with its
6139 The routine searches for NAME among all members of the structure itself
6140 and (recursively) among all members of any wrapper members
6143 If NO_ERR, then simply return NULL in case of error, rather than
6147 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6149 struct type *t, *t1;
6153 t1 = t = ada_check_typedef (value_type (arg));
6154 if (TYPE_CODE (t) == TYPE_CODE_REF)
6156 t1 = TYPE_TARGET_TYPE (t);
6159 t1 = ada_check_typedef (t1);
6160 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6162 arg = coerce_ref (arg);
6167 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6169 t1 = TYPE_TARGET_TYPE (t);
6172 t1 = ada_check_typedef (t1);
6173 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6175 arg = value_ind (arg);
6182 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6186 v = ada_search_struct_field (name, arg, 0, t);
6189 int bit_offset, bit_size, byte_offset;
6190 struct type *field_type;
6193 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6194 address = value_as_address (arg);
6196 address = unpack_pointer (t, value_contents (arg));
6198 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6199 if (find_struct_field (name, t1, 0,
6200 &field_type, &byte_offset, &bit_offset,
6205 if (TYPE_CODE (t) == TYPE_CODE_REF)
6206 arg = ada_coerce_ref (arg);
6208 arg = ada_value_ind (arg);
6209 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6210 bit_offset, bit_size,
6214 v = value_at_lazy (field_type, address + byte_offset);
6218 if (v != NULL || no_err)
6221 error (_("There is no member named %s."), name);
6227 error (_("Attempt to extract a component of a value that is not a record."));
6230 /* Given a type TYPE, look up the type of the component of type named NAME.
6231 If DISPP is non-null, add its byte displacement from the beginning of a
6232 structure (pointed to by a value) of type TYPE to *DISPP (does not
6233 work for packed fields).
6235 Matches any field whose name has NAME as a prefix, possibly
6238 TYPE can be either a struct or union. If REFOK, TYPE may also
6239 be a (pointer or reference)+ to a struct or union, and the
6240 ultimate target type will be searched.
6242 Looks recursively into variant clauses and parent types.
6244 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6245 TYPE is not a type of the right kind. */
6247 static struct type *
6248 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6249 int noerr, int *dispp)
6256 if (refok && type != NULL)
6259 type = ada_check_typedef (type);
6260 if (TYPE_CODE (type) != TYPE_CODE_PTR
6261 && TYPE_CODE (type) != TYPE_CODE_REF)
6263 type = TYPE_TARGET_TYPE (type);
6267 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6268 && TYPE_CODE (type) != TYPE_CODE_UNION))
6274 target_terminal_ours ();
6275 gdb_flush (gdb_stdout);
6277 error (_("Type (null) is not a structure or union type"));
6280 /* XXX: type_sprint */
6281 fprintf_unfiltered (gdb_stderr, _("Type "));
6282 type_print (type, "", gdb_stderr, -1);
6283 error (_(" is not a structure or union type"));
6288 type = to_static_fixed_type (type);
6290 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6292 char *t_field_name = TYPE_FIELD_NAME (type, i);
6296 if (t_field_name == NULL)
6299 else if (field_name_match (t_field_name, name))
6302 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6303 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6306 else if (ada_is_wrapper_field (type, i))
6309 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6314 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6319 else if (ada_is_variant_part (type, i))
6322 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6324 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6326 /* FIXME pnh 2008/01/26: We check for a field that is
6327 NOT wrapped in a struct, since the compiler sometimes
6328 generates these for unchecked variant types. Revisit
6329 if the compiler changes this practice. */
6330 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6332 if (v_field_name != NULL
6333 && field_name_match (v_field_name, name))
6334 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6336 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6342 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6353 target_terminal_ours ();
6354 gdb_flush (gdb_stdout);
6357 /* XXX: type_sprint */
6358 fprintf_unfiltered (gdb_stderr, _("Type "));
6359 type_print (type, "", gdb_stderr, -1);
6360 error (_(" has no component named <null>"));
6364 /* XXX: type_sprint */
6365 fprintf_unfiltered (gdb_stderr, _("Type "));
6366 type_print (type, "", gdb_stderr, -1);
6367 error (_(" has no component named %s"), name);
6374 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6375 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6376 represents an unchecked union (that is, the variant part of a
6377 record that is named in an Unchecked_Union pragma). */
6380 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6382 char *discrim_name = ada_variant_discrim_name (var_type);
6383 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6388 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6389 within a value of type OUTER_TYPE that is stored in GDB at
6390 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6391 numbering from 0) is applicable. Returns -1 if none are. */
6394 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6395 const gdb_byte *outer_valaddr)
6399 char *discrim_name = ada_variant_discrim_name (var_type);
6400 struct value *outer;
6401 struct value *discrim;
6402 LONGEST discrim_val;
6404 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6405 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6406 if (discrim == NULL)
6408 discrim_val = value_as_long (discrim);
6411 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6413 if (ada_is_others_clause (var_type, i))
6415 else if (ada_in_variant (discrim_val, var_type, i))
6419 return others_clause;
6424 /* Dynamic-Sized Records */
6426 /* Strategy: The type ostensibly attached to a value with dynamic size
6427 (i.e., a size that is not statically recorded in the debugging
6428 data) does not accurately reflect the size or layout of the value.
6429 Our strategy is to convert these values to values with accurate,
6430 conventional types that are constructed on the fly. */
6432 /* There is a subtle and tricky problem here. In general, we cannot
6433 determine the size of dynamic records without its data. However,
6434 the 'struct value' data structure, which GDB uses to represent
6435 quantities in the inferior process (the target), requires the size
6436 of the type at the time of its allocation in order to reserve space
6437 for GDB's internal copy of the data. That's why the
6438 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6439 rather than struct value*s.
6441 However, GDB's internal history variables ($1, $2, etc.) are
6442 struct value*s containing internal copies of the data that are not, in
6443 general, the same as the data at their corresponding addresses in
6444 the target. Fortunately, the types we give to these values are all
6445 conventional, fixed-size types (as per the strategy described
6446 above), so that we don't usually have to perform the
6447 'to_fixed_xxx_type' conversions to look at their values.
6448 Unfortunately, there is one exception: if one of the internal
6449 history variables is an array whose elements are unconstrained
6450 records, then we will need to create distinct fixed types for each
6451 element selected. */
6453 /* The upshot of all of this is that many routines take a (type, host
6454 address, target address) triple as arguments to represent a value.
6455 The host address, if non-null, is supposed to contain an internal
6456 copy of the relevant data; otherwise, the program is to consult the
6457 target at the target address. */
6459 /* Assuming that VAL0 represents a pointer value, the result of
6460 dereferencing it. Differs from value_ind in its treatment of
6461 dynamic-sized types. */
6464 ada_value_ind (struct value *val0)
6466 struct value *val = unwrap_value (value_ind (val0));
6467 return ada_to_fixed_value (val);
6470 /* The value resulting from dereferencing any "reference to"
6471 qualifiers on VAL0. */
6473 static struct value *
6474 ada_coerce_ref (struct value *val0)
6476 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6478 struct value *val = val0;
6479 val = coerce_ref (val);
6480 val = unwrap_value (val);
6481 return ada_to_fixed_value (val);
6487 /* Return OFF rounded upward if necessary to a multiple of
6488 ALIGNMENT (a power of 2). */
6491 align_value (unsigned int off, unsigned int alignment)
6493 return (off + alignment - 1) & ~(alignment - 1);
6496 /* Return the bit alignment required for field #F of template type TYPE. */
6499 field_alignment (struct type *type, int f)
6501 const char *name = TYPE_FIELD_NAME (type, f);
6505 /* The field name should never be null, unless the debugging information
6506 is somehow malformed. In this case, we assume the field does not
6507 require any alignment. */
6511 len = strlen (name);
6513 if (!isdigit (name[len - 1]))
6516 if (isdigit (name[len - 2]))
6517 align_offset = len - 2;
6519 align_offset = len - 1;
6521 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6522 return TARGET_CHAR_BIT;
6524 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6527 /* Find a symbol named NAME. Ignores ambiguity. */
6530 ada_find_any_symbol (const char *name)
6534 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6535 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6538 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6542 /* Find a type named NAME. Ignores ambiguity. This routine will look
6543 solely for types defined by debug info, it will not search the GDB
6547 ada_find_any_type (const char *name)
6549 struct symbol *sym = ada_find_any_symbol (name);
6552 return SYMBOL_TYPE (sym);
6557 /* Given NAME and an associated BLOCK, search all symbols for
6558 NAME suffixed with "___XR", which is the ``renaming'' symbol
6559 associated to NAME. Return this symbol if found, return
6563 ada_find_renaming_symbol (const char *name, struct block *block)
6567 sym = find_old_style_renaming_symbol (name, block);
6572 /* Not right yet. FIXME pnh 7/20/2007. */
6573 sym = ada_find_any_symbol (name);
6574 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6580 static struct symbol *
6581 find_old_style_renaming_symbol (const char *name, struct block *block)
6583 const struct symbol *function_sym = block_linkage_function (block);
6586 if (function_sym != NULL)
6588 /* If the symbol is defined inside a function, NAME is not fully
6589 qualified. This means we need to prepend the function name
6590 as well as adding the ``___XR'' suffix to build the name of
6591 the associated renaming symbol. */
6592 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6593 /* Function names sometimes contain suffixes used
6594 for instance to qualify nested subprograms. When building
6595 the XR type name, we need to make sure that this suffix is
6596 not included. So do not include any suffix in the function
6597 name length below. */
6598 int function_name_len = ada_name_prefix_len (function_name);
6599 const int rename_len = function_name_len + 2 /* "__" */
6600 + strlen (name) + 6 /* "___XR\0" */ ;
6602 /* Strip the suffix if necessary. */
6603 ada_remove_trailing_digits (function_name, &function_name_len);
6604 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6605 ada_remove_Xbn_suffix (function_name, &function_name_len);
6607 /* Library-level functions are a special case, as GNAT adds
6608 a ``_ada_'' prefix to the function name to avoid namespace
6609 pollution. However, the renaming symbols themselves do not
6610 have this prefix, so we need to skip this prefix if present. */
6611 if (function_name_len > 5 /* "_ada_" */
6612 && strstr (function_name, "_ada_") == function_name)
6615 function_name_len -= 5;
6618 rename = (char *) alloca (rename_len * sizeof (char));
6619 strncpy (rename, function_name, function_name_len);
6620 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6625 const int rename_len = strlen (name) + 6;
6626 rename = (char *) alloca (rename_len * sizeof (char));
6627 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6630 return ada_find_any_symbol (rename);
6633 /* Because of GNAT encoding conventions, several GDB symbols may match a
6634 given type name. If the type denoted by TYPE0 is to be preferred to
6635 that of TYPE1 for purposes of type printing, return non-zero;
6636 otherwise return 0. */
6639 ada_prefer_type (struct type *type0, struct type *type1)
6643 else if (type0 == NULL)
6645 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6647 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6649 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6651 else if (ada_is_constrained_packed_array_type (type0))
6653 else if (ada_is_array_descriptor_type (type0)
6654 && !ada_is_array_descriptor_type (type1))
6658 const char *type0_name = type_name_no_tag (type0);
6659 const char *type1_name = type_name_no_tag (type1);
6661 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6662 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6668 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6669 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6672 ada_type_name (struct type *type)
6676 else if (TYPE_NAME (type) != NULL)
6677 return TYPE_NAME (type);
6679 return TYPE_TAG_NAME (type);
6682 /* Find a parallel type to TYPE whose name is formed by appending
6683 SUFFIX to the name of TYPE. */
6686 ada_find_parallel_type (struct type *type, const char *suffix)
6689 static size_t name_len = 0;
6691 char *typename = ada_type_name (type);
6693 if (typename == NULL)
6696 len = strlen (typename);
6698 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6700 strcpy (name, typename);
6701 strcpy (name + len, suffix);
6703 return ada_find_any_type (name);
6707 /* If TYPE is a variable-size record type, return the corresponding template
6708 type describing its fields. Otherwise, return NULL. */
6710 static struct type *
6711 dynamic_template_type (struct type *type)
6713 type = ada_check_typedef (type);
6715 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6716 || ada_type_name (type) == NULL)
6720 int len = strlen (ada_type_name (type));
6721 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6724 return ada_find_parallel_type (type, "___XVE");
6728 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6729 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6732 is_dynamic_field (struct type *templ_type, int field_num)
6734 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6736 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6737 && strstr (name, "___XVL") != NULL;
6740 /* The index of the variant field of TYPE, or -1 if TYPE does not
6741 represent a variant record type. */
6744 variant_field_index (struct type *type)
6748 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6751 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6753 if (ada_is_variant_part (type, f))
6759 /* A record type with no fields. */
6761 static struct type *
6762 empty_record (struct type *template)
6764 struct type *type = alloc_type_copy (template);
6765 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6766 TYPE_NFIELDS (type) = 0;
6767 TYPE_FIELDS (type) = NULL;
6768 INIT_CPLUS_SPECIFIC (type);
6769 TYPE_NAME (type) = "<empty>";
6770 TYPE_TAG_NAME (type) = NULL;
6771 TYPE_LENGTH (type) = 0;
6775 /* An ordinary record type (with fixed-length fields) that describes
6776 the value of type TYPE at VALADDR or ADDRESS (see comments at
6777 the beginning of this section) VAL according to GNAT conventions.
6778 DVAL0 should describe the (portion of a) record that contains any
6779 necessary discriminants. It should be NULL if value_type (VAL) is
6780 an outer-level type (i.e., as opposed to a branch of a variant.) A
6781 variant field (unless unchecked) is replaced by a particular branch
6784 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6785 length are not statically known are discarded. As a consequence,
6786 VALADDR, ADDRESS and DVAL0 are ignored.
6788 NOTE: Limitations: For now, we assume that dynamic fields and
6789 variants occupy whole numbers of bytes. However, they need not be
6793 ada_template_to_fixed_record_type_1 (struct type *type,
6794 const gdb_byte *valaddr,
6795 CORE_ADDR address, struct value *dval0,
6796 int keep_dynamic_fields)
6798 struct value *mark = value_mark ();
6801 int nfields, bit_len;
6804 int fld_bit_len, bit_incr;
6807 /* Compute the number of fields in this record type that are going
6808 to be processed: unless keep_dynamic_fields, this includes only
6809 fields whose position and length are static will be processed. */
6810 if (keep_dynamic_fields)
6811 nfields = TYPE_NFIELDS (type);
6815 while (nfields < TYPE_NFIELDS (type)
6816 && !ada_is_variant_part (type, nfields)
6817 && !is_dynamic_field (type, nfields))
6821 rtype = alloc_type_copy (type);
6822 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6823 INIT_CPLUS_SPECIFIC (rtype);
6824 TYPE_NFIELDS (rtype) = nfields;
6825 TYPE_FIELDS (rtype) = (struct field *)
6826 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6827 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6828 TYPE_NAME (rtype) = ada_type_name (type);
6829 TYPE_TAG_NAME (rtype) = NULL;
6830 TYPE_FIXED_INSTANCE (rtype) = 1;
6836 for (f = 0; f < nfields; f += 1)
6838 off = align_value (off, field_alignment (type, f))
6839 + TYPE_FIELD_BITPOS (type, f);
6840 TYPE_FIELD_BITPOS (rtype, f) = off;
6841 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6843 if (ada_is_variant_part (type, f))
6846 fld_bit_len = bit_incr = 0;
6848 else if (is_dynamic_field (type, f))
6850 const gdb_byte *field_valaddr = valaddr;
6851 CORE_ADDR field_address = address;
6852 struct type *field_type =
6853 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6857 /* rtype's length is computed based on the run-time
6858 value of discriminants. If the discriminants are not
6859 initialized, the type size may be completely bogus and
6860 GDB may fail to allocate a value for it. So check the
6861 size first before creating the value. */
6863 dval = value_from_contents_and_address (rtype, valaddr, address);
6868 /* If the type referenced by this field is an aligner type, we need
6869 to unwrap that aligner type, because its size might not be set.
