3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 # Make certain that the script is running in an internationalized
27 LC_ALL=c ; export LC_ALL
35 echo "${file} missing? cp new-${file} ${file}" 1>&2
36 elif diff -u ${file} new-${file}
38 echo "${file} unchanged" 1>&2
40 echo "${file} has changed? cp new-${file} ${file}" 1>&2
45 # Format of the input table
46 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
54 if test "${line}" = ""
57 elif test "${line}" = "#" -a "${comment}" = ""
60 elif expr "${line}" : "#" > /dev/null
66 # The semantics of IFS varies between different SH's. Some
67 # treat ``::' as three fields while some treat it as just too.
68 # Work around this by eliminating ``::'' ....
69 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71 OFS="${IFS}" ; IFS="[:]"
72 eval read ${read} <<EOF
77 if test -n "${garbage_at_eol}"
79 echo "Garbage at end-of-line in ${line}" 1>&2
84 # .... and then going back through each field and strip out those
85 # that ended up with just that space character.
88 if eval test \"\${${r}}\" = \"\ \"
94 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
95 if test "x${macro}" = "x="
97 # Provide a UCASE version of function (for when there isn't MACRO)
99 elif test "${macro}" = "${FUNCTION}"
101 echo "${function}: Specify = for macro field" 1>&2
106 # Check that macro definition wasn't supplied for multi-arch
109 if test "${macro}" != ""
111 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
118 m ) staticdefault="${predefault}" ;;
119 M ) staticdefault="0" ;;
120 * ) test "${staticdefault}" || staticdefault=0 ;;
125 case "${invalid_p}" in
127 if test -n "${predefault}"
129 #invalid_p="gdbarch->${function} == ${predefault}"
130 predicate="gdbarch->${function} != ${predefault}"
131 elif class_is_variable_p
133 predicate="gdbarch->${function} != 0"
134 elif class_is_function_p
136 predicate="gdbarch->${function} != NULL"
140 echo "Predicate function ${function} with invalid_p." 1>&2
147 # PREDEFAULT is a valid fallback definition of MEMBER when
148 # multi-arch is not enabled. This ensures that the
149 # default value, when multi-arch is the same as the
150 # default value when not multi-arch. POSTDEFAULT is
151 # always a valid definition of MEMBER as this again
152 # ensures consistency.
154 if [ -n "${postdefault}" ]
156 fallbackdefault="${postdefault}"
157 elif [ -n "${predefault}" ]
159 fallbackdefault="${predefault}"
164 #NOT YET: See gdbarch.log for basic verification of
179 fallback_default_p ()
181 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
182 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
185 class_is_variable_p ()
193 class_is_function_p ()
196 *f* | *F* | *m* | *M* ) true ;;
201 class_is_multiarch_p ()
209 class_is_predicate_p ()
212 *F* | *V* | *M* ) true ;;
226 # dump out/verify the doco
236 # F -> function + predicate
237 # hiding a function + predicate to test function validity
240 # V -> variable + predicate
241 # hiding a variable + predicate to test variables validity
243 # hiding something from the ``struct info'' object
244 # m -> multi-arch function
245 # hiding a multi-arch function (parameterised with the architecture)
246 # M -> multi-arch function + predicate
247 # hiding a multi-arch function + predicate to test function validity
251 # The name of the legacy C macro by which this method can be
252 # accessed. If empty, no macro is defined. If "=", a macro
253 # formed from the upper-case function name is used.
257 # For functions, the return type; for variables, the data type
261 # For functions, the member function name; for variables, the
262 # variable name. Member function names are always prefixed with
263 # ``gdbarch_'' for name-space purity.
267 # The formal argument list. It is assumed that the formal
268 # argument list includes the actual name of each list element.
269 # A function with no arguments shall have ``void'' as the
270 # formal argument list.
274 # The list of actual arguments. The arguments specified shall
275 # match the FORMAL list given above. Functions with out
276 # arguments leave this blank.
280 # To help with the GDB startup a static gdbarch object is
281 # created. STATICDEFAULT is the value to insert into that
282 # static gdbarch object. Since this a static object only
283 # simple expressions can be used.
285 # If STATICDEFAULT is empty, zero is used.
289 # An initial value to assign to MEMBER of the freshly
290 # malloc()ed gdbarch object. After initialization, the
291 # freshly malloc()ed object is passed to the target
292 # architecture code for further updates.
294 # If PREDEFAULT is empty, zero is used.
296 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
297 # INVALID_P are specified, PREDEFAULT will be used as the
298 # default for the non- multi-arch target.
300 # A zero PREDEFAULT function will force the fallback to call
303 # Variable declarations can refer to ``gdbarch'' which will
304 # contain the current architecture. Care should be taken.
308 # A value to assign to MEMBER of the new gdbarch object should
309 # the target architecture code fail to change the PREDEFAULT
312 # If POSTDEFAULT is empty, no post update is performed.
314 # If both INVALID_P and POSTDEFAULT are non-empty then
315 # INVALID_P will be used to determine if MEMBER should be
316 # changed to POSTDEFAULT.
318 # If a non-empty POSTDEFAULT and a zero INVALID_P are
319 # specified, POSTDEFAULT will be used as the default for the
320 # non- multi-arch target (regardless of the value of
323 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325 # Variable declarations can refer to ``current_gdbarch'' which
326 # will contain the current architecture. Care should be
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
344 # See also PREDEFAULT and POSTDEFAULT.
348 # An optional expression that convers MEMBER to a value
349 # suitable for formatting using %s.
351 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
352 # (anything else) is used.
354 garbage_at_eol ) : ;;
356 # Catches stray fields.
