1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #include <sys/ioctl.h>
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
50 /*#include <sys/user.h> After a.out.h */
53 #include <machine/psl.h>
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
72 const struct unwind_table_entry *));
73 static void read_unwind_info PARAMS ((struct objfile *));
74 static void internalize_unwinds PARAMS ((struct objfile *,
75 struct unwind_table_entry *,
76 asection *, unsigned int,
80 /* Routines to extract various sized constants out of hppa
83 /* This assumes that no garbage lies outside of the lower bits of
87 sign_extend (val, bits)
90 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
93 /* For many immediate values the sign bit is the low bit! */
96 low_sign_extend (val, bits)
99 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
101 /* extract the immediate field from a ld{bhw}s instruction */
104 get_field (val, from, to)
105 unsigned val, from, to;
107 val = val >> 31 - to;
108 return val & ((1 << 32 - from) - 1);
112 set_field (val, from, to, new_val)
113 unsigned *val, from, to;
115 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
116 return *val = *val & mask | (new_val << (31 - from));
119 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
124 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
127 extract_5_load (word)
130 return low_sign_extend (word >> 16 & MASK_5, 5);
133 /* extract the immediate field from a st{bhw}s instruction */
136 extract_5_store (word)
139 return low_sign_extend (word & MASK_5, 5);
142 /* extract the immediate field from a break instruction */
145 extract_5r_store (word)
148 return (word & MASK_5);
151 /* extract the immediate field from a {sr}sm instruction */
154 extract_5R_store (word)
157 return (word >> 16 & MASK_5);
160 /* extract an 11 bit immediate field */
166 return low_sign_extend (word & MASK_11, 11);
169 /* extract a 14 bit immediate field */
175 return low_sign_extend (word & MASK_14, 14);
178 /* deposit a 14 bit constant in a word */
181 deposit_14 (opnd, word)
185 unsigned sign = (opnd < 0 ? 1 : 0);
187 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
190 /* extract a 21 bit constant */
200 val = GET_FIELD (word, 20, 20);
202 val |= GET_FIELD (word, 9, 19);
204 val |= GET_FIELD (word, 5, 6);
206 val |= GET_FIELD (word, 0, 4);
208 val |= GET_FIELD (word, 7, 8);
209 return sign_extend (val, 21) << 11;
212 /* deposit a 21 bit constant in a word. Although 21 bit constants are
213 usually the top 21 bits of a 32 bit constant, we assume that only
214 the low 21 bits of opnd are relevant */
217 deposit_21 (opnd, word)
222 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
224 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
226 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
228 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
230 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
234 /* extract a 12 bit constant from branch instructions */
240 return sign_extend (GET_FIELD (word, 19, 28) |
241 GET_FIELD (word, 29, 29) << 10 |
242 (word & 0x1) << 11, 12) << 2;
245 /* extract a 17 bit constant from branch instructions, returning the
246 19 bit signed value. */
252 return sign_extend (GET_FIELD (word, 19, 28) |
253 GET_FIELD (word, 29, 29) << 10 |
254 GET_FIELD (word, 11, 15) << 11 |
255 (word & 0x1) << 16, 17) << 2;
259 /* Compare the start address for two unwind entries returning 1 if
260 the first address is larger than the second, -1 if the second is
261 larger than the first, and zero if they are equal. */
264 compare_unwind_entries (a, b)
265 const struct unwind_table_entry *a;
266 const struct unwind_table_entry *b;
268 if (a->region_start > b->region_start)
270 else if (a->region_start < b->region_start)
277 internalize_unwinds (objfile, table, section, entries, size)
278 struct objfile *objfile;
279 struct unwind_table_entry *table;
281 unsigned int entries, size;
283 /* We will read the unwind entries into temporary memory, then
284 fill in the actual unwind table. */
289 char *buf = alloca (size);
291 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
293 /* Now internalize the information being careful to handle host/target
295 for (i = 0; i < entries; i++)
297 table[i].region_start = bfd_get_32 (objfile->obfd,
300 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
308 table[i].reserved1 = (tmp >> 26) & 0x1;
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
318 table[i].Ada_Region = (tmp >> 9) & 0x1;
319 table[i].reserved2 = (tmp >> 5) & 0xf;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].reserved4 = (tmp >> 27) & 0x3;
331 table[i].Total_frame_size = tmp & 0x7ffffff;
336 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
337 the object file. This info is used mainly by find_unwind_entry() to find
338 out the stack frame size and frame pointer used by procedures. We put
339 everything on the psymbol obstack in the objfile so that it automatically
340 gets freed when the objfile is destroyed. */
343 read_unwind_info (objfile)
344 struct objfile *objfile;
346 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
347 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
348 unsigned index, unwind_entries, elf_unwind_entries;
349 unsigned stub_entries, total_entries;
350 struct obj_unwind_info *ui;
352 ui = obstack_alloc (&objfile->psymbol_obstack,
353 sizeof (struct obj_unwind_info));
359 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
360 section in ELF at the moment. */
361 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
362 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
363 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365 /* Get sizes and unwind counts for all sections. */
368 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
369 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
379 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
380 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
385 elf_unwind_entries = 0;
390 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
391 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
395 stub_unwind_size = 0;
399 /* Compute total number of unwind entries and their total size. */
400 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
401 total_size = total_entries * sizeof (struct unwind_table_entry);
403 /* Allocate memory for the unwind table. */
404 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
405 ui->last = total_entries - 1;
407 /* Internalize the standard unwind entries. */
409 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
410 unwind_entries, unwind_size);
411 index += unwind_entries;
412 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
413 elf_unwind_entries, elf_unwind_size);
414 index += elf_unwind_entries;
416 /* Now internalize the stub unwind entries. */
417 if (stub_unwind_size > 0)
420 char *buf = alloca (stub_unwind_size);
422 /* Read in the stub unwind entries. */
423 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
424 0, stub_unwind_size);
426 /* Now convert them into regular unwind entries. */
427 for (i = 0; i < stub_entries; i++, index++)
429 /* Clear out the next unwind entry. */
430 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
432 /* Convert offset & size into region_start and region_end.
