1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_; }
193 // Return the instruction sequence type of this.
196 { return this->type_; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_; }
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
275 arm_stub_type_last = arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type, const Insn_template*, size_t);
294 { return this->type_; }
296 // Return an array of instruction templates.
299 { return this->insns_; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_; }
306 // Return size of template in bytes.
309 { return this->size_; }
311 // Return alignment of the stub template.
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian>
451 do_fixed_endian_write(unsigned char*, section_size_type);
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
576 // Functors for STL associative containers.
580 operator()(const Key& k) const
581 { return k.hash_value(); }
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol* symbol;
610 const Relobj* relobj;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
634 return this->destination_address_;
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
755 // Return the associated register.
758 { return this->reg_; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
785 // A template to implement do_write.
786 template<bool big_endian>
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory&
815 static Stub_factory singleton;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
882 { return this->owner_; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
981 // Write out section contents.
983 do_write(Output_file*);
985 // Return the required alignment.
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_; }
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1064 this->do_fixed_endian_write<false>(of);
1067 // Write to a map file.
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1076 do_fixed_endian_write(Output_file*);
1078 // The object containing the section pointed by this.
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1107 // Build output contents.
1109 build_contents(const unsigned char*, section_size_type);
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1122 // Write merged section into file OF.
1124 do_write(Output_file* of);
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1141 // A class to wrap an ordinary input section containing executable code.
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1160 // Whether this is a stub table owner.
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1168 { return this->stub_table_; }
1170 // Set the stub_table.
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1181 // Return the original size of the section.
1183 original_size() const
1184 { return this->original_size_; }
1187 // Write data to output file.
1189 do_write(Output_file*);
1191 // Return required alignment of this.
1193 do_addralign() const
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1199 return this->original_addralign_;
1202 // Finalize data size.
1204 set_final_data_size();
1206 // Reset address and file offset.
1208 do_reset_address_and_file_offset();
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1243 unsigned char* original_contents_;
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1249 class Arm_exidx_fixup
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1261 { delete this->section_offset_map_; }
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1279 add_exidx_cantunwind_as_needed();
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1292 // Type of EXIDX unwind entry.
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1308 process_exidx_entry(uint32_t second_word);
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1331 Output_section* first_output_text_section_;
1333 bool merge_exidx_entries_;
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1345 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1346 elfcpp::Elf_Xword flags)
1347 : Output_section(name, type, flags)
1349 if (type == elfcpp::SHT_ARM_EXIDX)
1350 this->set_always_keeps_input_sections();
1353 ~Arm_output_section()
1356 // Group input sections for stub generation.
1358 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1360 // Downcast a base pointer to an Arm_output_section pointer. This is
1361 // not type-safe but we only use Arm_output_section not the base class.
1362 static Arm_output_section<big_endian>*
1363 as_arm_output_section(Output_section* os)
1364 { return static_cast<Arm_output_section<big_endian>*>(os); }
1366 // Append all input text sections in this into LIST.
1368 append_text_sections_to_list(Text_section_list* list);
1370 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1371 // is a list of text input sections sorted in ascending order of their
1372 // output addresses.
1374 fix_exidx_coverage(Layout* layout,
1375 const Text_section_list& sorted_text_section,
1376 Symbol_table* symtab,
1377 bool merge_exidx_entries,
1380 // Link an EXIDX section into its corresponding text section.
1382 set_exidx_section_link();
1386 typedef Output_section::Input_section Input_section;
1387 typedef Output_section::Input_section_list Input_section_list;
1389 // Create a stub group.
1390 void create_stub_group(Input_section_list::const_iterator,
1391 Input_section_list::const_iterator,
1392 Input_section_list::const_iterator,
1393 Target_arm<big_endian>*,
1394 std::vector<Output_relaxed_input_section*>*,
1398 // Arm_exidx_input_section class. This represents an EXIDX input section.
1400 class Arm_exidx_input_section
1403 static const section_offset_type invalid_offset =
1404 static_cast<section_offset_type>(-1);
1406 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1407 unsigned int link, uint32_t size,
1408 uint32_t addralign, uint32_t text_size)
1409 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1410 addralign_(addralign), text_size_(text_size), has_errors_(false)
1413 ~Arm_exidx_input_section()
1416 // Accessors: This is a read-only class.
1418 // Return the object containing this EXIDX input section.
1421 { return this->relobj_; }
1423 // Return the section index of this EXIDX input section.
1426 { return this->shndx_; }
1428 // Return the section index of linked text section in the same object.
1431 { return this->link_; }
1433 // Return size of the EXIDX input section.
1436 { return this->size_; }
1438 // Return address alignment of EXIDX input section.
1441 { return this->addralign_; }
1443 // Return size of the associated text input section.
1446 { return this->text_size_; }
1448 // Whether there are any errors in the EXIDX input section.
1451 { return this->has_errors_; }
1453 // Set has-errors flag.
1456 { this->has_errors_ = true; }
1459 // Object containing this.
1461 // Section index of this.
1462 unsigned int shndx_;
1463 // text section linked to this in the same object.
1465 // Size of this. For ARM 32-bit is sufficient.
1467 // Address alignment of this. For ARM 32-bit is sufficient.
1468 uint32_t addralign_;
1469 // Size of associated text section.
1470 uint32_t text_size_;
1471 // Whether this has any errors.
1475 // Arm_relobj class.
1477 template<bool big_endian>
1478 class Arm_relobj : public Sized_relobj<32, big_endian>
1481 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1483 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1484 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1485 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1486 stub_tables_(), local_symbol_is_thumb_function_(),
1487 attributes_section_data_(NULL), mapping_symbols_info_(),
1488 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1489 output_local_symbol_count_needs_update_(false),
1490 merge_flags_and_attributes_(true)
1494 { delete this->attributes_section_data_; }
1496 // Return the stub table of the SHNDX-th section if there is one.
1497 Stub_table<big_endian>*
1498 stub_table(unsigned int shndx) const
1500 gold_assert(shndx < this->stub_tables_.size());
1501 return this->stub_tables_[shndx];
1504 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1506 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1508 gold_assert(shndx < this->stub_tables_.size());
1509 this->stub_tables_[shndx] = stub_table;
1512 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1513 // index. This is only valid after do_count_local_symbol is called.
1515 local_symbol_is_thumb_function(unsigned int r_sym) const
1517 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1518 return this->local_symbol_is_thumb_function_[r_sym];
1521 // Scan all relocation sections for stub generation.
1523 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1526 // Convert regular input section with index SHNDX to a relaxed section.
1528 convert_input_section_to_relaxed_section(unsigned shndx)
1530 // The stubs have relocations and we need to process them after writing
1531 // out the stubs. So relocation now must follow section write.
1532 this->set_section_offset(shndx, -1ULL);
1533 this->set_relocs_must_follow_section_writes();
1536 // Downcast a base pointer to an Arm_relobj pointer. This is
1537 // not type-safe but we only use Arm_relobj not the base class.
1538 static Arm_relobj<big_endian>*
1539 as_arm_relobj(Relobj* relobj)
1540 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1542 // Processor-specific flags in ELF file header. This is valid only after
1545 processor_specific_flags() const
1546 { return this->processor_specific_flags_; }
1548 // Attribute section data This is the contents of the .ARM.attribute section
1550 const Attributes_section_data*
1551 attributes_section_data() const
1552 { return this->attributes_section_data_; }
1554 // Mapping symbol location.
1555 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1557 // Functor for STL container.
1558 struct Mapping_symbol_position_less
1561 operator()(const Mapping_symbol_position& p1,
1562 const Mapping_symbol_position& p2) const
1564 return (p1.first < p2.first
1565 || (p1.first == p2.first && p1.second < p2.second));
1569 // We only care about the first character of a mapping symbol, so
1570 // we only store that instead of the whole symbol name.
1571 typedef std::map<Mapping_symbol_position, char,
1572 Mapping_symbol_position_less> Mapping_symbols_info;
1574 // Whether a section contains any Cortex-A8 workaround.
1576 section_has_cortex_a8_workaround(unsigned int shndx) const
1578 return (this->section_has_cortex_a8_workaround_ != NULL
1579 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1582 // Mark a section that has Cortex-A8 workaround.
1584 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1586 if (this->section_has_cortex_a8_workaround_ == NULL)
1587 this->section_has_cortex_a8_workaround_ =
1588 new std::vector<bool>(this->shnum(), false);
1589 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1592 // Return the EXIDX section of an text section with index SHNDX or NULL
1593 // if the text section has no associated EXIDX section.
1594 const Arm_exidx_input_section*
1595 exidx_input_section_by_link(unsigned int shndx) const
1597 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1598 return ((p != this->exidx_section_map_.end()
1599 && p->second->link() == shndx)
1604 // Return the EXIDX section with index SHNDX or NULL if there is none.
1605 const Arm_exidx_input_section*
1606 exidx_input_section_by_shndx(unsigned shndx) const
1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609 return ((p != this->exidx_section_map_.end()
1610 && p->second->shndx() == shndx)
1615 // Whether output local symbol count needs updating.
1617 output_local_symbol_count_needs_update() const
1618 { return this->output_local_symbol_count_needs_update_; }
1620 // Set output_local_symbol_count_needs_update flag to be true.
1622 set_output_local_symbol_count_needs_update()
1623 { this->output_local_symbol_count_needs_update_ = true; }
1625 // Update output local symbol count at the end of relaxation.
1627 update_output_local_symbol_count();
1629 // Whether we want to merge processor-specific flags and attributes.
1631 merge_flags_and_attributes() const
1632 { return this->merge_flags_and_attributes_; }
1634 // Export list of EXIDX section indices.
1636 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1639 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1640 p != this->exidx_section_map_.end();
1643 if (p->second->shndx() == p->first)
1644 list->push_back(p->first);
1646 // Sort list to make result independent of implementation of map.
1647 std::sort(list->begin(), list->end());
1651 // Post constructor setup.
1655 // Call parent's setup method.
1656 Sized_relobj<32, big_endian>::do_setup();
1658 // Initialize look-up tables.
1659 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1660 this->stub_tables_.swap(empty_stub_table_list);
1663 // Count the local symbols.
1665 do_count_local_symbols(Stringpool_template<char>*,
1666 Stringpool_template<char>*);
1669 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1670 const unsigned char* pshdrs, Output_file* of,
1671 typename Sized_relobj<32, big_endian>::Views* pivews);
1673 // Read the symbol information.
1675 do_read_symbols(Read_symbols_data* sd);
1677 // Process relocs for garbage collection.
1679 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1683 // Whether a section needs to be scanned for relocation stubs.
1685 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1686 const Relobj::Output_sections&,
1687 const Symbol_table*, const unsigned char*);
1689 // Whether a section is a scannable text section.
1691 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1692 const Output_section*, const Symbol_table*);
1694 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1696 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1697 unsigned int, Output_section*,
1698 const Symbol_table*);
1700 // Scan a section for the Cortex-A8 erratum.
1702 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1703 unsigned int, Output_section*,
1704 Target_arm<big_endian>*);
1706 // Find the linked text section of an EXIDX section by looking at the
1707 // first relocation of the EXIDX section. PSHDR points to the section
1708 // headers of a relocation section and PSYMS points to the local symbols.
1709 // PSHNDX points to a location storing the text section index if found.
1710 // Return whether we can find the linked section.
1712 find_linked_text_section(const unsigned char* pshdr,
1713 const unsigned char* psyms, unsigned int* pshndx);
1716 // Make a new Arm_exidx_input_section object for EXIDX section with
1717 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1718 // index of the linked text section.
1720 make_exidx_input_section(unsigned int shndx,
1721 const elfcpp::Shdr<32, big_endian>& shdr,
1722 unsigned int text_shndx,
1723 const elfcpp::Shdr<32, big_endian>& text_shdr);
1725 // Return the output address of either a plain input section or a
1726 // relaxed input section. SHNDX is the section index.
1728 simple_input_section_output_address(unsigned int, Output_section*);
1730 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1731 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1734 // List of stub tables.
1735 Stub_table_list stub_tables_;
1736 // Bit vector to tell if a local symbol is a thumb function or not.
1737 // This is only valid after do_count_local_symbol is called.
1738 std::vector<bool> local_symbol_is_thumb_function_;
1739 // processor-specific flags in ELF file header.
1740 elfcpp::Elf_Word processor_specific_flags_;
1741 // Object attributes if there is an .ARM.attributes section or NULL.
1742 Attributes_section_data* attributes_section_data_;
1743 // Mapping symbols information.
1744 Mapping_symbols_info mapping_symbols_info_;
1745 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1746 std::vector<bool>* section_has_cortex_a8_workaround_;
1747 // Map a text section to its associated .ARM.exidx section, if there is one.
1748 Exidx_section_map exidx_section_map_;
1749 // Whether output local symbol count needs updating.
1750 bool output_local_symbol_count_needs_update_;
1751 // Whether we merge processor flags and attributes of this object to
1753 bool merge_flags_and_attributes_;
1756 // Arm_dynobj class.
1758 template<bool big_endian>
1759 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1762 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1763 const elfcpp::Ehdr<32, big_endian>& ehdr)
1764 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1765 processor_specific_flags_(0), attributes_section_data_(NULL)
1769 { delete this->attributes_section_data_; }
1771 // Downcast a base pointer to an Arm_relobj pointer. This is
1772 // not type-safe but we only use Arm_relobj not the base class.
1773 static Arm_dynobj<big_endian>*
1774 as_arm_dynobj(Dynobj* dynobj)
1775 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1777 // Processor-specific flags in ELF file header. This is valid only after
1780 processor_specific_flags() const
1781 { return this->processor_specific_flags_; }
1783 // Attributes section data.
1784 const Attributes_section_data*
1785 attributes_section_data() const
1786 { return this->attributes_section_data_; }
1789 // Read the symbol information.
1791 do_read_symbols(Read_symbols_data* sd);
1794 // processor-specific flags in ELF file header.
1795 elfcpp::Elf_Word processor_specific_flags_;
1796 // Object attributes if there is an .ARM.attributes section or NULL.
1797 Attributes_section_data* attributes_section_data_;
1800 // Functor to read reloc addends during stub generation.
1802 template<int sh_type, bool big_endian>
1803 struct Stub_addend_reader
1805 // Return the addend for a relocation of a particular type. Depending
1806 // on whether this is a REL or RELA relocation, read the addend from a
1807 // view or from a Reloc object.
1808 elfcpp::Elf_types<32>::Elf_Swxword
1810 unsigned int /* r_type */,
1811 const unsigned char* /* view */,
1812 const typename Reloc_types<sh_type,
1813 32, big_endian>::Reloc& /* reloc */) const;
1816 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1818 template<bool big_endian>
1819 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1821 elfcpp::Elf_types<32>::Elf_Swxword
1824 const unsigned char*,
1825 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1828 // Specialized Stub_addend_reader for RELA type relocation sections.
1829 // We currently do not handle RELA type relocation sections but it is trivial
1830 // to implement the addend reader. This is provided for completeness and to
1831 // make it easier to add support for RELA relocation sections in the future.
1833 template<bool big_endian>
1834 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1836 elfcpp::Elf_types<32>::Elf_Swxword
1839 const unsigned char*,
1840 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1841 big_endian>::Reloc& reloc) const
1842 { return reloc.get_r_addend(); }
1845 // Cortex_a8_reloc class. We keep record of relocation that may need
1846 // the Cortex-A8 erratum workaround.
1848 class Cortex_a8_reloc
1851 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1852 Arm_address destination)
1853 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 // Accessors: This is a read-only class.
1861 // Return the relocation stub associated with this relocation if there is
1865 { return this->reloc_stub_; }
1867 // Return the relocation type.
1870 { return this->r_type_; }
1872 // Return the destination address of the relocation. LSB stores the THUMB
1876 { return this->destination_; }
1879 // Associated relocation stub if there is one, or NULL.
1880 const Reloc_stub* reloc_stub_;
1882 unsigned int r_type_;
1883 // Destination address of this relocation. LSB is used to distinguish
1885 Arm_address destination_;
1888 // Arm_output_data_got class. We derive this from Output_data_got to add
1889 // extra methods to handle TLS relocations in a static link.
1891 template<bool big_endian>
1892 class Arm_output_data_got : public Output_data_got<32, big_endian>
1895 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1896 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1899 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1900 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1901 // applied in a static link.
1903 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1904 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1906 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1907 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1908 // relocation that needs to be applied in a static link.
1910 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1911 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1913 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1917 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1918 // The first one is initialized to be 1, which is the module index for
1919 // the main executable and the second one 0. A reloc of the type
1920 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1921 // be applied by gold. GSYM is a global symbol.
1923 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1925 // Same as the above but for a local symbol in OBJECT with INDEX.
1927 add_tls_gd32_with_static_reloc(unsigned int got_type,
1928 Sized_relobj<32, big_endian>* object,
1929 unsigned int index);
1932 // Write out the GOT table.
1934 do_write(Output_file*);
1937 // This class represent dynamic relocations that need to be applied by
1938 // gold because we are using TLS relocations in a static link.
1942 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1943 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1944 { this->u_.global.symbol = gsym; }
1946 Static_reloc(unsigned int got_offset, unsigned int r_type,
1947 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1948 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1950 this->u_.local.relobj = relobj;
1951 this->u_.local.index = index;
1954 // Return the GOT offset.
1957 { return this->got_offset_; }
1962 { return this->r_type_; }
1964 // Whether the symbol is global or not.
1966 symbol_is_global() const
1967 { return this->symbol_is_global_; }
1969 // For a relocation against a global symbol, the global symbol.
1973 gold_assert(this->symbol_is_global_);
1974 return this->u_.global.symbol;
1977 // For a relocation against a local symbol, the defining object.
