1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
39 #include "arch-utils.h"
43 #include "opcode/mips.h"
48 /* A useful bit in the CP0 status register (PS_REGNUM). */
49 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50 #define ST0_FR (1 << 26)
52 /* The sizes of floating point registers. */
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
60 /* All the possible MIPS ABIs. */
74 static const char *mips_abi_string;
76 static const char *mips_abi_strings[] = {
87 struct frame_extra_info
89 mips_extra_func_info_t proc_desc;
93 /* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
97 static const char size_auto[] = "auto";
98 static const char size_32[] = "32";
99 static const char size_64[] = "64";
101 static const char *size_enums[] = {
108 /* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
119 #ifndef MIPS_DEFAULT_FPU_TYPE
120 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
122 static int mips_fpu_type_auto = 1;
123 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
125 static int mips_debug = 0;
127 /* MIPS specific per-architecture information */
130 /* from the elf header */
134 enum mips_abi mips_abi;
135 enum mips_abi found_abi;
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
139 int mips_default_saved_regsize;
140 int mips_fp_register_double;
141 int mips_default_stack_argsize;
142 int gdb_target_is_mips64;
143 int default_mask_address_p;
145 enum gdb_osabi osabi;
148 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
151 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
153 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
155 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
157 /* Return the currently configured (or set) saved register size. */
159 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
161 static const char *mips_saved_regsize_string = size_auto;
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
166 mips_saved_regsize (void)
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
172 else /* if (mips_saved_regsize_string == size_32) */
176 /* Functions for setting and testing a bit in a minimal symbol that
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
191 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
202 msymbol_is_special (struct minimal_symbol *msym)
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
208 msymbol_size (struct minimal_symbol *msym)
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
213 /* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
219 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
232 case BFD_ENDIAN_LITTLE:
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
239 internal_error (__FILE__, __LINE__, "bad switch");
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
245 if (mips_debug && out != NULL)
248 fprintf_unfiltered (gdb_stdlog, "out ");
249 for (i = 0; i < length; i++)
250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
259 fprintf_unfiltered (gdb_stdlog, "in ");
260 for (i = 0; i < length; i++)
261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
264 fprintf_unfiltered (gdb_stdlog, "\n");
267 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
272 mips2_fp_compat (void)
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
292 /* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
297 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
299 /* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
303 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
305 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
307 static const char *mips_stack_argsize_string = size_auto;
310 mips_stack_argsize (void)
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
316 else /* if (mips_stack_argsize_string == size_32) */
320 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
322 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
324 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
326 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
328 static void mips_print_register (int, int);
330 static mips_extra_func_info_t
331 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
333 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
335 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
337 static int mips_set_processor_type (char *);
339 static void mips_show_processor_type_command (char *, int);
341 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
343 static mips_extra_func_info_t
344 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
346 static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
349 static void mips_read_fp_register_single (int regno, char *rare_buffer);
350 static void mips_read_fp_register_double (int regno, char *rare_buffer);
352 static struct type *mips_float_register_type (void);
353 static struct type *mips_double_register_type (void);
355 /* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
358 char *mips_processor_type;
360 char *tmp_mips_processor_type;
362 /* The list of available "set mips " and "show mips " commands */
364 static struct cmd_list_element *setmipscmdlist = NULL;
365 static struct cmd_list_element *showmipscmdlist = NULL;
367 /* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
370 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371 char **mips_processor_reg_names = mips_generic_reg_names;
374 mips_register_name (int i)
376 return mips_processor_reg_names[i];
379 /* Names of IDT R3041 registers. */
381 char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
391 "fsr", "fir", "fp", "",
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
396 /* Names of IDT R3051 registers. */
398 char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
408 "fsr", "fir", "fp", "",
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
413 /* Names of IDT R3081 registers. */
415 char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
425 "fsr", "fir", "fp", "",
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
430 /* Names of LSI 33k registers. */
432 char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
450 } mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
464 /* Table to translate MIPS16 register field to actual register number. */
465 static int mips16_to_32_reg[8] =
466 {16, 17, 2, 3, 4, 5, 6, 7};
468 /* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
472 static unsigned int heuristic_fence_post = 0;
474 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
476 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
484 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
486 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487 #define _PROC_MAGIC_ 0x0F0F0F0F
488 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
491 struct linked_proc_info
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
496 *linked_proc_desc_table = NULL;
499 mips_print_extra_frame_info (struct frame_info *fi)
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
505 printf_filtered (" frame pointer is at %s+%s\n",
506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
510 /* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
514 static int mips64_transfers_32bit_regs_p = 0;
517 mips_register_raw_size (int reg_nr)
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
530 /* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
534 mips_register_convertible (int reg_nr)
536 if (mips64_transfers_32bit_regs_p)
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
543 mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
553 TYPE_LENGTH (virtual_type));
557 mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
564 TYPE_LENGTH (virtual_type));
568 TYPE_LENGTH (virtual_type));
572 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
588 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
590 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
603 /* Return the GDB type object for the "standard" data type
604 of data in register REG.
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
614 mips_register_virtual_type (int reg)
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
622 return builtin_type_ieee_double_little;
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
635 return builtin_type_uint32;
639 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
647 /* Should the upper word of 64-bit addresses be zeroed? */
648 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
651 mips_mask_address_p (void)
653 switch (mask_address_var)
655 case AUTO_BOOLEAN_TRUE:
657 case AUTO_BOOLEAN_FALSE:
660 case AUTO_BOOLEAN_AUTO:
661 return MIPS_DEFAULT_MASK_ADDRESS_P;
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
670 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
672 switch (mask_address_var)
674 case AUTO_BOOLEAN_TRUE:
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
677 case AUTO_BOOLEAN_FALSE:
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
680 case AUTO_BOOLEAN_AUTO:
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
691 /* Should call_function allocate stack space for a struct return? */
694 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
700 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
706 mips_o32_use_struct_convention (int gcc_p, struct type *type)
708 return 1; /* Structures are returned by ref in extra arg0. */
711 /* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
716 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
728 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
734 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
739 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
742 pc_is_mips16 (bfd_vma memaddr)
744 struct minimal_symbol *sym;
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
755 return msymbol_is_special (sym);
760 /* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
764 mips_read_pc (ptid_t ptid)
766 return read_signed_register_pid (PC_REGNUM, ptid);
769 /* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
773 after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
785 proc_desc = find_proc_desc (pc, NULL, 0);
789 /* If function is frameless, then we need to do it the hard way. I
790 strongly suspect that frameless always means prologueless... */
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
799 sal = find_pc_line (func_addr, 0);
801 if (sal.end < func_end)
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
810 /* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
816 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
825 /* It might be possible to use the instruction to
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
843 /* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
849 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
867 /* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
871 mips_fetch_instruction (CORE_ADDR addr)
873 char buf[MIPS_INSTLEN];
877 if (pc_is_mips16 (addr))
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
883 instlen = MIPS_INSTLEN;
884 status = read_memory_nobpt (addr, buf, instlen);
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
891 /* These the fields of 32 bit mips instructions */
892 #define mips32_op(x) (x >> 26)
893 #define itype_op(x) (x >> 26)
894 #define itype_rs(x) ((x >> 21) & 0x1f)
895 #define itype_rt(x) ((x >> 16) & 0x1f)
896 #define itype_immediate(x) (x & 0xffff)
898 #define jtype_op(x) (x >> 26)
899 #define jtype_target(x) (x & 0x03ffffff)
901 #define rtype_op(x) (x >> 26)
902 #define rtype_rs(x) ((x >> 21) & 0x1f)
903 #define rtype_rt(x) ((x >> 16) & 0x1f)
904 #define rtype_rd(x) ((x >> 11) & 0x1f)
905 #define rtype_shamt(x) ((x >> 6) & 0x1f)
906 #define rtype_funct(x) (x & 0x3f)
909 mips32_relative_offset (unsigned long inst)
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
915 x |= 0xffff0000; /* sign extension */
921 /* Determine whate to set a single step breakpoint while considering
924 mips32_next_pc (CORE_ADDR pc)
928 inst = mips_fetch_instruction (pc);
929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
934 op = (itype_op (inst) & 0x03);
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
963 pc += 4; /* Not a branch, next instruction is easy */
966 { /* This gets way messy */
968 /* Further subdivide into SPECIAL, REGIMM and other */
969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
984 break; /* end SPECIAL */
987 op = itype_rt (inst); /* branch condition */
992 case 16: /* BLTZAL */
993 case 18: /* BLTZALL */
995 if (read_signed_register (itype_rs (inst)) < 0)
996 pc += mips32_relative_offset (inst) + 4;
998 pc += 8; /* after the delay slot */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
1004 greater_equal_branch:
1005 if (read_signed_register (itype_rs (inst)) >= 0)
1006 pc += mips32_relative_offset (inst) + 4;
1008 pc += 8; /* after the delay slot */
1010 /* All of the other instructions in the REGIMM category */
1015 break; /* end REGIMM */
1020 reg = jtype_target (inst) << 2;
1021 /* Upper four bits get never changed... */
1022 pc = reg + ((pc + 4) & 0xf0000000);
1025 /* FIXME case JALX : */
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1032 break; /* The new PC will be alternate mode */
1033 case 4: /* BEQ, BEQL */
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
1037 pc += mips32_relative_offset (inst) + 4;
1041 case 5: /* BNE, BNEL */
1043 if (read_signed_register (itype_rs (inst)) !=
1044 read_signed_register (itype_rt (inst)))
1045 pc += mips32_relative_offset (inst) + 4;
1049 case 6: /* BLEZ, BLEZL */
1051 if (read_signed_register (itype_rs (inst) <= 0))
1052 pc += mips32_relative_offset (inst) + 4;
1058 greater_branch: /* BGTZ, BGTZL */
1059 if (read_signed_register (itype_rs (inst) > 0))
1060 pc += mips32_relative_offset (inst) + 4;
1067 } /* mips32_next_pc */
1069 /* Decoding the next place to set a breakpoint is irregular for the
1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1076 /* Lots of mips16 instruction formats */
1077 /* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
1080 enum mips16_inst_fmts
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1105 /* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
1110 unsigned int regx; /* Function in i8 type */
1115 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
1119 extended_offset (unsigned int extension)
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1126 value |= extension & 0x01f; /* extract 4:0 */
1130 /* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
1135 /* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1140 fetch_mips_16 (CORE_ADDR pc)
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
1149 unpack_mips16 (CORE_ADDR pc,
1150 unsigned int extension,
1152 enum mips16_inst_fmts insn_format,
1153 struct upk_mips16 *upk)
1158 switch (insn_format)
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
1167 value |= inst & 0x7ff; /* eleven bits from instruction */
1171 value = inst & 0x7ff;
1172 /* FIXME : Consider sign extension */
1181 { /* A register identifier and an offset */
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1193 value &= ~0x3fff; /* remove the sign bit */
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1204 value &= 0xef; /* remove the sign bit */
1214 unsigned long value;
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1226 internal_error (__FILE__, __LINE__,
1229 upk->offset = offset;
1236 add_offset_16 (CORE_ADDR pc, int offset)
1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1242 extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1246 int op = (insn >> 11);
1249 case 2: /* Branch */
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1260 pc += (offset << 1) + 2;
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1276 struct upk_mips16 upk;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1281 pc += (upk.offset << 1) + 2;
1288 struct upk_mips16 upk;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1293 pc += (upk.offset << 1) + 2;
1298 case 12: /* I8 Formats btez btnez */
1300 struct upk_mips16 upk;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1330 break; /* Function return instruction */
1336 break; /* BOGUS Guess */
1338 pc = read_signed_register (reg);
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1363 mips16_next_pc (CORE_ADDR pc)
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1369 /* The mips_next_pc function supports single_step when the remote
1370 target monitor or stub is not developed enough to do a single_step.
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
1375 mips_next_pc (CORE_ADDR pc)
1378 return mips16_next_pc (pc);
1380 return mips32_next_pc (pc);
1383 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
1395 mips_find_saved_regs (struct frame_info *fci)
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1406 frame_saved_regs_zalloc (fci);
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412 #ifndef SIGFRAME_BASE
1413 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415 #define SIGFRAME_BASE MIPS_REGSIZE
1416 /* FIXME! Are these correct?? */
1417 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419 #define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1422 #ifndef SIGFRAME_REG_SIZE
1423 /* FIXME! Is this correct?? */
1424 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1426 if (fci->signal_handler_caller)
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1444 proc_desc = fci->extra_info->proc_desc;
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || fci->next->signal_handler_caller)
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1475 /* We need to figure out whether the registers that the proc_desc
1476 claims are saved have been saved yet. */
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1504 /* Fill in the offsets for the registers which gen_mask says
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1508 if (gen_mask & 0x80000000)
1510 fci->saved_regs[ireg] = reg_position;
1511 reg_position -= MIPS_SAVED_REGSIZE;
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1524 int sreg_count = (inst >> 6) & 3;
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1529 reg_position -= MIPS_SAVED_REGSIZE;
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
1532 for (reg = 16; reg < sreg_count + 16; reg++)
1534 fci->saved_regs[reg] = reg_position;
1535 reg_position -= MIPS_SAVED_REGSIZE;
1540 /* Fill in the offsets for the registers which float_mask says
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1557 if (MIPS_SAVED_REGSIZE == 4)
1558 reg_position += MIPS_SAVED_REGSIZE;
1560 /* Fill in the offsets for the float registers which float_mask says
1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1563 if (float_mask & 0x80000000)
1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1566 reg_position -= MIPS_SAVED_REGSIZE;
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1572 /* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1580 mips_frame_init_saved_regs (struct frame_info *frame)
1582 if (frame->saved_regs == NULL)
1584 mips_find_saved_regs (frame);
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1590 read_next_frame_reg (struct frame_info *fi, int regno)
1592 for (; fi; fi = fi->next)
1594 /* We have to get the saved sp from the sigcontext
1595 if it is a signal handler frame. */
1596 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1600 if (fi->saved_regs == NULL)
1601 FRAME_INIT_SAVED_REGS (fi);
1602 if (fi->saved_regs[regno])
1603 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1606 return read_signed_register (regno);
1609 /* mips_addr_bits_remove - remove useless address bits */
1612 mips_addr_bits_remove (CORE_ADDR addr)
1614 if (GDB_TARGET_IS_MIPS64)
1616 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1618 /* This hack is a work-around for existing boards using
1619 PMON, the simulator, and any other 64-bit targets that
1620 doesn't have true 64-bit addressing. On these targets,
1621 the upper 32 bits of addresses are ignored by the
1622 hardware. Thus, the PC or SP are likely to have been
1623 sign extended to all 1s by instruction sequences that
1624 load 32-bit addresses. For example, a typical piece of
1625 code that loads an address is this:
1626 lui $r2, <upper 16 bits>
1627 ori $r2, <lower 16 bits>
1628 But the lui sign-extends the value such that the upper 32
1629 bits may be all 1s. The workaround is simply to mask off
1630 these bits. In the future, gcc may be changed to support
1631 true 64-bit addressing, and this masking will have to be
1633 addr &= (CORE_ADDR) 0xffffffff;
1636 else if (mips_mask_address_p ())
1638 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1639 masking off bits, instead, the actual target should be asking
1640 for the address to be converted to a valid pointer. */
1641 /* Even when GDB is configured for some 32-bit targets
1642 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1643 so CORE_ADDR is 64 bits. So we still have to mask off
1644 useless bits from addresses. */
1645 addr &= (CORE_ADDR) 0xffffffff;
1650 /* mips_software_single_step() is called just before we want to resume
1651 the inferior, if we want to single-step it but there is no hardware
1652 or kernel single-step support (MIPS on GNU/Linux for example). We find
1653 the target of the coming instruction and breakpoint it.