433 Stuff away the stub type into "reserved" fields. */
434 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
437 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
440 ui->table[index].region_end
441 = ui->table[index].region_start + 4 *
442 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
448 /* Unwind table needs to be kept sorted. */
449 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
450 compare_unwind_entries);
452 /* Keep a pointer to the unwind information. */
453 objfile->obj_private = (PTR) ui;
456 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
457 of the objfiles seeking the unwind table entry for this PC. Each objfile
458 contains a sorted list of struct unwind_table_entry. Since we do a binary
459 search of the unwind tables, we depend upon them to be sorted. */
461 static struct unwind_table_entry *
462 find_unwind_entry(pc)
465 int first, middle, last;
466 struct objfile *objfile;
468 ALL_OBJFILES (objfile)
470 struct obj_unwind_info *ui;
472 ui = OBJ_UNWIND_INFO (objfile);
476 read_unwind_info (objfile);
477 ui = OBJ_UNWIND_INFO (objfile);
480 /* First, check the cache */
483 && pc >= ui->cache->region_start
484 && pc <= ui->cache->region_end)
487 /* Not in the cache, do a binary search */
492 while (first <= last)
494 middle = (first + last) / 2;
495 if (pc >= ui->table[middle].region_start
496 && pc <= ui->table[middle].region_end)
498 ui->cache = &ui->table[middle];
499 return &ui->table[middle];
502 if (pc < ui->table[middle].region_start)
507 } /* ALL_OBJFILES() */
511 /* start-sanitize-hpread */
512 /* Return the adjustment necessary to make for addresses on the stack
513 as presented by hpread.c.
515 This is necessary because of the stack direction on the PA and the
516 bizarre way in which someone (?) decided they wanted to handle
517 frame pointerless code in GDB. */
519 hpread_adjust_stack_address (func_addr)
522 struct unwind_table_entry *u;
524 u = find_unwind_entry (func_addr);
528 return u->Total_frame_size << 3;
530 /* end-sanitize-hpread */
532 /* Called to determine if PC is in an interrupt handler of some
536 pc_in_interrupt_handler (pc)
539 struct unwind_table_entry *u;
540 struct minimal_symbol *msym_us;
542 u = find_unwind_entry (pc);
546 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
547 its frame isn't a pure interrupt frame. Deal with this. */
548 msym_us = lookup_minimal_symbol_by_pc (pc);
550 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
553 /* Called when no unwind descriptor was found for PC. Returns 1 if it
554 appears that PC is in a linker stub. */
557 pc_in_linker_stub (pc)
560 int found_magic_instruction = 0;
564 /* If unable to read memory, assume pc is not in a linker stub. */
565 if (target_read_memory (pc, buf, 4) != 0)
568 /* We are looking for something like
570 ; $$dyncall jams RP into this special spot in the frame (RP')
571 ; before calling the "call stub"
574 ldsid (rp),r1 ; Get space associated with RP into r1
575 mtsp r1,sp ; Move it into space register 0
576 be,n 0(sr0),rp) ; back to your regularly scheduled program
579 /* Maximum known linker stub size is 4 instructions. Search forward
580 from the given PC, then backward. */
581 for (i = 0; i < 4; i++)
583 /* If we hit something with an unwind, stop searching this direction. */
585 if (find_unwind_entry (pc + i * 4) != 0)
588 /* Check for ldsid (rp),r1 which is the magic instruction for a
589 return from a cross-space function call. */
590 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
592 found_magic_instruction = 1;
595 /* Add code to handle long call/branch and argument relocation stubs
599 if (found_magic_instruction != 0)
602 /* Now look backward. */
603 for (i = 0; i < 4; i++)
605 /* If we hit something with an unwind, stop searching this direction. */
607 if (find_unwind_entry (pc - i * 4) != 0)
610 /* Check for ldsid (rp),r1 which is the magic instruction for a
611 return from a cross-space function call. */
612 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
614 found_magic_instruction = 1;
617 /* Add code to handle long call/branch and argument relocation stubs
620 return found_magic_instruction;
624 find_return_regnum(pc)
627 struct unwind_table_entry *u;
629 u = find_unwind_entry (pc);
640 /* Return size of frame, or -1 if we should use a frame pointer. */
642 find_proc_framesize (pc)
645 struct unwind_table_entry *u;
646 struct minimal_symbol *msym_us;
648 u = find_unwind_entry (pc);
652 if (pc_in_linker_stub (pc))
653 /* Linker stubs have a zero size frame. */
659 msym_us = lookup_minimal_symbol_by_pc (pc);
661 /* If Save_SP is set, and we're not in an interrupt or signal caller,
662 then we have a frame pointer. Use it. */
663 if (u->Save_SP && !pc_in_interrupt_handler (pc)
664 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
667 return u->Total_frame_size << 3;
670 /* Return offset from sp at which rp is saved, or 0 if not saved. */
671 static int rp_saved PARAMS ((CORE_ADDR));
677 struct unwind_table_entry *u;
679 u = find_unwind_entry (pc);
683 if (pc_in_linker_stub (pc))
684 /* This is the so-called RP'. */
692 else if (u->stub_type != 0)
694 switch (u->stub_type)
698 case PARAMETER_RELOCATION:
709 frameless_function_invocation (frame)
712 struct unwind_table_entry *u;
714 u = find_unwind_entry (frame->pc);
719 return (u->Total_frame_size == 0 && u->stub_type == 0);
723 saved_pc_after_call (frame)
728 struct unwind_table_entry *u;
730 ret_regnum = find_return_regnum (get_frame_pc (frame));
731 pc = read_register (ret_regnum) & ~0x3;
733 /* If PC is in a linker stub, then we need to dig the address
734 the stub will return to out of the stack. */
735 u = find_unwind_entry (pc);
736 if (u && u->stub_type != 0)
737 return frame_saved_pc (frame);
743 frame_saved_pc (frame)
746 CORE_ADDR pc = get_frame_pc (frame);
747 struct unwind_table_entry *u;
749 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
