1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
33 /* Local functions. */
36 typecmp PARAMS ((int staticp, struct type *t1[], value t2[]));
39 find_function_addr PARAMS ((value, struct type **));
42 value_push PARAMS ((CORE_ADDR, value));
45 value_arg_push PARAMS ((CORE_ADDR, value));
48 search_struct_field PARAMS ((char *, value, int, struct type *, int));
51 search_struct_method PARAMS ((char *, value *, value *, int, int *,
55 check_field_in PARAMS ((struct type *, const char *));
58 allocate_space_in_inferior PARAMS ((int));
61 /* Allocate NBYTES of space in the inferior using the inferior's malloc
62 and return a value that is a pointer to the allocated space. */
65 allocate_space_in_inferior (len)
69 register struct symbol *sym;
70 struct minimal_symbol *msymbol;
75 /* Find the address of malloc in the inferior. */
77 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
80 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
82 error ("\"malloc\" exists in this program but is not a function.");
84 val = value_of_variable (sym, NULL);
88 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
91 type = lookup_pointer_type (builtin_type_char);
92 type = lookup_function_type (type);
93 type = lookup_pointer_type (type);
94 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
95 val = value_from_longest (type, maddr);
99 error ("evaluation of this expression requires the program to have a function \"malloc\".");
103 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
104 val = call_function_by_hand (val, 1, &blocklen);
105 if (value_logical_not (val))
107 error ("No memory available to program.");
109 return (value_as_long (val));
112 /* Cast value ARG2 to type TYPE and return as a value.
113 More general than a C cast: accepts any two types of the same length,
114 and if ARG2 is an lvalue it can be cast into anything at all. */
115 /* In C++, casts may change pointer or object representations. */
118 value_cast (type, arg2)
122 register enum type_code code1;
123 register enum type_code code2;
126 /* Coerce arrays but not enums. Enums will work as-is
127 and coercing them would cause an infinite recursion. */
128 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
131 code1 = TYPE_CODE (type);
132 code2 = TYPE_CODE (VALUE_TYPE (arg2));
133 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
134 || code2 == TYPE_CODE_ENUM);
136 if ( code1 == TYPE_CODE_STRUCT
137 && code2 == TYPE_CODE_STRUCT
138 && TYPE_NAME (type) != 0)
140 /* Look in the type of the source to see if it contains the
141 type of the target as a superclass. If so, we'll need to
142 offset the object in addition to changing its type. */
143 value v = search_struct_field (type_name_no_tag (type),
144 arg2, 0, VALUE_TYPE (arg2), 1);
147 VALUE_TYPE (v) = type;
151 if (code1 == TYPE_CODE_FLT && scalar)
152 return value_from_double (type, value_as_double (arg2));
153 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
154 && (scalar || code2 == TYPE_CODE_PTR))
155 return value_from_longest (type, value_as_long (arg2));
156 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
158 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
160 /* Look in the type of the source to see if it contains the
161 type of the target as a superclass. If so, we'll need to
162 offset the pointer rather than just change its type. */
163 struct type *t1 = TYPE_TARGET_TYPE (type);
164 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
165 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
166 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
167 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
169 value v = search_struct_field (type_name_no_tag (t1),
170 value_ind (arg2), 0, t2, 1);
174 VALUE_TYPE (v) = type;
178 /* No superclass found, just fall through to change ptr type. */
180 VALUE_TYPE (arg2) = type;
183 else if (VALUE_LVAL (arg2) == lval_memory)
185 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
187 else if (code1 == TYPE_CODE_VOID)
189 return value_zero (builtin_type_void, not_lval);
193 error ("Invalid cast.");
198 /* Create a value of type TYPE that is zero, and return it. */
201 value_zero (type, lv)
205 register value val = allocate_value (type);
207 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
208 VALUE_LVAL (val) = lv;
213 /* Return a value with type TYPE located at ADDR.
215 Call value_at only if the data needs to be fetched immediately;
216 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
217 value_at_lazy instead. value_at_lazy simply records the address of
218 the data and sets the lazy-evaluation-required flag. The lazy flag
219 is tested in the VALUE_CONTENTS macro, which is used if and when
220 the contents are actually required. */
223 value_at (type, addr)
227 register value val = allocate_value (type);
229 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
231 VALUE_LVAL (val) = lval_memory;
232 VALUE_ADDRESS (val) = addr;
237 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
240 value_at_lazy (type, addr)
244 register value val = allocate_value (type);
246 VALUE_LVAL (val) = lval_memory;
247 VALUE_ADDRESS (val) = addr;
248 VALUE_LAZY (val) = 1;
253 /* Called only from the VALUE_CONTENTS macro, if the current data for
254 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
255 data from the user's process, and clears the lazy flag to indicate
256 that the data in the buffer is valid.
258 If the value is zero-length, we avoid calling read_memory, which would
259 abort. We mark the value as fetched anyway -- all 0 bytes of it.