359 echo "Bad field ${field}"
367 # See below (DOCO) for description of each field
369 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
374 # Number of bits in a char or unsigned char for the target machine.
375 # Just like CHAR_BIT in <limits.h> but describes the target machine.
376 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 # Number of bits in a short or unsigned short for the target machine.
379 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
380 # Number of bits in an int or unsigned int for the target machine.
381 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
382 # Number of bits in a long or unsigned long for the target machine.
383 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
384 # Number of bits in a long long or unsigned long long for the target
386 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388 # The ABI default bit-size and format for "float", "double", and "long
389 # double". These bit/format pairs should eventually be combined into
390 # a single object. For the moment, just initialize them as a pair.
392 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
394 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
396 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399 # For most targets, a pointer on the target and its representation as an
400 # address in GDB have the same size and "look the same". For such a
401 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
402 # / addr_bit will be set from it.
404 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
405 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 # ptr_bit is the size of a pointer on the target
408 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
409 # addr_bit is the size of a target address as represented in gdb
410 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
411 # Number of bits in a BFD_VMA for the target object file format.
412 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
415 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
418 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
419 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
420 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
429 v:=:int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:=:int:num_pseudo_regs:::0:0::0
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
439 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
440 v:=:int:sp_regnum:::-1:-1::0
441 v:=:int:pc_regnum:::-1:-1::0
442 v:=:int:ps_regnum:::-1:-1::0
443 v:=:int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f:=:const char *:register_name:int regnr:regnr
455 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
456 M::struct type *:register_type:int reg_nr:reg_nr
457 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
458 # register offsets computed using just REGISTER_TYPE, this can be
459 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
460 # function with predicate has a valid (callable) initial value. As a
461 # consequence, even when the predicate is false, the corresponding
462 # function works. This simplifies the migration process - old code,
463 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
464 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
467 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
468 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
469 # DEPRECATED_FP_REGNUM.
470 v:=:int:deprecated_fp_regnum:::-1:-1::0
472 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
473 # replacement for DEPRECATED_PUSH_ARGUMENTS.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
476 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
494 v:=:int:believe_pcc_promotion:::::::
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
500 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
501 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const bfd_byte *buf:type, buf
504 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
505 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
507 # It has been suggested that this, well actually its predecessor,
508 # should take the type/value of the function to be called and not the
509 # return type. This is left as an exercise for the reader.
511 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
512 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
513 # (via legacy_return_value), when a small struct is involved.
515 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
517 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
518 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
519 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
522 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
523 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
524 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
525 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
526 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
528 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
529 # ABI suitable for the implementation of a robust extract
530 # struct-convention return-value address method (the sparc saves the
531 # address in the callers frame). All the other cases so far examined,
532 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
533 # erreneous - the code was incorrectly assuming that the return-value
534 # address, stored in a register, was preserved across the entire
537 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
538 # the ABIs that are still to be analyzed - perhaps this should simply
539 # be deleted. The commented out extract_returned_value_address method
540 # is provided as a starting point for the 32-bit SPARC. It, or
541 # something like it, along with changes to both infcmd.c and stack.c
542 # will be needed for that case to work. NB: It is passed the callers
543 # frame since it is only after the callee has returned that this
546 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
547 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
550 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
551 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
552 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
553 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
555 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
556 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
566 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
568 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
570 v:=:CORE_ADDR:frame_args_skip:::0:::0
571 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
572 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
573 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
574 # frame-base. Enable frame-base before frame-unwind.
575 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
576 F:=:int:frame_num_args:struct frame_info *frame:frame
578 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
579 # to frame_align and the requirement that methods such as
580 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
583 M::CORE_ADDR:frame_align:CORE_ADDR address:address
584 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
585 # stabs_argument_has_addr.
586 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
587 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
588 v:=:int:frame_red_zone_size
590 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
601 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
605 # the target needs software single step. An ISA method to implement it.
607 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
608 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
611 # single step. If not, then implement single step using breakpoints.
612 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M::int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
622 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a funtion's epilogue. in_function_epilogue_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
638 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
639 # Given a vector of command-line arguments, return a newly allocated
640 # string which, when passed to the create_inferior function, will be
641 # parsed (on Unix systems, by the shell) to yield the same vector.
642 # This function should call error() if the argument vector is not
643 # representable for this target or if this target does not support
644 # command-line arguments.
645 # ARGC is the number of elements in the vector.
646 # ARGV is an array of strings, one per argument.
647 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
648 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
649 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
650 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
651 v:=:int:cannot_step_breakpoint:::0:0::0
652 v:=:int:have_nonsteppable_watchpoint:::0:0::0
653 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
654 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
655 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
656 # Is a register in a group
657 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
658 # Fetch the pointer to the ith function argument.
659 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
661 # Return the appropriate register set for a core file section with
662 # name SECT_NAME and size SECT_SIZE.
663 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
670 exec > new-gdbarch.log
671 function_list | while do_read
674 ${class} ${returntype} ${function} ($formal)
678 eval echo \"\ \ \ \ ${r}=\${${r}}\"
680 if class_is_predicate_p && fallback_default_p
682 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
686 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
688 echo "Error: postdefault is useless when invalid_p=0" 1>&2
692 if class_is_multiarch_p
694 if class_is_predicate_p ; then :
695 elif test "x${predefault}" = "x"
697 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
706 compare_new gdbarch.log
712 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
714 /* Dynamic architecture support for GDB, the GNU debugger.
716 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
717 Software Foundation, Inc.
719 This file is part of GDB.
721 This program is free software; you can redistribute it and/or modify
722 it under the terms of the GNU General Public License as published by
723 the Free Software Foundation; either version 2 of the License, or
724 (at your option) any later version.
