1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001
3 Free Software Foundation, Inc.
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 /* This was blantantly ripped off the C expression parser, please
25 be aware of that as you look at its basic structure -FMB */
27 /* Parse a F77 expression from text in a string,
28 and return the result as a struct expression pointer.
29 That structure contains arithmetic operations in reverse polish,
30 with constants represented by operations that are followed by special data.
31 See expression.h for the details of the format.
32 What is important here is that it can be built up sequentially
33 during the process of parsing; the lower levels of the tree always
34 come first in the result.
36 Note that malloc's and realloc's in this file are transformed to
37 xmalloc and xrealloc respectively by the same sed command in the
38 makefile that remaps any other malloc/realloc inserted by the parser
39 generator. Doing this with #defines and trying to control the interaction
40 with include files (<malloc.h> and <stdlib.h> for example) just became
41 too messy, particularly when such includes can be inserted at random
42 times by the parser generator. */
47 #include "gdb_string.h"
48 #include "expression.h"
50 #include "parser-defs.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
58 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
59 as well as gratuitiously global symbol names, so we can have multiple
60 yacc generated parsers in gdb. Note that these are only the variables
61 produced by yacc. If other parser generators (bison, byacc, etc) produce
62 additional global names that conflict at link time, then those parser
63 generators need to be fixed instead of adding those names to this list. */
65 #define yymaxdepth f_maxdepth
66 #define yyparse f_parse
68 #define yyerror f_error
71 #define yydebug f_debug
80 #define yyerrflag f_errflag
81 #define yynerrs f_nerrs
86 #define yystate f_state
92 #define yyreds f_reds /* With YYDEBUG defined */
93 #define yytoks f_toks /* With YYDEBUG defined */
96 #define yydefred f_yydefred
97 #define yydgoto f_yydgoto
98 #define yysindex f_yysindex
99 #define yyrindex f_yyrindex
100 #define yygindex f_yygindex
101 #define yytable f_yytable
102 #define yycheck f_yycheck
105 #define YYDEBUG 1 /* Default to no yydebug support */
110 static int yylex (void);
112 void yyerror (char *);
114 static void growbuf_by_size (int);
116 static int match_string_literal (void);
120 /* Although the yacc "value" of an expression is not used,
121 since the result is stored in the structure being created,
122 other node types do have values. */
136 struct symtoken ssym;
139 enum exp_opcode opcode;
140 struct internalvar *ivar;
147 /* YYSTYPE gets defined by %union */
148 static int parse_number (char *, int, int, YYSTYPE *);
151 %type <voidval> exp type_exp start variable
152 %type <tval> type typebase
153 %type <tvec> nonempty_typelist
154 /* %type <bval> block */
156 /* Fancy type parsing. */
157 %type <voidval> func_mod direct_abs_decl abs_decl
160 %token <typed_val> INT
163 /* Both NAME and TYPENAME tokens represent symbols in the input,
164 and both convey their data as strings.
165 But a TYPENAME is a string that happens to be defined as a typedef
166 or builtin type name (such as int or char)
167 and a NAME is any other symbol.
168 Contexts where this distinction is not important can use the
169 nonterminal "name", which matches either NAME or TYPENAME. */
171 %token <sval> STRING_LITERAL
172 %token <lval> BOOLEAN_LITERAL
174 %token <tsym> TYPENAME
176 %type <ssym> name_not_typename
177 %type <tsym> typename
179 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
180 but which would parse as a valid number in the current input radix.