1978 Sized_relobj<32, big_endian>*
1981 gold_assert(!this->symbol_is_global_);
1982 return this->u_.local.relobj;
1985 // For a relocation against a local symbol, the local symbol index.
1989 gold_assert(!this->symbol_is_global_);
1990 return this->u_.local.index;
1994 // GOT offset of the entry to which this relocation is applied.
1995 unsigned int got_offset_;
1996 // Type of relocation.
1997 unsigned int r_type_;
1998 // Whether this relocation is against a global symbol.
1999 bool symbol_is_global_;
2000 // A global or local symbol.
2005 // For a global symbol, the symbol itself.
2010 // For a local symbol, the object defining object.
2011 Sized_relobj<32, big_endian>* relobj;
2012 // For a local symbol, the symbol index.
2018 // Symbol table of the output object.
2019 Symbol_table* symbol_table_;
2020 // Layout of the output object.
2022 // Static relocs to be applied to the GOT.
2023 std::vector<Static_reloc> static_relocs_;
2026 // The ARM target has many relocation types with odd-sizes or noncontiguous
2027 // bits. The default handling of relocatable relocation cannot process these
2028 // relocations. So we have to extend the default code.
2030 template<bool big_endian, int sh_type, typename Classify_reloc>
2031 class Arm_scan_relocatable_relocs :
2032 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2035 // Return the strategy to use for a local symbol which is a section
2036 // symbol, given the relocation type.
2037 inline Relocatable_relocs::Reloc_strategy
2038 local_section_strategy(unsigned int r_type, Relobj*)
2040 if (sh_type == elfcpp::SHT_RELA)
2041 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2044 if (r_type == elfcpp::R_ARM_TARGET1
2045 || r_type == elfcpp::R_ARM_TARGET2)
2047 const Target_arm<big_endian>* arm_target =
2048 Target_arm<big_endian>::default_target();
2049 r_type = arm_target->get_real_reloc_type(r_type);
2054 // Relocations that write nothing. These exclude R_ARM_TARGET1
2055 // and R_ARM_TARGET2.
2056 case elfcpp::R_ARM_NONE:
2057 case elfcpp::R_ARM_V4BX:
2058 case elfcpp::R_ARM_TLS_GOTDESC:
2059 case elfcpp::R_ARM_TLS_CALL:
2060 case elfcpp::R_ARM_TLS_DESCSEQ:
2061 case elfcpp::R_ARM_THM_TLS_CALL:
2062 case elfcpp::R_ARM_GOTRELAX:
2063 case elfcpp::R_ARM_GNU_VTENTRY:
2064 case elfcpp::R_ARM_GNU_VTINHERIT:
2065 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2066 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2067 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2068 // These should have been converted to something else above.
2069 case elfcpp::R_ARM_TARGET1:
2070 case elfcpp::R_ARM_TARGET2:
2072 // Relocations that write full 32 bits.
2073 case elfcpp::R_ARM_ABS32:
2074 case elfcpp::R_ARM_REL32:
2075 case elfcpp::R_ARM_SBREL32:
2076 case elfcpp::R_ARM_GOTOFF32:
2077 case elfcpp::R_ARM_BASE_PREL:
2078 case elfcpp::R_ARM_GOT_BREL:
2079 case elfcpp::R_ARM_BASE_ABS:
2080 case elfcpp::R_ARM_ABS32_NOI:
2081 case elfcpp::R_ARM_REL32_NOI:
2082 case elfcpp::R_ARM_PLT32_ABS:
2083 case elfcpp::R_ARM_GOT_ABS:
2084 case elfcpp::R_ARM_GOT_PREL:
2085 case elfcpp::R_ARM_TLS_GD32:
2086 case elfcpp::R_ARM_TLS_LDM32:
2087 case elfcpp::R_ARM_TLS_LDO32:
2088 case elfcpp::R_ARM_TLS_IE32:
2089 case elfcpp::R_ARM_TLS_LE32:
2090 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2092 // For all other static relocations, return RELOC_SPECIAL.
2093 return Relocatable_relocs::RELOC_SPECIAL;
2099 // Utilities for manipulating integers of up to 32-bits
2103 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2104 // an int32_t. NO_BITS must be between 1 to 32.
2105 template<int no_bits>
2106 static inline int32_t
2107 sign_extend(uint32_t bits)
2109 gold_assert(no_bits >= 0 && no_bits <= 32);
2111 return static_cast<int32_t>(bits);
2112 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2114 uint32_t top_bit = 1U << (no_bits - 1);
2115 int32_t as_signed = static_cast<int32_t>(bits);
2116 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2119 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2120 template<int no_bits>
2122 has_overflow(uint32_t bits)
2124 gold_assert(no_bits >= 0 && no_bits <= 32);
2127 int32_t max = (1 << (no_bits - 1)) - 1;
2128 int32_t min = -(1 << (no_bits - 1));
2129 int32_t as_signed = static_cast<int32_t>(bits);
2130 return as_signed > max || as_signed < min;
2133 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2134 // fits in the given number of bits as either a signed or unsigned value.
2135 // For example, has_signed_unsigned_overflow<8> would check
2136 // -128 <= bits <= 255
2137 template<int no_bits>
2139 has_signed_unsigned_overflow(uint32_t bits)
2141 gold_assert(no_bits >= 2 && no_bits <= 32);
2144 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2145 int32_t min = -(1 << (no_bits - 1));
2146 int32_t as_signed = static_cast<int32_t>(bits);
2147 return as_signed > max || as_signed < min;
2150 // Select bits from A and B using bits in MASK. For each n in [0..31],
2151 // the n-th bit in the result is chosen from the n-th bits of A and B.
2152 // A zero selects A and a one selects B.
2153 static inline uint32_t
2154 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2155 { return (a & ~mask) | (b & mask); }
2158 template<bool big_endian>
2159 class Target_arm : public Sized_target<32, big_endian>
2162 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2165 // When were are relocating a stub, we pass this as the relocation number.
2166 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2169 : Sized_target<32, big_endian>(&arm_info),
2170 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2171 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2172 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2173 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2174 may_use_blx_(false), should_force_pic_veneer_(false),
2175 arm_input_section_map_(), attributes_section_data_(NULL),
2176 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2179 // Virtual function which is set to return true by a target if
2180 // it can use relocation types to determine if a function's
2181 // pointer is taken.
2183 can_check_for_function_pointers() const
2186 // Whether a section called SECTION_NAME may have function pointers to
2187 // sections not eligible for safe ICF folding.
2189 section_may_have_icf_unsafe_pointers(const char* section_name) const
2191 return (!is_prefix_of(".ARM.exidx", section_name)
2192 && !is_prefix_of(".ARM.extab", section_name)
2193 && Target::section_may_have_icf_unsafe_pointers(section_name));
2196 // Whether we can use BLX.
2199 { return this->may_use_blx_; }
2201 // Set use-BLX flag.
2203 set_may_use_blx(bool value)
2204 { this->may_use_blx_ = value; }
2206 // Whether we force PCI branch veneers.
2208 should_force_pic_veneer() const
2209 { return this->should_force_pic_veneer_; }
2211 // Set PIC veneer flag.
2213 set_should_force_pic_veneer(bool value)
2214 { this->should_force_pic_veneer_ = value; }
2216 // Whether we use THUMB-2 instructions.
2218 using_thumb2() const
2220 Object_attribute* attr =
2221 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2222 int arch = attr->int_value();
2223 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2226 // Whether we use THUMB/THUMB-2 instructions only.
2228 using_thumb_only() const
2230 Object_attribute* attr =
2231 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2233 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2234 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2236 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2237 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2239 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2240 return attr->int_value() == 'M';
2243 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2245 may_use_arm_nop() const
2247 Object_attribute* attr =
2248 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2249 int arch = attr->int_value();
2250 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2251 || arch == elfcpp::TAG_CPU_ARCH_V6K
2252 || arch == elfcpp::TAG_CPU_ARCH_V7
2253 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2256 // Whether we have THUMB-2 NOP.W instruction.
2258 may_use_thumb2_nop() const
2260 Object_attribute* attr =
2261 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2262 int arch = attr->int_value();
2263 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2264 || arch == elfcpp::TAG_CPU_ARCH_V7
2265 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2268 // Process the relocations to determine unreferenced sections for
2269 // garbage collection.
2271 gc_process_relocs(Symbol_table* symtab,
2273 Sized_relobj<32, big_endian>* object,
2274 unsigned int data_shndx,
2275 unsigned int sh_type,
2276 const unsigned char* prelocs,
2278 Output_section* output_section,
2279 bool needs_special_offset_handling,
2280 size_t local_symbol_count,
2281 const unsigned char* plocal_symbols);
2283 // Scan the relocations to look for symbol adjustments.
2285 scan_relocs(Symbol_table* symtab,
2287 Sized_relobj<32, big_endian>* object,
2288 unsigned int data_shndx,
2289 unsigned int sh_type,
2290 const unsigned char* prelocs,
2292 Output_section* output_section,
2293 bool needs_special_offset_handling,
2294 size_t local_symbol_count,
2295 const unsigned char* plocal_symbols);
2297 // Finalize the sections.
2299 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2301 // Return the value to use for a dynamic symbol which requires special
2304 do_dynsym_value(const Symbol*) const;
2306 // Relocate a section.
2308 relocate_section(const Relocate_info<32, big_endian>*,
2309 unsigned int sh_type,
2310 const unsigned char* prelocs,
2312 Output_section* output_section,
2313 bool needs_special_offset_handling,
2314 unsigned char* view,
2315 Arm_address view_address,
2316 section_size_type view_size,
2317 const Reloc_symbol_changes*);
2319 // Scan the relocs during a relocatable link.
2321 scan_relocatable_relocs(Symbol_table* symtab,
2323 Sized_relobj<32, big_endian>* object,
2324 unsigned int data_shndx,
2325 unsigned int sh_type,
2326 const unsigned char* prelocs,
2328 Output_section* output_section,
2329 bool needs_special_offset_handling,
2330 size_t local_symbol_count,
2331 const unsigned char* plocal_symbols,
2332 Relocatable_relocs*);
2334 // Relocate a section during a relocatable link.
2336 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2337 unsigned int sh_type,
2338 const unsigned char* prelocs,
2340 Output_section* output_section,
2341 off_t offset_in_output_section,
2342 const Relocatable_relocs*,
2343 unsigned char* view,
2344 Arm_address view_address,
2345 section_size_type view_size,
2346 unsigned char* reloc_view,
2347 section_size_type reloc_view_size);
2349 // Perform target-specific processing in a relocatable link. This is
2350 // only used if we use the relocation strategy RELOC_SPECIAL.
2352 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2353 unsigned int sh_type,
2354 const unsigned char* preloc_in,
2356 Output_section* output_section,
2357 off_t offset_in_output_section,
2358 unsigned char* view,
2359 typename elfcpp::Elf_types<32>::Elf_Addr
2361 section_size_type view_size,
2362 unsigned char* preloc_out);
2364 // Return whether SYM is defined by the ABI.
2366 do_is_defined_by_abi(Symbol* sym) const
2367 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2369 // Return whether there is a GOT section.
2371 has_got_section() const
2372 { return this->got_ != NULL; }
2374 // Return the size of the GOT section.
2378 gold_assert(this->got_ != NULL);
2379 return this->got_->data_size();
2382 // Return the number of entries in the GOT.
2384 got_entry_count() const
2386 if (!this->has_got_section())
2388 return this->got_size() / 4;
2391 // Return the number of entries in the PLT.
2393 plt_entry_count() const;
2395 // Return the offset of the first non-reserved PLT entry.
2397 first_plt_entry_offset() const;
2399 // Return the size of each PLT entry.
2401 plt_entry_size() const;
2403 // Map platform-specific reloc types
2405 get_real_reloc_type(unsigned int r_type);
2408 // Methods to support stub-generations.
2411 // Return the stub factory
2413 stub_factory() const
2414 { return this->stub_factory_; }
2416 // Make a new Arm_input_section object.
2417 Arm_input_section<big_endian>*
2418 new_arm_input_section(Relobj*, unsigned int);
2420 // Find the Arm_input_section object corresponding to the SHNDX-th input
2421 // section of RELOBJ.
2422 Arm_input_section<big_endian>*
2423 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2425 // Make a new Stub_table
2426 Stub_table<big_endian>*
2427 new_stub_table(Arm_input_section<big_endian>*);
2429 // Scan a section for stub generation.
2431 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2432 const unsigned char*, size_t, Output_section*,
2433 bool, const unsigned char*, Arm_address,
2438 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2439 Output_section*, unsigned char*, Arm_address,
2442 // Get the default ARM target.
2443 static Target_arm<big_endian>*
2446 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2447 && parameters->target().is_big_endian() == big_endian);
2448 return static_cast<Target_arm<big_endian>*>(
2449 parameters->sized_target<32, big_endian>());
2452 // Whether NAME belongs to a mapping symbol.
2454 is_mapping_symbol_name(const char* name)
2458 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2459 && (name[2] == '\0' || name[2] == '.'));
2462 // Whether we work around the Cortex-A8 erratum.
2464 fix_cortex_a8() const
2465 { return this->fix_cortex_a8_; }
2467 // Whether we merge exidx entries in debuginfo.
2469 merge_exidx_entries() const
2470 { return parameters->options().merge_exidx_entries(); }
2472 // Whether we fix R_ARM_V4BX relocation.
2474 // 1 - replace with MOV instruction (armv4 target)
2475 // 2 - make interworking veneer (>= armv4t targets only)
2476 General_options::Fix_v4bx
2478 { return parameters->options().fix_v4bx(); }
2480 // Scan a span of THUMB code section for Cortex-A8 erratum.
2482 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2483 section_size_type, section_size_type,
2484 const unsigned char*, Arm_address);
2486 // Apply Cortex-A8 workaround to a branch.
2488 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2489 unsigned char*, Arm_address);
2492 // Make an ELF object.
2494 do_make_elf_object(const std::string&, Input_file*, off_t,
2495 const elfcpp::Ehdr<32, big_endian>& ehdr);
2498 do_make_elf_object(const std::string&, Input_file*, off_t,
2499 const elfcpp::Ehdr<32, !big_endian>&)
2500 { gold_unreachable(); }
2503 do_make_elf_object(const std::string&, Input_file*, off_t,
2504 const elfcpp::Ehdr<64, false>&)
2505 { gold_unreachable(); }
2508 do_make_elf_object(const std::string&, Input_file*, off_t,
2509 const elfcpp::Ehdr<64, true>&)
2510 { gold_unreachable(); }
2512 // Make an output section.
2514 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2515 elfcpp::Elf_Xword flags)
2516 { return new Arm_output_section<big_endian>(name, type, flags); }
2519 do_adjust_elf_header(unsigned char* view, int len) const;
2521 // We only need to generate stubs, and hence perform relaxation if we are
2522 // not doing relocatable linking.
2524 do_may_relax() const
2525 { return !parameters->options().relocatable(); }
2528 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2530 // Determine whether an object attribute tag takes an integer, a
2533 do_attribute_arg_type(int tag) const;
2535 // Reorder tags during output.
2537 do_attributes_order(int num) const;
2539 // This is called when the target is selected as the default.
2541 do_select_as_default_target()
2543 // No locking is required since there should only be one default target.
2544 // We cannot have both the big-endian and little-endian ARM targets
2546 gold_assert(arm_reloc_property_table == NULL);
2547 arm_reloc_property_table = new Arm_reloc_property_table();
2551 // The class which scans relocations.
2556 : issued_non_pic_error_(false)
2560 get_reference_flags(unsigned int r_type);
2563 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2564 Sized_relobj<32, big_endian>* object,
2565 unsigned int data_shndx,
2566 Output_section* output_section,
2567 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2568 const elfcpp::Sym<32, big_endian>& lsym);
2571 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2572 Sized_relobj<32, big_endian>* object,
2573 unsigned int data_shndx,
2574 Output_section* output_section,
2575 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2579 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2580 Sized_relobj<32, big_endian>* ,
2583 const elfcpp::Rel<32, big_endian>& ,
2585 const elfcpp::Sym<32, big_endian>&);
2588 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2589 Sized_relobj<32, big_endian>* ,
2592 const elfcpp::Rel<32, big_endian>& ,
2593 unsigned int , Symbol*);
2597 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2598 unsigned int r_type);
2601 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2602 unsigned int r_type, Symbol*);
2605 check_non_pic(Relobj*, unsigned int r_type);
2607 // Almost identical to Symbol::needs_plt_entry except that it also
2608 // handles STT_ARM_TFUNC.
2610 symbol_needs_plt_entry(const Symbol* sym)
2612 // An undefined symbol from an executable does not need a PLT entry.
2613 if (sym->is_undefined() && !parameters->options().shared())
2616 return (!parameters->doing_static_link()
2617 && (sym->type() == elfcpp::STT_FUNC
2618 || sym->type() == elfcpp::STT_ARM_TFUNC)
2619 && (sym->is_from_dynobj()
2620 || sym->is_undefined()
2621 || sym->is_preemptible()));
2625 possible_function_pointer_reloc(unsigned int r_type);
2627 // Whether we have issued an error about a non-PIC compilation.
2628 bool issued_non_pic_error_;
2631 // The class which implements relocation.
2641 // Return whether the static relocation needs to be applied.
2643 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2644 unsigned int r_type,
2646 Output_section* output_section);
2648 // Do a relocation. Return false if the caller should not issue
2649 // any warnings about this relocation.
2651 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2652 Output_section*, size_t relnum,
2653 const elfcpp::Rel<32, big_endian>&,
2654 unsigned int r_type, const Sized_symbol<32>*,
2655 const Symbol_value<32>*,
2656 unsigned char*, Arm_address,
2659 // Return whether we want to pass flag NON_PIC_REF for this
2660 // reloc. This means the relocation type accesses a symbol not via
2663 reloc_is_non_pic(unsigned int r_type)
2667 // These relocation types reference GOT or PLT entries explicitly.
