1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
60 #include <sys/types.h>
69 int (*deprecated_ui_load_progress_hook) (const char *section,
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
79 static void clear_symtab_users_cleanup (void *ignore);
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
84 /* Functions this file defines. */
86 static void load_command (char *, int);
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
90 static void add_symbol_file_command (char *, int);
92 static const struct sym_fns *find_sym_fns (bfd *);
94 static void decrement_reading_symtab (void *);
96 static void overlay_invalidate_all (void);
98 static void overlay_auto_command (char *, int);
100 static void overlay_manual_command (char *, int);
102 static void overlay_off_command (char *, int);
104 static void overlay_load_command (char *, int);
106 static void overlay_command (char *, int);
108 static void simple_free_overlay_table (void);
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 static int simple_read_overlay_table (void);
115 static int simple_overlay_update_1 (struct obj_section *);
117 static void add_filename_language (char *ext, enum language lang);
119 static void info_ext_lang_command (char *args, int from_tty);
121 static void init_filename_language_table (void);
123 static void symfile_find_segment_sections (struct objfile *objfile);
125 void _initialize_symfile (void);
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
140 DEF_VEC_O (registered_sym_fns);
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
144 /* Values for "set print symbol-loading". */
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
156 static const char *print_symbol_loading = print_symbol_loading_full;
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
168 int auto_solib_add = 1;
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
180 print_symbol_loading_p (int from_tty, int exec, int full)
182 if (!from_tty && !info_verbose)
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
196 /* True if we are reading a symbol table. */
198 int currently_reading_symtab = 0;
201 decrement_reading_symtab (void *dummy)
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
211 increment_reading_symtab (void)
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
230 asection **lowest = (asection **) obj;
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
251 struct section_addr_info *sap;
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
269 struct section_addr_info *sap;
270 const struct target_section *stp;
273 sap = alloc_section_addr_info (end - start);
275 for (stp = start, oidx = 0; stp != end; stp++)
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
290 sap->num_sections = oidx;
295 /* Create a section_addr_info from section offsets in ABFD. */
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
300 struct section_addr_info *sap;
302 struct bfd_section *sec;
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
314 sap->num_sections = i;
319 /* Create a section_addr_info from section offsets in OBJFILE. */
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
324 struct section_addr_info *sap;
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
333 int sectindex = sap->other[i].sectindex;
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
343 free_section_addr_info (struct section_addr_info *sap)
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
352 /* Initialize OBJFILE's sect_index_* members. */
355 init_objfile_sect_indices (struct objfile *objfile)
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
362 objfile->sect_index_text = sect->index;
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
366 objfile->sect_index_data = sect->index;
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
370 objfile->sect_index_bss = sect->index;
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
374 objfile->sect_index_rodata = sect->index;
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
382 symfile_find_segment_sections (objfile);
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
393 for (i = 0; i < objfile->num_sections; i++)
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
400 if (i == objfile->num_sections)
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
413 /* The arguments to place_section. */
415 struct place_section_arg
417 struct section_offsets *offsets;
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
425 place_section (bfd *abfd, asection *sect, void *obj)
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
450 int indx = cur_sec->index;
452 /* We don't need to compare against ourself. */
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
476 /* Otherwise, we appear to be OK. So far. */
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
492 const struct section_addr_info *addrs)
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
501 const struct other_sections *osp;
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
510 section_offsets->offsets[osp->sectindex] = osp->addr;
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
521 addr_section_name (const char *s)
523 if (strcmp (s, ".dynbss") == 0)
525 if (strcmp (s, ".sdynbss") == 0)
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
535 addrs_section_compar (const void *ap, const void *bp)
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
545 return a->sectindex - b->sectindex;
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
554 struct other_sections **array;
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
563 qsort (array, i, sizeof (*array), addrs_section_compar);
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
621 while (*addrs_sorted)
623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
625 while (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
630 if (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
641 /* Never use the same ABFD entry twice. */
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
658 for (i = 0; i < addrs->num_sections; i++)
660 struct other_sections *sect = addrs_to_abfd_addrs[i];
664 /* This is the index used by BFD. */
665 addrs->other[i].sectindex = sect->sectindex;
667 if (addrs->other[i].addr != 0)
669 addrs->other[i].addr -= sect->addr;
670 lower_offset = addrs->other[i].addr;
673 addrs->other[i].addr = lower_offset;
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
690 created by prelink have no special flags.
692 For the sections `.bss' and `.sbss' see addr_section_name. */
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
695 || strcmp (sect_name, ".gnu.conflict") == 0
696 || (strcmp (sect_name, ".bss") == 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
707 addrs->other[i].addr = 0;
708 addrs->other[i].sectindex = -1;
712 do_cleanups (my_cleanup);
715 /* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
722 default_symfile_offsets (struct objfile *objfile,
723 const struct section_addr_info *addrs)
725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
739 struct place_section_arg arg;
740 bfd *abfd = objfile->obfd;
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
753 /* Pick non-overlapping offsets for sections the user did not
755 arg.offsets = objfile->section_offsets;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
792 exec_set_section_address (bfd_get_filename (abfd),
794 offsets[cur_sec->index]);
795 offsets[cur_sec->index] = 0;
800 /* Remember the bfd indexes for the .text, .data, .bss and
802 init_objfile_sect_indices (objfile);
805 /* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
811 struct symfile_segment_data *
812 default_symfile_segments (bfd *abfd)
816 struct symfile_segment_data *data;
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
839 data = XCNEW (struct symfile_segment_data);
840 data->num_segments = 1;
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
844 num_sections = bfd_count_sections (abfd);
845 data->segment_info = XCNEWVEC (int, num_sections);
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
854 vma = bfd_get_section_vma (abfd, sect);
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
860 data->segment_info[i] = 1;
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
869 /* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
873 read_symbols (struct objfile *objfile, int add_flags)
875 (*objfile->sf->sym_read) (objfile, add_flags);
876 objfile->per_bfd->minsyms_read = 1;
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
897 do_cleanups (cleanup);
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
903 /* Initialize entry point information for this objfile. */
906 init_entry_point_info (struct objfile *objfile)
908 struct entry_info *ei = &objfile->per_bfd->ei;
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
936 ei->entry_point_p = 0;
939 if (ei->entry_point_p)
941 struct obj_section *osect;
942 CORE_ADDR entry_point = ei->entry_point;
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
952 /* Remove any ISA markers, so that this matches entries in the
955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
960 struct bfd_section *sect = osect->the_bfd_section;
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
966 ei->the_bfd_section_index
967 = gdb_bfd_section_index (objfile->obfd, sect);
974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
978 /* Process a symbol file, as either the main file or as a dynamically
981 This function does not set the OBJFILE's entry-point info.
983 OBJFILE is where the symbols are to be read from.
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
1000 syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
1004 struct section_addr_info *local_addr = NULL;
1005 struct cleanup *old_chain;
1006 const int mainline = add_flags & SYMFILE_MAINLINE;
1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1010 if (objfile->sf == NULL)
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1044 /* Since no error yet, throw away the old symbol table. */
1046 if (symfile_objfile != NULL)
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1057 (*objfile->sf->sym_new_init) (objfile);
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1078 read_symbols (objfile, add_flags);
1080 /* Discard cleanups as symbol reading was successful. */
1082 discard_cleanups (old_chain);
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1103 finish_new_objfile (struct objfile *objfile, int add_flags)
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1113 clear_symtab_users (add_flags);
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1117 breakpoint_re_set ();
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1124 /* Process a symbol file, as either the main file or as a dynamically
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1130 For NAME description see allocate_objfile's definition.
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1156 if (readnow_symbol_files)
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1165 if ((have_full_symbols () || have_partial_symbols ())
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1175 add_separate_debug_objfile (objfile, parent);
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1188 gdb_flush (gdb_stdout);
1191 syms_from_objfile (objfile, addrs, add_flags);
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1198 if ((flags & OBJF_READNOW))
1202 printf_unfiltered (_("expanding to full symbols..."));
1204 gdb_flush (gdb_stdout);
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1211 if (should_print && !objfile_has_symbols (objfile))
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1223 printf_unfiltered (_("done.\n"));
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1229 gdb_flush (gdb_stdout);
1231 if (objfile->sf == NULL)
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1237 finish_new_objfile (objfile, add_flags);
1239 observer_notify_new_objfile (objfile);
1241 bfd_cache_close_all ();
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1252 struct objfile *new_objfile;
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
1262 new_objfile = symbol_file_add_with_addrs
1263 (bfd, name, symfile_flags, sap,
1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1268 do_cleanups (my_cleanup);
1271 /* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
1273 See symbol_file_add_with_addrs's comments for details. */
1276 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277 struct section_addr_info *addrs,
1278 int flags, struct objfile *parent)
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1288 symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1309 symbol_file_add_main (const char *args, int from_tty)
1311 symbol_file_add_main_1 (args, from_tty, 0);
1315 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1320 symbol_file_add (args, add_flags, NULL, flags);
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1331 symbol_file_clear (int from_tty)
1333 if ((have_full_symbols () || have_partial_symbols ())
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1345 free_all_objfiles ();
1347 gdb_assert (symfile_objfile == NULL);
1349 printf_unfiltered (_("No symbol file now.\n"));
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1356 unsigned long file_crc;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1371 abfd = gdb_bfd_open (name, gnutarget, -1);
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
1387 if (bfd_stat (abfd, &abfd_stat) == 0
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1394 gdb_bfd_unref (abfd);
1397 verified_as_different = 1;
1400 verified_as_different = 0;
1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1404 gdb_bfd_unref (abfd);
1409 if (crc != file_crc)
1411 unsigned long parent_crc;
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
1417 if (!verified_as_different)
1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1423 if (verified_as_different || parent_crc != file_crc)
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
1426 name, objfile_name (parent_objfile));
1434 char *debug_file_directory = NULL;
1436 show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
1445 #if ! defined (DEBUG_SUBDIRECTORY)
1446 #define DEBUG_SUBDIRECTORY ".debug"
1449 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1457 find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1474 debugfile = xmalloc (strlen (debug_file_directory) + 1
1476 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen (debuglink)
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, debuglink);
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1492 strcat (debugfile, debuglink);
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1497 /* Then try in the global debugfile directories.
