1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
41 #include "arch-utils.h"
44 #include "mips-tdep.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
51 #include "sim-regno.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
57 #include "floatformat.h"
59 static const struct objfile_data *mips_pdr_data;
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
67 /* The sizes of floating point registers. */
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
76 static const char *mips_abi_string;
78 static const char *mips_abi_strings[] = {
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
93 static const char size_auto[] = "auto";
94 static const char size_32[] = "32";
95 static const char size_64[] = "64";
97 static const char *size_enums[] = {
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
120 static int mips_debug = 0;
122 /* MIPS specific per-architecture information */
125 /* from the elf header */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
147 n32n64_floatformat_always_valid (const struct floatformat *fmt,
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
164 static const struct floatformat floatformat_n32n64_long_double_big =
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
175 return gdbarch_tdep (gdbarch)->regnum;
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
181 return mips_regnum (gdbarch)->fp0 + 12;
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
197 is_mips16_addr (CORE_ADDR addr)
203 unmake_mips16_addr (CORE_ADDR addr)
205 return ((addr) & ~1);
208 /* Return the contents of register REGNUM as a signed integer. */
211 read_signed_register (int regnum)
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
219 read_signed_register_pid (int regnum, ptid_t ptid)
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
227 save_ptid = inferior_ptid;
229 inferior_ptid = ptid;
231 retval = read_signed_register (regnum);
233 inferior_ptid = save_ptid;
238 /* Return the MIPS ABI associated with GDBARCH. */
240 mips_abi (struct gdbarch *gdbarch)
242 return gdbarch_tdep (gdbarch)->mips_abi;
246 mips_isa_regsize (struct gdbarch *gdbarch)
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
252 /* Return the currently configured (or set) saved register size. */
254 static const char *mips_abi_regsize_string = size_auto;
257 mips_abi_regsize (struct gdbarch *gdbarch)
259 if (mips_abi_regsize_string == size_auto)
260 switch (mips_abi (gdbarch))
262 case MIPS_ABI_EABI32:
268 case MIPS_ABI_EABI64:
270 case MIPS_ABI_UNKNOWN:
273 internal_error (__FILE__, __LINE__, "bad switch");
275 else if (mips_abi_regsize_string == size_64)
277 else /* if (mips_abi_regsize_string == size_32) */
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
303 msymbol_is_special (struct minimal_symbol *msym)
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
314 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
315 enum bfd_endian endian, bfd_byte * in,
316 const bfd_byte * out, int buf_offset)
319 gdb_assert (reg_num >= NUM_REGS);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
325 reg_offset = register_size (current_gdbarch, reg_num) - length;
327 case BFD_ENDIAN_LITTLE:
330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
334 internal_error (__FILE__, __LINE__, "bad switch");
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
340 if (mips_debug && out != NULL)
343 fprintf_unfiltered (gdb_stdlog, "out ");
344 for (i = 0; i < length; i++)
345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
353 if (mips_debug && in != NULL)
356 fprintf_unfiltered (gdb_stdlog, "in ");
357 for (i = 0; i < length; i++)
358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
361 fprintf_unfiltered (gdb_stdlog, "\n");
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
369 mips2_fp_compat (void)
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
394 static const char *mips_stack_argsize_string = size_auto;
397 mips_stack_argsize (struct gdbarch *gdbarch)
399 if (mips_stack_argsize_string == size_auto)
400 return mips_abi_regsize (gdbarch);
401 else if (mips_stack_argsize_string == size_64)
403 else /* if (mips_stack_argsize_string == size_32) */
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
409 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
411 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
415 static struct type *mips_float_register_type (void);
416 static struct type *mips_double_register_type (void);
418 /* The list of available "set mips " and "show mips " commands */
420 static struct cmd_list_element *setmipscmdlist = NULL;
421 static struct cmd_list_element *showmipscmdlist = NULL;
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
428 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
432 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
443 /* Names of IDT R3041 registers. */
445 static const char *mips_r3041_reg_names[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
456 /* Names of tx39 registers. */
458 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
479 /* Return the name of the register corresponding to REGNO. */
481 mips_register_name (int regno)
483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
500 enum mips_abi abi = mips_abi (current_gdbarch);
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum && rawnum < 32)
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
514 return mips_n32_n64_gpr_names[rawnum];
516 return mips_gpr_names[rawnum];
518 else if (32 <= rawnum && rawnum < NUM_REGS)
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
524 internal_error (__FILE__, __LINE__,
525 "mips_register_name: bad register number %d", rawnum);
528 /* Return the groups that a MIPS register can be categorised into. */
531 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
570 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, void *buf)
573 int rawnum = cookednum % NUM_REGS;
574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
576 regcache_raw_read (regcache, rawnum, buf);
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
587 internal_error (__FILE__, __LINE__, "bad register size");
591 mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
595 int rawnum = cookednum % NUM_REGS;
596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
598 regcache_raw_write (regcache, rawnum, buf);
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
609 internal_error (__FILE__, __LINE__, "bad register size");
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
619 static unsigned int heuristic_fence_post = 0;
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
625 static int mips64_transfers_32bit_regs_p = 0;
628 set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
638 mips64_transfers_32bit_regs_p = 0;
639 error ("32-bit compatibility mode not supported");
643 /* Convert to/from a register and the corresponding memory value. */
646 mips_convert_register_p (int regnum, struct type *type)
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
649 && register_size (current_gdbarch, regnum) == 4
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
656 mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, void *to)
659 get_frame_register (frame, regnum + 0, (char *) to + 4);
660 get_frame_register (frame, regnum + 1, (char *) to + 0);
664 mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const void *from)
667 put_frame_register (frame, regnum + 0, (const char *) from + 4);
668 put_frame_register (frame, regnum + 1, (const char *) from + 0);
671 /* Return the GDB type object for the "standard" data type of data in
675 mips_register_type (struct gdbarch *gdbarch, int regnum)
677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch))
686 if (mips_isa_regsize (gdbarch) == 4)
687 return builtin_type_ieee_single_big;
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
691 if (mips_isa_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_little;
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
697 internal_error (__FILE__, __LINE__, "bad switch");
700 else if (regnum < NUM_REGS)
702 /* The raw or ISA registers. These are all sized according to
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
707 return builtin_type_int64;
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
727 return builtin_type_int32;
730 return builtin_type_int64;
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
739 return read_signed_register (MIPS_SP_REGNUM);
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
746 mips_mask_address_p (struct gdbarch_tdep *tdep)
748 switch (mask_address_var)
750 case AUTO_BOOLEAN_TRUE:
752 case AUTO_BOOLEAN_FALSE:
755 case AUTO_BOOLEAN_AUTO:
756 return tdep->default_mask_address_p;
758 internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch");
764 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
766 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
767 switch (mask_address_var)
769 case AUTO_BOOLEAN_TRUE:
770 printf_filtered ("The 32 bit mips address mask is enabled\n");
772 case AUTO_BOOLEAN_FALSE:
773 printf_filtered ("The 32 bit mips address mask is disabled\n");
775 case AUTO_BOOLEAN_AUTO:
777 ("The 32 bit address mask is set automatically. Currently %s\n",
778 mips_mask_address_p (tdep) ? "enabled" : "disabled");
781 internal_error (__FILE__, __LINE__, "show_mask_address: bad switch");
786 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
789 mips_pc_is_mips16 (CORE_ADDR memaddr)
791 struct minimal_symbol *sym;
793 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
794 if (is_mips16_addr (memaddr))
797 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
798 the high bit of the info field. Use this to decide if the function is
799 MIPS16 or normal MIPS. */
800 sym = lookup_minimal_symbol_by_pc (memaddr);
802 return msymbol_is_special (sym);
807 /* MIPS believes that the PC has a sign extended value. Perhaps the
808 all registers should be sign extended for simplicity? */
811 mips_read_pc (ptid_t ptid)
813 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
817 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
819 return frame_unwind_register_signed (next_frame,
820 NUM_REGS + mips_regnum (gdbarch)->pc);
823 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
824 dummy frame. The frame ID's base needs to match the TOS value
825 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
828 static struct frame_id
829 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
831 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
832 frame_pc_unwind (next_frame));
836 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
838 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
841 /* Fetch and return instruction from the specified location. If the PC
842 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
845 mips_fetch_instruction (CORE_ADDR addr)
847 char buf[MIPS_INSN32_SIZE];
851 if (mips_pc_is_mips16 (addr))
853 instlen = MIPS_INSN16_SIZE;
854 addr = unmake_mips16_addr (addr);
857 instlen = MIPS_INSN32_SIZE;
858 status = deprecated_read_memory_nobpt (addr, buf, instlen);
860 memory_error (status, addr);
861 return extract_unsigned_integer (buf, instlen);
864 /* These the fields of 32 bit mips instructions */
865 #define mips32_op(x) (x >> 26)
866 #define itype_op(x) (x >> 26)
867 #define itype_rs(x) ((x >> 21) & 0x1f)
868 #define itype_rt(x) ((x >> 16) & 0x1f)
869 #define itype_immediate(x) (x & 0xffff)
871 #define jtype_op(x) (x >> 26)
872 #define jtype_target(x) (x & 0x03ffffff)
874 #define rtype_op(x) (x >> 26)
875 #define rtype_rs(x) ((x >> 21) & 0x1f)
876 #define rtype_rt(x) ((x >> 16) & 0x1f)
877 #define rtype_rd(x) ((x >> 11) & 0x1f)
878 #define rtype_shamt(x) ((x >> 6) & 0x1f)
879 #define rtype_funct(x) (x & 0x3f)
882 mips32_relative_offset (unsigned long inst)
885 x = itype_immediate (inst);
886 if (x & 0x8000) /* sign bit set */
888 x |= 0xffff0000; /* sign extension */
894 /* Determine whate to set a single step breakpoint while considering
897 mips32_next_pc (CORE_ADDR pc)
901 inst = mips_fetch_instruction (pc);
902 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
904 if (itype_op (inst) >> 2 == 5)
905 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
907 op = (itype_op (inst) & 0x03);
922 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
923 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
925 int tf = itype_rt (inst) & 0x01;
926 int cnum = itype_rt (inst) >> 2;
928 read_signed_register (mips_regnum (current_gdbarch)->
930 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
932 if (((cond >> cnum) & 0x01) == tf)
933 pc += mips32_relative_offset (inst) + 4;
938 pc += 4; /* Not a branch, next instruction is easy */
941 { /* This gets way messy */
943 /* Further subdivide into SPECIAL, REGIMM and other */
944 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
946 case 0: /* SPECIAL */
947 op = rtype_funct (inst);
952 /* Set PC to that address */
953 pc = read_signed_register (rtype_rs (inst));
959 break; /* end SPECIAL */
962 op = itype_rt (inst); /* branch condition */
967 case 16: /* BLTZAL */
968 case 18: /* BLTZALL */
970 if (read_signed_register (itype_rs (inst)) < 0)
971 pc += mips32_relative_offset (inst) + 4;
973 pc += 8; /* after the delay slot */
977 case 17: /* BGEZAL */
978 case 19: /* BGEZALL */
979 if (read_signed_register (itype_rs (inst)) >= 0)
980 pc += mips32_relative_offset (inst) + 4;
982 pc += 8; /* after the delay slot */
984 /* All of the other instructions in the REGIMM category */
989 break; /* end REGIMM */
994 reg = jtype_target (inst) << 2;
995 /* Upper four bits get never changed... */
996 pc = reg + ((pc + 4) & 0xf0000000);
999 /* FIXME case JALX : */
1002 reg = jtype_target (inst) << 2;
1003 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1004 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1006 break; /* The new PC will be alternate mode */
1007 case 4: /* BEQ, BEQL */
1009 if (read_signed_register (itype_rs (inst)) ==
1010 read_signed_register (itype_rt (inst)))
1011 pc += mips32_relative_offset (inst) + 4;
1015 case 5: /* BNE, BNEL */
1017 if (read_signed_register (itype_rs (inst)) !=
1018 read_signed_register (itype_rt (inst)))
1019 pc += mips32_relative_offset (inst) + 4;
1023 case 6: /* BLEZ, BLEZL */
1024 if (read_signed_register (itype_rs (inst)) <= 0)
1025 pc += mips32_relative_offset (inst) + 4;
1031 greater_branch: /* BGTZ, BGTZL */
1032 if (read_signed_register (itype_rs (inst)) > 0)
1033 pc += mips32_relative_offset (inst) + 4;
1040 } /* mips32_next_pc */
1042 /* Decoding the next place to set a breakpoint is irregular for the
1043 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1044 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1045 We dont want to set a single step instruction on the extend instruction
1049 /* Lots of mips16 instruction formats */
1050 /* Predicting jumps requires itype,ritype,i8type
1051 and their extensions extItype,extritype,extI8type
1053 enum mips16_inst_fmts
1055 itype, /* 0 immediate 5,10 */
1056 ritype, /* 1 5,3,8 */
1057 rrtype, /* 2 5,3,3,5 */
1058 rritype, /* 3 5,3,3,5 */
1059 rrrtype, /* 4 5,3,3,3,2 */
1060 rriatype, /* 5 5,3,3,1,4 */
1061 shifttype, /* 6 5,3,3,3,2 */
1062 i8type, /* 7 5,3,8 */
1063 i8movtype, /* 8 5,3,3,5 */
1064 i8mov32rtype, /* 9 5,3,5,3 */
1065 i64type, /* 10 5,3,8 */
1066 ri64type, /* 11 5,3,3,5 */
1067 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1068 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1069 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1070 extRRItype, /* 15 5,5,5,5,3,3,5 */
1071 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1072 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1073 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1074 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1075 extRi64type, /* 20 5,6,5,5,3,3,5 */
1076 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1078 /* I am heaping all the fields of the formats into one structure and
1079 then, only the fields which are involved in instruction extension */
1083 unsigned int regx; /* Function in i8 type */
1088 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1089 for the bits which make up the immediatate extension. */
1092 extended_offset (unsigned int extension)
1095 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1097 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1099 value |= extension & 0x01f; /* extract 4:0 */
1103 /* Only call this function if you know that this is an extendable
1104 instruction, It wont malfunction, but why make excess remote memory references?
1105 If the immediate operands get sign extended or somthing, do it after
1106 the extension is performed.
