1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 #if !defined (GET_SAVED_REGISTER)
31 /* Return the address in which frame FRAME's value of register REGNUM
32 has been saved in memory. Or return zero if it has not been saved.
33 If REGNUM specifies the SP, the value we return is actually
34 the SP value, not an address where it was saved. */
37 find_saved_register (frame, regnum)
41 struct frame_info *fi;
42 struct frame_saved_regs saved_regs;
44 register FRAME frame1 = 0;
45 register CORE_ADDR addr = 0;
47 if (frame == 0) /* No regs saved if want current frame */
50 #ifdef HAVE_REGISTER_WINDOWS
51 /* We assume that a register in a register window will only be saved
52 in one place (since the name changes and/or disappears as you go
53 towards inner frames), so we only call get_frame_saved_regs on
54 the current frame. This is directly in contradiction to the
55 usage below, which assumes that registers used in a frame must be
56 saved in a lower (more interior) frame. This change is a result
57 of working on a register window machine; get_frame_saved_regs
58 always returns the registers saved within a frame, within the
59 context (register namespace) of that frame. */
61 /* However, note that we don't want this to return anything if
62 nothing is saved (if there's a frame inside of this one). Also,
63 callers to this routine asking for the stack pointer want the
64 stack pointer saved for *this* frame; this is returned from the
68 if (REGISTER_IN_WINDOW_P(regnum))
70 frame1 = get_next_frame (frame);
71 if (!frame1) return 0; /* Registers of this frame are
74 /* Get the SP from the next frame in; it will be this
76 if (regnum != SP_REGNUM)
79 fi = get_frame_info (frame1);
80 get_frame_saved_regs (fi, &saved_regs);
81 return saved_regs.regs[regnum]; /* ... which might be zero */
83 #endif /* HAVE_REGISTER_WINDOWS */
85 /* Note that this next routine assumes that registers used in
86 frame x will be saved only in the frame that x calls and
87 frames interior to it. This is not true on the sparc, but the
88 above macro takes care of it, so we should be all right. */
92 frame1 = get_prev_frame (frame1);
93 if (frame1 == 0 || frame1 == frame)
95 fi = get_frame_info (frame1);
96 get_frame_saved_regs (fi, &saved_regs);
97 if (saved_regs.regs[regnum])
98 addr = saved_regs.regs[regnum];
104 /* Find register number REGNUM relative to FRAME and put its
105 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
106 was optimized out (and thus can't be fetched). Set *LVAL to
107 lval_memory, lval_register, or not_lval, depending on whether the
108 value was fetched from memory, from a register, or in a strange
109 and non-modifiable way (e.g. a frame pointer which was calculated
110 rather than fetched). Set *ADDRP to the address, either in memory
111 on as a REGISTER_BYTE offset into the registers array.
113 Note that this implementation never sets *LVAL to not_lval. But
114 it can be replaced by defining GET_SAVED_REGISTER and supplying
117 The argument RAW_BUFFER must point to aligned memory. */
119 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
125 enum lval_type *lval;
128 /* Normal systems don't optimize out things with register numbers. */
129 if (optimized != NULL)
131 addr = find_saved_register (frame, regnum);
136 if (regnum == SP_REGNUM)
138 if (raw_buffer != NULL)
139 *(CORE_ADDR *)raw_buffer = addr;
144 if (raw_buffer != NULL)
145 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
150 *lval = lval_register;
151 addr = REGISTER_BYTE (regnum);
152 if (raw_buffer != NULL)
153 read_register_gen (regnum, raw_buffer);
158 #endif /* GET_SAVED_REGISTER. */
160 /* Copy the bytes of register REGNUM, relative to the current stack frame,
161 into our memory at MYADDR, in target byte order.