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 strcpy (debugfile, debugdir);
1508 strcat (debugfile, "/");
1509 strcat (debugfile, dir);
1510 strcat (debugfile, debuglink);
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1514 do_cleanups (back_to);
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
1522 strlen (gdb_sysroot)) == 0
1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1527 strcat (debugfile, "/");
1528 strcat (debugfile, debuglink);
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1532 do_cleanups (back_to);
1538 do_cleanups (back_to);
1543 /* Modify PATH to contain only "[/]directory/" part of PATH.
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1548 terminate_after_last_dir_separator (char *path)
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1562 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1566 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1569 char *dir, *canon_dir;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1576 if (debuglink == NULL)
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1583 cleanups = make_cleanup (xfree, debuglink);
1584 dir = xstrdup (objfile_name (objfile));
1585 make_cleanup (xfree, dir);
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1593 if (debugfile == NULL)
1595 /* For PR gdb/9538, try again with realpath (if different from the
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1623 do_cleanups (cleanups);
1627 /* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
1629 the command is rather bizarre:
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1638 3. The order of options matters, which is contrary to GNU
1639 conventions (because it is confusing and inconvenient). */
1642 symbol_file_command (char *args, int from_tty)
1648 symbol_file_clear (from_tty);
1652 char **argv = gdb_buildargv (args);
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1657 cleanups = make_cleanup_freeargv (argv);
1658 while (*argv != NULL)
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
1663 error (_("unknown option `%s'"), *argv);
1666 symbol_file_add_main_1 (*argv, from_tty, flags);
1674 error (_("no symbol file name was specified"));
1676 do_cleanups (cleanups);
1680 /* Set the initial language.
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1692 set_initial_language (void)
1694 enum language lang = main_language ();
1696 if (lang == language_unknown)
1698 char *name = main_name ();
1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1702 lang = SYMBOL_LANGUAGE (sym);
1705 if (lang == language_unknown)
1707 /* Make C the default language */
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
1715 /* Open the file specified by NAME and hand it off to BFD for
1716 preliminary analysis. Return a newly initialized bfd *, which
1717 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1718 absolute). In case of trouble, error() is called. */
1721 symfile_bfd_open (const char *name)
1725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1727 if (!is_target_filename (name))
1729 char *expanded_name, *absolute_name;
1731 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1733 /* Look down path for it, allocate 2nd new malloc'd copy. */
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1737 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1740 char *exename = alloca (strlen (expanded_name) + 5);
1742 strcat (strcpy (exename, expanded_name), ".exe");
1743 desc = openp (getenv ("PATH"),
1744 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1745 exename, O_RDONLY | O_BINARY, &absolute_name);
1750 make_cleanup (xfree, expanded_name);
1751 perror_with_name (expanded_name);
1754 xfree (expanded_name);
1755 make_cleanup (xfree, absolute_name);
1756 name = absolute_name;
1759 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1761 error (_("`%s': can't open to read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1764 if (!gdb_bfd_has_target_filename (sym_bfd))
1765 bfd_set_cacheable (sym_bfd, 1);
1767 if (!bfd_check_format (sym_bfd, bfd_object))
1769 make_cleanup_bfd_unref (sym_bfd);
1770 error (_("`%s': can't read symbols: %s."), name,
1771 bfd_errmsg (bfd_get_error ()));
1774 do_cleanups (back_to);
1779 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1780 the section was not found. */
1783 get_section_index (struct objfile *objfile, char *section_name)
1785 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1793 /* Link SF into the global symtab_fns list.
1794 FLAVOUR is the file format that SF handles.
1795 Called on startup by the _initialize routine in each object file format
1796 reader, to register information about each format the reader is prepared
1800 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1802 registered_sym_fns fns = { flavour, sf };
1804 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1807 /* Initialize OBJFILE to read symbols from its associated BFD. It
1808 either returns or calls error(). The result is an initialized
1809 struct sym_fns in the objfile structure, that contains cached
1810 information about the symbol file. */
1812 static const struct sym_fns *
1813 find_sym_fns (bfd *abfd)
1815 registered_sym_fns *rsf;
1816 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1819 if (our_flavour == bfd_target_srec_flavour
1820 || our_flavour == bfd_target_ihex_flavour
1821 || our_flavour == bfd_target_tekhex_flavour)
1822 return NULL; /* No symbols. */
1824 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1825 if (our_flavour == rsf->sym_flavour)
1826 return rsf->sym_fns;
1828 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1829 bfd_get_target (abfd));
1833 /* This function runs the load command of our current target. */
1836 load_command (char *arg, int from_tty)
1838 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1852 parg = arg = get_exec_file (1);
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = xmalloc (strlen (arg) + count + 1 );
1868 make_cleanup (xfree, temp);
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1878 strcpy (ptemp, prev);
1884 target_load (arg, from_tty);
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
1890 do_cleanups (cleanup);
1893 /* This version of "load" should be usable for any target. Currently
1894 it is just used for remote targets, not inftarg.c or core files,
1895 on the theory that only in that case is it useful.
1897 Avoiding xmodem and the like seems like a win (a) because we don't have
1898 to worry about finding it, and (b) On VMS, fork() is very slow and so
1899 we don't want to run a subprocess. On the other hand, I'm not sure how
1900 performance compares. */
1902 static int validate_download = 0;
1904 /* Callback service function for generic_load (bfd_map_over_sections). */
1907 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1909 bfd_size_type *sum = data;
1911 *sum += bfd_get_section_size (asec);
1914 /* Opaque data for load_section_callback. */
1915 struct load_section_data {
1916 CORE_ADDR load_offset;
1917 struct load_progress_data *progress_data;
1918 VEC(memory_write_request_s) *requests;
1921 /* Opaque data for load_progress. */
1922 struct load_progress_data {
1923 /* Cumulative data. */
1924 unsigned long write_count;
1925 unsigned long data_count;
1926 bfd_size_type total_size;
1929 /* Opaque data for load_progress for a single section. */
1930 struct load_progress_section_data {
1931 struct load_progress_data *cumulative;
1933 /* Per-section data. */
1934 const char *section_name;
1935 ULONGEST section_sent;
1936 ULONGEST section_size;
1941 /* Target write callback routine for progress reporting. */
1944 load_progress (ULONGEST bytes, void *untyped_arg)
1946 struct load_progress_section_data *args = untyped_arg;
1947 struct load_progress_data *totals;
1950 /* Writing padding data. No easy way to get at the cumulative
1951 stats, so just ignore this. */
1954 totals = args->cumulative;
1956 if (bytes == 0 && args->section_sent == 0)
1958 /* The write is just starting. Let the user know we've started
1960 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1961 args->section_name, hex_string (args->section_size),
1962 paddress (target_gdbarch (), args->lma));
1966 if (validate_download)
1968 /* Broken memories and broken monitors manifest themselves here
1969 when bring new computers to life. This doubles already slow
1971 /* NOTE: cagney/1999-10-18: A more efficient implementation
1972 might add a verify_memory() method to the target vector and
1973 then use that. remote.c could implement that method using
1974 the ``qCRC'' packet. */
1975 gdb_byte *check = xmalloc (bytes);
1976 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1978 if (target_read_memory (args->lma, check, bytes) != 0)
1979 error (_("Download verify read failed at %s"),
1980 paddress (target_gdbarch (), args->lma));
1981 if (memcmp (args->buffer, check, bytes) != 0)
1982 error (_("Download verify compare failed at %s"),
1983 paddress (target_gdbarch (), args->lma));
1984 do_cleanups (verify_cleanups);
1986 totals->data_count += bytes;
1988 args->buffer += bytes;
1989 totals->write_count += 1;
1990 args->section_sent += bytes;
1991 if (check_quit_flag ()
1992 || (deprecated_ui_load_progress_hook != NULL
1993 && deprecated_ui_load_progress_hook (args->section_name,
1994 args->section_sent)))
1995 error (_("Canceled the download"));
1997 if (deprecated_show_load_progress != NULL)
1998 deprecated_show_load_progress (args->section_name,
2002 totals->total_size);
2005 /* Callback service function for generic_load (bfd_map_over_sections). */
2008 load_section_callback (bfd *abfd, asection *asec, void *data)