1108 /* FIXME: Every one of these cases needs to worry about sign extension
1109 when the offset is to be used in relative addressing */
1113 fetch_mips_16 (CORE_ADDR pc)
1116 pc &= 0xfffffffe; /* clear the low order bit */
1117 target_read_memory (pc, buf, 2);
1118 return extract_unsigned_integer (buf, 2);
1122 unpack_mips16 (CORE_ADDR pc,
1123 unsigned int extension,
1125 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1130 switch (insn_format)
1137 value = extended_offset (extension);
1138 value = value << 11; /* rom for the original value */
1139 value |= inst & 0x7ff; /* eleven bits from instruction */
1143 value = inst & 0x7ff;
1144 /* FIXME : Consider sign extension */
1153 { /* A register identifier and an offset */
1154 /* Most of the fields are the same as I type but the
1155 immediate value is of a different length */
1159 value = extended_offset (extension);
1160 value = value << 8; /* from the original instruction */
1161 value |= inst & 0xff; /* eleven bits from instruction */
1162 regx = (extension >> 8) & 0x07; /* or i8 funct */
1163 if (value & 0x4000) /* test the sign bit , bit 26 */
1165 value &= ~0x3fff; /* remove the sign bit */
1171 value = inst & 0xff; /* 8 bits */
1172 regx = (inst >> 8) & 0x07; /* or i8 funct */
1173 /* FIXME: Do sign extension , this format needs it */
1174 if (value & 0x80) /* THIS CONFUSES ME */
1176 value &= 0xef; /* remove the sign bit */
1186 unsigned long value;
1187 unsigned int nexthalf;
1188 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1189 value = value << 16;
1190 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1198 internal_error (__FILE__, __LINE__, "bad switch");
1200 upk->offset = offset;
1207 add_offset_16 (CORE_ADDR pc, int offset)
1209 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1213 extended_mips16_next_pc (CORE_ADDR pc,
1214 unsigned int extension, unsigned int insn)
1216 int op = (insn >> 11);
1219 case 2: /* Branch */
1222 struct upk_mips16 upk;
1223 unpack_mips16 (pc, extension, insn, itype, &upk);
1224 offset = upk.offset;
1230 pc += (offset << 1) + 2;
1233 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1235 struct upk_mips16 upk;
1236 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1237 pc = add_offset_16 (pc, upk.offset);
1238 if ((insn >> 10) & 0x01) /* Exchange mode */
1239 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1246 struct upk_mips16 upk;
1248 unpack_mips16 (pc, extension, insn, ritype, &upk);
1249 reg = read_signed_register (upk.regx);
1251 pc += (upk.offset << 1) + 2;
1258 struct upk_mips16 upk;
1260 unpack_mips16 (pc, extension, insn, ritype, &upk);
1261 reg = read_signed_register (upk.regx);
1263 pc += (upk.offset << 1) + 2;
1268 case 12: /* I8 Formats btez btnez */
1270 struct upk_mips16 upk;
1272 unpack_mips16 (pc, extension, insn, i8type, &upk);
1273 /* upk.regx contains the opcode */
1274 reg = read_signed_register (24); /* Test register is 24 */
1275 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1276 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1277 /* pc = add_offset_16(pc,upk.offset) ; */
1278 pc += (upk.offset << 1) + 2;
1283 case 29: /* RR Formats JR, JALR, JALR-RA */
1285 struct upk_mips16 upk;
1286 /* upk.fmt = rrtype; */
1291 upk.regx = (insn >> 8) & 0x07;
1292 upk.regy = (insn >> 5) & 0x07;
1300 break; /* Function return instruction */
1306 break; /* BOGUS Guess */
1308 pc = read_signed_register (reg);
1315 /* This is an instruction extension. Fetch the real instruction
1316 (which follows the extension) and decode things based on
1320 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1333 mips16_next_pc (CORE_ADDR pc)
1335 unsigned int insn = fetch_mips_16 (pc);
1336 return extended_mips16_next_pc (pc, 0, insn);
1339 /* The mips_next_pc function supports single_step when the remote
1340 target monitor or stub is not developed enough to do a single_step.
1341 It works by decoding the current instruction and predicting where a
1342 branch will go. This isnt hard because all the data is available.
1343 The MIPS32 and MIPS16 variants are quite different */
1345 mips_next_pc (CORE_ADDR pc)
1348 return mips16_next_pc (pc);
1350 return mips32_next_pc (pc);
1353 struct mips_frame_cache
1356 struct trad_frame_saved_reg *saved_regs;
1359 /* Set a register's saved stack address in temp_saved_regs. If an
1360 address has already been set for this register, do nothing; this
1361 way we will only recognize the first save of a given register in a
1364 For simplicity, save the address in both [0 .. NUM_REGS) and
1365 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1366 is used as it is only second range (the ABI instead of ISA
1367 registers) that comes into play when finding saved registers in a
1371 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1374 if (this_cache != NULL
1375 && this_cache->saved_regs[regnum].addr == -1)
1377 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1378 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1383 /* Fetch the immediate value from a MIPS16 instruction.
1384 If the previous instruction was an EXTEND, use it to extend
1385 the upper bits of the immediate value. This is a helper function
1386 for mips16_scan_prologue. */
1389 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1390 unsigned short inst, /* current instruction */
1391 int nbits, /* number of bits in imm field */
1392 int scale, /* scale factor to be applied to imm */
1393 int is_signed) /* is the imm field signed? */
1397 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1399 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1400 if (offset & 0x8000) /* check for negative extend */
1401 offset = 0 - (0x10000 - (offset & 0xffff));
1402 return offset | (inst & 0x1f);
1406 int max_imm = 1 << nbits;
1407 int mask = max_imm - 1;
1408 int sign_bit = max_imm >> 1;
1410 offset = inst & mask;
1411 if (is_signed && (offset & sign_bit))
1412 offset = 0 - (max_imm - offset);
1413 return offset * scale;
1418 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1419 the associated FRAME_CACHE if not null.
1420 Return the address of the first instruction past the prologue. */
1423 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1424 struct frame_info *next_frame,
1425 struct mips_frame_cache *this_cache)
1428 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1430 long frame_offset = 0; /* Size of stack frame. */
1431 long frame_adjust = 0; /* Offset of FP from SP. */
1432 int frame_reg = MIPS_SP_REGNUM;
1433 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1434 unsigned inst = 0; /* current instruction */
1435 unsigned entry_inst = 0; /* the entry instruction */
1438 int extend_bytes = 0;
1439 int prev_extend_bytes;
1440 CORE_ADDR end_prologue_addr = 0;
1442 /* Can be called when there's no process, and hence when there's no
1444 if (next_frame != NULL)
1445 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1449 if (limit_pc > start_pc + 200)
1450 limit_pc = start_pc + 200;
1452 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1454 /* Save the previous instruction. If it's an EXTEND, we'll extract
1455 the immediate offset extension from it in mips16_get_imm. */
1458 /* Fetch and decode the instruction. */
1459 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1461 /* Normally we ignore extend instructions. However, if it is
1462 not followed by a valid prologue instruction, then this
1463 instruction is not part of the prologue either. We must
1464 remember in this case to adjust the end_prologue_addr back
1466 if ((inst & 0xf800) == 0xf000) /* extend */
1468 extend_bytes = MIPS_INSN16_SIZE;
1472 prev_extend_bytes = extend_bytes;
1475 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1476 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1478 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1479 if (offset < 0) /* negative stack adjustment? */
1480 frame_offset -= offset;
1482 /* Exit loop if a positive stack adjustment is found, which
1483 usually means that the stack cleanup code in the function
1484 epilogue is reached. */
1487 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1489 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1490 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1491 set_reg_offset (this_cache, reg, sp + offset);
1493 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1495 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1496 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1497 set_reg_offset (this_cache, reg, sp + offset);
1499 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1501 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1502 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1504 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1506 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1507 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1509 else if (inst == 0x673d) /* move $s1, $sp */
1514 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1516 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1517 frame_addr = sp + offset;
1519 frame_adjust = offset;
1521 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1523 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1524 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1525 set_reg_offset (this_cache, reg, frame_addr + offset);
1527 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1529 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1530 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1531 set_reg_offset (this_cache, reg, frame_addr + offset);
1533 else if ((inst & 0xf81f) == 0xe809
1534 && (inst & 0x700) != 0x700) /* entry */
1535 entry_inst = inst; /* save for later processing */
1536 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1537 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1538 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1540 /* This instruction is part of the prologue, but we don't
1541 need to do anything special to handle it. */
1545 /* This instruction is not an instruction typically found
1546 in a prologue, so we must have reached the end of the
1548 if (end_prologue_addr == 0)
1549 end_prologue_addr = cur_pc - prev_extend_bytes;
1553 /* The entry instruction is typically the first instruction in a function,
1554 and it stores registers at offsets relative to the value of the old SP
1555 (before the prologue). But the value of the sp parameter to this
1556 function is the new SP (after the prologue has been executed). So we
1557 can't calculate those offsets until we've seen the entire prologue,
1558 and can calculate what the old SP must have been. */
1559 if (entry_inst != 0)
1561 int areg_count = (entry_inst >> 8) & 7;
1562 int sreg_count = (entry_inst >> 6) & 3;
1564 /* The entry instruction always subtracts 32 from the SP. */
1567 /* Now we can calculate what the SP must have been at the
1568 start of the function prologue. */
1571 /* Check if a0-a3 were saved in the caller's argument save area. */
1572 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1574 set_reg_offset (this_cache, reg, sp + offset);
1575 offset += mips_abi_regsize (current_gdbarch);
1578 /* Check if the ra register was pushed on the stack. */
1580 if (entry_inst & 0x20)
1582 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1583 offset -= mips_abi_regsize (current_gdbarch);
1586 /* Check if the s0 and s1 registers were pushed on the stack. */
1587 for (reg = 16; reg < sreg_count + 16; reg++)
1589 set_reg_offset (this_cache, reg, sp + offset);
1590 offset -= mips_abi_regsize (current_gdbarch);
1594 if (this_cache != NULL)
1597 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1598 + frame_offset - frame_adjust);
1599 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1600 be able to get rid of the assignment below, evetually. But it's
1601 still needed for now. */
1602 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1603 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1606 /* If we didn't reach the end of the prologue when scanning the function
1607 instructions, then set end_prologue_addr to the address of the
1608 instruction immediately after the last one we scanned. */
1609 if (end_prologue_addr == 0)
1610 end_prologue_addr = cur_pc;
1612 return end_prologue_addr;
1615 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1616 Procedures that use the 32-bit instruction set are handled by the
1617 mips_insn32 unwinder. */
1619 static struct mips_frame_cache *
1620 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1622 struct mips_frame_cache *cache;
1624 if ((*this_cache) != NULL)
1625 return (*this_cache);
1626 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1627 (*this_cache) = cache;
1628 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1630 /* Analyze the function prologue. */
1632 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1633 CORE_ADDR start_addr;
1635 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1636 if (start_addr == 0)
1637 start_addr = heuristic_proc_start (pc);
1638 /* We can't analyze the prologue if we couldn't find the begining
1640 if (start_addr == 0)
1643 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1646 /* SP_REGNUM, contains the value and not the address. */
1647 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1649 return (*this_cache);
1653 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1654 struct frame_id *this_id)
1656 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1658 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1662 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1664 int regnum, int *optimizedp,
1665 enum lval_type *lvalp, CORE_ADDR *addrp,
1666 int *realnump, void *valuep)
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1670 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1671 optimizedp, lvalp, addrp, realnump, valuep);
1674 static const struct frame_unwind mips_insn16_frame_unwind =
1677 mips_insn16_frame_this_id,
1678 mips_insn16_frame_prev_register
1681 static const struct frame_unwind *
1682 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1684 CORE_ADDR pc = frame_pc_unwind (next_frame);
1685 if (mips_pc_is_mips16 (pc))
1686 return &mips_insn16_frame_unwind;
1691 mips_insn16_frame_base_address (struct frame_info *next_frame,
1694 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1699 static const struct frame_base mips_insn16_frame_base =
1701 &mips_insn16_frame_unwind,
1702 mips_insn16_frame_base_address,
1703 mips_insn16_frame_base_address,
1704 mips_insn16_frame_base_address
1707 static const struct frame_base *
1708 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1710 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1711 return &mips_insn16_frame_base;
1716 /* Mark all the registers as unset in the saved_regs array
1717 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1720 reset_saved_regs (struct mips_frame_cache *this_cache)
1722 if (this_cache == NULL || this_cache->saved_regs == NULL)
1726 const int num_regs = NUM_REGS;
1729 for (i = 0; i < num_regs; i++)
1731 this_cache->saved_regs[i].addr = -1;
1736 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1737 the associated FRAME_CACHE if not null.