726 This program is distributed in the hope that it will be useful,
727 but WITHOUT ANY WARRANTY; without even the implied warranty of
728 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
729 GNU General Public License for more details.
731 You should have received a copy of the GNU General Public License
732 along with this program; if not, write to the Free Software
733 Foundation, Inc., 59 Temple Place - Suite 330,
734 Boston, MA 02111-1307, USA. */
736 /* This file was created with the aid of \`\`gdbarch.sh''.
738 The Bourne shell script \`\`gdbarch.sh'' creates the files
739 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
740 against the existing \`\`gdbarch.[hc]''. Any differences found
743 If editing this file, please also run gdbarch.sh and merge any
744 changes into that script. Conversely, when making sweeping changes
745 to this file, modifying gdbarch.sh and using its output may prove
766 struct minimal_symbol;
770 struct disassemble_info;
774 extern struct gdbarch *current_gdbarch;
780 printf "/* The following are pre-initialized by GDBARCH. */\n"
781 function_list | while do_read
786 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
787 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
788 if test -n "${macro}"
790 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
791 printf "#error \"Non multi-arch definition of ${macro}\"\n"
793 printf "#if !defined (${macro})\n"
794 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
803 printf "/* The following are initialized by the target dependent code. */\n"
804 function_list | while do_read
806 if [ -n "${comment}" ]
808 echo "${comment}" | sed \
814 if class_is_predicate_p
816 if test -n "${macro}"
819 printf "#if defined (${macro})\n"
820 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
821 printf "#if !defined (${macro}_P)\n"
822 printf "#define ${macro}_P() (1)\n"
827 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
828 if test -n "${macro}"
830 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
831 printf "#error \"Non multi-arch definition of ${macro}\"\n"
833 printf "#if !defined (${macro}_P)\n"
834 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
838 if class_is_variable_p
841 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
842 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
843 if test -n "${macro}"
845 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
846 printf "#error \"Non multi-arch definition of ${macro}\"\n"
848 printf "#if !defined (${macro})\n"
849 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
853 if class_is_function_p
856 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
858 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
859 elif class_is_multiarch_p
861 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
863 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
865 if [ "x${formal}" = "xvoid" ]
867 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
871 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
872 if test -n "${macro}"
874 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
875 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 if [ "x${actual}" = "x" ]
879 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
880 elif [ "x${actual}" = "x-" ]
882 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
884 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
886 printf "#if !defined (${macro})\n"
887 if [ "x${actual}" = "x" ]
889 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
890 elif [ "x${actual}" = "x-" ]
892 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
894 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
904 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
907 /* Mechanism for co-ordinating the selection of a specific
910 GDB targets (*-tdep.c) can register an interest in a specific
911 architecture. Other GDB components can register a need to maintain
912 per-architecture data.
914 The mechanisms below ensures that there is only a loose connection
915 between the set-architecture command and the various GDB
916 components. Each component can independently register their need
917 to maintain architecture specific data with gdbarch.
921 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
924 The more traditional mega-struct containing architecture specific
925 data for all the various GDB components was also considered. Since
926 GDB is built from a variable number of (fairly independent)
927 components it was determined that the global aproach was not
931 /* Register a new architectural family with GDB.
933 Register support for the specified ARCHITECTURE with GDB. When
934 gdbarch determines that the specified architecture has been
935 selected, the corresponding INIT function is called.
939 The INIT function takes two parameters: INFO which contains the
940 information available to gdbarch about the (possibly new)
941 architecture; ARCHES which is a list of the previously created
942 \`\`struct gdbarch'' for this architecture.
944 The INFO parameter is, as far as possible, be pre-initialized with
945 information obtained from INFO.ABFD or the previously selected
948 The ARCHES parameter is a linked list (sorted most recently used)
949 of all the previously created architures for this architecture
950 family. The (possibly NULL) ARCHES->gdbarch can used to access
951 values from the previously selected architecture for this
952 architecture family. The global \`\`current_gdbarch'' shall not be
955 The INIT function shall return any of: NULL - indicating that it
956 doesn't recognize the selected architecture; an existing \`\`struct
957 gdbarch'' from the ARCHES list - indicating that the new
958 architecture is just a synonym for an earlier architecture (see
959 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
960 - that describes the selected architecture (see gdbarch_alloc()).
962 The DUMP_TDEP function shall print out all target specific values.
963 Care should be taken to ensure that the function works in both the
964 multi-arch and non- multi-arch cases. */
968 struct gdbarch *gdbarch;
969 struct gdbarch_list *next;
974 /* Use default: NULL (ZERO). */
975 const struct bfd_arch_info *bfd_arch_info;
977 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
980 /* Use default: NULL (ZERO). */
983 /* Use default: NULL (ZERO). */
984 struct gdbarch_tdep_info *tdep_info;
986 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
987 enum gdb_osabi osabi;
990 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
991 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
993 /* DEPRECATED - use gdbarch_register() */
994 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
996 extern void gdbarch_register (enum bfd_architecture architecture,
997 gdbarch_init_ftype *,
998 gdbarch_dump_tdep_ftype *);
1001 /* Return a freshly allocated, NULL terminated, array of the valid
1002 architecture names. Since architectures are registered during the
1003 _initialize phase this function only returns useful information
1004 once initialization has been completed. */
1006 extern const char **gdbarch_printable_names (void);
1009 /* Helper function. Search the list of ARCHES for a GDBARCH that
1010 matches the information provided by INFO. */
1012 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1015 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1016 basic initialization using values obtained from the INFO andTDEP
1017 parameters. set_gdbarch_*() functions are called to complete the
1018 initialization of the object. */
1020 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1023 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1024 It is assumed that the caller freeds the \`\`struct
1027 extern void gdbarch_free (struct gdbarch *);
1030 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1031 obstack. The memory is freed when the corresponding architecture
1034 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1035 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1036 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1039 /* Helper function. Force an update of the current architecture.