2010 struct memory_write_request *new_request;
2011 struct load_section_data *args = data;
2012 struct load_progress_section_data *section_data;
2013 bfd_size_type size = bfd_get_section_size (asec);
2015 const char *sect_name = bfd_get_section_name (abfd, asec);
2017 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2023 new_request = VEC_safe_push (memory_write_request_s,
2024 args->requests, NULL);
2025 memset (new_request, 0, sizeof (struct memory_write_request));
2026 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2027 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2028 new_request->end = new_request->begin + size; /* FIXME Should size
2030 new_request->data = xmalloc (size);
2031 new_request->baton = section_data;
2033 buffer = new_request->data;
2035 section_data->cumulative = args->progress_data;
2036 section_data->section_name = sect_name;
2037 section_data->section_size = size;
2038 section_data->lma = new_request->begin;
2039 section_data->buffer = buffer;
2041 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2044 /* Clean up an entire memory request vector, including load
2045 data and progress records. */
2048 clear_memory_write_data (void *arg)
2050 VEC(memory_write_request_s) **vec_p = arg;
2051 VEC(memory_write_request_s) *vec = *vec_p;
2053 struct memory_write_request *mr;
2055 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2060 VEC_free (memory_write_request_s, vec);
2064 generic_load (const char *args, int from_tty)
2067 struct timeval start_time, end_time;
2069 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2070 struct load_section_data cbdata;
2071 struct load_progress_data total_progress;
2072 struct ui_out *uiout = current_uiout;
2077 memset (&cbdata, 0, sizeof (cbdata));
2078 memset (&total_progress, 0, sizeof (total_progress));
2079 cbdata.progress_data = &total_progress;
2081 make_cleanup (clear_memory_write_data, &cbdata.requests);
2084 error_no_arg (_("file to load"));
2086 argv = gdb_buildargv (args);
2087 make_cleanup_freeargv (argv);
2089 filename = tilde_expand (argv[0]);
2090 make_cleanup (xfree, filename);
2092 if (argv[1] != NULL)
2096 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2098 /* If the last word was not a valid number then
2099 treat it as a file name with spaces in. */
2100 if (argv[1] == endptr)
2101 error (_("Invalid download offset:%s."), argv[1]);
2103 if (argv[2] != NULL)
2104 error (_("Too many parameters."));
2107 /* Open the file for loading. */
2108 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2109 if (loadfile_bfd == NULL)
2111 perror_with_name (filename);
2115 make_cleanup_bfd_unref (loadfile_bfd);
2117 if (!bfd_check_format (loadfile_bfd, bfd_object))
2119 error (_("\"%s\" is not an object file: %s"), filename,
2120 bfd_errmsg (bfd_get_error ()));
2123 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2124 (void *) &total_progress.total_size);
2126 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2128 gettimeofday (&start_time, NULL);
2130 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2131 load_progress) != 0)
2132 error (_("Load failed"));
2134 gettimeofday (&end_time, NULL);
2136 entry = bfd_get_start_address (loadfile_bfd);
2137 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2138 ui_out_text (uiout, "Start address ");
2139 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2140 ui_out_text (uiout, ", load size ");
2141 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2142 ui_out_text (uiout, "\n");
2143 /* We were doing this in remote-mips.c, I suspect it is right
2144 for other targets too. */
2145 regcache_write_pc (get_current_regcache (), entry);
2147 /* Reset breakpoints, now that we have changed the load image. For
2148 instance, breakpoints may have been set (or reset, by
2149 post_create_inferior) while connected to the target but before we
2150 loaded the program. In that case, the prologue analyzer could
2151 have read instructions from the target to find the right
2152 breakpoint locations. Loading has changed the contents of that
2155 breakpoint_re_set ();
2157 /* FIXME: are we supposed to call symbol_file_add or not? According
2158 to a comment from remote-mips.c (where a call to symbol_file_add
2159 was commented out), making the call confuses GDB if more than one
2160 file is loaded in. Some targets do (e.g., remote-vx.c) but
2161 others don't (or didn't - perhaps they have all been deleted). */
2163 print_transfer_performance (gdb_stdout, total_progress.data_count,
2164 total_progress.write_count,
2165 &start_time, &end_time);
2167 do_cleanups (old_cleanups);
2170 /* Report how fast the transfer went. */
2173 print_transfer_performance (struct ui_file *stream,
2174 unsigned long data_count,
2175 unsigned long write_count,
2176 const struct timeval *start_time,
2177 const struct timeval *end_time)
2179 ULONGEST time_count;
2180 struct ui_out *uiout = current_uiout;
2182 /* Compute the elapsed time in milliseconds, as a tradeoff between
2183 accuracy and overflow. */
2184 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2185 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2187 ui_out_text (uiout, "Transfer rate: ");
2190 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2192 if (ui_out_is_mi_like_p (uiout))
2194 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2195 ui_out_text (uiout, " bits/sec");
2197 else if (rate < 1024)
2199 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2200 ui_out_text (uiout, " bytes/sec");
2204 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2205 ui_out_text (uiout, " KB/sec");
2210 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2211 ui_out_text (uiout, " bits in <1 sec");
2213 if (write_count > 0)
2215 ui_out_text (uiout, ", ");
2216 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2217 ui_out_text (uiout, " bytes/write");
2219 ui_out_text (uiout, ".\n");
2222 /* This function allows the addition of incrementally linked object files.
2223 It does not modify any state in the target, only in the debugger. */
2224 /* Note: ezannoni 2000-04-13 This function/command used to have a
2225 special case syntax for the rombug target (Rombug is the boot
2226 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2227 rombug case, the user doesn't need to supply a text address,
2228 instead a call to target_link() (in target.c) would supply the
2229 value to use. We are now discontinuing this type of ad hoc syntax. */
2232 add_symbol_file_command (char *args, int from_tty)
2234 struct gdbarch *gdbarch = get_current_arch ();
2235 char *filename = NULL;
2236 int flags = OBJF_USERLOADED | OBJF_SHARED;
2238 int section_index = 0;
2242 int expecting_sec_name = 0;
2243 int expecting_sec_addr = 0;
2245 struct objfile *objf;
2253 struct section_addr_info *section_addrs;
2254 struct sect_opt *sect_opts = NULL;
2255 size_t num_sect_opts = 0;
2256 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2259 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2260 * sizeof (struct sect_opt));
2265 error (_("add-symbol-file takes a file name and an address"));
2267 argv = gdb_buildargv (args);
2268 make_cleanup_freeargv (argv);
2270 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2272 /* Process the argument. */
2275 /* The first argument is the file name. */
2276 filename = tilde_expand (arg);
2277 make_cleanup (xfree, filename);
2279 else if (argcnt == 1)
2281 /* The second argument is always the text address at which
2282 to load the program. */
2283 sect_opts[section_index].name = ".text";
2284 sect_opts[section_index].value = arg;
2285 if (++section_index >= num_sect_opts)
2288 sect_opts = ((struct sect_opt *)
2289 xrealloc (sect_opts,
2291 * sizeof (struct sect_opt)));
2296 /* It's an option (starting with '-') or it's an argument
2298 if (expecting_sec_name)
2300 sect_opts[section_index].name = arg;
2301 expecting_sec_name = 0;
2303 else if (expecting_sec_addr)
2305 sect_opts[section_index].value = arg;
2306 expecting_sec_addr = 0;
2307 if (++section_index >= num_sect_opts)
2310 sect_opts = ((struct sect_opt *)
2311 xrealloc (sect_opts,
2313 * sizeof (struct sect_opt)));
2316 else if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2324 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2325 " [-readnow] [-s <secname> <addr>]*"));
2329 /* This command takes at least two arguments. The first one is a
2330 filename, and the second is the address where this file has been
2331 loaded. Abort now if this address hasn't been provided by the
2333 if (section_index < 1)
2334 error (_("The address where %s has been loaded is missing"), filename);
2336 /* Print the prompt for the query below. And save the arguments into
2337 a sect_addr_info structure to be passed around to other
2338 functions. We have to split this up into separate print
2339 statements because hex_string returns a local static
2342 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2343 section_addrs = alloc_section_addr_info (section_index);
2344 make_cleanup (xfree, section_addrs);
2345 for (i = 0; i < section_index; i++)
2348 char *val = sect_opts[i].value;
2349 char *sec = sect_opts[i].name;
2351 addr = parse_and_eval_address (val);
2353 /* Here we store the section offsets in the order they were
2354 entered on the command line. */
2355 section_addrs->other[sec_num].name = sec;
2356 section_addrs->other[sec_num].addr = addr;
2357 printf_unfiltered ("\t%s_addr = %s\n", sec,
2358 paddress (gdbarch, addr));
2361 /* The object's sections are initialized when a
2362 call is made to build_objfile_section_table (objfile).