2668 case elfcpp::R_ARM_GOT_BREL:
2669 case elfcpp::R_ARM_GOT_ABS:
2670 case elfcpp::R_ARM_GOT_PREL:
2671 case elfcpp::R_ARM_GOT_BREL12:
2672 case elfcpp::R_ARM_PLT32_ABS:
2673 case elfcpp::R_ARM_TLS_GD32:
2674 case elfcpp::R_ARM_TLS_LDM32:
2675 case elfcpp::R_ARM_TLS_IE32:
2676 case elfcpp::R_ARM_TLS_IE12GP:
2678 // These relocate types may use PLT entries.
2679 case elfcpp::R_ARM_CALL:
2680 case elfcpp::R_ARM_THM_CALL:
2681 case elfcpp::R_ARM_JUMP24:
2682 case elfcpp::R_ARM_THM_JUMP24:
2683 case elfcpp::R_ARM_THM_JUMP19:
2684 case elfcpp::R_ARM_PLT32:
2685 case elfcpp::R_ARM_THM_XPC22:
2686 case elfcpp::R_ARM_PREL31:
2687 case elfcpp::R_ARM_SBREL31:
2696 // Do a TLS relocation.
2697 inline typename Arm_relocate_functions<big_endian>::Status
2698 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2699 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2700 const Sized_symbol<32>*, const Symbol_value<32>*,
2701 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2706 // A class which returns the size required for a relocation type,
2707 // used while scanning relocs during a relocatable link.
2708 class Relocatable_size_for_reloc
2712 get_size_for_reloc(unsigned int, Relobj*);
2715 // Adjust TLS relocation type based on the options and whether this
2716 // is a local symbol.
2717 static tls::Tls_optimization
2718 optimize_tls_reloc(bool is_final, int r_type);
2720 // Get the GOT section, creating it if necessary.
2721 Arm_output_data_got<big_endian>*
2722 got_section(Symbol_table*, Layout*);
2724 // Get the GOT PLT section.
2726 got_plt_section() const
2728 gold_assert(this->got_plt_ != NULL);
2729 return this->got_plt_;
2732 // Create a PLT entry for a global symbol.
2734 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2736 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2738 define_tls_base_symbol(Symbol_table*, Layout*);
2740 // Create a GOT entry for the TLS module index.
2742 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2743 Sized_relobj<32, big_endian>* object);
2745 // Get the PLT section.
2746 const Output_data_plt_arm<big_endian>*
2749 gold_assert(this->plt_ != NULL);
2753 // Get the dynamic reloc section, creating it if necessary.
2755 rel_dyn_section(Layout*);
2757 // Get the section to use for TLS_DESC relocations.
2759 rel_tls_desc_section(Layout*) const;
2761 // Return true if the symbol may need a COPY relocation.
2762 // References from an executable object to non-function symbols
2763 // defined in a dynamic object may need a COPY relocation.
2765 may_need_copy_reloc(Symbol* gsym)
2767 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2768 && gsym->may_need_copy_reloc());
2771 // Add a potential copy relocation.
2773 copy_reloc(Symbol_table* symtab, Layout* layout,
2774 Sized_relobj<32, big_endian>* object,
2775 unsigned int shndx, Output_section* output_section,
2776 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2778 this->copy_relocs_.copy_reloc(symtab, layout,
2779 symtab->get_sized_symbol<32>(sym),
2780 object, shndx, output_section, reloc,
2781 this->rel_dyn_section(layout));
2784 // Whether two EABI versions are compatible.
2786 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2788 // Merge processor-specific flags from input object and those in the ELF
2789 // header of the output.
2791 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2793 // Get the secondary compatible architecture.
2795 get_secondary_compatible_arch(const Attributes_section_data*);
2797 // Set the secondary compatible architecture.
2799 set_secondary_compatible_arch(Attributes_section_data*, int);
2802 tag_cpu_arch_combine(const char*, int, int*, int, int);
2804 // Helper to print AEABI enum tag value.
2806 aeabi_enum_name(unsigned int);
2808 // Return string value for TAG_CPU_name.
2810 tag_cpu_name_value(unsigned int);
2812 // Merge object attributes from input object and those in the output.
2814 merge_object_attributes(const char*, const Attributes_section_data*);
2816 // Helper to get an AEABI object attribute
2818 get_aeabi_object_attribute(int tag) const
2820 Attributes_section_data* pasd = this->attributes_section_data_;
2821 gold_assert(pasd != NULL);
2822 Object_attribute* attr =
2823 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2824 gold_assert(attr != NULL);
2829 // Methods to support stub-generations.
2832 // Group input sections for stub generation.
2834 group_sections(Layout*, section_size_type, bool, const Task*);
2836 // Scan a relocation for stub generation.
2838 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2839 const Sized_symbol<32>*, unsigned int,
2840 const Symbol_value<32>*,
2841 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2843 // Scan a relocation section for stub.
2844 template<int sh_type>
2846 scan_reloc_section_for_stubs(
2847 const Relocate_info<32, big_endian>* relinfo,
2848 const unsigned char* prelocs,
2850 Output_section* output_section,
2851 bool needs_special_offset_handling,
2852 const unsigned char* view,
2853 elfcpp::Elf_types<32>::Elf_Addr view_address,
2856 // Fix .ARM.exidx section coverage.
2858 fix_exidx_coverage(Layout*, const Input_objects*,
2859 Arm_output_section<big_endian>*, Symbol_table*,
2862 // Functors for STL set.
2863 struct output_section_address_less_than
2866 operator()(const Output_section* s1, const Output_section* s2) const
2867 { return s1->address() < s2->address(); }
2870 // Information about this specific target which we pass to the
2871 // general Target structure.
2872 static const Target::Target_info arm_info;
2874 // The types of GOT entries needed for this platform.
2875 // These values are exposed to the ABI in an incremental link.
2876 // Do not renumber existing values without changing the version
2877 // number of the .gnu_incremental_inputs section.
2880 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2881 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2882 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2883 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2884 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2887 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2889 // Map input section to Arm_input_section.
2890 typedef Unordered_map<Section_id,
2891 Arm_input_section<big_endian>*,
2893 Arm_input_section_map;
2895 // Map output addresses to relocs for Cortex-A8 erratum.
2896 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2897 Cortex_a8_relocs_info;
2900 Arm_output_data_got<big_endian>* got_;
2902 Output_data_plt_arm<big_endian>* plt_;
2903 // The GOT PLT section.
2904 Output_data_space* got_plt_;
2905 // The dynamic reloc section.
2906 Reloc_section* rel_dyn_;
2907 // Relocs saved to avoid a COPY reloc.
2908 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2909 // Space for variables copied with a COPY reloc.
2910 Output_data_space* dynbss_;
2911 // Offset of the GOT entry for the TLS module index.
2912 unsigned int got_mod_index_offset_;
2913 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2914 bool tls_base_symbol_defined_;
2915 // Vector of Stub_tables created.
2916 Stub_table_list stub_tables_;
2918 const Stub_factory &stub_factory_;
2919 // Whether we can use BLX.
2921 // Whether we force PIC branch veneers.
2922 bool should_force_pic_veneer_;
2923 // Map for locating Arm_input_sections.
2924 Arm_input_section_map arm_input_section_map_;
2925 // Attributes section data in output.
2926 Attributes_section_data* attributes_section_data_;
2927 // Whether we want to fix code for Cortex-A8 erratum.
2928 bool fix_cortex_a8_;
2929 // Map addresses to relocs for Cortex-A8 erratum.
2930 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2933 template<bool big_endian>
2934 const Target::Target_info Target_arm<big_endian>::arm_info =
2937 big_endian, // is_big_endian
2938 elfcpp::EM_ARM, // machine_code
2939 false, // has_make_symbol
2940 false, // has_resolve
2941 false, // has_code_fill
2942 true, // is_default_stack_executable
2944 "/usr/lib/libc.so.1", // dynamic_linker
2945 0x8000, // default_text_segment_address
2946 0x1000, // abi_pagesize (overridable by -z max-page-size)
2947 0x1000, // common_pagesize (overridable by -z common-page-size)
2948 elfcpp::SHN_UNDEF, // small_common_shndx
2949 elfcpp::SHN_UNDEF, // large_common_shndx
2950 0, // small_common_section_flags
2951 0, // large_common_section_flags
2952 ".ARM.attributes", // attributes_section
2953 "aeabi" // attributes_vendor
2956 // Arm relocate functions class
2959 template<bool big_endian>
2960 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2965 STATUS_OKAY, // No error during relocation.
2966 STATUS_OVERFLOW, // Relocation overflow.
2967 STATUS_BAD_RELOC // Relocation cannot be applied.
2971 typedef Relocate_functions<32, big_endian> Base;
2972 typedef Arm_relocate_functions<big_endian> This;
2974 // Encoding of imm16 argument for movt and movw ARM instructions
2977 // imm16 := imm4 | imm12
2979 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2980 // +-------+---------------+-------+-------+-----------------------+
2981 // | | |imm4 | |imm12 |
2982 // +-------+---------------+-------+-------+-----------------------+
2984 // Extract the relocation addend from VAL based on the ARM
2985 // instruction encoding described above.
2986 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2987 extract_arm_movw_movt_addend(
2988 typename elfcpp::Swap<32, big_endian>::Valtype val)
2990 // According to the Elf ABI for ARM Architecture the immediate
2991 // field is sign-extended to form the addend.
2992 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2995 // Insert X into VAL based on the ARM instruction encoding described
2997 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2998 insert_val_arm_movw_movt(
2999 typename elfcpp::Swap<32, big_endian>::Valtype val,
3000 typename elfcpp::Swap<32, big_endian>::Valtype x)
3004 val |= (x & 0xf000) << 4;
3008 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3011 // imm16 := imm4 | i | imm3 | imm8
3013 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3014 // +---------+-+-----------+-------++-+-----+-------+---------------+
3015 // | |i| |imm4 || |imm3 | |imm8 |
3016 // +---------+-+-----------+-------++-+-----+-------+---------------+
3018 // Extract the relocation addend from VAL based on the Thumb2
3019 // instruction encoding described above.
3020 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3021 extract_thumb_movw_movt_addend(
3022 typename elfcpp::Swap<32, big_endian>::Valtype val)
3024 // According to the Elf ABI for ARM Architecture the immediate
3025 // field is sign-extended to form the addend.
3026 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3027 | ((val >> 15) & 0x0800)
3028 | ((val >> 4) & 0x0700)
3032 // Insert X into VAL based on the Thumb2 instruction encoding
3034 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3035 insert_val_thumb_movw_movt(
3036 typename elfcpp::Swap<32, big_endian>::Valtype val,
3037 typename elfcpp::Swap<32, big_endian>::Valtype x)
3040 val |= (x & 0xf000) << 4;
3041 val |= (x & 0x0800) << 15;
3042 val |= (x & 0x0700) << 4;
3043 val |= (x & 0x00ff);
3047 // Calculate the smallest constant Kn for the specified residual.
3048 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3050 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3056 // Determine the most significant bit in the residual and
3057 // align the resulting value to a 2-bit boundary.
3058 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3060 // The desired shift is now (msb - 6), or zero, whichever
3062 return (((msb - 6) < 0) ? 0 : (msb - 6));
3065 // Calculate the final residual for the specified group index.
3066 // If the passed group index is less than zero, the method will return
3067 // the value of the specified residual without any change.
3068 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3069 static typename elfcpp::Swap<32, big_endian>::Valtype
3070 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3073 for (int n = 0; n <= group; n++)
3075 // Calculate which part of the value to mask.
3076 uint32_t shift = calc_grp_kn(residual);
3077 // Calculate the residual for the next time around.
3078 residual &= ~(residual & (0xff << shift));
3084 // Calculate the value of Gn for the specified group index.
3085 // We return it in the form of an encoded constant-and-rotation.
3086 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3087 static typename elfcpp::Swap<32, big_endian>::Valtype
3088 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3091 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3094 for (int n = 0; n <= group; n++)
3096 // Calculate which part of the value to mask.
3097 shift = calc_grp_kn(residual);
3098 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3099 gn = residual & (0xff << shift);
3100 // Calculate the residual for the next time around.
3103 // Return Gn in the form of an encoded constant-and-rotation.
3104 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3108 // Handle ARM long branches.
3109 static typename This::Status
3110 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3111 unsigned char*, const Sized_symbol<32>*,
3112 const Arm_relobj<big_endian>*, unsigned int,
3113 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3115 // Handle THUMB long branches.
3116 static typename This::Status
3117 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3118 unsigned char*, const Sized_symbol<32>*,
3119 const Arm_relobj<big_endian>*, unsigned int,
3120 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3123 // Return the branch offset of a 32-bit THUMB branch.
3124 static inline int32_t
3125 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3127 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3128 // involving the J1 and J2 bits.
3129 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3130 uint32_t upper = upper_insn & 0x3ffU;
3131 uint32_t lower = lower_insn & 0x7ffU;
3132 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3133 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3134 uint32_t i1 = j1 ^ s ? 0 : 1;
3135 uint32_t i2 = j2 ^ s ? 0 : 1;
3137 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3138 | (upper << 12) | (lower << 1));
3141 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3142 // UPPER_INSN is the original upper instruction of the branch. Caller is
3143 // responsible for overflow checking and BLX offset adjustment.
3144 static inline uint16_t
3145 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3147 uint32_t s = offset < 0 ? 1 : 0;
3148 uint32_t bits = static_cast<uint32_t>(offset);
3149 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3152 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3153 // LOWER_INSN is the original lower instruction of the branch. Caller is
3154 // responsible for overflow checking and BLX offset adjustment.
3155 static inline uint16_t
3156 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3158 uint32_t s = offset < 0 ? 1 : 0;
3159 uint32_t bits = static_cast<uint32_t>(offset);
3160 return ((lower_insn & ~0x2fffU)
3161 | ((((bits >> 23) & 1) ^ !s) << 13)
3162 | ((((bits >> 22) & 1) ^ !s) << 11)
3163 | ((bits >> 1) & 0x7ffU));
3166 // Return the branch offset of a 32-bit THUMB conditional branch.
3167 static inline int32_t
3168 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3170 uint32_t s = (upper_insn & 0x0400U) >> 10;
3171 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3172 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3173 uint32_t lower = (lower_insn & 0x07ffU);
3174 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3176 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3179 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3180 // instruction. UPPER_INSN is the original upper instruction of the branch.
3181 // Caller is responsible for overflow checking.
3182 static inline uint16_t
3183 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3185 uint32_t s = offset < 0 ? 1 : 0;
3186 uint32_t bits = static_cast<uint32_t>(offset);
3187 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3190 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3191 // instruction. LOWER_INSN is the original lower instruction of the branch.
3192 // The caller is responsible for overflow checking.
3193 static inline uint16_t
3194 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3196 uint32_t bits = static_cast<uint32_t>(offset);
3197 uint32_t j2 = (bits & 0x00080000U) >> 19;
3198 uint32_t j1 = (bits & 0x00040000U) >> 18;
3199 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3201 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3204 // R_ARM_ABS8: S + A
3205 static inline typename This::Status
3206 abs8(unsigned char* view,
3207 const Sized_relobj<32, big_endian>* object,
3208 const Symbol_value<32>* psymval)
3210 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3211 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3212 Valtype* wv = reinterpret_cast<Valtype*>(view);
3213 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3214 Reltype addend = utils::sign_extend<8>(val);
3215 Reltype x = psymval->value(object, addend);
3216 val = utils::bit_select(val, x, 0xffU);
3217 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3219 // R_ARM_ABS8 permits signed or unsigned results.
3220 int signed_x = static_cast<int32_t>(x);
3221 return ((signed_x < -128 || signed_x > 255)
3222 ? This::STATUS_OVERFLOW
3223 : This::STATUS_OKAY);
3226 // R_ARM_THM_ABS5: S + A
3227 static inline typename This::Status
3228 thm_abs5(unsigned char* view,
3229 const Sized_relobj<32, big_endian>* object,
3230 const Symbol_value<32>* psymval)
3232 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3233 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3234 Valtype* wv = reinterpret_cast<Valtype*>(view);
3235 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3236 Reltype addend = (val & 0x7e0U) >> 6;
3237 Reltype x = psymval->value(object, addend);
3238 val = utils::bit_select(val, x << 6, 0x7e0U);
3239 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3241 // R_ARM_ABS16 permits signed or unsigned results.