261 This function returns a value because it is used in the VALUE_CONTENTS
262 macro as part of an expression, where a void would not work. The
266 value_fetch_lazy (val)
269 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
271 if (TYPE_LENGTH (VALUE_TYPE (val)))
272 read_memory (addr, VALUE_CONTENTS_RAW (val),
273 TYPE_LENGTH (VALUE_TYPE (val)));
274 VALUE_LAZY (val) = 0;
279 /* Store the contents of FROMVAL into the location of TOVAL.
280 Return a new value with the location of TOVAL and contents of FROMVAL. */
283 value_assign (toval, fromval)
284 register value toval, fromval;
286 register struct type *type = VALUE_TYPE (toval);
288 char raw_buffer[MAX_REGISTER_RAW_SIZE];
289 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
292 COERCE_ARRAY (fromval);
295 if (VALUE_LVAL (toval) != lval_internalvar)
296 fromval = value_cast (type, fromval);
298 /* If TOVAL is a special machine register requiring conversion
299 of program values to a special raw format,
300 convert FROMVAL's contents now, with result in `raw_buffer',
301 and set USE_BUFFER to the number of bytes to write. */
303 if (VALUE_REGNO (toval) >= 0
304 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
306 int regno = VALUE_REGNO (toval);
307 if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno))
308 fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval);
309 memcpy (virtual_buffer, VALUE_CONTENTS (fromval),
310 REGISTER_VIRTUAL_SIZE (regno));
311 REGISTER_CONVERT_TO_RAW (regno, virtual_buffer, raw_buffer);
312 use_buffer = REGISTER_RAW_SIZE (regno);
315 switch (VALUE_LVAL (toval))
317 case lval_internalvar:
318 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
321 case lval_internalvar_component:
322 set_internalvar_component (VALUE_INTERNALVAR (toval),
323 VALUE_OFFSET (toval),
324 VALUE_BITPOS (toval),
325 VALUE_BITSIZE (toval),
330 if (VALUE_BITSIZE (toval))
332 int v; /* FIXME, this won't work for large bitfields */
333 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
334 (char *) &v, sizeof v);
335 modify_field ((char *) &v, value_as_long (fromval),
336 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
337 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
338 (char *)&v, sizeof v);
341 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
342 raw_buffer, use_buffer);
344 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
345 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
349 if (VALUE_BITSIZE (toval))
353 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
354 (char *) &v, sizeof v);
355 modify_field ((char *) &v, value_as_long (fromval),
356 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
357 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
358 (char *) &v, sizeof v);
361 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
362 raw_buffer, use_buffer);
365 /* Do any conversion necessary when storing this type to more
366 than one register. */
367 #ifdef REGISTER_CONVERT_FROM_TYPE
368 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
369 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
370 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
371 raw_buffer, TYPE_LENGTH (type));
373 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
374 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
379 case lval_reg_frame_relative:
381 /* value is stored in a series of registers in the frame
382 specified by the structure. Copy that value out, modify
383 it, and copy it back in. */
384 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
385 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
386 int byte_offset = VALUE_OFFSET (toval) % reg_size;
387 int reg_offset = VALUE_OFFSET (toval) / reg_size;
389 char *buffer = (char *) alloca (amount_to_copy);
393 /* Figure out which frame this is in currently. */
394 for (frame = get_current_frame ();
395 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
396 frame = get_prev_frame (frame))
400 error ("Value being assigned to is no longer active.");
402 amount_to_copy += (reg_size - amount_to_copy % reg_size);
405 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
407 amount_copied < amount_to_copy;
408 amount_copied += reg_size, regno++)
410 get_saved_register (buffer + amount_copied,
411 (int *)NULL, (CORE_ADDR *)NULL,
412 frame, regno, (enum lval_type *)NULL);
415 /* Modify what needs to be modified. */
416 if (VALUE_BITSIZE (toval))
417 modify_field (buffer + byte_offset,
418 value_as_long (fromval),
419 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
421 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
423 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
427 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
429 amount_copied < amount_to_copy;
430 amount_copied += reg_size, regno++)
436 /* Just find out where to put it. */
437 get_saved_register ((char *)NULL,
438 &optim, &addr, frame, regno, &lval);
441 error ("Attempt to assign to a value that was optimized out.");
442 if (lval == lval_memory)
443 write_memory (addr, buffer + amount_copied, reg_size);
444 else if (lval == lval_register)
445 write_register_bytes (addr, buffer + amount_copied, reg_size);
447 error ("Attempt to assign to an unmodifiable value.");
454 error ("Left side of = operation is not an lvalue.");
457 /* Return a value just like TOVAL except with the contents of FROMVAL
458 (except in the case of the type if TOVAL is an internalvar). */
460 if (VALUE_LVAL (toval) == lval_internalvar
461 || VALUE_LVAL (toval) == lval_internalvar_component)
463 type = VALUE_TYPE (fromval);
466 val = allocate_value (type);
467 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
468 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
470 VALUE_TYPE (val) = type;
475 /* Extend a value VAL to COUNT repetitions of its type. */
478 value_repeat (arg1, count)
484 if (VALUE_LVAL (arg1) != lval_memory)
485 error ("Only values in memory can be extended with '@'.");
487 error ("Invalid number %d of repetitions.", count);
489 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
491 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
492 VALUE_CONTENTS_RAW (val),
493 TYPE_LENGTH (VALUE_TYPE (val)) * count);
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
501 value_of_variable (var, b)
509 /* Use selected frame. */
513 fr = block_innermost_frame (b);
516 if (BLOCK_FUNCTION (b) != NULL