2363 This happens in reread_symbols.
2364 At this point, we don't know what file type this is,
2365 so we can't determine what section names are valid. */
2367 section_addrs->num_sections = sec_num;
2369 if (from_tty && (!query ("%s", "")))
2370 error (_("Not confirmed."));
2372 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2373 section_addrs, flags);
2375 add_target_sections_of_objfile (objf);
2377 /* Getting new symbols may change our opinion about what is
2379 reinit_frame_cache ();
2380 do_cleanups (my_cleanups);
2384 /* This function removes a symbol file that was added via add-symbol-file. */
2387 remove_symbol_file_command (char *args, int from_tty)
2390 struct objfile *objf = NULL;
2391 struct cleanup *my_cleanups;
2392 struct program_space *pspace = current_program_space;
2393 struct gdbarch *gdbarch = get_current_arch ();
2398 error (_("remove-symbol-file: no symbol file provided"));
2400 my_cleanups = make_cleanup (null_cleanup, NULL);
2402 argv = gdb_buildargv (args);
2404 if (strcmp (argv[0], "-a") == 0)
2406 /* Interpret the next argument as an address. */
2409 if (argv[1] == NULL)
2410 error (_("Missing address argument"));
2412 if (argv[2] != NULL)
2413 error (_("Junk after %s"), argv[1]);
2415 addr = parse_and_eval_address (argv[1]);
2419 if ((objf->flags & OBJF_USERLOADED) != 0
2420 && (objf->flags & OBJF_SHARED) != 0
2421 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2425 else if (argv[0] != NULL)
2427 /* Interpret the current argument as a file name. */
2430 if (argv[1] != NULL)
2431 error (_("Junk after %s"), argv[0]);
2433 filename = tilde_expand (argv[0]);
2434 make_cleanup (xfree, filename);
2438 if ((objf->flags & OBJF_USERLOADED) != 0
2439 && (objf->flags & OBJF_SHARED) != 0
2440 && objf->pspace == pspace
2441 && filename_cmp (filename, objfile_name (objf)) == 0)
2447 error (_("No symbol file found"));
2450 && !query (_("Remove symbol table from file \"%s\"? "),
2451 objfile_name (objf)))
2452 error (_("Not confirmed."));
2454 free_objfile (objf);
2455 clear_symtab_users (0);
2457 do_cleanups (my_cleanups);
2460 typedef struct objfile *objfilep;
2462 DEF_VEC_P (objfilep);
2464 /* Re-read symbols if a symbol-file has changed. */
2467 reread_symbols (void)
2469 struct objfile *objfile;
2471 struct stat new_statbuf;
2473 VEC (objfilep) *new_objfiles = NULL;
2474 struct cleanup *all_cleanups;
2476 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2478 /* With the addition of shared libraries, this should be modified,
2479 the load time should be saved in the partial symbol tables, since
2480 different tables may come from different source files. FIXME.
2481 This routine should then walk down each partial symbol table
2482 and see if the symbol table that it originates from has been changed. */
2484 for (objfile = object_files; objfile; objfile = objfile->next)
2486 if (objfile->obfd == NULL)
2489 /* Separate debug objfiles are handled in the main objfile. */
2490 if (objfile->separate_debug_objfile_backlink)
2493 /* If this object is from an archive (what you usually create with
2494 `ar', often called a `static library' on most systems, though
2495 a `shared library' on AIX is also an archive), then you should
2496 stat on the archive name, not member name. */
2497 if (objfile->obfd->my_archive)
2498 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2500 res = stat (objfile_name (objfile), &new_statbuf);
2503 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2504 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2505 objfile_name (objfile));
2508 new_modtime = new_statbuf.st_mtime;
2509 if (new_modtime != objfile->mtime)
2511 struct cleanup *old_cleanups;
2512 struct section_offsets *offsets;
2514 char *original_name;
2516 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2517 objfile_name (objfile));
2519 /* There are various functions like symbol_file_add,
2520 symfile_bfd_open, syms_from_objfile, etc., which might
2521 appear to do what we want. But they have various other
2522 effects which we *don't* want. So we just do stuff
2523 ourselves. We don't worry about mapped files (for one thing,
2524 any mapped file will be out of date). */
2526 /* If we get an error, blow away this objfile (not sure if
2527 that is the correct response for things like shared
2529 old_cleanups = make_cleanup_free_objfile (objfile);
2530 /* We need to do this whenever any symbols go away. */
2531 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2533 if (exec_bfd != NULL
2534 && filename_cmp (bfd_get_filename (objfile->obfd),
2535 bfd_get_filename (exec_bfd)) == 0)
2537 /* Reload EXEC_BFD without asking anything. */
2539 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2542 /* Keep the calls order approx. the same as in free_objfile. */
2544 /* Free the separate debug objfiles. It will be
2545 automatically recreated by sym_read. */
2546 free_objfile_separate_debug (objfile);
2548 /* Remove any references to this objfile in the global
2550 preserve_values (objfile);
2552 /* Nuke all the state that we will re-read. Much of the following
2553 code which sets things to NULL really is necessary to tell
2554 other parts of GDB that there is nothing currently there.
2556 Try to keep the freeing order compatible with free_objfile. */
2558 if (objfile->sf != NULL)
2560 (*objfile->sf->sym_finish) (objfile);
2563 clear_objfile_data (objfile);
2565 /* Clean up any state BFD has sitting around. */
2567 struct bfd *obfd = objfile->obfd;
2568 char *obfd_filename;
2570 obfd_filename = bfd_get_filename (objfile->obfd);
2571 /* Open the new BFD before freeing the old one, so that
2572 the filename remains live. */
2573 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2574 if (objfile->obfd == NULL)
2576 /* We have to make a cleanup and error here, rather
2577 than erroring later, because once we unref OBFD,
2578 OBFD_FILENAME will be freed. */
2579 make_cleanup_bfd_unref (obfd);
2580 error (_("Can't open %s to read symbols."), obfd_filename);
2582 gdb_bfd_unref (obfd);
2585 original_name = xstrdup (objfile->original_name);
2586 make_cleanup (xfree, original_name);
2588 /* bfd_openr sets cacheable to true, which is what we want. */
2589 if (!bfd_check_format (objfile->obfd, bfd_object))
2590 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2591 bfd_errmsg (bfd_get_error ()));
2593 /* Save the offsets, we will nuke them with the rest of the
2595 num_offsets = objfile->num_sections;
2596 offsets = ((struct section_offsets *)
2597 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2598 memcpy (offsets, objfile->section_offsets,
2599 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2601 /* FIXME: Do we have to free a whole linked list, or is this
2603 if (objfile->global_psymbols.list)
2604 xfree (objfile->global_psymbols.list);
2605 memset (&objfile->global_psymbols, 0,
2606 sizeof (objfile->global_psymbols));
2607 if (objfile->static_psymbols.list)
2608 xfree (objfile->static_psymbols.list);
2609 memset (&objfile->static_psymbols, 0,
2610 sizeof (objfile->static_psymbols));
2612 /* Free the obstacks for non-reusable objfiles. */
2613 psymbol_bcache_free (objfile->psymbol_cache);
2614 objfile->psymbol_cache = psymbol_bcache_init ();
2615 obstack_free (&objfile->objfile_obstack, 0);
2616 objfile->sections = NULL;
2617 objfile->compunit_symtabs = NULL;
2618 objfile->psymtabs = NULL;
2619 objfile->psymtabs_addrmap = NULL;
2620 objfile->free_psymtabs = NULL;
2621 objfile->template_symbols = NULL;
2623 /* obstack_init also initializes the obstack so it is
2624 empty. We could use obstack_specify_allocation but
2625 gdb_obstack.h specifies the alloc/dealloc functions. */
2626 obstack_init (&objfile->objfile_obstack);
2628 /* set_objfile_per_bfd potentially allocates the per-bfd
2629 data on the objfile's obstack (if sharing data across
2630 multiple users is not possible), so it's important to
2631 do it *after* the obstack has been initialized. */
2632 set_objfile_per_bfd (objfile);
2634 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2636 strlen (original_name));
2638 /* Reset the sym_fns pointer. The ELF reader can change it
2639 based on whether .gdb_index is present, and we need it to
2640 start over. PR symtab/15885 */
2641 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2643 build_objfile_section_table (objfile);
2644 terminate_minimal_symbol_table (objfile);
2646 /* We use the same section offsets as from last time. I'm not
2647 sure whether that is always correct for shared libraries. */
2648 objfile->section_offsets = (struct section_offsets *)
2649 obstack_alloc (&objfile->objfile_obstack,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 memcpy (objfile->section_offsets, offsets,
2652 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2653 objfile->num_sections = num_offsets;
2655 /* What the hell is sym_new_init for, anyway? The concept of
2656 distinguishing between the main file and additional files
2657 in this way seems rather dubious. */
2658 if (objfile == symfile_objfile)
2660 (*objfile->sf->sym_new_init) (objfile);
2663 (*objfile->sf->sym_init) (objfile);
2664 clear_complaints (&symfile_complaints, 1, 1);
2666 objfile->flags &= ~OBJF_PSYMTABS_READ;
2667 read_symbols (objfile, 0);
2669 if (!objfile_has_symbols (objfile))
2672 printf_unfiltered (_("(no debugging symbols found)\n"));
2676 /* We're done reading the symbol file; finish off complaints. */
2677 clear_complaints (&symfile_complaints, 0, 1);
2679 /* Getting new symbols may change our opinion about what is
2682 reinit_frame_cache ();
2684 /* Discard cleanups as symbol reading was successful. */
2685 discard_cleanups (old_cleanups);
2687 /* If the mtime has changed between the time we set new_modtime
2688 and now, we *want* this to be out of date, so don't call stat
2690 objfile->mtime = new_modtime;
2691 init_entry_point_info (objfile);
2693 VEC_safe_push (objfilep, new_objfiles, objfile);