1738 Return the address of the first instruction past the prologue. */
1741 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1742 struct frame_info *next_frame,
1743 struct mips_frame_cache *this_cache)
1746 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1749 int frame_reg = MIPS_SP_REGNUM;
1751 CORE_ADDR end_prologue_addr = 0;
1752 int seen_sp_adjust = 0;
1753 int load_immediate_bytes = 0;
1755 /* Can be called when there's no process, and hence when there's no
1757 if (next_frame != NULL)
1758 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1762 if (limit_pc > start_pc + 200)
1763 limit_pc = start_pc + 200;
1768 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1770 unsigned long inst, high_word, low_word;
1773 /* Fetch the instruction. */
1774 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1776 /* Save some code by pre-extracting some useful fields. */
1777 high_word = (inst >> 16) & 0xffff;
1778 low_word = inst & 0xffff;
1779 reg = high_word & 0x1f;
1781 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1782 || high_word == 0x23bd /* addi $sp,$sp,-i */
1783 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1785 if (low_word & 0x8000) /* negative stack adjustment? */
1786 frame_offset += 0x10000 - low_word;
1788 /* Exit loop if a positive stack adjustment is found, which
1789 usually means that the stack cleanup code in the function
1790 epilogue is reached. */
1794 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1796 set_reg_offset (this_cache, reg, sp + low_word);
1798 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1800 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1801 set_reg_offset (this_cache, reg, sp + low_word);
1803 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1805 /* Old gcc frame, r30 is virtual frame pointer. */
1806 if ((long) low_word != frame_offset)
1807 frame_addr = sp + low_word;
1808 else if (frame_reg == MIPS_SP_REGNUM)
1810 unsigned alloca_adjust;
1813 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1814 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1815 if (alloca_adjust > 0)
1817 /* FP > SP + frame_size. This may be because of
1818 an alloca or somethings similar. Fix sp to
1819 "pre-alloca" value, and try again. */
1820 sp += alloca_adjust;
1821 /* Need to reset the status of all registers. Otherwise,
1822 we will hit a guard that prevents the new address
1823 for each register to be recomputed during the second
1825 reset_saved_regs (this_cache);
1830 /* move $30,$sp. With different versions of gas this will be either
1831 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1832 Accept any one of these. */
1833 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1835 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1836 if (frame_reg == MIPS_SP_REGNUM)
1838 unsigned alloca_adjust;
1841 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1842 alloca_adjust = (unsigned) (frame_addr - sp);
1843 if (alloca_adjust > 0)
1845 /* FP > SP + frame_size. This may be because of
1846 an alloca or somethings similar. Fix sp to
1847 "pre-alloca" value, and try again. */
1849 /* Need to reset the status of all registers. Otherwise,
1850 we will hit a guard that prevents the new address
1851 for each register to be recomputed during the second
1853 reset_saved_regs (this_cache);
1858 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1860 set_reg_offset (this_cache, reg, frame_addr + low_word);
1862 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1863 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1864 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1865 || high_word == 0x3c1c /* lui $gp,n */
1866 || high_word == 0x279c /* addiu $gp,$gp,n */
1867 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1868 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1871 /* These instructions are part of the prologue, but we don't
1872 need to do anything special to handle them. */
1874 /* The instructions below load $at or $t0 with an immediate
1875 value in preparation for a stack adjustment via
1876 subu $sp,$sp,[$at,$t0]. These instructions could also
1877 initialize a local variable, so we accept them only before
1878 a stack adjustment instruction was seen. */
1879 else if (!seen_sp_adjust
1880 && (high_word == 0x3c01 /* lui $at,n */
1881 || high_word == 0x3c08 /* lui $t0,n */
1882 || high_word == 0x3421 /* ori $at,$at,n */
1883 || high_word == 0x3508 /* ori $t0,$t0,n */
1884 || high_word == 0x3401 /* ori $at,$zero,n */
1885 || high_word == 0x3408 /* ori $t0,$zero,n */
1888 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1892 /* This instruction is not an instruction typically found
1893 in a prologue, so we must have reached the end of the
1895 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1896 loop now? Why would we need to continue scanning the function
1898 if (end_prologue_addr == 0)
1899 end_prologue_addr = cur_pc;
1903 if (this_cache != NULL)
1906 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1908 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1909 this assignment below, eventually. But it's still needed
1911 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1912 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1915 /* If we didn't reach the end of the prologue when scanning the function
1916 instructions, then set end_prologue_addr to the address of the
1917 instruction immediately after the last one we scanned. */
1918 /* brobecker/2004-10-10: I don't think this would ever happen, but
1919 we may as well be careful and do our best if we have a null
1920 end_prologue_addr. */
1921 if (end_prologue_addr == 0)
1922 end_prologue_addr = cur_pc;
1924 /* In a frameless function, we might have incorrectly
1925 skipped some load immediate instructions. Undo the skipping
1926 if the load immediate was not followed by a stack adjustment. */
1927 if (load_immediate_bytes && !seen_sp_adjust)
1928 end_prologue_addr -= load_immediate_bytes;
1930 return end_prologue_addr;
1933 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1934 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1935 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1938 static struct mips_frame_cache *
1939 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1941 struct mips_frame_cache *cache;
1943 if ((*this_cache) != NULL)
1944 return (*this_cache);
1946 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1947 (*this_cache) = cache;
1948 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1950 /* Analyze the function prologue. */
1952 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1953 CORE_ADDR start_addr;
1955 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1956 if (start_addr == 0)
1957 start_addr = heuristic_proc_start (pc);
1958 /* We can't analyze the prologue if we couldn't find the begining
1960 if (start_addr == 0)
1963 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1966 /* SP_REGNUM, contains the value and not the address. */
1967 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1969 return (*this_cache);
1973 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1974 struct frame_id *this_id)
1976 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1978 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1982 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1984 int regnum, int *optimizedp,
1985 enum lval_type *lvalp, CORE_ADDR *addrp,
1986 int *realnump, void *valuep)
1988 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1990 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1991 optimizedp, lvalp, addrp, realnump, valuep);
1994 static const struct frame_unwind mips_insn32_frame_unwind =
1997 mips_insn32_frame_this_id,
1998 mips_insn32_frame_prev_register
2001 static const struct frame_unwind *
2002 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2004 CORE_ADDR pc = frame_pc_unwind (next_frame);
2005 if (! mips_pc_is_mips16 (pc))
2006 return &mips_insn32_frame_unwind;
2011 mips_insn32_frame_base_address (struct frame_info *next_frame,
2014 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2019 static const struct frame_base mips_insn32_frame_base =
2021 &mips_insn32_frame_unwind,
2022 mips_insn32_frame_base_address,
2023 mips_insn32_frame_base_address,
2024 mips_insn32_frame_base_address
2027 static const struct frame_base *
2028 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2030 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2031 return &mips_insn32_frame_base;
2036 static struct trad_frame_cache *
2037 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2040 CORE_ADDR start_addr;
2041 CORE_ADDR stack_addr;
2042 struct trad_frame_cache *this_trad_cache;
2044 if ((*this_cache) != NULL)
2045 return (*this_cache);
2046 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2047 (*this_cache) = this_trad_cache;
2049 /* The return address is in the link register. */
2050 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2052 /* Frame ID, since it's a frameless / stackless function, no stack
2053 space is allocated and SP on entry is the current SP. */
2054 pc = frame_pc_unwind (next_frame);
2055 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2056 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2057 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2059 /* Assume that the frame's base is the same as the
2061 trad_frame_set_this_base (this_trad_cache, stack_addr);
2063 return this_trad_cache;
2067 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2068 struct frame_id *this_id)
2070 struct trad_frame_cache *this_trad_cache
2071 = mips_stub_frame_cache (next_frame, this_cache);
2072 trad_frame_get_id (this_trad_cache, this_id);
2076 mips_stub_frame_prev_register (struct frame_info *next_frame,
2078 int regnum, int *optimizedp,
2079 enum lval_type *lvalp, CORE_ADDR *addrp,
2080 int *realnump, void *valuep)
2082 struct trad_frame_cache *this_trad_cache
2083 = mips_stub_frame_cache (next_frame, this_cache);
2084 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2085 lvalp, addrp, realnump, valuep);
2088 static const struct frame_unwind mips_stub_frame_unwind =
2091 mips_stub_frame_this_id,
2092 mips_stub_frame_prev_register
2095 static const struct frame_unwind *
2096 mips_stub_frame_sniffer (struct frame_info *next_frame)
2098 CORE_ADDR pc = frame_pc_unwind (next_frame);
2099 if (in_plt_section (pc, NULL))
2100 return &mips_stub_frame_unwind;
2106 mips_stub_frame_base_address (struct frame_info *next_frame,
2109 struct trad_frame_cache *this_trad_cache
2110 = mips_stub_frame_cache (next_frame, this_cache);
2111 return trad_frame_get_this_base (this_trad_cache);
2114 static const struct frame_base mips_stub_frame_base =
2116 &mips_stub_frame_unwind,
2117 mips_stub_frame_base_address,
2118 mips_stub_frame_base_address,
2119 mips_stub_frame_base_address
2122 static const struct frame_base *
2123 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2125 if (mips_stub_frame_sniffer (next_frame) != NULL)
2126 return &mips_stub_frame_base;
2132 read_next_frame_reg (struct frame_info *fi, int regno)
2134 /* Always a pseudo. */
2135 gdb_assert (regno >= NUM_REGS);
2139 regcache_cooked_read_signed (current_regcache, regno, &val);
2143 return frame_unwind_register_signed (fi, regno);
2147 /* mips_addr_bits_remove - remove useless address bits */
2150 mips_addr_bits_remove (CORE_ADDR addr)
2152 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2153 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2154 /* This hack is a work-around for existing boards using PMON, the
2155 simulator, and any other 64-bit targets that doesn't have true
2156 64-bit addressing. On these targets, the upper 32 bits of
2157 addresses are ignored by the hardware. Thus, the PC or SP are
2158 likely to have been sign extended to all 1s by instruction
2159 sequences that load 32-bit addresses. For example, a typical
2160 piece of code that loads an address is this:
2162 lui $r2, <upper 16 bits>
2163 ori $r2, <lower 16 bits>
2165 But the lui sign-extends the value such that the upper 32 bits
2166 may be all 1s. The workaround is simply to mask off these
2167 bits. In the future, gcc may be changed to support true 64-bit
2168 addressing, and this masking will have to be disabled. */
2169 return addr &= 0xffffffffUL;
2174 /* mips_software_single_step() is called just before we want to resume
2175 the inferior, if we want to single-step it but there is no hardware
2176 or kernel single-step support (MIPS on GNU/Linux for example). We find
2177 the target of the coming instruction and breakpoint it.
2179 single_step is also called just after the inferior stops. If we had
2180 set up a simulated single-step, we undo our damage. */
2183 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2185 static CORE_ADDR next_pc;
2186 typedef char binsn_quantum[BREAKPOINT_MAX];
2187 static binsn_quantum break_mem;
2190 if (insert_breakpoints_p)
2192 pc = read_register (mips_regnum (current_gdbarch)->pc);
2193 next_pc = mips_next_pc (pc);
2195 target_insert_breakpoint (next_pc, break_mem);
2198 target_remove_breakpoint (next_pc, break_mem);
2201 /* Test whether the PC points to the return instruction at the
2202 end of a function. */
2205 mips_about_to_return (CORE_ADDR pc)
2207 if (mips_pc_is_mips16 (pc))
2208 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2209 generates a "jr $ra"; other times it generates code to load
2210 the return address from the stack to an accessible register (such
2211 as $a3), then a "jr" using that register. This second case
2212 is almost impossible to distinguish from an indirect jump
2213 used for switch statements, so we don't even try. */
2214 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2216 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2220 /* This fencepost looks highly suspicious to me. Removing it also
2221 seems suspicious as it could affect remote debugging across serial
2225 heuristic_proc_start (CORE_ADDR pc)
2232 pc = ADDR_BITS_REMOVE (pc);
2234 fence = start_pc - heuristic_fence_post;
2238 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2239 fence = VM_MIN_ADDRESS;
2241 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2243 /* search back for previous return */
2244 for (start_pc -= instlen;; start_pc -= instlen)
2245 if (start_pc < fence)
2247 /* It's not clear to me why we reach this point when
2248 stop_soon, but with this test, at least we
2249 don't print out warnings for every child forked (eg, on
2251 if (stop_soon == NO_STOP_QUIETLY)
2253 static int blurb_printed = 0;
2255 warning ("GDB can't find the start of the function at 0x%s.",
2260 /* This actually happens frequently in embedded
2261 development, when you first connect to a board
2262 and your stack pointer and pc are nowhere in
2263 particular. This message needs to give people
2264 in that situation enough information to
2265 determine that it's no big deal. */
2266 printf_filtered ("\n\
2267 GDB is unable to find the start of the function at 0x%s\n\
2268 and thus can't determine the size of that function's stack frame.\n\
2269 This means that GDB may be unable to access that stack frame, or\n\
2270 the frames below it.\n\
2271 This problem is most likely caused by an invalid program counter or\n\
2273 However, if you think GDB should simply search farther back\n\
2274 from 0x%s for code which looks like the beginning of a\n\
2275 function, you can increase the range of the search using the `set\n\
2276 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2283 else if (mips_pc_is_mips16 (start_pc))
2285 unsigned short inst;
2287 /* On MIPS16, any one of the following is likely to be the
2288 start of a function:
2292 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2293 inst = mips_fetch_instruction (start_pc);
2294 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2295 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2296 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2297 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2299 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2300 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2305 else if (mips_about_to_return (start_pc))
2307 /* Skip return and its delay slot. */
2308 start_pc += 2 * MIPS_INSN32_SIZE;
2315 struct mips_objfile_private
2321 /* According to the current ABI, should the type be passed in a
2322 floating-point register (assuming that there is space)? When there
2323 is no FPU, FP are not even considered as possibile candidates for
2324 FP registers and, consequently this returns false - forces FP
2325 arguments into integer registers. */
2328 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2330 return ((typecode == TYPE_CODE_FLT
2332 && (typecode == TYPE_CODE_STRUCT
2333 || typecode == TYPE_CODE_UNION)
2334 && TYPE_NFIELDS (arg_type) == 1
2335 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2336 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2339 /* On o32, argument passing in GPRs depends on the alignment of the type being
2340 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2343 mips_type_needs_double_align (struct type *type)
2345 enum type_code typecode = TYPE_CODE (type);
2347 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2349 else if (typecode == TYPE_CODE_STRUCT)
2351 if (TYPE_NFIELDS (type) < 1)
2353 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2355 else if (typecode == TYPE_CODE_UNION)
2359 n = TYPE_NFIELDS (type);
2360 for (i = 0; i < n; i++)
2361 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2368 /* Adjust the address downward (direction of stack growth) so that it
2369 is correctly aligned for a new stack frame. */
2371 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2373 return align_down (addr, 16);
2377 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2378 struct regcache *regcache, CORE_ADDR bp_addr,
2379 int nargs, struct value **args, CORE_ADDR sp,
2380 int struct_return, CORE_ADDR struct_addr)
2386 int stack_offset = 0;
2387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2388 CORE_ADDR func_addr = find_function_addr (function, NULL);
2390 /* For shared libraries, "t9" needs to point at the function
2392 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2394 /* Set the return address register to point to the entry point of
2395 the program, where a breakpoint lies in wait. */
2396 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2398 /* First ensure that the stack and structure return address (if any)
2399 are properly aligned. The stack has to be at least 64-bit
2400 aligned even on 32-bit machines, because doubles must be 64-bit
2401 aligned. For n32 and n64, stack frames need to be 128-bit
2402 aligned, so we round to this widest known alignment. */
2404 sp = align_down (sp, 16);
2405 struct_addr = align_down (struct_addr, 16);
2407 /* Now make space on the stack for the args. We allocate more
2408 than necessary for EABI, because the first few arguments are
2409 passed in registers, but that's OK. */
2410 for (argnum = 0; argnum < nargs; argnum++)
2411 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2412 mips_stack_argsize (gdbarch));
2413 sp -= align_up (len, 16);
2416 fprintf_unfiltered (gdb_stdlog,
2417 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2418 paddr_nz (sp), (long) align_up (len, 16));
2420 /* Initialize the integer and float register pointers. */
2421 argreg = MIPS_A0_REGNUM;
2422 float_argreg = mips_fpa0_regnum (current_gdbarch);
2424 /* The struct_return pointer occupies the first parameter-passing reg. */
2428 fprintf_unfiltered (gdb_stdlog,
2429 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2430 argreg, paddr_nz (struct_addr));
2431 write_register (argreg++, struct_addr);
2434 /* Now load as many as possible of the first arguments into
2435 registers, and push the rest onto the stack. Loop thru args
2436 from first to last. */
2437 for (argnum = 0; argnum < nargs; argnum++)
2440 char valbuf[MAX_REGISTER_SIZE];
2441 struct value *arg = args[argnum];
2442 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2443 int len = TYPE_LENGTH (arg_type);
2444 enum type_code typecode = TYPE_CODE (arg_type);
2447 fprintf_unfiltered (gdb_stdlog,
2448 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2449 argnum + 1, len, (int) typecode);
2451 /* The EABI passes structures that do not fit in a register by
2453 if (len > mips_abi_regsize (gdbarch)
2454 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2456 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2457 VALUE_ADDRESS (arg));
2458 typecode = TYPE_CODE_PTR;
2459 len = mips_abi_regsize (gdbarch);
2462 fprintf_unfiltered (gdb_stdlog, " push");
2465 val = (char *) VALUE_CONTENTS (arg);
2467 /* 32-bit ABIs always start floating point arguments in an
2468 even-numbered floating point register. Round the FP register
2469 up before the check to see if there are any FP registers
2470 left. Non MIPS_EABI targets also pass the FP in the integer
2471 registers so also round up normal registers. */
2472 if (mips_abi_regsize (gdbarch) < 8
2473 && fp_register_arg_p (typecode, arg_type))
2475 if ((float_argreg & 1))
2479 /* Floating point arguments passed in registers have to be
2480 treated specially. On 32-bit architectures, doubles
2481 are passed in register pairs; the even register gets
2482 the low word, and the odd register gets the high word.