1655 single_step is also called just after the inferior stops. If we had
1656 set up a simulated single-step, we undo our damage. */
1659 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1661 static CORE_ADDR next_pc;
1662 typedef char binsn_quantum[BREAKPOINT_MAX];
1663 static binsn_quantum break_mem;
1666 if (insert_breakpoints_p)
1668 pc = read_register (PC_REGNUM);
1669 next_pc = mips_next_pc (pc);
1671 target_insert_breakpoint (next_pc, break_mem);
1674 target_remove_breakpoint (next_pc, break_mem);
1678 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1682 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1683 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1684 tmp = SKIP_TRAMPOLINE_CODE (pc);
1685 prev->pc = tmp ? tmp : pc;
1690 mips_frame_saved_pc (struct frame_info *frame)
1693 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1694 /* We have to get the saved pc from the sigcontext
1695 if it is a signal handler frame. */
1696 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1697 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1699 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1700 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1702 saved_pc = read_next_frame_reg (frame, pcreg);
1704 return ADDR_BITS_REMOVE (saved_pc);
1707 static struct mips_extra_func_info temp_proc_desc;
1708 static CORE_ADDR temp_saved_regs[NUM_REGS];
1710 /* Set a register's saved stack address in temp_saved_regs. If an address
1711 has already been set for this register, do nothing; this way we will
1712 only recognize the first save of a given register in a function prologue.
1713 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1716 set_reg_offset (int regno, CORE_ADDR offset)
1718 if (temp_saved_regs[regno] == 0)
1719 temp_saved_regs[regno] = offset;
1723 /* Test whether the PC points to the return instruction at the
1724 end of a function. */
1727 mips_about_to_return (CORE_ADDR pc)
1729 if (pc_is_mips16 (pc))
1730 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1731 generates a "jr $ra"; other times it generates code to load
1732 the return address from the stack to an accessible register (such
1733 as $a3), then a "jr" using that register. This second case
1734 is almost impossible to distinguish from an indirect jump
1735 used for switch statements, so we don't even try. */
1736 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1738 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1742 /* This fencepost looks highly suspicious to me. Removing it also
1743 seems suspicious as it could affect remote debugging across serial
1747 heuristic_proc_start (CORE_ADDR pc)
1754 pc = ADDR_BITS_REMOVE (pc);
1756 fence = start_pc - heuristic_fence_post;
1760 if (heuristic_fence_post == UINT_MAX
1761 || fence < VM_MIN_ADDRESS)
1762 fence = VM_MIN_ADDRESS;
1764 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1766 /* search back for previous return */
1767 for (start_pc -= instlen;; start_pc -= instlen)
1768 if (start_pc < fence)
1770 /* It's not clear to me why we reach this point when
1771 stop_soon_quietly, but with this test, at least we
1772 don't print out warnings for every child forked (eg, on
1774 if (!stop_soon_quietly)
1776 static int blurb_printed = 0;
1778 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1783 /* This actually happens frequently in embedded
1784 development, when you first connect to a board
1785 and your stack pointer and pc are nowhere in
1786 particular. This message needs to give people
1787 in that situation enough information to
1788 determine that it's no big deal. */
1789 printf_filtered ("\n\
1790 GDB is unable to find the start of the function at 0x%s\n\
1791 and thus can't determine the size of that function's stack frame.\n\
1792 This means that GDB may be unable to access that stack frame, or\n\
1793 the frames below it.\n\
1794 This problem is most likely caused by an invalid program counter or\n\
1796 However, if you think GDB should simply search farther back\n\
1797 from 0x%s for code which looks like the beginning of a\n\
1798 function, you can increase the range of the search using the `set\n\
1799 heuristic-fence-post' command.\n",
1800 paddr_nz (pc), paddr_nz (pc));
1807 else if (pc_is_mips16 (start_pc))
1809 unsigned short inst;
1811 /* On MIPS16, any one of the following is likely to be the
1812 start of a function:
1816 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1817 inst = mips_fetch_instruction (start_pc);
1818 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1819 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1820 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1821 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1823 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1824 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1829 else if (mips_about_to_return (start_pc))
1831 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1838 /* Fetch the immediate value from a MIPS16 instruction.
1839 If the previous instruction was an EXTEND, use it to extend
1840 the upper bits of the immediate value. This is a helper function
1841 for mips16_heuristic_proc_desc. */
1844 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1845 unsigned short inst, /* current instruction */
1846 int nbits, /* number of bits in imm field */
1847 int scale, /* scale factor to be applied to imm */
1848 int is_signed) /* is the imm field signed? */
1852 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1854 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1855 if (offset & 0x8000) /* check for negative extend */
1856 offset = 0 - (0x10000 - (offset & 0xffff));
1857 return offset | (inst & 0x1f);
1861 int max_imm = 1 << nbits;
1862 int mask = max_imm - 1;
1863 int sign_bit = max_imm >> 1;
1865 offset = inst & mask;
1866 if (is_signed && (offset & sign_bit))
1867 offset = 0 - (max_imm - offset);
1868 return offset * scale;
1873 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1874 stream from start_pc to limit_pc. */
1877 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1878 struct frame_info *next_frame, CORE_ADDR sp)
1881 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1882 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1883 unsigned inst = 0; /* current instruction */
1884 unsigned entry_inst = 0; /* the entry instruction */
1887 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1888 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1890 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1892 /* Save the previous instruction. If it's an EXTEND, we'll extract
1893 the immediate offset extension from it in mips16_get_imm. */
1896 /* Fetch and decode the instruction. */
1897 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1898 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1899 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1901 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1902 if (offset < 0) /* negative stack adjustment? */
1903 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1905 /* Exit loop if a positive stack adjustment is found, which
1906 usually means that the stack cleanup code in the function
1907 epilogue is reached. */
1910 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1912 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1913 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1914 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1915 set_reg_offset (reg, sp + offset);
1917 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1919 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1920 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1921 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1922 set_reg_offset (reg, sp + offset);
1924 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1926 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1927 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1928 set_reg_offset (RA_REGNUM, sp + offset);
1930 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1932 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1933 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1934 set_reg_offset (RA_REGNUM, sp + offset);
1936 else if (inst == 0x673d) /* move $s1, $sp */
1939 PROC_FRAME_REG (&temp_proc_desc) = 17;
1941 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1943 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1944 frame_addr = sp + offset;
1945 PROC_FRAME_REG (&temp_proc_desc) = 17;
1946 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1948 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1950 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1951 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1952 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1953 set_reg_offset (reg, frame_addr + offset);
1955 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1957 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1958 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1959 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1960 set_reg_offset (reg, frame_addr + offset);
1962 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1963 entry_inst = inst; /* save for later processing */
1964 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1965 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1968 /* The entry instruction is typically the first instruction in a function,
1969 and it stores registers at offsets relative to the value of the old SP
1970 (before the prologue). But the value of the sp parameter to this
1971 function is the new SP (after the prologue has been executed). So we
1972 can't calculate those offsets until we've seen the entire prologue,
1973 and can calculate what the old SP must have been. */
1974 if (entry_inst != 0)
1976 int areg_count = (entry_inst >> 8) & 7;
1977 int sreg_count = (entry_inst >> 6) & 3;
1979 /* The entry instruction always subtracts 32 from the SP. */
1980 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1982 /* Now we can calculate what the SP must have been at the
1983 start of the function prologue. */
1984 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1986 /* Check if a0-a3 were saved in the caller's argument save area. */
1987 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1989 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1990 set_reg_offset (reg, sp + offset);
1991 offset += MIPS_SAVED_REGSIZE;
1994 /* Check if the ra register was pushed on the stack. */
1996 if (entry_inst & 0x20)
1998 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1999 set_reg_offset (RA_REGNUM, sp + offset);
2000 offset -= MIPS_SAVED_REGSIZE;
2003 /* Check if the s0 and s1 registers were pushed on the stack. */
2004 for (reg = 16; reg < sreg_count + 16; reg++)
2006 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2007 set_reg_offset (reg, sp + offset);
2008 offset -= MIPS_SAVED_REGSIZE;
2014 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2015 struct frame_info *next_frame, CORE_ADDR sp)
2018 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2020 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2021 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2022 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2023 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2025 unsigned long inst, high_word, low_word;
2028 /* Fetch the instruction. */
2029 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2031 /* Save some code by pre-extracting some useful fields. */
2032 high_word = (inst >> 16) & 0xffff;
2033 low_word = inst & 0xffff;
2034 reg = high_word & 0x1f;
2036 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2037 || high_word == 0x23bd /* addi $sp,$sp,-i */
2038 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2040 if (low_word & 0x8000) /* negative stack adjustment? */
2041 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2043 /* Exit loop if a positive stack adjustment is found, which
2044 usually means that the stack cleanup code in the function
2045 epilogue is reached. */
2048 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2050 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2051 set_reg_offset (reg, sp + low_word);
2053 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2055 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2056 but the register size used is only 32 bits. Make the address
2057 for the saved register point to the lower 32 bits. */
2058 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2059 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2061 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2063 /* Old gcc frame, r30 is virtual frame pointer. */
2064 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2065 frame_addr = sp + low_word;
2066 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2068 unsigned alloca_adjust;
2069 PROC_FRAME_REG (&temp_proc_desc) = 30;
2070 frame_addr = read_next_frame_reg (next_frame, 30);
2071 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2072 if (alloca_adjust > 0)
2074 /* FP > SP + frame_size. This may be because
2075 * of an alloca or somethings similar.
2076 * Fix sp to "pre-alloca" value, and try again.
2078 sp += alloca_adjust;
2083 /* move $30,$sp. With different versions of gas this will be either
2084 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2085 Accept any one of these. */
2086 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2088 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2089 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2091 unsigned alloca_adjust;
2092 PROC_FRAME_REG (&temp_proc_desc) = 30;
2093 frame_addr = read_next_frame_reg (next_frame, 30);
2094 alloca_adjust = (unsigned) (frame_addr - sp);
2095 if (alloca_adjust > 0)
2097 /* FP > SP + frame_size. This may be because
2098 * of an alloca or somethings similar.
2099 * Fix sp to "pre-alloca" value, and try again.
2101 sp += alloca_adjust;
2106 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2108 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2109 set_reg_offset (reg, frame_addr + low_word);
2114 static mips_extra_func_info_t
2115 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2116 struct frame_info *next_frame, int cur_frame)
2121 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2127 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2128 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2129 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2130 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2131 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2133 if (start_pc + 200 < limit_pc)
2134 limit_pc = start_pc + 200;
2135 if (pc_is_mips16 (start_pc))
2136 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2138 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2139 return &temp_proc_desc;
2142 struct mips_objfile_private
2148 /* Global used to communicate between non_heuristic_proc_desc and
2149 compare_pdr_entries within qsort (). */
2150 static bfd *the_bfd;
2153 compare_pdr_entries (const void *a, const void *b)
2155 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2156 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2160 else if (lhs == rhs)
2166 static mips_extra_func_info_t
2167 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2169 CORE_ADDR startaddr;
2170 mips_extra_func_info_t proc_desc;
2171 struct block *b = block_for_pc (pc);
2173 struct obj_section *sec;
2174 struct mips_objfile_private *priv;
2176 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2179 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2181 *addrptr = startaddr;
2185 sec = find_pc_section (pc);
2188 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2190 /* Search the ".pdr" section generated by GAS. This includes most of
2191 the information normally found in ECOFF PDRs. */
2193 the_bfd = sec->objfile->obfd;
2195 && (the_bfd->format == bfd_object
2196 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2197 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2199 /* Right now GAS only outputs the address as a four-byte sequence.
2200 This means that we should not bother with this method on 64-bit
2201 targets (until that is fixed). */
2203 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2204 sizeof (struct mips_objfile_private));
2206 sec->objfile->obj_private = priv;
2208 else if (priv == NULL)
2212 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2213 sizeof (struct mips_objfile_private));
2215 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2218 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2219 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2221 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2222 priv->contents, 0, priv->size);
2224 /* In general, the .pdr section is sorted. However, in the
2225 presence of multiple code sections (and other corner cases)
2226 it can become unsorted. Sort it so that we can use a faster
2228 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2233 sec->objfile->obj_private = priv;
2237 if (priv->size != 0)
2243 high = priv->size / 32;
2249 mid = (low + high) / 2;
2251 ptr = priv->contents + mid * 32;
2252 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2253 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2254 SECT_OFF_TEXT (sec->objfile));
2255 if (pdr_pc == startaddr)
2257 if (pdr_pc > startaddr)
2262 while (low != high);
2266 struct symbol *sym = find_pc_function (pc);
2268 /* Fill in what we need of the proc_desc. */
2269 proc_desc = (mips_extra_func_info_t)
2270 obstack_alloc (&sec->objfile->psymbol_obstack,
2271 sizeof (struct mips_extra_func_info));
2272 PROC_LOW_ADDR (proc_desc) = startaddr;
2274 /* Only used for dummy frames. */
2275 PROC_HIGH_ADDR (proc_desc) = 0;
2277 PROC_FRAME_OFFSET (proc_desc)
2278 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2279 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2281 PROC_FRAME_ADJUST (proc_desc) = 0;
2282 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2284 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2286 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2288 PROC_FREG_OFFSET (proc_desc)
2289 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2290 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2292 proc_desc->pdr.isym = (long) sym;
2302 if (startaddr > BLOCK_START (b))
2304 /* This is the "pathological" case referred to in a comment in
2305 print_frame_info. It might be better to move this check into
2310 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2312 /* If we never found a PDR for this function in symbol reading, then
2313 examine prologues to find the information. */
2316 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2317 if (PROC_FRAME_REG (proc_desc) == -1)
2327 static mips_extra_func_info_t
2328 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2330 mips_extra_func_info_t proc_desc;
2331 CORE_ADDR startaddr;
2333 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2337 /* IF this is the topmost frame AND
2338 * (this proc does not have debugging information OR
2339 * the PC is in the procedure prologue)
2340 * THEN create a "heuristic" proc_desc (by analyzing
2341 * the actual code) to replace the "official" proc_desc.
2343 if (next_frame == NULL)
2345 struct symtab_and_line val;
2346 struct symbol *proc_symbol =
2347 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2351 val = find_pc_line (BLOCK_START
2352 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2354 val.pc = val.end ? val.end : pc;
2356 if (!proc_symbol || pc < val.pc)
2358 mips_extra_func_info_t found_heuristic =
2359 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2360 pc, next_frame, cur_frame);
2361 if (found_heuristic)
2362 proc_desc = found_heuristic;
2368 /* Is linked_proc_desc_table really necessary? It only seems to be used
2369 by procedure call dummys. However, the procedures being called ought
2370 to have their own proc_descs, and even if they don't,
2371 heuristic_proc_desc knows how to create them! */
2373 register struct linked_proc_info *link;
2375 for (link = linked_proc_desc_table; link; link = link->next)
2376 if (PROC_LOW_ADDR (&link->info) <= pc
2377 && PROC_HIGH_ADDR (&link->info) > pc)
2381 startaddr = heuristic_proc_start (pc);
2384 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2390 get_frame_pointer (struct frame_info *frame,
2391 mips_extra_func_info_t proc_desc)
2393 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2394 PROC_FRAME_REG (proc_desc)) +
2395 PROC_FRAME_OFFSET (proc_desc) -
2396 PROC_FRAME_ADJUST (proc_desc));
2399 static mips_extra_func_info_t cached_proc_desc;
2402 mips_frame_chain (struct frame_info *frame)
2404 mips_extra_func_info_t proc_desc;
2406 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2408 if (saved_pc == 0 || inside_entry_file (saved_pc))
2411 /* Check if the PC is inside a call stub. If it is, fetch the
2412 PC of the caller of that stub. */
2413 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2416 /* Look up the procedure descriptor for this PC. */
2417 proc_desc = find_proc_desc (saved_pc, frame, 1);
2421 cached_proc_desc = proc_desc;
2423 /* If no frame pointer and frame size is zero, we must be at end
2424 of stack (or otherwise hosed). If we don't check frame size,
2425 we loop forever if we see a zero size frame. */
2426 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2427 && PROC_FRAME_OFFSET (proc_desc) == 0
2428 /* The previous frame from a sigtramp frame might be frameless
2429 and have frame size zero. */
2430 && !frame->signal_handler_caller
2431 /* Check if this is a call dummy frame. */
2432 && frame->pc != CALL_DUMMY_ADDRESS ())
2435 return get_frame_pointer (frame, proc_desc);
2439 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2443 /* Use proc_desc calculated in frame_chain */
2444 mips_extra_func_info_t proc_desc =
2445 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2447 fci->extra_info = (struct frame_extra_info *)
2448 frame_obstack_alloc (sizeof (struct frame_extra_info));
2450 fci->saved_regs = NULL;
2451 fci->extra_info->proc_desc =
2452 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2455 /* Fixup frame-pointer - only needed for top frame */
2456 /* This may not be quite right, if proc has a real frame register.