2701 /* Notify objfiles that we've modified objfile sections. */
2702 objfiles_changed ();
2704 clear_symtab_users (0);
2706 /* clear_objfile_data for each objfile was called before freeing it and
2707 observer_notify_new_objfile (NULL) has been called by
2708 clear_symtab_users above. Notify the new files now. */
2709 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2710 observer_notify_new_objfile (objfile);
2712 /* At least one objfile has changed, so we can consider that
2713 the executable we're debugging has changed too. */
2714 observer_notify_executable_changed ();
2717 do_cleanups (all_cleanups);
2728 static filename_language *filename_language_table;
2729 static int fl_table_size, fl_table_next;
2732 add_filename_language (char *ext, enum language lang)
2734 if (fl_table_next >= fl_table_size)
2736 fl_table_size += 10;
2737 filename_language_table =
2738 xrealloc (filename_language_table,
2739 fl_table_size * sizeof (*filename_language_table));
2742 filename_language_table[fl_table_next].ext = xstrdup (ext);
2743 filename_language_table[fl_table_next].lang = lang;
2747 static char *ext_args;
2749 show_ext_args (struct ui_file *file, int from_tty,
2750 struct cmd_list_element *c, const char *value)
2752 fprintf_filtered (file,
2753 _("Mapping between filename extension "
2754 "and source language is \"%s\".\n"),
2759 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2762 char *cp = ext_args;
2765 /* First arg is filename extension, starting with '.' */
2767 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2769 /* Find end of first arg. */
2770 while (*cp && !isspace (*cp))
2774 error (_("'%s': two arguments required -- "
2775 "filename extension and language"),
2778 /* Null-terminate first arg. */
2781 /* Find beginning of second arg, which should be a source language. */
2782 cp = skip_spaces (cp);
2785 error (_("'%s': two arguments required -- "
2786 "filename extension and language"),
2789 /* Lookup the language from among those we know. */
2790 lang = language_enum (cp);
2792 /* Now lookup the filename extension: do we already know it? */
2793 for (i = 0; i < fl_table_next; i++)
2794 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2797 if (i >= fl_table_next)
2799 /* New file extension. */
2800 add_filename_language (ext_args, lang);
2804 /* Redefining a previously known filename extension. */
2807 /* query ("Really make files of type %s '%s'?", */
2808 /* ext_args, language_str (lang)); */
2810 xfree (filename_language_table[i].ext);
2811 filename_language_table[i].ext = xstrdup (ext_args);
2812 filename_language_table[i].lang = lang;
2817 info_ext_lang_command (char *args, int from_tty)
2821 printf_filtered (_("Filename extensions and the languages they represent:"));
2822 printf_filtered ("\n\n");
2823 for (i = 0; i < fl_table_next; i++)
2824 printf_filtered ("\t%s\t- %s\n",
2825 filename_language_table[i].ext,
2826 language_str (filename_language_table[i].lang));
2830 init_filename_language_table (void)
2832 if (fl_table_size == 0) /* Protect against repetition. */
2836 filename_language_table =
2837 xmalloc (fl_table_size * sizeof (*filename_language_table));
2838 add_filename_language (".c", language_c);
2839 add_filename_language (".d", language_d);
2840 add_filename_language (".C", language_cplus);
2841 add_filename_language (".cc", language_cplus);
2842 add_filename_language (".cp", language_cplus);
2843 add_filename_language (".cpp", language_cplus);
2844 add_filename_language (".cxx", language_cplus);
2845 add_filename_language (".c++", language_cplus);
2846 add_filename_language (".java", language_java);
2847 add_filename_language (".class", language_java);
2848 add_filename_language (".m", language_objc);
2849 add_filename_language (".f", language_fortran);
2850 add_filename_language (".F", language_fortran);
2851 add_filename_language (".for", language_fortran);
2852 add_filename_language (".FOR", language_fortran);
2853 add_filename_language (".ftn", language_fortran);
2854 add_filename_language (".FTN", language_fortran);
2855 add_filename_language (".fpp", language_fortran);
2856 add_filename_language (".FPP", language_fortran);
2857 add_filename_language (".f90", language_fortran);
2858 add_filename_language (".F90", language_fortran);
2859 add_filename_language (".f95", language_fortran);
2860 add_filename_language (".F95", language_fortran);
2861 add_filename_language (".f03", language_fortran);
2862 add_filename_language (".F03", language_fortran);
2863 add_filename_language (".f08", language_fortran);
2864 add_filename_language (".F08", language_fortran);
2865 add_filename_language (".s", language_asm);
2866 add_filename_language (".sx", language_asm);
2867 add_filename_language (".S", language_asm);
2868 add_filename_language (".pas", language_pascal);
2869 add_filename_language (".p", language_pascal);
2870 add_filename_language (".pp", language_pascal);
2871 add_filename_language (".adb", language_ada);
2872 add_filename_language (".ads", language_ada);
2873 add_filename_language (".a", language_ada);
2874 add_filename_language (".ada", language_ada);
2875 add_filename_language (".dg", language_ada);
2880 deduce_language_from_filename (const char *filename)
2885 if (filename != NULL)
2886 if ((cp = strrchr (filename, '.')) != NULL)
2887 for (i = 0; i < fl_table_next; i++)
2888 if (strcmp (cp, filename_language_table[i].ext) == 0)
2889 return filename_language_table[i].lang;
2891 return language_unknown;
2894 /* Allocate and initialize a new symbol table.
2895 CUST is from the result of allocate_compunit_symtab. */
2898 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2900 struct objfile *objfile = cust->objfile;
2901 struct symtab *symtab
2902 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2904 symtab->filename = bcache (filename, strlen (filename) + 1,
2905 objfile->per_bfd->filename_cache);
2906 symtab->fullname = NULL;
2907 symtab->language = deduce_language_from_filename (filename);
2909 /* This can be very verbose with lots of headers.
2910 Only print at higher debug levels. */
2911 if (symtab_create_debug >= 2)
2913 /* Be a bit clever with debugging messages, and don't print objfile
2914 every time, only when it changes. */
2915 static char *last_objfile_name = NULL;
2917 if (last_objfile_name == NULL
2918 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2920 xfree (last_objfile_name);
2921 last_objfile_name = xstrdup (objfile_name (objfile));
2922 fprintf_unfiltered (gdb_stdlog,
2923 "Creating one or more symtabs for objfile %s ...\n",
2926 fprintf_unfiltered (gdb_stdlog,
2927 "Created symtab %s for module %s.\n",
2928 host_address_to_string (symtab), filename);
2931 /* Add it to CUST's list of symtabs. */
2932 if (cust->filetabs == NULL)
2934 cust->filetabs = symtab;
2935 cust->last_filetab = symtab;
2939 cust->last_filetab->next = symtab;
2940 cust->last_filetab = symtab;
2943 /* Backlink to the containing compunit symtab. */
2944 symtab->compunit_symtab = cust;
2949 /* Allocate and initialize a new compunit.
2950 NAME is the name of the main source file, if there is one, or some
2951 descriptive text if there are no source files. */
2953 struct compunit_symtab *
2954 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2956 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2957 struct compunit_symtab);
2958 const char *saved_name;
2960 cu->objfile = objfile;
2962 /* The name we record here is only for display/debugging purposes.
2963 Just save the basename to avoid path issues (too long for display,
2964 relative vs absolute, etc.). */
2965 saved_name = lbasename (name);
2966 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2967 strlen (saved_name));
2969 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2971 if (symtab_create_debug)
2973 fprintf_unfiltered (gdb_stdlog,
2974 "Created compunit symtab %s for %s.\n",
2975 host_address_to_string (cu),
2982 /* Hook CU to the objfile it comes from. */
2985 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2987 cu->next = cu->objfile->compunit_symtabs;
2988 cu->objfile->compunit_symtabs = cu;
2992 /* Reset all data structures in gdb which may contain references to symbol
2993 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2996 clear_symtab_users (int add_flags)
2998 /* Someday, we should do better than this, by only blowing away
2999 the things that really need to be blown. */
3001 /* Clear the "current" symtab first, because it is no longer valid.
3002 breakpoint_re_set may try to access the current symtab. */
3003 clear_current_source_symtab_and_line ();
3006 clear_last_displayed_sal ();
3007 clear_pc_function_cache ();
3008 observer_notify_new_objfile (NULL);
3010 /* Clear globals which might have pointed into a removed objfile.
3011 FIXME: It's not clear which of these are supposed to persist
3012 between expressions and which ought to be reset each time. */
3013 expression_context_block = NULL;
3014 innermost_block = NULL;
3016 /* Varobj may refer to old symbols, perform a cleanup. */
3017 varobj_invalidate ();
3019 /* Now that the various caches have been cleared, we can re_set
3020 our breakpoints without risking it using stale data. */
3021 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3022 breakpoint_re_set ();
3026 clear_symtab_users_cleanup (void *ignore)
3028 clear_symtab_users (0);
3032 The following code implements an abstraction for debugging overlay sections.
3034 The target model is as follows:
3035 1) The gnu linker will permit multiple sections to be mapped into the
3036 same VMA, each with its own unique LMA (or load address).
3037 2) It is assumed that some runtime mechanism exists for mapping the
3038 sections, one by one, from the load address into the VMA address.
3039 3) This code provides a mechanism for gdb to keep track of which
3040 sections should be considered to be mapped from the VMA to the LMA.