2483 On non-EABI processors, the first two floating point arguments are
2484 also copied to general registers, because MIPS16 functions
2485 don't use float registers for arguments. This duplication of
2486 arguments in general registers can't hurt non-MIPS16 functions
2487 because those registers are normally skipped. */
2488 /* MIPS_EABI squeezes a struct that contains a single floating
2489 point value into an FP register instead of pushing it onto the
2491 if (fp_register_arg_p (typecode, arg_type)
2492 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2494 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
2496 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2497 unsigned long regval;
2499 /* Write the low word of the double to the even register(s). */
2500 regval = extract_unsigned_integer (val + low_offset, 4);
2502 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2503 float_argreg, phex (regval, 4));
2504 write_register (float_argreg++, regval);
2506 /* Write the high word of the double to the odd register(s). */
2507 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2509 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2510 float_argreg, phex (regval, 4));
2511 write_register (float_argreg++, regval);
2515 /* This is a floating point value that fits entirely
2516 in a single register. */
2517 /* On 32 bit ABI's the float_argreg is further adjusted
2518 above to ensure that it is even register aligned. */
2519 LONGEST regval = extract_unsigned_integer (val, len);
2521 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2522 float_argreg, phex (regval, len));
2523 write_register (float_argreg++, regval);
2528 /* Copy the argument to general registers or the stack in
2529 register-sized pieces. Large arguments are split between
2530 registers and stack. */
2531 /* Note: structs whose size is not a multiple of
2532 mips_abi_regsize() are treated specially: Irix cc passes
2533 them in registers where gcc sometimes puts them on the
2534 stack. For maximum compatibility, we will put them in
2536 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2537 && (len % mips_abi_regsize (gdbarch) != 0));
2539 /* Note: Floating-point values that didn't fit into an FP
2540 register are only written to memory. */
2543 /* Remember if the argument was written to the stack. */
2544 int stack_used_p = 0;
2545 int partial_len = (len < mips_abi_regsize (gdbarch)
2546 ? len : mips_abi_regsize (gdbarch));
2549 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2552 /* Write this portion of the argument to the stack. */
2553 if (argreg > MIPS_LAST_ARG_REGNUM
2555 || fp_register_arg_p (typecode, arg_type))
2557 /* Should shorter than int integer values be
2558 promoted to int before being stored? */
2559 int longword_offset = 0;
2562 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2564 if (mips_stack_argsize (gdbarch) == 8
2565 && (typecode == TYPE_CODE_INT
2566 || typecode == TYPE_CODE_PTR
2567 || typecode == TYPE_CODE_FLT) && len <= 4)
2568 longword_offset = mips_stack_argsize (gdbarch) - len;
2569 else if ((typecode == TYPE_CODE_STRUCT
2570 || typecode == TYPE_CODE_UNION)
2571 && (TYPE_LENGTH (arg_type)
2572 < mips_stack_argsize (gdbarch)))
2573 longword_offset = mips_stack_argsize (gdbarch) - len;
2578 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2579 paddr_nz (stack_offset));
2580 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2581 paddr_nz (longword_offset));
2584 addr = sp + stack_offset + longword_offset;
2589 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2591 for (i = 0; i < partial_len; i++)
2593 fprintf_unfiltered (gdb_stdlog, "%02x",
2597 write_memory (addr, val, partial_len);
2600 /* Note!!! This is NOT an else clause. Odd sized
2601 structs may go thru BOTH paths. Floating point
2602 arguments will not. */
2603 /* Write this portion of the argument to a general
2604 purpose register. */
2605 if (argreg <= MIPS_LAST_ARG_REGNUM
2606 && !fp_register_arg_p (typecode, arg_type))
2609 extract_unsigned_integer (val, partial_len);
2612 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2615 mips_abi_regsize (gdbarch)));
2616 write_register (argreg, regval);
2623 /* Compute the the offset into the stack at which we
2624 will copy the next parameter.
2626 In the new EABI (and the NABI32), the stack_offset
2627 only needs to be adjusted when it has been used. */
2630 stack_offset += align_up (partial_len,
2631 mips_stack_argsize (gdbarch));
2635 fprintf_unfiltered (gdb_stdlog, "\n");
2638 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2640 /* Return adjusted stack pointer. */
2644 /* Determin the return value convention being used. */
2646 static enum return_value_convention
2647 mips_eabi_return_value (struct gdbarch *gdbarch,
2648 struct type *type, struct regcache *regcache,
2649 void *readbuf, const void *writebuf)
2651 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2652 return RETURN_VALUE_STRUCT_CONVENTION;
2654 memset (readbuf, 0, TYPE_LENGTH (type));
2655 return RETURN_VALUE_REGISTER_CONVENTION;
2659 /* N32/N64 ABI stuff. */
2662 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2663 struct regcache *regcache, CORE_ADDR bp_addr,
2664 int nargs, struct value **args, CORE_ADDR sp,
2665 int struct_return, CORE_ADDR struct_addr)
2671 int stack_offset = 0;
2672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2673 CORE_ADDR func_addr = find_function_addr (function, NULL);
2675 /* For shared libraries, "t9" needs to point at the function
2677 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2679 /* Set the return address register to point to the entry point of
2680 the program, where a breakpoint lies in wait. */
2681 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2683 /* First ensure that the stack and structure return address (if any)
2684 are properly aligned. The stack has to be at least 64-bit
2685 aligned even on 32-bit machines, because doubles must be 64-bit
2686 aligned. For n32 and n64, stack frames need to be 128-bit
2687 aligned, so we round to this widest known alignment. */
2689 sp = align_down (sp, 16);
2690 struct_addr = align_down (struct_addr, 16);
2692 /* Now make space on the stack for the args. */
2693 for (argnum = 0; argnum < nargs; argnum++)
2694 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2695 mips_stack_argsize (gdbarch));
2696 sp -= align_up (len, 16);
2699 fprintf_unfiltered (gdb_stdlog,
2700 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2701 paddr_nz (sp), (long) align_up (len, 16));
2703 /* Initialize the integer and float register pointers. */
2704 argreg = MIPS_A0_REGNUM;
2705 float_argreg = mips_fpa0_regnum (current_gdbarch);
2707 /* The struct_return pointer occupies the first parameter-passing reg. */
2711 fprintf_unfiltered (gdb_stdlog,
2712 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2713 argreg, paddr_nz (struct_addr));
2714 write_register (argreg++, struct_addr);
2717 /* Now load as many as possible of the first arguments into
2718 registers, and push the rest onto the stack. Loop thru args
2719 from first to last. */
2720 for (argnum = 0; argnum < nargs; argnum++)
2723 struct value *arg = args[argnum];
2724 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2725 int len = TYPE_LENGTH (arg_type);
2726 enum type_code typecode = TYPE_CODE (arg_type);
2729 fprintf_unfiltered (gdb_stdlog,
2730 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2731 argnum + 1, len, (int) typecode);
2733 val = (char *) VALUE_CONTENTS (arg);
2735 if (fp_register_arg_p (typecode, arg_type)
2736 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2738 /* This is a floating point value that fits entirely
2739 in a single register. */
2740 /* On 32 bit ABI's the float_argreg is further adjusted
2741 above to ensure that it is even register aligned. */
2742 LONGEST regval = extract_unsigned_integer (val, len);
2744 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2745 float_argreg, phex (regval, len));
2746 write_register (float_argreg++, regval);
2749 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2750 argreg, phex (regval, len));
2751 write_register (argreg, regval);
2756 /* Copy the argument to general registers or the stack in
2757 register-sized pieces. Large arguments are split between
2758 registers and stack. */
2759 /* Note: structs whose size is not a multiple of
2760 mips_abi_regsize() are treated specially: Irix cc passes
2761 them in registers where gcc sometimes puts them on the
2762 stack. For maximum compatibility, we will put them in
2764 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2765 && (len % mips_abi_regsize (gdbarch) != 0));
2766 /* Note: Floating-point values that didn't fit into an FP
2767 register are only written to memory. */
2770 /* Rememer if the argument was written to the stack. */
2771 int stack_used_p = 0;
2772 int partial_len = (len < mips_abi_regsize (gdbarch)
2773 ? len : mips_abi_regsize (gdbarch));
2776 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2779 /* Write this portion of the argument to the stack. */
2780 if (argreg > MIPS_LAST_ARG_REGNUM
2782 || fp_register_arg_p (typecode, arg_type))
2784 /* Should shorter than int integer values be
2785 promoted to int before being stored? */
2786 int longword_offset = 0;
2789 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2791 if (mips_stack_argsize (gdbarch) == 8
2792 && (typecode == TYPE_CODE_INT
2793 || typecode == TYPE_CODE_PTR
2794 || typecode == TYPE_CODE_FLT) && len <= 4)
2795 longword_offset = mips_stack_argsize (gdbarch) - len;
2800 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2801 paddr_nz (stack_offset));
2802 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2803 paddr_nz (longword_offset));
2806 addr = sp + stack_offset + longword_offset;
2811 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2813 for (i = 0; i < partial_len; i++)
2815 fprintf_unfiltered (gdb_stdlog, "%02x",
2819 write_memory (addr, val, partial_len);
2822 /* Note!!! This is NOT an else clause. Odd sized
2823 structs may go thru BOTH paths. Floating point
2824 arguments will not. */
2825 /* Write this portion of the argument to a general
2826 purpose register. */
2827 if (argreg <= MIPS_LAST_ARG_REGNUM
2828 && !fp_register_arg_p (typecode, arg_type))
2831 extract_unsigned_integer (val, partial_len);
2833 /* A non-floating-point argument being passed in a
2834 general register. If a struct or union, and if
2835 the remaining length is smaller than the register
2836 size, we have to adjust the register value on
2839 It does not seem to be necessary to do the
2840 same for integral types.
2842 cagney/2001-07-23: gdb/179: Also, GCC, when
2843 outputting LE O32 with sizeof (struct) <
2844 mips_abi_regsize(), generates a left shift as
2845 part of storing the argument in a register a
2846 register (the left shift isn't generated when
2847 sizeof (struct) >= mips_abi_regsize()). Since
2848 it is quite possible that this is GCC
2849 contradicting the LE/O32 ABI, GDB has not been
2850 adjusted to accommodate this. Either someone
2851 needs to demonstrate that the LE/O32 ABI
2852 specifies such a left shift OR this new ABI gets
2853 identified as such and GDB gets tweaked
2856 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2857 && partial_len < mips_abi_regsize (gdbarch)
2858 && (typecode == TYPE_CODE_STRUCT ||
2859 typecode == TYPE_CODE_UNION))
2860 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2864 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2867 mips_abi_regsize (gdbarch)));
2868 write_register (argreg, regval);
2875 /* Compute the the offset into the stack at which we
2876 will copy the next parameter.
2878 In N32 (N64?), the stack_offset only needs to be
2879 adjusted when it has been used. */
2882 stack_offset += align_up (partial_len,
2883 mips_stack_argsize (gdbarch));
2887 fprintf_unfiltered (gdb_stdlog, "\n");
2890 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2892 /* Return adjusted stack pointer. */
2896 static enum return_value_convention
2897 mips_n32n64_return_value (struct gdbarch *gdbarch,
2898 struct type *type, struct regcache *regcache,
2899 void *readbuf, const void *writebuf)
2901 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2902 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2903 || TYPE_CODE (type) == TYPE_CODE_UNION
2904 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2905 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2906 return RETURN_VALUE_STRUCT_CONVENTION;
2907 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2908 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2910 /* A floating-point value belongs in the least significant part
2913 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2914 mips_xfer_register (regcache,
2915 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2917 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2918 return RETURN_VALUE_REGISTER_CONVENTION;
2920 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2921 && TYPE_NFIELDS (type) <= 2
2922 && TYPE_NFIELDS (type) >= 1
2923 && ((TYPE_NFIELDS (type) == 1
2924 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2926 || (TYPE_NFIELDS (type) == 2
2927 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2929 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2931 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2933 /* A struct that contains one or two floats. Each value is part
2934 in the least significant part of their floating point
2938 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2939 field < TYPE_NFIELDS (type); field++, regnum += 2)
2941 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2944 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2946 mips_xfer_register (regcache, NUM_REGS + regnum,
2947 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2948 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2950 return RETURN_VALUE_REGISTER_CONVENTION;
2952 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2953 || TYPE_CODE (type) == TYPE_CODE_UNION)
2955 /* A structure or union. Extract the left justified value,
2956 regardless of the byte order. I.e. DO NOT USE
2960 for (offset = 0, regnum = MIPS_V0_REGNUM;
2961 offset < TYPE_LENGTH (type);
2962 offset += register_size (current_gdbarch, regnum), regnum++)
2964 int xfer = register_size (current_gdbarch, regnum);
2965 if (offset + xfer > TYPE_LENGTH (type))
2966 xfer = TYPE_LENGTH (type) - offset;
2968 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2969 offset, xfer, regnum);
2970 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2971 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2973 return RETURN_VALUE_REGISTER_CONVENTION;
2977 /* A scalar extract each part but least-significant-byte
2981 for (offset = 0, regnum = MIPS_V0_REGNUM;
2982 offset < TYPE_LENGTH (type);
2983 offset += register_size (current_gdbarch, regnum), regnum++)
2985 int xfer = register_size (current_gdbarch, regnum);
2986 if (offset + xfer > TYPE_LENGTH (type))
2987 xfer = TYPE_LENGTH (type) - offset;
2989 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
2990 offset, xfer, regnum);
2991 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2992 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2994 return RETURN_VALUE_REGISTER_CONVENTION;
2998 /* O32 ABI stuff. */
3001 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3002 struct regcache *regcache, CORE_ADDR bp_addr,
3003 int nargs, struct value **args, CORE_ADDR sp,
3004 int struct_return, CORE_ADDR struct_addr)
3010 int stack_offset = 0;
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3012 CORE_ADDR func_addr = find_function_addr (function, NULL);
3014 /* For shared libraries, "t9" needs to point at the function
3016 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3018 /* Set the return address register to point to the entry point of
3019 the program, where a breakpoint lies in wait. */
3020 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3022 /* First ensure that the stack and structure return address (if any)
3023 are properly aligned. The stack has to be at least 64-bit
3024 aligned even on 32-bit machines, because doubles must be 64-bit
3025 aligned. For n32 and n64, stack frames need to be 128-bit
3026 aligned, so we round to this widest known alignment. */
3028 sp = align_down (sp, 16);
3029 struct_addr = align_down (struct_addr, 16);
3031 /* Now make space on the stack for the args. */
3032 for (argnum = 0; argnum < nargs; argnum++)
3033 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3034 mips_stack_argsize (gdbarch));
3035 sp -= align_up (len, 16);
3038 fprintf_unfiltered (gdb_stdlog,
3039 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3040 paddr_nz (sp), (long) align_up (len, 16));
3042 /* Initialize the integer and float register pointers. */
3043 argreg = MIPS_A0_REGNUM;
3044 float_argreg = mips_fpa0_regnum (current_gdbarch);
3046 /* The struct_return pointer occupies the first parameter-passing reg. */
3050 fprintf_unfiltered (gdb_stdlog,
3051 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3052 argreg, paddr_nz (struct_addr));
3053 write_register (argreg++, struct_addr);
3054 stack_offset += mips_stack_argsize (gdbarch);
3057 /* Now load as many as possible of the first arguments into
3058 registers, and push the rest onto the stack. Loop thru args
3059 from first to last. */
3060 for (argnum = 0; argnum < nargs; argnum++)
3063 struct value *arg = args[argnum];
3064 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3065 int len = TYPE_LENGTH (arg_type);
3066 enum type_code typecode = TYPE_CODE (arg_type);
3069 fprintf_unfiltered (gdb_stdlog,
3070 "mips_o32_push_dummy_call: %d len=%d type=%d",
3071 argnum + 1, len, (int) typecode);
3073 val = (char *) VALUE_CONTENTS (arg);
3075 /* 32-bit ABIs always start floating point arguments in an
3076 even-numbered floating point register. Round the FP register
3077 up before the check to see if there are any FP registers
3078 left. O32/O64 targets also pass the FP in the integer
3079 registers so also round up normal registers. */
3080 if (mips_abi_regsize (gdbarch) < 8
3081 && fp_register_arg_p (typecode, arg_type))
3083 if ((float_argreg & 1))
3087 /* Floating point arguments passed in registers have to be
3088 treated specially. On 32-bit architectures, doubles
3089 are passed in register pairs; the even register gets
3090 the low word, and the odd register gets the high word.