3242 int signed_x = static_cast<int32_t>(x);
3243 return ((signed_x < -32768 || signed_x > 65535)
3244 ? This::STATUS_OVERFLOW
3245 : This::STATUS_OKAY);
3248 // R_ARM_ABS12: S + A
3249 static inline typename This::Status
3250 abs12(unsigned char* view,
3251 const Sized_relobj<32, big_endian>* object,
3252 const Symbol_value<32>* psymval)
3254 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3255 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3256 Valtype* wv = reinterpret_cast<Valtype*>(view);
3257 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3258 Reltype addend = val & 0x0fffU;
3259 Reltype x = psymval->value(object, addend);
3260 val = utils::bit_select(val, x, 0x0fffU);
3261 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3262 return (utils::has_overflow<12>(x)
3263 ? This::STATUS_OVERFLOW
3264 : This::STATUS_OKAY);
3267 // R_ARM_ABS16: S + A
3268 static inline typename This::Status
3269 abs16(unsigned char* view,
3270 const Sized_relobj<32, big_endian>* object,
3271 const Symbol_value<32>* psymval)
3273 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3274 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3275 Valtype* wv = reinterpret_cast<Valtype*>(view);
3276 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3277 Reltype addend = utils::sign_extend<16>(val);
3278 Reltype x = psymval->value(object, addend);
3279 val = utils::bit_select(val, x, 0xffffU);
3280 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3281 return (utils::has_signed_unsigned_overflow<16>(x)
3282 ? This::STATUS_OVERFLOW
3283 : This::STATUS_OKAY);
3286 // R_ARM_ABS32: (S + A) | T
3287 static inline typename This::Status
3288 abs32(unsigned char* view,
3289 const Sized_relobj<32, big_endian>* object,
3290 const Symbol_value<32>* psymval,
3291 Arm_address thumb_bit)
3293 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3294 Valtype* wv = reinterpret_cast<Valtype*>(view);
3295 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3296 Valtype x = psymval->value(object, addend) | thumb_bit;
3297 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3298 return This::STATUS_OKAY;
3301 // R_ARM_REL32: (S + A) | T - P
3302 static inline typename This::Status
3303 rel32(unsigned char* view,
3304 const Sized_relobj<32, big_endian>* object,
3305 const Symbol_value<32>* psymval,
3306 Arm_address address,
3307 Arm_address thumb_bit)
3309 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3310 Valtype* wv = reinterpret_cast<Valtype*>(view);
3311 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3312 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3313 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3314 return This::STATUS_OKAY;
3317 // R_ARM_THM_JUMP24: (S + A) | T - P
3318 static typename This::Status
3319 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3320 const Symbol_value<32>* psymval, Arm_address address,
3321 Arm_address thumb_bit);
3323 // R_ARM_THM_JUMP6: S + A – P
3324 static inline typename This::Status
3325 thm_jump6(unsigned char* view,
3326 const Sized_relobj<32, big_endian>* object,
3327 const Symbol_value<32>* psymval,
3328 Arm_address address)
3330 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3331 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3332 Valtype* wv = reinterpret_cast<Valtype*>(view);
3333 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3334 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3335 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3336 Reltype x = (psymval->value(object, addend) - address);
3337 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3338 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3339 // CZB does only forward jumps.
3340 return ((x > 0x007e)
3341 ? This::STATUS_OVERFLOW
3342 : This::STATUS_OKAY);
3345 // R_ARM_THM_JUMP8: S + A – P
3346 static inline typename This::Status
3347 thm_jump8(unsigned char* view,
3348 const Sized_relobj<32, big_endian>* object,
3349 const Symbol_value<32>* psymval,
3350 Arm_address address)
3352 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3353 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3354 Valtype* wv = reinterpret_cast<Valtype*>(view);
3355 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3356 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3357 Reltype x = (psymval->value(object, addend) - address);
3358 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3359 return (utils::has_overflow<8>(x)
3360 ? This::STATUS_OVERFLOW
3361 : This::STATUS_OKAY);
3364 // R_ARM_THM_JUMP11: S + A – P
3365 static inline typename This::Status
3366 thm_jump11(unsigned char* view,
3367 const Sized_relobj<32, big_endian>* object,
3368 const Symbol_value<32>* psymval,
3369 Arm_address address)
3371 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3372 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3373 Valtype* wv = reinterpret_cast<Valtype*>(view);
3374 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3375 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3376 Reltype x = (psymval->value(object, addend) - address);
3377 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3378 return (utils::has_overflow<11>(x)
3379 ? This::STATUS_OVERFLOW
3380 : This::STATUS_OKAY);
3383 // R_ARM_BASE_PREL: B(S) + A - P
3384 static inline typename This::Status
3385 base_prel(unsigned char* view,
3387 Arm_address address)
3389 Base::rel32(view, origin - address);
3393 // R_ARM_BASE_ABS: B(S) + A
3394 static inline typename This::Status
3395 base_abs(unsigned char* view,
3398 Base::rel32(view, origin);
3402 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3403 static inline typename This::Status
3404 got_brel(unsigned char* view,
3405 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3407 Base::rel32(view, got_offset);
3408 return This::STATUS_OKAY;
3411 // R_ARM_GOT_PREL: GOT(S) + A - P
3412 static inline typename This::Status
3413 got_prel(unsigned char* view,
3414 Arm_address got_entry,
3415 Arm_address address)
3417 Base::rel32(view, got_entry - address);
3418 return This::STATUS_OKAY;
3421 // R_ARM_PREL: (S + A) | T - P
3422 static inline typename This::Status
3423 prel31(unsigned char* view,
3424 const Sized_relobj<32, big_endian>* object,
3425 const Symbol_value<32>* psymval,
3426 Arm_address address,
3427 Arm_address thumb_bit)
3429 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3430 Valtype* wv = reinterpret_cast<Valtype*>(view);
3431 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3432 Valtype addend = utils::sign_extend<31>(val);
3433 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3434 val = utils::bit_select(val, x, 0x7fffffffU);
3435 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3436 return (utils::has_overflow<31>(x) ?
3437 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3440 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3441 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3442 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3443 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3444 static inline typename This::Status
3445 movw(unsigned char* view,
3446 const Sized_relobj<32, big_endian>* object,
3447 const Symbol_value<32>* psymval,
3448 Arm_address relative_address_base,
3449 Arm_address thumb_bit,
3450 bool check_overflow)
3452 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3453 Valtype* wv = reinterpret_cast<Valtype*>(view);
3454 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3455 Valtype addend = This::extract_arm_movw_movt_addend(val);
3456 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3457 - relative_address_base);
3458 val = This::insert_val_arm_movw_movt(val, x);
3459 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3460 return ((check_overflow && utils::has_overflow<16>(x))
3461 ? This::STATUS_OVERFLOW
3462 : This::STATUS_OKAY);
3465 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3466 // R_ARM_MOVT_PREL: S + A - P
3467 // R_ARM_MOVT_BREL: S + A - B(S)
3468 static inline typename This::Status
3469 movt(unsigned char* view,
3470 const Sized_relobj<32, big_endian>* object,
3471 const Symbol_value<32>* psymval,
3472 Arm_address relative_address_base)
3474 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3475 Valtype* wv = reinterpret_cast<Valtype*>(view);
3476 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3477 Valtype addend = This::extract_arm_movw_movt_addend(val);
3478 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3479 val = This::insert_val_arm_movw_movt(val, x);
3480 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3481 // FIXME: IHI0044D says that we should check for overflow.
3482 return This::STATUS_OKAY;
3485 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3486 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3487 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3488 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3489 static inline typename This::Status
3490 thm_movw(unsigned char* view,
3491 const Sized_relobj<32, big_endian>* object,
3492 const Symbol_value<32>* psymval,
3493 Arm_address relative_address_base,
3494 Arm_address thumb_bit,
3495 bool check_overflow)
3497 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3498 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3499 Valtype* wv = reinterpret_cast<Valtype*>(view);
3500 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3501 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3502 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3504 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3505 val = This::insert_val_thumb_movw_movt(val, x);
3506 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3507 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3508 return ((check_overflow && utils::has_overflow<16>(x))
3509 ? This::STATUS_OVERFLOW
3510 : This::STATUS_OKAY);
3513 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3514 // R_ARM_THM_MOVT_PREL: S + A - P
3515 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3516 static inline typename This::Status
3517 thm_movt(unsigned char* view,
3518 const Sized_relobj<32, big_endian>* object,
3519 const Symbol_value<32>* psymval,
3520 Arm_address relative_address_base)
3522 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3523 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3524 Valtype* wv = reinterpret_cast<Valtype*>(view);
3525 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3526 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3527 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3528 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3529 val = This::insert_val_thumb_movw_movt(val, x);
3530 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3531 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3532 return This::STATUS_OKAY;
3535 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3536 static inline typename This::Status
3537 thm_alu11(unsigned char* view,
3538 const Sized_relobj<32, big_endian>* object,
3539 const Symbol_value<32>* psymval,
3540 Arm_address address,
3541 Arm_address thumb_bit)
3543 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3544 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3545 Valtype* wv = reinterpret_cast<Valtype*>(view);
3546 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3547 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3549 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3550 // -----------------------------------------------------------------------
3551 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3552 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3553 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3554 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3555 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3556 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3558 // Determine a sign for the addend.
3559 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3560 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3561 // Thumb2 addend encoding:
3562 // imm12 := i | imm3 | imm8
3563 int32_t addend = (insn & 0xff)
3564 | ((insn & 0x00007000) >> 4)
3565 | ((insn & 0x04000000) >> 15);
3566 // Apply a sign to the added.
3569 int32_t x = (psymval->value(object, addend) | thumb_bit)
3570 - (address & 0xfffffffc);
3571 Reltype val = abs(x);
3572 // Mask out the value and a distinct part of the ADD/SUB opcode
3573 // (bits 7:5 of opword).
3574 insn = (insn & 0xfb0f8f00)
3576 | ((val & 0x700) << 4)
3577 | ((val & 0x800) << 15);
3578 // Set the opcode according to whether the value to go in the
3579 // place is negative.
3583 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3584 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3585 return ((val > 0xfff) ?
3586 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3589 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3590 static inline typename This::Status
3591 thm_pc8(unsigned char* view,
3592 const Sized_relobj<32, big_endian>* object,
3593 const Symbol_value<32>* psymval,
3594 Arm_address address)
3596 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3597 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3598 Valtype* wv = reinterpret_cast<Valtype*>(view);
3599 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3600 Reltype addend = ((insn & 0x00ff) << 2);
3601 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3602 Reltype val = abs(x);
3603 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3605 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3606 return ((val > 0x03fc)
3607 ? This::STATUS_OVERFLOW
3608 : This::STATUS_OKAY);
3611 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3612 static inline typename This::Status
3613 thm_pc12(unsigned char* view,
3614 const Sized_relobj<32, big_endian>* object,
3615 const Symbol_value<32>* psymval,
3616 Arm_address address)
3618 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3619 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3620 Valtype* wv = reinterpret_cast<Valtype*>(view);
3621 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3622 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3623 // Determine a sign for the addend (positive if the U bit is 1).
3624 const int sign = (insn & 0x00800000) ? 1 : -1;
3625 int32_t addend = (insn & 0xfff);
3626 // Apply a sign to the added.
3629 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3630 Reltype val = abs(x);
3631 // Mask out and apply the value and the U bit.
3632 insn = (insn & 0xff7ff000) | (val & 0xfff);
3633 // Set the U bit according to whether the value to go in the
3634 // place is positive.
3638 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3639 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3640 return ((val > 0xfff) ?
3641 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3645 static inline typename This::Status
3646 v4bx(const Relocate_info<32, big_endian>* relinfo,
3647 unsigned char* view,
3648 const Arm_relobj<big_endian>* object,
3649 const Arm_address address,
3650 const bool is_interworking)
3653 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3654 Valtype* wv = reinterpret_cast<Valtype*>(view);
3655 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3657 // Ensure that we have a BX instruction.
3658 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3659 const uint32_t reg = (val & 0xf);
3660 if (is_interworking && reg != 0xf)
3662 Stub_table<big_endian>* stub_table =
3663 object->stub_table(relinfo->data_shndx);
3664 gold_assert(stub_table != NULL);
3666 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3667 gold_assert(stub != NULL);
3669 int32_t veneer_address =
3670 stub_table->address() + stub->offset() - 8 - address;
3671 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3672 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3673 // Replace with a branch to veneer (B <addr>)
3674 val = (val & 0xf0000000) | 0x0a000000
3675 | ((veneer_address >> 2) & 0x00ffffff);
3679 // Preserve Rm (lowest four bits) and the condition code
3680 // (highest four bits). Other bits encode MOV PC,Rm.
3681 val = (val & 0xf000000f) | 0x01a0f000;
3683 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3684 return This::STATUS_OKAY;
3687 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3688 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3689 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3690 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3691 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3692 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3693 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3694 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3695 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3696 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3697 static inline typename This::Status
3698 arm_grp_alu(unsigned char* view,
3699 const Sized_relobj<32, big_endian>* object,
3700 const Symbol_value<32>* psymval,
3702 Arm_address address,
3703 Arm_address thumb_bit,
3704 bool check_overflow)
3706 gold_assert(group >= 0 && group < 3);
3707 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3708 Valtype* wv = reinterpret_cast<Valtype*>(view);
3709 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3711 // ALU group relocations are allowed only for the ADD/SUB instructions.
3712 // (0x00800000 - ADD, 0x00400000 - SUB)
3713 const Valtype opcode = insn & 0x01e00000;
3714 if (opcode != 0x00800000 && opcode != 0x00400000)
3715 return This::STATUS_BAD_RELOC;
3717 // Determine a sign for the addend.
3718 const int sign = (opcode == 0x00800000) ? 1 : -1;
3719 // shifter = rotate_imm * 2
3720 const uint32_t shifter = (insn & 0xf00) >> 7;
3721 // Initial addend value.
3722 int32_t addend = insn & 0xff;
3723 // Rotate addend right by shifter.
3724 addend = (addend >> shifter) | (addend << (32 - shifter));
3725 // Apply a sign to the added.
3728 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3729 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3730 // Check for overflow if required
3732 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3733 return This::STATUS_OVERFLOW;
3735 // Mask out the value and the ADD/SUB part of the opcode; take care
3736 // not to destroy the S bit.
3738 // Set the opcode according to whether the value to go in the
3739 // place is negative.
3740 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3741 // Encode the offset (encoded Gn).
3744 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3745 return This::STATUS_OKAY;
3748 // R_ARM_LDR_PC_G0: S + A - P
3749 // R_ARM_LDR_PC_G1: S + A - P
3750 // R_ARM_LDR_PC_G2: S + A - P
3751 // R_ARM_LDR_SB_G0: S + A - B(S)
3752 // R_ARM_LDR_SB_G1: S + A - B(S)
3753 // R_ARM_LDR_SB_G2: S + A - B(S)
3754 static inline typename This::Status
3755 arm_grp_ldr(unsigned char* view,
3756 const Sized_relobj<32, big_endian>* object,
3757 const Symbol_value<32>* psymval,
3759 Arm_address address)
3761 gold_assert(group >= 0 && group < 3);
3762 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3763 Valtype* wv = reinterpret_cast<Valtype*>(view);
3764 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3766 const int sign = (insn & 0x00800000) ? 1 : -1;
3767 int32_t addend = (insn & 0xfff) * sign;
3768 int32_t x = (psymval->value(object, addend) - address);
3769 // Calculate the relevant G(n-1) value to obtain this stage residual.
3771 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3772 if (residual >= 0x1000)
3773 return This::STATUS_OVERFLOW;
3775 // Mask out the value and U bit.
3777 // Set the U bit for non-negative values.
3782 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3783 return This::STATUS_OKAY;
3786 // R_ARM_LDRS_PC_G0: S + A - P
3787 // R_ARM_LDRS_PC_G1: S + A - P
3788 // R_ARM_LDRS_PC_G2: S + A - P
3789 // R_ARM_LDRS_SB_G0: S + A - B(S)
3790 // R_ARM_LDRS_SB_G1: S + A - B(S)
3791 // R_ARM_LDRS_SB_G2: S + A - B(S)
3792 static inline typename This::Status
3793 arm_grp_ldrs(unsigned char* view,
3794 const Sized_relobj<32, big_endian>* object,
3795 const Symbol_value<32>* psymval,
3797 Arm_address address)
3799 gold_assert(group >= 0 && group < 3);
3800 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3801 Valtype* wv = reinterpret_cast<Valtype*>(view);
3802 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3804 const int sign = (insn & 0x00800000) ? 1 : -1;
3805 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3806 int32_t x = (psymval->value(object, addend) - address);
3807 // Calculate the relevant G(n-1) value to obtain this stage residual.
3809 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3810 if (residual >= 0x100)
3811 return This::STATUS_OVERFLOW;
3813 // Mask out the value and U bit.
3815 // Set the U bit for non-negative values.
3818 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3820 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3821 return This::STATUS_OKAY;
3824 // R_ARM_LDC_PC_G0: S + A - P
3825 // R_ARM_LDC_PC_G1: S + A - P
3826 // R_ARM_LDC_PC_G2: S + A - P
3827 // R_ARM_LDC_SB_G0: S + A - B(S)
3828 // R_ARM_LDC_SB_G1: S + A - B(S)
3829 // R_ARM_LDC_SB_G2: S + A - B(S)
3830 static inline typename This::Status
3831 arm_grp_ldc(unsigned char* view,
3832 const Sized_relobj<32, big_endian>* object,
3833 const Symbol_value<32>* psymval,
3835 Arm_address address)
3837 gold_assert(group >= 0 && group < 3);
3838 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3839 Valtype* wv = reinterpret_cast<Valtype*>(view);
3840 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3842 const int sign = (insn & 0x00800000) ? 1 : -1;
3843 int32_t addend = ((insn & 0xff) << 2) * sign;
3844 int32_t x = (psymval->value(object, addend) - address);
3845 // Calculate the relevant G(n-1) value to obtain this stage residual.
3847 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3848 if ((residual & 0x3) != 0 || residual >= 0x400)
3849 return This::STATUS_OVERFLOW;
3851 // Mask out the value and U bit.
3853 // Set the U bit for non-negative values.
3856 insn |= (residual >> 2);
3858 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3859 return This::STATUS_OKAY;
3863 // Relocate ARM long branches. This handles relocation types
3864 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3865 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3866 // undefined and we do not use PLT in this relocation. In such a case,
3867 // the branch is converted into an NOP.
3869 template<bool big_endian>
3870 typename Arm_relocate_functions<big_endian>::Status
3871 Arm_relocate_functions<big_endian>::arm_branch_common(
3872 unsigned int r_type,
3873 const Relocate_info<32, big_endian>* relinfo,
3874 unsigned char* view,
3875 const Sized_symbol<32>* gsym,
3876 const Arm_relobj<big_endian>* object,
3878 const Symbol_value<32>* psymval,
3879 Arm_address address,
3880 Arm_address thumb_bit,
3881 bool is_weakly_undefined_without_plt)
3883 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3884 Valtype* wv = reinterpret_cast<Valtype*>(view);
3885 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3887 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3888 && ((val & 0x0f000000UL) == 0x0a000000UL);
3889 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3890 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3891 && ((val & 0x0f000000UL) == 0x0b000000UL);
3892 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3893 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3895 // Check that the instruction is valid.