162 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
164 Returns 1 if could not be read, 0 if could. */
167 read_relative_register_raw_bytes (regnum, myaddr)
172 if (regnum == FP_REGNUM && selected_frame)
174 bcopy (&FRAME_FP(selected_frame), myaddr, sizeof (CORE_ADDR));
175 SWAP_TARGET_AND_HOST (myaddr, sizeof (CORE_ADDR)); /* in target order */
179 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
180 regnum, (enum lval_type *)NULL);
184 /* Return a `value' with the contents of register REGNUM
185 in its virtual format, with the type specified by
186 REGISTER_VIRTUAL_TYPE. */
189 value_of_register (regnum)
195 char raw_buffer[MAX_REGISTER_RAW_SIZE];
196 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
199 get_saved_register (raw_buffer, &optim, &addr,
200 selected_frame, regnum, &lval);
202 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
203 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
204 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (val),
205 REGISTER_VIRTUAL_SIZE (regnum));
206 VALUE_LVAL (val) = lval;
207 VALUE_ADDRESS (val) = addr;
208 VALUE_REGNO (val) = regnum;
209 VALUE_OPTIMIZED_OUT (val) = optim;
213 /* Low level examining and depositing of registers.
215 The caller is responsible for making
216 sure that the inferior is stopped before calling the fetching routines,
217 or it will get garbage. (a change from GDB version 3, in which
218 the caller got the value from the last stop). */
220 /* Contents of the registers in target byte order.
221 We allocate some extra slop since we do a lot of bcopy's around `registers',
222 and failing-soft is better than failing hard. */
223 char registers[REGISTER_BYTES + /* SLOP */ 256];
225 /* Nonzero if that register has been fetched. */
226 char register_valid[NUM_REGS];
228 /* Indicate that registers may have changed, so invalidate the cache. */
233 for (i = 0; i < NUM_REGS; i++)
234 register_valid[i] = 0;
237 /* Indicate that all registers have been fetched, so mark them all valid. */
242 for (i = 0; i < NUM_REGS; i++)
243 register_valid[i] = 1;
246 /* Copy LEN bytes of consecutive data from registers
247 starting with the REGBYTE'th byte of register data
248 into memory at MYADDR. */
251 read_register_bytes (regbyte, myaddr, len)
256 /* Fetch all registers. */
258 for (i = 0; i < NUM_REGS; i++)
259 if (!register_valid[i])
261 target_fetch_registers (-1);
265 bcopy (®isters[regbyte], myaddr, len);
268 /* Read register REGNO into memory at MYADDR, which must be large enough
269 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
270 If the register is known to be the size of a CORE_ADDR or smaller,
271 read_register can be used instead. */
273 read_register_gen (regno, myaddr)
277 if (!register_valid[regno])
278 target_fetch_registers (regno);
279 bcopy (®isters[REGISTER_BYTE (regno)], myaddr, REGISTER_RAW_SIZE (regno));
282 /* Copy LEN bytes of consecutive data from memory at MYADDR
283 into registers starting with the REGBYTE'th byte of register data. */
286 write_register_bytes (regbyte, myaddr, len)
291 /* Make sure the entire registers array is valid. */
292 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
293 bcopy (myaddr, ®isters[regbyte], len);
294 target_store_registers (-1);
297 /* Return the contents of register REGNO, regarding it as an integer. */
300 read_register (regno)
304 if (!register_valid[regno])
305 target_fetch_registers (regno);
306 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
307 reg = *(int *) ®isters[REGISTER_BYTE (regno)];
308 SWAP_TARGET_AND_HOST (®, sizeof (int));
312 /* Registers we shouldn't try to store. */
313 #if !defined (CANNOT_STORE_REGISTER)
314 #define CANNOT_STORE_REGISTER(regno) 0
317 /* Store VALUE in the register number REGNO, regarded as an integer. */
320 write_register (regno, val)
323 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
324 the registers array if something writes to this register. */
325 if (CANNOT_STORE_REGISTER (regno))
328 SWAP_TARGET_AND_HOST (&val, sizeof (int));
330 target_prepare_to_store ();
332 register_valid [regno] = 1;
333 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
334 /* FIXME, this depends on REGISTER_BYTE (regno) being aligned for host */
335 *(int *) ®isters[REGISTER_BYTE (regno)] = val;
337 target_store_registers (regno);
340 /* Record that register REGNO contains VAL.