181 E.g. "c" when input_radix==16. Depending on the parse, it will be
182 turned into a name or into a number. */
184 %token <ssym> NAME_OR_INT
189 /* Special type cases, put in to allow the parser to distinguish different
191 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
192 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
193 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
194 %token BOOL_AND BOOL_OR BOOL_NOT
195 %token <lval> CHARACTER
197 %token <voidval> VARIABLE
199 %token <opcode> ASSIGN_MODIFY
203 %right '=' ASSIGN_MODIFY
212 %left LESSTHAN GREATERTHAN LEQ GEQ
228 { write_exp_elt_opcode(OP_TYPE);
229 write_exp_elt_type($1);
230 write_exp_elt_opcode(OP_TYPE); }
237 /* Expressions, not including the comma operator. */
238 exp : '*' exp %prec UNARY
239 { write_exp_elt_opcode (UNOP_IND); }
241 exp : '&' exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_ADDR); }
244 exp : '-' exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_NEG); }
248 exp : BOOL_NOT exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
252 exp : '~' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
256 exp : SIZEOF exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_SIZEOF); }
260 /* No more explicit array operators, we treat everything in F77 as
261 a function call. The disambiguation as to whether we are
262 doing a subscript operation or a function call is done
266 { start_arglist (); }
268 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
269 write_exp_elt_longcst ((LONGEST) end_arglist ());
270 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
283 arglist : arglist ',' exp %prec ABOVE_COMMA
287 substring: exp ':' exp %prec ABOVE_COMMA
292 complexnum: exp ',' exp
296 exp : '(' complexnum ')'
297 { write_exp_elt_opcode(OP_COMPLEX); }
300 exp : '(' type ')' exp %prec UNARY
301 { write_exp_elt_opcode (UNOP_CAST);
302 write_exp_elt_type ($2);
303 write_exp_elt_opcode (UNOP_CAST); }
306 /* Binary operators in order of decreasing precedence. */
309 { write_exp_elt_opcode (BINOP_REPEAT); }
313 { write_exp_elt_opcode (BINOP_MUL); }
317 { write_exp_elt_opcode (BINOP_DIV); }
321 { write_exp_elt_opcode (BINOP_REM); }
325 { write_exp_elt_opcode (BINOP_ADD); }
329 { write_exp_elt_opcode (BINOP_SUB); }
333 { write_exp_elt_opcode (BINOP_LSH); }
337 { write_exp_elt_opcode (BINOP_RSH); }
341 { write_exp_elt_opcode (BINOP_EQUAL); }
344 exp : exp NOTEQUAL exp
345 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
349 { write_exp_elt_opcode (BINOP_LEQ); }
353 { write_exp_elt_opcode (BINOP_GEQ); }
356 exp : exp LESSTHAN exp
357 { write_exp_elt_opcode (BINOP_LESS); }
360 exp : exp GREATERTHAN exp
361 { write_exp_elt_opcode (BINOP_GTR); }
365 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
369 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
373 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
376 exp : exp BOOL_AND exp
377 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
381 exp : exp BOOL_OR exp
382 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
386 { write_exp_elt_opcode (BINOP_ASSIGN); }
389 exp : exp ASSIGN_MODIFY exp
390 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
391 write_exp_elt_opcode ($2);
392 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
396 { write_exp_elt_opcode (OP_LONG);
397 write_exp_elt_type ($1.type);
398 write_exp_elt_longcst ((LONGEST)($1.val));
399 write_exp_elt_opcode (OP_LONG); }
404 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
405 write_exp_elt_opcode (OP_LONG);
406 write_exp_elt_type (val.typed_val.type);
407 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
408 write_exp_elt_opcode (OP_LONG); }
412 { write_exp_elt_opcode (OP_DOUBLE);
413 write_exp_elt_type (builtin_type_f_real_s8);
414 write_exp_elt_dblcst ($1);
415 write_exp_elt_opcode (OP_DOUBLE); }
424 exp : SIZEOF '(' type ')' %prec UNARY
425 { write_exp_elt_opcode (OP_LONG);
426 write_exp_elt_type (builtin_type_f_integer);
428 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
429 write_exp_elt_opcode (OP_LONG); }
432 exp : BOOLEAN_LITERAL
433 { write_exp_elt_opcode (OP_BOOL);
434 write_exp_elt_longcst ((LONGEST) $1);
435 write_exp_elt_opcode (OP_BOOL);
441 write_exp_elt_opcode (OP_STRING);
442 write_exp_string ($1);
443 write_exp_elt_opcode (OP_STRING);
447 variable: name_not_typename
448 { struct symbol *sym = $1.sym;
452 if (symbol_read_needs_frame (sym))
454 if (innermost_block == 0 ||
455 contained_in (block_found,