1041 The actual architecture selected is determined by INFO, \`\`(gdb) set
1042 architecture'' et.al., the existing architecture and BFD's default
1043 architecture. INFO should be initialized to zero and then selected
1044 fields should be updated.
1046 Returns non-zero if the update succeeds */
1048 extern int gdbarch_update_p (struct gdbarch_info info);
1051 /* Helper function. Find an architecture matching info.
1053 INFO should be initialized using gdbarch_info_init, relevant fields
1054 set, and then finished using gdbarch_info_fill.
1056 Returns the corresponding architecture, or NULL if no matching
1057 architecture was found. "current_gdbarch" is not updated. */
1059 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1062 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1064 FIXME: kettenis/20031124: Of the functions that follow, only
1065 gdbarch_from_bfd is supposed to survive. The others will
1066 dissappear since in the future GDB will (hopefully) be truly
1067 multi-arch. However, for now we're still stuck with the concept of
1068 a single active architecture. */
1070 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1073 /* Register per-architecture data-pointer.
1075 Reserve space for a per-architecture data-pointer. An identifier
1076 for the reserved data-pointer is returned. That identifer should
1077 be saved in a local static variable.
1079 Memory for the per-architecture data shall be allocated using
1080 gdbarch_obstack_zalloc. That memory will be deleted when the
1081 corresponding architecture object is deleted.
1083 When a previously created architecture is re-selected, the
1084 per-architecture data-pointer for that previous architecture is
1085 restored. INIT() is not re-called.
1087 Multiple registrarants for any architecture are allowed (and
1088 strongly encouraged). */
1090 struct gdbarch_data;
1092 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1093 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1094 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1095 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1096 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1097 struct gdbarch_data *data,
1100 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1104 /* Register per-architecture memory region.
1106 Provide a memory-region swap mechanism. Per-architecture memory
1107 region are created. These memory regions are swapped whenever the
1108 architecture is changed. For a new architecture, the memory region
1109 is initialized with zero (0) and the INIT function is called.
1111 Memory regions are swapped / initialized in the order that they are
1112 registered. NULL DATA and/or INIT values can be specified.
1114 New code should use gdbarch_data_register_*(). */
1116 typedef void (gdbarch_swap_ftype) (void);
1117 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1118 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1122 /* Set the dynamic target-system-dependent parameters (architecture,
1123 byte-order, ...) using information found in the BFD */
1125 extern void set_gdbarch_from_file (bfd *);
1128 /* Initialize the current architecture to the "first" one we find on
1131 extern void initialize_current_architecture (void);
1133 /* gdbarch trace variable */
1134 extern int gdbarch_debug;
1136 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1141 #../move-if-change new-gdbarch.h gdbarch.h
1142 compare_new gdbarch.h
1149 exec > new-gdbarch.c
1154 #include "arch-utils.h"
1157 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1160 #include "floatformat.h"
1162 #include "gdb_assert.h"
1163 #include "gdb_string.h"
1164 #include "gdb-events.h"
1165 #include "reggroups.h"
1167 #include "gdb_obstack.h"
1169 /* Static function declarations */
1171 static void alloc_gdbarch_data (struct gdbarch *);
1173 /* Non-zero if we want to trace architecture code. */
1175 #ifndef GDBARCH_DEBUG
1176 #define GDBARCH_DEBUG 0
1178 int gdbarch_debug = GDBARCH_DEBUG;
1181 pformat (const struct floatformat *format)
1186 return format->name;
1191 # gdbarch open the gdbarch object
1193 printf "/* Maintain the struct gdbarch object */\n"
1195 printf "struct gdbarch\n"
1197 printf " /* Has this architecture been fully initialized? */\n"
1198 printf " int initialized_p;\n"
1200 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1201 printf " struct obstack *obstack;\n"
1203 printf " /* basic architectural information */\n"
1204 function_list | while do_read
1208 printf " ${returntype} ${function};\n"
1212 printf " /* target specific vector. */\n"
1213 printf " struct gdbarch_tdep *tdep;\n"
1214 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1216 printf " /* per-architecture data-pointers */\n"
1217 printf " unsigned nr_data;\n"
1218 printf " void **data;\n"
1220 printf " /* per-architecture swap-regions */\n"
1221 printf " struct gdbarch_swap *swap;\n"
1224 /* Multi-arch values.
1226 When extending this structure you must:
1228 Add the field below.
1230 Declare set/get functions and define the corresponding
1233 gdbarch_alloc(): If zero/NULL is not a suitable default,
1234 initialize the new field.
1236 verify_gdbarch(): Confirm that the target updated the field
1239 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1242 \`\`startup_gdbarch()'': Append an initial value to the static
1243 variable (base values on the host's c-type system).
1245 get_gdbarch(): Implement the set/get functions (probably using
1246 the macro's as shortcuts).
