1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #if !defined (TARGET_H)
24 /* This include file defines the interface between the main part
25 of the debugger, and the part which is target-specific, or
26 specific to the communications interface between us and the
29 A TARGET is an interface between the debugger and a particular
30 kind of file or process. Targets can be STACKED in STRATA,
31 so that more than one target can potentially respond to a request.
32 In particular, memory accesses will walk down the stack of targets
33 until they find a target that is interested in handling that particular
34 address. STRATA are artificial boundaries on the stack, within
35 which particular kinds of targets live. Strata exist so that
36 people don't get confused by pushing e.g. a process target and then
37 a file target, and wondering why they can't see the current values
38 of variables any more (the file target is handling them and they
39 never get to the process target). So when you push a file target,
40 it goes into the file stratum, which is always below the process
47 dummy_stratum, /* The lowest of the low */
48 file_stratum, /* Executable files, etc */
49 core_stratum, /* Core dump files */
50 download_stratum, /* Downloading of remote targets */
51 process_stratum /* Executing processes */
54 enum thread_control_capabilities {
55 tc_none = 0, /* Default: can't control thread execution. */
56 tc_schedlock = 1, /* Can lock the thread scheduler. */
57 tc_switch = 2 /* Can switch the running thread on demand. */
60 /* Stuff for target_wait. */
62 /* Generally, what has the program done? */
63 enum target_waitkind {
64 /* The program has exited. The exit status is in value.integer. */
65 TARGET_WAITKIND_EXITED,
67 /* The program has stopped with a signal. Which signal is in value.sig. */
68 TARGET_WAITKIND_STOPPED,
70 /* The program has terminated with a signal. Which signal is in
72 TARGET_WAITKIND_SIGNALLED,
74 /* The program is letting us know that it dynamically loaded something
75 (e.g. it called load(2) on AIX). */
76 TARGET_WAITKIND_LOADED,
78 /* The program has forked. A "related" process' ID is in value.related_pid.
79 I.e., if the child forks, value.related_pid is the parent's ID.
81 TARGET_WAITKIND_FORKED,
83 /* The program has vforked. A "related" process's ID is in value.related_pid.
85 TARGET_WAITKIND_VFORKED,
87 /* The program has exec'ed a new executable file. The new file's pathname
88 is pointed to by value.execd_pathname.
90 TARGET_WAITKIND_EXECD,
92 /* The program has entered or returned from a system call. On HP-UX, this
93 is used in the hardware watchpoint implementation. The syscall's unique
94 integer ID number is in value.syscall_id;
96 TARGET_WAITKIND_SYSCALL_ENTRY,
97 TARGET_WAITKIND_SYSCALL_RETURN,
99 /* Nothing happened, but we stopped anyway. This perhaps should be handled
100 within target_wait, but I'm not sure target_wait should be resuming the
102 TARGET_WAITKIND_SPURIOUS
105 /* The numbering of these signals is chosen to match traditional unix
106 signals (insofar as various unices use the same numbers, anyway).
107 It is also the numbering of the GDB remote protocol. Other remote
108 protocols, if they use a different numbering, should make sure to
109 translate appropriately. */
111 /* This is based strongly on Unix/POSIX signals for several reasons:
112 (1) This set of signals represents a widely-accepted attempt to
113 represent events of this sort in a portable fashion, (2) we want a
114 signal to make it from wait to child_wait to the user intact, (3) many
115 remote protocols use a similar encoding. However, it is
116 recognized that this set of signals has limitations (such as not
117 distinguishing between various kinds of SIGSEGV, or not
118 distinguishing hitting a breakpoint from finishing a single step).
119 So in the future we may get around this either by adding additional
120 signals for breakpoint, single-step, etc., or by adding signal
121 codes; the latter seems more in the spirit of what BSD, System V,
122 etc. are doing to address these issues. */
124 /* For an explanation of what each signal means, see
125 target_signal_to_string. */
128 /* Used some places (e.g. stop_signal) to record the concept that
129 there is no signal. */
131 TARGET_SIGNAL_FIRST = 0,
132 TARGET_SIGNAL_HUP = 1,
133 TARGET_SIGNAL_INT = 2,
134 TARGET_SIGNAL_QUIT = 3,
135 TARGET_SIGNAL_ILL = 4,
136 TARGET_SIGNAL_TRAP = 5,
137 TARGET_SIGNAL_ABRT = 6,
138 TARGET_SIGNAL_EMT = 7,
139 TARGET_SIGNAL_FPE = 8,
140 TARGET_SIGNAL_KILL = 9,
141 TARGET_SIGNAL_BUS = 10,
142 TARGET_SIGNAL_SEGV = 11,
143 TARGET_SIGNAL_SYS = 12,
144 TARGET_SIGNAL_PIPE = 13,
145 TARGET_SIGNAL_ALRM = 14,
146 TARGET_SIGNAL_TERM = 15,