3896 if (r_type == elfcpp::R_ARM_CALL)
3898 if (!insn_is_uncond_bl && !insn_is_blx)
3899 return This::STATUS_BAD_RELOC;
3901 else if (r_type == elfcpp::R_ARM_JUMP24)
3903 if (!insn_is_b && !insn_is_cond_bl)
3904 return This::STATUS_BAD_RELOC;
3906 else if (r_type == elfcpp::R_ARM_PLT32)
3908 if (!insn_is_any_branch)
3909 return This::STATUS_BAD_RELOC;
3911 else if (r_type == elfcpp::R_ARM_XPC25)
3913 // FIXME: AAELF document IH0044C does not say much about it other
3914 // than it being obsolete.
3915 if (!insn_is_any_branch)
3916 return This::STATUS_BAD_RELOC;
3921 // A branch to an undefined weak symbol is turned into a jump to
3922 // the next instruction unless a PLT entry will be created.
3923 // Do the same for local undefined symbols.
3924 // The jump to the next instruction is optimized as a NOP depending
3925 // on the architecture.
3926 const Target_arm<big_endian>* arm_target =
3927 Target_arm<big_endian>::default_target();
3928 if (is_weakly_undefined_without_plt)
3930 gold_assert(!parameters->options().relocatable());
3931 Valtype cond = val & 0xf0000000U;
3932 if (arm_target->may_use_arm_nop())
3933 val = cond | 0x0320f000;
3935 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3936 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3937 return This::STATUS_OKAY;
3940 Valtype addend = utils::sign_extend<26>(val << 2);
3941 Valtype branch_target = psymval->value(object, addend);
3942 int32_t branch_offset = branch_target - address;
3944 // We need a stub if the branch offset is too large or if we need
3946 bool may_use_blx = arm_target->may_use_blx();
3947 Reloc_stub* stub = NULL;
3949 if (!parameters->options().relocatable()
3950 && (utils::has_overflow<26>(branch_offset)
3951 || ((thumb_bit != 0)
3952 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3954 Valtype unadjusted_branch_target = psymval->value(object, 0);
3956 Stub_type stub_type =
3957 Reloc_stub::stub_type_for_reloc(r_type, address,
3958 unadjusted_branch_target,
3960 if (stub_type != arm_stub_none)
3962 Stub_table<big_endian>* stub_table =
3963 object->stub_table(relinfo->data_shndx);
3964 gold_assert(stub_table != NULL);
3966 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3967 stub = stub_table->find_reloc_stub(stub_key);
3968 gold_assert(stub != NULL);
3969 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3970 branch_target = stub_table->address() + stub->offset() + addend;
3971 branch_offset = branch_target - address;
3972 gold_assert(!utils::has_overflow<26>(branch_offset));
3976 // At this point, if we still need to switch mode, the instruction
3977 // must either be a BLX or a BL that can be converted to a BLX.
3981 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3982 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3985 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3986 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3987 return (utils::has_overflow<26>(branch_offset)
3988 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3991 // Relocate THUMB long branches. This handles relocation types
3992 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3993 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3994 // undefined and we do not use PLT in this relocation. In such a case,
3995 // the branch is converted into an NOP.
3997 template<bool big_endian>
3998 typename Arm_relocate_functions<big_endian>::Status
3999 Arm_relocate_functions<big_endian>::thumb_branch_common(
4000 unsigned int r_type,
4001 const Relocate_info<32, big_endian>* relinfo,
4002 unsigned char* view,
4003 const Sized_symbol<32>* gsym,
4004 const Arm_relobj<big_endian>* object,
4006 const Symbol_value<32>* psymval,
4007 Arm_address address,
4008 Arm_address thumb_bit,
4009 bool is_weakly_undefined_without_plt)
4011 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4012 Valtype* wv = reinterpret_cast<Valtype*>(view);
4013 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4014 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4016 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4018 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4019 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4021 // Check that the instruction is valid.
4022 if (r_type == elfcpp::R_ARM_THM_CALL)
4024 if (!is_bl_insn && !is_blx_insn)
4025 return This::STATUS_BAD_RELOC;
4027 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4029 // This cannot be a BLX.
4031 return This::STATUS_BAD_RELOC;
4033 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4035 // Check for Thumb to Thumb call.
4037 return This::STATUS_BAD_RELOC;
4040 gold_warning(_("%s: Thumb BLX instruction targets "
4041 "thumb function '%s'."),
4042 object->name().c_str(),
4043 (gsym ? gsym->name() : "(local)"));
4044 // Convert BLX to BL.
4045 lower_insn |= 0x1000U;
4051 // A branch to an undefined weak symbol is turned into a jump to
4052 // the next instruction unless a PLT entry will be created.
4053 // The jump to the next instruction is optimized as a NOP.W for
4054 // Thumb-2 enabled architectures.
4055 const Target_arm<big_endian>* arm_target =
4056 Target_arm<big_endian>::default_target();
4057 if (is_weakly_undefined_without_plt)
4059 gold_assert(!parameters->options().relocatable());
4060 if (arm_target->may_use_thumb2_nop())
4062 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4063 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4067 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4068 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4070 return This::STATUS_OKAY;
4073 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4074 Arm_address branch_target = psymval->value(object, addend);
4076 // For BLX, bit 1 of target address comes from bit 1 of base address.
4077 bool may_use_blx = arm_target->may_use_blx();
4078 if (thumb_bit == 0 && may_use_blx)
4079 branch_target = utils::bit_select(branch_target, address, 0x2);
4081 int32_t branch_offset = branch_target - address;
4083 // We need a stub if the branch offset is too large or if we need
4085 bool thumb2 = arm_target->using_thumb2();
4086 if (!parameters->options().relocatable()
4087 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4088 || (thumb2 && utils::has_overflow<25>(branch_offset))
4089 || ((thumb_bit == 0)
4090 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4091 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4093 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4095 Stub_type stub_type =
4096 Reloc_stub::stub_type_for_reloc(r_type, address,
4097 unadjusted_branch_target,
4100 if (stub_type != arm_stub_none)
4102 Stub_table<big_endian>* stub_table =
4103 object->stub_table(relinfo->data_shndx);
4104 gold_assert(stub_table != NULL);
4106 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4107 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4108 gold_assert(stub != NULL);
4109 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4110 branch_target = stub_table->address() + stub->offset() + addend;
4111 if (thumb_bit == 0 && may_use_blx)
4112 branch_target = utils::bit_select(branch_target, address, 0x2);
4113 branch_offset = branch_target - address;
4117 // At this point, if we still need to switch mode, the instruction
4118 // must either be a BLX or a BL that can be converted to a BLX.
4121 gold_assert(may_use_blx
4122 && (r_type == elfcpp::R_ARM_THM_CALL
4123 || r_type == elfcpp::R_ARM_THM_XPC22));
4124 // Make sure this is a BLX.
4125 lower_insn &= ~0x1000U;
4129 // Make sure this is a BL.
4130 lower_insn |= 0x1000U;
4133 // For a BLX instruction, make sure that the relocation is rounded up
4134 // to a word boundary. This follows the semantics of the instruction
4135 // which specifies that bit 1 of the target address will come from bit
4136 // 1 of the base address.
4137 if ((lower_insn & 0x5000U) == 0x4000U)
4138 gold_assert((branch_offset & 3) == 0);
4140 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4141 // We use the Thumb-2 encoding, which is safe even if dealing with
4142 // a Thumb-1 instruction by virtue of our overflow check above. */
4143 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4144 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4146 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4147 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4149 gold_assert(!utils::has_overflow<25>(branch_offset));
4152 ? utils::has_overflow<25>(branch_offset)
4153 : utils::has_overflow<23>(branch_offset))
4154 ? This::STATUS_OVERFLOW
4155 : This::STATUS_OKAY);
4158 // Relocate THUMB-2 long conditional branches.
4159 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4160 // undefined and we do not use PLT in this relocation. In such a case,
4161 // the branch is converted into an NOP.
4163 template<bool big_endian>
4164 typename Arm_relocate_functions<big_endian>::Status
4165 Arm_relocate_functions<big_endian>::thm_jump19(
4166 unsigned char* view,
4167 const Arm_relobj<big_endian>* object,
4168 const Symbol_value<32>* psymval,
4169 Arm_address address,
4170 Arm_address thumb_bit)
4172 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4173 Valtype* wv = reinterpret_cast<Valtype*>(view);
4174 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4175 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4176 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4178 Arm_address branch_target = psymval->value(object, addend);
4179 int32_t branch_offset = branch_target - address;
4181 // ??? Should handle interworking? GCC might someday try to
4182 // use this for tail calls.
4183 // FIXME: We do support thumb entry to PLT yet.
4186 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4187 return This::STATUS_BAD_RELOC;
4190 // Put RELOCATION back into the insn.
4191 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4192 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4194 // Put the relocated value back in the object file:
4195 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4196 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4198 return (utils::has_overflow<21>(branch_offset)
4199 ? This::STATUS_OVERFLOW
4200 : This::STATUS_OKAY);
4203 // Get the GOT section, creating it if necessary.
4205 template<bool big_endian>
4206 Arm_output_data_got<big_endian>*
4207 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4209 if (this->got_ == NULL)
4211 gold_assert(symtab != NULL && layout != NULL);
4213 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4215 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4216 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4217 this->got_, ORDER_DATA, false);
4219 // The old GNU linker creates a .got.plt section. We just
4220 // create another set of data in the .got section. Note that we
4221 // always create a PLT if we create a GOT, although the PLT
4223 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4224 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4225 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4226 this->got_plt_, ORDER_DATA, false);
4228 // The first three entries are reserved.
4229 this->got_plt_->set_current_data_size(3 * 4);
4231 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4232 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4233 Symbol_table::PREDEFINED,
4235 0, 0, elfcpp::STT_OBJECT,
4237 elfcpp::STV_HIDDEN, 0,
4243 // Get the dynamic reloc section, creating it if necessary.
4245 template<bool big_endian>
4246 typename Target_arm<big_endian>::Reloc_section*
4247 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4249 if (this->rel_dyn_ == NULL)
4251 gold_assert(layout != NULL);
4252 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4253 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4254 elfcpp::SHF_ALLOC, this->rel_dyn_,
4255 ORDER_DYNAMIC_RELOCS, false);
4257 return this->rel_dyn_;
4260 // Insn_template methods.
4262 // Return byte size of an instruction template.
4265 Insn_template::size() const
4267 switch (this->type())
4270 case THUMB16_SPECIAL_TYPE:
4281 // Return alignment of an instruction template.
4284 Insn_template::alignment() const
4286 switch (this->type())
4289 case THUMB16_SPECIAL_TYPE:
4300 // Stub_template methods.
4302 Stub_template::Stub_template(
4303 Stub_type type, const Insn_template* insns,
4305 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4306 entry_in_thumb_mode_(false), relocs_()
4310 // Compute byte size and alignment of stub template.
4311 for (size_t i = 0; i < insn_count; i++)
4313 unsigned insn_alignment = insns[i].alignment();
4314 size_t insn_size = insns[i].size();
4315 gold_assert((offset & (insn_alignment - 1)) == 0);
4316 this->alignment_ = std::max(this->alignment_, insn_alignment);
4317 switch (insns[i].type())
4319 case Insn_template::THUMB16_TYPE:
4320 case Insn_template::THUMB16_SPECIAL_TYPE:
4322 this->entry_in_thumb_mode_ = true;
4325 case Insn_template::THUMB32_TYPE:
4326 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4327 this->relocs_.push_back(Reloc(i, offset));
4329 this->entry_in_thumb_mode_ = true;
4332 case Insn_template::ARM_TYPE:
4333 // Handle cases where the target is encoded within the
4335 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4336 this->relocs_.push_back(Reloc(i, offset));
4339 case Insn_template::DATA_TYPE:
4340 // Entry point cannot be data.
4341 gold_assert(i != 0);
4342 this->relocs_.push_back(Reloc(i, offset));
4348 offset += insn_size;
4350 this->size_ = offset;
4355 // Template to implement do_write for a specific target endianness.
4357 template<bool big_endian>
4359 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4361 const Stub_template* stub_template = this->stub_template();
4362 const Insn_template* insns = stub_template->insns();
4364 // FIXME: We do not handle BE8 encoding yet.
4365 unsigned char* pov = view;
4366 for (size_t i = 0; i < stub_template->insn_count(); i++)
4368 switch (insns[i].type())
4370 case Insn_template::THUMB16_TYPE:
4371 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4373 case Insn_template::THUMB16_SPECIAL_TYPE:
4374 elfcpp::Swap<16, big_endian>::writeval(
4376 this->thumb16_special(i));
4378 case Insn_template::THUMB32_TYPE:
4380 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4381 uint32_t lo = insns[i].data() & 0xffff;
4382 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4383 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4386 case Insn_template::ARM_TYPE:
4387 case Insn_template::DATA_TYPE:
4388 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4393 pov += insns[i].size();
4395 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4398 // Reloc_stub::Key methods.
4400 // Dump a Key as a string for debugging.
4403 Reloc_stub::Key::name() const
4405 if (this->r_sym_ == invalid_index)
4407 // Global symbol key name
4408 // <stub-type>:<symbol name>:<addend>.
4409 const std::string sym_name = this->u_.symbol->name();
4410 // We need to print two hex number and two colons. So just add 100 bytes
4411 // to the symbol name size.
4412 size_t len = sym_name.size() + 100;
4413 char* buffer = new char[len];
4414 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4415 sym_name.c_str(), this->addend_);
4416 gold_assert(c > 0 && c < static_cast<int>(len));
4418 return std::string(buffer);
4422 // local symbol key name
4423 // <stub-type>:<object>:<r_sym>:<addend>.
4424 const size_t len = 200;
4426 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4427 this->u_.relobj, this->r_sym_, this->addend_);
4428 gold_assert(c > 0 && c < static_cast<int>(len));
4429 return std::string(buffer);
4433 // Reloc_stub methods.
4435 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4436 // LOCATION to DESTINATION.
4437 // This code is based on the arm_type_of_stub function in
4438 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4442 Reloc_stub::stub_type_for_reloc(
4443 unsigned int r_type,
4444 Arm_address location,
4445 Arm_address destination,
4446 bool target_is_thumb)
4448 Stub_type stub_type = arm_stub_none;
4450 // This is a bit ugly but we want to avoid using a templated class for
4451 // big and little endianities.
4453 bool should_force_pic_veneer;
4456 if (parameters->target().is_big_endian())
4458 const Target_arm<true>* big_endian_target =
4459 Target_arm<true>::default_target();
4460 may_use_blx = big_endian_target->may_use_blx();
4461 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4462 thumb2 = big_endian_target->using_thumb2();
4463 thumb_only = big_endian_target->using_thumb_only();
4467 const Target_arm<false>* little_endian_target =
4468 Target_arm<false>::default_target();
4469 may_use_blx = little_endian_target->may_use_blx();
4470 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4471 thumb2 = little_endian_target->using_thumb2();
4472 thumb_only = little_endian_target->using_thumb_only();
4475 int64_t branch_offset;
4476 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4478 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4479 // base address (instruction address + 4).
4480 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4481 destination = utils::bit_select(destination, location, 0x2);
4482 branch_offset = static_cast<int64_t>(destination) - location;
4484 // Handle cases where:
4485 // - this call goes too far (different Thumb/Thumb2 max
4487 // - it's a Thumb->Arm call and blx is not available, or it's a
4488 // Thumb->Arm branch (not bl). A stub is needed in this case.
4490 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4491 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4493 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4494 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4495 || ((!target_is_thumb)
4496 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4497 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4499 if (target_is_thumb)
4504 stub_type = (parameters->options().shared()
4505 || should_force_pic_veneer)
4508 && (r_type == elfcpp::R_ARM_THM_CALL))
4509 // V5T and above. Stub starts with ARM code, so
4510 // we must be able to switch mode before
4511 // reaching it, which is only possible for 'bl'
4512 // (ie R_ARM_THM_CALL relocation).
4513 ? arm_stub_long_branch_any_thumb_pic
4514 // On V4T, use Thumb code only.
4515 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4519 && (r_type == elfcpp::R_ARM_THM_CALL))
4520 ? arm_stub_long_branch_any_any // V5T and above.
4521 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4525 stub_type = (parameters->options().shared()
4526 || should_force_pic_veneer)
4527 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4528 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4535 // FIXME: We should check that the input section is from an
4536 // object that has interwork enabled.
4538 stub_type = (parameters->options().shared()
4539 || should_force_pic_veneer)
4542 && (r_type == elfcpp::R_ARM_THM_CALL))
4543 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4544 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4548 && (r_type == elfcpp::R_ARM_THM_CALL))
4549 ? arm_stub_long_branch_any_any // V5T and above.
4550 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4552 // Handle v4t short branches.
4553 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4554 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4555 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4556 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4560 else if (r_type == elfcpp::R_ARM_CALL
4561 || r_type == elfcpp::R_ARM_JUMP24
4562 || r_type == elfcpp::R_ARM_PLT32)
4564 branch_offset = static_cast<int64_t>(destination) - location;
4565 if (target_is_thumb)
4569 // FIXME: We should check that the input section is from an
4570 // object that has interwork enabled.
4572 // We have an extra 2-bytes reach because of
4573 // the mode change (bit 24 (H) of BLX encoding).