457 innermost_block = block_found;
459 write_exp_elt_opcode (OP_VAR_VALUE);
460 /* We want to use the selected frame, not
461 another more inner frame which happens to
462 be in the same block. */
463 write_exp_elt_block (NULL);
464 write_exp_elt_sym (sym);
465 write_exp_elt_opcode (OP_VAR_VALUE);
470 struct minimal_symbol *msymbol;
471 register char *arg = copy_name ($1.stoken);
474 lookup_minimal_symbol (arg, NULL, NULL);
477 write_exp_msymbol (msymbol,
478 lookup_function_type (builtin_type_int),
481 else if (!have_full_symbols () && !have_partial_symbols ())
482 error ("No symbol table is loaded. Use the \"file\" command.");
484 error ("No symbol \"%s\" in current context.",
485 copy_name ($1.stoken));
497 /* This is where the interesting stuff happens. */
500 struct type *follow_type = $1;
501 struct type *range_type;
510 follow_type = lookup_pointer_type (follow_type);
513 follow_type = lookup_reference_type (follow_type);
516 array_size = pop_type_int ();
517 if (array_size != -1)
520 create_range_type ((struct type *) NULL,
521 builtin_type_f_integer, 0,
524 create_array_type ((struct type *) NULL,
525 follow_type, range_type);
528 follow_type = lookup_pointer_type (follow_type);
531 follow_type = lookup_function_type (follow_type);
539 { push_type (tp_pointer); $$ = 0; }
541 { push_type (tp_pointer); $$ = $2; }
543 { push_type (tp_reference); $$ = 0; }
545 { push_type (tp_reference); $$ = $2; }
549 direct_abs_decl: '(' abs_decl ')'
551 | direct_abs_decl func_mod
552 { push_type (tp_function); }
554 { push_type (tp_function); }
559 | '(' nonempty_typelist ')'
560 { free ((PTR)$2); $$ = 0; }
563 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
567 { $$ = builtin_type_f_integer; }
569 { $$ = builtin_type_f_integer_s2; }
571 { $$ = builtin_type_f_character; }
573 { $$ = builtin_type_f_logical;}
575 { $$ = builtin_type_f_logical_s2;}
577 { $$ = builtin_type_f_logical_s1;}
579 { $$ = builtin_type_f_real;}
581 { $$ = builtin_type_f_real_s8;}
583 { $$ = builtin_type_f_real_s16;}
585 { $$ = builtin_type_f_complex_s8;}
586 | COMPLEX_S16_KEYWORD
587 { $$ = builtin_type_f_complex_s16;}
588 | COMPLEX_S32_KEYWORD
589 { $$ = builtin_type_f_complex_s32;}
597 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
598 $<ivec>$[0] = 1; /* Number of types in vector */
601 | nonempty_typelist ',' type
602 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
603 $$ = (struct type **) realloc ((char *) $1, len);
604 $$[$<ivec>$[0]] = $3;
616 name_not_typename : NAME
617 /* These would be useful if name_not_typename was useful, but it is just
618 a fake for "variable", so these cause reduce/reduce conflicts because
619 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
620 =exp) or just an exp. If name_not_typename was ever used in an lvalue
621 context where only a name could occur, this might be useful.
628 /* Take care of parsing a number (anything that starts with a digit).
629 Set yylval and return the token type; update lexptr.
630 LEN is the number of characters in it. */
632 /*** Needs some error checking for the float case ***/
635 parse_number (p, len, parsed_float, putithere)
641 register LONGEST n = 0;
642 register LONGEST prevn = 0;
644 register int base = input_radix;
648 struct type *signed_type;
649 struct type *unsigned_type;
653 /* It's a float since it contains a point or an exponent. */
654 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
658 for (tmp2 = tmp; *tmp2; ++tmp2)
659 if (*tmp2 == 'd' || *tmp2 == 'D')
661 putithere->dval = atof (tmp);
666 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
702 if (len == 0 && c == 'l')
704 else if (len == 0 && c == 'u')
709 if (c >= '0' && c <= '9')
711 else if (c >= 'a' && c <= 'f')
714 return ERROR; /* Char not a digit */
716 return ERROR; /* Invalid digit in this base */
720 /* Portably test for overflow (only works for nonzero values, so make
721 a second check for zero). */
722 if ((prevn >= n) && n != 0)
723 unsigned_p=1; /* Try something unsigned */
724 /* If range checking enabled, portably test for unsigned overflow. */
725 if (RANGE_CHECK && n != 0)
727 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
728 range_error("Overflow on numeric constant.");
733 /* If the number is too big to be an int, or it's got an l suffix
734 then it's a long. Work out if this has to be a long by
735 shifting right and and seeing if anything remains, and the
736 target int size is different to the target long size.