3091 On O32/O64, the first two floating point arguments are
3092 also copied to general registers, because MIPS16 functions
3093 don't use float registers for arguments. This duplication of
3094 arguments in general registers can't hurt non-MIPS16 functions
3095 because those registers are normally skipped. */
3097 if (fp_register_arg_p (typecode, arg_type)
3098 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3100 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3102 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3103 unsigned long regval;
3105 /* Write the low word of the double to the even register(s). */
3106 regval = extract_unsigned_integer (val + low_offset, 4);
3108 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3109 float_argreg, phex (regval, 4));
3110 write_register (float_argreg++, regval);
3112 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3113 argreg, phex (regval, 4));
3114 write_register (argreg++, regval);
3116 /* Write the high word of the double to the odd register(s). */
3117 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3119 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3120 float_argreg, phex (regval, 4));
3121 write_register (float_argreg++, regval);
3124 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3125 argreg, phex (regval, 4));
3126 write_register (argreg++, regval);
3130 /* This is a floating point value that fits entirely
3131 in a single register. */
3132 /* On 32 bit ABI's the float_argreg is further adjusted
3133 above to ensure that it is even register aligned. */
3134 LONGEST regval = extract_unsigned_integer (val, len);
3136 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3137 float_argreg, phex (regval, len));
3138 write_register (float_argreg++, regval);
3139 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3140 registers for each argument. The below is (my
3141 guess) to ensure that the corresponding integer
3142 register has reserved the same space. */
3144 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3145 argreg, phex (regval, len));
3146 write_register (argreg, regval);
3147 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3149 /* Reserve space for the FP register. */
3150 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3154 /* Copy the argument to general registers or the stack in
3155 register-sized pieces. Large arguments are split between
3156 registers and stack. */
3157 /* Note: structs whose size is not a multiple of
3158 mips_abi_regsize() are treated specially: Irix cc passes
3159 them in registers where gcc sometimes puts them on the
3160 stack. For maximum compatibility, we will put them in
3162 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3163 && (len % mips_abi_regsize (gdbarch) != 0));
3164 /* Structures should be aligned to eight bytes (even arg registers)
3165 on MIPS_ABI_O32, if their first member has double precision. */
3166 if (mips_abi_regsize (gdbarch) < 8
3167 && mips_type_needs_double_align (arg_type))
3172 /* Note: Floating-point values that didn't fit into an FP
3173 register are only written to memory. */
3176 /* Remember if the argument was written to the stack. */
3177 int stack_used_p = 0;
3178 int partial_len = (len < mips_abi_regsize (gdbarch)
3179 ? len : mips_abi_regsize (gdbarch));
3182 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3185 /* Write this portion of the argument to the stack. */
3186 if (argreg > MIPS_LAST_ARG_REGNUM
3188 || fp_register_arg_p (typecode, arg_type))
3190 /* Should shorter than int integer values be
3191 promoted to int before being stored? */
3192 int longword_offset = 0;
3195 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3197 if (mips_stack_argsize (gdbarch) == 8
3198 && (typecode == TYPE_CODE_INT
3199 || typecode == TYPE_CODE_PTR
3200 || typecode == TYPE_CODE_FLT) && len <= 4)
3201 longword_offset = mips_stack_argsize (gdbarch) - len;
3206 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3207 paddr_nz (stack_offset));
3208 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3209 paddr_nz (longword_offset));
3212 addr = sp + stack_offset + longword_offset;
3217 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3219 for (i = 0; i < partial_len; i++)
3221 fprintf_unfiltered (gdb_stdlog, "%02x",
3225 write_memory (addr, val, partial_len);
3228 /* Note!!! This is NOT an else clause. Odd sized
3229 structs may go thru BOTH paths. Floating point
3230 arguments will not. */
3231 /* Write this portion of the argument to a general
3232 purpose register. */
3233 if (argreg <= MIPS_LAST_ARG_REGNUM
3234 && !fp_register_arg_p (typecode, arg_type))
3236 LONGEST regval = extract_signed_integer (val, partial_len);
3237 /* Value may need to be sign extended, because
3238 mips_isa_regsize() != mips_abi_regsize(). */
3240 /* A non-floating-point argument being passed in a
3241 general register. If a struct or union, and if
3242 the remaining length is smaller than the register
3243 size, we have to adjust the register value on
3246 It does not seem to be necessary to do the
3247 same for integral types.
3249 Also don't do this adjustment on O64 binaries.
3251 cagney/2001-07-23: gdb/179: Also, GCC, when
3252 outputting LE O32 with sizeof (struct) <
3253 mips_abi_regsize(), generates a left shift as
3254 part of storing the argument in a register a
3255 register (the left shift isn't generated when
3256 sizeof (struct) >= mips_abi_regsize()). Since
3257 it is quite possible that this is GCC
3258 contradicting the LE/O32 ABI, GDB has not been
3259 adjusted to accommodate this. Either someone
3260 needs to demonstrate that the LE/O32 ABI
3261 specifies such a left shift OR this new ABI gets
3262 identified as such and GDB gets tweaked
3265 if (mips_abi_regsize (gdbarch) < 8
3266 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3267 && partial_len < mips_abi_regsize (gdbarch)
3268 && (typecode == TYPE_CODE_STRUCT ||
3269 typecode == TYPE_CODE_UNION))
3270 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3274 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3277 mips_abi_regsize (gdbarch)));
3278 write_register (argreg, regval);
3281 /* Prevent subsequent floating point arguments from
3282 being passed in floating point registers. */
3283 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3289 /* Compute the the offset into the stack at which we
3290 will copy the next parameter.
3292 In older ABIs, the caller reserved space for
3293 registers that contained arguments. This was loosely
3294 refered to as their "home". Consequently, space is
3295 always allocated. */
3297 stack_offset += align_up (partial_len,
3298 mips_stack_argsize (gdbarch));
3302 fprintf_unfiltered (gdb_stdlog, "\n");
3305 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3307 /* Return adjusted stack pointer. */
3311 static enum return_value_convention
3312 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3313 struct regcache *regcache,
3314 void *readbuf, const void *writebuf)
3316 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3319 || TYPE_CODE (type) == TYPE_CODE_UNION
3320 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3321 return RETURN_VALUE_STRUCT_CONVENTION;
3322 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3323 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3325 /* A single-precision floating-point value. It fits in the
3326 least significant part of FP0. */
3328 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3329 mips_xfer_register (regcache,
3330 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3332 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3333 return RETURN_VALUE_REGISTER_CONVENTION;
3335 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3336 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3338 /* A double-precision floating-point value. The most
3339 significant part goes in FP1, and the least significant in
3342 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3343 switch (TARGET_BYTE_ORDER)
3345 case BFD_ENDIAN_LITTLE:
3346 mips_xfer_register (regcache,
3347 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3348 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3349 mips_xfer_register (regcache,
3350 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3351 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3353 case BFD_ENDIAN_BIG:
3354 mips_xfer_register (regcache,
3355 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3356 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3357 mips_xfer_register (regcache,
3358 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3359 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3362 internal_error (__FILE__, __LINE__, "bad switch");
3364 return RETURN_VALUE_REGISTER_CONVENTION;
3367 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3368 && TYPE_NFIELDS (type) <= 2
3369 && TYPE_NFIELDS (type) >= 1
3370 && ((TYPE_NFIELDS (type) == 1
3371 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3373 || (TYPE_NFIELDS (type) == 2
3374 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3376 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3378 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3380 /* A struct that contains one or two floats. Each value is part
3381 in the least significant part of their floating point
3383 bfd_byte reg[MAX_REGISTER_SIZE];
3386 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3387 field < TYPE_NFIELDS (type); field++, regnum += 2)
3389 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3392 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3394 mips_xfer_register (regcache, NUM_REGS + regnum,
3395 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3396 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3398 return RETURN_VALUE_REGISTER_CONVENTION;
3402 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3403 || TYPE_CODE (type) == TYPE_CODE_UNION)
3405 /* A structure or union. Extract the left justified value,
3406 regardless of the byte order. I.e. DO NOT USE
3410 for (offset = 0, regnum = MIPS_V0_REGNUM;
3411 offset < TYPE_LENGTH (type);
3412 offset += register_size (current_gdbarch, regnum), regnum++)
3414 int xfer = register_size (current_gdbarch, regnum);
3415 if (offset + xfer > TYPE_LENGTH (type))
3416 xfer = TYPE_LENGTH (type) - offset;
3418 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3419 offset, xfer, regnum);
3420 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3421 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3423 return RETURN_VALUE_REGISTER_CONVENTION;
3428 /* A scalar extract each part but least-significant-byte
3429 justified. o32 thinks registers are 4 byte, regardless of
3430 the ISA. mips_stack_argsize controls this. */
3433 for (offset = 0, regnum = MIPS_V0_REGNUM;
3434 offset < TYPE_LENGTH (type);
3435 offset += mips_stack_argsize (gdbarch), regnum++)
3437 int xfer = mips_stack_argsize (gdbarch);
3438 if (offset + xfer > TYPE_LENGTH (type))
3439 xfer = TYPE_LENGTH (type) - offset;
3441 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3442 offset, xfer, regnum);
3443 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3444 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3446 return RETURN_VALUE_REGISTER_CONVENTION;
3450 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3454 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3455 struct regcache *regcache, CORE_ADDR bp_addr,
3457 struct value **args, CORE_ADDR sp,
3458 int struct_return, CORE_ADDR struct_addr)
3464 int stack_offset = 0;
3465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3466 CORE_ADDR func_addr = find_function_addr (function, NULL);
3468 /* For shared libraries, "t9" needs to point at the function
3470 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3472 /* Set the return address register to point to the entry point of
3473 the program, where a breakpoint lies in wait. */
3474 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3476 /* First ensure that the stack and structure return address (if any)
3477 are properly aligned. The stack has to be at least 64-bit
3478 aligned even on 32-bit machines, because doubles must be 64-bit
3479 aligned. For n32 and n64, stack frames need to be 128-bit
3480 aligned, so we round to this widest known alignment. */
3482 sp = align_down (sp, 16);
3483 struct_addr = align_down (struct_addr, 16);
3485 /* Now make space on the stack for the args. */
3486 for (argnum = 0; argnum < nargs; argnum++)
3487 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3488 mips_stack_argsize (gdbarch));
3489 sp -= align_up (len, 16);
3492 fprintf_unfiltered (gdb_stdlog,
3493 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3494 paddr_nz (sp), (long) align_up (len, 16));
3496 /* Initialize the integer and float register pointers. */
3497 argreg = MIPS_A0_REGNUM;
3498 float_argreg = mips_fpa0_regnum (current_gdbarch);
3500 /* The struct_return pointer occupies the first parameter-passing reg. */
3504 fprintf_unfiltered (gdb_stdlog,
3505 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3506 argreg, paddr_nz (struct_addr));
3507 write_register (argreg++, struct_addr);
3508 stack_offset += mips_stack_argsize (gdbarch);
3511 /* Now load as many as possible of the first arguments into
3512 registers, and push the rest onto the stack. Loop thru args
3513 from first to last. */
3514 for (argnum = 0; argnum < nargs; argnum++)
3517 struct value *arg = args[argnum];
3518 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3519 int len = TYPE_LENGTH (arg_type);
3520 enum type_code typecode = TYPE_CODE (arg_type);
3523 fprintf_unfiltered (gdb_stdlog,
3524 "mips_o64_push_dummy_call: %d len=%d type=%d",
3525 argnum + 1, len, (int) typecode);
3527 val = (char *) VALUE_CONTENTS (arg);
3529 /* 32-bit ABIs always start floating point arguments in an
3530 even-numbered floating point register. Round the FP register
3531 up before the check to see if there are any FP registers
3532 left. O32/O64 targets also pass the FP in the integer
3533 registers so also round up normal registers. */
3534 if (mips_abi_regsize (gdbarch) < 8
3535 && fp_register_arg_p (typecode, arg_type))
3537 if ((float_argreg & 1))
3541 /* Floating point arguments passed in registers have to be
3542 treated specially. On 32-bit architectures, doubles
3543 are passed in register pairs; the even register gets
3544 the low word, and the odd register gets the high word.