341 This is used when the value is obtained from the inferior or core dump,
342 so there is no need to store the value there. */
345 supply_register (regno, val)
349 register_valid[regno] = 1;
350 bcopy (val, ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));
353 /* Given a struct symbol for a variable,
354 and a stack frame id, read the value of the variable
355 and return a (pointer to a) struct value containing the value.
356 If the variable cannot be found, return a zero pointer.
357 If FRAME is NULL, use the selected_frame. */
360 read_var_value (var, frame)
361 register struct symbol *var;
365 struct frame_info *fi;
366 struct type *type = SYMBOL_TYPE (var);
370 v = allocate_value (type);
371 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
372 len = TYPE_LENGTH (type);
374 if (frame == 0) frame = selected_frame;
376 switch (SYMBOL_CLASS (var))
379 bcopy (&SYMBOL_VALUE (var), VALUE_CONTENTS_RAW (v), len);
380 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
381 VALUE_LVAL (v) = not_lval;
385 addr = SYMBOL_VALUE_ADDRESS (var);
386 bcopy (&addr, VALUE_CONTENTS_RAW (v), len);
387 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
388 VALUE_LVAL (v) = not_lval;
391 case LOC_CONST_BYTES:
394 bytes_addr = SYMBOL_VALUE_BYTES (var);
395 bcopy (bytes_addr, VALUE_CONTENTS_RAW (v), len);
396 VALUE_LVAL (v) = not_lval;
401 addr = SYMBOL_VALUE_ADDRESS (var);
404 /* Nonzero if a struct which is located in a register or a LOC_ARG
406 the address of the struct, not the struct itself. GCC_P is nonzero
407 if the function was compiled with GCC. */
408 #if !defined (REG_STRUCT_HAS_ADDR)
409 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
413 fi = get_frame_info (frame);
416 addr = FRAME_ARGS_ADDRESS (fi);
420 addr += SYMBOL_VALUE (var);
424 fi = get_frame_info (frame);
427 addr = FRAME_ARGS_ADDRESS (fi);
431 addr += SYMBOL_VALUE (var);
432 read_memory (addr, &addr, sizeof (CORE_ADDR));
437 fi = get_frame_info (frame);
440 addr = SYMBOL_VALUE (var) + FRAME_LOCALS_ADDRESS (fi);
444 error ("Cannot look up value of a typedef");
448 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
458 b = get_frame_block (frame);
460 v = value_from_register (type, SYMBOL_VALUE (var), frame);
462 if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b))
463 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
464 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
471 error ("Cannot look up value of a botched symbol.");
475 VALUE_ADDRESS (v) = addr;
480 /* Return a value of type TYPE, stored in register REGNUM, in frame
484 value_from_register (type, regnum, frame)
489 char raw_buffer [MAX_REGISTER_RAW_SIZE];
490 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
493 value v = allocate_value (type);
494 int len = TYPE_LENGTH (type);
495 char *value_bytes = 0;
496 int value_bytes_copied = 0;
497 int num_storage_locs;
500 VALUE_REGNO (v) = regnum;
502 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
503 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
506 if (num_storage_locs > 1)
508 /* Value spread across multiple storage locations. */
511 int mem_stor = 0, reg_stor = 0;
512 int mem_tracking = 1;
513 CORE_ADDR last_addr = 0;
514 CORE_ADDR first_addr;
516 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
518 /* Copy all of the data out, whereever it may be. */
520 for (local_regnum = regnum;
521 value_bytes_copied < len;
522 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
525 get_saved_register (value_bytes + value_bytes_copied,
531 if (lval == lval_register)
537 if (regnum == local_regnum)
542 && (regnum == local_regnum
543 || addr == last_addr));