6870 Keeping the aligner type would cause us to compute the wrong
6871 size for this field, impacting the offset of the all the fields
6872 that follow this one. */
6873 if (ada_is_aligner_type (field_type))
6875 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6877 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6878 field_address = cond_offset_target (field_address, field_offset);
6879 field_type = ada_aligned_type (field_type);
6882 field_valaddr = cond_offset_host (field_valaddr,
6883 off / TARGET_CHAR_BIT);
6884 field_address = cond_offset_target (field_address,
6885 off / TARGET_CHAR_BIT);
6887 /* Get the fixed type of the field. Note that, in this case,
6888 we do not want to get the real type out of the tag: if
6889 the current field is the parent part of a tagged record,
6890 we will get the tag of the object. Clearly wrong: the real
6891 type of the parent is not the real type of the child. We
6892 would end up in an infinite loop. */
6893 field_type = ada_get_base_type (field_type);
6894 field_type = ada_to_fixed_type (field_type, field_valaddr,
6895 field_address, dval, 0);
6897 TYPE_FIELD_TYPE (rtype, f) = field_type;
6898 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6899 bit_incr = fld_bit_len =
6900 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6904 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6905 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6906 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6907 bit_incr = fld_bit_len =
6908 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6910 bit_incr = fld_bit_len =
6911 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6913 if (off + fld_bit_len > bit_len)
6914 bit_len = off + fld_bit_len;
6916 TYPE_LENGTH (rtype) =
6917 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6920 /* We handle the variant part, if any, at the end because of certain
6921 odd cases in which it is re-ordered so as NOT to be the last field of
6922 the record. This can happen in the presence of representation
6924 if (variant_field >= 0)
6926 struct type *branch_type;
6928 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6931 dval = value_from_contents_and_address (rtype, valaddr, address);
6936 to_fixed_variant_branch_type
6937 (TYPE_FIELD_TYPE (type, variant_field),
6938 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6939 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6940 if (branch_type == NULL)
6942 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6943 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6944 TYPE_NFIELDS (rtype) -= 1;
6948 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6949 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6951 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6953 if (off + fld_bit_len > bit_len)
6954 bit_len = off + fld_bit_len;
6955 TYPE_LENGTH (rtype) =
6956 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6960 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6961 should contain the alignment of that record, which should be a strictly
6962 positive value. If null or negative, then something is wrong, most
6963 probably in the debug info. In that case, we don't round up the size
6964 of the resulting type. If this record is not part of another structure,
6965 the current RTYPE length might be good enough for our purposes. */
6966 if (TYPE_LENGTH (type) <= 0)
6968 if (TYPE_NAME (rtype))
6969 warning (_("Invalid type size for `%s' detected: %d."),
6970 TYPE_NAME (rtype), TYPE_LENGTH (type));
6972 warning (_("Invalid type size for <unnamed> detected: %d."),
6973 TYPE_LENGTH (type));
6977 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6978 TYPE_LENGTH (type));
6981 value_free_to_mark (mark);
6982 if (TYPE_LENGTH (rtype) > varsize_limit)
6983 error (_("record type with dynamic size is larger than varsize-limit"));
6987 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6990 static struct type *
6991 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6992 CORE_ADDR address, struct value *dval0)
6994 return ada_template_to_fixed_record_type_1 (type, valaddr,
6998 /* An ordinary record type in which ___XVL-convention fields and
6999 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7000 static approximations, containing all possible fields. Uses
7001 no runtime values. Useless for use in values, but that's OK,
7002 since the results are used only for type determinations. Works on both
7003 structs and unions. Representation note: to save space, we memorize
7004 the result of this function in the TYPE_TARGET_TYPE of the
7007 static struct type *
7008 template_to_static_fixed_type (struct type *type0)
7014 if (TYPE_TARGET_TYPE (type0) != NULL)
7015 return TYPE_TARGET_TYPE (type0);
7017 nfields = TYPE_NFIELDS (type0);
7020 for (f = 0; f < nfields; f += 1)
7022 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7023 struct type *new_type;
7025 if (is_dynamic_field (type0, f))
7026 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7028 new_type = static_unwrap_type (field_type);
7029 if (type == type0 && new_type != field_type)
7031 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7032 TYPE_CODE (type) = TYPE_CODE (type0);
7033 INIT_CPLUS_SPECIFIC (type);
7034 TYPE_NFIELDS (type) = nfields;
7035 TYPE_FIELDS (type) = (struct field *)
7036 TYPE_ALLOC (type, nfields * sizeof (struct field));
7037 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7038 sizeof (struct field) * nfields);
7039 TYPE_NAME (type) = ada_type_name (type0);
7040 TYPE_TAG_NAME (type) = NULL;
7041 TYPE_FIXED_INSTANCE (type) = 1;
7042 TYPE_LENGTH (type) = 0;
7044 TYPE_FIELD_TYPE (type, f) = new_type;
7045 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7050 /* Given an object of type TYPE whose contents are at VALADDR and
7051 whose address in memory is ADDRESS, returns a revision of TYPE,
7052 which should be a non-dynamic-sized record, in which the variant
7053 part, if any, is replaced with the appropriate branch. Looks
7054 for discriminant values in DVAL0, which can be NULL if the record
7055 contains the necessary discriminant values. */
7057 static struct type *
7058 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7059 CORE_ADDR address, struct value *dval0)
7061 struct value *mark = value_mark ();
7064 struct type *branch_type;
7065 int nfields = TYPE_NFIELDS (type);
7066 int variant_field = variant_field_index (type);
7068 if (variant_field == -1)
7072 dval = value_from_contents_and_address (type, valaddr, address);
7076 rtype = alloc_type_copy (type);
7077 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7078 INIT_CPLUS_SPECIFIC (rtype);
7079 TYPE_NFIELDS (rtype) = nfields;
7080 TYPE_FIELDS (rtype) =
7081 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7082 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7083 sizeof (struct field) * nfields);
7084 TYPE_NAME (rtype) = ada_type_name (type);
7085 TYPE_TAG_NAME (rtype) = NULL;
7086 TYPE_FIXED_INSTANCE (rtype) = 1;
7087 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7089 branch_type = to_fixed_variant_branch_type
7090 (TYPE_FIELD_TYPE (type, variant_field),
7091 cond_offset_host (valaddr,
7092 TYPE_FIELD_BITPOS (type, variant_field)
7094 cond_offset_target (address,
7095 TYPE_FIELD_BITPOS (type, variant_field)
7096 / TARGET_CHAR_BIT), dval);
7097 if (branch_type == NULL)
7100 for (f = variant_field + 1; f < nfields; f += 1)
7101 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7102 TYPE_NFIELDS (rtype) -= 1;
7106 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7107 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7108 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7109 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7111 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7113 value_free_to_mark (mark);
7117 /* An ordinary record type (with fixed-length fields) that describes
7118 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7119 beginning of this section]. Any necessary discriminants' values
7120 should be in DVAL, a record value; it may be NULL if the object
7121 at ADDR itself contains any necessary discriminant values.
7122 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7123 values from the record are needed. Except in the case that DVAL,
7124 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7125 unchecked) is replaced by a particular branch of the variant.
7127 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7128 is questionable and may be removed. It can arise during the
7129 processing of an unconstrained-array-of-record type where all the
7130 variant branches have exactly the same size. This is because in
7131 such cases, the compiler does not bother to use the XVS convention
7132 when encoding the record. I am currently dubious of this
7133 shortcut and suspect the compiler should be altered. FIXME. */
7135 static struct type *
7136 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7137 CORE_ADDR address, struct value *dval)
7139 struct type *templ_type;
7141 if (TYPE_FIXED_INSTANCE (type0))
7144 templ_type = dynamic_template_type (type0);
7146 if (templ_type != NULL)
7147 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7148 else if (variant_field_index (type0) >= 0)
7150 if (dval == NULL && valaddr == NULL && address == 0)
7152 return to_record_with_fixed_variant_part (type0, valaddr, address,
7157 TYPE_FIXED_INSTANCE (type0) = 1;
7163 /* An ordinary record type (with fixed-length fields) that describes
7164 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7165 union type. Any necessary discriminants' values should be in DVAL,
7166 a record value. That is, this routine selects the appropriate
7167 branch of the union at ADDR according to the discriminant value
7168 indicated in the union's type name. Returns VAR_TYPE0 itself if
7169 it represents a variant subject to a pragma Unchecked_Union. */
7171 static struct type *
7172 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7173 CORE_ADDR address, struct value *dval)
7176 struct type *templ_type;
7177 struct type *var_type;
7179 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7180 var_type = TYPE_TARGET_TYPE (var_type0);
7182 var_type = var_type0;
7184 templ_type = ada_find_parallel_type (var_type, "___XVU");
7186 if (templ_type != NULL)
7187 var_type = templ_type;
7189 if (is_unchecked_variant (var_type, value_type (dval)))
7192 ada_which_variant_applies (var_type,
7193 value_type (dval), value_contents (dval));
7196 return empty_record (var_type);
7197 else if (is_dynamic_field (var_type, which))
7198 return to_fixed_record_type
7199 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7200 valaddr, address, dval);
7201 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7203 to_fixed_record_type
7204 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7206 return TYPE_FIELD_TYPE (var_type, which);
7209 /* Assuming that TYPE0 is an array type describing the type of a value
7210 at ADDR, and that DVAL describes a record containing any
7211 discriminants used in TYPE0, returns a type for the value that
7212 contains no dynamic components (that is, no components whose sizes
7213 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7214 true, gives an error message if the resulting type's size is over
7217 static struct type *
7218 to_fixed_array_type (struct type *type0, struct value *dval,
7221 struct type *index_type_desc;
7222 struct type *result;
7223 int constrained_packed_array_p;
7225 if (TYPE_FIXED_INSTANCE (type0))
7228 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7229 if (constrained_packed_array_p)
7230 type0 = decode_constrained_packed_array_type (type0);
7232 index_type_desc = ada_find_parallel_type (type0, "___XA");
7233 if (index_type_desc == NULL)
7235 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7236 /* NOTE: elt_type---the fixed version of elt_type0---should never
7237 depend on the contents of the array in properly constructed
7239 /* Create a fixed version of the array element type.
7240 We're not providing the address of an element here,
7241 and thus the actual object value cannot be inspected to do
7242 the conversion. This should not be a problem, since arrays of
7243 unconstrained objects are not allowed. In particular, all
7244 the elements of an array of a tagged type should all be of
7245 the same type specified in the debugging info. No need to
7246 consult the object tag. */
7247 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7249 /* Make sure we always create a new array type when dealing with
7250 packed array types, since we're going to fix-up the array
7251 type length and element bitsize a little further down. */
7252 if (elt_type0 == elt_type && !constrained_packed_array_p)
7255 result = create_array_type (alloc_type_copy (type0),
7256 elt_type, TYPE_INDEX_TYPE (type0));
7261 struct type *elt_type0;
7264 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7265 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7267 /* NOTE: result---the fixed version of elt_type0---should never
7268 depend on the contents of the array in properly constructed
7270 /* Create a fixed version of the array element type.
7271 We're not providing the address of an element here,
7272 and thus the actual object value cannot be inspected to do
7273 the conversion. This should not be a problem, since arrays of
7274 unconstrained objects are not allowed. In particular, all
7275 the elements of an array of a tagged type should all be of
7276 the same type specified in the debugging info. No need to
7277 consult the object tag. */
7279 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7282 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7284 struct type *range_type =
7285 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7286 dval, TYPE_INDEX_TYPE (elt_type0));
7287 result = create_array_type (alloc_type_copy (elt_type0),
7288 result, range_type);
7289 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7291 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7292 error (_("array type with dynamic size is larger than varsize-limit"));
7295 if (constrained_packed_array_p)
7297 /* So far, the resulting type has been created as if the original
7298 type was a regular (non-packed) array type. As a result, the
7299 bitsize of the array elements needs to be set again, and the array
7300 length needs to be recomputed based on that bitsize. */
7301 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7302 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7304 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7305 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7306 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7307 TYPE_LENGTH (result)++;
7310 TYPE_FIXED_INSTANCE (result) = 1;
7315 /* A standard type (containing no dynamically sized components)
7316 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7317 DVAL describes a record containing any discriminants used in TYPE0,
7318 and may be NULL if there are none, or if the object of type TYPE at
7319 ADDRESS or in VALADDR contains these discriminants.
7321 If CHECK_TAG is not null, in the case of tagged types, this function
7322 attempts to locate the object's tag and use it to compute the actual
7323 type. However, when ADDRESS is null, we cannot use it to determine the
7324 location of the tag, and therefore compute the tagged type's actual type.
7325 So we return the tagged type without consulting the tag. */
7327 static struct type *
7328 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7329 CORE_ADDR address, struct value *dval, int check_tag)
7331 type = ada_check_typedef (type);
7332 switch (TYPE_CODE (type))
7336 case TYPE_CODE_STRUCT:
7338 struct type *static_type = to_static_fixed_type (type);
7339 struct type *fixed_record_type =
7340 to_fixed_record_type (type, valaddr, address, NULL);
7341 /* If STATIC_TYPE is a tagged type and we know the object's address,
7342 then we can determine its tag, and compute the object's actual
7343 type from there. Note that we have to use the fixed record
7344 type (the parent part of the record may have dynamic fields
7345 and the way the location of _tag is expressed may depend on
7348 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7350 struct type *real_type =
7351 type_from_tag (value_tag_from_contents_and_address
7355 if (real_type != NULL)
7356 return to_fixed_record_type (real_type, valaddr, address, NULL);
7359 /* Check to see if there is a parallel ___XVZ variable.
7360 If there is, then it provides the actual size of our type. */
7361 else if (ada_type_name (fixed_record_type) != NULL)
7363 char *name = ada_type_name (fixed_record_type);
7364 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7368 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7369 size = get_int_var_value (xvz_name, &xvz_found);
7370 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7372 fixed_record_type = copy_type (fixed_record_type);
7373 TYPE_LENGTH (fixed_record_type) = size;
7375 /* The FIXED_RECORD_TYPE may have be a stub. We have
7376 observed this when the debugging info is STABS, and
7377 apparently it is something that is hard to fix.
7379 In practice, we don't need the actual type definition
7380 at all, because the presence of the XVZ variable allows us
7381 to assume that there must be a XVS type as well, which we
7382 should be able to use later, when we need the actual type
7385 In the meantime, pretend that the "fixed" type we are
7386 returning is NOT a stub, because this can cause trouble
7387 when using this type to create new types targeting it.
7388 Indeed, the associated creation routines often check
7389 whether the target type is a stub and will try to replace
7390 it, thus using a type with the wrong size. This, in turn,
7391 might cause the new type to have the wrong size too.