3041 This information is used for symbol lookup, and memory read/write.
3042 For instance, if a section has been mapped then its contents
3043 should be read from the VMA, otherwise from the LMA.
3045 Two levels of debugger support for overlays are available. One is
3046 "manual", in which the debugger relies on the user to tell it which
3047 overlays are currently mapped. This level of support is
3048 implemented entirely in the core debugger, and the information about
3049 whether a section is mapped is kept in the objfile->obj_section table.
3051 The second level of support is "automatic", and is only available if
3052 the target-specific code provides functionality to read the target's
3053 overlay mapping table, and translate its contents for the debugger
3054 (by updating the mapped state information in the obj_section tables).
3056 The interface is as follows:
3058 overlay map <name> -- tell gdb to consider this section mapped
3059 overlay unmap <name> -- tell gdb to consider this section unmapped
3060 overlay list -- list the sections that GDB thinks are mapped
3061 overlay read-target -- get the target's state of what's mapped
3062 overlay off/manual/auto -- set overlay debugging state
3063 Functional interface:
3064 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3065 section, return that section.
3066 find_pc_overlay(pc): find any overlay section that contains
3067 the pc, either in its VMA or its LMA
3068 section_is_mapped(sect): true if overlay is marked as mapped
3069 section_is_overlay(sect): true if section's VMA != LMA
3070 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3071 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3072 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3073 overlay_mapped_address(...): map an address from section's LMA to VMA
3074 overlay_unmapped_address(...): map an address from section's VMA to LMA
3075 symbol_overlayed_address(...): Return a "current" address for symbol:
3076 either in VMA or LMA depending on whether
3077 the symbol's section is currently mapped. */
3079 /* Overlay debugging state: */
3081 enum overlay_debugging_state overlay_debugging = ovly_off;
3082 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3084 /* Function: section_is_overlay (SECTION)
3085 Returns true if SECTION has VMA not equal to LMA, ie.
3086 SECTION is loaded at an address different from where it will "run". */
3089 section_is_overlay (struct obj_section *section)
3091 if (overlay_debugging && section)
3093 bfd *abfd = section->objfile->obfd;
3094 asection *bfd_section = section->the_bfd_section;
3096 if (bfd_section_lma (abfd, bfd_section) != 0
3097 && bfd_section_lma (abfd, bfd_section)
3098 != bfd_section_vma (abfd, bfd_section))
3105 /* Function: overlay_invalidate_all (void)
3106 Invalidate the mapped state of all overlay sections (mark it as stale). */
3109 overlay_invalidate_all (void)
3111 struct objfile *objfile;
3112 struct obj_section *sect;
3114 ALL_OBJSECTIONS (objfile, sect)
3115 if (section_is_overlay (sect))
3116 sect->ovly_mapped = -1;
3119 /* Function: section_is_mapped (SECTION)
3120 Returns true if section is an overlay, and is currently mapped.
3122 Access to the ovly_mapped flag is restricted to this function, so
3123 that we can do automatic update. If the global flag
3124 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3125 overlay_invalidate_all. If the mapped state of the particular
3126 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3129 section_is_mapped (struct obj_section *osect)
3131 struct gdbarch *gdbarch;
3133 if (osect == 0 || !section_is_overlay (osect))
3136 switch (overlay_debugging)
3140 return 0; /* overlay debugging off */
3141 case ovly_auto: /* overlay debugging automatic */
3142 /* Unles there is a gdbarch_overlay_update function,
3143 there's really nothing useful to do here (can't really go auto). */
3144 gdbarch = get_objfile_arch (osect->objfile);
3145 if (gdbarch_overlay_update_p (gdbarch))
3147 if (overlay_cache_invalid)
3149 overlay_invalidate_all ();
3150 overlay_cache_invalid = 0;
3152 if (osect->ovly_mapped == -1)
3153 gdbarch_overlay_update (gdbarch, osect);
3155 /* fall thru to manual case */
3156 case ovly_on: /* overlay debugging manual */
3157 return osect->ovly_mapped == 1;
3161 /* Function: pc_in_unmapped_range
3162 If PC falls into the lma range of SECTION, return true, else false. */
3165 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3167 if (section_is_overlay (section))
3169 bfd *abfd = section->objfile->obfd;
3170 asection *bfd_section = section->the_bfd_section;
3172 /* We assume the LMA is relocated by the same offset as the VMA. */
3173 bfd_vma size = bfd_get_section_size (bfd_section);
3174 CORE_ADDR offset = obj_section_offset (section);
3176 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3177 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3184 /* Function: pc_in_mapped_range
3185 If PC falls into the vma range of SECTION, return true, else false. */
3188 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3190 if (section_is_overlay (section))
3192 if (obj_section_addr (section) <= pc
3193 && pc < obj_section_endaddr (section))
3200 /* Return true if the mapped ranges of sections A and B overlap, false
3204 sections_overlap (struct obj_section *a, struct obj_section *b)
3206 CORE_ADDR a_start = obj_section_addr (a);
3207 CORE_ADDR a_end = obj_section_endaddr (a);
3208 CORE_ADDR b_start = obj_section_addr (b);
3209 CORE_ADDR b_end = obj_section_endaddr (b);
3211 return (a_start < b_end && b_start < a_end);
3214 /* Function: overlay_unmapped_address (PC, SECTION)
3215 Returns the address corresponding to PC in the unmapped (load) range.
3216 May be the same as PC. */
3219 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3221 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3223 bfd *abfd = section->objfile->obfd;
3224 asection *bfd_section = section->the_bfd_section;
3226 return pc + bfd_section_lma (abfd, bfd_section)
3227 - bfd_section_vma (abfd, bfd_section);
3233 /* Function: overlay_mapped_address (PC, SECTION)
3234 Returns the address corresponding to PC in the mapped (runtime) range.
3235 May be the same as PC. */
3238 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3240 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3242 bfd *abfd = section->objfile->obfd;
3243 asection *bfd_section = section->the_bfd_section;
3245 return pc + bfd_section_vma (abfd, bfd_section)
3246 - bfd_section_lma (abfd, bfd_section);
3252 /* Function: symbol_overlayed_address
3253 Return one of two addresses (relative to the VMA or to the LMA),
3254 depending on whether the section is mapped or not. */
3257 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3259 if (overlay_debugging)
3261 /* If the symbol has no section, just return its regular address. */
3264 /* If the symbol's section is not an overlay, just return its
3266 if (!section_is_overlay (section))
3268 /* If the symbol's section is mapped, just return its address. */
3269 if (section_is_mapped (section))
3272 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3273 * then return its LOADED address rather than its vma address!!
3275 return overlay_unmapped_address (address, section);
3280 /* Function: find_pc_overlay (PC)
3281 Return the best-match overlay section for PC:
3282 If PC matches a mapped overlay section's VMA, return that section.
3283 Else if PC matches an unmapped section's VMA, return that section.
3284 Else if PC matches an unmapped section's LMA, return that section. */
3286 struct obj_section *
3287 find_pc_overlay (CORE_ADDR pc)
3289 struct objfile *objfile;
3290 struct obj_section *osect, *best_match = NULL;
3292 if (overlay_debugging)
3293 ALL_OBJSECTIONS (objfile, osect)
3294 if (section_is_overlay (osect))
3296 if (pc_in_mapped_range (pc, osect))
3298 if (section_is_mapped (osect))
3303 else if (pc_in_unmapped_range (pc, osect))
3309 /* Function: find_pc_mapped_section (PC)
3310 If PC falls into the VMA address range of an overlay section that is
3311 currently marked as MAPPED, return that section. Else return NULL. */
3313 struct obj_section *
3314 find_pc_mapped_section (CORE_ADDR pc)
3316 struct objfile *objfile;
3317 struct obj_section *osect;
3319 if (overlay_debugging)
3320 ALL_OBJSECTIONS (objfile, osect)
3321 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3327 /* Function: list_overlays_command
3328 Print a list of mapped sections and their PC ranges. */
3331 list_overlays_command (char *args, int from_tty)
3334 struct objfile *objfile;
3335 struct obj_section *osect;
3337 if (overlay_debugging)
3338 ALL_OBJSECTIONS (objfile, osect)
3339 if (section_is_mapped (osect))
3341 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3346 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3347 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3348 size = bfd_get_section_size (osect->the_bfd_section);
3349 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3351 printf_filtered ("Section %s, loaded at ", name);
3352 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3353 puts_filtered (" - ");
3354 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3355 printf_filtered (", mapped at ");
3356 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3357 puts_filtered (" - ");
3358 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3359 puts_filtered ("\n");
3364 printf_filtered (_("No sections are mapped.\n"));
3367 /* Function: map_overlay_command
3368 Mark the named section as mapped (ie. residing at its VMA address). */
3371 map_overlay_command (char *args, int from_tty)
3373 struct objfile *objfile, *objfile2;
3374 struct obj_section *sec, *sec2;
3376 if (!overlay_debugging)
3377 error (_("Overlay debugging not enabled. Use "
3378 "either the 'overlay auto' or\n"
3379 "the 'overlay manual' command."));
3381 if (args == 0 || *args == 0)
3382 error (_("Argument required: name of an overlay section"));
3384 /* First, find a section matching the user supplied argument. */
3385 ALL_OBJSECTIONS (objfile, sec)
3386 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3388 /* Now, check to see if the section is an overlay. */
3389 if (!section_is_overlay (sec))
3390 continue; /* not an overlay section */
3392 /* Mark the overlay as "mapped". */
3393 sec->ovly_mapped = 1;
3395 /* Next, make a pass and unmap any sections that are
3396 overlapped by this new section: */
3397 ALL_OBJSECTIONS (objfile2, sec2)
3398 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3401 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3402 bfd_section_name (objfile->obfd,
3403 sec2->the_bfd_section));
3404 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3408 error (_("No overlay section called %s"), args);
3411 /* Function: unmap_overlay_command
3412 Mark the overlay section as unmapped
3413 (ie. resident in its LMA address range, rather than the VMA range). */
3416 unmap_overlay_command (char *args, int from_tty)
3418 struct objfile *objfile;
3419 struct obj_section *sec = NULL;
3421 if (!overlay_debugging)
3422 error (_("Overlay debugging not enabled. "
3423 "Use either the 'overlay auto' or\n"
3424 "the 'overlay manual' command."));
3426 if (args == 0 || *args == 0)
3427 error (_("Argument required: name of an overlay section"));
3429 /* First, find a section matching the user supplied argument. */
3430 ALL_OBJSECTIONS (objfile, sec)
3431 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3433 if (!sec->ovly_mapped)
3434 error (_("Section %s is not mapped"), args);
3435 sec->ovly_mapped = 0;
3438 error (_("No overlay section called %s"), args);