517 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
518 error ("No frame is currently executing in block %s.",
519 SYMBOL_NAME (BLOCK_FUNCTION (b)));
521 error ("No frame is currently executing in specified block");
524 val = read_var_value (var, fr);
526 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
530 /* Given a value which is an array, return a value which is a pointer to its
531 first element, regardless of whether or not the array has a nonzero lower
534 FIXME: A previous comment here indicated that this routine should be
535 substracting the array's lower bound. It's not clear to me that this
536 is correct. Given an array subscripting operation, it would certainly
537 work to do the adjustment here, essentially computing:
539 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
541 However I believe a more appropriate and logical place to account for
542 the lower bound is to do so in value_subscript, essentially computing:
544 (&array[0] + ((index - lowerbound) * sizeof array[0]))
546 As further evidence consider what would happen with operations other
547 than array subscripting, where the caller would get back a value that
548 had an address somewhere before the actual first element of the array,
549 and the information about the lower bound would be lost because of
550 the coercion to pointer type.
554 value_coerce_array (arg1)
557 register struct type *type;
559 if (VALUE_LVAL (arg1) != lval_memory)
560 error ("Attempt to take address of value not located in memory.");
562 /* Get type of elements. */
563 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
564 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
566 /* A phony array made by value_repeat.
567 Its type is the type of the elements, not an array type. */
568 type = VALUE_TYPE (arg1);
570 return value_from_longest (lookup_pointer_type (type),
571 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
574 /* Given a value which is a function, return a value which is a pointer
578 value_coerce_function (arg1)
582 if (VALUE_LVAL (arg1) != lval_memory)
583 error ("Attempt to take address of value not located in memory.");
585 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
586 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
589 /* Return a pointer value for the object for which ARG1 is the contents. */
595 struct type *type = VALUE_TYPE (arg1);
596 if (TYPE_CODE (type) == TYPE_CODE_REF)
598 /* Copy the value, but change the type from (T&) to (T*).
599 We keep the same location information, which is efficient,
600 and allows &(&X) to get the location containing the reference. */
601 value arg2 = value_copy (arg1);
602 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
605 if (VALUE_REPEATED (arg1)
606 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
607 return value_coerce_array (arg1);
608 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
609 return value_coerce_function (arg1);
611 if (VALUE_LVAL (arg1) != lval_memory)
612 error ("Attempt to take address of value not located in memory.");
614 return value_from_longest (lookup_pointer_type (type),
615 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
618 /* Given a value of a pointer type, apply the C unary * operator to it. */
626 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
627 error ("not implemented: member types in value_ind");
629 /* Allow * on an integer so we can cast it to whatever we want.
630 This returns an int, which seems like the most C-like thing
631 to do. "long long" variables are rare enough that
632 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
633 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
634 return value_at (builtin_type_int,
635 (CORE_ADDR) value_as_long (arg1));
636 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
637 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
638 value_as_pointer (arg1));
639 error ("Attempt to take contents of a non-pointer value.");
640 return 0; /* For lint -- never reached */
643 /* Pushing small parts of stack frames. */
645 /* Push one word (the size of object that a register holds). */
652 register int len = sizeof (REGISTER_TYPE);
653 char buffer[MAX_REGISTER_RAW_SIZE];
655 store_unsigned_integer (buffer, len, word);
658 write_memory (sp, buffer, len);
659 #else /* stack grows upward */
660 write_memory (sp, buffer, len);
662 #endif /* stack grows upward */
667 /* Push LEN bytes with data at BUFFER. */
670 push_bytes (sp, buffer, len)
677 write_memory (sp, buffer, len);
678 #else /* stack grows upward */
679 write_memory (sp, buffer, len);
681 #endif /* stack grows upward */
686 /* Push onto the stack the specified value VALUE. */
690 register CORE_ADDR sp;
693 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
697 write_memory (sp, VALUE_CONTENTS (arg), len);
698 #else /* stack grows upward */
699 write_memory (sp, VALUE_CONTENTS (arg), len);
701 #endif /* stack grows upward */
706 /* Perform the standard coercions that are specified
707 for arguments to be passed to C functions. */
710 value_arg_coerce (arg)
713 register struct type *type;
715 /* FIXME: We should coerce this according to the prototype (if we have
716 one). Right now we do a little bit of this in typecmp(), but that
717 doesn't always get called. For example, if passing a ref to a function
718 without a prototype, we probably should de-reference it. Currently
721 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
722 arg = value_cast (builtin_type_unsigned_int, arg);
724 #if 1 /* FIXME: This is only a temporary patch. -fnf */
725 if (VALUE_REPEATED (arg)
726 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
727 arg = value_coerce_array (arg);
728 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
729 arg = value_coerce_function (arg);
732 type = VALUE_TYPE (arg);
734 if (TYPE_CODE (type) == TYPE_CODE_INT
735 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
736 return value_cast (builtin_type_int, arg);
738 if (TYPE_CODE (type) == TYPE_CODE_FLT
739 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
740 return value_cast (builtin_type_double, arg);
745 /* Push the value ARG, first coercing it as an argument
749 value_arg_push (sp, arg)
750 register CORE_ADDR sp;
753 return value_push (sp, value_arg_coerce (arg));
756 /* Determine a function's address and its return type from its value.