2457 Get the value of the frame relative sp, procedure might have been
2458 interrupted by a signal at it's very start. */
2459 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2460 && !PROC_DESC_IS_DUMMY (proc_desc))
2461 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2463 fci->frame = get_frame_pointer (fci->next, proc_desc);
2465 if (proc_desc == &temp_proc_desc)
2469 /* Do not set the saved registers for a sigtramp frame,
2470 mips_find_saved_registers will do that for us.
2471 We can't use fci->signal_handler_caller, it is not yet set. */
2472 find_pc_partial_function (fci->pc, &name,
2473 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2474 if (!PC_IN_SIGTRAMP (fci->pc, name))
2476 frame_saved_regs_zalloc (fci);
2477 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2478 fci->saved_regs[PC_REGNUM]
2479 = fci->saved_regs[RA_REGNUM];
2480 /* Set value of previous frame's stack pointer. Remember that
2481 saved_regs[SP_REGNUM] is special in that it contains the
2482 value of the stack pointer register. The other saved_regs
2483 values are addresses (in the inferior) at which a given
2484 register's value may be found. */
2485 fci->saved_regs[SP_REGNUM] = fci->frame;
2489 /* hack: if argument regs are saved, guess these contain args */
2490 /* assume we can't tell how many args for now */
2491 fci->extra_info->num_args = -1;
2492 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2494 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2496 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2503 /* MIPS stack frames are almost impenetrable. When execution stops,
2504 we basically have to look at symbol information for the function
2505 that we stopped in, which tells us *which* register (if any) is
2506 the base of the frame pointer, and what offset from that register
2507 the frame itself is at.
2509 This presents a problem when trying to examine a stack in memory
2510 (that isn't executing at the moment), using the "frame" command. We
2511 don't have a PC, nor do we have any registers except SP.
2513 This routine takes two arguments, SP and PC, and tries to make the
2514 cached frames look as if these two arguments defined a frame on the
2515 cache. This allows the rest of info frame to extract the important
2516 arguments without difficulty. */
2519 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2522 error ("MIPS frame specifications require two arguments: sp and pc");
2524 return create_new_frame (argv[0], argv[1]);
2527 /* According to the current ABI, should the type be passed in a
2528 floating-point register (assuming that there is space)? When there
2529 is no FPU, FP are not even considered as possibile candidates for
2530 FP registers and, consequently this returns false - forces FP
2531 arguments into integer registers. */
2534 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2536 return ((typecode == TYPE_CODE_FLT
2538 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2539 && TYPE_NFIELDS (arg_type) == 1
2540 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2541 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2544 /* On o32, argument passing in GPRs depends on the alignment of the type being
2545 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2548 mips_type_needs_double_align (struct type *type)
2550 enum type_code typecode = TYPE_CODE (type);
2552 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2554 else if (typecode == TYPE_CODE_STRUCT)
2556 if (TYPE_NFIELDS (type) < 1)
2558 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2560 else if (typecode == TYPE_CODE_UNION)
2564 n = TYPE_NFIELDS (type);
2565 for (i = 0; i < n; i++)
2566 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2573 /* Macros to round N up or down to the next A boundary;
2574 A must be a power of two. */
2576 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2577 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2580 mips_eabi_push_arguments (int nargs,
2581 struct value **args,
2584 CORE_ADDR struct_addr)
2590 int stack_offset = 0;
2592 /* First ensure that the stack and structure return address (if any)
2593 are properly aligned. The stack has to be at least 64-bit
2594 aligned even on 32-bit machines, because doubles must be 64-bit
2595 aligned. For n32 and n64, stack frames need to be 128-bit
2596 aligned, so we round to this widest known alignment. */
2598 sp = ROUND_DOWN (sp, 16);
2599 struct_addr = ROUND_DOWN (struct_addr, 16);
2601 /* Now make space on the stack for the args. We allocate more
2602 than necessary for EABI, because the first few arguments are
2603 passed in registers, but that's OK. */
2604 for (argnum = 0; argnum < nargs; argnum++)
2605 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2606 MIPS_STACK_ARGSIZE);
2607 sp -= ROUND_UP (len, 16);
2610 fprintf_unfiltered (gdb_stdlog,
2611 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2612 paddr_nz (sp), ROUND_UP (len, 16));
2614 /* Initialize the integer and float register pointers. */
2616 float_argreg = FPA0_REGNUM;
2618 /* The struct_return pointer occupies the first parameter-passing reg. */
2622 fprintf_unfiltered (gdb_stdlog,
2623 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2624 argreg, paddr_nz (struct_addr));
2625 write_register (argreg++, struct_addr);
2628 /* Now load as many as possible of the first arguments into
2629 registers, and push the rest onto the stack. Loop thru args
2630 from first to last. */
2631 for (argnum = 0; argnum < nargs; argnum++)
2634 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2635 struct value *arg = args[argnum];
2636 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2637 int len = TYPE_LENGTH (arg_type);
2638 enum type_code typecode = TYPE_CODE (arg_type);
2641 fprintf_unfiltered (gdb_stdlog,
2642 "mips_eabi_push_arguments: %d len=%d type=%d",
2643 argnum + 1, len, (int) typecode);
2645 /* The EABI passes structures that do not fit in a register by
2647 if (len > MIPS_SAVED_REGSIZE
2648 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2650 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2651 typecode = TYPE_CODE_PTR;
2652 len = MIPS_SAVED_REGSIZE;
2655 fprintf_unfiltered (gdb_stdlog, " push");
2658 val = (char *) VALUE_CONTENTS (arg);
2660 /* 32-bit ABIs always start floating point arguments in an
2661 even-numbered floating point register. Round the FP register
2662 up before the check to see if there are any FP registers
2663 left. Non MIPS_EABI targets also pass the FP in the integer
2664 registers so also round up normal registers. */
2665 if (!FP_REGISTER_DOUBLE
2666 && fp_register_arg_p (typecode, arg_type))
2668 if ((float_argreg & 1))
2672 /* Floating point arguments passed in registers have to be
2673 treated specially. On 32-bit architectures, doubles
2674 are passed in register pairs; the even register gets
2675 the low word, and the odd register gets the high word.
2676 On non-EABI processors, the first two floating point arguments are
2677 also copied to general registers, because MIPS16 functions
2678 don't use float registers for arguments. This duplication of
2679 arguments in general registers can't hurt non-MIPS16 functions
2680 because those registers are normally skipped. */
2681 /* MIPS_EABI squeezes a struct that contains a single floating
2682 point value into an FP register instead of pushing it onto the
2684 if (fp_register_arg_p (typecode, arg_type)
2685 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2687 if (!FP_REGISTER_DOUBLE && len == 8)
2689 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2690 unsigned long regval;
2692 /* Write the low word of the double to the even register(s). */
2693 regval = extract_unsigned_integer (val + low_offset, 4);
2695 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2696 float_argreg, phex (regval, 4));
2697 write_register (float_argreg++, regval);
2699 /* Write the high word of the double to the odd register(s). */
2700 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2702 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2703 float_argreg, phex (regval, 4));
2704 write_register (float_argreg++, regval);
2708 /* This is a floating point value that fits entirely
2709 in a single register. */
2710 /* On 32 bit ABI's the float_argreg is further adjusted
2711 above to ensure that it is even register aligned. */
2712 LONGEST regval = extract_unsigned_integer (val, len);
2714 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2715 float_argreg, phex (regval, len));
2716 write_register (float_argreg++, regval);
2721 /* Copy the argument to general registers or the stack in
2722 register-sized pieces. Large arguments are split between
2723 registers and stack. */
2724 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2725 are treated specially: Irix cc passes them in registers
2726 where gcc sometimes puts them on the stack. For maximum
2727 compatibility, we will put them in both places. */
2728 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2729 (len % MIPS_SAVED_REGSIZE != 0));
2731 /* Note: Floating-point values that didn't fit into an FP
2732 register are only written to memory. */
2735 /* Remember if the argument was written to the stack. */
2736 int stack_used_p = 0;
2738 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2741 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2744 /* Write this portion of the argument to the stack. */
2745 if (argreg > MIPS_LAST_ARG_REGNUM
2747 || fp_register_arg_p (typecode, arg_type))
2749 /* Should shorter than int integer values be
2750 promoted to int before being stored? */
2751 int longword_offset = 0;
2754 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2756 if (MIPS_STACK_ARGSIZE == 8 &&
2757 (typecode == TYPE_CODE_INT ||
2758 typecode == TYPE_CODE_PTR ||
2759 typecode == TYPE_CODE_FLT) && len <= 4)
2760 longword_offset = MIPS_STACK_ARGSIZE - len;
2761 else if ((typecode == TYPE_CODE_STRUCT ||
2762 typecode == TYPE_CODE_UNION) &&
2763 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2764 longword_offset = MIPS_STACK_ARGSIZE - len;
2769 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2770 paddr_nz (stack_offset));
2771 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2772 paddr_nz (longword_offset));
2775 addr = sp + stack_offset + longword_offset;
2780 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2782 for (i = 0; i < partial_len; i++)
2784 fprintf_unfiltered (gdb_stdlog, "%02x",
2788 write_memory (addr, val, partial_len);
2791 /* Note!!! This is NOT an else clause. Odd sized
2792 structs may go thru BOTH paths. Floating point
2793 arguments will not. */
2794 /* Write this portion of the argument to a general
2795 purpose register. */
2796 if (argreg <= MIPS_LAST_ARG_REGNUM
2797 && !fp_register_arg_p (typecode, arg_type))
2799 LONGEST regval = extract_unsigned_integer (val, partial_len);
2802 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2804 phex (regval, MIPS_SAVED_REGSIZE));
2805 write_register (argreg, regval);
2812 /* Compute the the offset into the stack at which we
2813 will copy the next parameter.
2815 In the new EABI (and the NABI32), the stack_offset
2816 only needs to be adjusted when it has been used. */
2819 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2823 fprintf_unfiltered (gdb_stdlog, "\n");
2826 /* Return adjusted stack pointer. */
2830 /* N32/N64 version of push_arguments. */
2833 mips_n32n64_push_arguments (int nargs,
2834 struct value **args,
2837 CORE_ADDR struct_addr)
2843 int stack_offset = 0;
2845 /* First ensure that the stack and structure return address (if any)
2846 are properly aligned. The stack has to be at least 64-bit
2847 aligned even on 32-bit machines, because doubles must be 64-bit
2848 aligned. For n32 and n64, stack frames need to be 128-bit
2849 aligned, so we round to this widest known alignment. */
2851 sp = ROUND_DOWN (sp, 16);
2852 struct_addr = ROUND_DOWN (struct_addr, 16);
2854 /* Now make space on the stack for the args. */
2855 for (argnum = 0; argnum < nargs; argnum++)
2856 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2857 MIPS_STACK_ARGSIZE);
2858 sp -= ROUND_UP (len, 16);
2861 fprintf_unfiltered (gdb_stdlog,
2862 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2863 paddr_nz (sp), ROUND_UP (len, 16));
2865 /* Initialize the integer and float register pointers. */
2867 float_argreg = FPA0_REGNUM;
2869 /* The struct_return pointer occupies the first parameter-passing reg. */
2873 fprintf_unfiltered (gdb_stdlog,
2874 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2875 argreg, paddr_nz (struct_addr));
2876 write_register (argreg++, struct_addr);
2879 /* Now load as many as possible of the first arguments into
2880 registers, and push the rest onto the stack. Loop thru args
2881 from first to last. */
2882 for (argnum = 0; argnum < nargs; argnum++)
2885 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2886 struct value *arg = args[argnum];
2887 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2888 int len = TYPE_LENGTH (arg_type);
2889 enum type_code typecode = TYPE_CODE (arg_type);
2892 fprintf_unfiltered (gdb_stdlog,
2893 "mips_n32n64_push_arguments: %d len=%d type=%d",
2894 argnum + 1, len, (int) typecode);
2896 val = (char *) VALUE_CONTENTS (arg);
2898 if (fp_register_arg_p (typecode, arg_type)
2899 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2901 /* This is a floating point value that fits entirely
2902 in a single register. */
2903 /* On 32 bit ABI's the float_argreg is further adjusted
2904 above to ensure that it is even register aligned. */
2905 LONGEST regval = extract_unsigned_integer (val, len);
2907 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2908 float_argreg, phex (regval, len));
2909 write_register (float_argreg++, regval);
2912 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2913 argreg, phex (regval, len));
2914 write_register (argreg, regval);
2919 /* Copy the argument to general registers or the stack in
2920 register-sized pieces. Large arguments are split between
2921 registers and stack. */
2922 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2923 are treated specially: Irix cc passes them in registers
2924 where gcc sometimes puts them on the stack. For maximum
2925 compatibility, we will put them in both places. */
2926 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2927 (len % MIPS_SAVED_REGSIZE != 0));
2928 /* Note: Floating-point values that didn't fit into an FP
2929 register are only written to memory. */
2932 /* Rememer if the argument was written to the stack. */
2933 int stack_used_p = 0;
2934 int partial_len = len < MIPS_SAVED_REGSIZE ?
2935 len : MIPS_SAVED_REGSIZE;
2938 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2941 /* Write this portion of the argument to the stack. */
2942 if (argreg > MIPS_LAST_ARG_REGNUM
2944 || fp_register_arg_p (typecode, arg_type))
2946 /* Should shorter than int integer values be
2947 promoted to int before being stored? */
2948 int longword_offset = 0;
2951 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2953 if (MIPS_STACK_ARGSIZE == 8 &&
2954 (typecode == TYPE_CODE_INT ||
2955 typecode == TYPE_CODE_PTR ||
2956 typecode == TYPE_CODE_FLT) && len <= 4)
2957 longword_offset = MIPS_STACK_ARGSIZE - len;
2962 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2963 paddr_nz (stack_offset));
2964 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2965 paddr_nz (longword_offset));
2968 addr = sp + stack_offset + longword_offset;
2973 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2975 for (i = 0; i < partial_len; i++)
2977 fprintf_unfiltered (gdb_stdlog, "%02x",
2981 write_memory (addr, val, partial_len);
2984 /* Note!!! This is NOT an else clause. Odd sized
2985 structs may go thru BOTH paths. Floating point
2986 arguments will not. */
2987 /* Write this portion of the argument to a general
2988 purpose register. */
2989 if (argreg <= MIPS_LAST_ARG_REGNUM
2990 && !fp_register_arg_p (typecode, arg_type))
2992 LONGEST regval = extract_unsigned_integer (val, partial_len);
2994 /* A non-floating-point argument being passed in a
2995 general register. If a struct or union, and if
2996 the remaining length is smaller than the register
2997 size, we have to adjust the register value on
3000 It does not seem to be necessary to do the
3001 same for integral types.
3003 cagney/2001-07-23: gdb/179: Also, GCC, when
3004 outputting LE O32 with sizeof (struct) <
3005 MIPS_SAVED_REGSIZE, generates a left shift as
3006 part of storing the argument in a register a
3007 register (the left shift isn't generated when
3008 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3009 is quite possible that this is GCC contradicting
3010 the LE/O32 ABI, GDB has not been adjusted to
3011 accommodate this. Either someone needs to
3012 demonstrate that the LE/O32 ABI specifies such a
3013 left shift OR this new ABI gets identified as
3014 such and GDB gets tweaked accordingly. */
3016 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3017 && partial_len < MIPS_SAVED_REGSIZE
3018 && (typecode == TYPE_CODE_STRUCT ||
3019 typecode == TYPE_CODE_UNION))
3020 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3024 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3026 phex (regval, MIPS_SAVED_REGSIZE));
3027 write_register (argreg, regval);
3034 /* Compute the the offset into the stack at which we
3035 will copy the next parameter.