7392 Consider the case of an array, for instance, where the size
7393 of the array is computed from the number of elements in
7394 our array multiplied by the size of its element. */
7395 TYPE_STUB (fixed_record_type) = 0;
7398 return fixed_record_type;
7400 case TYPE_CODE_ARRAY:
7401 return to_fixed_array_type (type, dval, 1);
7402 case TYPE_CODE_UNION:
7406 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7410 /* The same as ada_to_fixed_type_1, except that it preserves the type
7411 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7412 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7415 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7416 CORE_ADDR address, struct value *dval, int check_tag)
7419 struct type *fixed_type =
7420 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7422 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7423 && TYPE_TARGET_TYPE (type) == fixed_type)
7429 /* A standard (static-sized) type corresponding as well as possible to
7430 TYPE0, but based on no runtime data. */
7432 static struct type *
7433 to_static_fixed_type (struct type *type0)
7440 if (TYPE_FIXED_INSTANCE (type0))
7443 type0 = ada_check_typedef (type0);
7445 switch (TYPE_CODE (type0))
7449 case TYPE_CODE_STRUCT:
7450 type = dynamic_template_type (type0);
7452 return template_to_static_fixed_type (type);
7454 return template_to_static_fixed_type (type0);
7455 case TYPE_CODE_UNION:
7456 type = ada_find_parallel_type (type0, "___XVU");
7458 return template_to_static_fixed_type (type);
7460 return template_to_static_fixed_type (type0);
7464 /* A static approximation of TYPE with all type wrappers removed. */
7466 static struct type *
7467 static_unwrap_type (struct type *type)
7469 if (ada_is_aligner_type (type))
7471 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7472 if (ada_type_name (type1) == NULL)
7473 TYPE_NAME (type1) = ada_type_name (type);
7475 return static_unwrap_type (type1);
7479 struct type *raw_real_type = ada_get_base_type (type);
7480 if (raw_real_type == type)
7483 return to_static_fixed_type (raw_real_type);
7487 /* In some cases, incomplete and private types require
7488 cross-references that are not resolved as records (for example,
7490 type FooP is access Foo;
7492 type Foo is array ...;
7493 ). In these cases, since there is no mechanism for producing
7494 cross-references to such types, we instead substitute for FooP a
7495 stub enumeration type that is nowhere resolved, and whose tag is
7496 the name of the actual type. Call these types "non-record stubs". */
7498 /* A type equivalent to TYPE that is not a non-record stub, if one
7499 exists, otherwise TYPE. */
7502 ada_check_typedef (struct type *type)
7507 CHECK_TYPEDEF (type);
7508 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7509 || !TYPE_STUB (type)
7510 || TYPE_TAG_NAME (type) == NULL)
7514 char *name = TYPE_TAG_NAME (type);
7515 struct type *type1 = ada_find_any_type (name);
7516 return (type1 == NULL) ? type : type1;
7520 /* A value representing the data at VALADDR/ADDRESS as described by
7521 type TYPE0, but with a standard (static-sized) type that correctly
7522 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7523 type, then return VAL0 [this feature is simply to avoid redundant
7524 creation of struct values]. */
7526 static struct value *
7527 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7530 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7531 if (type == type0 && val0 != NULL)
7534 return value_from_contents_and_address (type, 0, address);
7537 /* A value representing VAL, but with a standard (static-sized) type
7538 that correctly describes it. Does not necessarily create a new
7541 static struct value *
7542 ada_to_fixed_value (struct value *val)
7544 return ada_to_fixed_value_create (value_type (val),
7545 value_address (val),
7549 /* A value representing VAL, but with a standard (static-sized) type
7550 chosen to approximate the real type of VAL as well as possible, but
7551 without consulting any runtime values. For Ada dynamic-sized
7552 types, therefore, the type of the result is likely to be inaccurate. */
7554 static struct value *
7555 ada_to_static_fixed_value (struct value *val)
7558 to_static_fixed_type (static_unwrap_type (value_type (val)));
7559 if (type == value_type (val))
7562 return coerce_unspec_val_to_type (val, type);
7568 /* Table mapping attribute numbers to names.
7569 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7571 static const char *attribute_names[] = {
7589 ada_attribute_name (enum exp_opcode n)
7591 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7592 return attribute_names[n - OP_ATR_FIRST + 1];
7594 return attribute_names[0];
7597 /* Evaluate the 'POS attribute applied to ARG. */
7600 pos_atr (struct value *arg)
7602 struct value *val = coerce_ref (arg);
7603 struct type *type = value_type (val);
7605 if (!discrete_type_p (type))
7606 error (_("'POS only defined on discrete types"));
7608 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7611 LONGEST v = value_as_long (val);
7613 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7615 if (v == TYPE_FIELD_BITPOS (type, i))
7618 error (_("enumeration value is invalid: can't find 'POS"));
7621 return value_as_long (val);
7624 static struct value *
7625 value_pos_atr (struct type *type, struct value *arg)
7627 return value_from_longest (type, pos_atr (arg));
7630 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7632 static struct value *
7633 value_val_atr (struct type *type, struct value *arg)
7635 if (!discrete_type_p (type))
7636 error (_("'VAL only defined on discrete types"));
7637 if (!integer_type_p (value_type (arg)))
7638 error (_("'VAL requires integral argument"));
7640 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7642 long pos = value_as_long (arg);
7643 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7644 error (_("argument to 'VAL out of range"));
7645 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7648 return value_from_longest (type, value_as_long (arg));
7654 /* True if TYPE appears to be an Ada character type.
7655 [At the moment, this is true only for Character and Wide_Character;
7656 It is a heuristic test that could stand improvement]. */
7659 ada_is_character_type (struct type *type)
7663 /* If the type code says it's a character, then assume it really is,
7664 and don't check any further. */
7665 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7668 /* Otherwise, assume it's a character type iff it is a discrete type
7669 with a known character type name. */
7670 name = ada_type_name (type);
7671 return (name != NULL
7672 && (TYPE_CODE (type) == TYPE_CODE_INT
7673 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7674 && (strcmp (name, "character") == 0
7675 || strcmp (name, "wide_character") == 0
7676 || strcmp (name, "wide_wide_character") == 0
7677 || strcmp (name, "unsigned char") == 0));
7680 /* True if TYPE appears to be an Ada string type. */
7683 ada_is_string_type (struct type *type)
7685 type = ada_check_typedef (type);
7687 && TYPE_CODE (type) != TYPE_CODE_PTR
7688 && (ada_is_simple_array_type (type)
7689 || ada_is_array_descriptor_type (type))
7690 && ada_array_arity (type) == 1)
7692 struct type *elttype = ada_array_element_type (type, 1);
7694 return ada_is_character_type (elttype);
7701 /* True if TYPE is a struct type introduced by the compiler to force the
7702 alignment of a value. Such types have a single field with a
7703 distinctive name. */
7706 ada_is_aligner_type (struct type *type)
7708 type = ada_check_typedef (type);
7710 /* If we can find a parallel XVS type, then the XVS type should
7711 be used instead of this type. And hence, this is not an aligner
7713 if (ada_find_parallel_type (type, "___XVS") != NULL)
7716 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7717 && TYPE_NFIELDS (type) == 1
7718 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7721 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7722 the parallel type. */
7725 ada_get_base_type (struct type *raw_type)
7727 struct type *real_type_namer;
7728 struct type *raw_real_type;
7730 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7733 if (ada_is_aligner_type (raw_type))
7734 /* The encoding specifies that we should always use the aligner type.
7735 So, even if this aligner type has an associated XVS type, we should
7738 According to the compiler gurus, an XVS type parallel to an aligner
7739 type may exist because of a stabs limitation. In stabs, aligner
7740 types are empty because the field has a variable-sized type, and
7741 thus cannot actually be used as an aligner type. As a result,
7742 we need the associated parallel XVS type to decode the type.
7743 Since the policy in the compiler is to not change the internal
7744 representation based on the debugging info format, we sometimes
7745 end up having a redundant XVS type parallel to the aligner type. */
7748 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7749 if (real_type_namer == NULL
7750 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7751 || TYPE_NFIELDS (real_type_namer) != 1)
7754 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7755 if (raw_real_type == NULL)
7758 return raw_real_type;
7761 /* The type of value designated by TYPE, with all aligners removed. */
7764 ada_aligned_type (struct type *type)
7766 if (ada_is_aligner_type (type))
7767 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7769 return ada_get_base_type (type);
7773 /* The address of the aligned value in an object at address VALADDR
7774 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7777 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7779 if (ada_is_aligner_type (type))
7780 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7782 TYPE_FIELD_BITPOS (type,
7783 0) / TARGET_CHAR_BIT);
7790 /* The printed representation of an enumeration literal with encoded
7791 name NAME. The value is good to the next call of ada_enum_name. */
7793 ada_enum_name (const char *name)
7795 static char *result;
7796 static size_t result_len = 0;
7799 /* First, unqualify the enumeration name:
7800 1. Search for the last '.' character. If we find one, then skip
7801 all the preceeding characters, the unqualified name starts
7802 right after that dot.
7803 2. Otherwise, we may be debugging on a target where the compiler
7804 translates dots into "__". Search forward for double underscores,
7805 but stop searching when we hit an overloading suffix, which is
7806 of the form "__" followed by digits. */
7808 tmp = strrchr (name, '.');
7813 while ((tmp = strstr (name, "__")) != NULL)
7815 if (isdigit (tmp[2]))
7825 if (name[1] == 'U' || name[1] == 'W')
7827 if (sscanf (name + 2, "%x", &v) != 1)
7833 GROW_VECT (result, result_len, 16);
7834 if (isascii (v) && isprint (v))
7835 xsnprintf (result, result_len, "'%c'", v);
7836 else if (name[1] == 'U')
7837 xsnprintf (result, result_len, "[\"%02x\"]", v);
7839 xsnprintf (result, result_len, "[\"%04x\"]", v);
7845 tmp = strstr (name, "__");
7847 tmp = strstr (name, "$");
7850 GROW_VECT (result, result_len, tmp - name + 1);
7851 strncpy (result, name, tmp - name);
7852 result[tmp - name] = '\0';
7860 /* Evaluate the subexpression of EXP starting at *POS as for
7861 evaluate_type, updating *POS to point just past the evaluated
7864 static struct value *
7865 evaluate_subexp_type (struct expression *exp, int *pos)
7867 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7870 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7873 static struct value *
7874 unwrap_value (struct value *val)
7876 struct type *type = ada_check_typedef (value_type (val));
7877 if (ada_is_aligner_type (type))
7879 struct value *v = ada_value_struct_elt (val, "F", 0);
7880 struct type *val_type = ada_check_typedef (value_type (v));
7881 if (ada_type_name (val_type) == NULL)
7882 TYPE_NAME (val_type) = ada_type_name (type);
7884 return unwrap_value (v);
7888 struct type *raw_real_type =
7889 ada_check_typedef (ada_get_base_type (type));
7891 if (type == raw_real_type)
7895 coerce_unspec_val_to_type
7896 (val, ada_to_fixed_type (raw_real_type, 0,
7897 value_address (val),
7902 static struct value *
7903 cast_to_fixed (struct type *type, struct value *arg)
7907 if (type == value_type (arg))
7909 else if (ada_is_fixed_point_type (value_type (arg)))
7910 val = ada_float_to_fixed (type,
7911 ada_fixed_to_float (value_type (arg),
7912 value_as_long (arg)));
7915 DOUBLEST argd = value_as_double (arg);
7916 val = ada_float_to_fixed (type, argd);
7919 return value_from_longest (type, val);
7922 static struct value *
7923 cast_from_fixed (struct type *type, struct value *arg)
7925 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7926 value_as_long (arg));
7927 return value_from_double (type, val);
7930 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7931 return the converted value. */
7933 static struct value *
7934 coerce_for_assign (struct type *type, struct value *val)
7936 struct type *type2 = value_type (val);
7940 type2 = ada_check_typedef (type2);
7941 type = ada_check_typedef (type);
7943 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7944 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7946 val = ada_value_ind (val);
7947 type2 = value_type (val);
7950 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7951 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7953 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7954 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7955 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7956 error (_("Incompatible types in assignment"));
7957 deprecated_set_value_type (val, type);
7962 static struct value *
7963 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7966 struct type *type1, *type2;
7969 arg1 = coerce_ref (arg1);
7970 arg2 = coerce_ref (arg2);
7971 type1 = base_type (ada_check_typedef (value_type (arg1)));
7972 type2 = base_type (ada_check_typedef (value_type (arg2)));
7974 if (TYPE_CODE (type1) != TYPE_CODE_INT
7975 || TYPE_CODE (type2) != TYPE_CODE_INT)
7976 return value_binop (arg1, arg2, op);
7985 return value_binop (arg1, arg2, op);
7988 v2 = value_as_long (arg2);
7990 error (_("second operand of %s must not be zero."), op_string (op));
7992 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7993 return value_binop (arg1, arg2, op);
7995 v1 = value_as_long (arg1);
8000 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8001 v += v > 0 ? -1 : 1;
8009 /* Should not reach this point. */
8013 val = allocate_value (type1);
8014 store_unsigned_integer (value_contents_raw (val),
8015 TYPE_LENGTH (value_type (val)),
8016 gdbarch_byte_order (get_type_arch (type1)), v);
8021 ada_value_equal (struct value *arg1, struct value *arg2)
8023 if (ada_is_direct_array_type (value_type (arg1))
8024 || ada_is_direct_array_type (value_type (arg2)))
8026 /* Automatically dereference any array reference before
8027 we attempt to perform the comparison. */
8028 arg1 = ada_coerce_ref (arg1);
8029 arg2 = ada_coerce_ref (arg2);
8031 arg1 = ada_coerce_to_simple_array (arg1);
8032 arg2 = ada_coerce_to_simple_array (arg2);
8033 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8034 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8035 error (_("Attempt to compare array with non-array"));
8036 /* FIXME: The following works only for types whose
8037 representations use all bits (no padding or undefined bits)
8038 and do not have user-defined equality. */
8040 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8041 && memcmp (value_contents (arg1), value_contents (arg2),
8042 TYPE_LENGTH (value_type (arg1))) == 0;
8044 return value_equal (arg1, arg2);
8047 /* Total number of component associations in the aggregate starting at
8048 index PC in EXP. Assumes that index PC is the start of an
8052 num_component_specs (struct expression *exp, int pc)
8055 m = exp->elts[pc + 1].longconst;
8058 for (i = 0; i < m; i += 1)
8060 switch (exp->elts[pc].opcode)
8066 n += exp->elts[pc + 1].longconst;
8069 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8074 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8075 component of LHS (a simple array or a record), updating *POS past
8076 the expression, assuming that LHS is contained in CONTAINER. Does
8077 not modify the inferior's memory, nor does it modify LHS (unless
8078 LHS == CONTAINER). */
8081 assign_component (struct value *container, struct value *lhs, LONGEST index,
8082 struct expression *exp, int *pos)
8084 struct value *mark = value_mark ();
8086 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8088 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8089 struct value *index_val = value_from_longest (index_type, index);
8090 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8094 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8095 elt = ada_to_fixed_value (unwrap_value (elt));
8098 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8099 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8101 value_assign_to_component (container, elt,
8102 ada_evaluate_subexp (NULL, exp, pos,
8105 value_free_to_mark (mark);
8108 /* Assuming that LHS represents an lvalue having a record or array
8109 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8110 of that aggregate's value to LHS, advancing *POS past the
8111 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8112 lvalue containing LHS (possibly LHS itself). Does not modify
8113 the inferior's memory, nor does it modify the contents of
8114 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8116 static struct value *
8117 assign_aggregate (struct value *container,
8118 struct value *lhs, struct expression *exp,
8119 int *pos, enum noside noside)
8121 struct type *lhs_type;
8122 int n = exp->elts[*pos+1].longconst;
8123 LONGEST low_index, high_index;
8126 int max_indices, num_indices;
8127 int is_array_aggregate;
8129 struct value *mark = value_mark ();
8132 if (noside != EVAL_NORMAL)