757 Calls error() if the function is not valid for calling. */
760 find_function_addr (function, retval_type)
762 struct type **retval_type;
764 register struct type *ftype = VALUE_TYPE (function);
765 register enum type_code code = TYPE_CODE (ftype);
766 struct type *value_type;
769 /* If it's a member function, just look at the function
772 /* Determine address to call. */
773 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
775 funaddr = VALUE_ADDRESS (function);
776 value_type = TYPE_TARGET_TYPE (ftype);
778 else if (code == TYPE_CODE_PTR)
780 funaddr = value_as_pointer (function);
781 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
782 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
783 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
785 value_type = builtin_type_int;
787 else if (code == TYPE_CODE_INT)
789 /* Handle the case of functions lacking debugging info.
790 Their values are characters since their addresses are char */
791 if (TYPE_LENGTH (ftype) == 1)
792 funaddr = value_as_pointer (value_addr (function));
794 /* Handle integer used as address of a function. */
795 funaddr = (CORE_ADDR) value_as_long (function);
797 value_type = builtin_type_int;
800 error ("Invalid data type for function to be called.");
802 *retval_type = value_type;
806 #if defined (CALL_DUMMY)
807 /* All this stuff with a dummy frame may seem unnecessarily complicated
808 (why not just save registers in GDB?). The purpose of pushing a dummy
809 frame which looks just like a real frame is so that if you call a
810 function and then hit a breakpoint (get a signal, etc), "backtrace"
811 will look right. Whether the backtrace needs to actually show the
812 stack at the time the inferior function was called is debatable, but
813 it certainly needs to not display garbage. So if you are contemplating
814 making dummy frames be different from normal frames, consider that. */
816 /* Perform a function call in the inferior.
817 ARGS is a vector of values of arguments (NARGS of them).
818 FUNCTION is a value, the function to be called.
819 Returns a value representing what the function returned.
820 May fail to return, if a breakpoint or signal is hit
821 during the execution of the function. */
824 call_function_by_hand (function, nargs, args)
829 register CORE_ADDR sp;
832 /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
833 is in host byte order. It is switched to target byte order before calling
835 static REGISTER_TYPE dummy[] = CALL_DUMMY;
836 REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
838 struct type *value_type;
839 unsigned char struct_return;
840 CORE_ADDR struct_addr;
841 struct inferior_status inf_status;
842 struct cleanup *old_chain;
847 if (!target_has_execution)
850 save_inferior_status (&inf_status, 1);
851 old_chain = make_cleanup (restore_inferior_status, &inf_status);
853 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
854 (and POP_FRAME for restoring them). (At least on most machines)
855 they are saved on the stack in the inferior. */
858 old_sp = sp = read_sp ();
860 #if 1 INNER_THAN 2 /* Stack grows down */
863 #else /* Stack grows up */
868 funaddr = find_function_addr (function, &value_type);
871 struct block *b = block_for_pc (funaddr);
872 /* If compiled without -g, assume GCC. */
873 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
876 /* Are we returning a value using a structure return or a normal
879 struct_return = using_struct_return (function, funaddr, value_type,
882 /* Create a call sequence customized for this function
883 and the number of arguments for it. */
884 for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
885 store_unsigned_integer (&dummy1[i], sizeof (REGISTER_TYPE),
886 (unsigned LONGEST)dummy[i]);
888 #ifdef GDB_TARGET_IS_HPPA
889 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
890 value_type, using_gcc);
892 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
893 value_type, using_gcc);
897 #if CALL_DUMMY_LOCATION == ON_STACK
898 write_memory (start_sp, (char *)dummy1, sizeof dummy);
900 #else /* Not on stack. */
901 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
902 /* Convex Unix prohibits executing in the stack segment. */
903 /* Hope there is empty room at the top of the text segment. */
905 extern CORE_ADDR text_end;
908 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
909 if (read_memory_integer (start_sp, 1) != 0)
910 error ("text segment full -- no place to put call");
913 start_sp = text_end - sizeof dummy;
914 write_memory (start_sp, (char *)dummy1, sizeof dummy);
916 #else /* After text_end. */
918 extern CORE_ADDR text_end;
922 errcode = target_write_memory (start_sp, (char *)dummy1, sizeof dummy);
924 error ("Cannot write text segment -- call_function failed");
926 #endif /* After text_end. */
927 #endif /* Not on stack. */