1251 function_list | while do_read
1253 if class_is_variable_p
1255 printf " ${returntype} ${function};\n"
1256 elif class_is_function_p
1258 printf " gdbarch_${function}_ftype *${function};\n"
1263 # A pre-initialized vector
1267 /* The default architecture uses host values (for want of a better
1271 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1273 printf "struct gdbarch startup_gdbarch =\n"
1275 printf " 1, /* Always initialized. */\n"
1276 printf " NULL, /* The obstack. */\n"
1277 printf " /* basic architecture information */\n"
1278 function_list | while do_read
1282 printf " ${staticdefault}, /* ${function} */\n"
1286 /* target specific vector and its dump routine */
1288 /*per-architecture data-pointers and swap regions */
1290 /* Multi-arch values */
1292 function_list | while do_read
1294 if class_is_function_p || class_is_variable_p
1296 printf " ${staticdefault}, /* ${function} */\n"
1300 /* startup_gdbarch() */
1303 struct gdbarch *current_gdbarch = &startup_gdbarch;
1306 # Create a new gdbarch struct
1309 /* Create a new \`\`struct gdbarch'' based on information provided by
1310 \`\`struct gdbarch_info''. */
1315 gdbarch_alloc (const struct gdbarch_info *info,
1316 struct gdbarch_tdep *tdep)
1318 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1319 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1320 the current local architecture and not the previous global
1321 architecture. This ensures that the new architectures initial
1322 values are not influenced by the previous architecture. Once
1323 everything is parameterised with gdbarch, this will go away. */
1324 struct gdbarch *current_gdbarch;
1326 /* Create an obstack for allocating all the per-architecture memory,
1327 then use that to allocate the architecture vector. */
1328 struct obstack *obstack = XMALLOC (struct obstack);
1329 obstack_init (obstack);
1330 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1331 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1332 current_gdbarch->obstack = obstack;
1334 alloc_gdbarch_data (current_gdbarch);
1336 current_gdbarch->tdep = tdep;
1339 function_list | while do_read
1343 printf " current_gdbarch->${function} = info->${function};\n"
1347 printf " /* Force the explicit initialization of these. */\n"
1348 function_list | while do_read
1350 if class_is_function_p || class_is_variable_p
1352 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1354 printf " current_gdbarch->${function} = ${predefault};\n"
1359 /* gdbarch_alloc() */
1361 return current_gdbarch;
1365 # Free a gdbarch struct.
1369 /* Allocate extra space using the per-architecture obstack. */
1372 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1374 void *data = obstack_alloc (arch->obstack, size);
1375 memset (data, 0, size);
1380 /* Free a gdbarch struct. This should never happen in normal
1381 operation --- once you've created a gdbarch, you keep it around.
1382 However, if an architecture's init function encounters an error
1383 building the structure, it may need to clean up a partially
1384 constructed gdbarch. */
1387 gdbarch_free (struct gdbarch *arch)
1389 struct obstack *obstack;
1390 gdb_assert (arch != NULL);
1391 gdb_assert (!arch->initialized_p);
1392 obstack = arch->obstack;
1393 obstack_free (obstack, 0); /* Includes the ARCH. */
1398 # verify a new architecture
1402 /* Ensure that all values in a GDBARCH are reasonable. */
1404 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1405 just happens to match the global variable \`\`current_gdbarch''. That
1406 way macros refering to that variable get the local and not the global
1407 version - ulgh. Once everything is parameterised with gdbarch, this
1411 verify_gdbarch (struct gdbarch *current_gdbarch)
1413 struct ui_file *log;
1414 struct cleanup *cleanups;
1417 log = mem_fileopen ();
1418 cleanups = make_cleanup_ui_file_delete (log);
1420 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1421 fprintf_unfiltered (log, "\n\tbyte-order");
1422 if (current_gdbarch->bfd_arch_info == NULL)
1423 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1424 /* Check those that need to be defined for the given multi-arch level. */
1426 function_list | while do_read
1428 if class_is_function_p || class_is_variable_p
1430 if [ "x${invalid_p}" = "x0" ]
1432 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1433 elif class_is_predicate_p
1435 printf " /* Skip verify of ${function}, has predicate */\n"
1436 # FIXME: See do_read for potential simplification
1437 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1439 printf " if (${invalid_p})\n"
1440 printf " current_gdbarch->${function} = ${postdefault};\n"
1441 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1443 printf " if (current_gdbarch->${function} == ${predefault})\n"
1444 printf " current_gdbarch->${function} = ${postdefault};\n"
1445 elif [ -n "${postdefault}" ]
1447 printf " if (current_gdbarch->${function} == 0)\n"
1448 printf " current_gdbarch->${function} = ${postdefault};\n"
1449 elif [ -n "${invalid_p}" ]
1451 printf " if (${invalid_p})\n"
1452 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1453 elif [ -n "${predefault}" ]
1455 printf " if (current_gdbarch->${function} == ${predefault})\n"
1456 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1461 buf = ui_file_xstrdup (log, &dummy);
1462 make_cleanup (xfree, buf);
1463 if (strlen (buf) > 0)
1464 internal_error (__FILE__, __LINE__,
1465 _("verify_gdbarch: the following are invalid ...%s"),
1467 do_cleanups (cleanups);
1471 # dump the structure
1475 /* Print out the details of the current architecture. */
1477 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1478 just happens to match the global variable \`\`current_gdbarch''. That
1479 way macros refering to that variable get the local and not the global
1480 version - ulgh. Once everything is parameterised with gdbarch, this
1484 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1486 const char *gdb_xm_file = "<not-defined>";
1487 const char *gdb_nm_file = "<not-defined>";
1488 const char *gdb_tm_file = "<not-defined>";
1489 #if defined (GDB_XM_FILE)
1490 gdb_xm_file = GDB_XM_FILE;
1492 fprintf_unfiltered (file,
1493 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1495 #if defined (GDB_NM_FILE)
1496 gdb_nm_file = GDB_NM_FILE;
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1501 #if defined (GDB_TM_FILE)
1502 gdb_tm_file = GDB_TM_FILE;
1504 fprintf_unfiltered (file,
1505 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1508 function_list | sort -t: -k 4 | while do_read
1510 # First the predicate
1511 if class_is_predicate_p
1513 if test -n "${macro}"
1515 printf "#ifdef ${macro}_P\n"
1516 printf " fprintf_unfiltered (file,\n"
1517 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1518 printf " \"${macro}_P()\",\n"
1519 printf " XSTRING (${macro}_P ()));\n"
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1524 printf " gdbarch_${function}_p (current_gdbarch));\n"
1526 # Print the macro definition.