147 TARGET_SIGNAL_URG = 16,
148 TARGET_SIGNAL_STOP = 17,
149 TARGET_SIGNAL_TSTP = 18,
150 TARGET_SIGNAL_CONT = 19,
151 TARGET_SIGNAL_CHLD = 20,
152 TARGET_SIGNAL_TTIN = 21,
153 TARGET_SIGNAL_TTOU = 22,
154 TARGET_SIGNAL_IO = 23,
155 TARGET_SIGNAL_XCPU = 24,
156 TARGET_SIGNAL_XFSZ = 25,
157 TARGET_SIGNAL_VTALRM = 26,
158 TARGET_SIGNAL_PROF = 27,
159 TARGET_SIGNAL_WINCH = 28,
160 TARGET_SIGNAL_LOST = 29,
161 TARGET_SIGNAL_USR1 = 30,
162 TARGET_SIGNAL_USR2 = 31,
163 TARGET_SIGNAL_PWR = 32,
164 /* Similar to SIGIO. Perhaps they should have the same number. */
165 TARGET_SIGNAL_POLL = 33,
166 TARGET_SIGNAL_WIND = 34,
167 TARGET_SIGNAL_PHONE = 35,
168 TARGET_SIGNAL_WAITING = 36,
169 TARGET_SIGNAL_LWP = 37,
170 TARGET_SIGNAL_DANGER = 38,
171 TARGET_SIGNAL_GRANT = 39,
172 TARGET_SIGNAL_RETRACT = 40,
173 TARGET_SIGNAL_MSG = 41,
174 TARGET_SIGNAL_SOUND = 42,
175 TARGET_SIGNAL_SAK = 43,
176 TARGET_SIGNAL_PRIO = 44,
177 TARGET_SIGNAL_REALTIME_33 = 45,
178 TARGET_SIGNAL_REALTIME_34 = 46,
179 TARGET_SIGNAL_REALTIME_35 = 47,
180 TARGET_SIGNAL_REALTIME_36 = 48,
181 TARGET_SIGNAL_REALTIME_37 = 49,
182 TARGET_SIGNAL_REALTIME_38 = 50,
183 TARGET_SIGNAL_REALTIME_39 = 51,
184 TARGET_SIGNAL_REALTIME_40 = 52,
185 TARGET_SIGNAL_REALTIME_41 = 53,
186 TARGET_SIGNAL_REALTIME_42 = 54,
187 TARGET_SIGNAL_REALTIME_43 = 55,
188 TARGET_SIGNAL_REALTIME_44 = 56,
189 TARGET_SIGNAL_REALTIME_45 = 57,
190 TARGET_SIGNAL_REALTIME_46 = 58,
191 TARGET_SIGNAL_REALTIME_47 = 59,
192 TARGET_SIGNAL_REALTIME_48 = 60,
193 TARGET_SIGNAL_REALTIME_49 = 61,
194 TARGET_SIGNAL_REALTIME_50 = 62,
195 TARGET_SIGNAL_REALTIME_51 = 63,
196 TARGET_SIGNAL_REALTIME_52 = 64,
197 TARGET_SIGNAL_REALTIME_53 = 65,
198 TARGET_SIGNAL_REALTIME_54 = 66,
199 TARGET_SIGNAL_REALTIME_55 = 67,
200 TARGET_SIGNAL_REALTIME_56 = 68,
201 TARGET_SIGNAL_REALTIME_57 = 69,
202 TARGET_SIGNAL_REALTIME_58 = 70,
203 TARGET_SIGNAL_REALTIME_59 = 71,
204 TARGET_SIGNAL_REALTIME_60 = 72,
205 TARGET_SIGNAL_REALTIME_61 = 73,
206 TARGET_SIGNAL_REALTIME_62 = 74,
207 TARGET_SIGNAL_REALTIME_63 = 75,
208 #if defined(MACH) || defined(__MACH__)
209 /* Mach exceptions */
210 TARGET_EXC_BAD_ACCESS,
211 TARGET_EXC_BAD_INSTRUCTION,
212 TARGET_EXC_ARITHMETIC,
213 TARGET_EXC_EMULATION,
215 TARGET_EXC_BREAKPOINT,
219 /* Some signal we don't know about. */
220 TARGET_SIGNAL_UNKNOWN,
222 /* Use whatever signal we use when one is not specifically specified
223 (for passing to proceed and so on). */
224 TARGET_SIGNAL_DEFAULT,
226 /* Last and unused enum value, for sizing arrays, etc. */
230 struct target_waitstatus {
231 enum target_waitkind kind;
233 /* Forked child pid, execd pathname, exit status or signal number. */
236 enum target_signal sig;
238 char * execd_pathname;
243 /* Return the string for a signal. */
244 extern char *target_signal_to_string PARAMS ((enum target_signal));
246 /* Return the name (SIGHUP, etc.) for a signal. */
247 extern char *target_signal_to_name PARAMS ((enum target_signal));
249 /* Given a name (SIGHUP, etc.), return its signal. */
250 enum target_signal target_signal_from_name PARAMS ((char *));
253 /* If certain kinds of activity happen, target_wait should perform
255 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
256 on TARGET_ACTIVITY_FD. */
257 extern int target_activity_fd;
258 /* Returns zero to leave the inferior alone, one to interrupt it. */
259 extern int (*target_activity_function) PARAMS ((void));
263 char *to_shortname; /* Name this target type */
264 char *to_longname; /* Name for printing */
265 char *to_doc; /* Documentation. Does not include trailing
266 newline, and starts with a one-line descrip-
267 tion (probably similar to to_longname). */
268 void (*to_open) PARAMS ((char *, int));
269 void (*to_close) PARAMS ((int));
270 void (*to_attach) PARAMS ((char *, int));
271 void (*to_post_attach) PARAMS ((int));
272 void (*to_require_attach) PARAMS ((char *, int));
273 void (*to_detach) PARAMS ((char *, int));
274 void (*to_require_detach) PARAMS ((int, char *, int));
275 void (*to_resume) PARAMS ((int, int, enum target_signal));
276 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
277 void (*to_post_wait) PARAMS ((int, int));
278 void (*to_fetch_registers) PARAMS ((int));
279 void (*to_store_registers) PARAMS ((int));
280 void (*to_prepare_to_store) PARAMS ((void));
282 /* Transfer LEN bytes of memory between GDB address MYADDR and
283 target address MEMADDR. If WRITE, transfer them to the target, else
284 transfer them from the target. TARGET is the target from which we
287 Return value, N, is one of the following:
289 0 means that we can't handle this. If errno has been set, it is the
290 error which prevented us from doing it (FIXME: What about bfd_error?).
