1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright 1988, 1990, 1991, 1994, 1995 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
29 /* Size of an instruction */
30 #define BYTES_PER_88K_INSN 4
32 void frame_find_saved_regs ();
34 /* Is this target an m88110? Otherwise assume m88100. This has
35 relevance for the ways in which we screw with instruction pointers. */
37 int target_is_m88110 = 0;
39 /* The m88k kernel aligns all instructions on 4-byte boundaries. The
40 kernel also uses the least significant two bits for its own hocus
41 pocus. When gdb receives an address from the kernel, it needs to
42 preserve those right-most two bits, but gdb also needs to be careful
43 to realize that those two bits are not really a part of the address
44 of an instruction. Shrug. */
47 m88k_addr_bits_remove (addr)
54 /* Given a GDB frame, determine the address of the calling function's frame.
55 This will be used to create a new GDB frame struct, and then
56 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
58 For us, the frame address is its stack pointer value, so we look up
59 the function prologue to determine the caller's sp value, and return it. */
62 frame_chain (thisframe)
63 struct frame_info *thisframe;
66 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
67 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
68 the ADDRESS, of SP_REGNUM. It also depends on the cache of
69 frame_find_saved_regs results. */
70 if (thisframe->fsr->regs[SP_REGNUM])
71 return thisframe->fsr->regs[SP_REGNUM];
73 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
77 frameless_function_invocation (frame)
78 struct frame_info *frame;
81 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
82 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
83 the ADDRESS, of SP_REGNUM. It also depends on the cache of
84 frame_find_saved_regs results. */
85 if (frame->fsr->regs[SP_REGNUM])
86 return 0; /* Frameful -- return addr saved somewhere */
88 return 1; /* Frameless -- no saved return address */
92 init_extra_frame_info (fromleaf, frame)
94 struct frame_info *frame;
96 frame->fsr = 0; /* Not yet allocated */
97 frame->args_pointer = 0; /* Unknown */
98 frame->locals_pointer = 0; /* Unknown */
101 /* Examine an m88k function prologue, recording the addresses at which
102 registers are saved explicitly by the prologue code, and returning
103 the address of the first instruction after the prologue (but not
104 after the instruction at address LIMIT, as explained below).
106 LIMIT places an upper bound on addresses of the instructions to be
107 examined. If the prologue code scan reaches LIMIT, the scan is
108 aborted and LIMIT is returned. This is used, when examining the
109 prologue for the current frame, to keep examine_prologue () from
110 claiming that a given register has been saved when in fact the
111 instruction that saves it has not yet been executed. LIMIT is used
112 at other times to stop the scan when we hit code after the true
113 function prologue (e.g. for the first source line) which might
114 otherwise be mistaken for function prologue.
116 The format of the function prologue matched by this routine is
117 derived from examination of the source to gcc 1.95, particularly
118 the routine output_prologue () in config/out-m88k.c.
120 subu r31,r31,n # stack pointer update
122 (st rn,r31,offset)? # save incoming regs
123 (st.d rn,r31,offset)?
125 (addu r30,r31,n)? # frame pointer update
127 (pic sequence)? # PIC code prologue
129 (or rn,rm,0)? # Move parameters to other regs
132 /* Macros for extracting fields from instructions. */
134 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
135 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
136 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
137 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
138 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
139 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
142 * prologue_insn_tbl is a table of instructions which may comprise a
143 * function prologue. Associated with each table entry (corresponding
144 * to a single instruction or group of instructions), is an action.
145 * This action is used by examine_prologue (below) to determine
146 * the state of certain machine registers and where the stack frame lives.