4574 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4575 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4576 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4577 || (r_type == elfcpp::R_ARM_JUMP24)
4578 || (r_type == elfcpp::R_ARM_PLT32))
4580 stub_type = (parameters->options().shared()
4581 || should_force_pic_veneer)
4584 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4585 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4589 ? arm_stub_long_branch_any_any // V5T and above.
4590 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4596 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4597 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4599 stub_type = (parameters->options().shared()
4600 || should_force_pic_veneer)
4601 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4602 : arm_stub_long_branch_any_any; /// non-PIC.
4610 // Cortex_a8_stub methods.
4612 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4613 // I is the position of the instruction template in the stub template.
4616 Cortex_a8_stub::do_thumb16_special(size_t i)
4618 // The only use of this is to copy condition code from a conditional
4619 // branch being worked around to the corresponding conditional branch in
4621 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4623 uint16_t data = this->stub_template()->insns()[i].data();
4624 gold_assert((data & 0xff00U) == 0xd000U);
4625 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4629 // Stub_factory methods.
4631 Stub_factory::Stub_factory()
4633 // The instruction template sequences are declared as static
4634 // objects and initialized first time the constructor runs.
4636 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4637 // to reach the stub if necessary.
4638 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4640 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4641 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4642 // dcd R_ARM_ABS32(X)
4645 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4647 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4649 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4650 Insn_template::arm_insn(0xe12fff1c), // bx ip
4651 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4652 // dcd R_ARM_ABS32(X)
4655 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4656 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4658 Insn_template::thumb16_insn(0xb401), // push {r0}
4659 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4660 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4661 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4662 Insn_template::thumb16_insn(0x4760), // bx ip
4663 Insn_template::thumb16_insn(0xbf00), // nop
4664 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4665 // dcd R_ARM_ABS32(X)
4668 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4670 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4672 Insn_template::thumb16_insn(0x4778), // bx pc
4673 Insn_template::thumb16_insn(0x46c0), // nop
4674 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4675 Insn_template::arm_insn(0xe12fff1c), // bx ip
4676 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4677 // dcd R_ARM_ABS32(X)
4680 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4682 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4684 Insn_template::thumb16_insn(0x4778), // bx pc
4685 Insn_template::thumb16_insn(0x46c0), // nop
4686 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4687 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4688 // dcd R_ARM_ABS32(X)
4691 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4692 // one, when the destination is close enough.
4693 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4695 Insn_template::thumb16_insn(0x4778), // bx pc
4696 Insn_template::thumb16_insn(0x46c0), // nop
4697 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4700 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4701 // blx to reach the stub if necessary.
4702 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4704 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4705 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4706 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4707 // dcd R_ARM_REL32(X-4)
4710 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4711 // blx to reach the stub if necessary. We can not add into pc;
4712 // it is not guaranteed to mode switch (different in ARMv6 and
4714 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4716 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4717 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4718 Insn_template::arm_insn(0xe12fff1c), // bx ip
4719 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4720 // dcd R_ARM_REL32(X)
4723 // V4T ARM -> ARM long branch stub, PIC.
4724 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4726 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4727 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4728 Insn_template::arm_insn(0xe12fff1c), // bx ip
4729 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4730 // dcd R_ARM_REL32(X)
4733 // V4T Thumb -> ARM long branch stub, PIC.
4734 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4736 Insn_template::thumb16_insn(0x4778), // bx pc
4737 Insn_template::thumb16_insn(0x46c0), // nop
4738 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4739 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4740 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4741 // dcd R_ARM_REL32(X)
4744 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4746 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4748 Insn_template::thumb16_insn(0xb401), // push {r0}
4749 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4750 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4751 Insn_template::thumb16_insn(0x4484), // add ip, r0
4752 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4753 Insn_template::thumb16_insn(0x4760), // bx ip
4754 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4755 // dcd R_ARM_REL32(X)
4758 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4760 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4762 Insn_template::thumb16_insn(0x4778), // bx pc
4763 Insn_template::thumb16_insn(0x46c0), // nop
4764 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4765 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4766 Insn_template::arm_insn(0xe12fff1c), // bx ip
4767 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4768 // dcd R_ARM_REL32(X)
4771 // Cortex-A8 erratum-workaround stubs.
4773 // Stub used for conditional branches (which may be beyond +/-1MB away,
4774 // so we can't use a conditional branch to reach this stub).
4781 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4783 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4784 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4785 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4789 // Stub used for b.w and bl.w instructions.
4791 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4793 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4796 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4798 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4801 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4802 // instruction (which switches to ARM mode) to point to this stub. Jump to
4803 // the real destination using an ARM-mode branch.
4804 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4806 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4809 // Stub used to provide an interworking for R_ARM_V4BX relocation
4810 // (bx r[n] instruction).
4811 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4813 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4814 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4815 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4818 // Fill in the stub template look-up table. Stub templates are constructed
4819 // per instance of Stub_factory for fast look-up without locking
4820 // in a thread-enabled environment.
4822 this->stub_templates_[arm_stub_none] =
4823 new Stub_template(arm_stub_none, NULL, 0);
4825 #define DEF_STUB(x) \
4829 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4830 Stub_type type = arm_stub_##x; \
4831 this->stub_templates_[type] = \
4832 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4840 // Stub_table methods.
4842 // Remove all Cortex-A8 stub.
4844 template<bool big_endian>
4846 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4848 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4849 p != this->cortex_a8_stubs_.end();
4852 this->cortex_a8_stubs_.clear();
4855 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4857 template<bool big_endian>
4859 Stub_table<big_endian>::relocate_stub(
4861 const Relocate_info<32, big_endian>* relinfo,
4862 Target_arm<big_endian>* arm_target,
4863 Output_section* output_section,
4864 unsigned char* view,
4865 Arm_address address,
4866 section_size_type view_size)
4868 const Stub_template* stub_template = stub->stub_template();
4869 if (stub_template->reloc_count() != 0)
4871 // Adjust view to cover the stub only.
4872 section_size_type offset = stub->offset();
4873 section_size_type stub_size = stub_template->size();
4874 gold_assert(offset + stub_size <= view_size);
4876 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4877 address + offset, stub_size);
4881 // Relocate all stubs in this stub table.
4883 template<bool big_endian>
4885 Stub_table<big_endian>::relocate_stubs(
4886 const Relocate_info<32, big_endian>* relinfo,
4887 Target_arm<big_endian>* arm_target,
4888 Output_section* output_section,
4889 unsigned char* view,
4890 Arm_address address,
4891 section_size_type view_size)
4893 // If we are passed a view bigger than the stub table's. we need to
4895 gold_assert(address == this->address()
4897 == static_cast<section_size_type>(this->data_size())));
4899 // Relocate all relocation stubs.
4900 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4901 p != this->reloc_stubs_.end();
4903 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4904 address, view_size);
4906 // Relocate all Cortex-A8 stubs.
4907 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4908 p != this->cortex_a8_stubs_.end();
4910 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4911 address, view_size);
4913 // Relocate all ARM V4BX stubs.
4914 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4915 p != this->arm_v4bx_stubs_.end();
4919 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4920 address, view_size);
4924 // Write out the stubs to file.
4926 template<bool big_endian>
4928 Stub_table<big_endian>::do_write(Output_file* of)
4930 off_t offset = this->offset();
4931 const section_size_type oview_size =
4932 convert_to_section_size_type(this->data_size());
4933 unsigned char* const oview = of->get_output_view(offset, oview_size);
4935 // Write relocation stubs.
4936 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4937 p != this->reloc_stubs_.end();
4940 Reloc_stub* stub = p->second;
4941 Arm_address address = this->address() + stub->offset();
4943 == align_address(address,
4944 stub->stub_template()->alignment()));
4945 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4949 // Write Cortex-A8 stubs.
4950 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4951 p != this->cortex_a8_stubs_.end();
4954 Cortex_a8_stub* stub = p->second;
4955 Arm_address address = this->address() + stub->offset();
4957 == align_address(address,
4958 stub->stub_template()->alignment()));
4959 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4963 // Write ARM V4BX relocation stubs.
4964 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4965 p != this->arm_v4bx_stubs_.end();
4971 Arm_address address = this->address() + (*p)->offset();
4973 == align_address(address,
4974 (*p)->stub_template()->alignment()));
4975 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4979 of->write_output_view(this->offset(), oview_size, oview);
4982 // Update the data size and address alignment of the stub table at the end
4983 // of a relaxation pass. Return true if either the data size or the
4984 // alignment changed in this relaxation pass.
4986 template<bool big_endian>
4988 Stub_table<big_endian>::update_data_size_and_addralign()
4990 // Go over all stubs in table to compute data size and address alignment.
4991 off_t size = this->reloc_stubs_size_;
4992 unsigned addralign = this->reloc_stubs_addralign_;
4994 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4995 p != this->cortex_a8_stubs_.end();
4998 const Stub_template* stub_template = p->second->stub_template();
4999 addralign = std::max(addralign, stub_template->alignment());
5000 size = (align_address(size, stub_template->alignment())
5001 + stub_template->size());
5004 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5005 p != this->arm_v4bx_stubs_.end();
5011 const Stub_template* stub_template = (*p)->stub_template();
5012 addralign = std::max(addralign, stub_template->alignment());
5013 size = (align_address(size, stub_template->alignment())
5014 + stub_template->size());
5017 // Check if either data size or alignment changed in this pass.
5018 // Update prev_data_size_ and prev_addralign_. These will be used
5019 // as the current data size and address alignment for the next pass.
5020 bool changed = size != this->prev_data_size_;
5021 this->prev_data_size_ = size;
5023 if (addralign != this->prev_addralign_)
5025 this->prev_addralign_ = addralign;
5030 // Finalize the stubs. This sets the offsets of the stubs within the stub
5031 // table. It also marks all input sections needing Cortex-A8 workaround.
5033 template<bool big_endian>
5035 Stub_table<big_endian>::finalize_stubs()
5037 off_t off = this->reloc_stubs_size_;
5038 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5039 p != this->cortex_a8_stubs_.end();
5042 Cortex_a8_stub* stub = p->second;
5043 const Stub_template* stub_template = stub->stub_template();
5044 uint64_t stub_addralign = stub_template->alignment();
5045 off = align_address(off, stub_addralign);
5046 stub->set_offset(off);
5047 off += stub_template->size();
5049 // Mark input section so that we can determine later if a code section
5050 // needs the Cortex-A8 workaround quickly.
5051 Arm_relobj<big_endian>* arm_relobj =
5052 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5053 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5056 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5057 p != this->arm_v4bx_stubs_.end();
5063 const Stub_template* stub_template = (*p)->stub_template();
5064 uint64_t stub_addralign = stub_template->alignment();
5065 off = align_address(off, stub_addralign);
5066 (*p)->set_offset(off);
5067 off += stub_template->size();
5070 gold_assert(off <= this->prev_data_size_);
5073 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5074 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5075 // of the address range seen by the linker.
5077 template<bool big_endian>
5079 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5080 Target_arm<big_endian>* arm_target,
5081 unsigned char* view,
5082 Arm_address view_address,
5083 section_size_type view_size)
5085 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5086 for (Cortex_a8_stub_list::const_iterator p =
5087 this->cortex_a8_stubs_.lower_bound(view_address);
5088 ((p != this->cortex_a8_stubs_.end())
5089 && (p->first < (view_address + view_size)));
5092 // We do not store the THUMB bit in the LSB of either the branch address
5093 // or the stub offset. There is no need to strip the LSB.
5094 Arm_address branch_address = p->first;
5095 const Cortex_a8_stub* stub = p->second;
5096 Arm_address stub_address = this->address() + stub->offset();
5098 // Offset of the branch instruction relative to this view.
5099 section_size_type offset =
5100 convert_to_section_size_type(branch_address - view_address);
5101 gold_assert((offset + 4) <= view_size);
5103 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5104 view + offset, branch_address);
5108 // Arm_input_section methods.
5110 // Initialize an Arm_input_section.
5112 template<bool big_endian>
5114 Arm_input_section<big_endian>::init()
5116 Relobj* relobj = this->relobj();
5117 unsigned int shndx = this->shndx();
5119 // We have to cache original size, alignment and contents to avoid locking
5120 // the original file.
5121 this->original_addralign_ =
5122 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5124 // This is not efficient but we expect only a small number of relaxed
5125 // input sections for stubs.
5126 section_size_type section_size;
5127 const unsigned char* section_contents =
5128 relobj->section_contents(shndx, §ion_size, false);
5129 this->original_size_ =
5130 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5132 gold_assert(this->original_contents_ == NULL);
5133 this->original_contents_ = new unsigned char[section_size];
5134 memcpy(this->original_contents_, section_contents, section_size);
5136 // We want to make this look like the original input section after
5137 // output sections are finalized.
5138 Output_section* os = relobj->output_section(shndx);
5139 off_t offset = relobj->output_section_offset(shndx);
5140 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5141 this->set_address(os->address() + offset);
5142 this->set_file_offset(os->offset() + offset);
5144 this->set_current_data_size(this->original_size_);
5145 this->finalize_data_size();
5148 template<bool big_endian>
5150 Arm_input_section<big_endian>::do_write(Output_file* of)
5152 // We have to write out the original section content.
5153 gold_assert(this->original_contents_ != NULL);
5154 of->write(this->offset(), this->original_contents_,
5155 this->original_size_);
5157 // If this owns a stub table and it is not empty, write it.
5158 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5159 this->stub_table_->write(of);
5162 // Finalize data size.
5164 template<bool big_endian>
5166 Arm_input_section<big_endian>::set_final_data_size()
5168 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5170 if (this->is_stub_table_owner())
5172 this->stub_table_->finalize_data_size();
5173 off = align_address(off, this->stub_table_->addralign());
5174 off += this->stub_table_->data_size();
5176 this->set_data_size(off);
5179 // Reset address and file offset.
5181 template<bool big_endian>
5183 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5185 // Size of the original input section contents.
5186 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5188 // If this is a stub table owner, account for the stub table size.
5189 if (this->is_stub_table_owner())
5191 Stub_table<big_endian>* stub_table = this->stub_table_;
5193 // Reset the stub table's address and file offset. The
5194 // current data size for child will be updated after that.
5195 stub_table_->reset_address_and_file_offset();
5196 off = align_address(off, stub_table_->addralign());
5197 off += stub_table->current_data_size();
5200 this->set_current_data_size(off);
5203 // Arm_exidx_cantunwind methods.
5205 // Write this to Output file OF for a fixed endianness.
5207 template<bool big_endian>
5209 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5211 off_t offset = this->offset();
5212 const section_size_type oview_size = 8;
5213 unsigned char* const oview = of->get_output_view(offset, oview_size);
5215 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5216 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5218 Output_section* os = this->relobj_->output_section(this->shndx_);
5219 gold_assert(os != NULL);
5221 Arm_relobj<big_endian>* arm_relobj =
5222 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5223 Arm_address output_offset =
5224 arm_relobj->get_output_section_offset(this->shndx_);
5225 Arm_address section_start;
5226 section_size_type section_size;
5228 // Find out the end of the text section referred by this.
5229 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5231 section_start = os->address() + output_offset;
5232 const Arm_exidx_input_section* exidx_input_section =
5233 arm_relobj->exidx_input_section_by_link(this->shndx_);
5234 gold_assert(exidx_input_section != NULL);
5236 convert_to_section_size_type(exidx_input_section->text_size());
5240 // Currently this only happens for a relaxed section.
5241 const Output_relaxed_input_section* poris =
5242 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5243 gold_assert(poris != NULL);
5244 section_start = poris->address();
5245 section_size = convert_to_section_size_type(poris->data_size());
5248 // We always append this to the end of an EXIDX section.
5249 Arm_address output_address = section_start + section_size;
5251 // Write out the entry. The first word either points to the beginning
5252 // or after the end of a text section. The second word is the special
5253 // EXIDX_CANTUNWIND value.
5254 uint32_t prel31_offset = output_address - this->address();
5255 if (utils::has_overflow<31>(offset))
5256 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5257 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5258 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5260 of->write_output_view(this->offset(), oview_size, oview);
5263 // Arm_exidx_merged_section methods.
5265 // Constructor for Arm_exidx_merged_section.
5266 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5267 // SECTION_OFFSET_MAP points to a section offset map describing how
5268 // parts of the input section are mapped to output. DELETED_BYTES is
5269 // the number of bytes deleted from the EXIDX input section.
5271 Arm_exidx_merged_section::Arm_exidx_merged_section(
5272 const Arm_exidx_input_section& exidx_input_section,
5273 const Arm_exidx_section_offset_map& section_offset_map,
5274 uint32_t deleted_bytes)
5275 : Output_relaxed_input_section(exidx_input_section.relobj(),
5276 exidx_input_section.shndx(),
5277 exidx_input_section.addralign()),
5278 exidx_input_section_(exidx_input_section),
5279 section_offset_map_(section_offset_map)
5281 // If we retain or discard the whole EXIDX input section, we would
5283 gold_assert(deleted_bytes != 0
5284 && deleted_bytes != this->exidx_input_section_.size());
5286 // Fix size here so that we do not need to implement set_final_data_size.
5287 uint32_t size = exidx_input_section.size() - deleted_bytes;
5288 this->set_data_size(size);
5289 this->fix_data_size();
5291 // Allocate buffer for section contents and build contents.
5292 this->section_contents_ = new unsigned char[size];
5295 // Build the contents of a merged EXIDX output section.