292 positive (call it N) means that we have transferred N bytes
293 starting at MEMADDR. We might be able to handle more bytes
294 beyond this length, but no promises.
296 negative (call its absolute value N) means that we cannot
297 transfer right at MEMADDR, but we could transfer at least
298 something at MEMADDR + N. */
300 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
302 struct target_ops * target));
305 /* Enable this after 4.12. */
307 /* Search target memory. Start at STARTADDR and take LEN bytes of
308 target memory, and them with MASK, and compare to DATA. If they
309 match, set *ADDR_FOUND to the address we found it at, store the data
310 we found at LEN bytes starting at DATA_FOUND, and return. If
311 not, add INCREMENT to the search address and keep trying until
312 the search address is outside of the range [LORANGE,HIRANGE).
314 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
315 void (*to_search) PARAMS ((int len, char *data, char *mask,
316 CORE_ADDR startaddr, int increment,
317 CORE_ADDR lorange, CORE_ADDR hirange,
318 CORE_ADDR *addr_found, char *data_found));
320 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
321 (*current_target.to_search) (len, data, mask, startaddr, increment, \
322 lorange, hirange, addr_found, data_found)
325 void (*to_files_info) PARAMS ((struct target_ops *));
326 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
327 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
328 void (*to_terminal_init) PARAMS ((void));
329 void (*to_terminal_inferior) PARAMS ((void));
330 void (*to_terminal_ours_for_output) PARAMS ((void));
331 void (*to_terminal_ours) PARAMS ((void));
332 void (*to_terminal_info) PARAMS ((char *, int));
333 void (*to_kill) PARAMS ((void));
334 void (*to_load) PARAMS ((char *, int));
335 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
336 void (*to_create_inferior) PARAMS ((char *, char *, char **));
337 void (*to_post_startup_inferior) PARAMS ((int));
338 void (*to_acknowledge_created_inferior) PARAMS ((int));
339 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
340 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
341 int (*to_insert_fork_catchpoint) PARAMS ((int));
342 int (*to_remove_fork_catchpoint) PARAMS ((int));
343 int (*to_insert_vfork_catchpoint) PARAMS ((int));
344 int (*to_remove_vfork_catchpoint) PARAMS ((int));
345 int (*to_has_forked) PARAMS ((int, int *));
346 int (*to_has_vforked) PARAMS ((int, int *));
347 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
348 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
349 int (*to_insert_exec_catchpoint) PARAMS ((int));
350 int (*to_remove_exec_catchpoint) PARAMS ((int));
351 int (*to_has_execd) PARAMS ((int, char **));
352 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
353 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
354 int (*to_has_exited) PARAMS ((int, int, int *));
355 void (*to_mourn_inferior) PARAMS ((void));
356 int (*to_can_run) PARAMS ((void));
357 void (*to_notice_signals) PARAMS ((int pid));
358 int (*to_thread_alive) PARAMS ((int pid));
359 void (*to_stop) PARAMS ((void));
360 int (*to_query) PARAMS ((int/*char*/, char *, char *, int *));
361 struct symtab_and_line * (*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
362 struct exception_event_record * (*to_get_current_exception_event) PARAMS ((void));
363 char * (*to_pid_to_exec_file) PARAMS ((int pid));
364 char * (*to_core_file_to_sym_file) PARAMS ((char *));
365 enum strata to_stratum;
367 *DONT_USE; /* formerly to_next */
368 int to_has_all_memory;
371 int to_has_registers;
372 int to_has_execution;
373 int to_has_thread_control; /* control thread execution */
379 /* Need sub-structure for target machine related rather than comm related? */
382 /* Magic number for checking ops size. If a struct doesn't end with this
383 number, somebody changed the declaration but didn't change all the
384 places that initialize one. */
386 #define OPS_MAGIC 3840
388 /* The ops structure for our "current" target process. This should
389 never be NULL. If there is no target, it points to the dummy_target. */
391 extern struct target_ops current_target;
393 /* An item on the target stack. */
395 struct target_stack_item
397 struct target_stack_item *next;
398 struct target_ops *target_ops;
401 /* The target stack. */
403 extern struct target_stack_item *target_stack;
405 /* Define easy words for doing these operations on our current target. */
407 #define target_shortname (current_target.to_shortname)
408 #define target_longname (current_target.to_longname)
410 /* The open routine takes the rest of the parameters from the command,
411 and (if successful) pushes a new target onto the stack.