1527 if test -n "${macro}"
1529 printf "#ifdef ${macro}\n"
1530 if class_is_function_p
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1534 printf " \"${macro}(${actual})\",\n"
1535 printf " XSTRING (${macro} (${actual})));\n"
1537 printf " fprintf_unfiltered (file,\n"
1538 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1539 printf " XSTRING (${macro}));\n"
1543 # Print the corresponding value.
1544 if class_is_function_p
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1548 printf " (long) current_gdbarch->${function});\n"
1551 case "${print}:${returntype}" in
1554 print="paddr_nz (current_gdbarch->${function})"
1558 print="paddr_d (current_gdbarch->${function})"
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1566 printf " ${print});\n"
1570 if (current_gdbarch->dump_tdep != NULL)
1571 current_gdbarch->dump_tdep (current_gdbarch, file);
1579 struct gdbarch_tdep *
1580 gdbarch_tdep (struct gdbarch *gdbarch)
1582 if (gdbarch_debug >= 2)
1583 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1584 return gdbarch->tdep;
1588 function_list | while do_read
1590 if class_is_predicate_p
1594 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1596 printf " gdb_assert (gdbarch != NULL);\n"
1597 printf " return ${predicate};\n"
1600 if class_is_function_p
1603 printf "${returntype}\n"
1604 if [ "x${formal}" = "xvoid" ]
1606 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1608 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1611 printf " gdb_assert (gdbarch != NULL);\n"
1612 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1613 if class_is_predicate_p && test -n "${predefault}"
1615 # Allow a call to a function with a predicate.
1616 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1618 printf " if (gdbarch_debug >= 2)\n"
1619 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1620 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1622 if class_is_multiarch_p
1629 if class_is_multiarch_p
1631 params="gdbarch, ${actual}"
1636 if [ "x${returntype}" = "xvoid" ]
1638 printf " gdbarch->${function} (${params});\n"
1640 printf " return gdbarch->${function} (${params});\n"
1645 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1646 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1648 printf " gdbarch->${function} = ${function};\n"
1650 elif class_is_variable_p
1653 printf "${returntype}\n"
1654 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1656 printf " gdb_assert (gdbarch != NULL);\n"
1657 if [ "x${invalid_p}" = "x0" ]
1659 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1660 elif [ -n "${invalid_p}" ]
1662 printf " /* Check variable is valid. */\n"
1663 printf " gdb_assert (!(${invalid_p}));\n"
1664 elif [ -n "${predefault}" ]
1666 printf " /* Check variable changed from pre-default. */\n"
1667 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1669 printf " if (gdbarch_debug >= 2)\n"
1670 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1671 printf " return gdbarch->${function};\n"
1675 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1676 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1678 printf " gdbarch->${function} = ${function};\n"
1680 elif class_is_info_p
1683 printf "${returntype}\n"
1684 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1686 printf " gdb_assert (gdbarch != NULL);\n"
1687 printf " if (gdbarch_debug >= 2)\n"
1688 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1689 printf " return gdbarch->${function};\n"
1694 # All the trailing guff
1698 /* Keep a registry of per-architecture data-pointers required by GDB
1705 gdbarch_data_pre_init_ftype *pre_init;
1706 gdbarch_data_post_init_ftype *post_init;
1709 struct gdbarch_data_registration
1711 struct gdbarch_data *data;
1712 struct gdbarch_data_registration *next;
1715 struct gdbarch_data_registry
1718 struct gdbarch_data_registration *registrations;
1721 struct gdbarch_data_registry gdbarch_data_registry =
1726 static struct gdbarch_data *
1727 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1728 gdbarch_data_post_init_ftype *post_init)
1730 struct gdbarch_data_registration **curr;
1731 /* Append the new registraration. */
1732 for (curr = &gdbarch_data_registry.registrations;
1734 curr = &(*curr)->next);
1735 (*curr) = XMALLOC (struct gdbarch_data_registration);
1736 (*curr)->next = NULL;
1737 (*curr)->data = XMALLOC (struct gdbarch_data);
1738 (*curr)->data->index = gdbarch_data_registry.nr++;
1739 (*curr)->data->pre_init = pre_init;
1740 (*curr)->data->post_init = post_init;
1741 (*curr)->data->init_p = 1;
1742 return (*curr)->data;
1745 struct gdbarch_data *
1746 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1748 return gdbarch_data_register (pre_init, NULL);
1751 struct gdbarch_data *
1752 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1754 return gdbarch_data_register (NULL, post_init);
1757 /* Create/delete the gdbarch data vector. */
1760 alloc_gdbarch_data (struct gdbarch *gdbarch)
1762 gdb_assert (gdbarch->data == NULL);
1763 gdbarch->nr_data = gdbarch_data_registry.nr;
1764 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1767 /* Initialize the current value of the specified per-architecture
1771 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1772 struct gdbarch_data *data,
1775 gdb_assert (data->index < gdbarch->nr_data);
1776 gdb_assert (gdbarch->data[data->index] == NULL);
1777 gdb_assert (data->pre_init == NULL);
1778 gdbarch->data[data->index] = pointer;
1781 /* Return the current value of the specified per-architecture
1785 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1787 gdb_assert (data->index < gdbarch->nr_data);