149 enum prologue_insn_action {
150 PIA_SKIP, /* don't care what the instruction does */
151 PIA_NOTE_ST, /* note register stored and where */
152 PIA_NOTE_STD, /* note pair of registers stored and where */
153 PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
154 PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
155 PIA_NOTE_PROLOGUE_END, /* no more prologue */
158 struct prologue_insns {
161 enum prologue_insn_action action;
164 struct prologue_insns prologue_insn_tbl[] = {
165 /* Various register move instructions */
166 { 0x58000000, 0xf800ffff, PIA_SKIP }, /* or/or.u with immed of 0 */
167 { 0xf4005800, 0xfc1fffe0, PIA_SKIP }, /* or rd, r0, rs */
168 { 0xf4005800, 0xfc00ffff, PIA_SKIP }, /* or rd, rs, r0 */
170 /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
171 { 0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT },
173 /* Frame pointer assignment: "addu r30, r31, n" */
174 { 0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT },
176 /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
177 { 0x241f0000, 0xfc1f0000, PIA_NOTE_ST }, /* st rx, sp, n */
178 { 0x201f0000, 0xfc1f0000, PIA_NOTE_STD }, /* st.d rs, sp, n */
180 /* Instructions needed for setting up r25 for pic code. */
181 { 0x5f200000, 0xffff0000, PIA_SKIP }, /* or.u r25, r0, offset_high */
182 { 0xcc000002, 0xffffffff, PIA_SKIP }, /* bsr.n Lab */
183 { 0x5b390000, 0xffff0000, PIA_SKIP }, /* or r25, r25, offset_low */
184 { 0xf7396001, 0xffffffff, PIA_SKIP }, /* Lab: addu r25, r25, r1 */
186 /* Various branch or jump instructions which have a delay slot -- these
187 do not form part of the prologue, but the instruction in the delay
188 slot might be a store instruction which should be noted. */
189 { 0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END },
190 /* br.n, bsr.n, bb0.n, or bb1.n */
191 { 0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END }, /* bcnd.n */
192 { 0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END } /* jmp.n or jsr.n */
197 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
198 is not the address of a valid instruction, the address of the next
199 instruction beyond ADDR otherwise. *PWORD1 receives the first word
200 of the instruction. */
202 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
203 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
205 /* Read the m88k instruction at 'memaddr' and return the address of
206 the next instruction after that, or 0 if 'memaddr' is not the
207 address of a valid instruction. The instruction
208 is stored at 'pword1'. */
211 next_insn (memaddr, pword1)
212 unsigned long *pword1;
215 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
216 return memaddr + BYTES_PER_88K_INSN;
219 /* Read a register from frames called by us (or from the hardware regs). */
222 read_next_frame_reg(frame, regno)
223 struct frame_info *frame;
226 for (; frame; frame = frame->next) {
227 if (regno == SP_REGNUM)
228 return FRAME_FP (frame);
229 else if (frame->fsr->regs[regno])
230 return read_memory_integer(frame->fsr->regs[regno], 4);
232 return read_register(regno);
235 /* Examine the prologue of a function. `ip' points to the first instruction.
236 `limit' is the limit of the prologue (e.g. the addr of the first
237 linenumber, or perhaps the program counter if we're stepping through).
238 `frame_sp' is the stack pointer value in use in this frame.
239 `fsr' is a pointer to a frame_saved_regs structure into which we put
240 info about the registers saved by this frame.
241 `fi' is a struct frame_info pointer; we fill in various fields in it
242 to reflect the offsets of the arg pointer and the locals pointer. */
245 examine_prologue (ip, limit, frame_sp, fsr, fi)
246 register CORE_ADDR ip;
247 register CORE_ADDR limit;
249 struct frame_saved_regs *fsr;
250 struct frame_info *fi;
252 register CORE_ADDR next_ip;
256 char must_adjust[32]; /* If set, must adjust offsets in fsr */
257 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
258 int fp_offset = -1; /* -1 means not set */
260 CORE_ADDR prologue_end = 0;
262 memset (must_adjust, '\0', sizeof (must_adjust));
263 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
267 struct prologue_insns *pip;
269 for (pip=prologue_insn_tbl; (insn & pip->mask) != pip->insn; )
270 if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
271 goto end_of_prologue_found; /* not a prologue insn */
277 if (sp_offset != -1) {
279 offset = ST_OFFSET (insn);
280 must_adjust[src] = 1;
281 fsr->regs[src++] = offset; /* Will be adjusted later */
282 if (pip->action == PIA_NOTE_STD && src < 32)
285 must_adjust[src] = 1;
286 fsr->regs[src++] = offset;
290 goto end_of_prologue_found;
292 case PIA_NOTE_SP_ADJUSTMENT:
294 sp_offset = -SUBU_OFFSET (insn);
296 goto end_of_prologue_found;
298 case PIA_NOTE_FP_ASSIGNMENT:
300 fp_offset = ADDU_OFFSET (insn);
302 goto end_of_prologue_found;
304 case PIA_NOTE_PROLOGUE_END:
315 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
318 end_of_prologue_found:
323 /* We're done with the prologue. If we don't care about the stack
324 frame itself, just return. (Note that fsr->regs has been trashed,
325 but the one caller who calls with fi==0 passes a dummy there.) */
333 sp_offset original (before any alloca calls) displacement of SP
336 fp_offset displacement from original SP to the FP for this frame
339 fsr->regs[0..31] displacement from original SP to the stack
340 location where reg[0..31] is stored.