3545 On O32/O64, the first two floating point arguments are
3546 also copied to general registers, because MIPS16 functions
3547 don't use float registers for arguments. This duplication of
3548 arguments in general registers can't hurt non-MIPS16 functions
3549 because those registers are normally skipped. */
3551 if (fp_register_arg_p (typecode, arg_type)
3552 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3554 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3556 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3557 unsigned long regval;
3559 /* Write the low word of the double to the even register(s). */
3560 regval = extract_unsigned_integer (val + low_offset, 4);
3562 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3563 float_argreg, phex (regval, 4));
3564 write_register (float_argreg++, regval);
3566 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3567 argreg, phex (regval, 4));
3568 write_register (argreg++, regval);
3570 /* Write the high word of the double to the odd register(s). */
3571 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3573 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3574 float_argreg, phex (regval, 4));
3575 write_register (float_argreg++, regval);
3578 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3579 argreg, phex (regval, 4));
3580 write_register (argreg++, regval);
3584 /* This is a floating point value that fits entirely
3585 in a single register. */
3586 /* On 32 bit ABI's the float_argreg is further adjusted
3587 above to ensure that it is even register aligned. */
3588 LONGEST regval = extract_unsigned_integer (val, len);
3590 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3591 float_argreg, phex (regval, len));
3592 write_register (float_argreg++, regval);
3593 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3594 registers for each argument. The below is (my
3595 guess) to ensure that the corresponding integer
3596 register has reserved the same space. */
3598 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3599 argreg, phex (regval, len));
3600 write_register (argreg, regval);
3601 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3603 /* Reserve space for the FP register. */
3604 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3608 /* Copy the argument to general registers or the stack in
3609 register-sized pieces. Large arguments are split between
3610 registers and stack. */
3611 /* Note: structs whose size is not a multiple of
3612 mips_abi_regsize() are treated specially: Irix cc passes
3613 them in registers where gcc sometimes puts them on the
3614 stack. For maximum compatibility, we will put them in
3616 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3617 && (len % mips_abi_regsize (gdbarch) != 0));
3618 /* Structures should be aligned to eight bytes (even arg registers)
3619 on MIPS_ABI_O32, if their first member has double precision. */
3620 if (mips_abi_regsize (gdbarch) < 8
3621 && mips_type_needs_double_align (arg_type))
3626 /* Note: Floating-point values that didn't fit into an FP
3627 register are only written to memory. */
3630 /* Remember if the argument was written to the stack. */
3631 int stack_used_p = 0;
3632 int partial_len = (len < mips_abi_regsize (gdbarch)
3633 ? len : mips_abi_regsize (gdbarch));
3636 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3639 /* Write this portion of the argument to the stack. */
3640 if (argreg > MIPS_LAST_ARG_REGNUM
3642 || fp_register_arg_p (typecode, arg_type))
3644 /* Should shorter than int integer values be
3645 promoted to int before being stored? */
3646 int longword_offset = 0;
3649 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3651 if (mips_stack_argsize (gdbarch) == 8
3652 && (typecode == TYPE_CODE_INT
3653 || typecode == TYPE_CODE_PTR
3654 || typecode == TYPE_CODE_FLT) && len <= 4)
3655 longword_offset = mips_stack_argsize (gdbarch) - len;
3660 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3661 paddr_nz (stack_offset));
3662 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3663 paddr_nz (longword_offset));
3666 addr = sp + stack_offset + longword_offset;
3671 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3673 for (i = 0; i < partial_len; i++)
3675 fprintf_unfiltered (gdb_stdlog, "%02x",
3679 write_memory (addr, val, partial_len);
3682 /* Note!!! This is NOT an else clause. Odd sized
3683 structs may go thru BOTH paths. Floating point
3684 arguments will not. */
3685 /* Write this portion of the argument to a general
3686 purpose register. */
3687 if (argreg <= MIPS_LAST_ARG_REGNUM
3688 && !fp_register_arg_p (typecode, arg_type))
3690 LONGEST regval = extract_signed_integer (val, partial_len);
3691 /* Value may need to be sign extended, because
3692 mips_isa_regsize() != mips_abi_regsize(). */
3694 /* A non-floating-point argument being passed in a
3695 general register. If a struct or union, and if
3696 the remaining length is smaller than the register
3697 size, we have to adjust the register value on
3700 It does not seem to be necessary to do the
3701 same for integral types.
3703 Also don't do this adjustment on O64 binaries.
3705 cagney/2001-07-23: gdb/179: Also, GCC, when
3706 outputting LE O32 with sizeof (struct) <
3707 mips_abi_regsize(), generates a left shift as
3708 part of storing the argument in a register a
3709 register (the left shift isn't generated when
3710 sizeof (struct) >= mips_abi_regsize()). Since
3711 it is quite possible that this is GCC
3712 contradicting the LE/O32 ABI, GDB has not been
3713 adjusted to accommodate this. Either someone
3714 needs to demonstrate that the LE/O32 ABI
3715 specifies such a left shift OR this new ABI gets
3716 identified as such and GDB gets tweaked
3719 if (mips_abi_regsize (gdbarch) < 8
3720 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3721 && partial_len < mips_abi_regsize (gdbarch)
3722 && (typecode == TYPE_CODE_STRUCT ||
3723 typecode == TYPE_CODE_UNION))
3724 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3728 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3731 mips_abi_regsize (gdbarch)));
3732 write_register (argreg, regval);
3735 /* Prevent subsequent floating point arguments from
3736 being passed in floating point registers. */
3737 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3743 /* Compute the the offset into the stack at which we
3744 will copy the next parameter.
3746 In older ABIs, the caller reserved space for
3747 registers that contained arguments. This was loosely
3748 refered to as their "home". Consequently, space is
3749 always allocated. */
3751 stack_offset += align_up (partial_len,
3752 mips_stack_argsize (gdbarch));
3756 fprintf_unfiltered (gdb_stdlog, "\n");
3759 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3761 /* Return adjusted stack pointer. */
3765 static enum return_value_convention
3766 mips_o64_return_value (struct gdbarch *gdbarch,
3767 struct type *type, struct regcache *regcache,
3768 void *readbuf, const void *writebuf)
3770 return RETURN_VALUE_STRUCT_CONVENTION;
3773 /* Floating point register management.
3775 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3776 64bit operations, these early MIPS cpus treat fp register pairs
3777 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3778 registers and offer a compatibility mode that emulates the MIPS2 fp
3779 model. When operating in MIPS2 fp compat mode, later cpu's split
3780 double precision floats into two 32-bit chunks and store them in
3781 consecutive fp regs. To display 64-bit floats stored in this
3782 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3783 Throw in user-configurable endianness and you have a real mess.
3785 The way this works is:
3786 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3787 double-precision value will be split across two logical registers.
3788 The lower-numbered logical register will hold the low-order bits,
3789 regardless of the processor's endianness.
3790 - If we are on a 64-bit processor, and we are looking for a
3791 single-precision value, it will be in the low ordered bits
3792 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3793 save slot in memory.
3794 - If we are in 64-bit mode, everything is straightforward.
3796 Note that this code only deals with "live" registers at the top of the
3797 stack. We will attempt to deal with saved registers later, when
3798 the raw/cooked register interface is in place. (We need a general
3799 interface that can deal with dynamic saved register sizes -- fp
3800 regs could be 32 bits wide in one frame and 64 on the frame above
3803 static struct type *
3804 mips_float_register_type (void)
3806 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3807 return builtin_type_ieee_single_big;
3809 return builtin_type_ieee_single_little;
3812 static struct type *
3813 mips_double_register_type (void)
3815 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3816 return builtin_type_ieee_double_big;
3818 return builtin_type_ieee_double_little;
3821 /* Copy a 32-bit single-precision value from the current frame
3822 into rare_buffer. */
3825 mips_read_fp_register_single (struct frame_info *frame, int regno,
3828 int raw_size = register_size (current_gdbarch, regno);
3829 char *raw_buffer = alloca (raw_size);
3831 if (!frame_register_read (frame, regno, raw_buffer))
3832 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3835 /* We have a 64-bit value for this register. Find the low-order
3839 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3844 memcpy (rare_buffer, raw_buffer + offset, 4);
3848 memcpy (rare_buffer, raw_buffer, 4);
3852 /* Copy a 64-bit double-precision value from the current frame into
3853 rare_buffer. This may include getting half of it from the next
3857 mips_read_fp_register_double (struct frame_info *frame, int regno,
3860 int raw_size = register_size (current_gdbarch, regno);
3862 if (raw_size == 8 && !mips2_fp_compat ())
3864 /* We have a 64-bit value for this register, and we should use
3866 if (!frame_register_read (frame, regno, rare_buffer))
3867 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3871 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3872 internal_error (__FILE__, __LINE__,
3873 "mips_read_fp_register_double: bad access to "
3874 "odd-numbered FP register");
3876 /* mips_read_fp_register_single will find the correct 32 bits from
3878 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3880 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3881 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3885 mips_read_fp_register_single (frame, regno, rare_buffer);
3886 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3892 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3894 { /* do values for FP (float) regs */
3896 double doub, flt1; /* doubles extracted from raw hex data */
3900 (char *) alloca (2 *
3901 register_size (current_gdbarch,
3902 mips_regnum (current_gdbarch)->fp0));
3904 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3905 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3908 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3910 /* 4-byte registers: Print hex and floating. Also print even
3911 numbered registers as doubles. */
3912 mips_read_fp_register_single (frame, regnum, raw_buffer);
3913 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3915 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3918 fprintf_filtered (file, " flt: ");
3920 fprintf_filtered (file, " <invalid float> ");
3922 fprintf_filtered (file, "%-17.9g", flt1);
3924 if (regnum % 2 == 0)
3926 mips_read_fp_register_double (frame, regnum, raw_buffer);
3927 doub = unpack_double (mips_double_register_type (), raw_buffer,
3930 fprintf_filtered (file, " dbl: ");
3932 fprintf_filtered (file, "<invalid double>");
3934 fprintf_filtered (file, "%-24.17g", doub);
3939 /* Eight byte registers: print each one as hex, float and double. */
3940 mips_read_fp_register_single (frame, regnum, raw_buffer);
3941 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3943 mips_read_fp_register_double (frame, regnum, raw_buffer);
3944 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3947 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3950 fprintf_filtered (file, " flt: ");
3952 fprintf_filtered (file, "<invalid float>");
3954 fprintf_filtered (file, "%-17.9g", flt1);
3956 fprintf_filtered (file, " dbl: ");
3958 fprintf_filtered (file, "<invalid double>");
3960 fprintf_filtered (file, "%-24.17g", doub);
3965 mips_print_register (struct ui_file *file, struct frame_info *frame,
3966 int regnum, int all)
3968 struct gdbarch *gdbarch = get_frame_arch (frame);
3969 char raw_buffer[MAX_REGISTER_SIZE];
3972 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
3974 mips_print_fp_register (file, frame, regnum);
3978 /* Get the data in raw format. */
3979 if (!frame_register_read (frame, regnum, raw_buffer))
3981 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
3985 fputs_filtered (REGISTER_NAME (regnum), file);
3987 /* The problem with printing numeric register names (r26, etc.) is that
3988 the user can't use them on input. Probably the best solution is to
3989 fix it so that either the numeric or the funky (a2, etc.) names
3990 are accepted on input. */
3991 if (regnum < MIPS_NUMREGS)
3992 fprintf_filtered (file, "(r%d): ", regnum);
3994 fprintf_filtered (file, ": ");
3996 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3998 register_size (current_gdbarch,
3999 regnum) - register_size (current_gdbarch, regnum);
4003 print_scalar_formatted (raw_buffer + offset,
4004 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4008 /* Replacement for generic do_registers_info.
4009 Print regs in pretty columns. */
4012 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4015 fprintf_filtered (file, " ");
4016 mips_print_fp_register (file, frame, regnum);
4017 fprintf_filtered (file, "\n");
4022 /* Print a row's worth of GP (int) registers, with name labels above */
4025 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4028 struct gdbarch *gdbarch = get_frame_arch (frame);
4029 /* do values for GP (int) regs */
4030 char raw_buffer[MAX_REGISTER_SIZE];
4031 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4035 /* For GP registers, we print a separate row of names above the vals */
4036 fprintf_filtered (file, " ");
4037 for (col = 0, regnum = start_regnum;
4038 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4040 if (*REGISTER_NAME (regnum) == '\0')
4041 continue; /* unused register */
4042 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4044 break; /* end the row: reached FP register */
4045 fprintf_filtered (file,
4046 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4047 REGISTER_NAME (regnum));
4050 /* print the R0 to R31 names */
4051 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4052 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4054 fprintf_filtered (file, "\n ");
4056 /* now print the values in hex, 4 or 8 to the row */
4057 for (col = 0, regnum = start_regnum;
4058 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4060 if (*REGISTER_NAME (regnum) == '\0')
4061 continue; /* unused register */
4062 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4064 break; /* end row: reached FP register */
4065 /* OK: get the data in raw format. */
4066 if (!frame_register_read (frame, regnum, raw_buffer))
4067 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4068 /* pad small registers */
4070 byte < (mips_abi_regsize (current_gdbarch)
4071 - register_size (current_gdbarch, regnum)); byte++)
4072 printf_filtered (" ");
4073 /* Now print the register value in hex, endian order. */
4074 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4076 register_size (current_gdbarch,
4077 regnum) - register_size (current_gdbarch, regnum);
4078 byte < register_size (current_gdbarch, regnum); byte++)
4079 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4081 for (byte = register_size (current_gdbarch, regnum) - 1;
4083 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4084 fprintf_filtered (file, " ");
4087 if (col > 0) /* ie. if we actually printed anything... */
4088 fprintf_filtered (file, "\n");
4093 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4096 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4097 struct frame_info *frame, int regnum, int all)
4099 if (regnum != -1) /* do one specified register */
4101 gdb_assert (regnum >= NUM_REGS);
4102 if (*(REGISTER_NAME (regnum)) == '\0')
4103 error ("Not a valid register for the current processor type");
4105 mips_print_register (file, frame, regnum, 0);
4106 fprintf_filtered (file, "\n");
4109 /* do all (or most) registers */
4112 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4114 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4117 if (all) /* true for "INFO ALL-REGISTERS" command */
4118 regnum = print_fp_register_row (file, frame, regnum);
4120 regnum += MIPS_NUMREGS; /* skip floating point regs */
4123 regnum = print_gp_register_row (file, frame, regnum);
4128 /* Is this a branch with a delay slot? */
4131 is_delayed (unsigned long insn)
4134 for (i = 0; i < NUMOPCODES; ++i)
4135 if (mips_opcodes[i].pinfo != INSN_MACRO
4136 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4138 return (i < NUMOPCODES
4139 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4140 | INSN_COND_BRANCH_DELAY
4141 | INSN_COND_BRANCH_LIKELY)));
4145 mips_single_step_through_delay (struct gdbarch *gdbarch,
4146 struct frame_info *frame)
4148 CORE_ADDR pc = get_frame_pc (frame);
4149 char buf[MIPS_INSN32_SIZE];
4151 /* There is no branch delay slot on MIPS16. */
4152 if (mips_pc_is_mips16 (pc))
4155 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4156 /* If error reading memory, guess that it is not a delayed
4159 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4162 /* To skip prologues, I use this predicate. Returns either PC itself
4163 if the code at PC does not look like a function prologue; otherwise
4164 returns an address that (if we're lucky) follows the prologue. If
4165 LENIENT, then we must skip everything which is involved in setting
4166 up the frame (it's OK to skip more, just so long as we don't skip
4167 anything which might clobber the registers which are being saved.