750 at the base of the frame in an interrupt handler. Registers within
751 are saved in the exact same order as GDB numbers registers. How
753 if (pc_in_interrupt_handler (pc))
754 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
756 /* Deal with signal handler caller frames too. */
757 if (frame->signal_handler_caller)
760 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
764 if (frameless_function_invocation (frame))
768 ret_regnum = find_return_regnum (pc);
770 /* If the next frame is an interrupt frame or a signal
771 handler caller, then we need to look in the saved
772 register area to get the return pointer (the values
773 in the registers may not correspond to anything useful). */
775 && (frame->next->signal_handler_caller
776 || pc_in_interrupt_handler (frame->next->pc)))
778 struct frame_info *fi;
779 struct frame_saved_regs saved_regs;
781 fi = get_frame_info (frame->next);
782 get_frame_saved_regs (fi, &saved_regs);
783 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
784 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
786 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
789 pc = read_register (ret_regnum) & ~0x3;
796 rp_offset = rp_saved (pc);
797 /* Similar to code in frameless function case. If the next
798 frame is a signal or interrupt handler, then dig the right
799 information out of the saved register info. */
802 && (frame->next->signal_handler_caller
803 || pc_in_interrupt_handler (frame->next->pc)))
805 struct frame_info *fi;
806 struct frame_saved_regs saved_regs;
808 fi = get_frame_info (frame->next);
809 get_frame_saved_regs (fi, &saved_regs);
810 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
811 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
813 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
815 else if (rp_offset == 0)
816 pc = read_register (RP_REGNUM) & ~0x3;
818 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
821 /* If PC is inside a linker stub, then dig out the address the stub
823 u = find_unwind_entry (pc);
824 if (u && u->stub_type != 0)
830 /* We need to correct the PC and the FP for the outermost frame when we are
834 init_extra_frame_info (fromleaf, frame)
836 struct frame_info *frame;
841 if (frame->next && !fromleaf)
844 /* If the next frame represents a frameless function invocation
845 then we have to do some adjustments that are normally done by
846 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
849 /* Find the framesize of *this* frame without peeking at the PC
850 in the current frame structure (it isn't set yet). */
851 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
853 /* Now adjust our base frame accordingly. If we have a frame pointer
854 use it, else subtract the size of this frame from the current
855 frame. (we always want frame->frame to point at the lowest address
858 frame->frame = read_register (FP_REGNUM);
860 frame->frame -= framesize;
864 flags = read_register (FLAGS_REGNUM);
865 if (flags & 2) /* In system call? */
866 frame->pc = read_register (31) & ~0x3;
868 /* The outermost frame is always derived from PC-framesize
870 One might think frameless innermost frames should have
871 a frame->frame that is the same as the parent's frame->frame.
872 That is wrong; frame->frame in that case should be the *high*
873 address of the parent's frame. It's complicated as hell to
874 explain, but the parent *always* creates some stack space for
875 the child. So the child actually does have a frame of some
876 sorts, and its base is the high address in its parent's frame. */
877 framesize = find_proc_framesize(frame->pc);
879 frame->frame = read_register (FP_REGNUM);
881 frame->frame = read_register (SP_REGNUM) - framesize;
884 /* Given a GDB frame, determine the address of the calling function's frame.
885 This will be used to create a new GDB frame struct, and then
886 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
888 This may involve searching through prologues for several functions
889 at boundaries where GCC calls HP C code, or where code which has
890 a frame pointer calls code without a frame pointer. */
895 struct frame_info *frame;
897 int my_framesize, caller_framesize;
898 struct unwind_table_entry *u;
899 CORE_ADDR frame_base;
901 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
902 are easy; at *sp we have a full save state strucutre which we can
903 pull the old stack pointer from. Also see frame_saved_pc for
904 code to dig a saved PC out of the save state structure. */
905 if (pc_in_interrupt_handler (frame->pc))
906 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
907 else if (frame->signal_handler_caller)
909 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
912 frame_base = frame->frame;
914 /* Get frame sizes for the current frame and the frame of the
916 my_framesize = find_proc_framesize (frame->pc);
917 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
919 /* If caller does not have a frame pointer, then its frame
920 can be found at current_frame - caller_framesize. */
921 if (caller_framesize != -1)
922 return frame_base - caller_framesize;
924 /* Both caller and callee have frame pointers and are GCC compiled
925 (SAVE_SP bit in unwind descriptor is on for both functions.
926 The previous frame pointer is found at the top of the current frame. */
927 if (caller_framesize == -1 && my_framesize == -1)
928 return read_memory_integer (frame_base, 4);
930 /* Caller has a frame pointer, but callee does not. This is a little
931 more difficult as GCC and HP C lay out locals and callee register save
932 areas very differently.
934 The previous frame pointer could be in a register, or in one of
935 several areas on the stack.
937 Walk from the current frame to the innermost frame examining
938 unwind descriptors to determine if %r3 ever gets saved into the
939 stack. If so return whatever value got saved into the stack.