342 must_adjust[0..31] set if corresponding offset was set.
344 If alloca has been called between the function prologue and the current
345 IP, then the current SP (frame_sp) will not be the original SP as set by
346 the function prologue. If the current SP is not the original SP, then the
347 compiler will have allocated an FP for this frame, fp_offset will be set,
348 and we can use it to calculate the original SP.
350 Then, we figure out where the arguments and locals are, and relocate the
351 offsets in fsr->regs to absolute addresses. */
353 if (fp_offset != -1) {
354 /* We have a frame pointer, so get it, and base our calc's on it. */
355 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
356 frame_sp = frame_fp - fp_offset;
358 /* We have no frame pointer, therefore frame_sp is still the same value
359 as set by prologue. But where is the frame itself? */
360 if (must_adjust[SRP_REGNUM]) {
361 /* Function header saved SRP (r1), the return address. Frame starts
362 4 bytes down from where it was saved. */
363 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
364 fi->locals_pointer = frame_fp;
366 /* Function header didn't save SRP (r1), so we are in a leaf fn or
367 are otherwise confused. */
372 /* The locals are relative to the FP (whether it exists as an allocated
373 register, or just as an assumed offset from the SP) */
374 fi->locals_pointer = frame_fp;
376 /* The arguments are just above the SP as it was before we adjusted it
378 fi->args_pointer = frame_sp - sp_offset;
380 /* Now that we know the SP value used by the prologue, we know where
381 it saved all the registers. */
382 for (src = 0; src < 32; src++)
383 if (must_adjust[src])
384 fsr->regs[src] += frame_sp;
386 /* The saved value of the SP is always known. */
388 if (fsr->regs[SP_REGNUM] != 0
389 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
390 fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
391 fsr->regs[SP_REGNUM],
392 frame_sp - sp_offset, sp_offset);
394 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
399 /* Given an ip value corresponding to the start of a function,
400 return the ip of the first instruction after the function
407 struct frame_saved_regs saved_regs_dummy;
408 struct symtab_and_line sal;
411 sal = find_pc_line (ip, 0);
412 limit = (sal.end) ? sal.end : 0xffffffff;
414 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
415 (struct frame_info *)0 ));
418 /* Put here the code to store, into a struct frame_saved_regs,
419 the addresses of the saved registers of frame described by FRAME_INFO.
420 This includes special registers such as pc and fp saved in special
421 ways in the stack frame. sp is even more special:
422 the address we return for it IS the sp for the next frame.