930 sp = old_sp; /* It really is used, for some ifdef's... */
934 /* If stack grows down, we must leave a hole at the top. */
938 /* Reserve space for the return structure to be written on the
939 stack, if necessary */
942 len += TYPE_LENGTH (value_type);
944 for (i = nargs - 1; i >= 0; i--)
945 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
946 #ifdef CALL_DUMMY_STACK_ADJUST
947 len += CALL_DUMMY_STACK_ADJUST;
950 sp -= STACK_ALIGN (len) - len;
952 sp += STACK_ALIGN (len) - len;
955 #endif /* STACK_ALIGN */
957 /* Reserve space for the return structure to be written on the
958 stack, if necessary */
963 sp -= TYPE_LENGTH (value_type);
967 sp += TYPE_LENGTH (value_type);
971 #if defined (REG_STRUCT_HAS_ADDR)
973 /* This is a machine like the sparc, where we need to pass a pointer
974 to the structure, not the structure itself. */
975 if (REG_STRUCT_HAS_ADDR (using_gcc))
976 for (i = nargs - 1; i >= 0; i--)
977 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
980 #if !(1 INNER_THAN 2)
981 /* The stack grows up, so the address of the thing we push
982 is the stack pointer before we push it. */
985 /* Push the structure. */
986 sp = value_push (sp, args[i]);
988 /* The stack grows down, so the address of the thing we push
989 is the stack pointer after we push it. */
992 /* The value we're going to pass is the address of the thing
994 args[i] = value_from_longest (lookup_pointer_type (value_type),
998 #endif /* REG_STRUCT_HAS_ADDR. */
1000 #ifdef PUSH_ARGUMENTS
1001 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1002 #else /* !PUSH_ARGUMENTS */
1003 for (i = nargs - 1; i >= 0; i--)
1004 sp = value_arg_push (sp, args[i]);
1005 #endif /* !PUSH_ARGUMENTS */
1007 #ifdef CALL_DUMMY_STACK_ADJUST
1009 sp -= CALL_DUMMY_STACK_ADJUST;
1011 sp += CALL_DUMMY_STACK_ADJUST;
1013 #endif /* CALL_DUMMY_STACK_ADJUST */
1015 /* Store the address at which the structure is supposed to be
1016 written. Note that this (and the code which reserved the space
1017 above) assumes that gcc was used to compile this function. Since
1018 it doesn't cost us anything but space and if the function is pcc
1019 it will ignore this value, we will make that assumption.
1021 Also note that on some machines (like the sparc) pcc uses a
1022 convention like gcc's. */
1025 STORE_STRUCT_RETURN (struct_addr, sp);
1027 /* Write the stack pointer. This is here because the statements above
1028 might fool with it. On SPARC, this write also stores the register
1029 window into the right place in the new stack frame, which otherwise
1030 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1034 char retbuf[REGISTER_BYTES];
1036 struct symbol *symbol;
1039 symbol = find_pc_function (funaddr);
1042 name = SYMBOL_SOURCE_NAME (symbol);
1046 /* Try the minimal symbols. */
1047 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1051 name = SYMBOL_SOURCE_NAME (msymbol);
1057 sprintf (format, "at %s", local_hex_format ());
1059 sprintf (name, format, funaddr);
1062 /* Execute the stack dummy routine, calling FUNCTION.
1063 When it is done, discard the empty frame
1064 after storing the contents of all regs into retbuf. */
1065 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1067 /* We stopped somewhere besides the call dummy. */
1069 /* If we did the cleanups, we would print a spurious error message
1070 (Unable to restore previously selected frame), would write the
1071 registers from the inf_status (which is wrong), and would do other
1072 wrong things (like set stop_bpstat to the wrong thing). */
1073 discard_cleanups (old_chain);
1074 /* Prevent memory leak. */
1075 bpstat_clear (inf_status.stop_bpstat);
1077 /* The following error message used to say "The expression
1078 which contained the function call has been discarded." It
1079 is a hard concept to explain in a few words. Ideally, GDB
1080 would be able to resume evaluation of the expression when
1081 the function finally is done executing. Perhaps someday
1082 this will be implemented (it would not be easy). */
1084 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1085 a C++ name with arguments and stuff. */
1087 The program being debugged stopped while in a function called from GDB.\n\
1088 When the function (%s) is done executing, GDB will silently\n\
1089 stop (instead of continuing to evaluate the expression containing\n\
1090 the function call).", name);
1093 do_cleanups (old_chain);
1095 /* Figure out the value returned by the function. */
1096 return value_being_returned (value_type, retbuf, struct_return);
1099 #else /* no CALL_DUMMY. */
1101 call_function_by_hand (function, nargs, args)
1106 error ("Cannot invoke functions on this machine.");
1108 #endif /* no CALL_DUMMY. */
1111 /* Create a value for an array by allocating space in the inferior, copying
1112 the data into that space, and then setting up an array value.