1788 if (gdbarch->data[data->index] == NULL)
1790 /* The data-pointer isn't initialized, call init() to get a
1792 if (data->pre_init != NULL)
1793 /* Mid architecture creation: pass just the obstack, and not
1794 the entire architecture, as that way it isn't possible for
1795 pre-init code to refer to undefined architecture
1797 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1798 else if (gdbarch->initialized_p
1799 && data->post_init != NULL)
1800 /* Post architecture creation: pass the entire architecture
1801 (as all fields are valid), but be careful to also detect
1802 recursive references. */
1804 gdb_assert (data->init_p);
1806 gdbarch->data[data->index] = data->post_init (gdbarch);
1810 /* The architecture initialization hasn't completed - punt -
1811 hope that the caller knows what they are doing. Once
1812 deprecated_set_gdbarch_data has been initialized, this can be
1813 changed to an internal error. */
1815 gdb_assert (gdbarch->data[data->index] != NULL);
1817 return gdbarch->data[data->index];
1822 /* Keep a registry of swapped data required by GDB modules. */
1827 struct gdbarch_swap_registration *source;
1828 struct gdbarch_swap *next;
1831 struct gdbarch_swap_registration
1834 unsigned long sizeof_data;
1835 gdbarch_swap_ftype *init;
1836 struct gdbarch_swap_registration *next;
1839 struct gdbarch_swap_registry
1842 struct gdbarch_swap_registration *registrations;
1845 struct gdbarch_swap_registry gdbarch_swap_registry =
1851 deprecated_register_gdbarch_swap (void *data,
1852 unsigned long sizeof_data,
1853 gdbarch_swap_ftype *init)
1855 struct gdbarch_swap_registration **rego;
1856 for (rego = &gdbarch_swap_registry.registrations;
1858 rego = &(*rego)->next);
1859 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1860 (*rego)->next = NULL;
1861 (*rego)->init = init;
1862 (*rego)->data = data;
1863 (*rego)->sizeof_data = sizeof_data;
1867 current_gdbarch_swap_init_hack (void)
1869 struct gdbarch_swap_registration *rego;
1870 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1871 for (rego = gdbarch_swap_registry.registrations;
1875 if (rego->data != NULL)
1877 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1878 struct gdbarch_swap);
1879 (*curr)->source = rego;
1880 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1882 (*curr)->next = NULL;
1883 curr = &(*curr)->next;
1885 if (rego->init != NULL)
1890 static struct gdbarch *
1891 current_gdbarch_swap_out_hack (void)
1893 struct gdbarch *old_gdbarch = current_gdbarch;
1894 struct gdbarch_swap *curr;
1896 gdb_assert (old_gdbarch != NULL);
1897 for (curr = old_gdbarch->swap;
1901 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1902 memset (curr->source->data, 0, curr->source->sizeof_data);
1904 current_gdbarch = NULL;
1909 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1911 struct gdbarch_swap *curr;
1913 gdb_assert (current_gdbarch == NULL);
1914 for (curr = new_gdbarch->swap;
1917 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1918 current_gdbarch = new_gdbarch;
1922 /* Keep a registry of the architectures known by GDB. */
1924 struct gdbarch_registration
1926 enum bfd_architecture bfd_architecture;
1927 gdbarch_init_ftype *init;
1928 gdbarch_dump_tdep_ftype *dump_tdep;
1929 struct gdbarch_list *arches;
1930 struct gdbarch_registration *next;
1933 static struct gdbarch_registration *gdbarch_registry = NULL;
1936 append_name (const char ***buf, int *nr, const char *name)
1938 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1944 gdbarch_printable_names (void)
1946 /* Accumulate a list of names based on the registed list of
1948 enum bfd_architecture a;
1950 const char **arches = NULL;
1951 struct gdbarch_registration *rego;
1952 for (rego = gdbarch_registry;
1956 const struct bfd_arch_info *ap;
1957 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1959 internal_error (__FILE__, __LINE__,
1960 _("gdbarch_architecture_names: multi-arch unknown"));
1963 append_name (&arches, &nr_arches, ap->printable_name);
1968 append_name (&arches, &nr_arches, NULL);
1974 gdbarch_register (enum bfd_architecture bfd_architecture,
1975 gdbarch_init_ftype *init,
1976 gdbarch_dump_tdep_ftype *dump_tdep)
1978 struct gdbarch_registration **curr;
1979 const struct bfd_arch_info *bfd_arch_info;
1980 /* Check that BFD recognizes this architecture */
1981 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1982 if (bfd_arch_info == NULL)
1984 internal_error (__FILE__, __LINE__,
1985 _("gdbarch: Attempt to register unknown architecture (%d)"),
1988 /* Check that we haven't seen this architecture before */
1989 for (curr = &gdbarch_registry;
1991 curr = &(*curr)->next)
1993 if (bfd_architecture == (*curr)->bfd_architecture)
1994 internal_error (__FILE__, __LINE__,
1995 _("gdbarch: Duplicate registraration of architecture (%s)"),
1996 bfd_arch_info->printable_name);
2000 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2001 bfd_arch_info->printable_name,
2004 (*curr) = XMALLOC (struct gdbarch_registration);
2005 (*curr)->bfd_architecture = bfd_architecture;
2006 (*curr)->init = init;
2007 (*curr)->dump_tdep = dump_tdep;
2008 (*curr)->arches = NULL;
2009 (*curr)->next = NULL;
2013 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2014 gdbarch_init_ftype *init)
2016 gdbarch_register (bfd_architecture, init, NULL);
2020 /* Look for an architecture using gdbarch_info. Base search on only
2021 BFD_ARCH_INFO and BYTE_ORDER. */
2023 struct gdbarch_list *
2024 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2025 const struct gdbarch_info *info)
2027 for (; arches != NULL; arches = arches->next)