940 If it was never saved in the stack, then the value in %r3 is still
943 We use information from unwind descriptors to determine if %r3
944 is saved into the stack (Entry_GR field has this information). */
948 u = find_unwind_entry (frame->pc);
952 /* We could find this information by examining prologues. I don't
953 think anyone has actually written any tools (not even "strip")
954 which leave them out of an executable, so maybe this is a moot
956 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
960 /* Entry_GR specifies the number of callee-saved general registers
961 saved in the stack. It starts at %r3, so %r3 would be 1. */
962 if (u->Entry_GR >= 1 || u->Save_SP
963 || frame->signal_handler_caller
964 || pc_in_interrupt_handler (frame->pc))
972 /* We may have walked down the chain into a function with a frame
975 && !frame->signal_handler_caller
976 && !pc_in_interrupt_handler (frame->pc))
977 return read_memory_integer (frame->frame, 4);
978 /* %r3 was saved somewhere in the stack. Dig it out. */
981 struct frame_info *fi;
982 struct frame_saved_regs saved_regs;
984 fi = get_frame_info (frame);
985 get_frame_saved_regs (fi, &saved_regs);
986 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
991 /* The value in %r3 was never saved into the stack (thus %r3 still
992 holds the value of the previous frame pointer). */
993 return read_register (FP_REGNUM);
998 /* To see if a frame chain is valid, see if the caller looks like it
999 was compiled with gcc. */
1002 frame_chain_valid (chain, thisframe)
1006 struct minimal_symbol *msym_us;
1007 struct minimal_symbol *msym_start;
1008 struct unwind_table_entry *u, *next_u = NULL;
1014 u = find_unwind_entry (thisframe->pc);
1019 /* We can't just check that the same of msym_us is "_start", because
1020 someone idiotically decided that they were going to make a Ltext_end
1021 symbol with the same address. This Ltext_end symbol is totally
1022 indistinguishable (as nearly as I can tell) from the symbol for a function
1023 which is (legitimately, since it is in the user's namespace)
1024 named Ltext_end, so we can't just ignore it. */
1025 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1026 msym_start = lookup_minimal_symbol ("_start", NULL);
1029 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1032 next = get_next_frame (thisframe);
1034 next_u = find_unwind_entry (next->pc);
1036 /* If this frame does not save SP, has no stack, isn't a stub,
1037 and doesn't "call" an interrupt routine or signal handler caller,
1038 then its not valid. */
1039 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1040 || (thisframe->next && thisframe->next->signal_handler_caller)
1041 || (next_u && next_u->HP_UX_interrupt_marker))
1044 if (pc_in_linker_stub (thisframe->pc))
1051 * These functions deal with saving and restoring register state
1052 * around a function call in the inferior. They keep the stack
1053 * double-word aligned; eventually, on an hp700, the stack will have
1054 * to be aligned to a 64-byte boundary.
1060 register CORE_ADDR sp;
1061 register int regnum;
1065 /* Space for "arguments"; the RP goes in here. */
1066 sp = read_register (SP_REGNUM) + 48;
1067 int_buffer = read_register (RP_REGNUM) | 0x3;
1068 write_memory (sp - 20, (char *)&int_buffer, 4);
1070 int_buffer = read_register (FP_REGNUM);
1071 write_memory (sp, (char *)&int_buffer, 4);
1073 write_register (FP_REGNUM, sp);
1077 for (regnum = 1; regnum < 32; regnum++)
1078 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1079 sp = push_word (sp, read_register (regnum));
1083 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1085 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1086 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1088 sp = push_word (sp, read_register (IPSW_REGNUM));
1089 sp = push_word (sp, read_register (SAR_REGNUM));
1090 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1091 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1092 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1093 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1094 write_register (SP_REGNUM, sp);
1097 find_dummy_frame_regs (frame, frame_saved_regs)
1098 struct frame_info *frame;
1099 struct frame_saved_regs *frame_saved_regs;
1101 CORE_ADDR fp = frame->frame;
1104 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1105 frame_saved_regs->regs[FP_REGNUM] = fp;
1106 frame_saved_regs->regs[1] = fp + 8;
1108 for (fp += 12, i = 3; i < 32; i++)
1112 frame_saved_regs->regs[i] = fp;
1118 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1119 frame_saved_regs->regs[i] = fp;
1121 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1122 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1123 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1124 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1125 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1126 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1132 register FRAME frame = get_current_frame ();
1133 register CORE_ADDR fp;
1134 register int regnum;
1135 struct frame_saved_regs fsr;
1136 struct frame_info *fi;
1139 fi = get_frame_info (frame);
1141 get_frame_saved_regs (fi, &fsr);
1143 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1144 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1145 restore_pc_queue (&fsr);
1148 for (regnum = 31; regnum > 0; regnum--)
1149 if (fsr.regs[regnum])
1150 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1152 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1153 if (fsr.regs[regnum])
1155 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1156 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1159 if (fsr.regs[IPSW_REGNUM])
1160 write_register (IPSW_REGNUM,
1161 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1163 if (fsr.regs[SAR_REGNUM])
1164 write_register (SAR_REGNUM,
1165 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1167 /* If the PC was explicitly saved, then just restore it. */
1168 if (fsr.regs[PCOQ_TAIL_REGNUM])
1169 write_register (PCOQ_TAIL_REGNUM,
1170 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1172 /* Else use the value in %rp to set the new PC. */
1174 target_write_pc (read_register (RP_REGNUM), 0);
1176 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1178 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1179 write_register (SP_REGNUM, fp - 48);
1181 write_register (SP_REGNUM, fp);
1183 flush_cached_frames ();
1184 set_current_frame (create_new_frame (read_register (FP_REGNUM),
1189 * After returning to a dummy on the stack, restore the instruction
1190 * queue space registers. */
1193 restore_pc_queue (fsr)
1194 struct frame_saved_regs *fsr;
1196 CORE_ADDR pc = read_pc ();
1197 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1199 struct target_waitstatus w;
1202 /* Advance past break instruction in the call dummy. */
1203 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1204 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1207 * HPUX doesn't let us set the space registers or the space
1208 * registers of the PC queue through ptrace. Boo, hiss.
1209 * Conveniently, the call dummy has this sequence of instructions
1214 * So, load up the registers and single step until we are in the
1218 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1219 write_register (22, new_pc);
1221 for (insn_count = 0; insn_count < 3; insn_count++)
1223 /* FIXME: What if the inferior gets a signal right now? Want to
1224 merge this into wait_for_inferior (as a special kind of
1225 watchpoint? By setting a breakpoint at the end? Is there
1226 any other choice? Is there *any* way to do this stuff with
1227 ptrace() or some equivalent?). */
1229 target_wait (inferior_pid, &w);
1231 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1233 stop_signal = w.value.sig;
1234 terminal_ours_for_output ();
1235 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1236 target_signal_to_name (stop_signal),
1237 target_signal_to_string (stop_signal));
1238 gdb_flush (gdb_stdout);
1242 target_terminal_ours ();
1243 target_fetch_registers (-1);
1248 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1253 CORE_ADDR struct_addr;
1255 /* array of arguments' offsets */
1256 int *offset = (int *)alloca(nargs * sizeof (int));
1260 for (i = 0; i < nargs; i++)
1262 /* Coerce chars to int & float to double if necessary */
1263 args[i] = value_arg_coerce (args[i]);
1265 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1267 /* value must go at proper alignment. Assume alignment is a
1269 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1270 if (cum % alignment)
1271 cum = (cum + alignment) & -alignment;
1274 sp += max ((cum + 7) & -8, 16);
1276 for (i = 0; i < nargs; i++)
1277 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1278 TYPE_LENGTH (VALUE_TYPE (args[i])));
1281 write_register (28, struct_addr);
1286 * Insert the specified number of args and function address
1287 * into a call sequence of the above form stored at DUMMYNAME.