424 We cache the result of doing this in the frame_cache_obstack, since
425 it is fairly expensive. */
428 frame_find_saved_regs (fi, fsr)
429 struct frame_info *fi;
430 struct frame_saved_regs *fsr;
432 register struct frame_saved_regs *cache_fsr;
433 extern struct obstack frame_cache_obstack;
435 struct symtab_and_line sal;
440 cache_fsr = (struct frame_saved_regs *)
441 obstack_alloc (&frame_cache_obstack,
442 sizeof (struct frame_saved_regs));
443 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
446 /* Find the start and end of the function prologue. If the PC
447 is in the function prologue, we only consider the part that
448 has executed already. In the case where the PC is not in
449 the function prologue, we set limit to two instructions beyond
450 where the prologue ends in case if any of the prologue instructions
451 were moved into a delay slot of a branch instruction. */
453 ip = get_pc_function_start (fi->pc);
454 sal = find_pc_line (ip, 0);
455 limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
458 /* This will fill in fields in *fi as well as in cache_fsr. */
459 #ifdef SIGTRAMP_FRAME_FIXUP
460 if (fi->signal_handler_caller)
461 SIGTRAMP_FRAME_FIXUP(fi->frame);
463 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
464 #ifdef SIGTRAMP_SP_FIXUP
465 if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
466 SIGTRAMP_SP_FIXUP(fi->fsr->regs[SP_REGNUM]);
474 /* Return the address of the locals block for the frame
475 described by FI. Returns 0 if the address is unknown.
476 NOTE! Frame locals are referred to by negative offsets from the
477 argument pointer, so this is the same as frame_args_address(). */
480 frame_locals_address (fi)
481 struct frame_info *fi;
483 struct frame_saved_regs fsr;
485 if (fi->args_pointer) /* Cached value is likely there. */
486 return fi->args_pointer;
488 /* Nope, generate it. */
490 get_frame_saved_regs (fi, &fsr);
492 return fi->args_pointer;
495 /* Return the address of the argument block for the frame
496 described by FI. Returns 0 if the address is unknown. */
499 frame_args_address (fi)
500 struct frame_info *fi;
502 struct frame_saved_regs fsr;
504 if (fi->args_pointer) /* Cached value is likely there. */
505 return fi->args_pointer;
507 /* Nope, generate it. */
509 get_frame_saved_regs (fi, &fsr);
511 return fi->args_pointer;
514 /* Return the saved PC from this frame.
516 If the frame has a memory copy of SRP_REGNUM, use that. If not,
517 just use the register SRP_REGNUM itself. */
520 frame_saved_pc (frame)
521 struct frame_info *frame;
523 return read_next_frame_reg(frame, SRP_REGNUM);
527 #define DUMMY_FRAME_SIZE 192
530 write_word (sp, word)
534 register int len = REGISTER_SIZE;
535 char buffer[MAX_REGISTER_RAW_SIZE];
537 store_unsigned_integer (buffer, len, word);
538 write_memory (sp, buffer, len);
542 m88k_push_dummy_frame()
544 register CORE_ADDR sp = read_register (SP_REGNUM);
548 sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
550 for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
551 write_word (sp+offset, read_register(rn));
553 write_word (sp+offset, read_register (SXIP_REGNUM));
556 write_word (sp+offset, read_register (SNIP_REGNUM));
559 write_word (sp+offset, read_register (SFIP_REGNUM));
562 write_word (sp+offset, read_register (PSR_REGNUM));
565 write_word (sp+offset, read_register (FPSR_REGNUM));
568 write_word (sp+offset, read_register (FPCR_REGNUM));
571 write_register (SP_REGNUM, sp);
572 write_register (ACTUAL_FP_REGNUM, sp);
578 register struct frame_info *frame = get_current_frame ();
579 register CORE_ADDR fp;
581 struct frame_saved_regs fsr;
583 fp = FRAME_FP (frame);
584 get_frame_saved_regs (frame, &fsr);
586 if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), FRAME_FP (fi)))
588 /* FIXME: I think get_frame_saved_regs should be handling this so
589 that we can deal with the saved registers properly (e.g. frame
590 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
591 register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
594 for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
595 (void) write_register (regnum, read_memory_integer (sp+offset, 4));
597 write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
600 write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
603 write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
606 write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
609 write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
612 write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
618 for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
619 if (fsr.regs[regnum])
620 write_register (regnum,
621 read_memory_integer (fsr.regs[regnum], 4));
622 write_pc (frame_saved_pc (frame));
624 reinit_frame_cache ();
628 _initialize_m88k_tdep ()
630 tm_print_insn = print_insn_m88k;