2029 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2031 if (info->byte_order != arches->gdbarch->byte_order)
2033 if (info->osabi != arches->gdbarch->osabi)
2041 /* Find an architecture that matches the specified INFO. Create a new
2042 architecture if needed. Return that new architecture. Assumes
2043 that there is no current architecture. */
2045 static struct gdbarch *
2046 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2048 struct gdbarch *new_gdbarch;
2049 struct gdbarch_registration *rego;
2051 /* The existing architecture has been swapped out - all this code
2052 works from a clean slate. */
2053 gdb_assert (current_gdbarch == NULL);
2055 /* Fill in missing parts of the INFO struct using a number of
2056 sources: "set ..."; INFOabfd supplied; and the existing
2058 gdbarch_info_fill (old_gdbarch, &info);
2060 /* Must have found some sort of architecture. */
2061 gdb_assert (info.bfd_arch_info != NULL);
2065 fprintf_unfiltered (gdb_stdlog,
2066 "find_arch_by_info: info.bfd_arch_info %s\n",
2067 (info.bfd_arch_info != NULL
2068 ? info.bfd_arch_info->printable_name
2070 fprintf_unfiltered (gdb_stdlog,
2071 "find_arch_by_info: info.byte_order %d (%s)\n",
2073 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2074 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2076 fprintf_unfiltered (gdb_stdlog,
2077 "find_arch_by_info: info.osabi %d (%s)\n",
2078 info.osabi, gdbarch_osabi_name (info.osabi));
2079 fprintf_unfiltered (gdb_stdlog,
2080 "find_arch_by_info: info.abfd 0x%lx\n",
2082 fprintf_unfiltered (gdb_stdlog,
2083 "find_arch_by_info: info.tdep_info 0x%lx\n",
2084 (long) info.tdep_info);
2087 /* Find the tdep code that knows about this architecture. */
2088 for (rego = gdbarch_registry;
2091 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2096 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2097 "No matching architecture\n");
2101 /* Ask the tdep code for an architecture that matches "info". */
2102 new_gdbarch = rego->init (info, rego->arches);
2104 /* Did the tdep code like it? No. Reject the change and revert to
2105 the old architecture. */
2106 if (new_gdbarch == NULL)
2109 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2110 "Target rejected architecture\n");
2114 /* Is this a pre-existing architecture (as determined by already
2115 being initialized)? Move it to the front of the architecture
2116 list (keeping the list sorted Most Recently Used). */
2117 if (new_gdbarch->initialized_p)
2119 struct gdbarch_list **list;
2120 struct gdbarch_list *this;
2122 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2123 "Previous architecture 0x%08lx (%s) selected\n",
2125 new_gdbarch->bfd_arch_info->printable_name);
2126 /* Find the existing arch in the list. */
2127 for (list = ®o->arches;
2128 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2129 list = &(*list)->next);
2130 /* It had better be in the list of architectures. */
2131 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2134 (*list) = this->next;
2135 /* Insert THIS at the front. */
2136 this->next = rego->arches;
2137 rego->arches = this;
2142 /* It's a new architecture. */
2144 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2145 "New architecture 0x%08lx (%s) selected\n",
2147 new_gdbarch->bfd_arch_info->printable_name);
2149 /* Insert the new architecture into the front of the architecture
2150 list (keep the list sorted Most Recently Used). */
2152 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2153 this->next = rego->arches;
2154 this->gdbarch = new_gdbarch;
2155 rego->arches = this;
2158 /* Check that the newly installed architecture is valid. Plug in
2159 any post init values. */
2160 new_gdbarch->dump_tdep = rego->dump_tdep;
2161 verify_gdbarch (new_gdbarch);
2162 new_gdbarch->initialized_p = 1;
2164 /* Initialize any per-architecture swap areas. This phase requires
2165 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2166 swap the entire architecture out. */
2167 current_gdbarch = new_gdbarch;
2168 current_gdbarch_swap_init_hack ();
2169 current_gdbarch_swap_out_hack ();
2172 gdbarch_dump (new_gdbarch, gdb_stdlog);
2178 gdbarch_find_by_info (struct gdbarch_info info)
2180 /* Save the previously selected architecture, setting the global to
2181 NULL. This stops things like gdbarch->init() trying to use the
2182 previous architecture's configuration. The previous architecture
2183 may not even be of the same architecture family. The most recent
2184 architecture of the same family is found at the head of the
2185 rego->arches list. */
2186 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2188 /* Find the specified architecture. */
2189 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2191 /* Restore the existing architecture. */
2192 gdb_assert (current_gdbarch == NULL);
2193 current_gdbarch_swap_in_hack (old_gdbarch);
2198 /* Make the specified architecture current, swapping the existing one
2202 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2204 gdb_assert (new_gdbarch != NULL);
2205 gdb_assert (current_gdbarch != NULL);
2206 gdb_assert (new_gdbarch->initialized_p);
2207 current_gdbarch_swap_out_hack ();
2208 current_gdbarch_swap_in_hack (new_gdbarch);
2209 architecture_changed_event ();
2212 extern void _initialize_gdbarch (void);
2215 _initialize_gdbarch (void)
2217 struct cmd_list_element *c;
2219 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2220 Set architecture debugging."), _("\\
2221 Show architecture debugging."), _("\\
2222 When non-zero, architecture debugging is enabled."),
2224 NULL, /* FIXME: i18n: */
2225 &setdebuglist, &showdebuglist);
2231 #../move-if-change new-gdbarch.c gdbarch.c
2232 compare_new gdbarch.c