412 Targets should supply this routine, if only to provide an error message. */
413 #define target_open(name, from_tty) \
414 (*current_target.to_open) (name, from_tty)
416 /* Does whatever cleanup is required for a target that we are no longer
417 going to be calling. Argument says whether we are quitting gdb and
418 should not get hung in case of errors, or whether we want a clean
419 termination even if it takes a while. This routine is automatically
420 always called just before a routine is popped off the target stack.
421 Closing file descriptors and freeing memory are typical things it should
424 #define target_close(quitting) \
425 (*current_target.to_close) (quitting)
427 /* Attaches to a process on the target side. Arguments are as passed
428 to the `attach' command by the user. This routine can be called
429 when the target is not on the target-stack, if the target_can_run
430 routine returns 1; in that case, it must push itself onto the stack.
431 Upon exit, the target should be ready for normal operations, and
432 should be ready to deliver the status of the process immediately
433 (without waiting) to an upcoming target_wait call. */
435 #define target_attach(args, from_tty) \
436 (*current_target.to_attach) (args, from_tty)
438 /* The target_attach operation places a process under debugger control,
439 and stops the process.
441 This operation provides a target-specific hook that allows the
442 necessary bookkeeping to be performed after an attach completes.
444 #define target_post_attach(pid) \
445 (*current_target.to_post_attach) (pid)
447 /* Attaches to a process on the target side, if not already attached.
448 (If already attached, takes no action.)
450 This operation can be used to follow the child process of a fork.
451 On some targets, such child processes of an original inferior process
452 are automatically under debugger control, and thus do not require an
453 actual attach operation. */
455 #define target_require_attach(args, from_tty) \
456 (*current_target.to_require_attach) (args, from_tty)
458 /* Takes a program previously attached to and detaches it.
459 The program may resume execution (some targets do, some don't) and will
460 no longer stop on signals, etc. We better not have left any breakpoints
461 in the program or it'll die when it hits one. ARGS is arguments
462 typed by the user (e.g. a signal to send the process). FROM_TTY
463 says whether to be verbose or not. */
466 target_detach PARAMS ((char *, int));
468 /* Detaches from a process on the target side, if not already dettached.
469 (If already detached, takes no action.)
471 This operation can be used to follow the parent process of a fork.
472 On some targets, such child processes of an original inferior process
473 are automatically under debugger control, and thus do require an actual
476 PID is the process id of the child to detach from.
477 ARGS is arguments typed by the user (e.g. a signal to send the process).
478 FROM_TTY says whether to be verbose or not. */
480 #define target_require_detach(pid, args, from_tty) \
481 (*current_target.to_require_detach) (pid, args, from_tty)
483 /* Resume execution of the target process PID. STEP says whether to
484 single-step or to run free; SIGGNAL is the signal to be given to
485 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
486 pass TARGET_SIGNAL_DEFAULT. */
488 #define target_resume(pid, step, siggnal) \
489 (*current_target.to_resume) (pid, step, siggnal)
491 /* Wait for process pid to do something. Pid = -1 to wait for any pid
492 to do something. Return pid of child, or -1 in case of error;
493 store status through argument pointer STATUS. Note that it is
494 *not* OK to return_to_top_level out of target_wait without popping
495 the debugging target from the stack; GDB isn't prepared to get back
496 to the prompt with a debugging target but without the frame cache,
497 stop_pc, etc., set up. */
499 #define target_wait(pid, status) \
500 (*current_target.to_wait) (pid, status)
502 /* The target_wait operation waits for a process event to occur, and
503 thereby stop the process.
505 On some targets, certain events may happen in sequences. gdb's
506 correct response to any single event of such a sequence may require
507 knowledge of what earlier events in the sequence have been seen.
509 This operation provides a target-specific hook that allows the
510 necessary bookkeeping to be performed to track such sequences.
513 #define target_post_wait(pid, status) \
514 (*current_target.to_post_wait) (pid, status)
516 /* Fetch register REGNO, or all regs if regno == -1. No result. */
518 #define target_fetch_registers(regno) \
519 (*current_target.to_fetch_registers) (regno)
521 /* Store at least register REGNO, or all regs if REGNO == -1.