8135 for (i = 0; i < n; i += 1)
8136 ada_evaluate_subexp (NULL, exp, pos, noside);
8140 container = ada_coerce_ref (container);
8141 if (ada_is_direct_array_type (value_type (container)))
8142 container = ada_coerce_to_simple_array (container);
8143 lhs = ada_coerce_ref (lhs);
8144 if (!deprecated_value_modifiable (lhs))
8145 error (_("Left operand of assignment is not a modifiable lvalue."));
8147 lhs_type = value_type (lhs);
8148 if (ada_is_direct_array_type (lhs_type))
8150 lhs = ada_coerce_to_simple_array (lhs);
8151 lhs_type = value_type (lhs);
8152 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8153 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8154 is_array_aggregate = 1;
8156 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8159 high_index = num_visible_fields (lhs_type) - 1;
8160 is_array_aggregate = 0;
8163 error (_("Left-hand side must be array or record."));
8165 num_specs = num_component_specs (exp, *pos - 3);
8166 max_indices = 4 * num_specs + 4;
8167 indices = alloca (max_indices * sizeof (indices[0]));
8168 indices[0] = indices[1] = low_index - 1;
8169 indices[2] = indices[3] = high_index + 1;
8172 for (i = 0; i < n; i += 1)
8174 switch (exp->elts[*pos].opcode)
8177 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8178 &num_indices, max_indices,
8179 low_index, high_index);
8182 aggregate_assign_positional (container, lhs, exp, pos, indices,
8183 &num_indices, max_indices,
8184 low_index, high_index);
8188 error (_("Misplaced 'others' clause"));
8189 aggregate_assign_others (container, lhs, exp, pos, indices,
8190 num_indices, low_index, high_index);
8193 error (_("Internal error: bad aggregate clause"));
8200 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8201 construct at *POS, updating *POS past the construct, given that
8202 the positions are relative to lower bound LOW, where HIGH is the
8203 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8204 updating *NUM_INDICES as needed. CONTAINER is as for
8205 assign_aggregate. */
8207 aggregate_assign_positional (struct value *container,
8208 struct value *lhs, struct expression *exp,
8209 int *pos, LONGEST *indices, int *num_indices,
8210 int max_indices, LONGEST low, LONGEST high)
8212 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8214 if (ind - 1 == high)
8215 warning (_("Extra components in aggregate ignored."));
8218 add_component_interval (ind, ind, indices, num_indices, max_indices);
8220 assign_component (container, lhs, ind, exp, pos);
8223 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8226 /* Assign into the components of LHS indexed by the OP_CHOICES
8227 construct at *POS, updating *POS past the construct, given that
8228 the allowable indices are LOW..HIGH. Record the indices assigned
8229 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8230 needed. CONTAINER is as for assign_aggregate. */
8232 aggregate_assign_from_choices (struct value *container,
8233 struct value *lhs, struct expression *exp,
8234 int *pos, LONGEST *indices, int *num_indices,
8235 int max_indices, LONGEST low, LONGEST high)
8238 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8239 int choice_pos, expr_pc;
8240 int is_array = ada_is_direct_array_type (value_type (lhs));
8242 choice_pos = *pos += 3;
8244 for (j = 0; j < n_choices; j += 1)
8245 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8247 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8249 for (j = 0; j < n_choices; j += 1)
8251 LONGEST lower, upper;
8252 enum exp_opcode op = exp->elts[choice_pos].opcode;
8253 if (op == OP_DISCRETE_RANGE)
8256 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8258 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8263 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8274 name = &exp->elts[choice_pos + 2].string;
8277 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8280 error (_("Invalid record component association."));
8282 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8284 if (! find_struct_field (name, value_type (lhs), 0,
8285 NULL, NULL, NULL, NULL, &ind))
8286 error (_("Unknown component name: %s."), name);
8287 lower = upper = ind;
8290 if (lower <= upper && (lower < low || upper > high))
8291 error (_("Index in component association out of bounds."));
8293 add_component_interval (lower, upper, indices, num_indices,
8295 while (lower <= upper)
8299 assign_component (container, lhs, lower, exp, &pos1);
8305 /* Assign the value of the expression in the OP_OTHERS construct in
8306 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8307 have not been previously assigned. The index intervals already assigned
8308 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8309 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8311 aggregate_assign_others (struct value *container,
8312 struct value *lhs, struct expression *exp,
8313 int *pos, LONGEST *indices, int num_indices,
8314 LONGEST low, LONGEST high)
8317 int expr_pc = *pos+1;
8319 for (i = 0; i < num_indices - 2; i += 2)
8322 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8326 assign_component (container, lhs, ind, exp, &pos);
8329 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8332 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8333 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8334 modifying *SIZE as needed. It is an error if *SIZE exceeds
8335 MAX_SIZE. The resulting intervals do not overlap. */
8337 add_component_interval (LONGEST low, LONGEST high,
8338 LONGEST* indices, int *size, int max_size)
8341 for (i = 0; i < *size; i += 2) {
8342 if (high >= indices[i] && low <= indices[i + 1])
8345 for (kh = i + 2; kh < *size; kh += 2)
8346 if (high < indices[kh])
8348 if (low < indices[i])
8350 indices[i + 1] = indices[kh - 1];
8351 if (high > indices[i + 1])
8352 indices[i + 1] = high;
8353 memcpy (indices + i + 2, indices + kh, *size - kh);
8354 *size -= kh - i - 2;
8357 else if (high < indices[i])
8361 if (*size == max_size)
8362 error (_("Internal error: miscounted aggregate components."));
8364 for (j = *size-1; j >= i+2; j -= 1)
8365 indices[j] = indices[j - 2];
8367 indices[i + 1] = high;
8370 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8373 static struct value *
8374 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8376 if (type == ada_check_typedef (value_type (arg2)))
8379 if (ada_is_fixed_point_type (type))
8380 return (cast_to_fixed (type, arg2));
8382 if (ada_is_fixed_point_type (value_type (arg2)))
8383 return cast_from_fixed (type, arg2);
8385 return value_cast (type, arg2);
8388 /* Evaluating Ada expressions, and printing their result.
8389 ------------------------------------------------------
8394 We usually evaluate an Ada expression in order to print its value.
8395 We also evaluate an expression in order to print its type, which
8396 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8397 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8398 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8399 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8402 Evaluating expressions is a little more complicated for Ada entities
8403 than it is for entities in languages such as C. The main reason for
8404 this is that Ada provides types whose definition might be dynamic.
8405 One example of such types is variant records. Or another example
8406 would be an array whose bounds can only be known at run time.
8408 The following description is a general guide as to what should be
8409 done (and what should NOT be done) in order to evaluate an expression
8410 involving such types, and when. This does not cover how the semantic
8411 information is encoded by GNAT as this is covered separatly. For the
8412 document used as the reference for the GNAT encoding, see exp_dbug.ads
8413 in the GNAT sources.
8415 Ideally, we should embed each part of this description next to its
8416 associated code. Unfortunately, the amount of code is so vast right
8417 now that it's hard to see whether the code handling a particular
8418 situation might be duplicated or not. One day, when the code is
8419 cleaned up, this guide might become redundant with the comments
8420 inserted in the code, and we might want to remove it.
8422 2. ``Fixing'' an Entity, the Simple Case:
8423 -----------------------------------------
8425 When evaluating Ada expressions, the tricky issue is that they may
8426 reference entities whose type contents and size are not statically
8427 known. Consider for instance a variant record:
8429 type Rec (Empty : Boolean := True) is record
8432 when False => Value : Integer;
8435 Yes : Rec := (Empty => False, Value => 1);
8436 No : Rec := (empty => True);
8438 The size and contents of that record depends on the value of the
8439 descriminant (Rec.Empty). At this point, neither the debugging
8440 information nor the associated type structure in GDB are able to
8441 express such dynamic types. So what the debugger does is to create
8442 "fixed" versions of the type that applies to the specific object.
8443 We also informally refer to this opperation as "fixing" an object,
8444 which means creating its associated fixed type.
8446 Example: when printing the value of variable "Yes" above, its fixed
8447 type would look like this:
8454 On the other hand, if we printed the value of "No", its fixed type
8461 Things become a little more complicated when trying to fix an entity
8462 with a dynamic type that directly contains another dynamic type,
8463 such as an array of variant records, for instance. There are
8464 two possible cases: Arrays, and records.
8466 3. ``Fixing'' Arrays:
8467 ---------------------
8469 The type structure in GDB describes an array in terms of its bounds,
8470 and the type of its elements. By design, all elements in the array
8471 have the same type and we cannot represent an array of variant elements
8472 using the current type structure in GDB. When fixing an array,
8473 we cannot fix the array element, as we would potentially need one
8474 fixed type per element of the array. As a result, the best we can do
8475 when fixing an array is to produce an array whose bounds and size
8476 are correct (allowing us to read it from memory), but without having
8477 touched its element type. Fixing each element will be done later,
8478 when (if) necessary.
8480 Arrays are a little simpler to handle than records, because the same
8481 amount of memory is allocated for each element of the array, even if
8482 the amount of space actually used by each element differs from element
8483 to element. Consider for instance the following array of type Rec:
8485 type Rec_Array is array (1 .. 2) of Rec;
8487 The actual amount of memory occupied by each element might be different
8488 from element to element, depending on the value of their discriminant.
8489 But the amount of space reserved for each element in the array remains
8490 fixed regardless. So we simply need to compute that size using
8491 the debugging information available, from which we can then determine
8492 the array size (we multiply the number of elements of the array by
8493 the size of each element).
8495 The simplest case is when we have an array of a constrained element
8496 type. For instance, consider the following type declarations:
8498 type Bounded_String (Max_Size : Integer) is
8500 Buffer : String (1 .. Max_Size);
8502 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8504 In this case, the compiler describes the array as an array of
8505 variable-size elements (identified by its XVS suffix) for which
8506 the size can be read in the parallel XVZ variable.
8508 In the case of an array of an unconstrained element type, the compiler
8509 wraps the array element inside a private PAD type. This type should not
8510 be shown to the user, and must be "unwrap"'ed before printing. Note
8511 that we also use the adjective "aligner" in our code to designate
8512 these wrapper types.
8514 In some cases, the size allocated for each element is statically
8515 known. In that case, the PAD type already has the correct size,
8516 and the array element should remain unfixed.
8518 But there are cases when this size is not statically known.
8519 For instance, assuming that "Five" is an integer variable:
8521 type Dynamic is array (1 .. Five) of Integer;
8522 type Wrapper (Has_Length : Boolean := False) is record
8525 when True => Length : Integer;
8529 type Wrapper_Array is array (1 .. 2) of Wrapper;
8531 Hello : Wrapper_Array := (others => (Has_Length => True,
8532 Data => (others => 17),
8536 The debugging info would describe variable Hello as being an
8537 array of a PAD type. The size of that PAD type is not statically
8538 known, but can be determined using a parallel XVZ variable.
8539 In that case, a copy of the PAD type with the correct size should
8540 be used for the fixed array.
8542 3. ``Fixing'' record type objects:
8543 ----------------------------------
8545 Things are slightly different from arrays in the case of dynamic
8546 record types. In this case, in order to compute the associated
8547 fixed type, we need to determine the size and offset of each of
8548 its components. This, in turn, requires us to compute the fixed
8549 type of each of these components.
8551 Consider for instance the example:
8553 type Bounded_String (Max_Size : Natural) is record
8554 Str : String (1 .. Max_Size);
8557 My_String : Bounded_String (Max_Size => 10);
8559 In that case, the position of field "Length" depends on the size
8560 of field Str, which itself depends on the value of the Max_Size
8561 discriminant. In order to fix the type of variable My_String,
8562 we need to fix the type of field Str. Therefore, fixing a variant
8563 record requires us to fix each of its components.
8565 However, if a component does not have a dynamic size, the component
8566 should not be fixed. In particular, fields that use a PAD type
8567 should not fixed. Here is an example where this might happen
8568 (assuming type Rec above):
8570 type Container (Big : Boolean) is record
8574 when True => Another : Integer;
8578 My_Container : Container := (Big => False,
8579 First => (Empty => True),
8582 In that example, the compiler creates a PAD type for component First,
8583 whose size is constant, and then positions the component After just
8584 right after it. The offset of component After is therefore constant
8587 The debugger computes the position of each field based on an algorithm
8588 that uses, among other things, the actual position and size of the field
8589 preceding it. Let's now imagine that the user is trying to print
8590 the value of My_Container. If the type fixing was recursive, we would
8591 end up computing the offset of field After based on the size of the
8592 fixed version of field First. And since in our example First has
8593 only one actual field, the size of the fixed type is actually smaller
8594 than the amount of space allocated to that field, and thus we would
8595 compute the wrong offset of field After.
8597 To make things more complicated, we need to watch out for dynamic
8598 components of variant records (identified by the ___XVL suffix in
8599 the component name). Even if the target type is a PAD type, the size
8600 of that type might not be statically known. So the PAD type needs
8601 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8602 we might end up with the wrong size for our component. This can be
8603 observed with the following type declarations:
8605 type Octal is new Integer range 0 .. 7;
8606 type Octal_Array is array (Positive range <>) of Octal;
8607 pragma Pack (Octal_Array);
8609 type Octal_Buffer (Size : Positive) is record
8610 Buffer : Octal_Array (1 .. Size);
8614 In that case, Buffer is a PAD type whose size is unset and needs
8615 to be computed by fixing the unwrapped type.
8617 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8618 ----------------------------------------------------------
8620 Lastly, when should the sub-elements of an entity that remained unfixed
8621 thus far, be actually fixed?
8623 The answer is: Only when referencing that element. For instance
8624 when selecting one component of a record, this specific component
8625 should be fixed at that point in time. Or when printing the value
8626 of a record, each component should be fixed before its value gets
8627 printed. Similarly for arrays, the element of the array should be
8628 fixed when printing each element of the array, or when extracting
8629 one element out of that array. On the other hand, fixing should
8630 not be performed on the elements when taking a slice of an array!
8632 Note that one of the side-effects of miscomputing the offset and
8633 size of each field is that we end up also miscomputing the size
8634 of the containing type. This can have adverse results when computing
8635 the value of an entity. GDB fetches the value of an entity based
8636 on the size of its type, and thus a wrong size causes GDB to fetch
8637 the wrong amount of memory. In the case where the computed size is
8638 too small, GDB fetches too little data to print the value of our
8639 entiry. Results in this case as unpredicatble, as we usually read
8640 past the buffer containing the data =:-o. */
8642 /* Implement the evaluate_exp routine in the exp_descriptor structure
8643 for the Ada language. */
8645 static struct value *
8646 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8647 int *pos, enum noside noside)
8650 int tem, tem2, tem3;
8652 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8655 struct value **argvec;
8659 op = exp->elts[pc].opcode;
8665 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8666 arg1 = unwrap_value (arg1);
8668 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8669 then we need to perform the conversion manually, because
8670 evaluate_subexp_standard doesn't do it. This conversion is
8671 necessary in Ada because the different kinds of float/fixed
8672 types in Ada have different representations.