3037 In N32 (N64?), the stack_offset only needs to be
3038 adjusted when it has been used. */
3041 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3045 fprintf_unfiltered (gdb_stdlog, "\n");
3048 /* Return adjusted stack pointer. */
3052 /* O32 version of push_arguments. */
3055 mips_o32_push_arguments (int nargs,
3056 struct value **args,
3059 CORE_ADDR struct_addr)
3065 int stack_offset = 0;
3067 /* First ensure that the stack and structure return address (if any)
3068 are properly aligned. The stack has to be at least 64-bit
3069 aligned even on 32-bit machines, because doubles must be 64-bit
3070 aligned. For n32 and n64, stack frames need to be 128-bit
3071 aligned, so we round to this widest known alignment. */
3073 sp = ROUND_DOWN (sp, 16);
3074 struct_addr = ROUND_DOWN (struct_addr, 16);
3076 /* Now make space on the stack for the args. */
3077 for (argnum = 0; argnum < nargs; argnum++)
3078 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3079 MIPS_STACK_ARGSIZE);
3080 sp -= ROUND_UP (len, 16);
3083 fprintf_unfiltered (gdb_stdlog,
3084 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3085 paddr_nz (sp), ROUND_UP (len, 16));
3087 /* Initialize the integer and float register pointers. */
3089 float_argreg = FPA0_REGNUM;
3091 /* The struct_return pointer occupies the first parameter-passing reg. */
3095 fprintf_unfiltered (gdb_stdlog,
3096 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3097 argreg, paddr_nz (struct_addr));
3098 write_register (argreg++, struct_addr);
3099 stack_offset += MIPS_STACK_ARGSIZE;
3102 /* Now load as many as possible of the first arguments into
3103 registers, and push the rest onto the stack. Loop thru args
3104 from first to last. */
3105 for (argnum = 0; argnum < nargs; argnum++)
3108 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3109 struct value *arg = args[argnum];
3110 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3111 int len = TYPE_LENGTH (arg_type);
3112 enum type_code typecode = TYPE_CODE (arg_type);
3115 fprintf_unfiltered (gdb_stdlog,
3116 "mips_o32_push_arguments: %d len=%d type=%d",
3117 argnum + 1, len, (int) typecode);
3119 val = (char *) VALUE_CONTENTS (arg);
3121 /* 32-bit ABIs always start floating point arguments in an
3122 even-numbered floating point register. Round the FP register
3123 up before the check to see if there are any FP registers
3124 left. O32/O64 targets also pass the FP in the integer
3125 registers so also round up normal registers. */
3126 if (!FP_REGISTER_DOUBLE
3127 && fp_register_arg_p (typecode, arg_type))
3129 if ((float_argreg & 1))
3133 /* Floating point arguments passed in registers have to be
3134 treated specially. On 32-bit architectures, doubles
3135 are passed in register pairs; the even register gets
3136 the low word, and the odd register gets the high word.
3137 On O32/O64, the first two floating point arguments are
3138 also copied to general registers, because MIPS16 functions
3139 don't use float registers for arguments. This duplication of
3140 arguments in general registers can't hurt non-MIPS16 functions
3141 because those registers are normally skipped. */
3143 if (fp_register_arg_p (typecode, arg_type)
3144 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3146 if (!FP_REGISTER_DOUBLE && len == 8)
3148 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3149 unsigned long regval;
3151 /* Write the low word of the double to the even register(s). */
3152 regval = extract_unsigned_integer (val + low_offset, 4);
3154 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3155 float_argreg, phex (regval, 4));
3156 write_register (float_argreg++, regval);
3158 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3159 argreg, phex (regval, 4));
3160 write_register (argreg++, regval);
3162 /* Write the high word of the double to the odd register(s). */
3163 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3165 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3166 float_argreg, phex (regval, 4));
3167 write_register (float_argreg++, regval);
3170 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3171 argreg, phex (regval, 4));
3172 write_register (argreg++, regval);
3176 /* This is a floating point value that fits entirely
3177 in a single register. */
3178 /* On 32 bit ABI's the float_argreg is further adjusted
3179 above to ensure that it is even register aligned. */
3180 LONGEST regval = extract_unsigned_integer (val, len);
3182 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3183 float_argreg, phex (regval, len));
3184 write_register (float_argreg++, regval);
3185 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3186 registers for each argument. The below is (my
3187 guess) to ensure that the corresponding integer
3188 register has reserved the same space. */
3190 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3191 argreg, phex (regval, len));
3192 write_register (argreg, regval);
3193 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3195 /* Reserve space for the FP register. */
3196 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3200 /* Copy the argument to general registers or the stack in
3201 register-sized pieces. Large arguments are split between
3202 registers and stack. */
3203 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3204 are treated specially: Irix cc passes them in registers
3205 where gcc sometimes puts them on the stack. For maximum
3206 compatibility, we will put them in both places. */
3207 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3208 (len % MIPS_SAVED_REGSIZE != 0));
3209 /* Structures should be aligned to eight bytes (even arg registers)
3210 on MIPS_ABI_O32, if their first member has double precision. */
3211 if (MIPS_SAVED_REGSIZE < 8
3212 && mips_type_needs_double_align (arg_type))
3217 /* Note: Floating-point values that didn't fit into an FP
3218 register are only written to memory. */
3221 /* Remember if the argument was written to the stack. */
3222 int stack_used_p = 0;
3224 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3227 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3230 /* Write this portion of the argument to the stack. */
3231 if (argreg > MIPS_LAST_ARG_REGNUM
3233 || fp_register_arg_p (typecode, arg_type))
3235 /* Should shorter than int integer values be
3236 promoted to int before being stored? */
3237 int longword_offset = 0;
3240 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3242 if (MIPS_STACK_ARGSIZE == 8 &&
3243 (typecode == TYPE_CODE_INT ||
3244 typecode == TYPE_CODE_PTR ||
3245 typecode == TYPE_CODE_FLT) && len <= 4)
3246 longword_offset = MIPS_STACK_ARGSIZE - len;
3251 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3252 paddr_nz (stack_offset));
3253 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3254 paddr_nz (longword_offset));
3257 addr = sp + stack_offset + longword_offset;
3262 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3264 for (i = 0; i < partial_len; i++)
3266 fprintf_unfiltered (gdb_stdlog, "%02x",
3270 write_memory (addr, val, partial_len);
3273 /* Note!!! This is NOT an else clause. Odd sized
3274 structs may go thru BOTH paths. Floating point
3275 arguments will not. */
3276 /* Write this portion of the argument to a general
3277 purpose register. */
3278 if (argreg <= MIPS_LAST_ARG_REGNUM
3279 && !fp_register_arg_p (typecode, arg_type))
3281 LONGEST regval = extract_signed_integer (val, partial_len);
3282 /* Value may need to be sign extended, because
3283 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3285 /* A non-floating-point argument being passed in a
3286 general register. If a struct or union, and if
3287 the remaining length is smaller than the register
3288 size, we have to adjust the register value on
3291 It does not seem to be necessary to do the
3292 same for integral types.
3294 Also don't do this adjustment on O64 binaries.
3296 cagney/2001-07-23: gdb/179: Also, GCC, when
3297 outputting LE O32 with sizeof (struct) <
3298 MIPS_SAVED_REGSIZE, generates a left shift as
3299 part of storing the argument in a register a
3300 register (the left shift isn't generated when
3301 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3302 is quite possible that this is GCC contradicting
3303 the LE/O32 ABI, GDB has not been adjusted to
3304 accommodate this. Either someone needs to
3305 demonstrate that the LE/O32 ABI specifies such a
3306 left shift OR this new ABI gets identified as
3307 such and GDB gets tweaked accordingly. */
3309 if (MIPS_SAVED_REGSIZE < 8
3310 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3311 && partial_len < MIPS_SAVED_REGSIZE
3312 && (typecode == TYPE_CODE_STRUCT ||
3313 typecode == TYPE_CODE_UNION))
3314 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3318 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3320 phex (regval, MIPS_SAVED_REGSIZE));
3321 write_register (argreg, regval);
3324 /* Prevent subsequent floating point arguments from
3325 being passed in floating point registers. */
3326 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3332 /* Compute the the offset into the stack at which we
3333 will copy the next parameter.
3335 In older ABIs, the caller reserved space for
3336 registers that contained arguments. This was loosely
3337 refered to as their "home". Consequently, space is
3338 always allocated. */
3340 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3344 fprintf_unfiltered (gdb_stdlog, "\n");
3347 /* Return adjusted stack pointer. */
3351 /* O64 version of push_arguments. */
3354 mips_o64_push_arguments (int nargs,
3355 struct value **args,
3358 CORE_ADDR struct_addr)
3364 int stack_offset = 0;
3366 /* First ensure that the stack and structure return address (if any)
3367 are properly aligned. The stack has to be at least 64-bit
3368 aligned even on 32-bit machines, because doubles must be 64-bit
3369 aligned. For n32 and n64, stack frames need to be 128-bit
3370 aligned, so we round to this widest known alignment. */
3372 sp = ROUND_DOWN (sp, 16);
3373 struct_addr = ROUND_DOWN (struct_addr, 16);
3375 /* Now make space on the stack for the args. */
3376 for (argnum = 0; argnum < nargs; argnum++)
3377 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3378 MIPS_STACK_ARGSIZE);
3379 sp -= ROUND_UP (len, 16);
3382 fprintf_unfiltered (gdb_stdlog,
3383 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3384 paddr_nz (sp), ROUND_UP (len, 16));
3386 /* Initialize the integer and float register pointers. */
3388 float_argreg = FPA0_REGNUM;
3390 /* The struct_return pointer occupies the first parameter-passing reg. */
3394 fprintf_unfiltered (gdb_stdlog,
3395 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3396 argreg, paddr_nz (struct_addr));
3397 write_register (argreg++, struct_addr);
3398 stack_offset += MIPS_STACK_ARGSIZE;
3401 /* Now load as many as possible of the first arguments into
3402 registers, and push the rest onto the stack. Loop thru args
3403 from first to last. */
3404 for (argnum = 0; argnum < nargs; argnum++)
3407 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3408 struct value *arg = args[argnum];
3409 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3410 int len = TYPE_LENGTH (arg_type);
3411 enum type_code typecode = TYPE_CODE (arg_type);
3414 fprintf_unfiltered (gdb_stdlog,
3415 "mips_o64_push_arguments: %d len=%d type=%d",
3416 argnum + 1, len, (int) typecode);
3418 val = (char *) VALUE_CONTENTS (arg);
3420 /* 32-bit ABIs always start floating point arguments in an
3421 even-numbered floating point register. Round the FP register
3422 up before the check to see if there are any FP registers
3423 left. O32/O64 targets also pass the FP in the integer
3424 registers so also round up normal registers. */
3425 if (!FP_REGISTER_DOUBLE
3426 && fp_register_arg_p (typecode, arg_type))
3428 if ((float_argreg & 1))
3432 /* Floating point arguments passed in registers have to be
3433 treated specially. On 32-bit architectures, doubles
3434 are passed in register pairs; the even register gets
3435 the low word, and the odd register gets the high word.
3436 On O32/O64, the first two floating point arguments are
3437 also copied to general registers, because MIPS16 functions
3438 don't use float registers for arguments. This duplication of
3439 arguments in general registers can't hurt non-MIPS16 functions
3440 because those registers are normally skipped. */
3442 if (fp_register_arg_p (typecode, arg_type)
3443 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3445 if (!FP_REGISTER_DOUBLE && len == 8)
3447 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3448 unsigned long regval;
3450 /* Write the low word of the double to the even register(s). */
3451 regval = extract_unsigned_integer (val + low_offset, 4);
3453 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3454 float_argreg, phex (regval, 4));
3455 write_register (float_argreg++, regval);
3457 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3458 argreg, phex (regval, 4));
3459 write_register (argreg++, regval);
3461 /* Write the high word of the double to the odd register(s). */
3462 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3464 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3465 float_argreg, phex (regval, 4));
3466 write_register (float_argreg++, regval);
3469 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3470 argreg, phex (regval, 4));
3471 write_register (argreg++, regval);
3475 /* This is a floating point value that fits entirely
3476 in a single register. */
3477 /* On 32 bit ABI's the float_argreg is further adjusted
3478 above to ensure that it is even register aligned. */
3479 LONGEST regval = extract_unsigned_integer (val, len);
3481 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3482 float_argreg, phex (regval, len));
3483 write_register (float_argreg++, regval);
3484 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3485 registers for each argument. The below is (my
3486 guess) to ensure that the corresponding integer
3487 register has reserved the same space. */
3489 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3490 argreg, phex (regval, len));
3491 write_register (argreg, regval);
3492 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3494 /* Reserve space for the FP register. */
3495 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3499 /* Copy the argument to general registers or the stack in
3500 register-sized pieces. Large arguments are split between
3501 registers and stack. */
3502 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3503 are treated specially: Irix cc passes them in registers
3504 where gcc sometimes puts them on the stack. For maximum
3505 compatibility, we will put them in both places. */
3506 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3507 (len % MIPS_SAVED_REGSIZE != 0));
3508 /* Structures should be aligned to eight bytes (even arg registers)
3509 on MIPS_ABI_O32, if their first member has double precision. */
3510 if (MIPS_SAVED_REGSIZE < 8
3511 && mips_type_needs_double_align (arg_type))
3516 /* Note: Floating-point values that didn't fit into an FP
3517 register are only written to memory. */
3520 /* Remember if the argument was written to the stack. */
3521 int stack_used_p = 0;
3523 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3526 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3529 /* Write this portion of the argument to the stack. */
3530 if (argreg > MIPS_LAST_ARG_REGNUM
3532 || fp_register_arg_p (typecode, arg_type))
3534 /* Should shorter than int integer values be
3535 promoted to int before being stored? */
3536 int longword_offset = 0;
3539 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3541 if (MIPS_STACK_ARGSIZE == 8 &&
3542 (typecode == TYPE_CODE_INT ||
3543 typecode == TYPE_CODE_PTR ||
3544 typecode == TYPE_CODE_FLT) && len <= 4)
3545 longword_offset = MIPS_STACK_ARGSIZE - len;
3550 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3551 paddr_nz (stack_offset));
3552 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3553 paddr_nz (longword_offset));
3556 addr = sp + stack_offset + longword_offset;
3561 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3563 for (i = 0; i < partial_len; i++)
3565 fprintf_unfiltered (gdb_stdlog, "%02x",
3569 write_memory (addr, val, partial_len);
3572 /* Note!!! This is NOT an else clause. Odd sized
3573 structs may go thru BOTH paths. Floating point
3574 arguments will not. */
3575 /* Write this portion of the argument to a general
3576 purpose register. */
3577 if (argreg <= MIPS_LAST_ARG_REGNUM
3578 && !fp_register_arg_p (typecode, arg_type))
3580 LONGEST regval = extract_signed_integer (val, partial_len);
3581 /* Value may need to be sign extended, because
3582 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3584 /* A non-floating-point argument being passed in a
3585 general register. If a struct or union, and if
3586 the remaining length is smaller than the register
3587 size, we have to adjust the register value on
3590 It does not seem to be necessary to do the
3591 same for integral types.
3593 Also don't do this adjustment on O64 binaries.
3595 cagney/2001-07-23: gdb/179: Also, GCC, when
3596 outputting LE O32 with sizeof (struct) <
3597 MIPS_SAVED_REGSIZE, generates a left shift as
3598 part of storing the argument in a register a
3599 register (the left shift isn't generated when
3600 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3601 is quite possible that this is GCC contradicting
3602 the LE/O32 ABI, GDB has not been adjusted to
3603 accommodate this. Either someone needs to
3604 demonstrate that the LE/O32 ABI specifies such a
3605 left shift OR this new ABI gets identified as
3606 such and GDB gets tweaked accordingly. */
3608 if (MIPS_SAVED_REGSIZE < 8
3609 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3610 && partial_len < MIPS_SAVED_REGSIZE
3611 && (typecode == TYPE_CODE_STRUCT ||
3612 typecode == TYPE_CODE_UNION))
3613 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3617 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3619 phex (regval, MIPS_SAVED_REGSIZE));
3620 write_register (argreg, regval);
3623 /* Prevent subsequent floating point arguments from
3624 being passed in floating point registers. */
3625 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3631 /* Compute the the offset into the stack at which we
3632 will copy the next parameter.
3634 In older ABIs, the caller reserved space for
3635 registers that contained arguments. This was loosely
3636 refered to as their "home". Consequently, space is
3637 always allocated. */
3639 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3643 fprintf_unfiltered (gdb_stdlog, "\n");
3646 /* Return adjusted stack pointer. */
3651 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3653 /* Set the return address register to point to the entry
3654 point of the program, where a breakpoint lies in wait. */
3655 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3660 mips_push_register (CORE_ADDR * sp, int regno)
3662 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3665 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3667 regsize = MIPS_SAVED_REGSIZE;
3668 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3669 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3674 regsize = REGISTER_RAW_SIZE (regno);
3678 read_register_gen (regno, buffer);
3679 write_memory (*sp, buffer + offset, regsize);
3682 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3683 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3686 mips_push_dummy_frame (void)
3689 struct linked_proc_info *link = (struct linked_proc_info *)
3690 xmalloc (sizeof (struct linked_proc_info));
3691 mips_extra_func_info_t proc_desc = &link->info;
3692 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3693 CORE_ADDR old_sp = sp;
3694 link->next = linked_proc_desc_table;
3695 linked_proc_desc_table = link;
3697 /* FIXME! are these correct ? */
3698 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3699 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3700 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3701 #define FLOAT_SINGLE_REG_SAVE_MASK \
3702 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3704 * The registers we must save are all those not preserved across
3705 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3706 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3707 * and FP Control/Status registers.