1289 * On the hppa we need to call the stack dummy through $$dyncall.
1290 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1291 * real_pc, which is the location where gdb should start up the
1292 * inferior to do the function call.
1296 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1305 CORE_ADDR dyncall_addr, sr4export_addr;
1306 struct minimal_symbol *msymbol;
1307 int flags = read_register (FLAGS_REGNUM);
1308 struct unwind_table_entry *u;
1310 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1311 if (msymbol == NULL)
1312 error ("Can't find an address for $$dyncall trampoline");
1314 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1316 /* FUN could be a procedure label, in which case we have to get
1317 its real address and the value of its GOT/DP. */
1320 /* Get the GOT/DP value for the target function. It's
1321 at *(fun+4). Note the call dummy is *NOT* allowed to
1322 trash %r19 before calling the target function. */
1323 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1325 /* Now get the real address for the function we are calling, it's
1327 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1330 /* If we are calling an import stub (eg calling into a dynamic library)
1331 then have sr4export call the magic __d_plt_call routine which is linked
1332 in from end.o. (You can't use _sr4export to call the import stub as
1333 the value in sp-24 will get fried and you end up returning to the
1334 wrong location. You can't call the import stub directly as the code
1335 to bind the PLT entry to a function can't return to a stack address.) */
1336 u = find_unwind_entry (fun);
1337 if (u && u->stub_type == IMPORT)
1340 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1341 if (msymbol == NULL)
1342 error ("Can't find an address for __d_plt_call trampoline");
1344 /* This is where sr4export will jump to. */
1345 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1347 /* We have to store the address of the stub in __shlib_funcptr. */
1348 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1349 (struct objfile *)NULL);
1350 if (msymbol == NULL)
1351 error ("Can't find an address for __shlib_funcptr");
1353 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1358 /* We still need sr4export's address too. */
1359 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1360 if (msymbol == NULL)
1361 error ("Can't find an address for _sr4export trampoline");
1363 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1365 store_unsigned_integer
1366 (&dummy[9*REGISTER_SIZE],
1368 deposit_21 (fun >> 11,
1369 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1371 store_unsigned_integer
1372 (&dummy[10*REGISTER_SIZE],
1374 deposit_14 (fun & MASK_11,
1375 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1377 store_unsigned_integer
1378 (&dummy[12*REGISTER_SIZE],
1380 deposit_21 (sr4export_addr >> 11,
1381 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1383 store_unsigned_integer
1384 (&dummy[13*REGISTER_SIZE],
1386 deposit_14 (sr4export_addr & MASK_11,
1387 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1390 write_register (22, pc);
1392 /* If we are in a syscall, then we should call the stack dummy
1393 directly. $$dyncall is not needed as the kernel sets up the
1394 space id registers properly based on the value in %r31. In
1395 fact calling $$dyncall will not work because the value in %r22
1396 will be clobbered on the syscall exit path. */
1400 return dyncall_addr;
1404 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1407 target_read_pc (pid)
1410 int flags = read_register (FLAGS_REGNUM);
1413 return read_register (31) & ~0x3;
1414 return read_register (PC_REGNUM) & ~0x3;
1417 /* Write out the PC. If currently in a syscall, then also write the new
1418 PC value into %r31. */
1420 target_write_pc (v, pid)
1424 int flags = read_register (FLAGS_REGNUM);
1426 /* If in a syscall, then set %r31. Also make sure to get the
1427 privilege bits set correctly. */
1429 write_register (31, (long) (v | 0x3));
1431 write_register (PC_REGNUM, (long) v);
1432 write_register (NPC_REGNUM, (long) v + 4);
1435 /* return the alignment of a type in bytes. Structures have the maximum
1436 alignment required by their fields. */
1442 int max_align, align, i;
1443 switch (TYPE_CODE (arg))
1448 return TYPE_LENGTH (arg);
1449 case TYPE_CODE_ARRAY:
1450 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1451 case TYPE_CODE_STRUCT:
1452 case TYPE_CODE_UNION:
1454 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1456 /* Bit fields have no real alignment. */
1457 if (!TYPE_FIELD_BITPOS (arg, i))
1459 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1460 max_align = max (max_align, align);
1469 /* Print the register regnum, or all registers if regnum is -1 */
1471 pa_do_registers_info (regnum, fpregs)
1475 char raw_regs [REGISTER_BYTES];
1478 for (i = 0; i < NUM_REGS; i++)
1479 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1481 pa_print_registers (raw_regs, regnum, fpregs);
1482 else if (regnum < FP0_REGNUM)
1483 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1484 REGISTER_BYTE (regnum)));
1486 pa_print_fp_reg (regnum);
1489 pa_print_registers (raw_regs, regnum, fpregs)
1496 for (i = 0; i < 18; i++)
1497 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1499 *(int *)(raw_regs + REGISTER_BYTE (i)),
1501 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1503 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1505 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1508 for (i = 72; i < NUM_REGS; i++)
1509 pa_print_fp_reg (i);
1515 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1516 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1518 /* Get 32bits of data. */
1519 read_relative_register_raw_bytes (i, raw_buffer);
1521 /* Put it in the buffer. No conversions are ever necessary. */
1522 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1524 fputs_filtered (reg_names[i], gdb_stdout);
1525 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1526 fputs_filtered ("(single precision) ", gdb_stdout);
1528 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1529 1, 0, Val_pretty_default);
1530 printf_filtered ("\n");
1532 /* If "i" is even, then this register can also be a double-precision
1533 FP register. Dump it out as such. */
1536 /* Get the data in raw format for the 2nd half. */
1537 read_relative_register_raw_bytes (i + 1, raw_buffer);
1539 /* Copy it into the appropriate part of the virtual buffer. */
1540 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1541 REGISTER_RAW_SIZE (i));
1543 /* Dump it as a double. */
1544 fputs_filtered (reg_names[i], gdb_stdout);
1545 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1546 fputs_filtered ("(double precision) ", gdb_stdout);
1548 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1549 1, 0, Val_pretty_default);
1550 printf_filtered ("\n");
1554 /* Figure out if PC is in a trampoline, and if so find out where
1555 the trampoline will jump to. If not in a trampoline, return zero.