8674 Similarly, we need to perform the conversion from OP_LONG
8676 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8677 arg1 = ada_value_cast (expect_type, arg1, noside);
8683 struct value *result;
8685 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8686 /* The result type will have code OP_STRING, bashed there from
8687 OP_ARRAY. Bash it back. */
8688 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8689 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8695 type = exp->elts[pc + 1].type;
8696 arg1 = evaluate_subexp (type, exp, pos, noside);
8697 if (noside == EVAL_SKIP)
8699 arg1 = ada_value_cast (type, arg1, noside);
8704 type = exp->elts[pc + 1].type;
8705 return ada_evaluate_subexp (type, exp, pos, noside);
8708 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8709 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8711 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8712 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8714 return ada_value_assign (arg1, arg1);
8716 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8717 except if the lhs of our assignment is a convenience variable.
8718 In the case of assigning to a convenience variable, the lhs
8719 should be exactly the result of the evaluation of the rhs. */
8720 type = value_type (arg1);
8721 if (VALUE_LVAL (arg1) == lval_internalvar)
8723 arg2 = evaluate_subexp (type, exp, pos, noside);
8724 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8726 if (ada_is_fixed_point_type (value_type (arg1)))
8727 arg2 = cast_to_fixed (value_type (arg1), arg2);
8728 else if (ada_is_fixed_point_type (value_type (arg2)))
8730 (_("Fixed-point values must be assigned to fixed-point variables"));
8732 arg2 = coerce_for_assign (value_type (arg1), arg2);
8733 return ada_value_assign (arg1, arg2);
8736 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8737 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8738 if (noside == EVAL_SKIP)
8740 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8741 return (value_from_longest
8743 value_as_long (arg1) + value_as_long (arg2)));
8744 if ((ada_is_fixed_point_type (value_type (arg1))
8745 || ada_is_fixed_point_type (value_type (arg2)))
8746 && value_type (arg1) != value_type (arg2))
8747 error (_("Operands of fixed-point addition must have the same type"));
8748 /* Do the addition, and cast the result to the type of the first
8749 argument. We cannot cast the result to a reference type, so if
8750 ARG1 is a reference type, find its underlying type. */
8751 type = value_type (arg1);
8752 while (TYPE_CODE (type) == TYPE_CODE_REF)
8753 type = TYPE_TARGET_TYPE (type);
8754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8755 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8758 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8759 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8760 if (noside == EVAL_SKIP)
8762 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8763 return (value_from_longest
8765 value_as_long (arg1) - value_as_long (arg2)));
8766 if ((ada_is_fixed_point_type (value_type (arg1))
8767 || ada_is_fixed_point_type (value_type (arg2)))
8768 && value_type (arg1) != value_type (arg2))
8769 error (_("Operands of fixed-point subtraction must have the same type"));
8770 /* Do the substraction, and cast the result to the type of the first
8771 argument. We cannot cast the result to a reference type, so if
8772 ARG1 is a reference type, find its underlying type. */
8773 type = value_type (arg1);
8774 while (TYPE_CODE (type) == TYPE_CODE_REF)
8775 type = TYPE_TARGET_TYPE (type);
8776 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8777 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8784 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8785 if (noside == EVAL_SKIP)
8787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8789 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8790 return value_zero (value_type (arg1), not_lval);
8794 type = builtin_type (exp->gdbarch)->builtin_double;
8795 if (ada_is_fixed_point_type (value_type (arg1)))
8796 arg1 = cast_from_fixed (type, arg1);
8797 if (ada_is_fixed_point_type (value_type (arg2)))
8798 arg2 = cast_from_fixed (type, arg2);
8799 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8800 return ada_value_binop (arg1, arg2, op);
8804 case BINOP_NOTEQUAL:
8805 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8806 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8807 if (noside == EVAL_SKIP)
8809 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8813 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8814 tem = ada_value_equal (arg1, arg2);
8816 if (op == BINOP_NOTEQUAL)
8818 type = language_bool_type (exp->language_defn, exp->gdbarch);
8819 return value_from_longest (type, (LONGEST) tem);
8822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8823 if (noside == EVAL_SKIP)
8825 else if (ada_is_fixed_point_type (value_type (arg1)))
8826 return value_cast (value_type (arg1), value_neg (arg1));
8829 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8830 return value_neg (arg1);
8833 case BINOP_LOGICAL_AND:
8834 case BINOP_LOGICAL_OR:
8835 case UNOP_LOGICAL_NOT:
8840 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8841 type = language_bool_type (exp->language_defn, exp->gdbarch);
8842 return value_cast (type, val);
8845 case BINOP_BITWISE_AND:
8846 case BINOP_BITWISE_IOR:
8847 case BINOP_BITWISE_XOR:
8851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8853 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8855 return value_cast (value_type (arg1), val);
8861 if (noside == EVAL_SKIP)
8866 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8867 /* Only encountered when an unresolved symbol occurs in a
8868 context other than a function call, in which case, it is
8870 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8871 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8872 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8874 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8875 if (ada_is_tagged_type (type, 0))
8877 /* Tagged types are a little special in the fact that the real
8878 type is dynamic and can only be determined by inspecting the
8879 object's tag. This means that we need to get the object's
8880 value first (EVAL_NORMAL) and then extract the actual object
8883 Note that we cannot skip the final step where we extract
8884 the object type from its tag, because the EVAL_NORMAL phase
8885 results in dynamic components being resolved into fixed ones.
8886 This can cause problems when trying to print the type
8887 description of tagged types whose parent has a dynamic size:
8888 We use the type name of the "_parent" component in order
8889 to print the name of the ancestor type in the type description.
8890 If that component had a dynamic size, the resolution into
8891 a fixed type would result in the loss of that type name,
8892 thus preventing us from printing the name of the ancestor
8893 type in the type description. */
8894 struct type *actual_type;
8896 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8897 actual_type = type_from_tag (ada_value_tag (arg1));
8898 if (actual_type == NULL)
8899 /* If, for some reason, we were unable to determine
8900 the actual type from the tag, then use the static
8901 approximation that we just computed as a fallback.
8902 This can happen if the debugging information is
8903 incomplete, for instance. */
8906 return value_zero (actual_type, not_lval);
8911 (to_static_fixed_type
8912 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8917 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8918 arg1 = unwrap_value (arg1);
8919 return ada_to_fixed_value (arg1);
8925 /* Allocate arg vector, including space for the function to be
8926 called in argvec[0] and a terminating NULL. */
8927 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8929 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8931 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8932 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8933 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8934 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8937 for (tem = 0; tem <= nargs; tem += 1)
8938 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8941 if (noside == EVAL_SKIP)
8945 if (ada_is_constrained_packed_array_type
8946 (desc_base_type (value_type (argvec[0]))))
8947 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8948 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8949 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8950 /* This is a packed array that has already been fixed, and
8951 therefore already coerced to a simple array. Nothing further
8954 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8955 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8956 && VALUE_LVAL (argvec[0]) == lval_memory))
8957 argvec[0] = value_addr (argvec[0]);
8959 type = ada_check_typedef (value_type (argvec[0]));
8960 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8962 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8964 case TYPE_CODE_FUNC:
8965 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8967 case TYPE_CODE_ARRAY:
8969 case TYPE_CODE_STRUCT:
8970 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8971 argvec[0] = ada_value_ind (argvec[0]);
8972 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8975 error (_("cannot subscript or call something of type `%s'"),
8976 ada_type_name (value_type (argvec[0])));
8981 switch (TYPE_CODE (type))
8983 case TYPE_CODE_FUNC:
8984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8985 return allocate_value (TYPE_TARGET_TYPE (type));
8986 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8987 case TYPE_CODE_STRUCT:
8991 arity = ada_array_arity (type);
8992 type = ada_array_element_type (type, nargs);
8994 error (_("cannot subscript or call a record"));
8996 error (_("wrong number of subscripts; expecting %d"), arity);
8997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8998 return value_zero (ada_aligned_type (type), lval_memory);
9000 unwrap_value (ada_value_subscript
9001 (argvec[0], nargs, argvec + 1));
9003 case TYPE_CODE_ARRAY:
9004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9006 type = ada_array_element_type (type, nargs);
9008 error (_("element type of array unknown"));
9010 return value_zero (ada_aligned_type (type), lval_memory);
9013 unwrap_value (ada_value_subscript
9014 (ada_coerce_to_simple_array (argvec[0]),
9015 nargs, argvec + 1));
9016 case TYPE_CODE_PTR: /* Pointer to array */
9017 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9020 type = ada_array_element_type (type, nargs);
9022 error (_("element type of array unknown"));
9024 return value_zero (ada_aligned_type (type), lval_memory);
9027 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9028 nargs, argvec + 1));
9031 error (_("Attempt to index or call something other than an "
9032 "array or function"));
9037 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9038 struct value *low_bound_val =
9039 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9040 struct value *high_bound_val =
9041 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9044 low_bound_val = coerce_ref (low_bound_val);
9045 high_bound_val = coerce_ref (high_bound_val);
9046 low_bound = pos_atr (low_bound_val);
9047 high_bound = pos_atr (high_bound_val);
9049 if (noside == EVAL_SKIP)
9052 /* If this is a reference to an aligner type, then remove all
9054 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9055 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9056 TYPE_TARGET_TYPE (value_type (array)) =
9057 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9059 if (ada_is_constrained_packed_array_type (value_type (array)))
9060 error (_("cannot slice a packed array"));
9062 /* If this is a reference to an array or an array lvalue,
9063 convert to a pointer. */
9064 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9065 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9066 && VALUE_LVAL (array) == lval_memory))
9067 array = value_addr (array);
9069 if (noside == EVAL_AVOID_SIDE_EFFECTS
9070 && ada_is_array_descriptor_type (ada_check_typedef
9071 (value_type (array))))
9072 return empty_array (ada_type_of_array (array, 0), low_bound);
9074 array = ada_coerce_to_simple_array_ptr (array);
9076 /* If we have more than one level of pointer indirection,
9077 dereference the value until we get only one level. */
9078 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9079 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9081 array = value_ind (array);
9083 /* Make sure we really do have an array type before going further,
9084 to avoid a SEGV when trying to get the index type or the target
9085 type later down the road if the debug info generated by
9086 the compiler is incorrect or incomplete. */
9087 if (!ada_is_simple_array_type (value_type (array)))
9088 error (_("cannot take slice of non-array"));
9090 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9092 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9093 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9097 struct type *arr_type0 =
9098 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9100 return ada_value_slice_from_ptr (array, arr_type0,
9101 longest_to_int (low_bound),
9102 longest_to_int (high_bound));
9105 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9107 else if (high_bound < low_bound)
9108 return empty_array (value_type (array), low_bound);
9110 return ada_value_slice (array, longest_to_int (low_bound),
9111 longest_to_int (high_bound));
9116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9117 type = check_typedef (exp->elts[pc + 1].type);
9119 if (noside == EVAL_SKIP)
9122 switch (TYPE_CODE (type))
9125 lim_warning (_("Membership test incompletely implemented; "
9126 "always returns true"));
9127 type = language_bool_type (exp->language_defn, exp->gdbarch);
9128 return value_from_longest (type, (LONGEST) 1);
9130 case TYPE_CODE_RANGE:
9131 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9132 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9133 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9135 type = language_bool_type (exp->language_defn, exp->gdbarch);
9137 value_from_longest (type,
9138 (value_less (arg1, arg3)
9139 || value_equal (arg1, arg3))
9140 && (value_less (arg2, arg1)
9141 || value_equal (arg2, arg1)));
9144 case BINOP_IN_BOUNDS:
9146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9149 if (noside == EVAL_SKIP)
9152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9154 type = language_bool_type (exp->language_defn, exp->gdbarch);
9155 return value_zero (type, not_lval);
9158 tem = longest_to_int (exp->elts[pc + 1].longconst);
9160 type = ada_index_type (value_type (arg2), tem, "range");
9162 type = value_type (arg1);
9164 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9165 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9169 type = language_bool_type (exp->language_defn, exp->gdbarch);
9171 value_from_longest (type,
9172 (value_less (arg1, arg3)
9173 || value_equal (arg1, arg3))
9174 && (value_less (arg2, arg1)
9175 || value_equal (arg2, arg1)));
9177 case TERNOP_IN_RANGE:
9178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9179 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9180 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9182 if (noside == EVAL_SKIP)
9185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9187 type = language_bool_type (exp->language_defn, exp->gdbarch);
9189 value_from_longest (type,
9190 (value_less (arg1, arg3)
9191 || value_equal (arg1, arg3))
9192 && (value_less (arg2, arg1)
9193 || value_equal (arg2, arg1)));
9199 struct type *type_arg;
9200 if (exp->elts[*pos].opcode == OP_TYPE)
9202 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9204 type_arg = check_typedef (exp->elts[pc + 2].type);
9208 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9212 if (exp->elts[*pos].opcode != OP_LONG)
9213 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9214 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9217 if (noside == EVAL_SKIP)
9220 if (type_arg == NULL)
9222 arg1 = ada_coerce_ref (arg1);
9224 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9225 arg1 = ada_coerce_to_simple_array (arg1);
9227 type = ada_index_type (value_type (arg1), tem,
9228 ada_attribute_name (op));
9230 type = builtin_type (exp->gdbarch)->builtin_int;
9232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9233 return allocate_value (type);
9237 default: /* Should never happen. */
9238 error (_("unexpected attribute encountered"));
9240 return value_from_longest
9241 (type, ada_array_bound (arg1, tem, 0));
9243 return value_from_longest
9244 (type, ada_array_bound (arg1, tem, 1));
9246 return value_from_longest
9247 (type, ada_array_length (arg1, tem));
9250 else if (discrete_type_p (type_arg))
9252 struct type *range_type;
9253 char *name = ada_type_name (type_arg);
9255 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9256 range_type = to_fixed_range_type (name, NULL, type_arg);
9257 if (range_type == NULL)
9258 range_type = type_arg;
9262 error (_("unexpected attribute encountered"));
9264 return value_from_longest
9265 (range_type, discrete_type_low_bound (range_type));
9267 return value_from_longest
9268 (range_type, discrete_type_high_bound (range_type));
9270 error (_("the 'length attribute applies only to array types"));
9273 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9274 error (_("unimplemented type attribute"));
9279 if (ada_is_constrained_packed_array_type (type_arg))
9280 type_arg = decode_constrained_packed_array_type (type_arg);
9282 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9284 type = builtin_type (exp->gdbarch)->builtin_int;
9286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9287 return allocate_value (type);
9292 error (_("unexpected attribute encountered"));
9294 low = ada_array_bound_from_type (type_arg, tem, 0);
9295 return value_from_longest (type, low);
9297 high = ada_array_bound_from_type (type_arg, tem, 1);
9298 return value_from_longest (type, high);
9300 low = ada_array_bound_from_type (type_arg, tem, 0);
9301 high = ada_array_bound_from_type (type_arg, tem, 1);
9302 return value_from_longest (type, high - low + 1);
9308 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9309 if (noside == EVAL_SKIP)
9312 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9313 return value_zero (ada_tag_type (arg1), not_lval);
9315 return ada_value_tag (arg1);
9319 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9320 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9321 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9322 if (noside == EVAL_SKIP)
9324 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9325 return value_zero (value_type (arg1), not_lval);
9328 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9329 return value_binop (arg1, arg2,
9330 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9333 case OP_ATR_MODULUS:
9335 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9338 if (noside == EVAL_SKIP)
9341 if (!ada_is_modular_type (type_arg))
9342 error (_("'modulus must be applied to modular type"));
9344 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9345 ada_modulus (type_arg));
9350 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9352 if (noside == EVAL_SKIP)
9354 type = builtin_type (exp->gdbarch)->builtin_int;
9355 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9356 return value_zero (type, not_lval);
9358 return value_pos_atr (type, arg1);
9361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9362 type = value_type (arg1);
9364 /* If the argument is a reference, then dereference its type, since
9365 the user is really asking for the size of the actual object,
9366 not the size of the pointer. */
9367 if (TYPE_CODE (type) == TYPE_CODE_REF)
9368 type = TYPE_TARGET_TYPE (type);
9370 if (noside == EVAL_SKIP)
9372 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9373 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9375 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9376 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9379 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9381 type = exp->elts[pc + 2].type;
9382 if (noside == EVAL_SKIP)
9384 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9385 return value_zero (type, not_lval);
9387 return value_val_atr (type, arg1);
9390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9391 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9392 if (noside == EVAL_SKIP)
9394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9395 return value_zero (value_type (arg1), not_lval);
9398 /* For integer exponentiation operations,
9399 only promote the first argument. */
9400 if (is_integral_type (value_type (arg2)))
9401 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9403 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9405 return value_binop (arg1, arg2, op);
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9410 if (noside == EVAL_SKIP)
9416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9417 if (noside == EVAL_SKIP)
9419 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9420 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9421 return value_neg (arg1);
9426 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9427 if (noside == EVAL_SKIP)
9429 type = ada_check_typedef (value_type (arg1));
9430 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9432 if (ada_is_array_descriptor_type (type))
9433 /* GDB allows dereferencing GNAT array descriptors. */
9435 struct type *arrType = ada_type_of_array (arg1, 0);
9436 if (arrType == NULL)
9437 error (_("Attempt to dereference null array pointer."));
9438 return value_at_lazy (arrType, 0);
9440 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9441 || TYPE_CODE (type) == TYPE_CODE_REF
9442 /* In C you can dereference an array to get the 1st elt. */
9443 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9445 type = to_static_fixed_type
9447 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9449 return value_zero (type, lval_memory);
9451 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9453 /* GDB allows dereferencing an int. */
9454 if (expect_type == NULL)
9455 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9460 to_static_fixed_type (ada_aligned_type (expect_type));
9461 return value_zero (expect_type, lval_memory);
9465 error (_("Attempt to take contents of a non-pointer value."));
9467 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9468 type = ada_check_typedef (value_type (arg1));
9470 if (TYPE_CODE (type) == TYPE_CODE_INT)
9471 /* GDB allows dereferencing an int. If we were given
9472 the expect_type, then use that as the target type.