3710 * Dummy frame layout:
3713 * Saved MMHI, MMLO, FPC_CSR
3718 * Saved D18 (i.e. F19, F18)
3720 * Saved D0 (i.e. F1, F0)
3721 * Argument build area and stack arguments written via mips_push_arguments
3725 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3726 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3727 PROC_FRAME_OFFSET (proc_desc) = 0;
3728 PROC_FRAME_ADJUST (proc_desc) = 0;
3729 mips_push_register (&sp, PC_REGNUM);
3730 mips_push_register (&sp, HI_REGNUM);
3731 mips_push_register (&sp, LO_REGNUM);
3732 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3734 /* Save general CPU registers */
3735 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3736 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3737 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3738 for (ireg = 32; --ireg >= 0;)
3739 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3740 mips_push_register (&sp, ireg);
3742 /* Save floating point registers starting with high order word */
3743 PROC_FREG_MASK (proc_desc) =
3744 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3745 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3746 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3748 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3749 for (ireg = 32; --ireg >= 0;)
3750 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3751 mips_push_register (&sp, ireg + FP0_REGNUM);
3753 /* Update the frame pointer for the call dummy and the stack pointer.
3754 Set the procedure's starting and ending addresses to point to the
3755 call dummy address at the entry point. */
3756 write_register (PUSH_FP_REGNUM, old_sp);
3757 write_register (SP_REGNUM, sp);
3758 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3759 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3760 SET_PROC_DESC_IS_DUMMY (proc_desc);
3761 PROC_PC_REG (proc_desc) = RA_REGNUM;
3765 mips_pop_frame (void)
3767 register int regnum;
3768 struct frame_info *frame = get_current_frame ();
3769 CORE_ADDR new_sp = FRAME_FP (frame);
3771 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3773 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3774 if (frame->saved_regs == NULL)
3775 FRAME_INIT_SAVED_REGS (frame);
3776 for (regnum = 0; regnum < NUM_REGS; regnum++)
3778 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3779 && frame->saved_regs[regnum])
3780 write_register (regnum,
3781 read_memory_integer (frame->saved_regs[regnum],
3782 MIPS_SAVED_REGSIZE));
3785 write_register (SP_REGNUM, new_sp);
3786 flush_cached_frames ();
3788 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3790 struct linked_proc_info *pi_ptr, *prev_ptr;
3792 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3794 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3796 if (&pi_ptr->info == proc_desc)
3801 error ("Can't locate dummy extra frame info\n");
3803 if (prev_ptr != NULL)
3804 prev_ptr->next = pi_ptr->next;
3806 linked_proc_desc_table = pi_ptr->next;
3810 write_register (HI_REGNUM,
3811 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3812 MIPS_SAVED_REGSIZE));
3813 write_register (LO_REGNUM,
3814 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3815 MIPS_SAVED_REGSIZE));
3816 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3817 write_register (FCRCS_REGNUM,
3818 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3819 MIPS_SAVED_REGSIZE));
3824 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3825 struct value **args, struct type *type, int gcc_p)
3827 write_register(T9_REGNUM, fun);
3830 /* Floating point register management.
3832 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3833 64bit operations, these early MIPS cpus treat fp register pairs
3834 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3835 registers and offer a compatibility mode that emulates the MIPS2 fp
3836 model. When operating in MIPS2 fp compat mode, later cpu's split
3837 double precision floats into two 32-bit chunks and store them in
3838 consecutive fp regs. To display 64-bit floats stored in this
3839 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3840 Throw in user-configurable endianness and you have a real mess.
3842 The way this works is:
3843 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3844 double-precision value will be split across two logical registers.
3845 The lower-numbered logical register will hold the low-order bits,
3846 regardless of the processor's endianness.
3847 - If we are on a 64-bit processor, and we are looking for a
3848 single-precision value, it will be in the low ordered bits
3849 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3850 save slot in memory.
3851 - If we are in 64-bit mode, everything is straightforward.
3853 Note that this code only deals with "live" registers at the top of the
3854 stack. We will attempt to deal with saved registers later, when
3855 the raw/cooked register interface is in place. (We need a general
3856 interface that can deal with dynamic saved register sizes -- fp
3857 regs could be 32 bits wide in one frame and 64 on the frame above
3860 static struct type *
3861 mips_float_register_type (void)
3863 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3864 return builtin_type_ieee_single_big;
3866 return builtin_type_ieee_single_little;
3869 static struct type *
3870 mips_double_register_type (void)
3872 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3873 return builtin_type_ieee_double_big;
3875 return builtin_type_ieee_double_little;
3878 /* Copy a 32-bit single-precision value from the current frame
3879 into rare_buffer. */
3882 mips_read_fp_register_single (int regno, char *rare_buffer)
3884 int raw_size = REGISTER_RAW_SIZE (regno);
3885 char *raw_buffer = alloca (raw_size);
3887 if (!frame_register_read (selected_frame, regno, raw_buffer))
3888 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3891 /* We have a 64-bit value for this register. Find the low-order
3895 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3900 memcpy (rare_buffer, raw_buffer + offset, 4);
3904 memcpy (rare_buffer, raw_buffer, 4);
3908 /* Copy a 64-bit double-precision value from the current frame into
3909 rare_buffer. This may include getting half of it from the next
3913 mips_read_fp_register_double (int regno, char *rare_buffer)
3915 int raw_size = REGISTER_RAW_SIZE (regno);
3917 if (raw_size == 8 && !mips2_fp_compat ())
3919 /* We have a 64-bit value for this register, and we should use
3921 if (!frame_register_read (selected_frame, regno, rare_buffer))
3922 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3926 if ((regno - FP0_REGNUM) & 1)
3927 internal_error (__FILE__, __LINE__,
3928 "mips_read_fp_register_double: bad access to "
3929 "odd-numbered FP register");
3931 /* mips_read_fp_register_single will find the correct 32 bits from
3933 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3935 mips_read_fp_register_single (regno, rare_buffer + 4);
3936 mips_read_fp_register_single (regno + 1, rare_buffer);
3940 mips_read_fp_register_single (regno, rare_buffer);
3941 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3947 mips_print_register (int regnum, int all)
3949 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
3951 /* Get the data in raw format. */
3952 if (!frame_register_read (selected_frame, regnum, raw_buffer))
3954 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
3958 /* If we have a actual 32-bit floating point register (or we are in
3959 32-bit compatibility mode), and the register is even-numbered,
3960 also print it as a double (spanning two registers). */
3961 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
3962 && (REGISTER_RAW_SIZE (regnum) == 4
3963 || mips2_fp_compat ())
3964 && !((regnum - FP0_REGNUM) & 1))
3966 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
3968 mips_read_fp_register_double (regnum, dbuffer);
3970 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
3971 val_print (mips_double_register_type (), dbuffer, 0, 0,
3972 gdb_stdout, 0, 1, 0, Val_pretty_default);
3973 printf_filtered ("); ");
3975 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
3977 /* The problem with printing numeric register names (r26, etc.) is that
3978 the user can't use them on input. Probably the best solution is to
3979 fix it so that either the numeric or the funky (a2, etc.) names
3980 are accepted on input. */
3981 if (regnum < MIPS_NUMREGS)
3982 printf_filtered ("(r%d): ", regnum);
3984 printf_filtered (": ");
3986 /* If virtual format is floating, print it that way. */
3987 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3988 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
3990 /* We have a meaningful 64-bit value in this register. Show
3991 it as a 32-bit float and a 64-bit double. */
3992 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
3994 printf_filtered (" (float) ");
3995 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
3996 gdb_stdout, 0, 1, 0, Val_pretty_default);
3997 printf_filtered (", (double) ");
3998 val_print (mips_double_register_type (), raw_buffer, 0, 0,
3999 gdb_stdout, 0, 1, 0, Val_pretty_default);
4002 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4003 gdb_stdout, 0, 1, 0, Val_pretty_default);
4004 /* Else print as integer in hex. */
4009 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4010 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4014 print_scalar_formatted (raw_buffer + offset,
4015 REGISTER_VIRTUAL_TYPE (regnum),
4016 'x', 0, gdb_stdout);
4020 /* Replacement for generic do_registers_info.
4021 Print regs in pretty columns. */
4024 do_fp_register_row (int regnum)
4025 { /* do values for FP (float) regs */
4027 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4028 int inv1, inv2, inv3;
4030 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4032 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4034 /* 4-byte registers: we can fit two registers per row. */
4035 /* Also print every pair of 4-byte regs as an 8-byte double. */
4036 mips_read_fp_register_single (regnum, raw_buffer);
4037 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4039 mips_read_fp_register_single (regnum + 1, raw_buffer);
4040 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4042 mips_read_fp_register_double (regnum, raw_buffer);
4043 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4045 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4047 printf_filtered (": <invalid float>");
4049 printf_filtered ("%-17.9g", flt1);
4051 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4053 printf_filtered (": <invalid float>");
4055 printf_filtered ("%-17.9g", flt2);
4057 printf_filtered (" dbl: ");
4059 printf_filtered ("<invalid double>");
4061 printf_filtered ("%-24.17g", doub);
4062 printf_filtered ("\n");
4064 /* may want to do hex display here (future enhancement) */
4069 /* Eight byte registers: print each one as float AND as double. */
4070 mips_read_fp_register_single (regnum, raw_buffer);
4071 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4073 mips_read_fp_register_double (regnum, raw_buffer);
4074 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4076 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4078 printf_filtered ("<invalid float>");
4080 printf_filtered ("flt: %-17.9g", flt1);
4082 printf_filtered (" dbl: ");
4084 printf_filtered ("<invalid double>");
4086 printf_filtered ("%-24.17g", doub);
4088 printf_filtered ("\n");
4089 /* may want to do hex display here (future enhancement) */
4095 /* Print a row's worth of GP (int) registers, with name labels above */
4098 do_gp_register_row (int regnum)
4100 /* do values for GP (int) regs */
4101 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4102 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4104 int start_regnum = regnum;
4105 int numregs = NUM_REGS;
4108 /* For GP registers, we print a separate row of names above the vals */
4109 printf_filtered (" ");
4110 for (col = 0; col < ncols && regnum < numregs; regnum++)
4112 if (*REGISTER_NAME (regnum) == '\0')
4113 continue; /* unused register */
4114 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4115 break; /* end the row: reached FP register */
4116 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4117 REGISTER_NAME (regnum));
4120 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4121 start_regnum); /* print the R0 to R31 names */
4123 regnum = start_regnum; /* go back to start of row */
4124 /* now print the values in hex, 4 or 8 to the row */
4125 for (col = 0; col < ncols && regnum < numregs; regnum++)
4127 if (*REGISTER_NAME (regnum) == '\0')
4128 continue; /* unused register */
4129 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4130 break; /* end row: reached FP register */
4131 /* OK: get the data in raw format. */
4132 if (!frame_register_read (selected_frame, regnum, raw_buffer))
4133 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4134 /* pad small registers */
4135 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4136 printf_filtered (" ");
4137 /* Now print the register value in hex, endian order. */
4138 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4139 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4140 byte < REGISTER_RAW_SIZE (regnum);
4142 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4144 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4147 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4148 printf_filtered (" ");
4151 if (col > 0) /* ie. if we actually printed anything... */
4152 printf_filtered ("\n");
4157 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4160 mips_do_registers_info (int regnum, int fpregs)
4162 if (regnum != -1) /* do one specified register */
4164 if (*(REGISTER_NAME (regnum)) == '\0')
4165 error ("Not a valid register for the current processor type");
4167 mips_print_register (regnum, 0);
4168 printf_filtered ("\n");
4171 /* do all (or most) registers */
4174 while (regnum < NUM_REGS)
4176 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4177 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4178 regnum = do_fp_register_row (regnum); /* FP regs */
4180 regnum += MIPS_NUMREGS; /* skip floating point regs */
4182 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4187 /* Is this a branch with a delay slot? */
4189 static int is_delayed (unsigned long);
4192 is_delayed (unsigned long insn)
4195 for (i = 0; i < NUMOPCODES; ++i)
4196 if (mips_opcodes[i].pinfo != INSN_MACRO
4197 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4199 return (i < NUMOPCODES
4200 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4201 | INSN_COND_BRANCH_DELAY
4202 | INSN_COND_BRANCH_LIKELY)));
4206 mips_step_skips_delay (CORE_ADDR pc)
4208 char buf[MIPS_INSTLEN];
4210 /* There is no branch delay slot on MIPS16. */
4211 if (pc_is_mips16 (pc))
4214 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4215 /* If error reading memory, guess that it is not a delayed branch. */
4217 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4221 /* Skip the PC past function prologue instructions (32-bit version).
4222 This is a helper function for mips_skip_prologue. */
4225 mips32_skip_prologue (CORE_ADDR pc)
4229 int seen_sp_adjust = 0;
4230 int load_immediate_bytes = 0;
4232 /* Skip the typical prologue instructions. These are the stack adjustment
4233 instruction and the instructions that save registers on the stack
4234 or in the gcc frame. */
4235 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4237 unsigned long high_word;
4239 inst = mips_fetch_instruction (pc);
4240 high_word = (inst >> 16) & 0xffff;
4242 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4243 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4245 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4246 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4248 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4249 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4250 && (inst & 0x001F0000)) /* reg != $zero */
4253 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4255 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4257 continue; /* reg != $zero */
4259 /* move $s8,$sp. With different versions of gas this will be either
4260 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4261 Accept any one of these. */
4262 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4265 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4267 else if (high_word == 0x3c1c) /* lui $gp,n */
4269 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4271 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4272 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4274 /* The following instructions load $at or $t0 with an immediate
4275 value in preparation for a stack adjustment via
4276 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4277 a local variable, so we accept them only before a stack adjustment
4278 instruction was seen. */
4279 else if (!seen_sp_adjust)
4281 if (high_word == 0x3c01 || /* lui $at,n */
4282 high_word == 0x3c08) /* lui $t0,n */
4284 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4287 else if (high_word == 0x3421 || /* ori $at,$at,n */
4288 high_word == 0x3508 || /* ori $t0,$t0,n */
4289 high_word == 0x3401 || /* ori $at,$zero,n */
4290 high_word == 0x3408) /* ori $t0,$zero,n */
4292 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4302 /* In a frameless function, we might have incorrectly
4303 skipped some load immediate instructions. Undo the skipping
4304 if the load immediate was not followed by a stack adjustment. */
4305 if (load_immediate_bytes && !seen_sp_adjust)
4306 pc -= load_immediate_bytes;
4310 /* Skip the PC past function prologue instructions (16-bit version).
4311 This is a helper function for mips_skip_prologue. */
4314 mips16_skip_prologue (CORE_ADDR pc)
4317 int extend_bytes = 0;
4318 int prev_extend_bytes;
4320 /* Table of instructions likely to be found in a function prologue. */
4323 unsigned short inst;
4324 unsigned short mask;
4331 , /* addiu $sp,offset */
4335 , /* daddiu $sp,offset */
4339 , /* sw reg,n($sp) */
4343 , /* sd reg,n($sp) */
4347 , /* sw $ra,n($sp) */
4351 , /* sd $ra,n($sp) */
4359 , /* sw $a0-$a3,n($s1) */
4363 , /* move reg,$a0-$a3 */
4367 , /* entry pseudo-op */
4371 , /* addiu $s1,$sp,n */
4374 } /* end of table marker */
4377 /* Skip the typical prologue instructions. These are the stack adjustment
4378 instruction and the instructions that save registers on the stack
4379 or in the gcc frame. */
4380 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4382 unsigned short inst;
4385 inst = mips_fetch_instruction (pc);
4387 /* Normally we ignore an extend instruction. However, if it is
4388 not followed by a valid prologue instruction, we must adjust
4389 the pc back over the extend so that it won't be considered
4390 part of the prologue. */
4391 if ((inst & 0xf800) == 0xf000) /* extend */
4393 extend_bytes = MIPS16_INSTLEN;
4396 prev_extend_bytes = extend_bytes;
4399 /* Check for other valid prologue instructions besides extend. */
4400 for (i = 0; table[i].mask != 0; i++)
4401 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4403 if (table[i].mask != 0) /* it was in table? */
4404 continue; /* ignore it */
4408 /* Return the current pc, adjusted backwards by 2 if
4409 the previous instruction was an extend. */
4410 return pc - prev_extend_bytes;
4416 /* To skip prologues, I use this predicate. Returns either PC itself
4417 if the code at PC does not look like a function prologue; otherwise
4418 returns an address that (if we're lucky) follows the prologue. If
4419 LENIENT, then we must skip everything which is involved in setting
4420 up the frame (it's OK to skip more, just so long as we don't skip
4421 anything which might clobber the registers which are being saved.