522 It can store as many registers as it wants to, so target_prepare_to_store
523 must have been previously called. Calls error() if there are problems. */
525 #define target_store_registers(regs) \
526 (*current_target.to_store_registers) (regs)
528 /* Get ready to modify the registers array. On machines which store
529 individual registers, this doesn't need to do anything. On machines
530 which store all the registers in one fell swoop, this makes sure
531 that REGISTERS contains all the registers from the program being
534 #define target_prepare_to_store() \
535 (*current_target.to_prepare_to_store) ()
537 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
540 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
543 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
544 asection *bfd_section));
547 target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
550 target_write_memory PARAMS ((CORE_ADDR, char *, int));
553 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
556 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
559 child_pid_to_exec_file PARAMS ((int));
562 child_core_file_to_sym_file PARAMS ((char *));
564 #if defined(CHILD_POST_ATTACH)
566 child_post_attach PARAMS ((int));
570 child_post_wait PARAMS ((int, int));
573 child_post_startup_inferior PARAMS ((int));
576 child_acknowledge_created_inferior PARAMS ((int));
579 child_clone_and_follow_inferior PARAMS ((int, int *));
582 child_post_follow_inferior_by_clone PARAMS ((void));
585 child_insert_fork_catchpoint PARAMS ((int));
588 child_remove_fork_catchpoint PARAMS ((int));
591 child_insert_vfork_catchpoint PARAMS ((int));
594 child_remove_vfork_catchpoint PARAMS ((int));
597 child_has_forked PARAMS ((int, int *));
600 child_has_vforked PARAMS ((int, int *));
603 child_acknowledge_created_inferior PARAMS ((int));
606 child_can_follow_vfork_prior_to_exec PARAMS ((void));
609 child_post_follow_vfork PARAMS ((int, int, int, int));
612 child_insert_exec_catchpoint PARAMS ((int));
615 child_remove_exec_catchpoint PARAMS ((int));
618 child_has_execd PARAMS ((int, char **));
621 child_reported_exec_events_per_exec_call PARAMS ((void));
624 child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
627 child_has_exited PARAMS ((int, int, int *));
630 child_thread_alive PARAMS ((int));
635 print_section_info PARAMS ((struct target_ops *, bfd *));
637 /* Print a line about the current target. */
639 #define target_files_info() \
640 (*current_target.to_files_info) (¤t_target)
642 /* Insert a breakpoint at address ADDR in the target machine.
643 SAVE is a pointer to memory allocated for saving the
644 target contents. It is guaranteed by the caller to be long enough
645 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
648 #define target_insert_breakpoint(addr, save) \
649 (*current_target.to_insert_breakpoint) (addr, save)
651 /* Remove a breakpoint at address ADDR in the target machine.
652 SAVE is a pointer to the same save area
653 that was previously passed to target_insert_breakpoint.
654 Result is 0 for success, or an errno value. */
656 #define target_remove_breakpoint(addr, save) \
657 (*current_target.to_remove_breakpoint) (addr, save)
659 /* Initialize the terminal settings we record for the inferior,
660 before we actually run the inferior. */
662 #define target_terminal_init() \
663 (*current_target.to_terminal_init) ()
665 /* Put the inferior's terminal settings into effect.
666 This is preparation for starting or resuming the inferior. */
668 #define target_terminal_inferior() \
669 (*current_target.to_terminal_inferior) ()
671 /* Put some of our terminal settings into effect,
672 enough to get proper results from our output,
673 but do not change into or out of RAW mode
674 so that no input is discarded.
676 After doing this, either terminal_ours or terminal_inferior
677 should be called to get back to a normal state of affairs. */
679 #define target_terminal_ours_for_output() \
680 (*current_target.to_terminal_ours_for_output) ()
682 /* Put our terminal settings into effect.
683 First record the inferior's terminal settings
684 so they can be restored properly later. */
686 #define target_terminal_ours() \
687 (*current_target.to_terminal_ours) ()
689 /* Print useful information about our terminal status, if such a thing
692 #define target_terminal_info(arg, from_tty) \
693 (*current_target.to_terminal_info) (arg, from_tty)
695 /* Kill the inferior process. Make it go away. */
697 #define target_kill() \
698 (*current_target.to_kill) ()
700 /* Load an executable file into the target process. This is expected to
701 not only bring new code into the target process, but also to update
702 GDB's symbol tables to match. */
704 #define target_load(arg, from_tty) \
705 (*current_target.to_load) (arg, from_tty)
707 /* Look up a symbol in the target's symbol table. NAME is the symbol
708 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
709 should be returned. The result is 0 if successful, nonzero if the
710 symbol does not exist in the target environment. This function should
711 not call error() if communication with the target is interrupted, since
712 it is called from symbol reading, but should return nonzero, possibly
713 doing a complain(). */
715 #define target_lookup_symbol(name, addrp) \
716 (*current_target.to_lookup_symbol) (name, addrp)
718 /* Start an inferior process and set inferior_pid to its pid.
719 EXEC_FILE is the file to run.
720 ALLARGS is a string containing the arguments to the program.
721 ENV is the environment vector to pass. Errors reported with error().
722 On VxWorks and various standalone systems, we ignore exec_file. */
724 #define target_create_inferior(exec_file, args, env) \
725 (*current_target.to_create_inferior) (exec_file, args, env)
728 /* Some targets (such as ttrace-based HPUX) don't allow us to request
729 notification of inferior events such as fork and vork immediately
730 after the inferior is created. (This because of how gdb gets an
731 inferior created via invoking a shell to do it. In such a scenario,
732 if the shell init file has commands in it, the shell will fork and
733 exec for each of those commands, and we will see each such fork
736 Such targets will supply an appropriate definition for this function.
738 #define target_post_startup_inferior(pid) \
739 (*current_target.to_post_startup_inferior) (pid)
741 /* On some targets, the sequence of starting up an inferior requires
742 some synchronization between gdb and the new inferior process, PID.