1114 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1115 populated from the values passed in ELEMVEC.
1117 The element type of the array is inherited from the type of the
1118 first element, and all elements must have the same size (though we
1119 don't currently enforce any restriction on their types). */
1122 value_array (lowbound, highbound, elemvec)
1131 struct type *rangetype;
1132 struct type *arraytype;
1135 /* Validate that the bounds are reasonable and that each of the elements
1136 have the same size. */
1138 nelem = highbound - lowbound + 1;
1141 error ("bad array bounds (%d, %d)", lowbound, highbound);
1143 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1144 for (idx = 0; idx < nelem; idx++)
1146 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1148 error ("array elements must all be the same size");
1152 /* Allocate space to store the array in the inferior, and then initialize
1153 it by copying in each element. FIXME: Is it worth it to create a
1154 local buffer in which to collect each value and then write all the
1155 bytes in one operation? */
1157 addr = allocate_space_in_inferior (nelem * typelength);
1158 for (idx = 0; idx < nelem; idx++)
1160 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1164 /* Create the array type and set up an array value to be evaluated lazily. */
1166 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1167 lowbound, highbound);
1168 arraytype = create_array_type ((struct type *) NULL,
1169 VALUE_TYPE (elemvec[0]), rangetype);
1170 val = value_at_lazy (arraytype, addr);
1174 /* Create a value for a string constant by allocating space in the inferior,
1175 copying the data into that space, and returning the address with type
1176 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1178 Note that string types are like array of char types with a lower bound of
1179 zero and an upper bound of LEN - 1. Also note that the string may contain
1180 embedded null bytes. */
1183 value_string (ptr, len)
1188 struct type *rangetype;
1189 struct type *stringtype;
1192 /* Allocate space to store the string in the inferior, and then
1193 copy LEN bytes from PTR in gdb to that address in the inferior. */
1195 addr = allocate_space_in_inferior (len);
1196 write_memory (addr, ptr, len);
1198 /* Create the string type and set up a string value to be evaluated
1201 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1203 stringtype = create_string_type ((struct type *) NULL, rangetype);
1204 val = value_at_lazy (stringtype, addr);
1208 /* See if we can pass arguments in T2 to a function which takes arguments
1209 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1210 arguments need coercion of some sort, then the coerced values are written
1211 into T2. Return value is 0 if the arguments could be matched, or the
1212 position at which they differ if not.
1214 STATICP is nonzero if the T1 argument list came from a
1215 static member function.
1217 For non-static member functions, we ignore the first argument,
1218 which is the type of the instance variable. This is because we want
1219 to handle calls with objects from derived classes. This is not
1220 entirely correct: we should actually check to make sure that a
1221 requested operation is type secure, shouldn't we? FIXME. */
1224 typecmp (staticp, t1, t2)
1233 if (staticp && t1 == 0)
1237 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1238 if (t1[!staticp] == 0) return 0;
1239 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1243 if (TYPE_CODE (t1[i]) == TYPE_CODE_REF
1244 /* We should be doing hairy argument matching, as below. */
1245 && (TYPE_CODE (TYPE_TARGET_TYPE (t1[i]))
1246 == TYPE_CODE (VALUE_TYPE (t2[i]))))
1248 t2[i] = value_addr (t2[i]);
1252 if (TYPE_CODE (t1[i]) == TYPE_CODE_PTR
1253 && TYPE_CODE (VALUE_TYPE (t2[i])) == TYPE_CODE_ARRAY)
1254 /* Array to pointer is a `trivial conversion' according to the ARM. */
1257 /* We should be doing much hairier argument matching (see section 13.2
1258 of the ARM), but as a quick kludge, just check for the same type
1260 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1263 if (!t1[i]) return 0;
1264 return t2[i] ? i+1 : 0;
1267 /* Helper function used by value_struct_elt to recurse through baseclasses.
1268 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1269 and search in it assuming it has (class) type TYPE.
1270 If found, return value, else return NULL.
1272 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1273 look for a baseclass named NAME. */
1276 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1278 register value arg1;
1280 register struct type *type;
1281 int looking_for_baseclass;
1285 check_stub_type (type);
1287 if (! looking_for_baseclass)
1288 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1290 char *t_field_name = TYPE_FIELD_NAME (type, i);
1292 if (t_field_name && STREQ (t_field_name, name))
1295 if (TYPE_FIELD_STATIC (type, i))
1297 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1298 struct symbol *sym =
1299 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1301 error ("Internal error: could not find physical static variable named %s",
1303 v = value_at (TYPE_FIELD_TYPE (type, i),
1304 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1307 v = value_primitive_field (arg1, offset, i, type);
1309 error("there is no field named %s", name);
1314 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1317 /* If we are looking for baseclasses, this is what we get when we
1318 hit them. But it could happen that the base part's member name
1319 is not yet filled in. */
1320 int found_baseclass = (looking_for_baseclass
1321 && TYPE_BASECLASS_NAME (type, i) != NULL
1322 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1324 if (BASETYPE_VIA_VIRTUAL (type, i))
1327 /* Fix to use baseclass_offset instead. FIXME */
1328 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1331 error ("virtual baseclass botch");
1332 if (found_baseclass)
1334 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1335 looking_for_baseclass);
1337 else if (found_baseclass)
1338 v = value_primitive_field (arg1, offset, i, type);
1340 v = search_struct_field (name, arg1,
1341 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1342 TYPE_BASECLASS (type, i),
1343 looking_for_baseclass);
1349 /* Helper function used by value_struct_elt to recurse through baseclasses.