9473 Otherwise, assume that the target type is an int. */
9475 if (expect_type != NULL)
9476 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9479 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9480 (CORE_ADDR) value_as_address (arg1));
9483 if (ada_is_array_descriptor_type (type))
9484 /* GDB allows dereferencing GNAT array descriptors. */
9485 return ada_coerce_to_simple_array (arg1);
9487 return ada_value_ind (arg1);
9489 case STRUCTOP_STRUCT:
9490 tem = longest_to_int (exp->elts[pc + 1].longconst);
9491 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9493 if (noside == EVAL_SKIP)
9495 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9497 struct type *type1 = value_type (arg1);
9498 if (ada_is_tagged_type (type1, 1))
9500 type = ada_lookup_struct_elt_type (type1,
9501 &exp->elts[pc + 2].string,
9504 /* In this case, we assume that the field COULD exist
9505 in some extension of the type. Return an object of
9506 "type" void, which will match any formal
9507 (see ada_type_match). */
9508 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9513 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9516 return value_zero (ada_aligned_type (type), lval_memory);
9519 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9520 arg1 = unwrap_value (arg1);
9521 return ada_to_fixed_value (arg1);
9524 /* The value is not supposed to be used. This is here to make it
9525 easier to accommodate expressions that contain types. */
9527 if (noside == EVAL_SKIP)
9529 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9530 return allocate_value (exp->elts[pc + 1].type);
9532 error (_("Attempt to use a type name as an expression"));
9537 case OP_DISCRETE_RANGE:
9540 if (noside == EVAL_NORMAL)
9544 error (_("Undefined name, ambiguous name, or renaming used in "
9545 "component association: %s."), &exp->elts[pc+2].string);
9547 error (_("Aggregates only allowed on the right of an assignment"));
9549 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9552 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9554 for (tem = 0; tem < nargs; tem += 1)
9555 ada_evaluate_subexp (NULL, exp, pos, noside);
9560 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9566 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9567 type name that encodes the 'small and 'delta information.
9568 Otherwise, return NULL. */
9571 fixed_type_info (struct type *type)
9573 const char *name = ada_type_name (type);
9574 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9576 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9578 const char *tail = strstr (name, "___XF_");
9584 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9585 return fixed_type_info (TYPE_TARGET_TYPE (type));
9590 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9593 ada_is_fixed_point_type (struct type *type)
9595 return fixed_type_info (type) != NULL;
9598 /* Return non-zero iff TYPE represents a System.Address type. */
9601 ada_is_system_address_type (struct type *type)
9603 return (TYPE_NAME (type)
9604 && strcmp (TYPE_NAME (type), "system__address") == 0);
9607 /* Assuming that TYPE is the representation of an Ada fixed-point
9608 type, return its delta, or -1 if the type is malformed and the
9609 delta cannot be determined. */
9612 ada_delta (struct type *type)
9614 const char *encoding = fixed_type_info (type);
9617 /* Strictly speaking, num and den are encoded as integer. However,
9618 they may not fit into a long, and they will have to be converted
9619 to DOUBLEST anyway. So scan them as DOUBLEST. */
9620 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9627 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9628 factor ('SMALL value) associated with the type. */
9631 scaling_factor (struct type *type)
9633 const char *encoding = fixed_type_info (type);
9634 DOUBLEST num0, den0, num1, den1;
9637 /* Strictly speaking, num's and den's are encoded as integer. However,
9638 they may not fit into a long, and they will have to be converted
9639 to DOUBLEST anyway. So scan them as DOUBLEST. */
9640 n = sscanf (encoding,
9641 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9642 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9643 &num0, &den0, &num1, &den1);
9654 /* Assuming that X is the representation of a value of fixed-point
9655 type TYPE, return its floating-point equivalent. */
9658 ada_fixed_to_float (struct type *type, LONGEST x)
9660 return (DOUBLEST) x *scaling_factor (type);
9663 /* The representation of a fixed-point value of type TYPE
9664 corresponding to the value X. */
9667 ada_float_to_fixed (struct type *type, DOUBLEST x)
9669 return (LONGEST) (x / scaling_factor (type) + 0.5);
9673 /* VAX floating formats */
9675 /* Non-zero iff TYPE represents one of the special VAX floating-point
9679 ada_is_vax_floating_type (struct type *type)
9682 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9685 && (TYPE_CODE (type) == TYPE_CODE_INT
9686 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9687 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9690 /* The type of special VAX floating-point type this is, assuming
9691 ada_is_vax_floating_point. */
9694 ada_vax_float_type_suffix (struct type *type)
9696 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9699 /* A value representing the special debugging function that outputs
9700 VAX floating-point values of the type represented by TYPE. Assumes
9701 ada_is_vax_floating_type (TYPE). */
9704 ada_vax_float_print_function (struct type *type)
9706 switch (ada_vax_float_type_suffix (type))
9709 return get_var_value ("DEBUG_STRING_F", 0);
9711 return get_var_value ("DEBUG_STRING_D", 0);
9713 return get_var_value ("DEBUG_STRING_G", 0);
9715 error (_("invalid VAX floating-point type"));
9722 /* Scan STR beginning at position K for a discriminant name, and
9723 return the value of that discriminant field of DVAL in *PX. If
9724 PNEW_K is not null, put the position of the character beyond the
9725 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9726 not alter *PX and *PNEW_K if unsuccessful. */
9729 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9732 static char *bound_buffer = NULL;
9733 static size_t bound_buffer_len = 0;
9736 struct value *bound_val;
9738 if (dval == NULL || str == NULL || str[k] == '\0')
9741 pend = strstr (str + k, "__");
9745 k += strlen (bound);
9749 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9750 bound = bound_buffer;
9751 strncpy (bound_buffer, str + k, pend - (str + k));
9752 bound[pend - (str + k)] = '\0';
9756 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9757 if (bound_val == NULL)
9760 *px = value_as_long (bound_val);
9766 /* Value of variable named NAME in the current environment. If
9767 no such variable found, then if ERR_MSG is null, returns 0, and
9768 otherwise causes an error with message ERR_MSG. */
9770 static struct value *
9771 get_var_value (char *name, char *err_msg)
9773 struct ada_symbol_info *syms;
9776 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9781 if (err_msg == NULL)
9784 error (("%s"), err_msg);
9787 return value_of_variable (syms[0].sym, syms[0].block);
9790 /* Value of integer variable named NAME in the current environment. If
9791 no such variable found, returns 0, and sets *FLAG to 0. If
9792 successful, sets *FLAG to 1. */
9795 get_int_var_value (char *name, int *flag)
9797 struct value *var_val = get_var_value (name, 0);
9809 return value_as_long (var_val);
9814 /* Return a range type whose base type is that of the range type named
9815 NAME in the current environment, and whose bounds are calculated
9816 from NAME according to the GNAT range encoding conventions.
9817 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9818 corresponding range type from debug information; fall back to using it
9819 if symbol lookup fails. If a new type must be created, allocate it
9820 like ORIG_TYPE was. The bounds information, in general, is encoded
9821 in NAME, the base type given in the named range type. */
9823 static struct type *
9824 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9826 struct type *raw_type = ada_find_any_type (name);
9827 struct type *base_type;
9830 /* Fall back to the original type if symbol lookup failed. */
9831 if (raw_type == NULL)
9832 raw_type = orig_type;
9834 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9835 base_type = TYPE_TARGET_TYPE (raw_type);
9837 base_type = raw_type;
9839 subtype_info = strstr (name, "___XD");
9840 if (subtype_info == NULL)
9842 LONGEST L = discrete_type_low_bound (raw_type);
9843 LONGEST U = discrete_type_high_bound (raw_type);
9844 if (L < INT_MIN || U > INT_MAX)
9847 return create_range_type (alloc_type_copy (orig_type), raw_type,
9848 discrete_type_low_bound (raw_type),
9849 discrete_type_high_bound (raw_type));
9853 static char *name_buf = NULL;
9854 static size_t name_len = 0;
9855 int prefix_len = subtype_info - name;
9861 GROW_VECT (name_buf, name_len, prefix_len + 5);
9862 strncpy (name_buf, name, prefix_len);
9863 name_buf[prefix_len] = '\0';
9866 bounds_str = strchr (subtype_info, '_');
9869 if (*subtype_info == 'L')
9871 if (!ada_scan_number (bounds_str, n, &L, &n)
9872 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9874 if (bounds_str[n] == '_')
9876 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9883 strcpy (name_buf + prefix_len, "___L");
9884 L = get_int_var_value (name_buf, &ok);
9887 lim_warning (_("Unknown lower bound, using 1."));
9892 if (*subtype_info == 'U')
9894 if (!ada_scan_number (bounds_str, n, &U, &n)
9895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9901 strcpy (name_buf + prefix_len, "___U");
9902 U = get_int_var_value (name_buf, &ok);
9905 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9910 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9911 TYPE_NAME (type) = name;
9916 /* True iff NAME is the name of a range type. */
9919 ada_is_range_type_name (const char *name)
9921 return (name != NULL && strstr (name, "___XD"));
9927 /* True iff TYPE is an Ada modular type. */
9930 ada_is_modular_type (struct type *type)
9932 struct type *subranged_type = base_type (type);
9934 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9935 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9936 && TYPE_UNSIGNED (subranged_type));
9939 /* Try to determine the lower and upper bounds of the given modular type
9940 using the type name only. Return non-zero and set L and U as the lower
9941 and upper bounds (respectively) if successful. */
9944 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9946 char *name = ada_type_name (type);
9954 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9955 we are looking for static bounds, which means an __XDLU suffix.
9956 Moreover, we know that the lower bound of modular types is always
9957 zero, so the actual suffix should start with "__XDLU_0__", and
9958 then be followed by the upper bound value. */
9959 suffix = strstr (name, "__XDLU_0__");
9963 if (!ada_scan_number (suffix, k, &U, NULL))
9966 *modulus = (ULONGEST) U + 1;
9970 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9973 ada_modulus (struct type *type)
9977 /* Normally, the modulus of a modular type is equal to the value of
9978 its upper bound + 1. However, the upper bound is currently stored
9979 as an int, which is not always big enough to hold the actual bound
9980 value. To workaround this, try to take advantage of the encoding
9981 that GNAT uses with with discrete types. To avoid some unnecessary
9982 parsing, we do this only when the size of TYPE is greater than
9983 the size of the field holding the bound. */
9984 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9985 && ada_modulus_from_name (type, &modulus))
9988 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9992 /* Ada exception catchpoint support:
9993 ---------------------------------
9995 We support 3 kinds of exception catchpoints:
9996 . catchpoints on Ada exceptions
9997 . catchpoints on unhandled Ada exceptions
9998 . catchpoints on failed assertions
10000 Exceptions raised during failed assertions, or unhandled exceptions
10001 could perfectly be caught with the general catchpoint on Ada exceptions.
10002 However, we can easily differentiate these two special cases, and having
10003 the option to distinguish these two cases from the rest can be useful
10004 to zero-in on certain situations.
10006 Exception catchpoints are a specialized form of breakpoint,
10007 since they rely on inserting breakpoints inside known routines
10008 of the GNAT runtime. The implementation therefore uses a standard
10009 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10012 Support in the runtime for exception catchpoints have been changed
10013 a few times already, and these changes affect the implementation
10014 of these catchpoints. In order to be able to support several
10015 variants of the runtime, we use a sniffer that will determine
10016 the runtime variant used by the program being debugged.
10018 At this time, we do not support the use of conditions on Ada exception
10019 catchpoints. The COND and COND_STRING fields are therefore set
10020 to NULL (most of the time, see below).
10022 Conditions where EXP_STRING, COND, and COND_STRING are used:
10024 When a user specifies the name of a specific exception in the case
10025 of catchpoints on Ada exceptions, we store the name of that exception
10026 in the EXP_STRING. We then translate this request into an actual
10027 condition stored in COND_STRING, and then parse it into an expression
10030 /* The different types of catchpoints that we introduced for catching
10033 enum exception_catchpoint_kind
10035 ex_catch_exception,
10036 ex_catch_exception_unhandled,
10040 /* Ada's standard exceptions. */
10042 static char *standard_exc[] = {
10043 "constraint_error",
10049 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10051 /* A structure that describes how to support exception catchpoints
10052 for a given executable. */
10054 struct exception_support_info
10056 /* The name of the symbol to break on in order to insert
10057 a catchpoint on exceptions. */
10058 const char *catch_exception_sym;
10060 /* The name of the symbol to break on in order to insert
10061 a catchpoint on unhandled exceptions. */
10062 const char *catch_exception_unhandled_sym;
10064 /* The name of the symbol to break on in order to insert
10065 a catchpoint on failed assertions. */
10066 const char *catch_assert_sym;
10068 /* Assuming that the inferior just triggered an unhandled exception
10069 catchpoint, this function is responsible for returning the address
10070 in inferior memory where the name of that exception is stored.