3441 /* Function: overlay_auto_command
3442 A utility command to turn on overlay debugging.
3443 Possibly this should be done via a set/show command. */
3446 overlay_auto_command (char *args, int from_tty)
3448 overlay_debugging = ovly_auto;
3449 enable_overlay_breakpoints ();
3451 printf_unfiltered (_("Automatic overlay debugging enabled."));
3454 /* Function: overlay_manual_command
3455 A utility command to turn on overlay debugging.
3456 Possibly this should be done via a set/show command. */
3459 overlay_manual_command (char *args, int from_tty)
3461 overlay_debugging = ovly_on;
3462 disable_overlay_breakpoints ();
3464 printf_unfiltered (_("Overlay debugging enabled."));
3467 /* Function: overlay_off_command
3468 A utility command to turn on overlay debugging.
3469 Possibly this should be done via a set/show command. */
3472 overlay_off_command (char *args, int from_tty)
3474 overlay_debugging = ovly_off;
3475 disable_overlay_breakpoints ();
3477 printf_unfiltered (_("Overlay debugging disabled."));
3481 overlay_load_command (char *args, int from_tty)
3483 struct gdbarch *gdbarch = get_current_arch ();
3485 if (gdbarch_overlay_update_p (gdbarch))
3486 gdbarch_overlay_update (gdbarch, NULL);
3488 error (_("This target does not know how to read its overlay state."));
3491 /* Function: overlay_command
3492 A place-holder for a mis-typed command. */
3494 /* Command list chain containing all defined "overlay" subcommands. */
3495 static struct cmd_list_element *overlaylist;
3498 overlay_command (char *args, int from_tty)
3501 ("\"overlay\" must be followed by the name of an overlay command.\n");
3502 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3505 /* Target Overlays for the "Simplest" overlay manager:
3507 This is GDB's default target overlay layer. It works with the
3508 minimal overlay manager supplied as an example by Cygnus. The
3509 entry point is via a function pointer "gdbarch_overlay_update",
3510 so targets that use a different runtime overlay manager can
3511 substitute their own overlay_update function and take over the
3514 The overlay_update function pokes around in the target's data structures
3515 to see what overlays are mapped, and updates GDB's overlay mapping with
3518 In this simple implementation, the target data structures are as follows:
3519 unsigned _novlys; /# number of overlay sections #/
3520 unsigned _ovly_table[_novlys][4] = {
3521 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3522 {..., ..., ..., ...},
3524 unsigned _novly_regions; /# number of overlay regions #/
3525 unsigned _ovly_region_table[_novly_regions][3] = {
3526 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3529 These functions will attempt to update GDB's mappedness state in the
3530 symbol section table, based on the target's mappedness state.
3532 To do this, we keep a cached copy of the target's _ovly_table, and
3533 attempt to detect when the cached copy is invalidated. The main
3534 entry point is "simple_overlay_update(SECT), which looks up SECT in
3535 the cached table and re-reads only the entry for that section from
3536 the target (whenever possible). */
3538 /* Cached, dynamically allocated copies of the target data structures: */
3539 static unsigned (*cache_ovly_table)[4] = 0;
3540 static unsigned cache_novlys = 0;
3541 static CORE_ADDR cache_ovly_table_base = 0;
3544 VMA, SIZE, LMA, MAPPED
3547 /* Throw away the cached copy of _ovly_table. */
3550 simple_free_overlay_table (void)
3552 if (cache_ovly_table)
3553 xfree (cache_ovly_table);
3555 cache_ovly_table = NULL;
3556 cache_ovly_table_base = 0;
3559 /* Read an array of ints of size SIZE from the target into a local buffer.
3560 Convert to host order. int LEN is number of ints. */
3563 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3564 int len, int size, enum bfd_endian byte_order)
3566 /* FIXME (alloca): Not safe if array is very large. */
3567 gdb_byte *buf = alloca (len * size);
3570 read_memory (memaddr, buf, len * size);
3571 for (i = 0; i < len; i++)
3572 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3575 /* Find and grab a copy of the target _ovly_table
3576 (and _novlys, which is needed for the table's size). */
3579 simple_read_overlay_table (void)
3581 struct bound_minimal_symbol novlys_msym;
3582 struct bound_minimal_symbol ovly_table_msym;
3583 struct gdbarch *gdbarch;
3585 enum bfd_endian byte_order;
3587 simple_free_overlay_table ();
3588 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3589 if (! novlys_msym.minsym)
3591 error (_("Error reading inferior's overlay table: "
3592 "couldn't find `_novlys' variable\n"
3593 "in inferior. Use `overlay manual' mode."));
3597 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3598 if (! ovly_table_msym.minsym)
3600 error (_("Error reading inferior's overlay table: couldn't find "
3601 "`_ovly_table' array\n"
3602 "in inferior. Use `overlay manual' mode."));
3606 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3607 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3608 byte_order = gdbarch_byte_order (gdbarch);
3610 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3613 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3614 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3615 read_target_long_array (cache_ovly_table_base,
3616 (unsigned int *) cache_ovly_table,
3617 cache_novlys * 4, word_size, byte_order);
3619 return 1; /* SUCCESS */
3622 /* Function: simple_overlay_update_1
3623 A helper function for simple_overlay_update. Assuming a cached copy
3624 of _ovly_table exists, look through it to find an entry whose vma,
3625 lma and size match those of OSECT. Re-read the entry and make sure
3626 it still matches OSECT (else the table may no longer be valid).
3627 Set OSECT's mapped state to match the entry. Return: 1 for
3628 success, 0 for failure. */
3631 simple_overlay_update_1 (struct obj_section *osect)
3634 bfd *obfd = osect->objfile->obfd;
3635 asection *bsect = osect->the_bfd_section;
3636 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3637 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3638 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3640 size = bfd_get_section_size (osect->the_bfd_section);
3641 for (i = 0; i < cache_novlys; i++)
3642 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3643 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3644 /* && cache_ovly_table[i][SIZE] == size */ )
3646 read_target_long_array (cache_ovly_table_base + i * word_size,
3647 (unsigned int *) cache_ovly_table[i],
3648 4, word_size, byte_order);
3649 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3650 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3651 /* && cache_ovly_table[i][SIZE] == size */ )
3653 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3656 else /* Warning! Warning! Target's ovly table has changed! */
3662 /* Function: simple_overlay_update
3663 If OSECT is NULL, then update all sections' mapped state
3664 (after re-reading the entire target _ovly_table).
3665 If OSECT is non-NULL, then try to find a matching entry in the
3666 cached ovly_table and update only OSECT's mapped state.
3667 If a cached entry can't be found or the cache isn't valid, then
3668 re-read the entire cache, and go ahead and update all sections. */
3671 simple_overlay_update (struct obj_section *osect)
3673 struct objfile *objfile;
3675 /* Were we given an osect to look up? NULL means do all of them. */
3677 /* Have we got a cached copy of the target's overlay table? */
3678 if (cache_ovly_table != NULL)
3680 /* Does its cached location match what's currently in the
3682 struct bound_minimal_symbol minsym
3683 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3685 if (minsym.minsym == NULL)
3686 error (_("Error reading inferior's overlay table: couldn't "
3687 "find `_ovly_table' array\n"
3688 "in inferior. Use `overlay manual' mode."));
3690 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3691 /* Then go ahead and try to look up this single section in
3693 if (simple_overlay_update_1 (osect))
3694 /* Found it! We're done. */
3698 /* Cached table no good: need to read the entire table anew.