1350 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1351 and search in it assuming it has (class) type TYPE.
1352 If found, return value, else return NULL. */
1355 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1357 register value *arg1p, *args;
1358 int offset, *static_memfuncp;
1359 register struct type *type;
1363 check_stub_type (type);
1364 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1366 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1367 if (t_field_name && STREQ (t_field_name, name))
1369 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1370 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1372 if (j > 0 && args == 0)
1373 error ("cannot resolve overloaded method `%s'", name);
1376 if (TYPE_FN_FIELD_STUB (f, j))
1377 check_stub_method (type, i, j);
1378 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1379 TYPE_FN_FIELD_ARGS (f, j), args))
1381 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1382 return (value)value_virtual_fn_field (arg1p, f, j, type, offset);
1383 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1384 *static_memfuncp = 1;
1385 return (value)value_fn_field (arg1p, f, j, type, offset);
1392 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1397 if (BASETYPE_VIA_VIRTUAL (type, i))
1399 base_offset = baseclass_offset (type, i, *arg1p, offset);
1400 if (base_offset == -1)
1401 error ("virtual baseclass botch");
1405 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1407 v = search_struct_method (name, arg1p, args, base_offset + offset,
1408 static_memfuncp, TYPE_BASECLASS (type, i));
1411 /* FIXME-bothner: Why is this commented out? Why is it here? */
1412 /* *arg1p = arg1_tmp;*/
1419 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1420 extract the component named NAME from the ultimate target structure/union
1421 and return it as a value with its appropriate type.
1422 ERR is used in the error message if *ARGP's type is wrong.
1424 C++: ARGS is a list of argument types to aid in the selection of
1425 an appropriate method. Also, handle derived types.
1427 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1428 where the truthvalue of whether the function that was resolved was
1429 a static member function or not is stored.
1431 ERR is an error message to be printed in case the field is not found. */
1434 value_struct_elt (argp, args, name, static_memfuncp, err)
1435 register value *argp, *args;
1437 int *static_memfuncp;
1440 register struct type *t;
1443 COERCE_ARRAY (*argp);
1445 t = VALUE_TYPE (*argp);
1447 /* Follow pointers until we get to a non-pointer. */
1449 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1451 *argp = value_ind (*argp);
1452 /* Don't coerce fn pointer to fn and then back again! */
1453 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1454 COERCE_ARRAY (*argp);
1455 t = VALUE_TYPE (*argp);
1458 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1459 error ("not implemented: member type in value_struct_elt");
1461 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1462 && TYPE_CODE (t) != TYPE_CODE_UNION)
1463 error ("Attempt to extract a component of a value that is not a %s.", err);
1465 /* Assume it's not, unless we see that it is. */
1466 if (static_memfuncp)
1467 *static_memfuncp =0;
1471 /* if there are no arguments ...do this... */
1473 /* Try as a field first, because if we succeed, there
1474 is less work to be done. */
1475 v = search_struct_field (name, *argp, 0, t, 0);
1479 /* C++: If it was not found as a data field, then try to
1480 return it as a pointer to a method. */
1482 if (destructor_name_p (name, t))
1483 error ("Cannot get value of destructor");
1485 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1489 if (TYPE_NFN_FIELDS (t))
1490 error ("There is no member or method named %s.", name);
1492 error ("There is no member named %s.", name);
1497 if (destructor_name_p (name, t))
1501 /* destructors are a special case. */
1502 return (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1503 TYPE_FN_FIELDLIST_LENGTH (t, 0),
1508 error ("destructor should not have any argument");
1512 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1516 /* See if user tried to invoke data as function. If so,
1517 hand it back. If it's not callable (i.e., a pointer to function),
1518 gdb should give an error. */
1519 v = search_struct_field (name, *argp, 0, t, 0);
1523 /* FIXME: This error message is very confusing, since it can also
1524 mean that argument matching failed. But I don't want to say
1525 "or argument matching failed" for C programs. Checking the
1526 current language isn't right, because whether we attempt
1527 argument matching does not depend on the language. The right
1528 fix is to restructure the above code to be able to distinguish
1529 between argument matching failure and the field not being found
1531 error ("Structure has no component named %s.", name);
1535 /* C++: return 1 is NAME is a legitimate name for the destructor
1536 of type TYPE. If TYPE does not have a destructor, or
1537 if NAME is inappropriate for TYPE, an error is signaled. */
1539 destructor_name_p (name, type)
1541 const struct type *type;
1543 /* destructors are a special case. */
1547 char *dname = type_name_no_tag (type);
1548 if (!STREQ (dname, name+1))
1549 error ("name of destructor must equal name of class");
1556 /* Helper function for check_field: Given TYPE, a structure/union,
1557 return 1 if the component named NAME from the ultimate