10071 Return zero if the address could not be computed. */
10072 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10075 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10076 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10078 /* The following exception support info structure describes how to
10079 implement exception catchpoints with the latest version of the
10080 Ada runtime (as of 2007-03-06). */
10082 static const struct exception_support_info default_exception_support_info =
10084 "__gnat_debug_raise_exception", /* catch_exception_sym */
10085 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10086 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10087 ada_unhandled_exception_name_addr
10090 /* The following exception support info structure describes how to
10091 implement exception catchpoints with a slightly older version
10092 of the Ada runtime. */
10094 static const struct exception_support_info exception_support_info_fallback =
10096 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10097 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10098 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10099 ada_unhandled_exception_name_addr_from_raise
10102 /* For each executable, we sniff which exception info structure to use
10103 and cache it in the following global variable. */
10105 static const struct exception_support_info *exception_info = NULL;
10107 /* Inspect the Ada runtime and determine which exception info structure
10108 should be used to provide support for exception catchpoints.
10110 This function will always set exception_info, or raise an error. */
10113 ada_exception_support_info_sniffer (void)
10115 struct symbol *sym;
10117 /* If the exception info is already known, then no need to recompute it. */
10118 if (exception_info != NULL)
10121 /* Check the latest (default) exception support info. */
10122 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10126 exception_info = &default_exception_support_info;
10130 /* Try our fallback exception suport info. */
10131 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10135 exception_info = &exception_support_info_fallback;
10139 /* Sometimes, it is normal for us to not be able to find the routine
10140 we are looking for. This happens when the program is linked with
10141 the shared version of the GNAT runtime, and the program has not been
10142 started yet. Inform the user of these two possible causes if
10145 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10148 /* If the symbol does not exist, then check that the program is
10149 already started, to make sure that shared libraries have been
10150 loaded. If it is not started, this may mean that the symbol is
10151 in a shared library. */
10153 if (ptid_get_pid (inferior_ptid) == 0)
10154 error (_("Unable to insert catchpoint. Try to start the program first."));
10156 /* At this point, we know that we are debugging an Ada program and
10157 that the inferior has been started, but we still are not able to
10158 find the run-time symbols. That can mean that we are in
10159 configurable run time mode, or that a-except as been optimized
10160 out by the linker... In any case, at this point it is not worth
10161 supporting this feature. */
10163 error (_("Cannot insert catchpoints in this configuration."));
10166 /* An observer of "executable_changed" events.
10167 Its role is to clear certain cached values that need to be recomputed
10168 each time a new executable is loaded by GDB. */
10171 ada_executable_changed_observer (void)
10173 /* If the executable changed, then it is possible that the Ada runtime
10174 is different. So we need to invalidate the exception support info
10176 exception_info = NULL;
10179 /* Return the name of the function at PC, NULL if could not find it.
10180 This function only checks the debugging information, not the symbol
10184 function_name_from_pc (CORE_ADDR pc)
10188 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10194 /* True iff FRAME is very likely to be that of a function that is
10195 part of the runtime system. This is all very heuristic, but is
10196 intended to be used as advice as to what frames are uninteresting
10200 is_known_support_routine (struct frame_info *frame)
10202 struct symtab_and_line sal;
10206 /* If this code does not have any debugging information (no symtab),
10207 This cannot be any user code. */
10209 find_frame_sal (frame, &sal);
10210 if (sal.symtab == NULL)
10213 /* If there is a symtab, but the associated source file cannot be
10214 located, then assume this is not user code: Selecting a frame
10215 for which we cannot display the code would not be very helpful
10216 for the user. This should also take care of case such as VxWorks
10217 where the kernel has some debugging info provided for a few units. */
10219 if (symtab_to_fullname (sal.symtab) == NULL)
10222 /* Check the unit filename againt the Ada runtime file naming.
10223 We also check the name of the objfile against the name of some
10224 known system libraries that sometimes come with debugging info
10227 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10229 re_comp (known_runtime_file_name_patterns[i]);
10230 if (re_exec (sal.symtab->filename))
10232 if (sal.symtab->objfile != NULL
10233 && re_exec (sal.symtab->objfile->name))
10237 /* Check whether the function is a GNAT-generated entity. */
10239 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10240 if (func_name == NULL)
10243 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10245 re_comp (known_auxiliary_function_name_patterns[i]);
10246 if (re_exec (func_name))
10253 /* Find the first frame that contains debugging information and that is not
10254 part of the Ada run-time, starting from FI and moving upward. */
10257 ada_find_printable_frame (struct frame_info *fi)
10259 for (; fi != NULL; fi = get_prev_frame (fi))
10261 if (!is_known_support_routine (fi))
10270 /* Assuming that the inferior just triggered an unhandled exception
10271 catchpoint, return the address in inferior memory where the name
10272 of the exception is stored.
10274 Return zero if the address could not be computed. */
10277 ada_unhandled_exception_name_addr (void)
10279 return parse_and_eval_address ("e.full_name");
10282 /* Same as ada_unhandled_exception_name_addr, except that this function
10283 should be used when the inferior uses an older version of the runtime,
10284 where the exception name needs to be extracted from a specific frame
10285 several frames up in the callstack. */
10288 ada_unhandled_exception_name_addr_from_raise (void)
10291 struct frame_info *fi;
10293 /* To determine the name of this exception, we need to select
10294 the frame corresponding to RAISE_SYM_NAME. This frame is
10295 at least 3 levels up, so we simply skip the first 3 frames
10296 without checking the name of their associated function. */
10297 fi = get_current_frame ();
10298 for (frame_level = 0; frame_level < 3; frame_level += 1)
10300 fi = get_prev_frame (fi);
10304 const char *func_name =
10305 function_name_from_pc (get_frame_address_in_block (fi));
10306 if (func_name != NULL
10307 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10308 break; /* We found the frame we were looking for... */
10309 fi = get_prev_frame (fi);
10316 return parse_and_eval_address ("id.full_name");
10319 /* Assuming the inferior just triggered an Ada exception catchpoint
10320 (of any type), return the address in inferior memory where the name
10321 of the exception is stored, if applicable.
10323 Return zero if the address could not be computed, or if not relevant. */
10326 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10327 struct breakpoint *b)
10331 case ex_catch_exception:
10332 return (parse_and_eval_address ("e.full_name"));
10335 case ex_catch_exception_unhandled:
10336 return exception_info->unhandled_exception_name_addr ();
10339 case ex_catch_assert:
10340 return 0; /* Exception name is not relevant in this case. */
10344 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10348 return 0; /* Should never be reached. */
10351 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10352 any error that ada_exception_name_addr_1 might cause to be thrown.
10353 When an error is intercepted, a warning with the error message is printed,
10354 and zero is returned. */
10357 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10358 struct breakpoint *b)
10360 struct gdb_exception e;
10361 CORE_ADDR result = 0;
10363 TRY_CATCH (e, RETURN_MASK_ERROR)
10365 result = ada_exception_name_addr_1 (ex, b);
10370 warning (_("failed to get exception name: %s"), e.message);
10377 /* Implement the PRINT_IT method in the breakpoint_ops structure
10378 for all exception catchpoint kinds. */
10380 static enum print_stop_action
10381 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10383 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10384 char exception_name[256];
10388 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10389 exception_name [sizeof (exception_name) - 1] = '\0';
10392 ada_find_printable_frame (get_current_frame ());
10394 annotate_catchpoint (b->number);
10397 case ex_catch_exception:
10399 printf_filtered (_("\nCatchpoint %d, %s at "),
10400 b->number, exception_name);
10402 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10404 case ex_catch_exception_unhandled:
10406 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10407 b->number, exception_name);
10409 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10412 case ex_catch_assert:
10413 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10418 return PRINT_SRC_AND_LOC;
10421 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10422 for all exception catchpoint kinds. */
10425 print_one_exception (enum exception_catchpoint_kind ex,
10426 struct breakpoint *b, struct bp_location **last_loc)
10428 struct value_print_options opts;
10430 get_user_print_options (&opts);
10431 if (opts.addressprint)
10433 annotate_field (4);
10434 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10437 annotate_field (5);
10438 *last_loc = b->loc;
10441 case ex_catch_exception:
10442 if (b->exp_string != NULL)
10444 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10446 ui_out_field_string (uiout, "what", msg);
10450 ui_out_field_string (uiout, "what", "all Ada exceptions");
10454 case ex_catch_exception_unhandled:
10455 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10458 case ex_catch_assert:
10459 ui_out_field_string (uiout, "what", "failed Ada assertions");
10463 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10468 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10469 for all exception catchpoint kinds. */
10472 print_mention_exception (enum exception_catchpoint_kind ex,
10473 struct breakpoint *b)
10477 case ex_catch_exception:
10478 if (b->exp_string != NULL)
10479 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10480 b->number, b->exp_string);
10482 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10486 case ex_catch_exception_unhandled:
10487 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10491 case ex_catch_assert:
10492 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10496 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10501 /* Virtual table for "catch exception" breakpoints. */
10503 static enum print_stop_action
10504 print_it_catch_exception (struct breakpoint *b)
10506 return print_it_exception (ex_catch_exception, b);
10510 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10512 print_one_exception (ex_catch_exception, b, last_loc);
10516 print_mention_catch_exception (struct breakpoint *b)
10518 print_mention_exception (ex_catch_exception, b);
10521 static struct breakpoint_ops catch_exception_breakpoint_ops =
10525 NULL, /* breakpoint_hit */
10526 print_it_catch_exception,
10527 print_one_catch_exception,
10528 print_mention_catch_exception
10531 /* Virtual table for "catch exception unhandled" breakpoints. */
10533 static enum print_stop_action
10534 print_it_catch_exception_unhandled (struct breakpoint *b)
10536 return print_it_exception (ex_catch_exception_unhandled, b);
10540 print_one_catch_exception_unhandled (struct breakpoint *b,
10541 struct bp_location **last_loc)
10543 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10547 print_mention_catch_exception_unhandled (struct breakpoint *b)
10549 print_mention_exception (ex_catch_exception_unhandled, b);
10552 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10555 NULL, /* breakpoint_hit */
10556 print_it_catch_exception_unhandled,
10557 print_one_catch_exception_unhandled,
10558 print_mention_catch_exception_unhandled
10561 /* Virtual table for "catch assert" breakpoints. */
10563 static enum print_stop_action
10564 print_it_catch_assert (struct breakpoint *b)
10566 return print_it_exception (ex_catch_assert, b);
10570 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10572 print_one_exception (ex_catch_assert, b, last_loc);
10576 print_mention_catch_assert (struct breakpoint *b)
10578 print_mention_exception (ex_catch_assert, b);
10581 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10584 NULL, /* breakpoint_hit */
10585 print_it_catch_assert,
10586 print_one_catch_assert,
10587 print_mention_catch_assert
10590 /* Return non-zero if B is an Ada exception catchpoint. */
10593 ada_exception_catchpoint_p (struct breakpoint *b)
10595 return (b->ops == &catch_exception_breakpoint_ops
10596 || b->ops == &catch_exception_unhandled_breakpoint_ops
10597 || b->ops == &catch_assert_breakpoint_ops);
10600 /* Return a newly allocated copy of the first space-separated token
10601 in ARGSP, and then adjust ARGSP to point immediately after that
10604 Return NULL if ARGPS does not contain any more tokens. */
10607 ada_get_next_arg (char **argsp)
10609 char *args = *argsp;
10613 /* Skip any leading white space. */
10615 while (isspace (*args))
10618 if (args[0] == '\0')
10619 return NULL; /* No more arguments. */
10621 /* Find the end of the current argument. */
10624 while (*end != '\0' && !isspace (*end))
10627 /* Adjust ARGSP to point to the start of the next argument. */
10631 /* Make a copy of the current argument and return it. */
10633 result = xmalloc (end - args + 1);
10634 strncpy (result, args, end - args);
10635 result[end - args] = '\0';
10640 /* Split the arguments specified in a "catch exception" command.
10641 Set EX to the appropriate catchpoint type.
10642 Set EXP_STRING to the name of the specific exception if
10643 specified by the user. */
10646 catch_ada_exception_command_split (char *args,
10647 enum exception_catchpoint_kind *ex,
10650 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10651 char *exception_name;
10653 exception_name = ada_get_next_arg (&args);
10654 make_cleanup (xfree, exception_name);
10656 /* Check that we do not have any more arguments. Anything else
10659 while (isspace (*args))
10662 if (args[0] != '\0')
10663 error (_("Junk at end of expression"));
10665 discard_cleanups (old_chain);
10667 if (exception_name == NULL)
10669 /* Catch all exceptions. */
10670 *ex = ex_catch_exception;
10671 *exp_string = NULL;
10673 else if (strcmp (exception_name, "unhandled") == 0)
10675 /* Catch unhandled exceptions. */
10676 *ex = ex_catch_exception_unhandled;
10677 *exp_string = NULL;
10681 /* Catch a specific exception. */
10682 *ex = ex_catch_exception;
10683 *exp_string = exception_name;
10687 /* Return the name of the symbol on which we should break in order to
10688 implement a catchpoint of the EX kind. */
10690 static const char *
10691 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10693 gdb_assert (exception_info != NULL);
10697 case ex_catch_exception:
10698 return (exception_info->catch_exception_sym);
10700 case ex_catch_exception_unhandled:
10701 return (exception_info->catch_exception_unhandled_sym);
10703 case ex_catch_assert:
10704 return (exception_info->catch_assert_sym);
10707 internal_error (__FILE__, __LINE__,
10708 _("unexpected catchpoint kind (%d)"), ex);
10712 /* Return the breakpoint ops "virtual table" used for catchpoints
10715 static struct breakpoint_ops *
10716 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10720 case ex_catch_exception:
10721 return (&catch_exception_breakpoint_ops);
10723 case ex_catch_exception_unhandled:
10724 return (&catch_exception_unhandled_breakpoint_ops);
10726 case ex_catch_assert:
10727 return (&catch_assert_breakpoint_ops);
10730 internal_error (__FILE__, __LINE__,
10731 _("unexpected catchpoint kind (%d)"), ex);
10735 /* Return the condition that will be used to match the current exception
10736 being raised with the exception that the user wants to catch. This
10737 assumes that this condition is used when the inferior just triggered
10738 an exception catchpoint.
10740 The string returned is a newly allocated string that needs to be
10741 deallocated later. */
10744 ada_exception_catchpoint_cond_string (const char *exp_string)
10748 /* The standard exceptions are a special case. They are defined in
10749 runtime units that have been compiled without debugging info; if
10750 EXP_STRING is the not-fully-qualified name of a standard
10751 exception (e.g. "constraint_error") then, during the evaluation
10752 of the condition expression, the symbol lookup on this name would
10753 *not* return this standard exception. The catchpoint condition
10754 may then be set only on user-defined exceptions which have the
10755 same not-fully-qualified name (e.g. my_package.constraint_error).