738 In the expression below, we could have tested
739 (n >> TARGET_INT_BIT)
740 to see if it was zero,
741 but too many compilers warn about that, when ints and longs
742 are the same size. So we shift it twice, with fewer bits
743 each time, for the same result. */
745 if ((TARGET_INT_BIT != TARGET_LONG_BIT
746 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
749 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
750 unsigned_type = builtin_type_unsigned_long;
751 signed_type = builtin_type_long;
755 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
756 unsigned_type = builtin_type_unsigned_int;
757 signed_type = builtin_type_int;
760 putithere->typed_val.val = n;
762 /* If the high bit of the worked out type is set then this number
763 has to be unsigned. */
765 if (unsigned_p || (n & high_bit))
766 putithere->typed_val.type = unsigned_type;
768 putithere->typed_val.type = signed_type;
777 enum exp_opcode opcode;
780 static const struct token dot_ops[] =
782 { ".and.", BOOL_AND, BINOP_END },
783 { ".AND.", BOOL_AND, BINOP_END },
784 { ".or.", BOOL_OR, BINOP_END },
785 { ".OR.", BOOL_OR, BINOP_END },
786 { ".not.", BOOL_NOT, BINOP_END },
787 { ".NOT.", BOOL_NOT, BINOP_END },
788 { ".eq.", EQUAL, BINOP_END },
789 { ".EQ.", EQUAL, BINOP_END },
790 { ".eqv.", EQUAL, BINOP_END },
791 { ".NEQV.", NOTEQUAL, BINOP_END },
792 { ".neqv.", NOTEQUAL, BINOP_END },
793 { ".EQV.", EQUAL, BINOP_END },
794 { ".ne.", NOTEQUAL, BINOP_END },
795 { ".NE.", NOTEQUAL, BINOP_END },
796 { ".le.", LEQ, BINOP_END },
797 { ".LE.", LEQ, BINOP_END },
798 { ".ge.", GEQ, BINOP_END },
799 { ".GE.", GEQ, BINOP_END },
800 { ".gt.", GREATERTHAN, BINOP_END },
801 { ".GT.", GREATERTHAN, BINOP_END },
802 { ".lt.", LESSTHAN, BINOP_END },
803 { ".LT.", LESSTHAN, BINOP_END },
807 struct f77_boolean_val
813 static const struct f77_boolean_val boolean_values[] =
822 static const struct token f77_keywords[] =
824 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
825 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
826 { "character", CHARACTER, BINOP_END },
827 { "integer_2", INT_S2_KEYWORD, BINOP_END },
828 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
829 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
830 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
831 { "integer", INT_KEYWORD, BINOP_END },
832 { "logical", LOGICAL_KEYWORD, BINOP_END },
833 { "real_16", REAL_S16_KEYWORD, BINOP_END },
834 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
835 { "sizeof", SIZEOF, BINOP_END },
836 { "real_8", REAL_S8_KEYWORD, BINOP_END },
837 { "real", REAL_KEYWORD, BINOP_END },
841 /* Implementation of a dynamically expandable buffer for processing input
842 characters acquired through lexptr and building a value to return in
843 yylval. Ripped off from ch-exp.y */
845 static char *tempbuf; /* Current buffer contents */
846 static int tempbufsize; /* Size of allocated buffer */
847 static int tempbufindex; /* Current index into buffer */
849 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
851 #define CHECKBUF(size) \
853 if (tempbufindex + (size) >= tempbufsize) \
855 growbuf_by_size (size); \
860 /* Grow the static temp buffer if necessary, including allocating the first one
864 growbuf_by_size (count)
869 growby = max (count, GROWBY_MIN_SIZE);
870 tempbufsize += growby;
872 tempbuf = (char *) malloc (tempbufsize);
874 tempbuf = (char *) realloc (tempbuf, tempbufsize);
877 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
880 Recognize a string literal. A string literal is a nonzero sequence
881 of characters enclosed in matching single quotes, except that
882 a single character inside single quotes is a character literal, which
883 we reject as a string literal. To embed the terminator character inside
884 a string, it is simply doubled (I.E. 'this''is''one''string') */
887 match_string_literal ()
889 char *tokptr = lexptr;
891 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
894 if (*tokptr == *lexptr)
896 if (*(tokptr + 1) == *lexptr)
901 tempbuf[tempbufindex++] = *tokptr;
903 if (*tokptr == '\0' /* no terminator */
904 || tempbufindex == 0) /* no string */
908 tempbuf[tempbufindex] = '\0';
909 yylval.sval.ptr = tempbuf;
910 yylval.sval.length = tempbufindex;
912 return STRING_LITERAL;
916 /* Read one token, getting characters through lexptr. */
923 unsigned int i,token;
928 prev_lexptr = lexptr;
932 /* First of all, let us make sure we are not dealing with the