4422 We must skip more in the case where part of the prologue is in the
4423 delay slot of a non-prologue instruction). */
4426 mips_skip_prologue (CORE_ADDR pc)
4428 /* See if we can determine the end of the prologue via the symbol table.
4429 If so, then return either PC, or the PC after the prologue, whichever
4432 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4434 if (post_prologue_pc != 0)
4435 return max (pc, post_prologue_pc);
4437 /* Can't determine prologue from the symbol table, need to examine
4440 if (pc_is_mips16 (pc))
4441 return mips16_skip_prologue (pc);
4443 return mips32_skip_prologue (pc);
4446 /* Determine how a return value is stored within the MIPS register
4447 file, given the return type `valtype'. */
4449 struct return_value_word
4458 return_value_location (struct type *valtype,
4459 struct return_value_word *hi,
4460 struct return_value_word *lo)
4462 int len = TYPE_LENGTH (valtype);
4464 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4465 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4466 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4468 if (!FP_REGISTER_DOUBLE && len == 8)
4470 /* We need to break a 64bit float in two 32 bit halves and
4471 spread them across a floating-point register pair. */
4472 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4473 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4474 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4475 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4477 hi->reg_offset = lo->reg_offset;
4478 lo->reg = FP0_REGNUM + 0;
4479 hi->reg = FP0_REGNUM + 1;
4485 /* The floating point value fits in a single floating-point
4487 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4488 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4491 lo->reg = FP0_REGNUM;
4502 /* Locate a result possibly spread across two registers. */
4504 lo->reg = regnum + 0;
4505 hi->reg = regnum + 1;
4506 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4507 && len < MIPS_SAVED_REGSIZE)
4509 /* "un-left-justify" the value in the low register */
4510 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4515 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4516 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4517 && len < MIPS_SAVED_REGSIZE * 2
4518 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4519 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4521 /* "un-left-justify" the value spread across two registers. */
4522 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4523 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4525 hi->len = len - lo->len;
4529 /* Only perform a partial copy of the second register. */
4532 if (len > MIPS_SAVED_REGSIZE)
4534 lo->len = MIPS_SAVED_REGSIZE;
4535 hi->len = len - MIPS_SAVED_REGSIZE;
4543 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4544 && REGISTER_RAW_SIZE (regnum) == 8
4545 && MIPS_SAVED_REGSIZE == 4)
4547 /* Account for the fact that only the least-signficant part
4548 of the register is being used */
4549 lo->reg_offset += 4;
4550 hi->reg_offset += 4;
4553 hi->buf_offset = lo->len;
4557 /* Given a return value in `regbuf' with a type `valtype', extract and
4558 copy its value into `valbuf'. */
4561 mips_eabi_extract_return_value (struct type *valtype,
4562 char regbuf[REGISTER_BYTES],
4565 struct return_value_word lo;
4566 struct return_value_word hi;
4567 return_value_location (valtype, &hi, &lo);
4569 memcpy (valbuf + lo.buf_offset,
4570 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4574 memcpy (valbuf + hi.buf_offset,
4575 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4580 mips_o64_extract_return_value (struct type *valtype,
4581 char regbuf[REGISTER_BYTES],
4584 struct return_value_word lo;
4585 struct return_value_word hi;
4586 return_value_location (valtype, &hi, &lo);
4588 memcpy (valbuf + lo.buf_offset,
4589 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4593 memcpy (valbuf + hi.buf_offset,
4594 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4598 /* Given a return value in `valbuf' with a type `valtype', write it's
4599 value into the appropriate register. */
4602 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4604 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4605 struct return_value_word lo;
4606 struct return_value_word hi;
4607 return_value_location (valtype, &hi, &lo);
4609 memset (raw_buffer, 0, sizeof (raw_buffer));
4610 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4611 write_register_bytes (REGISTER_BYTE (lo.reg),
4613 REGISTER_RAW_SIZE (lo.reg));
4617 memset (raw_buffer, 0, sizeof (raw_buffer));
4618 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4619 write_register_bytes (REGISTER_BYTE (hi.reg),
4621 REGISTER_RAW_SIZE (hi.reg));
4626 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4628 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4629 struct return_value_word lo;
4630 struct return_value_word hi;
4631 return_value_location (valtype, &hi, &lo);
4633 memset (raw_buffer, 0, sizeof (raw_buffer));
4634 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4635 write_register_bytes (REGISTER_BYTE (lo.reg),
4637 REGISTER_RAW_SIZE (lo.reg));
4641 memset (raw_buffer, 0, sizeof (raw_buffer));
4642 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4643 write_register_bytes (REGISTER_BYTE (hi.reg),
4645 REGISTER_RAW_SIZE (hi.reg));
4649 /* O32 ABI stuff. */
4652 mips_o32_xfer_return_value (struct type *type,
4653 struct regcache *regcache,
4654 bfd_byte *in, const bfd_byte *out)
4656 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4657 if (TYPE_CODE (type) == TYPE_CODE_FLT
4658 && TYPE_LENGTH (type) == 4
4659 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4661 /* A single-precision floating-point value. It fits in the
4662 least significant part of FP0. */
4664 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4665 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4666 TARGET_BYTE_ORDER, in, out, 0);
4668 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4669 && TYPE_LENGTH (type) == 8
4670 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4672 /* A double-precision floating-point value. It fits in the
4673 least significant part of FP0/FP1 but with byte ordering
4674 based on the target (???). */
4676 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4677 switch (TARGET_BYTE_ORDER)
4679 case BFD_ENDIAN_LITTLE:
4680 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4681 TARGET_BYTE_ORDER, in, out, 0);
4682 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4683 TARGET_BYTE_ORDER, in, out, 4);
4685 case BFD_ENDIAN_BIG:
4686 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4687 TARGET_BYTE_ORDER, in, out, 0);
4688 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4689 TARGET_BYTE_ORDER, in, out, 4);
4692 internal_error (__FILE__, __LINE__, "bad switch");
4696 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4697 && TYPE_NFIELDS (type) <= 2
4698 && TYPE_NFIELDS (type) >= 1
4699 && ((TYPE_NFIELDS (type) == 1
4700 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4702 || (TYPE_NFIELDS (type) == 2
4703 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4705 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4707 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4709 /* A struct that contains one or two floats. Each value is part
4710 in the least significant part of their floating point
4712 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4715 for (field = 0, regnum = FP0_REGNUM;
4716 field < TYPE_NFIELDS (type);
4717 field++, regnum += 2)
4719 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4722 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4723 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4724 TARGET_BYTE_ORDER, in, out, offset);
4729 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4730 || TYPE_CODE (type) == TYPE_CODE_UNION)
4732 /* A structure or union. Extract the left justified value,
4733 regardless of the byte order. I.e. DO NOT USE
4737 for (offset = 0, regnum = V0_REGNUM;
4738 offset < TYPE_LENGTH (type);
4739 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4741 int xfer = REGISTER_RAW_SIZE (regnum);
4742 if (offset + xfer > TYPE_LENGTH (type))
4743 xfer = TYPE_LENGTH (type) - offset;
4745 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4746 offset, xfer, regnum);
4747 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4754 /* A scalar extract each part but least-significant-byte
4755 justified. o32 thinks registers are 4 byte, regardless of
4756 the ISA. mips_stack_argsize controls this. */
4759 for (offset = 0, regnum = V0_REGNUM;
4760 offset < TYPE_LENGTH (type);
4761 offset += mips_stack_argsize (), regnum++)
4763 int xfer = mips_stack_argsize ();
4765 if (offset + xfer > TYPE_LENGTH (type))
4766 xfer = TYPE_LENGTH (type) - offset;
4768 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4769 offset, xfer, regnum);
4770 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4777 mips_o32_extract_return_value (struct type *type,
4778 struct regcache *regcache,
4781 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4785 mips_o32_store_return_value (struct type *type, char *valbuf)
4787 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4790 /* N32/N44 ABI stuff. */
4793 mips_n32n64_xfer_return_value (struct type *type,
4794 struct regcache *regcache,
4795 bfd_byte *in, const bfd_byte *out)
4797 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4798 if (TYPE_CODE (type) == TYPE_CODE_FLT
4799 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4801 /* A floating-point value belongs in the least significant part
4804 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4805 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4806 TARGET_BYTE_ORDER, in, out, 0);
4808 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4809 && TYPE_NFIELDS (type) <= 2
4810 && TYPE_NFIELDS (type) >= 1
4811 && ((TYPE_NFIELDS (type) == 1
4812 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4814 || (TYPE_NFIELDS (type) == 2
4815 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4817 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4819 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4821 /* A struct that contains one or two floats. Each value is part
4822 in the least significant part of their floating point
4824 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4827 for (field = 0, regnum = FP0_REGNUM;
4828 field < TYPE_NFIELDS (type);
4829 field++, regnum += 2)
4831 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4834 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4835 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4836 TARGET_BYTE_ORDER, in, out, offset);
4839 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4840 || TYPE_CODE (type) == TYPE_CODE_UNION)
4842 /* A structure or union. Extract the left justified value,
4843 regardless of the byte order. I.e. DO NOT USE
4847 for (offset = 0, regnum = V0_REGNUM;
4848 offset < TYPE_LENGTH (type);
4849 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4851 int xfer = REGISTER_RAW_SIZE (regnum);
4852 if (offset + xfer > TYPE_LENGTH (type))
4853 xfer = TYPE_LENGTH (type) - offset;
4855 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4856 offset, xfer, regnum);
4857 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4863 /* A scalar extract each part but least-significant-byte
4867 for (offset = 0, regnum = V0_REGNUM;
4868 offset < TYPE_LENGTH (type);
4869 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4871 int xfer = REGISTER_RAW_SIZE (regnum);
4873 if (offset + xfer > TYPE_LENGTH (type))
4874 xfer = TYPE_LENGTH (type) - offset;
4876 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4877 offset, xfer, regnum);
4878 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4885 mips_n32n64_extract_return_value (struct type *type,
4886 struct regcache *regcache,
4889 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4893 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4895 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4899 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4901 /* Nothing to do -- push_arguments does all the work. */
4905 mips_extract_struct_value_address (struct regcache *regcache)
4907 /* FIXME: This will only work at random. The caller passes the
4908 struct_return address in V0, but it is not preserved. It may
4909 still be there, or this may be a random value. */
4911 regcache_cooked_read_unsigned (regcache, V0_REGNUM, &val);
4915 /* Exported procedure: Is PC in the signal trampoline code */
4918 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4920 if (sigtramp_address == 0)
4922 return (pc >= sigtramp_address && pc < sigtramp_end);
4925 /* Root of all "set mips "/"show mips " commands. This will eventually be
4926 used for all MIPS-specific commands. */
4929 show_mips_command (char *args, int from_tty)
4931 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4935 set_mips_command (char *args, int from_tty)
4937 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4938 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4941 /* Commands to show/set the MIPS FPU type. */
4944 show_mipsfpu_command (char *args, int from_tty)
4947 switch (MIPS_FPU_TYPE)
4949 case MIPS_FPU_SINGLE:
4950 fpu = "single-precision";
4952 case MIPS_FPU_DOUBLE:
4953 fpu = "double-precision";
4956 fpu = "absent (none)";
4959 internal_error (__FILE__, __LINE__, "bad switch");
4961 if (mips_fpu_type_auto)
4962 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4965 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4971 set_mipsfpu_command (char *args, int from_tty)
4973 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4974 show_mipsfpu_command (args, from_tty);
4978 set_mipsfpu_single_command (char *args, int from_tty)
4980 mips_fpu_type = MIPS_FPU_SINGLE;
4981 mips_fpu_type_auto = 0;
4982 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
4986 set_mipsfpu_double_command (char *args, int from_tty)
4988 mips_fpu_type = MIPS_FPU_DOUBLE;
4989 mips_fpu_type_auto = 0;
4990 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
4994 set_mipsfpu_none_command (char *args, int from_tty)
4996 mips_fpu_type = MIPS_FPU_NONE;
4997 mips_fpu_type_auto = 0;
4998 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5002 set_mipsfpu_auto_command (char *args, int from_tty)
5004 mips_fpu_type_auto = 1;
5007 /* Command to set the processor type. */
5010 mips_set_processor_type_command (char *args, int from_tty)
5014 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5016 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5017 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5018 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5020 /* Restore the value. */
5021 tmp_mips_processor_type = xstrdup (mips_processor_type);
5026 if (!mips_set_processor_type (tmp_mips_processor_type))
5028 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5029 /* Restore its value. */
5030 tmp_mips_processor_type = xstrdup (mips_processor_type);
5035 mips_show_processor_type_command (char *args, int from_tty)
5039 /* Modify the actual processor type. */
5042 mips_set_processor_type (char *str)
5049 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5051 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5053 mips_processor_type = str;
5054 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5056 /* FIXME tweak fpu flag too */
5063 /* Attempt to identify the particular processor model by reading the
5067 mips_read_processor_type (void)
5071 prid = read_register (PRID_REGNUM);
5073 if ((prid & ~0xf) == 0x700)
5074 return savestring ("r3041", strlen ("r3041"));
5079 /* Just like reinit_frame_cache, but with the right arguments to be
5080 callable as an sfunc. */
5083 reinit_frame_cache_sfunc (char *args, int from_tty,
5084 struct cmd_list_element *c)
5086 reinit_frame_cache ();
5090 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5092 mips_extra_func_info_t proc_desc;
5094 /* Search for the function containing this address. Set the low bit
5095 of the address when searching, in case we were given an even address
5096 that is the start of a 16-bit function. If we didn't do this,
5097 the search would fail because the symbol table says the function
5098 starts at an odd address, i.e. 1 byte past the given address. */
5099 memaddr = ADDR_BITS_REMOVE (memaddr);
5100 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5102 /* Make an attempt to determine if this is a 16-bit function. If
5103 the procedure descriptor exists and the address therein is odd,
5104 it's definitely a 16-bit function. Otherwise, we have to just
5105 guess that if the address passed in is odd, it's 16-bits. */
5107 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5108 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5110 info->mach = pc_is_mips16 (memaddr) ?
5111 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5113 /* Round down the instruction address to the appropriate boundary. */
5114 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5116 /* Call the appropriate disassembler based on the target endian-ness. */
5117 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5118 return print_insn_big_mips (memaddr, info);
5120 return print_insn_little_mips (memaddr, info);
5123 /* Old-style breakpoint macros.