10757 To avoid this unexcepted behavior, these standard exceptions are
10758 systematically prefixed by "standard". This means that "catch
10759 exception constraint_error" is rewritten into "catch exception
10760 standard.constraint_error".
10762 If an exception named contraint_error is defined in another package of
10763 the inferior program, then the only way to specify this exception as a
10764 breakpoint condition is to use its fully-qualified named:
10765 e.g. my_package.constraint_error. */
10767 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10769 if (strcmp (standard_exc [i], exp_string) == 0)
10771 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10775 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10778 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10780 static struct expression *
10781 ada_parse_catchpoint_condition (char *cond_string,
10782 struct symtab_and_line sal)
10784 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10787 /* Return the symtab_and_line that should be used to insert an exception
10788 catchpoint of the TYPE kind.
10790 EX_STRING should contain the name of a specific exception
10791 that the catchpoint should catch, or NULL otherwise.
10793 The idea behind all the remaining parameters is that their names match
10794 the name of certain fields in the breakpoint structure that are used to
10795 handle exception catchpoints. This function returns the value to which
10796 these fields should be set, depending on the type of catchpoint we need
10799 If COND and COND_STRING are both non-NULL, any value they might
10800 hold will be free'ed, and then replaced by newly allocated ones.
10801 These parameters are left untouched otherwise. */
10803 static struct symtab_and_line
10804 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10805 char **addr_string, char **cond_string,
10806 struct expression **cond, struct breakpoint_ops **ops)
10808 const char *sym_name;
10809 struct symbol *sym;
10810 struct symtab_and_line sal;
10812 /* First, find out which exception support info to use. */
10813 ada_exception_support_info_sniffer ();
10815 /* Then lookup the function on which we will break in order to catch
10816 the Ada exceptions requested by the user. */
10818 sym_name = ada_exception_sym_name (ex);
10819 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10821 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10822 that should be compiled with debugging information. As a result, we
10823 expect to find that symbol in the symtabs. If we don't find it, then
10824 the target most likely does not support Ada exceptions, or we cannot
10825 insert exception breakpoints yet, because the GNAT runtime hasn't been
10828 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10829 in such a way that no debugging information is produced for the symbol
10830 we are looking for. In this case, we could search the minimal symbols
10831 as a fall-back mechanism. This would still be operating in degraded
10832 mode, however, as we would still be missing the debugging information
10833 that is needed in order to extract the name of the exception being
10834 raised (this name is printed in the catchpoint message, and is also
10835 used when trying to catch a specific exception). We do not handle
10836 this case for now. */
10839 error (_("Unable to break on '%s' in this configuration."), sym_name);
10841 /* Make sure that the symbol we found corresponds to a function. */
10842 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10843 error (_("Symbol \"%s\" is not a function (class = %d)"),
10844 sym_name, SYMBOL_CLASS (sym));
10846 sal = find_function_start_sal (sym, 1);
10848 /* Set ADDR_STRING. */
10850 *addr_string = xstrdup (sym_name);
10852 /* Set the COND and COND_STRING (if not NULL). */
10854 if (cond_string != NULL && cond != NULL)
10856 if (*cond_string != NULL)
10858 xfree (*cond_string);
10859 *cond_string = NULL;
10866 if (exp_string != NULL)
10868 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10869 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10874 *ops = ada_exception_breakpoint_ops (ex);
10879 /* Parse the arguments (ARGS) of the "catch exception" command.
10881 Set TYPE to the appropriate exception catchpoint type.
10882 If the user asked the catchpoint to catch only a specific
10883 exception, then save the exception name in ADDR_STRING.
10885 See ada_exception_sal for a description of all the remaining
10886 function arguments of this function. */
10888 struct symtab_and_line
10889 ada_decode_exception_location (char *args, char **addr_string,
10890 char **exp_string, char **cond_string,
10891 struct expression **cond,
10892 struct breakpoint_ops **ops)
10894 enum exception_catchpoint_kind ex;
10896 catch_ada_exception_command_split (args, &ex, exp_string);
10897 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10901 struct symtab_and_line
10902 ada_decode_assert_location (char *args, char **addr_string,
10903 struct breakpoint_ops **ops)
10905 /* Check that no argument where provided at the end of the command. */
10909 while (isspace (*args))
10912 error (_("Junk at end of arguments."));
10915 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10920 /* Information about operators given special treatment in functions
10922 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10924 #define ADA_OPERATORS \
10925 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10926 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10927 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10928 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10929 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10930 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10931 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10932 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10933 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10934 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10935 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10936 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10937 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10938 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10939 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10940 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10941 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10942 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10943 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10946 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10948 switch (exp->elts[pc - 1].opcode)
10951 operator_length_standard (exp, pc, oplenp, argsp);
10954 #define OP_DEFN(op, len, args, binop) \
10955 case op: *oplenp = len; *argsp = args; break;
10961 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10966 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10972 ada_op_name (enum exp_opcode opcode)
10977 return op_name_standard (opcode);
10979 #define OP_DEFN(op, len, args, binop) case op: return #op;
10984 return "OP_AGGREGATE";
10986 return "OP_CHOICES";
10992 /* As for operator_length, but assumes PC is pointing at the first
10993 element of the operator, and gives meaningful results only for the
10994 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10997 ada_forward_operator_length (struct expression *exp, int pc,
10998 int *oplenp, int *argsp)
11000 switch (exp->elts[pc].opcode)
11003 *oplenp = *argsp = 0;
11006 #define OP_DEFN(op, len, args, binop) \
11007 case op: *oplenp = len; *argsp = args; break;
11013 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11018 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11024 int len = longest_to_int (exp->elts[pc + 1].longconst);
11025 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11033 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11035 enum exp_opcode op = exp->elts[elt].opcode;
11040 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11044 /* Ada attributes ('Foo). */
11047 case OP_ATR_LENGTH:
11051 case OP_ATR_MODULUS:
11058 case UNOP_IN_RANGE:
11060 /* XXX: gdb_sprint_host_address, type_sprint */
11061 fprintf_filtered (stream, _("Type @"));
11062 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11063 fprintf_filtered (stream, " (");
11064 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11065 fprintf_filtered (stream, ")");
11067 case BINOP_IN_BOUNDS:
11068 fprintf_filtered (stream, " (%d)",
11069 longest_to_int (exp->elts[pc + 2].longconst));
11071 case TERNOP_IN_RANGE:
11076 case OP_DISCRETE_RANGE:
11077 case OP_POSITIONAL:
11084 char *name = &exp->elts[elt + 2].string;
11085 int len = longest_to_int (exp->elts[elt + 1].longconst);
11086 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11091 return dump_subexp_body_standard (exp, stream, elt);
11095 for (i = 0; i < nargs; i += 1)
11096 elt = dump_subexp (exp, stream, elt);
11101 /* The Ada extension of print_subexp (q.v.). */
11104 ada_print_subexp (struct expression *exp, int *pos,
11105 struct ui_file *stream, enum precedence prec)
11107 int oplen, nargs, i;
11109 enum exp_opcode op = exp->elts[pc].opcode;
11111 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11118 print_subexp_standard (exp, pos, stream, prec);
11122 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11125 case BINOP_IN_BOUNDS:
11126 /* XXX: sprint_subexp */
11127 print_subexp (exp, pos, stream, PREC_SUFFIX);
11128 fputs_filtered (" in ", stream);
11129 print_subexp (exp, pos, stream, PREC_SUFFIX);
11130 fputs_filtered ("'range", stream);
11131 if (exp->elts[pc + 1].longconst > 1)
11132 fprintf_filtered (stream, "(%ld)",
11133 (long) exp->elts[pc + 1].longconst);
11136 case TERNOP_IN_RANGE:
11137 if (prec >= PREC_EQUAL)
11138 fputs_filtered ("(", stream);
11139 /* XXX: sprint_subexp */
11140 print_subexp (exp, pos, stream, PREC_SUFFIX);
11141 fputs_filtered (" in ", stream);
11142 print_subexp (exp, pos, stream, PREC_EQUAL);
11143 fputs_filtered (" .. ", stream);
11144 print_subexp (exp, pos, stream, PREC_EQUAL);
11145 if (prec >= PREC_EQUAL)
11146 fputs_filtered (")", stream);
11151 case OP_ATR_LENGTH:
11155 case OP_ATR_MODULUS:
11160 if (exp->elts[*pos].opcode == OP_TYPE)
11162 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11163 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11167 print_subexp (exp, pos, stream, PREC_SUFFIX);
11168 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11172 for (tem = 1; tem < nargs; tem += 1)
11174 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11175 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11177 fputs_filtered (")", stream);
11182 type_print (exp->elts[pc + 1].type, "", stream, 0);
11183 fputs_filtered ("'(", stream);
11184 print_subexp (exp, pos, stream, PREC_PREFIX);
11185 fputs_filtered (")", stream);
11188 case UNOP_IN_RANGE:
11189 /* XXX: sprint_subexp */
11190 print_subexp (exp, pos, stream, PREC_SUFFIX);
11191 fputs_filtered (" in ", stream);
11192 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11195 case OP_DISCRETE_RANGE:
11196 print_subexp (exp, pos, stream, PREC_SUFFIX);
11197 fputs_filtered ("..", stream);
11198 print_subexp (exp, pos, stream, PREC_SUFFIX);
11202 fputs_filtered ("others => ", stream);
11203 print_subexp (exp, pos, stream, PREC_SUFFIX);
11207 for (i = 0; i < nargs-1; i += 1)
11210 fputs_filtered ("|", stream);
11211 print_subexp (exp, pos, stream, PREC_SUFFIX);
11213 fputs_filtered (" => ", stream);
11214 print_subexp (exp, pos, stream, PREC_SUFFIX);
11217 case OP_POSITIONAL:
11218 print_subexp (exp, pos, stream, PREC_SUFFIX);
11222 fputs_filtered ("(", stream);
11223 for (i = 0; i < nargs; i += 1)
11226 fputs_filtered (", ", stream);
11227 print_subexp (exp, pos, stream, PREC_SUFFIX);
11229 fputs_filtered (")", stream);
11234 /* Table mapping opcodes into strings for printing operators
11235 and precedences of the operators. */
11237 static const struct op_print ada_op_print_tab[] = {
11238 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11239 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11240 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11241 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11242 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11243 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11244 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11245 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11246 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11247 {">=", BINOP_GEQ, PREC_ORDER, 0},
11248 {">", BINOP_GTR, PREC_ORDER, 0},
11249 {"<", BINOP_LESS, PREC_ORDER, 0},
11250 {">>", BINOP_RSH, PREC_SHIFT, 0},
11251 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11252 {"+", BINOP_ADD, PREC_ADD, 0},
11253 {"-", BINOP_SUB, PREC_ADD, 0},
11254 {"&", BINOP_CONCAT, PREC_ADD, 0},
11255 {"*", BINOP_MUL, PREC_MUL, 0},
11256 {"/", BINOP_DIV, PREC_MUL, 0},
11257 {"rem", BINOP_REM, PREC_MUL, 0},
11258 {"mod", BINOP_MOD, PREC_MUL, 0},
11259 {"**", BINOP_EXP, PREC_REPEAT, 0},
11260 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11261 {"-", UNOP_NEG, PREC_PREFIX, 0},
11262 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11263 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11264 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11265 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11266 {".all", UNOP_IND, PREC_SUFFIX, 1},
11267 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11268 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11272 enum ada_primitive_types {
11273 ada_primitive_type_int,
11274 ada_primitive_type_long,
11275 ada_primitive_type_short,
11276 ada_primitive_type_char,
11277 ada_primitive_type_float,
11278 ada_primitive_type_double,
11279 ada_primitive_type_void,
11280 ada_primitive_type_long_long,
11281 ada_primitive_type_long_double,
11282 ada_primitive_type_natural,
11283 ada_primitive_type_positive,
11284 ada_primitive_type_system_address,
11285 nr_ada_primitive_types
11289 ada_language_arch_info (struct gdbarch *gdbarch,
11290 struct language_arch_info *lai)
11292 const struct builtin_type *builtin = builtin_type (gdbarch);
11293 lai->primitive_type_vector
11294 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11297 lai->primitive_type_vector [ada_primitive_type_int]
11298 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11300 lai->primitive_type_vector [ada_primitive_type_long]
11301 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11302 0, "long_integer");
11303 lai->primitive_type_vector [ada_primitive_type_short]
11304 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11305 0, "short_integer");
11306 lai->string_char_type
11307 = lai->primitive_type_vector [ada_primitive_type_char]
11308 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11309 lai->primitive_type_vector [ada_primitive_type_float]
11310 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11312 lai->primitive_type_vector [ada_primitive_type_double]
11313 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11314 "long_float", NULL);
11315 lai->primitive_type_vector [ada_primitive_type_long_long]
11316 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11317 0, "long_long_integer");
11318 lai->primitive_type_vector [ada_primitive_type_long_double]
11319 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11320 "long_long_float", NULL);
11321 lai->primitive_type_vector [ada_primitive_type_natural]
11322 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11324 lai->primitive_type_vector [ada_primitive_type_positive]
11325 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11327 lai->primitive_type_vector [ada_primitive_type_void]
11328 = builtin->builtin_void;
11330 lai->primitive_type_vector [ada_primitive_type_system_address]
11331 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11332 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11333 = "system__address";
11335 lai->bool_type_symbol = NULL;
11336 lai->bool_type_default = builtin->builtin_bool;
11339 /* Language vector */
11341 /* Not really used, but needed in the ada_language_defn. */
11344 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11346 ada_emit_char (c, type, stream, quoter, 1);
11352 warnings_issued = 0;
11353 return ada_parse ();
11356 static const struct exp_descriptor ada_exp_descriptor = {
11358 ada_operator_length,
11360 ada_dump_subexp_body,
11361 ada_evaluate_subexp
11364 const struct language_defn ada_language_defn = {
11365 "ada", /* Language name */
11369 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11370 that's not quite what this means. */
11372 macro_expansion_no,
11373 &ada_exp_descriptor,
11377 ada_printchar, /* Print a character constant */
11378 ada_printstr, /* Function to print string constant */
11379 emit_char, /* Function to print single char (not used) */
11380 ada_print_type, /* Print a type using appropriate syntax */
11381 default_print_typedef, /* Print a typedef using appropriate syntax */
11382 ada_val_print, /* Print a value using appropriate syntax */
11383 ada_value_print, /* Print a top-level value */
11384 NULL, /* Language specific skip_trampoline */
11385 NULL, /* name_of_this */
11386 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11387 basic_lookup_transparent_type, /* lookup_transparent_type */
11388 ada_la_decode, /* Language specific symbol demangler */
11389 NULL, /* Language specific class_name_from_physname */
11390 ada_op_print_tab, /* expression operators for printing */
11391 0, /* c-style arrays */
11392 1, /* String lower bound */
11393 ada_get_gdb_completer_word_break_characters,
11394 ada_make_symbol_completion_list,
11395 ada_language_arch_info,
11396 ada_print_array_index,
11397 default_pass_by_reference,
11402 /* Provide a prototype to silence -Wmissing-prototypes. */
11403 extern initialize_file_ftype _initialize_ada_language;
11406 _initialize_ada_language (void)
11408 add_language (&ada_language_defn);
11410 varsize_limit = 65536;
11412 obstack_init (&symbol_list_obstack);
11414 decoded_names_store = htab_create_alloc
11415 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11416 NULL, xcalloc, xfree);
11418 observer_attach_executable_changed (ada_executable_changed_observer);