933 special tokens .true. and .false. which evaluate to 1 and 0. */
937 for (i = 0; boolean_values[i].name != NULL; i++)
939 if STREQN (tokstart, boolean_values[i].name,
940 strlen (boolean_values[i].name))
942 lexptr += strlen (boolean_values[i].name);
943 yylval.lval = boolean_values[i].value;
944 return BOOLEAN_LITERAL;
949 /* See if it is a special .foo. operator */
951 for (i = 0; dot_ops[i].operator != NULL; i++)
952 if (STREQN (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)))
954 lexptr += strlen (dot_ops[i].operator);
955 yylval.opcode = dot_ops[i].opcode;
956 return dot_ops[i].token;
959 switch (c = *tokstart)
971 token = match_string_literal ();
982 if (paren_depth == 0)
989 if (comma_terminates && paren_depth == 0)
995 /* Might be a floating point number. */
996 if (lexptr[1] < '0' || lexptr[1] > '9')
997 goto symbol; /* Nope, must be a symbol. */
998 /* FALL THRU into number case. */
1011 /* It's a number. */
1012 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1013 register char *p = tokstart;
1014 int hex = input_radix > 10;
1016 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1021 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1029 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1030 got_dot = got_e = 1;
1031 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1032 got_dot = got_d = 1;
1033 else if (!hex && !got_dot && *p == '.')
1035 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1036 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1037 && (*p == '-' || *p == '+'))
1038 /* This is the sign of the exponent, not the end of the
1041 /* We will take any letters or digits. parse_number will
1042 complain if past the radix, or if L or U are not final. */
1043 else if ((*p < '0' || *p > '9')
1044 && ((*p < 'a' || *p > 'z')
1045 && (*p < 'A' || *p > 'Z')))
1048 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1050 if (toktype == ERROR)
1052 char *err_copy = (char *) alloca (p - tokstart + 1);
1054 memcpy (err_copy, tokstart, p - tokstart);
1055 err_copy[p - tokstart] = 0;
1056 error ("Invalid number \"%s\".", err_copy);
1087 if (!(c == '_' || c == '$'
1088 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1089 /* We must have come across a bad character (e.g. ';'). */
1090 error ("Invalid character '%c' in expression.", c);
1093 for (c = tokstart[namelen];
1094 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1095 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1096 c = tokstart[++namelen]);
1098 /* The token "if" terminates the expression and is NOT
1099 removed from the input stream. */
1101 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1106 /* Catch specific keywords. */
1108 for (i = 0; f77_keywords[i].operator != NULL; i++)
1109 if (STREQN(tokstart, f77_keywords[i].operator,
1110 strlen(f77_keywords[i].operator)))
1112 /* lexptr += strlen(f77_keywords[i].operator); */
1113 yylval.opcode = f77_keywords[i].opcode;
1114 return f77_keywords[i].token;
1117 yylval.sval.ptr = tokstart;
1118 yylval.sval.length = namelen;
1120 if (*tokstart == '$')
1122 write_dollar_variable (yylval.sval);
1126 /* Use token-type TYPENAME for symbols that happen to be defined
1127 currently as names of types; NAME for other symbols.
1128 The caller is not constrained to care about the distinction. */
1130 char *tmp = copy_name (yylval.sval);
1132 int is_a_field_of_this = 0;
1135 sym = lookup_symbol (tmp, expression_context_block,
1137 current_language->la_language == language_cplus
1138 ? &is_a_field_of_this : NULL,
1140 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1142 yylval.tsym.type = SYMBOL_TYPE (sym);
1145 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1148 /* Input names that aren't symbols but ARE valid hex numbers,
1149 when the input radix permits them, can be names or numbers
1150 depending on the parse. Note we support radixes > 16 here. */
1152 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1153 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1155 YYSTYPE newlval; /* Its value is ignored. */
1156 hextype = parse_number (tokstart, namelen, 0, &newlval);
1159 yylval.ssym.sym = sym;
1160 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1165 /* Any other kind of symbol */
1166 yylval.ssym.sym = sym;
1167 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1177 lexptr = prev_lexptr;
1179 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);