5124 The IDT board uses an unusual breakpoint value, and sometimes gets
5125 confused when it sees the usual MIPS breakpoint instruction. */
5127 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5128 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5129 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5130 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5131 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5132 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5133 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5134 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5136 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5137 counter value to determine whether a 16- or 32-bit breakpoint should be
5138 used. It returns a pointer to a string of bytes that encode a breakpoint
5139 instruction, stores the length of the string to *lenptr, and adjusts pc
5140 (if necessary) to point to the actual memory location where the
5141 breakpoint should be inserted. */
5143 static const unsigned char *
5144 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5146 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5148 if (pc_is_mips16 (*pcptr))
5150 static unsigned char mips16_big_breakpoint[] =
5151 MIPS16_BIG_BREAKPOINT;
5152 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5153 *lenptr = sizeof (mips16_big_breakpoint);
5154 return mips16_big_breakpoint;
5158 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5159 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5160 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5162 *lenptr = sizeof (big_breakpoint);
5164 if (strcmp (target_shortname, "mips") == 0)
5165 return idt_big_breakpoint;
5166 else if (strcmp (target_shortname, "ddb") == 0
5167 || strcmp (target_shortname, "pmon") == 0
5168 || strcmp (target_shortname, "lsi") == 0)
5169 return pmon_big_breakpoint;
5171 return big_breakpoint;
5176 if (pc_is_mips16 (*pcptr))
5178 static unsigned char mips16_little_breakpoint[] =
5179 MIPS16_LITTLE_BREAKPOINT;
5180 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5181 *lenptr = sizeof (mips16_little_breakpoint);
5182 return mips16_little_breakpoint;
5186 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5187 static unsigned char pmon_little_breakpoint[] =
5188 PMON_LITTLE_BREAKPOINT;
5189 static unsigned char idt_little_breakpoint[] =
5190 IDT_LITTLE_BREAKPOINT;
5192 *lenptr = sizeof (little_breakpoint);
5194 if (strcmp (target_shortname, "mips") == 0)
5195 return idt_little_breakpoint;
5196 else if (strcmp (target_shortname, "ddb") == 0
5197 || strcmp (target_shortname, "pmon") == 0
5198 || strcmp (target_shortname, "lsi") == 0)
5199 return pmon_little_breakpoint;
5201 return little_breakpoint;
5206 /* If PC is in a mips16 call or return stub, return the address of the target
5207 PC, which is either the callee or the caller. There are several
5208 cases which must be handled:
5210 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5211 target PC is in $31 ($ra).
5212 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5213 and the target PC is in $2.
5214 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5215 before the jal instruction, this is effectively a call stub
5216 and the the target PC is in $2. Otherwise this is effectively
5217 a return stub and the target PC is in $18.
5219 See the source code for the stubs in gcc/config/mips/mips16.S for
5222 This function implements the SKIP_TRAMPOLINE_CODE macro.
5226 mips_skip_stub (CORE_ADDR pc)
5229 CORE_ADDR start_addr;
5231 /* Find the starting address and name of the function containing the PC. */
5232 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5235 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5236 target PC is in $31 ($ra). */
5237 if (strcmp (name, "__mips16_ret_sf") == 0
5238 || strcmp (name, "__mips16_ret_df") == 0)
5239 return read_signed_register (RA_REGNUM);
5241 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5243 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5244 and the target PC is in $2. */
5245 if (name[19] >= '0' && name[19] <= '9')
5246 return read_signed_register (2);
5248 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5249 before the jal instruction, this is effectively a call stub
5250 and the the target PC is in $2. Otherwise this is effectively
5251 a return stub and the target PC is in $18. */
5252 else if (name[19] == 's' || name[19] == 'd')
5254 if (pc == start_addr)
5256 /* Check if the target of the stub is a compiler-generated
5257 stub. Such a stub for a function bar might have a name
5258 like __fn_stub_bar, and might look like this:
5263 la $1,bar (becomes a lui/addiu pair)
5265 So scan down to the lui/addi and extract the target
5266 address from those two instructions. */
5268 CORE_ADDR target_pc = read_signed_register (2);
5272 /* See if the name of the target function is __fn_stub_*. */
5273 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5275 if (strncmp (name, "__fn_stub_", 10) != 0
5276 && strcmp (name, "etext") != 0
5277 && strcmp (name, "_etext") != 0)
5280 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5281 The limit on the search is arbitrarily set to 20
5282 instructions. FIXME. */
5283 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5285 inst = mips_fetch_instruction (target_pc);
5286 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5287 pc = (inst << 16) & 0xffff0000; /* high word */
5288 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5289 return pc | (inst & 0xffff); /* low word */
5292 /* Couldn't find the lui/addui pair, so return stub address. */
5296 /* This is the 'return' part of a call stub. The return
5297 address is in $r18. */
5298 return read_signed_register (18);
5301 return 0; /* not a stub */
5305 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5306 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5309 mips_in_call_stub (CORE_ADDR pc, char *name)
5311 CORE_ADDR start_addr;
5313 /* Find the starting address of the function containing the PC. If the
5314 caller didn't give us a name, look it up at the same time. */
5315 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5318 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5320 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5321 if (name[19] >= '0' && name[19] <= '9')
5323 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5324 before the jal instruction, this is effectively a call stub. */
5325 else if (name[19] == 's' || name[19] == 'd')
5326 return pc == start_addr;
5329 return 0; /* not a stub */
5333 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5334 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5337 mips_in_return_stub (CORE_ADDR pc, char *name)
5339 CORE_ADDR start_addr;
5341 /* Find the starting address of the function containing the PC. */
5342 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5345 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5346 if (strcmp (name, "__mips16_ret_sf") == 0
5347 || strcmp (name, "__mips16_ret_df") == 0)
5350 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5351 i.e. after the jal instruction, this is effectively a return stub. */
5352 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5353 && (name[19] == 's' || name[19] == 'd')
5354 && pc != start_addr)
5357 return 0; /* not a stub */
5361 /* Return non-zero if the PC is in a library helper function that should
5362 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5365 mips_ignore_helper (CORE_ADDR pc)
5369 /* Find the starting address and name of the function containing the PC. */
5370 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5373 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5374 that we want to ignore. */
5375 return (strcmp (name, "__mips16_ret_sf") == 0
5376 || strcmp (name, "__mips16_ret_df") == 0);
5380 /* Return a location where we can set a breakpoint that will be hit
5381 when an inferior function call returns. This is normally the
5382 program's entry point. Executables that don't have an entry
5383 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5384 whose address is the location where the breakpoint should be placed. */
5387 mips_call_dummy_address (void)
5389 struct minimal_symbol *sym;
5391 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5393 return SYMBOL_VALUE_ADDRESS (sym);
5395 return entry_point_address ();
5399 /* If the current gcc for this target does not produce correct debugging
5400 information for float parameters, both prototyped and unprototyped, then
5401 define this macro. This forces gdb to always assume that floats are
5402 passed as doubles and then converted in the callee.
5404 For the mips chip, it appears that the debug info marks the parameters as
5405 floats regardless of whether the function is prototyped, but the actual
5406 values are passed as doubles for the non-prototyped case and floats for
5407 the prototyped case. Thus we choose to make the non-prototyped case work
5408 for C and break the prototyped case, since the non-prototyped case is
5409 probably much more common. (FIXME). */
5412 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5414 return current_language->la_language == language_c;
5417 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5418 the register stored on the stack (32) is different to its real raw
5419 size (64). The below ensures that registers are fetched from the
5420 stack using their ABI size and then stored into the RAW_BUFFER
5421 using their raw size.
5423 The alternative to adding this function would be to add an ABI
5424 macro - REGISTER_STACK_SIZE(). */
5427 mips_get_saved_register (char *raw_buffer,
5430 struct frame_info *frame,
5432 enum lval_type *lval)
5436 if (!target_has_registers)
5437 error ("No registers.");
5439 /* Normal systems don't optimize out things with register numbers. */
5440 if (optimized != NULL)
5442 addr = find_saved_register (frame, regnum);
5446 *lval = lval_memory;
5447 if (regnum == SP_REGNUM)
5449 if (raw_buffer != NULL)
5451 /* Put it back in target format. */
5452 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
5459 if (raw_buffer != NULL)
5463 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5465 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
5467 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
5468 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5474 *lval = lval_register;
5475 addr = REGISTER_BYTE (regnum);
5476 if (raw_buffer != NULL)
5477 read_register_gen (regnum, raw_buffer);
5483 /* Immediately after a function call, return the saved pc.
5484 Can't always go through the frames for this because on some machines
5485 the new frame is not set up until the new function executes
5486 some instructions. */
5489 mips_saved_pc_after_call (struct frame_info *frame)
5491 return read_signed_register (RA_REGNUM);
5495 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5499 mips_stab_reg_to_regnum (int num)
5504 return num + FP0_REGNUM - 38;
5507 /* Convert a ecoff register number to a gdb REGNUM */
5510 mips_ecoff_reg_to_regnum (int num)
5515 return num + FP0_REGNUM - 32;
5518 /* Convert an integer into an address. By first converting the value
5519 into a pointer and then extracting it signed, the address is
5520 guarenteed to be correctly sign extended. */
5523 mips_integer_to_address (struct type *type, void *buf)
5525 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5526 LONGEST val = unpack_long (type, buf);
5527 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5528 return extract_signed_integer (tmp,
5529 TYPE_LENGTH (builtin_type_void_data_ptr));
5533 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5535 enum mips_abi *abip = (enum mips_abi *) obj;
5536 const char *name = bfd_get_section_name (abfd, sect);
5538 if (*abip != MIPS_ABI_UNKNOWN)
5541 if (strncmp (name, ".mdebug.", 8) != 0)
5544 if (strcmp (name, ".mdebug.abi32") == 0)
5545 *abip = MIPS_ABI_O32;
5546 else if (strcmp (name, ".mdebug.abiN32") == 0)
5547 *abip = MIPS_ABI_N32;
5548 else if (strcmp (name, ".mdebug.abiN64") == 0)
5549 *abip = MIPS_ABI_N64;
5550 else if (strcmp (name, ".mdebug.abiO64") == 0)
5551 *abip = MIPS_ABI_O64;
5552 else if (strcmp (name, ".mdebug.eabi32") == 0)
5553 *abip = MIPS_ABI_EABI32;
5554 else if (strcmp (name, ".mdebug.eabi64") == 0)
5555 *abip = MIPS_ABI_EABI64;
5557 warning ("unsupported ABI %s.", name + 8);
5560 static enum mips_abi
5561 global_mips_abi (void)
5565 for (i = 0; mips_abi_strings[i] != NULL; i++)
5566 if (mips_abi_strings[i] == mips_abi_string)
5567 return (enum mips_abi) i;
5569 internal_error (__FILE__, __LINE__,
5570 "unknown ABI string");
5573 static struct gdbarch *
5574 mips_gdbarch_init (struct gdbarch_info info,
5575 struct gdbarch_list *arches)
5577 static LONGEST mips_call_dummy_words[] =
5579 struct gdbarch *gdbarch;
5580 struct gdbarch_tdep *tdep;
5582 enum mips_abi mips_abi, found_abi, wanted_abi;
5583 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5585 /* Reset the disassembly info, in case it was set to something
5587 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5588 tm_print_insn_info.arch = bfd_arch_unknown;
5589 tm_print_insn_info.mach = 0;
5595 /* First of all, extract the elf_flags, if available. */
5596 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5597 elf_flags = elf_elfheader (info.abfd)->e_flags;
5599 /* Try to determine the OS ABI of the object we are loading. If
5600 we end up with `unknown', just leave it that way. */
5601 osabi = gdbarch_lookup_osabi (info.abfd);
5604 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5605 switch ((elf_flags & EF_MIPS_ABI))
5607 case E_MIPS_ABI_O32:
5608 mips_abi = MIPS_ABI_O32;
5610 case E_MIPS_ABI_O64:
5611 mips_abi = MIPS_ABI_O64;
5613 case E_MIPS_ABI_EABI32:
5614 mips_abi = MIPS_ABI_EABI32;
5616 case E_MIPS_ABI_EABI64:
5617 mips_abi = MIPS_ABI_EABI64;
5620 if ((elf_flags & EF_MIPS_ABI2))
5621 mips_abi = MIPS_ABI_N32;
5623 mips_abi = MIPS_ABI_UNKNOWN;
5627 /* GCC creates a pseudo-section whose name describes the ABI. */
5628 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5629 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5631 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5632 Use the ABI from the last architecture if there is one. */
5633 if (info.abfd == NULL && arches != NULL)
5634 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5636 /* Try the architecture for any hint of the correct ABI. */
5637 if (mips_abi == MIPS_ABI_UNKNOWN
5638 && info.bfd_arch_info != NULL
5639 && info.bfd_arch_info->arch == bfd_arch_mips)
5641 switch (info.bfd_arch_info->mach)
5643 case bfd_mach_mips3900:
5644 mips_abi = MIPS_ABI_EABI32;
5646 case bfd_mach_mips4100:
5647 case bfd_mach_mips5000:
5648 mips_abi = MIPS_ABI_EABI64;
5650 case bfd_mach_mips8000:
5651 case bfd_mach_mips10000:
5652 /* On Irix, ELF64 executables use the N64 ABI. The
5653 pseudo-sections which describe the ABI aren't present
5654 on IRIX. (Even for executables created by gcc.) */
5655 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5656 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5657 mips_abi = MIPS_ABI_N64;
5659 mips_abi = MIPS_ABI_N32;
5664 if (mips_abi == MIPS_ABI_UNKNOWN)
5665 mips_abi = MIPS_ABI_O32;
5667 /* Now that we have found what the ABI for this binary would be,
5668 check whether the user is overriding it. */
5669 found_abi = mips_abi;
5670 wanted_abi = global_mips_abi ();
5671 if (wanted_abi != MIPS_ABI_UNKNOWN)
5672 mips_abi = wanted_abi;
5676 fprintf_unfiltered (gdb_stdlog,
5677 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5679 fprintf_unfiltered (gdb_stdlog,
5680 "mips_gdbarch_init: mips_abi = %d\n",
5682 fprintf_unfiltered (gdb_stdlog,
5683 "mips_gdbarch_init: found_mips_abi = %d\n",
5687 /* try to find a pre-existing architecture */
5688 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5690 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5692 /* MIPS needs to be pedantic about which ABI the object is
5694 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5696 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5698 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5699 return arches->gdbarch;
5702 /* Need a new architecture. Fill in a target specific vector. */
5703 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5704 gdbarch = gdbarch_alloc (&info, tdep);
5705 tdep->elf_flags = elf_flags;
5706 tdep->osabi = osabi;
5708 /* Initially set everything according to the default ABI/ISA. */
5709 set_gdbarch_short_bit (gdbarch, 16);
5710 set_gdbarch_int_bit (gdbarch, 32);
5711 set_gdbarch_float_bit (gdbarch, 32);
5712 set_gdbarch_double_bit (gdbarch, 64);
5713 set_gdbarch_long_double_bit (gdbarch, 64);
5714 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5715 set_gdbarch_max_register_raw_size (gdbarch, 8);
5716 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5717 tdep->found_abi = found_abi;
5718 tdep->mips_abi = mips_abi;
5720 set_gdbarch_elf_make_msymbol_special (gdbarch,
5721 mips_elf_make_msymbol_special);
5726 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5727 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5728 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5729 tdep->mips_default_saved_regsize = 4;
5730 tdep->mips_default_stack_argsize = 4;
5731 tdep->mips_fp_register_double = 0;
5732 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5733 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5734 tdep->gdb_target_is_mips64 = 0;
5735 tdep->default_mask_address_p = 0;
5736 set_gdbarch_long_bit (gdbarch, 32);
5737 set_gdbarch_ptr_bit (gdbarch, 32);
5738 set_gdbarch_long_long_bit (gdbarch, 64);
5739 set_gdbarch_reg_struct_has_addr (gdbarch,
5740 mips_o32_reg_struct_has_addr);
5741 set_gdbarch_use_struct_convention (gdbarch,
5742 mips_o32_use_struct_convention);
5745 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5746 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5747 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5748 tdep->mips_default_saved_regsize = 8;
5749 tdep->mips_default_stack_argsize = 8;
5750 tdep->mips_fp_register_double = 1;
5751 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5752 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5753 tdep->gdb_target_is_mips64 = 1;
5754 tdep->default_mask_address_p = 0;
5755 set_gdbarch_long_bit (gdbarch, 32);
5756 set_gdbarch_ptr_bit (gdbarch, 32);
5757 set_gdbarch_long_long_bit (gdbarch, 64);
5758 set_gdbarch_reg_struct_has_addr (gdbarch,
5759 mips_o32_reg_struct_has_addr);
5760 set_gdbarch_use_struct_convention (gdbarch,
5761 mips_o32_use_struct_convention);
5763 case MIPS_ABI_EABI32:
5764 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5765 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5766 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5767 tdep->mips_default_saved_regsize = 4;
5768 tdep->mips_default_stack_argsize = 4;
5769 tdep->mips_fp_register_double = 0;
5770 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5771 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5772 tdep->gdb_target_is_mips64 = 0;
5773 tdep->default_mask_address_p = 0;
5774 set_gdbarch_long_bit (gdbarch, 32);
5775 set_gdbarch_ptr_bit (gdbarch, 32);
5776 set_gdbarch_long_long_bit (gdbarch, 64);
5777 set_gdbarch_reg_struct_has_addr (gdbarch,
5778 mips_eabi_reg_struct_has_addr);
5779 set_gdbarch_use_struct_convention (gdbarch,
5780 mips_eabi_use_struct_convention);
5782 case MIPS_ABI_EABI64:
5783 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5784 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5785 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5786 tdep->mips_default_saved_regsize = 8;
5787 tdep->mips_default_stack_argsize = 8;
5788 tdep->mips_fp_register_double = 1;
5789 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5790 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5791 tdep->gdb_target_is_mips64 = 1;
5792 tdep->default_mask_address_p = 0;
5793 set_gdbarch_long_bit (gdbarch, 64);
5794 set_gdbarch_ptr_bit (gdbarch, 64);
5795 set_gdbarch_long_long_bit (gdbarch, 64);
5796 set_gdbarch_reg_struct_has_addr (gdbarch,
5797 mips_eabi_reg_struct_has_addr);
5798 set_gdbarch_use_struct_convention (gdbarch,
5799 mips_eabi_use_struct_convention);
5802 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5803 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5804 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5805 tdep->mips_default_saved_regsize = 8;
5806 tdep->mips_default_stack_argsize = 8;
5807 tdep->mips_fp_register_double = 1;
5808 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5809 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5810 tdep->gdb_target_is_mips64 = 1;
5811 tdep->default_mask_address_p = 0;
5812 set_gdbarch_long_bit (gdbarch, 32);
5813 set_gdbarch_ptr_bit (gdbarch, 32);
5814 set_gdbarch_long_long_bit (gdbarch, 64);
5816 /* Set up the disassembler info, so that we get the right
5817 register names from libopcodes. */
5818 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5819 tm_print_insn_info.arch = bfd_arch_mips;
5820 if (info.bfd_arch_info != NULL
5821 && info.bfd_arch_info->arch == bfd_arch_mips
5822 && info.bfd_arch_info->mach)
5823 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5825 tm_print_insn_info.mach = bfd_mach_mips8000;
5827 set_gdbarch_use_struct_convention (gdbarch,
5828 mips_n32n64_use_struct_convention);
5829 set_gdbarch_reg_struct_has_addr (gdbarch,
5830 mips_n32n64_reg_struct_has_addr);
5833 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5834 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5835 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5836 tdep->mips_default_saved_regsize = 8;
5837 tdep->mips_default_stack_argsize = 8;
5838 tdep->mips_fp_register_double = 1;
5839 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5840 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5841 tdep->gdb_target_is_mips64 = 1;
5842 tdep->default_mask_address_p = 0;
5843 set_gdbarch_long_bit (gdbarch, 64);
5844 set_gdbarch_ptr_bit (gdbarch, 64);
5845 set_gdbarch_long_long_bit (gdbarch, 64);
5847 /* Set up the disassembler info, so that we get the right
5848 register names from libopcodes. */
5849 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5850 tm_print_insn_info.arch = bfd_arch_mips;
5851 if (info.bfd_arch_info != NULL
5852 && info.bfd_arch_info->arch == bfd_arch_mips
5853 && info.bfd_arch_info->mach)
5854 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5856 tm_print_insn_info.mach = bfd_mach_mips8000;
5858 set_gdbarch_use_struct_convention (gdbarch,
5859 mips_n32n64_use_struct_convention);
5860 set_gdbarch_reg_struct_has_addr (gdbarch,
5861 mips_n32n64_reg_struct_has_addr);
5864 internal_error (__FILE__, __LINE__,
5865 "unknown ABI in switch");
5868 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5869 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5872 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5873 flag in object files because to do so would make it impossible to
5874 link with libraries compiled without "-gp32". This is
5875 unnecessarily restrictive.