5298 Arm_exidx_merged_section::build_contents(
5299 const unsigned char* original_contents,
5300 section_size_type original_size)
5302 // Go over spans of input offsets and write only those that are not
5304 section_offset_type in_start = 0;
5305 section_offset_type out_start = 0;
5306 section_offset_type in_max =
5307 convert_types<section_offset_type>(original_size);
5308 section_offset_type out_max =
5309 convert_types<section_offset_type>(this->data_size());
5310 for (Arm_exidx_section_offset_map::const_iterator p =
5311 this->section_offset_map_.begin();
5312 p != this->section_offset_map_.end();
5315 section_offset_type in_end = p->first;
5316 gold_assert(in_end >= in_start);
5317 section_offset_type out_end = p->second;
5318 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5321 size_t out_chunk_size =
5322 convert_types<size_t>(out_end - out_start + 1);
5324 gold_assert(out_chunk_size == in_chunk_size
5325 && in_end < in_max && out_end < out_max);
5327 memcpy(this->section_contents_ + out_start,
5328 original_contents + in_start,
5330 out_start += out_chunk_size;
5332 in_start += in_chunk_size;
5336 // Given an input OBJECT, an input section index SHNDX within that
5337 // object, and an OFFSET relative to the start of that input
5338 // section, return whether or not the corresponding offset within
5339 // the output section is known. If this function returns true, it
5340 // sets *POUTPUT to the output offset. The value -1 indicates that
5341 // this input offset is being discarded.
5344 Arm_exidx_merged_section::do_output_offset(
5345 const Relobj* relobj,
5347 section_offset_type offset,
5348 section_offset_type* poutput) const
5350 // We only handle offsets for the original EXIDX input section.
5351 if (relobj != this->exidx_input_section_.relobj()
5352 || shndx != this->exidx_input_section_.shndx())
5355 section_offset_type section_size =
5356 convert_types<section_offset_type>(this->exidx_input_section_.size());
5357 if (offset < 0 || offset >= section_size)
5358 // Input offset is out of valid range.
5362 // We need to look up the section offset map to determine the output
5363 // offset. Find the reference point in map that is first offset
5364 // bigger than or equal to this offset.
5365 Arm_exidx_section_offset_map::const_iterator p =
5366 this->section_offset_map_.lower_bound(offset);
5368 // The section offset maps are build such that this should not happen if
5369 // input offset is in the valid range.
5370 gold_assert(p != this->section_offset_map_.end());
5372 // We need to check if this is dropped.
5373 section_offset_type ref = p->first;
5374 section_offset_type mapped_ref = p->second;
5376 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5377 // Offset is present in output.
5378 *poutput = mapped_ref + (offset - ref);
5380 // Offset is discarded owing to EXIDX entry merging.
5387 // Write this to output file OF.
5390 Arm_exidx_merged_section::do_write(Output_file* of)
5392 off_t offset = this->offset();
5393 const section_size_type oview_size = this->data_size();
5394 unsigned char* const oview = of->get_output_view(offset, oview_size);
5396 Output_section* os = this->relobj()->output_section(this->shndx());
5397 gold_assert(os != NULL);
5399 memcpy(oview, this->section_contents_, oview_size);
5400 of->write_output_view(this->offset(), oview_size, oview);
5403 // Arm_exidx_fixup methods.
5405 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5406 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5407 // points to the end of the last seen EXIDX section.
5410 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5412 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5413 && this->last_input_section_ != NULL)
5415 Relobj* relobj = this->last_input_section_->relobj();
5416 unsigned int text_shndx = this->last_input_section_->link();
5417 Arm_exidx_cantunwind* cantunwind =
5418 new Arm_exidx_cantunwind(relobj, text_shndx);
5419 this->exidx_output_section_->add_output_section_data(cantunwind);
5420 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5424 // Process an EXIDX section entry in input. Return whether this entry
5425 // can be deleted in the output. SECOND_WORD in the second word of the
5429 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5432 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5434 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5435 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5436 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5438 else if ((second_word & 0x80000000) != 0)
5440 // Inlined unwinding data. Merge if equal to previous.
5441 delete_entry = (merge_exidx_entries_
5442 && this->last_unwind_type_ == UT_INLINED_ENTRY
5443 && this->last_inlined_entry_ == second_word);
5444 this->last_unwind_type_ = UT_INLINED_ENTRY;
5445 this->last_inlined_entry_ = second_word;
5449 // Normal table entry. In theory we could merge these too,
5450 // but duplicate entries are likely to be much less common.
5451 delete_entry = false;
5452 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5454 return delete_entry;
5457 // Update the current section offset map during EXIDX section fix-up.
5458 // If there is no map, create one. INPUT_OFFSET is the offset of a
5459 // reference point, DELETED_BYTES is the number of deleted by in the
5460 // section so far. If DELETE_ENTRY is true, the reference point and
5461 // all offsets after the previous reference point are discarded.
5464 Arm_exidx_fixup::update_offset_map(
5465 section_offset_type input_offset,
5466 section_size_type deleted_bytes,
5469 if (this->section_offset_map_ == NULL)
5470 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5471 section_offset_type output_offset;
5473 output_offset = Arm_exidx_input_section::invalid_offset;
5475 output_offset = input_offset - deleted_bytes;
5476 (*this->section_offset_map_)[input_offset] = output_offset;
5479 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5480 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5481 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5482 // If some entries are merged, also store a pointer to a newly created
5483 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5484 // owns the map and is responsible for releasing it after use.
5486 template<bool big_endian>
5488 Arm_exidx_fixup::process_exidx_section(
5489 const Arm_exidx_input_section* exidx_input_section,
5490 const unsigned char* section_contents,
5491 section_size_type section_size,
5492 Arm_exidx_section_offset_map** psection_offset_map)
5494 Relobj* relobj = exidx_input_section->relobj();
5495 unsigned shndx = exidx_input_section->shndx();
5497 if ((section_size % 8) != 0)
5499 // Something is wrong with this section. Better not touch it.
5500 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5501 relobj->name().c_str(), shndx);
5502 this->last_input_section_ = exidx_input_section;
5503 this->last_unwind_type_ = UT_NONE;
5507 uint32_t deleted_bytes = 0;
5508 bool prev_delete_entry = false;
5509 gold_assert(this->section_offset_map_ == NULL);
5511 for (section_size_type i = 0; i < section_size; i += 8)
5513 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5515 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5516 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5518 bool delete_entry = this->process_exidx_entry(second_word);
5520 // Entry deletion causes changes in output offsets. We use a std::map
5521 // to record these. And entry (x, y) means input offset x
5522 // is mapped to output offset y. If y is invalid_offset, then x is
5523 // dropped in the output. Because of the way std::map::lower_bound
5524 // works, we record the last offset in a region w.r.t to keeping or
5525 // dropping. If there is no entry (x0, y0) for an input offset x0,
5526 // the output offset y0 of it is determined by the output offset y1 of
5527 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5528 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5530 if (delete_entry != prev_delete_entry && i != 0)
5531 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5533 // Update total deleted bytes for this entry.
5537 prev_delete_entry = delete_entry;
5540 // If section offset map is not NULL, make an entry for the end of
5542 if (this->section_offset_map_ != NULL)
5543 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5545 *psection_offset_map = this->section_offset_map_;
5546 this->section_offset_map_ = NULL;
5547 this->last_input_section_ = exidx_input_section;
5549 // Set the first output text section so that we can link the EXIDX output
5550 // section to it. Ignore any EXIDX input section that is completely merged.
5551 if (this->first_output_text_section_ == NULL
5552 && deleted_bytes != section_size)
5554 unsigned int link = exidx_input_section->link();
5555 Output_section* os = relobj->output_section(link);
5556 gold_assert(os != NULL);
5557 this->first_output_text_section_ = os;
5560 return deleted_bytes;
5563 // Arm_output_section methods.
5565 // Create a stub group for input sections from BEGIN to END. OWNER
5566 // points to the input section to be the owner a new stub table.
5568 template<bool big_endian>
5570 Arm_output_section<big_endian>::create_stub_group(
5571 Input_section_list::const_iterator begin,
5572 Input_section_list::const_iterator end,
5573 Input_section_list::const_iterator owner,
5574 Target_arm<big_endian>* target,
5575 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5578 // We use a different kind of relaxed section in an EXIDX section.
5579 // The static casting from Output_relaxed_input_section to
5580 // Arm_input_section is invalid in an EXIDX section. We are okay
5581 // because we should not be calling this for an EXIDX section.
5582 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5584 // Currently we convert ordinary input sections into relaxed sections only
5585 // at this point but we may want to support creating relaxed input section
5586 // very early. So we check here to see if owner is already a relaxed
5589 Arm_input_section<big_endian>* arm_input_section;
5590 if (owner->is_relaxed_input_section())
5593 Arm_input_section<big_endian>::as_arm_input_section(
5594 owner->relaxed_input_section());
5598 gold_assert(owner->is_input_section());
5599 // Create a new relaxed input section. We need to lock the original
5601 Task_lock_obj<Object> tl(task, owner->relobj());
5603 target->new_arm_input_section(owner->relobj(), owner->shndx());
5604 new_relaxed_sections->push_back(arm_input_section);
5607 // Create a stub table.
5608 Stub_table<big_endian>* stub_table =
5609 target->new_stub_table(arm_input_section);
5611 arm_input_section->set_stub_table(stub_table);
5613 Input_section_list::const_iterator p = begin;
5614 Input_section_list::const_iterator prev_p;
5616 // Look for input sections or relaxed input sections in [begin ... end].
5619 if (p->is_input_section() || p->is_relaxed_input_section())
5621 // The stub table information for input sections live
5622 // in their objects.
5623 Arm_relobj<big_endian>* arm_relobj =
5624 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5625 arm_relobj->set_stub_table(p->shndx(), stub_table);
5629 while (prev_p != end);
5632 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5633 // of stub groups. We grow a stub group by adding input section until the
5634 // size is just below GROUP_SIZE. The last input section will be converted
5635 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5636 // input section after the stub table, effectively double the group size.
5638 // This is similar to the group_sections() function in elf32-arm.c but is
5639 // implemented differently.
5641 template<bool big_endian>
5643 Arm_output_section<big_endian>::group_sections(
5644 section_size_type group_size,
5645 bool stubs_always_after_branch,
5646 Target_arm<big_endian>* target,
5649 // We only care about sections containing code.
5650 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5653 // States for grouping.
5656 // No group is being built.
5658 // A group is being built but the stub table is not found yet.
5659 // We keep group a stub group until the size is just under GROUP_SIZE.
5660 // The last input section in the group will be used as the stub table.
5661 FINDING_STUB_SECTION,
5662 // A group is being built and we have already found a stub table.
5663 // We enter this state to grow a stub group by adding input section
5664 // after the stub table. This effectively doubles the group size.
5668 // Any newly created relaxed sections are stored here.
5669 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5671 State state = NO_GROUP;
5672 section_size_type off = 0;
5673 section_size_type group_begin_offset = 0;
5674 section_size_type group_end_offset = 0;
5675 section_size_type stub_table_end_offset = 0;
5676 Input_section_list::const_iterator group_begin =
5677 this->input_sections().end();
5678 Input_section_list::const_iterator stub_table =
5679 this->input_sections().end();
5680 Input_section_list::const_iterator group_end = this->input_sections().end();
5681 for (Input_section_list::const_iterator p = this->input_sections().begin();
5682 p != this->input_sections().end();
5685 section_size_type section_begin_offset =
5686 align_address(off, p->addralign());
5687 section_size_type section_end_offset =
5688 section_begin_offset + p->data_size();
5690 // Check to see if we should group the previously seen sections.
5696 case FINDING_STUB_SECTION:
5697 // Adding this section makes the group larger than GROUP_SIZE.
5698 if (section_end_offset - group_begin_offset >= group_size)
5700 if (stubs_always_after_branch)
5702 gold_assert(group_end != this->input_sections().end());
5703 this->create_stub_group(group_begin, group_end, group_end,
5704 target, &new_relaxed_sections,
5710 // But wait, there's more! Input sections up to
5711 // stub_group_size bytes after the stub table can be
5712 // handled by it too.
5713 state = HAS_STUB_SECTION;
5714 stub_table = group_end;
5715 stub_table_end_offset = group_end_offset;
5720 case HAS_STUB_SECTION:
5721 // Adding this section makes the post stub-section group larger
5723 if (section_end_offset - stub_table_end_offset >= group_size)
5725 gold_assert(group_end != this->input_sections().end());
5726 this->create_stub_group(group_begin, group_end, stub_table,
5727 target, &new_relaxed_sections, task);
5736 // If we see an input section and currently there is no group, start
5737 // a new one. Skip any empty sections. We look at the data size
5738 // instead of calling p->relobj()->section_size() to avoid locking.
5739 if ((p->is_input_section() || p->is_relaxed_input_section())
5740 && (p->data_size() != 0))
5742 if (state == NO_GROUP)
5744 state = FINDING_STUB_SECTION;
5746 group_begin_offset = section_begin_offset;
5749 // Keep track of the last input section seen.
5751 group_end_offset = section_end_offset;
5754 off = section_end_offset;
5757 // Create a stub group for any ungrouped sections.
5758 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5760 gold_assert(group_end != this->input_sections().end());
5761 this->create_stub_group(group_begin, group_end,
5762 (state == FINDING_STUB_SECTION
5765 target, &new_relaxed_sections, task);
5768 // Convert input section into relaxed input section in a batch.
5769 if (!new_relaxed_sections.empty())
5770 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5772 // Update the section offsets
5773 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5775 Arm_relobj<big_endian>* arm_relobj =
5776 Arm_relobj<big_endian>::as_arm_relobj(
5777 new_relaxed_sections[i]->relobj());
5778 unsigned int shndx = new_relaxed_sections[i]->shndx();
5779 // Tell Arm_relobj that this input section is converted.
5780 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5784 // Append non empty text sections in this to LIST in ascending
5785 // order of their position in this.
5787 template<bool big_endian>
5789 Arm_output_section<big_endian>::append_text_sections_to_list(
5790 Text_section_list* list)
5792 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5794 for (Input_section_list::const_iterator p = this->input_sections().begin();
5795 p != this->input_sections().end();
5798 // We only care about plain or relaxed input sections. We also
5799 // ignore any merged sections.
5800 if ((p->is_input_section() || p->is_relaxed_input_section())
5801 && p->data_size() != 0)
5802 list->push_back(Text_section_list::value_type(p->relobj(),
5807 template<bool big_endian>
5809 Arm_output_section<big_endian>::fix_exidx_coverage(
5811 const Text_section_list& sorted_text_sections,
5812 Symbol_table* symtab,
5813 bool merge_exidx_entries,
5816 // We should only do this for the EXIDX output section.
5817 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5819 // We don't want the relaxation loop to undo these changes, so we discard
5820 // the current saved states and take another one after the fix-up.
5821 this->discard_states();
5823 // Remove all input sections.
5824 uint64_t address = this->address();
5825 typedef std::list<Output_section::Input_section> Input_section_list;
5826 Input_section_list input_sections;
5827 this->reset_address_and_file_offset();
5828 this->get_input_sections(address, std::string(""), &input_sections);
5830 if (!this->input_sections().empty())
5831 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5833 // Go through all the known input sections and record them.
5834 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5835 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5836 Section_id_hash> Text_to_exidx_map;
5837 Text_to_exidx_map text_to_exidx_map;
5838 for (Input_section_list::const_iterator p = input_sections.begin();
5839 p != input_sections.end();
5842 // This should never happen. At this point, we should only see
5843 // plain EXIDX input sections.
5844 gold_assert(!p->is_relaxed_input_section());
5845 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5848 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5850 // Go over the sorted text sections.
5851 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5852 Section_id_set processed_input_sections;
5853 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5854 p != sorted_text_sections.end();
5857 Relobj* relobj = p->first;
5858 unsigned int shndx = p->second;
5860 Arm_relobj<big_endian>* arm_relobj =
5861 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5862 const Arm_exidx_input_section* exidx_input_section =
5863 arm_relobj->exidx_input_section_by_link(shndx);
5865 // If this text section has no EXIDX section or if the EXIDX section
5866 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5867 // of the last seen EXIDX section.
5868 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5870 exidx_fixup.add_exidx_cantunwind_as_needed();
5874 Relobj* exidx_relobj = exidx_input_section->relobj();
5875 unsigned int exidx_shndx = exidx_input_section->shndx();
5876 Section_id sid(exidx_relobj, exidx_shndx);
5877 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5878 if (iter == text_to_exidx_map.end())
5880 // This is odd. We have not seen this EXIDX input section before.
5881 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5882 // issue a warning instead. We assume the user knows what he
5883 // or she is doing. Otherwise, this is an error.
5884 if (layout->script_options()->saw_sections_clause())
5885 gold_warning(_("unwinding may not work because EXIDX input section"
5886 " %u of %s is not in EXIDX output section"),
5887 exidx_shndx, exidx_relobj->name().c_str());
5889 gold_error(_("unwinding may not work because EXIDX input section"
5890 " %u of %s is not in EXIDX output section"),
5891 exidx_shndx, exidx_relobj->name().c_str());
5893 exidx_fixup.add_exidx_cantunwind_as_needed();
5897 // We need to access the contents of the EXIDX section, lock the
5899 Task_lock_obj<Object> tl(task, exidx_relobj);
5900 section_size_type exidx_size;
5901 const unsigned char* exidx_contents =
5902 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5904 // Fix up coverage and append input section to output data list.
5905 Arm_exidx_section_offset_map* section_offset_map = NULL;
5906 uint32_t deleted_bytes =
5907 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5910 §ion_offset_map);
5912 if (deleted_bytes == exidx_input_section->size())
5914 // The whole EXIDX section got merged. Remove it from output.
5915 gold_assert(section_offset_map == NULL);
5916 exidx_relobj->set_output_section(exidx_shndx, NULL);
5918 // All local symbols defined in this input section will be dropped.
5919 // We need to adjust output local symbol count.
5920 arm_relobj->set_output_local_symbol_count_needs_update();
5922 else if (deleted_bytes > 0)
5924 // Some entries are merged. We need to convert this EXIDX input
5925 // section into a relaxed section.