1558 target structure/union is defined, otherwise, return 0. */
1561 check_field_in (type, name)
1562 register struct type *type;
1567 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1569 char *t_field_name = TYPE_FIELD_NAME (type, i);
1570 if (t_field_name && STREQ (t_field_name, name))
1574 /* C++: If it was not found as a data field, then try to
1575 return it as a pointer to a method. */
1577 /* Destructors are a special case. */
1578 if (destructor_name_p (name, type))
1581 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1583 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1587 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1588 if (check_field_in (TYPE_BASECLASS (type, i), name))
1595 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1596 return 1 if the component named NAME from the ultimate
1597 target structure/union is defined, otherwise, return 0. */
1600 check_field (arg1, name)
1601 register value arg1;
1604 register struct type *t;
1606 COERCE_ARRAY (arg1);
1608 t = VALUE_TYPE (arg1);
1610 /* Follow pointers until we get to a non-pointer. */
1612 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1613 t = TYPE_TARGET_TYPE (t);
1615 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1616 error ("not implemented: member type in check_field");
1618 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1619 && TYPE_CODE (t) != TYPE_CODE_UNION)
1620 error ("Internal error: `this' is not an aggregate");
1622 return check_field_in (t, name);
1625 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1626 return the address of this member as a "pointer to member"
1627 type. If INTYPE is non-null, then it will be the type
1628 of the member we are looking for. This will help us resolve
1629 "pointers to member functions". This function is used
1630 to resolve user expressions of the form "DOMAIN::NAME". */
1633 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1634 struct type *domain, *curtype, *intype;
1638 register struct type *t = curtype;
1642 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1643 && TYPE_CODE (t) != TYPE_CODE_UNION)
1644 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1646 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1648 char *t_field_name = TYPE_FIELD_NAME (t, i);
1650 if (t_field_name && STREQ (t_field_name, name))
1652 if (TYPE_FIELD_STATIC (t, i))
1654 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1655 struct symbol *sym =
1656 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1658 error ("Internal error: could not find physical static variable named %s",
1660 return value_at (SYMBOL_TYPE (sym),
1661 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1663 if (TYPE_FIELD_PACKED (t, i))
1664 error ("pointers to bitfield members not allowed");
1666 return value_from_longest
1667 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1669 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1673 /* C++: If it was not found as a data field, then try to
1674 return it as a pointer to a method. */
1676 /* Destructors are a special case. */
1677 if (destructor_name_p (name, t))
1679 error ("member pointers to destructors not implemented yet");
1682 /* Perform all necessary dereferencing. */
1683 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1684 intype = TYPE_TARGET_TYPE (intype);
1686 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1688 if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name))
1690 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1691 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1693 if (intype == 0 && j > 1)
1694 error ("non-unique member `%s' requires type instantiation", name);
1698 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1701 error ("no member function matches that type instantiation");
1706 if (TYPE_FN_FIELD_STUB (f, j))
1707 check_stub_method (t, i, j);
1708 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1710 return value_from_longest
1711 (lookup_reference_type
1712 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1714 (LONGEST) METHOD_PTR_FROM_VOFFSET
1715 (TYPE_FN_FIELD_VOFFSET (f, j)));
1719 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1720 0, VAR_NAMESPACE, 0, NULL);
1727 v = read_var_value (s, 0);
1729 VALUE_TYPE (v) = lookup_reference_type
1730 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1738 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1743 if (BASETYPE_VIA_VIRTUAL (t, i))
1746 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1747 v = value_struct_elt_for_reference (domain,
1748 offset + base_offset,
1749 TYPE_BASECLASS (t, i),
1758 /* C++: return the value of the class instance variable, if one exists.
1759 Flag COMPLAIN signals an error if the request is made in an
1760 inappropriate context. */
1762 value_of_this (complain)
1765 extern FRAME selected_frame;
1766 struct symbol *func, *sym;
1769 static const char funny_this[] = "this";
1772 if (selected_frame == 0)
1774 error ("no frame selected");
1777 func = get_frame_function (selected_frame);
1781 error ("no `this' in nameless context");
1785 b = SYMBOL_BLOCK_VALUE (func);
1786 i = BLOCK_NSYMS (b);
1789 error ("no args, no `this'");
1792 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1793 symbol instead of the LOC_ARG one (if both exist). */
1794 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1798 error ("current stack frame not in method");
1803 this = read_var_value (sym, selected_frame);
1804 if (this == 0 && complain)
1805 error ("`this' argument at unknown address");