5877 We could solve this problem by adding "-gp32" multilibs to gcc,
5878 but to set this flag before gcc is built with such multilibs will
5879 break too many systems.''
5881 But even more unhelpfully, the default linker output target for
5882 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5883 for 64-bit programs - you need to change the ABI to change this,
5884 and not all gcc targets support that currently. Therefore using
5885 this flag to detect 32-bit mode would do the wrong thing given
5886 the current gcc - it would make GDB treat these 64-bit programs
5887 as 32-bit programs by default. */
5889 /* enable/disable the MIPS FPU */
5890 if (!mips_fpu_type_auto)
5891 tdep->mips_fpu_type = mips_fpu_type;
5892 else if (info.bfd_arch_info != NULL
5893 && info.bfd_arch_info->arch == bfd_arch_mips)
5894 switch (info.bfd_arch_info->mach)
5896 case bfd_mach_mips3900:
5897 case bfd_mach_mips4100:
5898 case bfd_mach_mips4111:
5899 tdep->mips_fpu_type = MIPS_FPU_NONE;
5901 case bfd_mach_mips4650:
5902 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5905 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5909 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5911 /* MIPS version of register names. NOTE: At present the MIPS
5912 register name management is part way between the old -
5913 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5914 Further work on it is required. */
5915 /* NOTE: many targets (esp. embedded) do not go thru the
5916 gdbarch_register_name vector at all, instead bypassing it
5917 by defining REGISTER_NAMES. */
5918 set_gdbarch_register_name (gdbarch, mips_register_name);
5919 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5920 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5921 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
5922 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5923 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5925 /* Add/remove bits from an address. The MIPS needs be careful to
5926 ensure that all 32 bit addresses are sign extended to 64 bits. */
5927 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5929 /* There's a mess in stack frame creation. See comments in
5930 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5931 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5932 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
5934 /* Map debug register numbers onto internal register numbers. */
5935 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5936 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5938 /* Initialize a frame */
5939 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5940 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5942 /* MIPS version of CALL_DUMMY */
5944 set_gdbarch_call_dummy_p (gdbarch, 1);
5945 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5946 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5947 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5948 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5949 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5950 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
5951 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5952 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5953 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5954 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5955 set_gdbarch_call_dummy_length (gdbarch, 0);
5956 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5957 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
5958 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5959 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5960 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5961 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
5962 set_gdbarch_register_convert_to_virtual (gdbarch,
5963 mips_register_convert_to_virtual);
5964 set_gdbarch_register_convert_to_raw (gdbarch,
5965 mips_register_convert_to_raw);
5967 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
5969 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
5970 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
5971 set_gdbarch_frameless_function_invocation (gdbarch,
5972 generic_frameless_function_invocation_not);
5973 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5974 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
5975 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
5976 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5977 set_gdbarch_frame_args_skip (gdbarch, 0);
5979 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
5981 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5982 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5983 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5985 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5986 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5988 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5989 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5990 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5992 set_gdbarch_function_start_offset (gdbarch, 0);
5994 /* There are MIPS targets which do not yet use this since they still
5995 define REGISTER_VIRTUAL_TYPE. */
5996 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
5997 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
5999 set_gdbarch_do_registers_info (gdbarch, mips_do_registers_info);
6000 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6002 /* Hook in OS ABI-specific overrides, if they have been registered. */
6003 gdbarch_init_osabi (info, gdbarch, osabi);
6005 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6006 set_gdbarch_extract_struct_value_address (gdbarch,
6007 mips_extract_struct_value_address);
6009 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6011 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6012 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6018 mips_abi_update (char *ignore_args, int from_tty,
6019 struct cmd_list_element *c)
6021 struct gdbarch_info info;
6023 /* Force the architecture to update, and (if it's a MIPS architecture)
6024 mips_gdbarch_init will take care of the rest. */
6025 gdbarch_info_init (&info);
6026 gdbarch_update_p (info);
6030 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6032 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6036 int ef_mips_32bitmode;
6037 /* determine the ISA */
6038 switch (tdep->elf_flags & EF_MIPS_ARCH)
6056 /* determine the size of a pointer */
6057 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6058 fprintf_unfiltered (file,
6059 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6061 fprintf_unfiltered (file,
6062 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6064 fprintf_unfiltered (file,
6065 "mips_dump_tdep: ef_mips_arch = %d\n",
6067 fprintf_unfiltered (file,
6068 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6070 mips_abi_strings[tdep->mips_abi]);
6071 fprintf_unfiltered (file,
6072 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6073 mips_mask_address_p (),
6074 tdep->default_mask_address_p);
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6078 FP_REGISTER_DOUBLE);
6079 fprintf_unfiltered (file,
6080 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6081 MIPS_DEFAULT_FPU_TYPE,
6082 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6083 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6084 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6086 fprintf_unfiltered (file,
6087 "mips_dump_tdep: MIPS_EABI = %d\n",
6089 fprintf_unfiltered (file,
6090 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6091 MIPS_LAST_FP_ARG_REGNUM,
6092 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6093 fprintf_unfiltered (file,
6094 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6096 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6097 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6098 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6100 fprintf_unfiltered (file,
6101 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6102 MIPS_DEFAULT_SAVED_REGSIZE);
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6105 FP_REGISTER_DOUBLE);
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6108 MIPS_DEFAULT_STACK_ARGSIZE);
6109 fprintf_unfiltered (file,
6110 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6111 MIPS_STACK_ARGSIZE);
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: A0_REGNUM = %d\n",
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6120 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6123 XSTRING (ATTACH_DETACH));
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6129 fprintf_unfiltered (file,
6130 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6132 fprintf_unfiltered (file,
6133 "mips_dump_tdep: CPLUS_MARKER = %c\n",
6135 fprintf_unfiltered (file,
6136 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
6137 XSTRING (DO_REGISTERS_INFO));
6138 fprintf_unfiltered (file,
6139 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6140 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6141 fprintf_unfiltered (file,
6142 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6143 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6144 fprintf_unfiltered (file,
6145 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6147 fprintf_unfiltered (file,
6148 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6150 fprintf_unfiltered (file,
6151 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6152 FIRST_EMBED_REGNUM);
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6156 fprintf_unfiltered (file,
6157 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6158 GDB_TARGET_IS_MIPS64);
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6161 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6162 fprintf_unfiltered (file,
6163 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6164 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6165 fprintf_unfiltered (file,
6166 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6170 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: HI_REGNUM = %d\n",
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6180 XSTRING (IGNORE_HELPER_CALL (PC)));
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6183 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6186 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: LO_REGNUM = %d\n",
6197 #ifdef MACHINE_CPROC_FP_OFFSET
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6200 MACHINE_CPROC_FP_OFFSET);
6202 #ifdef MACHINE_CPROC_PC_OFFSET
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6205 MACHINE_CPROC_PC_OFFSET);
6207 #ifdef MACHINE_CPROC_SP_OFFSET
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6210 MACHINE_CPROC_SP_OFFSET);
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6230 MIPS_LAST_ARG_REGNUM,
6231 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6239 MIPS_SAVED_REGSIZE);
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: OP_LDFPR = used?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: OP_LDGPR = used?\n");
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: PRID_REGNUM = %d\n",
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6253 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_PC_REG = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PS_REGNUM = %d\n",
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: RA_REGNUM = %d\n",
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6289 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6292 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: ROUND_DOWN = function?\n");
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: ROUND_UP = function?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: SAVED_BYTES = %d\n",
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SAVED_FP = %d\n",
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: SAVED_PC = %d\n",
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6316 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6324 SIGFRAME_FPREGSAVE_OFF);
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6330 SIGFRAME_REGSAVE_OFF);
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6336 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6339 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6342 SOFTWARE_SINGLE_STEP_P ());
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6345 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6346 #ifdef STACK_END_ADDR
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6353 XSTRING (STEP_SKIPS_DELAY (PC)));
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6356 STEP_SKIPS_DELAY_P);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6359 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: T9_REGNUM = %d\n",
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6367 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6370 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: TARGET_MIPS = used?\n");
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6375 XSTRING (TM_PRINT_INSN_MACH));
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6379 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6386 #ifdef TRACE_FLAVOR_SIZE
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TRACE_SET # %s\n",
6394 XSTRING (TRACE_SET (X,STATE)));
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6398 #ifdef UNUSED_REGNUM
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: V0_REGNUM = %d\n",
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6408 (long) VM_MIN_ADDRESS);
6410 fprintf_unfiltered (file,
6411 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: OS ABI = %s\n",
6423 gdbarch_osabi_name (tdep->osabi));
6427 _initialize_mips_tdep (void)
6429 static struct cmd_list_element *mipsfpulist = NULL;
6430 struct cmd_list_element *c;
6432 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6433 if (MIPS_ABI_LAST + 1
6434 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6435 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6437 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6438 if (!tm_print_insn) /* Someone may have already set it */
6439 tm_print_insn = gdb_print_insn_mips;
6441 /* Add root prefix command for all "set mips"/"show mips" commands */
6442 add_prefix_cmd ("mips", no_class, set_mips_command,
6443 "Various MIPS specific commands.",
6444 &setmipscmdlist, "set mips ", 0, &setlist);
6446 add_prefix_cmd ("mips", no_class, show_mips_command,
6447 "Various MIPS specific commands.",
6448 &showmipscmdlist, "show mips ", 0, &showlist);
6450 /* Allow the user to override the saved register size. */
6451 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6454 &mips_saved_regsize_string, "\
6455 Set size of general purpose registers saved on the stack.\n\
6456 This option can be set to one of:\n\
6457 32 - Force GDB to treat saved GP registers as 32-bit\n\
6458 64 - Force GDB to treat saved GP registers as 64-bit\n\
6459 auto - Allow GDB to use the target's default setting or autodetect the\n\
6460 saved GP register size from information contained in the executable.\n\
6465 /* Allow the user to override the argument stack size. */
6466 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6469 &mips_stack_argsize_string, "\
6470 Set the amount of stack space reserved for each argument.\n\
6471 This option can be set to one of:\n\
6472 32 - Force GDB to allocate 32-bit chunks per argument\n\
6473 64 - Force GDB to allocate 64-bit chunks per argument\n\
6474 auto - Allow GDB to determine the correct setting from the current\n\
6475 target and executable (default)",
6479 /* Allow the user to override the ABI. */
6480 c = add_set_enum_cmd
6481 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6482 "Set the ABI used by this program.\n"
6483 "This option can be set to one of:\n"
6484 " auto - the default ABI associated with the current binary\n"
6492 add_show_from_set (c, &showmipscmdlist);
6493 set_cmd_sfunc (c, mips_abi_update);
6495 /* Let the user turn off floating point and set the fence post for
6496 heuristic_proc_start. */
6498 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6499 "Set use of MIPS floating-point coprocessor.",
6500 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6501 add_cmd ("single", class_support, set_mipsfpu_single_command,
6502 "Select single-precision MIPS floating-point coprocessor.",
6504 add_cmd ("double", class_support, set_mipsfpu_double_command,
6505 "Select double-precision MIPS floating-point coprocessor.",
6507 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6508 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6509 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6510 add_cmd ("none", class_support, set_mipsfpu_none_command,
6511 "Select no MIPS floating-point coprocessor.",
6513 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6514 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6515 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6516 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6517 "Select MIPS floating-point coprocessor automatically.",
6519 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6520 "Show current use of MIPS floating-point coprocessor target.",
6523 /* We really would like to have both "0" and "unlimited" work, but
6524 command.c doesn't deal with that. So make it a var_zinteger
6525 because the user can always use "999999" or some such for unlimited. */
6526 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6527 (char *) &heuristic_fence_post,
6529 Set the distance searched for the start of a function.\n\
6530 If you are debugging a stripped executable, GDB needs to search through the\n\
6531 program for the start of a function. This command sets the distance of the\n\
6532 search. The only need to set it is when debugging a stripped executable.",
6534 /* We need to throw away the frame cache when we set this, since it
6535 might change our ability to get backtraces. */
6536 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6537 add_show_from_set (c, &showlist);
6539 /* Allow the user to control whether the upper bits of 64-bit
6540 addresses should be zeroed. */
6541 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6542 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6543 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6544 allow GDB to determine the correct value.\n", "\
6545 Show zeroing of upper 32 bits of 64-bit addresses.",
6546 NULL, show_mask_address,
6547 &setmipscmdlist, &showmipscmdlist);
6549 /* Allow the user to control the size of 32 bit registers within the
6550 raw remote packet. */
6551 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6554 (char *)&mips64_transfers_32bit_regs_p, "\
6555 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6556 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6557 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6558 64 bits for others. Use \"off\" to disable compatibility mode",
6562 /* Debug this files internals. */
6563 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6564 &mips_debug, "Set mips debugging.\n\
6565 When non-zero, mips specific debugging is enabled.", &setdebuglist),