744 #define target_acknowledge_created_inferior(pid) \
745 (*current_target.to_acknowledge_created_inferior) (pid)
747 /* An inferior process has been created via a fork() or similar
748 system call. This function will clone the debugger, then ensure
749 that CHILD_PID is attached to by that debugger.
751 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
752 and FALSE otherwise. (The original and clone debuggers can use this
753 to determine which they are, if need be.)
755 (This is not a terribly useful feature without a GUI to prevent
756 the two debuggers from competing for shell input.)
758 #define target_clone_and_follow_inferior(child_pid,followed_child) \
759 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
761 /* This operation is intended to be used as the last in a sequence of
762 steps taken when following both parent and child of a fork. This
763 is used by a clone of the debugger, which will follow the child.
765 The original debugger has detached from this process, and the
766 clone has attached to it.
768 On some targets, this requires a bit of cleanup to make it work
771 #define target_post_follow_inferior_by_clone() \
772 (*current_target.to_post_follow_inferior_by_clone) ()
774 /* On some targets, we can catch an inferior fork or vfork event when it
775 occurs. These functions insert/remove an already-created catchpoint for
778 #define target_insert_fork_catchpoint(pid) \
779 (*current_target.to_insert_fork_catchpoint) (pid)
781 #define target_remove_fork_catchpoint(pid) \
782 (*current_target.to_remove_fork_catchpoint) (pid)
784 #define target_insert_vfork_catchpoint(pid) \
785 (*current_target.to_insert_vfork_catchpoint) (pid)
787 #define target_remove_vfork_catchpoint(pid) \
788 (*current_target.to_remove_vfork_catchpoint) (pid)
790 /* Returns TRUE if PID has invoked the fork() system call. And,
791 also sets CHILD_PID to the process id of the other ("child")
792 inferior process that was created by that call.
794 #define target_has_forked(pid,child_pid) \
795 (*current_target.to_has_forked) (pid,child_pid)
797 /* Returns TRUE if PID has invoked the vfork() system call. And,
798 also sets CHILD_PID to the process id of the other ("child")
799 inferior process that was created by that call.
801 #define target_has_vforked(pid,child_pid) \
802 (*current_target.to_has_vforked) (pid,child_pid)
804 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
805 anything to a vforked child before it subsequently calls exec().
806 On such platforms, we say that the debugger cannot "follow" the
807 child until it has vforked.
809 This function should be defined to return 1 by those targets
810 which can allow the debugger to immediately follow a vforked
811 child, and 0 if they cannot.
813 #define target_can_follow_vfork_prior_to_exec() \
814 (*current_target.to_can_follow_vfork_prior_to_exec) ()
816 /* An inferior process has been created via a vfork() system call.
817 The debugger has followed the parent, the child, or both. The
818 process of setting up for that follow may have required some
819 target-specific trickery to track the sequence of reported events.
820 If so, this function should be defined by those targets that
821 require the debugger to perform cleanup or initialization after
824 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
825 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
827 /* On some targets, we can catch an inferior exec event when it
828 occurs. These functions insert/remove an already-created catchpoint
831 #define target_insert_exec_catchpoint(pid) \
832 (*current_target.to_insert_exec_catchpoint) (pid)
834 #define target_remove_exec_catchpoint(pid) \
835 (*current_target.to_remove_exec_catchpoint) (pid)
837 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
838 And, also sets EXECD_PATHNAME to the pathname of the executable file
839 that was passed to exec(), and is now being executed.
841 #define target_has_execd(pid,execd_pathname) \
842 (*current_target.to_has_execd) (pid,execd_pathname)
844 /* Returns the number of exec events that are reported when a process
845 invokes a flavor of the exec() system call on this target, if exec
846 events are being reported.
848 #define target_reported_exec_events_per_exec_call() \
849 (*current_target.to_reported_exec_events_per_exec_call) ()
851 /* Returns TRUE if PID has reported a syscall event. And, also sets
852 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
853 the unique integer ID of the syscall.
855 #define target_has_syscall_event(pid,kind,syscall_id) \
856 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
858 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
859 exit code of PID, if any.
861 #define target_has_exited(pid,wait_status,exit_status) \
862 (*current_target.to_has_exited) (pid,wait_status,exit_status)
864 /* The debugger has completed a blocking wait() call. There is now
865 some process event that must be processed. This function should
866 be defined by those targets that require the debugger to perform
867 cleanup or internal state changes in response to the process event.