548 if ((reg_stor && mem_stor)
549 || (mem_stor && !mem_tracking))
550 /* Mixed storage; all of the hassle we just went through was
551 for some good purpose. */
553 VALUE_LVAL (v) = lval_reg_frame_relative;
554 VALUE_FRAME (v) = FRAME_FP (frame);
555 VALUE_FRAME_REGNUM (v) = regnum;
559 VALUE_LVAL (v) = lval_memory;
560 VALUE_ADDRESS (v) = first_addr;
564 VALUE_LVAL (v) = lval_register;
565 VALUE_ADDRESS (v) = first_addr;
568 fatal ("value_from_register: Value not stored anywhere!");
570 VALUE_OPTIMIZED_OUT (v) = optim;
572 /* Any structure stored in more than one register will always be
573 an integral number of registers. Otherwise, you'd need to do
574 some fiddling with the last register copied here for little
577 /* Copy into the contents section of the value. */
578 bcopy (value_bytes, VALUE_CONTENTS_RAW (v), len);
583 /* Data is completely contained within a single register. Locate the
584 register's contents in a real register or in core;
585 read the data in raw format. */
587 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
588 VALUE_OPTIMIZED_OUT (v) = optim;
589 VALUE_LVAL (v) = lval;
590 VALUE_ADDRESS (v) = addr;
592 /* Convert the raw contents to virtual contents.
593 (Just copy them if the formats are the same.) */
595 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
597 if (REGISTER_CONVERTIBLE (regnum))
599 /* When the raw and virtual formats differ, the virtual format
600 corresponds to a specific data type. If we want that type,
601 copy the data into the value.
602 Otherwise, do a type-conversion. */
604 if (type != REGISTER_VIRTUAL_TYPE (regnum))
606 /* eg a variable of type `float' in a 68881 register
607 with raw type `extended' and virtual type `double'.
608 Fetch it as a `double' and then convert to `float'. */
609 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
610 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
611 v = value_cast (type, v);
614 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
618 /* Raw and virtual formats are the same for this register. */
620 #if TARGET_BYTE_ORDER == BIG_ENDIAN
621 if (len < REGISTER_RAW_SIZE (regnum))
623 /* Big-endian, and we want less than full size. */
624 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
628 bcopy (virtual_buffer + VALUE_OFFSET (v),
629 VALUE_CONTENTS_RAW (v), len);
635 /* Given a struct symbol for a variable or function,
636 and a stack frame id,
637 return a (pointer to a) struct value containing the properly typed
641 locate_var_value (var, frame)
642 register struct symbol *var;
646 struct type *type = SYMBOL_TYPE (var);
649 /* Evaluate it first; if the result is a memory address, we're fine.
650 Lazy evaluation pays off here. */
652 lazy_value = read_var_value (var, frame);
654 error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var));
656 if (VALUE_LAZY (lazy_value)
657 || TYPE_CODE (type) == TYPE_CODE_FUNC)
659 addr = VALUE_ADDRESS (lazy_value);
661 /* C++: The "address" of a reference should yield the address
662 * of the object pointed to. So force an extra de-reference. */
664 if (TYPE_CODE (type) == TYPE_CODE_REF)
666 char *buf = alloca (TYPE_LENGTH (type));
667 read_memory (addr, buf, TYPE_LENGTH (type));
668 addr = unpack_pointer (type, buf);
669 type = TYPE_TARGET_TYPE (type);
672 return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
675 /* Not a memory address; check what the problem was. */
676 switch (VALUE_LVAL (lazy_value))
679 case lval_reg_frame_relative:
680 error ("Address requested for identifier \"%s\" which is in a register.",
685 error ("Can't take address of \"%s\" which isn't an lvalue.",
689 return 0; /* For lint -- never reached */