1557 Simple code examination probably is not a good idea since the code
1558 sequences in trampolines can also appear in user code.
1560 We use unwinds and information from the minimal symbol table to
1561 determine when we're in a trampoline. This won't work for ELF
1562 (yet) since it doesn't create stub unwind entries. Whether or
1563 not ELF will create stub unwinds or normal unwinds for linker
1564 stubs is still being debated.
1566 This should handle simple calls through dyncall or sr4export,
1567 long calls, argument relocation stubs, and dyncall/sr4export
1568 calling an argument relocation stub. It even handles some stubs
1569 used in dynamic executables. */
1572 skip_trampoline_code (pc, name)
1577 long prev_inst, curr_inst, loc;
1578 static CORE_ADDR dyncall = 0;
1579 static CORE_ADDR sr4export = 0;
1580 struct minimal_symbol *msym;
1581 struct unwind_table_entry *u;
1583 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1588 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1590 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1597 msym = lookup_minimal_symbol ("_sr4export", NULL);
1599 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1604 /* Addresses passed to dyncall may *NOT* be the actual address
1605 of the funtion. So we may have to do something special. */
1608 pc = (CORE_ADDR) read_register (22);
1610 /* If bit 30 (counting from the left) is on, then pc is the address of
1611 the PLT entry for this function, not the address of the function
1612 itself. Bit 31 has meaning too, but only for MPE. */
1614 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1616 else if (pc == sr4export)
1617 pc = (CORE_ADDR) (read_register (22));
1619 /* Get the unwind descriptor corresponding to PC, return zero
1620 if no unwind was found. */
1621 u = find_unwind_entry (pc);
1625 /* If this isn't a linker stub, then return now. */
1626 if (u->stub_type == 0)
1627 return orig_pc == pc ? 0 : pc & ~0x3;
1629 /* It's a stub. Search for a branch and figure out where it goes.
1630 Note we have to handle multi insn branch sequences like ldil;ble.
1631 Most (all?) other branches can be determined by examining the contents
1632 of certain registers and the stack. */
1638 /* Make sure we haven't walked outside the range of this stub. */
1639 if (u != find_unwind_entry (loc))
1641 warning ("Unable to find branch in linker stub");
1642 return orig_pc == pc ? 0 : pc & ~0x3;
1645 prev_inst = curr_inst;
1646 curr_inst = read_memory_integer (loc, 4);
1648 /* Does it look like a branch external using %r1? Then it's the
1649 branch from the stub to the actual function. */
1650 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1652 /* Yup. See if the previous instruction loaded
1653 a value into %r1. If so compute and return the jump address. */
1654 if ((prev_inst & 0xffe00000) == 0x20200000)
1655 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1658 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1659 return orig_pc == pc ? 0 : pc & ~0x3;
1663 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1664 branch from the stub to the actual function. */
1665 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1666 || (curr_inst & 0xffe0e000) == 0xe8000000)
1667 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1669 /* Does it look like bv (rp)? Note this depends on the
1670 current stack pointer being the same as the stack
1671 pointer in the stub itself! This is a branch on from the
1672 stub back to the original caller. */
1673 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1675 /* Yup. See if the previous instruction loaded
1677 if (prev_inst == 0x4bc23ff1)
1678 return (read_memory_integer
1679 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1682 warning ("Unable to find restore of %%rp before bv (%%rp).");
1683 return orig_pc == pc ? 0 : pc & ~0x3;
1687 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1688 the original caller from the stub. Used in dynamic executables. */
1689 else if (curr_inst == 0xe0400002)
1691 /* The value we jump to is sitting in sp - 24. But that's
1692 loaded several instructions before the be instruction.
1693 I guess we could check for the previous instruction being
1694 mtsp %r1,%sr0 if we want to do sanity checking. */
1695 return (read_memory_integer
1696 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1699 /* Haven't found the branch yet, but we're still in the stub.
1705 /* For the given instruction (INST), return any adjustment it makes
1706 to the stack pointer or zero for no adjustment.
1708 This only handles instructions commonly found in prologues. */
1711 prologue_inst_adjust_sp (inst)
1714 /* This must persist across calls. */
1715 static int save_high21;
1717 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1718 if ((inst & 0xffffc000) == 0x37de0000)
1719 return extract_14 (inst);
1722 if ((inst & 0xffe00000) == 0x6fc00000)
1723 return extract_14 (inst);
1725 /* addil high21,%r1; ldo low11,(%r1),%r30)
1726 save high bits in save_high21 for later use. */
1727 if ((inst & 0xffe00000) == 0x28200000)
1729 save_high21 = extract_21 (inst);
1733 if ((inst & 0xffff0000) == 0x343e0000)
1734 return save_high21 + extract_14 (inst);
1736 /* fstws as used by the HP compilers. */
1737 if ((inst & 0xffffffe0) == 0x2fd01220)
1738 return extract_5_load (inst);
1740 /* No adjustment. */
1744 /* Return nonzero if INST is a branch of some kind, else return zero. */
1774 /* Return the register number for a GR which is saved by INST or
1775 zero it INST does not save a GR. */
1778 inst_saves_gr (inst)
1781 /* Does it look like a stw? */
1782 if ((inst >> 26) == 0x1a)
1783 return extract_5R_store (inst);
1785 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1786 if ((inst >> 26) == 0x1b)
1787 return extract_5R_store (inst);
1789 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1791 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1792 return extract_5R_store (inst);
1797 /* Return the register number for a FR which is saved by INST or
1798 zero it INST does not save a FR.