870 /* The inferior process has died. Do what is right. */
872 #define target_mourn_inferior() \
873 (*current_target.to_mourn_inferior) ()
875 /* Does target have enough data to do a run or attach command? */
877 #define target_can_run(t) \
880 /* post process changes to signal handling in the inferior. */
882 #define target_notice_signals(pid) \
883 (*current_target.to_notice_signals) (pid)
885 /* Check to see if a thread is still alive. */
887 #define target_thread_alive(pid) \
888 (*current_target.to_thread_alive) (pid)
890 /* Make target stop in a continuable fashion. (For instance, under Unix, this
891 should act like SIGSTOP). This function is normally used by GUIs to
892 implement a stop button. */
894 #define target_stop current_target.to_stop
896 /* Queries the target side for some information. The first argument is a
897 letter specifying the type of the query, which is used to determine who
898 should process it. The second argument is a string that specifies which
899 information is desired and the third is a buffer that carries back the
900 response from the target side. The fourth parameter is the size of the
901 output buffer supplied. */
903 #define target_query(query_type, query, resp_buffer, bufffer_size) \
904 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
906 /* Get the symbol information for a breakpointable routine called when
907 an exception event occurs.
908 Intended mainly for C++, and for those
909 platforms/implementations where such a callback mechanism is available,
910 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
911 different mechanisms for debugging exceptions. */
913 #define target_enable_exception_callback(kind, enable) \
914 (*current_target.to_enable_exception_callback) (kind, enable)
916 /* Get the current exception event kind -- throw or catch, etc. */
918 #define target_get_current_exception_event() \
919 (*current_target.to_get_current_exception_event) ()
921 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
923 #define target_next \
924 (current_target.to_next)
926 /* Does the target include all of memory, or only part of it? This
927 determines whether we look up the target chain for other parts of
928 memory if this target can't satisfy a request. */
930 #define target_has_all_memory \
931 (current_target.to_has_all_memory)
933 /* Does the target include memory? (Dummy targets don't.) */
935 #define target_has_memory \
936 (current_target.to_has_memory)
938 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
939 we start a process.) */
941 #define target_has_stack \
942 (current_target.to_has_stack)
944 /* Does the target have registers? (Exec files don't.) */
946 #define target_has_registers \
947 (current_target.to_has_registers)
949 /* Does the target have execution? Can we make it jump (through
950 hoops), or pop its stack a few times? FIXME: If this is to work that
951 way, it needs to check whether an inferior actually exists.
952 remote-udi.c and probably other targets can be the current target
953 when the inferior doesn't actually exist at the moment. Right now
954 this just tells us whether this target is *capable* of execution. */
956 #define target_has_execution \
957 (current_target.to_has_execution)
959 /* Can the target support the debugger control of thread execution?
960 a) Can it lock the thread scheduler?
961 b) Can it switch the currently running thread? */
963 #define target_can_lock_scheduler \
964 (current_target.to_has_thread_control & tc_schedlock)
966 #define target_can_switch_threads \
967 (current_target.to_has_thread_control & tc_switch)
969 extern void target_link PARAMS ((char *, CORE_ADDR *));
971 /* Converts a process id to a string. Usually, the string just contains
972 `process xyz', but on some systems it may contain
973 `process xyz thread abc'. */
975 #ifndef target_pid_to_str
976 #define target_pid_to_str(PID) \
977 normal_pid_to_str (PID)
978 extern char *normal_pid_to_str PARAMS ((int pid));
981 #ifndef target_tid_to_str
982 #define target_tid_to_str(PID) \
983 normal_pid_to_str (PID)
984 extern char *normal_pid_to_str PARAMS ((int pid));
988 #ifndef target_new_objfile
989 #define target_new_objfile(OBJFILE)
992 #ifndef target_pid_or_tid_to_str
993 #define target_pid_or_tid_to_str(ID) \
994 normal_pid_to_str (ID)
997 /* Attempts to find the pathname of the executable file
998 that was run to create a specified process.
1000 The process PID must be stopped when this operation is used.
1002 If the executable file cannot be determined, NULL is returned.
1004 Else, a pointer to a character string containing the pathname
1005 is returned. This string should be copied into a buffer by
1006 the client if the string will not be immediately used, or if
1010 #define target_pid_to_exec_file(pid) \
1011 (current_target.to_pid_to_exec_file) (pid)
1013 /* Hook to call target-dependant code after reading in a new symbol table. */
1015 #ifndef TARGET_SYMFILE_POSTREAD
1016 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1019 /* Hook to call target dependant code just after inferior target process has
1022 #ifndef TARGET_CREATE_INFERIOR_HOOK
1023 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1026 /* Hardware watchpoint interfaces. */
1028 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1031 #ifndef STOPPED_BY_WATCHPOINT
1032 #define STOPPED_BY_WATCHPOINT(w) 0
1035 /* HP-UX supplies these operations, which respectively disable and enable
1036 the memory page-protections that are used to implement hardware watchpoints
1037 on that platform. See wait_for_inferior's use of these.