4168 We must skip more in the case where part of the prologue is in the
4169 delay slot of a non-prologue instruction). */
4172 mips_skip_prologue (CORE_ADDR pc)
4175 CORE_ADDR func_addr;
4177 /* See if we can determine the end of the prologue via the symbol table.
4178 If so, then return either PC, or the PC after the prologue, whichever
4180 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4182 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4183 if (post_prologue_pc != 0)
4184 return max (pc, post_prologue_pc);
4187 /* Can't determine prologue from the symbol table, need to examine
4190 /* Find an upper limit on the function prologue using the debug
4191 information. If the debug information could not be used to provide
4192 that bound, then use an arbitrary large number as the upper bound. */
4193 limit_pc = skip_prologue_using_sal (pc);
4195 limit_pc = pc + 100; /* Magic. */
4197 if (mips_pc_is_mips16 (pc))
4198 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4200 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4203 /* Root of all "set mips "/"show mips " commands. This will eventually be
4204 used for all MIPS-specific commands. */
4207 show_mips_command (char *args, int from_tty)
4209 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4213 set_mips_command (char *args, int from_tty)
4216 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4217 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4220 /* Commands to show/set the MIPS FPU type. */
4223 show_mipsfpu_command (char *args, int from_tty)
4226 switch (MIPS_FPU_TYPE)
4228 case MIPS_FPU_SINGLE:
4229 fpu = "single-precision";
4231 case MIPS_FPU_DOUBLE:
4232 fpu = "double-precision";
4235 fpu = "absent (none)";
4238 internal_error (__FILE__, __LINE__, "bad switch");
4240 if (mips_fpu_type_auto)
4242 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4246 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4251 set_mipsfpu_command (char *args, int from_tty)
4254 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4255 show_mipsfpu_command (args, from_tty);
4259 set_mipsfpu_single_command (char *args, int from_tty)
4261 struct gdbarch_info info;
4262 gdbarch_info_init (&info);
4263 mips_fpu_type = MIPS_FPU_SINGLE;
4264 mips_fpu_type_auto = 0;
4265 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4266 instead of relying on globals. Doing that would let generic code
4267 handle the search for this specific architecture. */
4268 if (!gdbarch_update_p (info))
4269 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4273 set_mipsfpu_double_command (char *args, int from_tty)
4275 struct gdbarch_info info;
4276 gdbarch_info_init (&info);
4277 mips_fpu_type = MIPS_FPU_DOUBLE;
4278 mips_fpu_type_auto = 0;
4279 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4280 instead of relying on globals. Doing that would let generic code
4281 handle the search for this specific architecture. */
4282 if (!gdbarch_update_p (info))
4283 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4287 set_mipsfpu_none_command (char *args, int from_tty)
4289 struct gdbarch_info info;
4290 gdbarch_info_init (&info);
4291 mips_fpu_type = MIPS_FPU_NONE;
4292 mips_fpu_type_auto = 0;
4293 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4294 instead of relying on globals. Doing that would let generic code
4295 handle the search for this specific architecture. */
4296 if (!gdbarch_update_p (info))
4297 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4301 set_mipsfpu_auto_command (char *args, int from_tty)
4303 mips_fpu_type_auto = 1;
4306 /* Attempt to identify the particular processor model by reading the
4307 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4308 the relevant processor still exists (it dates back to '94) and
4309 secondly this is not the way to do this. The processor type should
4310 be set by forcing an architecture change. */
4313 deprecated_mips_set_processor_regs_hack (void)
4315 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4318 prid = read_register (MIPS_PRID_REGNUM);
4320 if ((prid & ~0xf) == 0x700)
4321 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4324 /* Just like reinit_frame_cache, but with the right arguments to be
4325 callable as an sfunc. */
4328 reinit_frame_cache_sfunc (char *args, int from_tty,
4329 struct cmd_list_element *c)
4331 reinit_frame_cache ();
4335 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4339 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4340 disassembler needs to be able to locally determine the ISA, and
4341 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4343 if (mips_pc_is_mips16 (memaddr))
4344 info->mach = bfd_mach_mips16;
4346 /* Round down the instruction address to the appropriate boundary. */
4347 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4349 /* Set the disassembler options. */
4350 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4352 /* Set up the disassembler info, so that we get the right
4353 register names from libopcodes. */
4354 if (tdep->mips_abi == MIPS_ABI_N32)
4355 info->disassembler_options = "gpr-names=n32";
4357 info->disassembler_options = "gpr-names=64";
4358 info->flavour = bfd_target_elf_flavour;
4361 /* This string is not recognized explicitly by the disassembler,
4362 but it tells the disassembler to not try to guess the ABI from
4363 the bfd elf headers, such that, if the user overrides the ABI
4364 of a program linked as NewABI, the disassembly will follow the
4365 register naming conventions specified by the user. */
4366 info->disassembler_options = "gpr-names=32";
4368 /* Call the appropriate disassembler based on the target endian-ness. */
4369 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4370 return print_insn_big_mips (memaddr, info);
4372 return print_insn_little_mips (memaddr, info);
4375 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4376 counter value to determine whether a 16- or 32-bit breakpoint should be
4377 used. It returns a pointer to a string of bytes that encode a breakpoint
4378 instruction, stores the length of the string to *lenptr, and adjusts pc
4379 (if necessary) to point to the actual memory location where the
4380 breakpoint should be inserted. */
4382 static const unsigned char *
4383 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4385 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4387 if (mips_pc_is_mips16 (*pcptr))
4389 static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4390 *pcptr = unmake_mips16_addr (*pcptr);
4391 *lenptr = sizeof (mips16_big_breakpoint);
4392 return mips16_big_breakpoint;
4396 /* The IDT board uses an unusual breakpoint value, and
4397 sometimes gets confused when it sees the usual MIPS
4398 breakpoint instruction. */
4399 static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd };
4400 static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4401 static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4403 *lenptr = sizeof (big_breakpoint);
4405 if (strcmp (target_shortname, "mips") == 0)
4406 return idt_big_breakpoint;
4407 else if (strcmp (target_shortname, "ddb") == 0
4408 || strcmp (target_shortname, "pmon") == 0
4409 || strcmp (target_shortname, "lsi") == 0)
4410 return pmon_big_breakpoint;
4412 return big_breakpoint;
4417 if (mips_pc_is_mips16 (*pcptr))
4419 static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4420 *pcptr = unmake_mips16_addr (*pcptr);
4421 *lenptr = sizeof (mips16_little_breakpoint);
4422 return mips16_little_breakpoint;
4426 static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4427 static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4428 static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4430 *lenptr = sizeof (little_breakpoint);
4432 if (strcmp (target_shortname, "mips") == 0)
4433 return idt_little_breakpoint;
4434 else if (strcmp (target_shortname, "ddb") == 0
4435 || strcmp (target_shortname, "pmon") == 0
4436 || strcmp (target_shortname, "lsi") == 0)
4437 return pmon_little_breakpoint;
4439 return little_breakpoint;
4444 /* If PC is in a mips16 call or return stub, return the address of the target
4445 PC, which is either the callee or the caller. There are several
4446 cases which must be handled:
4448 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4449 target PC is in $31 ($ra).
4450 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4451 and the target PC is in $2.
4452 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4453 before the jal instruction, this is effectively a call stub
4454 and the the target PC is in $2. Otherwise this is effectively
4455 a return stub and the target PC is in $18.
4457 See the source code for the stubs in gcc/config/mips/mips16.S for
4461 mips_skip_trampoline_code (CORE_ADDR pc)
4464 CORE_ADDR start_addr;
4466 /* Find the starting address and name of the function containing the PC. */
4467 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4470 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4471 target PC is in $31 ($ra). */
4472 if (strcmp (name, "__mips16_ret_sf") == 0
4473 || strcmp (name, "__mips16_ret_df") == 0)
4474 return read_signed_register (MIPS_RA_REGNUM);
4476 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4478 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4479 and the target PC is in $2. */
4480 if (name[19] >= '0' && name[19] <= '9')
4481 return read_signed_register (2);
4483 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4484 before the jal instruction, this is effectively a call stub
4485 and the the target PC is in $2. Otherwise this is effectively
4486 a return stub and the target PC is in $18. */
4487 else if (name[19] == 's' || name[19] == 'd')
4489 if (pc == start_addr)
4491 /* Check if the target of the stub is a compiler-generated
4492 stub. Such a stub for a function bar might have a name
4493 like __fn_stub_bar, and might look like this:
4498 la $1,bar (becomes a lui/addiu pair)
4500 So scan down to the lui/addi and extract the target
4501 address from those two instructions. */
4503 CORE_ADDR target_pc = read_signed_register (2);
4507 /* See if the name of the target function is __fn_stub_*. */
4508 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4511 if (strncmp (name, "__fn_stub_", 10) != 0
4512 && strcmp (name, "etext") != 0
4513 && strcmp (name, "_etext") != 0)
4516 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4517 The limit on the search is arbitrarily set to 20
4518 instructions. FIXME. */
4519 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4521 inst = mips_fetch_instruction (target_pc);
4522 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4523 pc = (inst << 16) & 0xffff0000; /* high word */
4524 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4525 return pc | (inst & 0xffff); /* low word */
4528 /* Couldn't find the lui/addui pair, so return stub address. */
4532 /* This is the 'return' part of a call stub. The return
4533 address is in $r18. */
4534 return read_signed_register (18);
4537 return 0; /* not a stub */
4540 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4541 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4544 mips_stab_reg_to_regnum (int num)
4547 if (num >= 0 && num < 32)
4549 else if (num >= 38 && num < 70)
4550 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4552 regnum = mips_regnum (current_gdbarch)->hi;
4554 regnum = mips_regnum (current_gdbarch)->lo;
4556 /* This will hopefully (eventually) provoke a warning. Should
4557 we be calling complaint() here? */
4558 return NUM_REGS + NUM_PSEUDO_REGS;
4559 return NUM_REGS + regnum;
4563 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4564 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4567 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4570 if (num >= 0 && num < 32)
4572 else if (num >= 32 && num < 64)
4573 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4575 regnum = mips_regnum (current_gdbarch)->hi;
4577 regnum = mips_regnum (current_gdbarch)->lo;
4579 /* This will hopefully (eventually) provoke a warning. Should we
4580 be calling complaint() here? */
4581 return NUM_REGS + NUM_PSEUDO_REGS;
4582 return NUM_REGS + regnum;
4586 mips_register_sim_regno (int regnum)
4588 /* Only makes sense to supply raw registers. */
4589 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4590 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4591 decide if it is valid. Should instead define a standard sim/gdb
4592 register numbering scheme. */
4593 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4594 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4597 return LEGACY_SIM_REGNO_IGNORE;
4601 /* Convert an integer into an address. By first converting the value
4602 into a pointer and then extracting it signed, the address is
4603 guarenteed to be correctly sign extended. */
4606 mips_integer_to_address (struct type *type, void *buf)
4608 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4609 LONGEST val = unpack_long (type, buf);
4610 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4611 return extract_signed_integer (tmp,
4612 TYPE_LENGTH (builtin_type_void_data_ptr));
4616 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4618 enum mips_abi *abip = (enum mips_abi *) obj;
4619 const char *name = bfd_get_section_name (abfd, sect);
4621 if (*abip != MIPS_ABI_UNKNOWN)
4624 if (strncmp (name, ".mdebug.", 8) != 0)
4627 if (strcmp (name, ".mdebug.abi32") == 0)
4628 *abip = MIPS_ABI_O32;
4629 else if (strcmp (name, ".mdebug.abiN32") == 0)
4630 *abip = MIPS_ABI_N32;
4631 else if (strcmp (name, ".mdebug.abi64") == 0)
4632 *abip = MIPS_ABI_N64;
4633 else if (strcmp (name, ".mdebug.abiO64") == 0)
4634 *abip = MIPS_ABI_O64;
4635 else if (strcmp (name, ".mdebug.eabi32") == 0)
4636 *abip = MIPS_ABI_EABI32;
4637 else if (strcmp (name, ".mdebug.eabi64") == 0)
4638 *abip = MIPS_ABI_EABI64;
4640 warning ("unsupported ABI %s.", name + 8);
4643 static enum mips_abi
4644 global_mips_abi (void)
4648 for (i = 0; mips_abi_strings[i] != NULL; i++)
4649 if (mips_abi_strings[i] == mips_abi_string)
4650 return (enum mips_abi) i;
4652 internal_error (__FILE__, __LINE__, "unknown ABI string");
4655 static struct gdbarch *
4656 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4658 struct gdbarch *gdbarch;
4659 struct gdbarch_tdep *tdep;
4661 enum mips_abi mips_abi, found_abi, wanted_abi;
4663 enum mips_fpu_type fpu_type;
4665 /* First of all, extract the elf_flags, if available. */
4666 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4667 elf_flags = elf_elfheader (info.abfd)->e_flags;
4668 else if (arches != NULL)
4669 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4673 fprintf_unfiltered (gdb_stdlog,
4674 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4676 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4677 switch ((elf_flags & EF_MIPS_ABI))
4679 case E_MIPS_ABI_O32:
4680 found_abi = MIPS_ABI_O32;
4682 case E_MIPS_ABI_O64:
4683 found_abi = MIPS_ABI_O64;
4685 case E_MIPS_ABI_EABI32:
4686 found_abi = MIPS_ABI_EABI32;
4688 case E_MIPS_ABI_EABI64:
4689 found_abi = MIPS_ABI_EABI64;
4692 if ((elf_flags & EF_MIPS_ABI2))
4693 found_abi = MIPS_ABI_N32;
4695 found_abi = MIPS_ABI_UNKNOWN;
4699 /* GCC creates a pseudo-section whose name describes the ABI. */
4700 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4701 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4703 /* If we have no useful BFD information, use the ABI from the last
4704 MIPS architecture (if there is one). */
4705 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4706 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4708 /* Try the architecture for any hint of the correct ABI. */
4709 if (found_abi == MIPS_ABI_UNKNOWN
4710 && info.bfd_arch_info != NULL
4711 && info.bfd_arch_info->arch == bfd_arch_mips)
4713 switch (info.bfd_arch_info->mach)
4715 case bfd_mach_mips3900:
4716 found_abi = MIPS_ABI_EABI32;
4718 case bfd_mach_mips4100:
4719 case bfd_mach_mips5000:
4720 found_abi = MIPS_ABI_EABI64;
4722 case bfd_mach_mips8000:
4723 case bfd_mach_mips10000:
4724 /* On Irix, ELF64 executables use the N64 ABI. The
4725 pseudo-sections which describe the ABI aren't present
4726 on IRIX. (Even for executables created by gcc.) */
4727 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4728 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4729 found_abi = MIPS_ABI_N64;
4731 found_abi = MIPS_ABI_N32;
4737 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4740 /* What has the user specified from the command line? */
4741 wanted_abi = global_mips_abi ();
4743 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4746 /* Now that we have found what the ABI for this binary would be,
4747 check whether the user is overriding it. */
4748 if (wanted_abi != MIPS_ABI_UNKNOWN)
4749 mips_abi = wanted_abi;
4750 else if (found_abi != MIPS_ABI_UNKNOWN)
4751 mips_abi = found_abi;
4753 mips_abi = MIPS_ABI_O32;
4755 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4758 /* Also used when doing an architecture lookup. */
4760 fprintf_unfiltered (gdb_stdlog,
4761 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4762 mips64_transfers_32bit_regs_p);
4764 /* Determine the MIPS FPU type. */
4765 if (!mips_fpu_type_auto)
4766 fpu_type = mips_fpu_type;
4767 else if (info.bfd_arch_info != NULL
4768 && info.bfd_arch_info->arch == bfd_arch_mips)
4769 switch (info.bfd_arch_info->mach)
4771 case bfd_mach_mips3900:
4772 case bfd_mach_mips4100:
4773 case bfd_mach_mips4111:
4774 case bfd_mach_mips4120:
4775 fpu_type = MIPS_FPU_NONE;
4777 case bfd_mach_mips4650:
4778 fpu_type = MIPS_FPU_SINGLE;
4781 fpu_type = MIPS_FPU_DOUBLE;
4784 else if (arches != NULL)
4785 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4787 fpu_type = MIPS_FPU_DOUBLE;
4789 fprintf_unfiltered (gdb_stdlog,
4790 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4792 /* try to find a pre-existing architecture */
4793 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4795 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4797 /* MIPS needs to be pedantic about which ABI the object is
4799 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4801 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4803 /* Need to be pedantic about which register virtual size is
4805 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4806 != mips64_transfers_32bit_regs_p)