3699 Or else we want all the sections, in which case it's actually
3700 more efficient to read the whole table in one block anyway. */
3702 if (! simple_read_overlay_table ())
3705 /* Now may as well update all sections, even if only one was requested. */
3706 ALL_OBJSECTIONS (objfile, osect)
3707 if (section_is_overlay (osect))
3710 bfd *obfd = osect->objfile->obfd;
3711 asection *bsect = osect->the_bfd_section;
3713 size = bfd_get_section_size (bsect);
3714 for (i = 0; i < cache_novlys; i++)
3715 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3716 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3717 /* && cache_ovly_table[i][SIZE] == size */ )
3718 { /* obj_section matches i'th entry in ovly_table. */
3719 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3720 break; /* finished with inner for loop: break out. */
3725 /* Set the output sections and output offsets for section SECTP in
3726 ABFD. The relocation code in BFD will read these offsets, so we
3727 need to be sure they're initialized. We map each section to itself,
3728 with no offset; this means that SECTP->vma will be honored. */
3731 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3733 sectp->output_section = sectp;
3734 sectp->output_offset = 0;
3737 /* Default implementation for sym_relocate. */
3740 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3743 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3745 bfd *abfd = sectp->owner;
3747 /* We're only interested in sections with relocation
3749 if ((sectp->flags & SEC_RELOC) == 0)
3752 /* We will handle section offsets properly elsewhere, so relocate as if
3753 all sections begin at 0. */
3754 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3756 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3759 /* Relocate the contents of a debug section SECTP in ABFD. The
3760 contents are stored in BUF if it is non-NULL, or returned in a
3761 malloc'd buffer otherwise.
3763 For some platforms and debug info formats, shared libraries contain
3764 relocations against the debug sections (particularly for DWARF-2;
3765 one affected platform is PowerPC GNU/Linux, although it depends on
3766 the version of the linker in use). Also, ELF object files naturally
3767 have unresolved relocations for their debug sections. We need to apply
3768 the relocations in order to get the locations of symbols correct.
3769 Another example that may require relocation processing, is the
3770 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3774 symfile_relocate_debug_section (struct objfile *objfile,
3775 asection *sectp, bfd_byte *buf)
3777 gdb_assert (objfile->sf->sym_relocate);
3779 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3782 struct symfile_segment_data *
3783 get_symfile_segment_data (bfd *abfd)
3785 const struct sym_fns *sf = find_sym_fns (abfd);
3790 return sf->sym_segments (abfd);
3794 free_symfile_segment_data (struct symfile_segment_data *data)
3796 xfree (data->segment_bases);
3797 xfree (data->segment_sizes);
3798 xfree (data->segment_info);
3803 - DATA, containing segment addresses from the object file ABFD, and
3804 the mapping from ABFD's sections onto the segments that own them,
3806 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3807 segment addresses reported by the target,
3808 store the appropriate offsets for each section in OFFSETS.
3810 If there are fewer entries in SEGMENT_BASES than there are segments
3811 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3813 If there are more entries, then ignore the extra. The target may
3814 not be able to distinguish between an empty data segment and a
3815 missing data segment; a missing text segment is less plausible. */
3818 symfile_map_offsets_to_segments (bfd *abfd,
3819 const struct symfile_segment_data *data,
3820 struct section_offsets *offsets,
3821 int num_segment_bases,
3822 const CORE_ADDR *segment_bases)
3827 /* It doesn't make sense to call this function unless you have some
3828 segment base addresses. */
3829 gdb_assert (num_segment_bases > 0);
3831 /* If we do not have segment mappings for the object file, we
3832 can not relocate it by segments. */
3833 gdb_assert (data != NULL);
3834 gdb_assert (data->num_segments > 0);
3836 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3838 int which = data->segment_info[i];
3840 gdb_assert (0 <= which && which <= data->num_segments);
3842 /* Don't bother computing offsets for sections that aren't
3843 loaded as part of any segment. */
3847 /* Use the last SEGMENT_BASES entry as the address of any extra
3848 segments mentioned in DATA->segment_info. */
3849 if (which > num_segment_bases)
3850 which = num_segment_bases;
3852 offsets->offsets[i] = (segment_bases[which - 1]
3853 - data->segment_bases[which - 1]);
3860 symfile_find_segment_sections (struct objfile *objfile)
3862 bfd *abfd = objfile->obfd;
3865 struct symfile_segment_data *data;
3867 data = get_symfile_segment_data (objfile->obfd);
3871 if (data->num_segments != 1 && data->num_segments != 2)
3873 free_symfile_segment_data (data);
3877 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3879 int which = data->segment_info[i];
3883 if (objfile->sect_index_text == -1)
3884 objfile->sect_index_text = sect->index;
3886 if (objfile->sect_index_rodata == -1)
3887 objfile->sect_index_rodata = sect->index;
3889 else if (which == 2)
3891 if (objfile->sect_index_data == -1)
3892 objfile->sect_index_data = sect->index;
3894 if (objfile->sect_index_bss == -1)
3895 objfile->sect_index_bss = sect->index;
3899 free_symfile_segment_data (data);
3902 /* Listen for free_objfile events. */
3905 symfile_free_objfile (struct objfile *objfile)
3907 /* Remove the target sections owned by this objfile. */
3908 if (objfile != NULL)
3909 remove_target_sections ((void *) objfile);
3912 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3913 Expand all symtabs that match the specified criteria.
3914 See quick_symbol_functions.expand_symtabs_matching for details. */
3917 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3918 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3919 expand_symtabs_exp_notify_ftype *expansion_notify,
3920 enum search_domain kind,
3923 struct objfile *objfile;
3925 ALL_OBJFILES (objfile)
3928 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3930 expansion_notify, kind,
3935 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3936 Map function FUN over every file.
3937 See quick_symbol_functions.map_symbol_filenames for details. */
3940 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3943 struct objfile *objfile;
3945 ALL_OBJFILES (objfile)
3948 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3954 _initialize_symfile (void)
3956 struct cmd_list_element *c;
3958 observer_attach_free_objfile (symfile_free_objfile);
3960 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3961 Load symbol table from executable file FILE.\n\
3962 The `file' command can also load symbol tables, as well as setting the file\n\
3963 to execute."), &cmdlist);
3964 set_cmd_completer (c, filename_completer);
3966 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3967 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3968 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3969 ...]\nADDR is the starting address of the file's text.\n\
3970 The optional arguments are section-name section-address pairs and\n\
3971 should be specified if the data and bss segments are not contiguous\n\
3972 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3974 set_cmd_completer (c, filename_completer);
3976 c = add_cmd ("remove-symbol-file", class_files,
3977 remove_symbol_file_command, _("\
3978 Remove a symbol file added via the add-symbol-file command.\n\
3979 Usage: remove-symbol-file FILENAME\n\
3980 remove-symbol-file -a ADDRESS\n\
3981 The file to remove can be identified by its filename or by an address\n\
3982 that lies within the boundaries of this symbol file in memory."),
3985 c = add_cmd ("load", class_files, load_command, _("\
3986 Dynamically load FILE into the running program, and record its symbols\n\
3987 for access from GDB.\n\
3988 A load OFFSET may also be given."), &cmdlist);
3989 set_cmd_completer (c, filename_completer);
3991 add_prefix_cmd ("overlay", class_support, overlay_command,
3992 _("Commands for debugging overlays."), &overlaylist,
3993 "overlay ", 0, &cmdlist);
3995 add_com_alias ("ovly", "overlay", class_alias, 1);
3996 add_com_alias ("ov", "overlay", class_alias, 1);
3998 add_cmd ("map-overlay", class_support, map_overlay_command,
3999 _("Assert that an overlay section is mapped."), &overlaylist);
4001 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4002 _("Assert that an overlay section is unmapped."), &overlaylist);
4004 add_cmd ("list-overlays", class_support, list_overlays_command,
4005 _("List mappings of overlay sections."), &overlaylist);
4007 add_cmd ("manual", class_support, overlay_manual_command,
4008 _("Enable overlay debugging."), &overlaylist);
4009 add_cmd ("off", class_support, overlay_off_command,
4010 _("Disable overlay debugging."), &overlaylist);
4011 add_cmd ("auto", class_support, overlay_auto_command,
4012 _("Enable automatic overlay debugging."), &overlaylist);
4013 add_cmd ("load-target", class_support, overlay_load_command,
4014 _("Read the overlay mapping state from the target."), &overlaylist);
4016 /* Filename extension to source language lookup table: */
4017 init_filename_language_table ();
4018 add_setshow_string_noescape_cmd ("extension-language", class_files,
4020 Set mapping between filename extension and source language."), _("\
4021 Show mapping between filename extension and source language."), _("\
4022 Usage: set extension-language .foo bar"),
4023 set_ext_lang_command,
4025 &setlist, &showlist);
4027 add_info ("extensions", info_ext_lang_command,
4028 _("All filename extensions associated with a source language."));
4030 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4031 &debug_file_directory, _("\
4032 Set the directories where separate debug symbols are searched for."), _("\
4033 Show the directories where separate debug symbols are searched for."), _("\
4034 Separate debug symbols are first searched for in the same\n\
4035 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4036 and lastly at the path of the directory of the binary with\n\
4037 each global debug-file-directory component prepended."),
4039 show_debug_file_directory,
4040 &setlist, &showlist);
4042 add_setshow_enum_cmd ("symbol-loading", no_class,
4043 print_symbol_loading_enums, &print_symbol_loading,
4045 Set printing of symbol loading messages."), _("\
4046 Show printing of symbol loading messages."), _("\
4047 off == turn all messages off\n\
4048 brief == print messages for the executable,\n\
4049 and brief messages for shared libraries\n\
4050 full == print messages for the executable,\n\
4051 and messages for each shared library."),
4054 &setprintlist, &showprintlist);