1039 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1040 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1043 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1044 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1047 /* Provide defaults for systems that don't support hardware watchpoints. */
1049 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1051 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1052 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1053 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1054 (including this one?). OTHERTYPE is who knows what... */
1056 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1058 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1059 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1060 (LONGEST)(byte_count) <= REGISTER_SIZE
1063 /* However, some addresses may not be profitable to use hardware to watch,
1064 or may be difficult to understand when the addressed object is out of
1065 scope, and hence should be unwatched. On some targets, this may have
1066 severe performance penalties, such that we might as well use regular
1067 watchpoints, and save (possibly precious) hardware watchpoints for other
1070 #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1071 #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1075 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1076 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1077 success, non-zero for failure. */
1079 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1080 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1082 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1084 #ifndef target_insert_hw_breakpoint
1085 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1086 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1089 #ifndef target_stopped_data_address
1090 #define target_stopped_data_address() 0
1093 /* If defined, then we need to decr pc by this much after a hardware break-
1094 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1096 #ifndef DECR_PC_AFTER_HW_BREAK
1097 #define DECR_PC_AFTER_HW_BREAK 0
1100 /* Sometimes gdb may pick up what appears to be a valid target address
1101 from a minimal symbol, but the value really means, essentially,
1102 "This is an index into a table which is populated when the inferior
1103 is run. Therefore, do not attempt to use this as a PC."
1105 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1106 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1109 /* This will only be defined by a target that supports catching vfork events,
1112 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1113 child process after it has exec'd, causes the parent process to resume as
1114 well. To prevent the parent from running spontaneously, such targets should
1115 define this to a function that prevents that from happening.
1117 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1118 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1121 /* This will only be defined by a target that supports catching vfork events,
1124 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1125 process must be resumed when it delivers its exec event, before the parent
1126 vfork event will be delivered to us.
1128 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1129 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1132 /* Routines for maintenance of the target structures...
1134 add_target: Add a target to the list of all possible targets.
1136 push_target: Make this target the top of the stack of currently used
1137 targets, within its particular stratum of the stack. Result
1138 is 0 if now atop the stack, nonzero if not on top (maybe
1141 unpush_target: Remove this from the stack of currently used targets,
1142 no matter where it is on the list. Returns 0 if no
1143 change, 1 if removed from stack.
1145 pop_target: Remove the top thing on the stack of current targets. */
1148 add_target PARAMS ((struct target_ops *));
1151 push_target PARAMS ((struct target_ops *));
1154 unpush_target PARAMS ((struct target_ops *));
1157 target_preopen PARAMS ((int));
1160 pop_target PARAMS ((void));
1162 /* Struct section_table maps address ranges to file sections. It is
1163 mostly used with BFD files, but can be used without (e.g. for handling
1164 raw disks, or files not in formats handled by BFD). */
1166 struct section_table {
1167 CORE_ADDR addr; /* Lowest address in section */
1168 CORE_ADDR endaddr; /* 1+highest address in section */
1170 sec_ptr the_bfd_section;
1172 bfd *bfd; /* BFD file pointer */
1175 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1176 Returns 0 if OK, 1 on error. */
1179 build_section_table PARAMS ((bfd *, struct section_table **,
1180 struct section_table **));
1182 /* From mem-break.c */
1184 extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1186 extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1188 extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1189 #ifndef BREAKPOINT_FROM_PC
1190 #define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1197 initialize_targets PARAMS ((void));
1200 noprocess PARAMS ((void));
1203 find_default_attach PARAMS ((char *, int));
1206 find_default_require_attach PARAMS ((char *, int));
1209 find_default_require_detach PARAMS ((int, char *, int));
1212 find_default_create_inferior PARAMS ((char *, char *, char **));
1215 find_default_clone_and_follow_inferior PARAMS ((int, int *));
1217 extern struct target_ops *find_run_target PARAMS ((void));
1219 extern struct target_ops *
1220 find_core_target PARAMS ((void));
1222 /* Stuff that should be shared among the various remote targets. */
1224 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1225 information (higher values, more information). */
1226 extern int remote_debug;
1228 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1229 extern int baud_rate;
1230 /* Timeout limit for response from target. */
1231 extern int remote_timeout;
1233 extern asection *target_memory_bfd_section;
1235 /* Functions for helping to write a native target. */
1237 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1238 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1240 /* Convert between host signal numbers and enum target_signal's. */
1241 extern enum target_signal target_signal_from_host PARAMS ((int));
1242 extern int target_signal_to_host PARAMS ((enum target_signal));
1244 /* Convert from a number used in a GDB command to an enum target_signal. */
1245 extern enum target_signal target_signal_from_command PARAMS ((int));
1247 /* Any target can call this to switch to remote protocol (in remote.c). */
1248 extern void push_remote_target PARAMS ((char *name, int from_tty));
1250 /* Imported from machine dependent code */
1252 #ifndef SOFTWARE_SINGLE_STEP_P
1253 #define SOFTWARE_SINGLE_STEP_P 0
1254 #define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1255 #endif /* SOFTWARE_SINGLE_STEP_P */
1257 /* Blank target vector entries are initialized to target_ignore. */
1258 void target_ignore PARAMS ((void));
1260 /* Macro for getting target's idea of a frame pointer.
1261 FIXME: GDB's whole scheme for dealing with "frames" and
1262 "frame pointers" needs a serious shakedown. */
1263 #ifndef TARGET_VIRTUAL_FRAME_POINTER
1264 #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1265 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1266 #endif /* TARGET_VIRTUAL_FRAME_POINTER */
1268 #endif /* !defined (TARGET_H) */