4808 /* Be pedantic about which FPU is selected. */
4809 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4811 return arches->gdbarch;
4814 /* Need a new architecture. Fill in a target specific vector. */
4815 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4816 gdbarch = gdbarch_alloc (&info, tdep);
4817 tdep->elf_flags = elf_flags;
4818 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4819 tdep->found_abi = found_abi;
4820 tdep->mips_abi = mips_abi;
4821 tdep->mips_fpu_type = fpu_type;
4823 /* Initially set everything according to the default ABI/ISA. */
4824 set_gdbarch_short_bit (gdbarch, 16);
4825 set_gdbarch_int_bit (gdbarch, 32);
4826 set_gdbarch_float_bit (gdbarch, 32);
4827 set_gdbarch_double_bit (gdbarch, 64);
4828 set_gdbarch_long_double_bit (gdbarch, 64);
4829 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4830 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4831 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4833 set_gdbarch_elf_make_msymbol_special (gdbarch,
4834 mips_elf_make_msymbol_special);
4836 /* Fill in the OS dependant register numbers and names. */
4838 const char **reg_names;
4839 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4840 struct mips_regnum);
4841 if (info.osabi == GDB_OSABI_IRIX)
4846 regnum->badvaddr = 66;
4849 regnum->fp_control_status = 69;
4850 regnum->fp_implementation_revision = 70;
4852 reg_names = mips_irix_reg_names;
4856 regnum->lo = MIPS_EMBED_LO_REGNUM;
4857 regnum->hi = MIPS_EMBED_HI_REGNUM;
4858 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4859 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4860 regnum->pc = MIPS_EMBED_PC_REGNUM;
4861 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4862 regnum->fp_control_status = 70;
4863 regnum->fp_implementation_revision = 71;
4865 if (info.bfd_arch_info != NULL
4866 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4867 reg_names = mips_tx39_reg_names;
4869 reg_names = mips_generic_reg_names;
4871 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4872 replaced by read_pc? */
4873 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4874 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4875 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4876 set_gdbarch_num_regs (gdbarch, num_regs);
4877 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4878 set_gdbarch_register_name (gdbarch, mips_register_name);
4879 tdep->mips_processor_reg_names = reg_names;
4880 tdep->regnum = regnum;
4886 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4887 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4888 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4889 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4890 tdep->default_mask_address_p = 0;
4891 set_gdbarch_long_bit (gdbarch, 32);
4892 set_gdbarch_ptr_bit (gdbarch, 32);
4893 set_gdbarch_long_long_bit (gdbarch, 64);
4896 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4897 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4898 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4899 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4900 tdep->default_mask_address_p = 0;
4901 set_gdbarch_long_bit (gdbarch, 32);
4902 set_gdbarch_ptr_bit (gdbarch, 32);
4903 set_gdbarch_long_long_bit (gdbarch, 64);
4905 case MIPS_ABI_EABI32:
4906 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4907 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4908 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4909 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4910 tdep->default_mask_address_p = 0;
4911 set_gdbarch_long_bit (gdbarch, 32);
4912 set_gdbarch_ptr_bit (gdbarch, 32);
4913 set_gdbarch_long_long_bit (gdbarch, 64);
4915 case MIPS_ABI_EABI64:
4916 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4917 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4918 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4919 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4920 tdep->default_mask_address_p = 0;
4921 set_gdbarch_long_bit (gdbarch, 64);
4922 set_gdbarch_ptr_bit (gdbarch, 64);
4923 set_gdbarch_long_long_bit (gdbarch, 64);
4926 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4927 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4928 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4929 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4930 tdep->default_mask_address_p = 0;
4931 set_gdbarch_long_bit (gdbarch, 32);
4932 set_gdbarch_ptr_bit (gdbarch, 32);
4933 set_gdbarch_long_long_bit (gdbarch, 64);
4934 set_gdbarch_long_double_bit (gdbarch, 128);
4935 set_gdbarch_long_double_format (gdbarch,
4936 &floatformat_n32n64_long_double_big);
4939 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4940 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4941 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4942 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4943 tdep->default_mask_address_p = 0;
4944 set_gdbarch_long_bit (gdbarch, 64);
4945 set_gdbarch_ptr_bit (gdbarch, 64);
4946 set_gdbarch_long_long_bit (gdbarch, 64);
4947 set_gdbarch_long_double_bit (gdbarch, 128);
4948 set_gdbarch_long_double_format (gdbarch,
4949 &floatformat_n32n64_long_double_big);
4952 internal_error (__FILE__, __LINE__, "unknown ABI in switch");
4955 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4956 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4959 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4960 flag in object files because to do so would make it impossible to
4961 link with libraries compiled without "-gp32". This is
4962 unnecessarily restrictive.
4964 We could solve this problem by adding "-gp32" multilibs to gcc,
4965 but to set this flag before gcc is built with such multilibs will
4966 break too many systems.''
4968 But even more unhelpfully, the default linker output target for
4969 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4970 for 64-bit programs - you need to change the ABI to change this,
4971 and not all gcc targets support that currently. Therefore using
4972 this flag to detect 32-bit mode would do the wrong thing given
4973 the current gcc - it would make GDB treat these 64-bit programs
4974 as 32-bit programs by default. */
4976 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4977 set_gdbarch_write_pc (gdbarch, mips_write_pc);
4978 set_gdbarch_read_sp (gdbarch, mips_read_sp);
4980 /* Add/remove bits from an address. The MIPS needs be careful to
4981 ensure that all 32 bit addresses are sign extended to 64 bits. */
4982 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4984 /* Unwind the frame. */
4985 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
4986 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
4988 /* Map debug register numbers onto internal register numbers. */
4989 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4990 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
4991 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4992 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
4993 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4994 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
4995 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4996 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
4998 /* MIPS version of CALL_DUMMY */
5000 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5001 replaced by a command, and all targets will default to on stack
5002 (regardless of the stack's execute status). */
5003 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5004 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5006 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5007 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5008 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5010 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5011 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5013 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5015 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5016 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5017 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5019 set_gdbarch_register_type (gdbarch, mips_register_type);
5021 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5023 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5025 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5026 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5027 need to all be folded into the target vector. Since they are
5028 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5029 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5031 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5033 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5035 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5037 /* Hook in OS ABI-specific overrides, if they have been registered. */
5038 gdbarch_init_osabi (info, gdbarch);
5040 /* Unwind the frame. */
5041 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5042 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5043 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5044 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5045 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5046 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5052 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5054 struct gdbarch_info info;
5056 /* Force the architecture to update, and (if it's a MIPS architecture)
5057 mips_gdbarch_init will take care of the rest. */
5058 gdbarch_info_init (&info);
5059 gdbarch_update_p (info);
5062 /* Print out which MIPS ABI is in use. */
5065 show_mips_abi (char *ignore_args, int from_tty)
5067 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5069 ("The MIPS ABI is unknown because the current architecture is not MIPS.\n");
5072 enum mips_abi global_abi = global_mips_abi ();
5073 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5074 const char *actual_abi_str = mips_abi_strings[actual_abi];
5076 if (global_abi == MIPS_ABI_UNKNOWN)
5078 ("The MIPS ABI is set automatically (currently \"%s\").\n",
5080 else if (global_abi == actual_abi)
5082 ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5086 /* Probably shouldn't happen... */
5088 ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5089 actual_abi_str, mips_abi_strings[global_abi]);
5095 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5097 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5101 int ef_mips_32bitmode;
5102 /* determine the ISA */
5103 switch (tdep->elf_flags & EF_MIPS_ARCH)
5121 /* determine the size of a pointer */
5122 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5123 fprintf_unfiltered (file,
5124 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5126 fprintf_unfiltered (file,
5127 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5129 fprintf_unfiltered (file,
5130 "mips_dump_tdep: ef_mips_arch = %d\n",
5132 fprintf_unfiltered (file,
5133 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5134 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5135 fprintf_unfiltered (file,
5136 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5137 mips_mask_address_p (tdep),
5138 tdep->default_mask_address_p);
5140 fprintf_unfiltered (file,
5141 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5142 MIPS_DEFAULT_FPU_TYPE,
5143 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5144 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5145 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5147 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5148 fprintf_unfiltered (file,
5149 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5151 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5152 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5153 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5155 fprintf_unfiltered (file,
5156 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5157 mips_stack_argsize (current_gdbarch));
5160 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5163 _initialize_mips_tdep (void)
5165 static struct cmd_list_element *mipsfpulist = NULL;
5166 struct cmd_list_element *c;
5168 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5169 if (MIPS_ABI_LAST + 1
5170 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5171 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
5173 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5175 mips_pdr_data = register_objfile_data ();
5177 /* Add root prefix command for all "set mips"/"show mips" commands */
5178 add_prefix_cmd ("mips", no_class, set_mips_command,
5179 "Various MIPS specific commands.",
5180 &setmipscmdlist, "set mips ", 0, &setlist);
5182 add_prefix_cmd ("mips", no_class, show_mips_command,
5183 "Various MIPS specific commands.",
5184 &showmipscmdlist, "show mips ", 0, &showlist);
5186 /* Allow the user to override the saved register size. */
5187 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5188 size_enums, &mips_abi_regsize_string, "\
5189 Set size of general purpose registers saved on the stack.\n", "\
5190 Show size of general purpose registers saved on the stack.\n", "\
5191 This option can be set to one of:\n\
5192 32 - Force GDB to treat saved GP registers as 32-bit\n\
5193 64 - Force GDB to treat saved GP registers as 64-bit\n\
5194 auto - Allow GDB to use the target's default setting or autodetect the\n\
5195 saved GP register size from information contained in the executable.\n\
5196 (default: auto)", "\
5197 Size of general purpose registers saved on the stack is %s.\n",
5198 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
5200 /* Allow the user to override the argument stack size. */
5201 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5202 size_enums, &mips_stack_argsize_string, "\
5203 Set the amount of stack space reserved for each argument.\n", "\
5204 Show the amount of stack space reserved for each argument.\n", "\
5205 This option can be set to one of:\n\
5206 32 - Force GDB to allocate 32-bit chunks per argument\n\
5207 64 - Force GDB to allocate 64-bit chunks per argument\n\
5208 auto - Allow GDB to determine the correct setting from the current\n\
5209 target and executable (default)", "\
5210 The amount of stack space reserved for each argument is %s.\n",
5211 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
5213 /* Allow the user to override the ABI. */
5214 c = add_set_enum_cmd
5215 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
5216 "Set the ABI used by this program.\n"
5217 "This option can be set to one of:\n"
5218 " auto - the default ABI associated with the current binary\n"
5220 " o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist);
5221 set_cmd_sfunc (c, mips_abi_update);
5222 add_cmd ("abi", class_obscure, show_mips_abi,
5223 "Show ABI in use by MIPS target", &showmipscmdlist);
5225 /* Let the user turn off floating point and set the fence post for
5226 heuristic_proc_start. */
5228 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5229 "Set use of MIPS floating-point coprocessor.",
5230 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5231 add_cmd ("single", class_support, set_mipsfpu_single_command,
5232 "Select single-precision MIPS floating-point coprocessor.",
5234 add_cmd ("double", class_support, set_mipsfpu_double_command,
5235 "Select double-precision MIPS floating-point coprocessor.",
5237 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5238 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5239 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5240 add_cmd ("none", class_support, set_mipsfpu_none_command,
5241 "Select no MIPS floating-point coprocessor.", &mipsfpulist);
5242 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5243 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5244 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5245 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5246 "Select MIPS floating-point coprocessor automatically.",
5248 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5249 "Show current use of MIPS floating-point coprocessor target.",
5252 /* We really would like to have both "0" and "unlimited" work, but
5253 command.c doesn't deal with that. So make it a var_zinteger
5254 because the user can always use "999999" or some such for unlimited. */
5255 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5256 &heuristic_fence_post, "\
5257 Set the distance searched for the start of a function.\n", "\
5258 Show the distance searched for the start of a function.\n", "\
5259 If you are debugging a stripped executable, GDB needs to search through the\n\
5260 program for the start of a function. This command sets the distance of the\n\
5261 search. The only need to set it is when debugging a stripped executable.", "\
5262 The distance searched for the start of a function is %s.\n",
5263 reinit_frame_cache_sfunc, NULL,
5264 &setlist, &showlist);
5266 /* Allow the user to control whether the upper bits of 64-bit
5267 addresses should be zeroed. */
5268 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
5269 Set zeroing of upper 32 bits of 64-bit addresses.", "\
5270 Show zeroing of upper 32 bits of 64-bit addresses.", "\
5271 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5272 allow GDB to determine the correct value.\n", "\
5273 Zerroing of upper 32 bits of 64-bit address is %s.",
5274 NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist);
5276 /* Allow the user to control the size of 32 bit registers within the
5277 raw remote packet. */
5278 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5279 &mips64_transfers_32bit_regs_p, "\
5280 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
5281 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
5282 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5283 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5284 64 bits for others. Use \"off\" to disable compatibility mode", "\
5285 Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.",
5286 set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist);
5288 /* Debug this files internals. */
5289 add_setshow_zinteger_cmd ("mips", class_maintenance,
5291 Set mips debugging.\n", "\
5292 Show mips debugging.\n", "\
5293 When non-zero, mips specific debugging is enabled.\n", "\
5294 Mips debugging is currently %s.\n",
5296 &setdebuglist, &showdebuglist);