1800 Note we only care about full 64bit register stores (that's the only
1801 kind of stores the prologue will use).
1803 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1806 inst_saves_fr (inst)
1809 if ((inst & 0xfc00dfc0) == 0x2c001200)
1810 return extract_5r_store (inst);
1814 /* Advance PC across any function entry prologue instructions
1815 to reach some "real" code.
1817 Use information in the unwind table to determine what exactly should
1818 be in the prologue. */
1825 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1826 unsigned long args_stored, status, i;
1827 struct unwind_table_entry *u;
1829 u = find_unwind_entry (pc);
1833 /* If we are not at the beginning of a function, then return now. */
1834 if ((pc & ~0x3) != u->region_start)
1837 /* This is how much of a frame adjustment we need to account for. */
1838 stack_remaining = u->Total_frame_size << 3;
1840 /* Magic register saves we want to know about. */
1841 save_rp = u->Save_RP;
1842 save_sp = u->Save_SP;
1844 /* An indication that args may be stored into the stack. Unfortunately
1845 the HPUX compilers tend to set this in cases where no args were
1847 args_stored = u->Args_stored;
1849 /* Turn the Entry_GR field into a bitmask. */
1851 for (i = 3; i < u->Entry_GR + 3; i++)
1853 /* Frame pointer gets saved into a special location. */
1854 if (u->Save_SP && i == FP_REGNUM)
1857 save_gr |= (1 << i);
1860 /* Turn the Entry_FR field into a bitmask too. */
1862 for (i = 12; i < u->Entry_FR + 12; i++)
1863 save_fr |= (1 << i);
1865 /* Loop until we find everything of interest or hit a branch.
1867 For unoptimized GCC code and for any HP CC code this will never ever
1868 examine any user instructions.
1870 For optimzied GCC code we're faced with problems. GCC will schedule
1871 its prologue and make prologue instructions available for delay slot
1872 filling. The end result is user code gets mixed in with the prologue
1873 and a prologue instruction may be in the delay slot of the first branch
1876 Some unexpected things are expected with debugging optimized code, so
1877 we allow this routine to walk past user instructions in optimized
1879 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1882 unsigned int reg_num;
1883 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1884 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1886 /* Save copies of all the triggers so we can compare them later
1888 old_save_gr = save_gr;
1889 old_save_fr = save_fr;
1890 old_save_rp = save_rp;
1891 old_save_sp = save_sp;
1892 old_stack_remaining = stack_remaining;
1894 status = target_read_memory (pc, buf, 4);
1895 inst = extract_unsigned_integer (buf, 4);
1901 /* Note the interesting effects of this instruction. */
1902 stack_remaining -= prologue_inst_adjust_sp (inst);
1904 /* There is only one instruction used for saving RP into the stack. */
1905 if (inst == 0x6bc23fd9)
1908 /* This is the only way we save SP into the stack. At this time
1909 the HP compilers never bother to save SP into the stack. */
1910 if ((inst & 0xffffc000) == 0x6fc10000)
1913 /* Account for general and floating-point register saves. */
1914 reg_num = inst_saves_gr (inst);
1915 save_gr &= ~(1 << reg_num);
1917 /* Ugh. Also account for argument stores into the stack.
1918 Unfortunately args_stored only tells us that some arguments
1919 where stored into the stack. Not how many or what kind!
1921 This is a kludge as on the HP compiler sets this bit and it
1922 never does prologue scheduling. So once we see one, skip past
1923 all of them. We have similar code for the fp arg stores below.
1925 FIXME. Can still die if we have a mix of GR and FR argument
1927 if (reg_num >= 23 && reg_num <= 26)
1929 while (reg_num >= 23 && reg_num <= 26)
1932 status = target_read_memory (pc, buf, 4);
1933 inst = extract_unsigned_integer (buf, 4);
1936 reg_num = inst_saves_gr (inst);
1942 reg_num = inst_saves_fr (inst);
1943 save_fr &= ~(1 << reg_num);
1945 status = target_read_memory (pc + 4, buf, 4);
1946 next_inst = extract_unsigned_integer (buf, 4);
1952 /* We've got to be read to handle the ldo before the fp register
1954 if ((inst & 0xfc000000) == 0x34000000
1955 && inst_saves_fr (next_inst) >= 4
1956 && inst_saves_fr (next_inst) <= 7)
1958 /* So we drop into the code below in a reasonable state. */
1959 reg_num = inst_saves_fr (next_inst);
1963 /* Ugh. Also account for argument stores into the stack.
1964 This is a kludge as on the HP compiler sets this bit and it
1965 never does prologue scheduling. So once we see one, skip past
1967 if (reg_num >= 4 && reg_num <= 7)
1969 while (reg_num >= 4 && reg_num <= 7)
1972 status = target_read_memory (pc, buf, 4);
1973 inst = extract_unsigned_integer (buf, 4);
1976 if ((inst & 0xfc000000) != 0x34000000)
1978 status = target_read_memory (pc + 4, buf, 4);
1979 next_inst = extract_unsigned_integer (buf, 4);
1982 reg_num = inst_saves_fr (next_inst);
1988 /* Quit if we hit any kind of branch. This can happen if a prologue
1989 instruction is in the delay slot of the first call/branch. */
1990 if (is_branch (inst))
1993 /* What a crock. The HP compilers set args_stored even if no
1994 arguments were stored into the stack (boo hiss). This could
1995 cause this code to then skip a bunch of user insns (up to the
1998 To combat this we try to identify when args_stored was bogusly
1999 set and clear it. We only do this when args_stored is nonzero,
2000 all other resources are accounted for, and nothing changed on
2003 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2004 && old_save_gr == save_gr && old_save_fr == save_fr
2005 && old_save_rp == save_rp && old_save_sp == save_sp
2006 && old_stack_remaining == stack_remaining)
2016 /* Put here the code to store, into a struct frame_saved_regs,
2017 the addresses of the saved registers of frame described by FRAME_INFO.
2018 This includes special registers such as pc and fp saved in special
2019 ways in the stack frame. sp is even more special:
2020 the address we return for it IS the sp for the next frame. */
2023 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2024 struct frame_info *frame_info;
2025 struct frame_saved_regs *frame_saved_regs;
2028 struct unwind_table_entry *u;
2029 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2034 /* Zero out everything. */
2035 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2037 /* Call dummy frames always look the same, so there's no need to
2038 examine the dummy code to determine locations of saved registers;
2039 instead, let find_dummy_frame_regs fill in the correct offsets
2040 for the saved registers. */
2041 if ((frame_info->pc >= frame_info->frame
2042 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2043 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2045 find_dummy_frame_regs (frame_info, frame_saved_regs);
2047 /* Interrupt handlers are special too. They lay out the register
2048 state in the exact same order as the register numbers in GDB. */
2049 if (pc_in_interrupt_handler (frame_info->pc))
2051 for (i = 0; i < NUM_REGS; i++)
2053 /* SP is a little special. */
2055 frame_saved_regs->regs[SP_REGNUM]
2056 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2058 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2063 /* Handle signal handler callers. */
2064 if (frame_info->signal_handler_caller)
2066 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2070 /* Get the starting address of the function referred to by the PC
2071 saved in frame_info. */
2072 pc = get_pc_function_start (frame_info->pc);
2075 u = find_unwind_entry (pc);
2079 /* This is how much of a frame adjustment we need to account for. */
2080 stack_remaining = u->Total_frame_size << 3;
2082 /* Magic register saves we want to know about. */
2083 save_rp = u->Save_RP;
2084 save_sp = u->Save_SP;
2086 /* Turn the Entry_GR field into a bitmask. */
2088 for (i = 3; i < u->Entry_GR + 3; i++)
2090 /* Frame pointer gets saved into a special location. */
2091 if (u->Save_SP && i == FP_REGNUM)
2094 save_gr |= (1 << i);
2097 /* Turn the Entry_FR field into a bitmask too. */
2099 for (i = 12; i < u->Entry_FR + 12; i++)
2100 save_fr |= (1 << i);
2102 /* The frame always represents the value of %sp at entry to the
2103 current function (and is thus equivalent to the "saved" stack
2105 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2107 /* Loop until we find everything of interest or hit a branch.
2109 For unoptimized GCC code and for any HP CC code this will never ever
2110 examine any user instructions.
2112 For optimzied GCC code we're faced with problems. GCC will schedule
2113 its prologue and make prologue instructions available for delay slot
2114 filling. The end result is user code gets mixed in with the prologue
2115 and a prologue instruction may be in the delay slot of the first branch
2118 Some unexpected things are expected with debugging optimized code, so
2119 we allow this routine to walk past user instructions in optimized
2121 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2123 status = target_read_memory (pc, buf, 4);
2124 inst = extract_unsigned_integer (buf, 4);
2130 /* Note the interesting effects of this instruction. */
2131 stack_remaining -= prologue_inst_adjust_sp (inst);
2133 /* There is only one instruction used for saving RP into the stack. */
2134 if (inst == 0x6bc23fd9)
2137 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2140 /* Just note that we found the save of SP into the stack. The
2141 value for frame_saved_regs was computed above. */
2142 if ((inst & 0xffffc000) == 0x6fc10000)
2145 /* Account for general and floating-point register saves. */
2146 reg = inst_saves_gr (inst);
2147 if (reg >= 3 && reg <= 18
2148 && (!u->Save_SP || reg != FP_REGNUM))
2150 save_gr &= ~(1 << reg);
2152 /* stwm with a positive displacement is a *post modify*. */
2153 if ((inst >> 26) == 0x1b
2154 && extract_14 (inst) >= 0)
2155 frame_saved_regs->regs[reg] = frame_info->frame;
2158 /* Handle code with and without frame pointers. */
2160 frame_saved_regs->regs[reg]
2161 = frame_info->frame + extract_14 (inst);
2163 frame_saved_regs->regs[reg]
2164 = frame_info->frame + (u->Total_frame_size << 3)
2165 + extract_14 (inst);
2170 /* GCC handles callee saved FP regs a little differently.
2172 It emits an instruction to put the value of the start of
2173 the FP store area into %r1. It then uses fstds,ma with
2174 a basereg of %r1 for the stores.
2176 HP CC emits them at the current stack pointer modifying
2177 the stack pointer as it stores each register. */
2179 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2180 if ((inst & 0xffffc000) == 0x34610000
2181 || (inst & 0xffffc000) == 0x37c10000)
2182 fp_loc = extract_14 (inst);
2184 reg = inst_saves_fr (inst);
2185 if (reg >= 12 && reg <= 21)
2187 /* Note +4 braindamage below is necessary because the FP status
2188 registers are internally 8 registers rather than the expected
2190 save_fr &= ~(1 << reg);
2193 /* 1st HP CC FP register store. After this instruction
2194 we've set enough state that the GCC and HPCC code are
2195 both handled in the same manner. */
2196 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2201 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2202 = frame_info->frame + fp_loc;
2207 /* Quit if we hit any kind of branch. This can happen if a prologue
2208 instruction is in the delay slot of the first call/branch. */
2209 if (is_branch (inst))
2217 #ifdef MAINTENANCE_CMDS
2220 unwind_command (exp, from_tty)
2228 struct unwind_table_entry *u;
2231 /* If we have an expression, evaluate it and use it as the address. */
2233 if (exp != 0 && *exp != 0)
2234 address = parse_and_eval_address (exp);
2238 xxx.u = find_unwind_entry (address);
2242 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2246 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2249 #endif /* MAINTENANCE_CMDS */
2252 _initialize_hppa_tdep ()
2254 #ifdef MAINTENANCE_CMDS
2255 add_cmd ("unwind", class_maintenance, unwind_command,
2256 "Print unwind table entry at given address.",
2257 &maintenanceprintlist);
2258 #endif /* MAINTENANCE_CMDS */