5926 gold_assert(section_offset_map != NULL);
5928 Arm_exidx_merged_section* merged_section =
5929 new Arm_exidx_merged_section(*exidx_input_section,
5930 *section_offset_map, deleted_bytes);
5931 merged_section->build_contents(exidx_contents, exidx_size);
5933 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5934 this->add_relaxed_input_section(layout, merged_section, secname);
5935 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5937 // All local symbols defined in discarded portions of this input
5938 // section will be dropped. We need to adjust output local symbol
5940 arm_relobj->set_output_local_symbol_count_needs_update();
5944 // Just add back the EXIDX input section.
5945 gold_assert(section_offset_map == NULL);
5946 const Output_section::Input_section* pis = iter->second;
5947 gold_assert(pis->is_input_section());
5948 this->add_script_input_section(*pis);
5951 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5954 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5955 exidx_fixup.add_exidx_cantunwind_as_needed();
5957 // Remove any known EXIDX input sections that are not processed.
5958 for (Input_section_list::const_iterator p = input_sections.begin();
5959 p != input_sections.end();
5962 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5963 == processed_input_sections.end())
5965 // We discard a known EXIDX section because its linked
5966 // text section has been folded by ICF. We also discard an
5967 // EXIDX section with error, the output does not matter in this
5968 // case. We do this to avoid triggering asserts.
5969 Arm_relobj<big_endian>* arm_relobj =
5970 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5971 const Arm_exidx_input_section* exidx_input_section =
5972 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5973 gold_assert(exidx_input_section != NULL);
5974 if (!exidx_input_section->has_errors())
5976 unsigned int text_shndx = exidx_input_section->link();
5977 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5980 // Remove this from link. We also need to recount the
5982 p->relobj()->set_output_section(p->shndx(), NULL);
5983 arm_relobj->set_output_local_symbol_count_needs_update();
5987 // Link exidx output section to the first seen output section and
5988 // set correct entry size.
5989 this->set_link_section(exidx_fixup.first_output_text_section());
5990 this->set_entsize(8);
5992 // Make changes permanent.
5993 this->save_states();
5994 this->set_section_offsets_need_adjustment();
5997 // Link EXIDX output sections to text output sections.
5999 template<bool big_endian>
6001 Arm_output_section<big_endian>::set_exidx_section_link()
6003 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6004 if (!this->input_sections().empty())
6006 Input_section_list::const_iterator p = this->input_sections().begin();
6007 Arm_relobj<big_endian>* arm_relobj =
6008 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6009 unsigned exidx_shndx = p->shndx();
6010 const Arm_exidx_input_section* exidx_input_section =
6011 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6012 gold_assert(exidx_input_section != NULL);
6013 unsigned int text_shndx = exidx_input_section->link();
6014 Output_section* os = arm_relobj->output_section(text_shndx);
6015 this->set_link_section(os);
6019 // Arm_relobj methods.
6021 // Determine if an input section is scannable for stub processing. SHDR is
6022 // the header of the section and SHNDX is the section index. OS is the output
6023 // section for the input section and SYMTAB is the global symbol table used to
6024 // look up ICF information.
6026 template<bool big_endian>
6028 Arm_relobj<big_endian>::section_is_scannable(
6029 const elfcpp::Shdr<32, big_endian>& shdr,
6031 const Output_section* os,
6032 const Symbol_table* symtab)
6034 // Skip any empty sections, unallocated sections or sections whose
6035 // type are not SHT_PROGBITS.
6036 if (shdr.get_sh_size() == 0
6037 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6038 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6041 // Skip any discarded or ICF'ed sections.
6042 if (os == NULL || symtab->is_section_folded(this, shndx))
6045 // If this requires special offset handling, check to see if it is
6046 // a relaxed section. If this is not, then it is a merged section that
6047 // we cannot handle.
6048 if (this->is_output_section_offset_invalid(shndx))
6050 const Output_relaxed_input_section* poris =
6051 os->find_relaxed_input_section(this, shndx);
6059 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6060 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6062 template<bool big_endian>
6064 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6065 const elfcpp::Shdr<32, big_endian>& shdr,
6066 const Relobj::Output_sections& out_sections,
6067 const Symbol_table* symtab,
6068 const unsigned char* pshdrs)
6070 unsigned int sh_type = shdr.get_sh_type();
6071 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6074 // Ignore empty section.
6075 off_t sh_size = shdr.get_sh_size();
6079 // Ignore reloc section with unexpected symbol table. The
6080 // error will be reported in the final link.
6081 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6084 unsigned int reloc_size;
6085 if (sh_type == elfcpp::SHT_REL)
6086 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6088 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6090 // Ignore reloc section with unexpected entsize or uneven size.
6091 // The error will be reported in the final link.
6092 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6095 // Ignore reloc section with bad info. This error will be
6096 // reported in the final link.
6097 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6098 if (index >= this->shnum())
6101 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6102 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6103 return this->section_is_scannable(text_shdr, index,
6104 out_sections[index], symtab);
6107 // Return the output address of either a plain input section or a relaxed
6108 // input section. SHNDX is the section index. We define and use this
6109 // instead of calling Output_section::output_address because that is slow
6110 // for large output.
6112 template<bool big_endian>
6114 Arm_relobj<big_endian>::simple_input_section_output_address(
6118 if (this->is_output_section_offset_invalid(shndx))
6120 const Output_relaxed_input_section* poris =
6121 os->find_relaxed_input_section(this, shndx);
6122 // We do not handle merged sections here.
6123 gold_assert(poris != NULL);
6124 return poris->address();
6127 return os->address() + this->get_output_section_offset(shndx);
6130 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6131 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6133 template<bool big_endian>
6135 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6136 const elfcpp::Shdr<32, big_endian>& shdr,
6139 const Symbol_table* symtab)
6141 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6144 // If the section does not cross any 4K-boundaries, it does not need to
6146 Arm_address address = this->simple_input_section_output_address(shndx, os);
6147 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6153 // Scan a section for Cortex-A8 workaround.
6155 template<bool big_endian>
6157 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6158 const elfcpp::Shdr<32, big_endian>& shdr,
6161 Target_arm<big_endian>* arm_target)
6163 // Look for the first mapping symbol in this section. It should be
6165 Mapping_symbol_position section_start(shndx, 0);
6166 typename Mapping_symbols_info::const_iterator p =
6167 this->mapping_symbols_info_.lower_bound(section_start);
6169 // There are no mapping symbols for this section. Treat it as a data-only
6170 // section. Issue a warning if section is marked as containing
6172 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6174 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6175 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6176 "erratum because it has no mapping symbols."),
6177 shndx, this->name().c_str());
6181 Arm_address output_address =
6182 this->simple_input_section_output_address(shndx, os);
6184 // Get the section contents.
6185 section_size_type input_view_size = 0;
6186 const unsigned char* input_view =
6187 this->section_contents(shndx, &input_view_size, false);
6189 // We need to go through the mapping symbols to determine what to
6190 // scan. There are two reasons. First, we should look at THUMB code and
6191 // THUMB code only. Second, we only want to look at the 4K-page boundary
6192 // to speed up the scanning.
6194 while (p != this->mapping_symbols_info_.end()
6195 && p->first.first == shndx)
6197 typename Mapping_symbols_info::const_iterator next =
6198 this->mapping_symbols_info_.upper_bound(p->first);
6200 // Only scan part of a section with THUMB code.
6201 if (p->second == 't')
6203 // Determine the end of this range.
6204 section_size_type span_start =
6205 convert_to_section_size_type(p->first.second);
6206 section_size_type span_end;
6207 if (next != this->mapping_symbols_info_.end()
6208 && next->first.first == shndx)
6209 span_end = convert_to_section_size_type(next->first.second);
6211 span_end = convert_to_section_size_type(shdr.get_sh_size());
6213 if (((span_start + output_address) & ~0xfffUL)
6214 != ((span_end + output_address - 1) & ~0xfffUL))
6216 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6217 span_start, span_end,
6227 // Scan relocations for stub generation.
6229 template<bool big_endian>
6231 Arm_relobj<big_endian>::scan_sections_for_stubs(
6232 Target_arm<big_endian>* arm_target,
6233 const Symbol_table* symtab,
6234 const Layout* layout)
6236 unsigned int shnum = this->shnum();
6237 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6239 // Read the section headers.
6240 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6244 // To speed up processing, we set up hash tables for fast lookup of
6245 // input offsets to output addresses.
6246 this->initialize_input_to_output_maps();
6248 const Relobj::Output_sections& out_sections(this->output_sections());
6250 Relocate_info<32, big_endian> relinfo;
6251 relinfo.symtab = symtab;
6252 relinfo.layout = layout;
6253 relinfo.object = this;
6255 // Do relocation stubs scanning.
6256 const unsigned char* p = pshdrs + shdr_size;
6257 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6259 const elfcpp::Shdr<32, big_endian> shdr(p);
6260 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6263 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6264 Arm_address output_offset = this->get_output_section_offset(index);
6265 Arm_address output_address;
6266 if (output_offset != invalid_address)
6267 output_address = out_sections[index]->address() + output_offset;
6270 // Currently this only happens for a relaxed section.
6271 const Output_relaxed_input_section* poris =
6272 out_sections[index]->find_relaxed_input_section(this, index);
6273 gold_assert(poris != NULL);
6274 output_address = poris->address();
6277 // Get the relocations.
6278 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6282 // Get the section contents. This does work for the case in which
6283 // we modify the contents of an input section. We need to pass the
6284 // output view under such circumstances.
6285 section_size_type input_view_size = 0;
6286 const unsigned char* input_view =
6287 this->section_contents(index, &input_view_size, false);
6289 relinfo.reloc_shndx = i;
6290 relinfo.data_shndx = index;
6291 unsigned int sh_type = shdr.get_sh_type();
6292 unsigned int reloc_size;
6293 if (sh_type == elfcpp::SHT_REL)
6294 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6296 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6298 Output_section* os = out_sections[index];
6299 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6300 shdr.get_sh_size() / reloc_size,
6302 output_offset == invalid_address,
6303 input_view, output_address,
6308 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6309 // after its relocation section, if there is one, is processed for
6310 // relocation stubs. Merging this loop with the one above would have been
6311 // complicated since we would have had to make sure that relocation stub
6312 // scanning is done first.
6313 if (arm_target->fix_cortex_a8())
6315 const unsigned char* p = pshdrs + shdr_size;
6316 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6318 const elfcpp::Shdr<32, big_endian> shdr(p);
6319 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6322 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6327 // After we've done the relocations, we release the hash tables,
6328 // since we no longer need them.
6329 this->free_input_to_output_maps();
6332 // Count the local symbols. The ARM backend needs to know if a symbol
6333 // is a THUMB function or not. For global symbols, it is easy because
6334 // the Symbol object keeps the ELF symbol type. For local symbol it is
6335 // harder because we cannot access this information. So we override the
6336 // do_count_local_symbol in parent and scan local symbols to mark
6337 // THUMB functions. This is not the most efficient way but I do not want to
6338 // slow down other ports by calling a per symbol target hook inside
6339 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6341 template<bool big_endian>
6343 Arm_relobj<big_endian>::do_count_local_symbols(
6344 Stringpool_template<char>* pool,
6345 Stringpool_template<char>* dynpool)
6347 // We need to fix-up the values of any local symbols whose type are
6350 // Ask parent to count the local symbols.
6351 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6352 const unsigned int loccount = this->local_symbol_count();
6356 // Initialize the thumb function bit-vector.
6357 std::vector<bool> empty_vector(loccount, false);
6358 this->local_symbol_is_thumb_function_.swap(empty_vector);
6360 // Read the symbol table section header.
6361 const unsigned int symtab_shndx = this->symtab_shndx();
6362 elfcpp::Shdr<32, big_endian>
6363 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6364 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6366 // Read the local symbols.
6367 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6368 gold_assert(loccount == symtabshdr.get_sh_info());
6369 off_t locsize = loccount * sym_size;
6370 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6371 locsize, true, true);
6373 // For mapping symbol processing, we need to read the symbol names.
6374 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6375 if (strtab_shndx >= this->shnum())
6377 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6381 elfcpp::Shdr<32, big_endian>
6382 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6383 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6385 this->error(_("symbol table name section has wrong type: %u"),
6386 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6389 const char* pnames =
6390 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6391 strtabshdr.get_sh_size(),
6394 // Loop over the local symbols and mark any local symbols pointing
6395 // to THUMB functions.
6397 // Skip the first dummy symbol.
6399 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6400 this->local_values();
6401 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6403 elfcpp::Sym<32, big_endian> sym(psyms);
6404 elfcpp::STT st_type = sym.get_st_type();
6405 Symbol_value<32>& lv((*plocal_values)[i]);
6406 Arm_address input_value = lv.input_value();
6408 // Check to see if this is a mapping symbol.
6409 const char* sym_name = pnames + sym.get_st_name();
6410 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6413 unsigned int input_shndx =
6414 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6415 gold_assert(is_ordinary);
6417 // Strip of LSB in case this is a THUMB symbol.
6418 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6419 this->mapping_symbols_info_[msp] = sym_name[1];
6422 if (st_type == elfcpp::STT_ARM_TFUNC
6423 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6425 // This is a THUMB function. Mark this and canonicalize the
6426 // symbol value by setting LSB.
6427 this->local_symbol_is_thumb_function_[i] = true;
6428 if ((input_value & 1) == 0)
6429 lv.set_input_value(input_value | 1);
6434 // Relocate sections.
6435 template<bool big_endian>
6437 Arm_relobj<big_endian>::do_relocate_sections(
6438 const Symbol_table* symtab,
6439 const Layout* layout,
6440 const unsigned char* pshdrs,
6442 typename Sized_relobj<32, big_endian>::Views* pviews)
6444 // Call parent to relocate sections.
6445 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6448 // We do not generate stubs if doing a relocatable link.
6449 if (parameters->options().relocatable())
6452 // Relocate stub tables.
6453 unsigned int shnum = this->shnum();
6455 Target_arm<big_endian>* arm_target =
6456 Target_arm<big_endian>::default_target();
6458 Relocate_info<32, big_endian> relinfo;
6459 relinfo.symtab = symtab;
6460 relinfo.layout = layout;
6461 relinfo.object = this;
6463 for (unsigned int i = 1; i < shnum; ++i)
6465 Arm_input_section<big_endian>* arm_input_section =
6466 arm_target->find_arm_input_section(this, i);
6468 if (arm_input_section != NULL
6469 && arm_input_section->is_stub_table_owner()
6470 && !arm_input_section->stub_table()->empty())
6472 // We cannot discard a section if it owns a stub table.
6473 Output_section* os = this->output_section(i);
6474 gold_assert(os != NULL);
6476 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6477 relinfo.reloc_shdr = NULL;
6478 relinfo.data_shndx = i;
6479 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6481 gold_assert((*pviews)[i].view != NULL);
6483 // We are passed the output section view. Adjust it to cover the
6485 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6486 gold_assert((stub_table->address() >= (*pviews)[i].address)
6487 && ((stub_table->address() + stub_table->data_size())
6488 <= (*pviews)[i].address + (*pviews)[i].view_size));
6490 off_t offset = stub_table->address() - (*pviews)[i].address;
6491 unsigned char* view = (*pviews)[i].view + offset;
6492 Arm_address address = stub_table->address();
6493 section_size_type view_size = stub_table->data_size();
6495 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6499 // Apply Cortex A8 workaround if applicable.
6500 if (this->section_has_cortex_a8_workaround(i))
6502 unsigned char* view = (*pviews)[i].view;
6503 Arm_address view_address = (*pviews)[i].address;
6504 section_size_type view_size = (*pviews)[i].view_size;
6505 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6507 // Adjust view to cover section.
6508 Output_section* os = this->output_section(i);
6509 gold_assert(os != NULL);
6510 Arm_address section_address =
6511 this->simple_input_section_output_address(i, os);
6512 uint64_t section_size = this->section_size(i);
6514 gold_assert(section_address >= view_address
6515 && ((section_address + section_size)
6516 <= (view_address + view_size)));
6518 unsigned char* section_view = view + (section_address - view_address);
6520 // Apply the Cortex-A8 workaround to the output address range
6521 // corresponding to this input section.
6522 stub_table->apply_cortex_a8_workaround_to_address_range(
6531 // Find the linked text section of an EXIDX section by looking at the first
6532 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6533 // must be linked to its associated code section via the sh_link field of
6534 // its section header. However, some tools are broken and the link is not
6535 // always set. LD just drops such an EXIDX section silently, causing the
6536 // associated code not unwindabled. Here we try a little bit harder to
6537 // discover the linked code section.
6539 // PSHDR points to the section header of a relocation section of an EXIDX
6540 // section. If we can find a linked text section, return true and
6541 // store the text section index in the location PSHNDX. Otherwise
6544 template<bool big_endian>
6546 Arm_relobj<big_endian>::find_linked_text_section(
6547 const unsigned char* pshdr,
6548 const unsigned char* psyms,
6549 unsigned int* pshndx)
6551 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6553 // If there is no relocation, we cannot find the linked text section.
6555 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6556 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6558 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6559 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6561 // Get the relocations.
6562 const unsigned char* prelocs =
6563 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6565 // Find the REL31 relocation for the first word of the first EXIDX entry.
6566 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6568 Arm_address r_offset;
6569 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6570 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6572 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6573 r_info = reloc.get_r_info();
6574 r_offset = reloc.get_r_offset();
6578 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6579 r_info = reloc.get_r_info();
6580 r_offset = reloc.get_r_offset();
6583 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6584 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6587 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6589 || r_sym >= this->local_symbol_count()
6593 // This is the relocation for the first word of the first EXIDX entry.
6594 // We expect to see a local section symbol.
6595 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6596 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6597 if (sym.get_st_type() == elfcpp::STT_SECTION)
6601 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6602 gold_assert(is_ordinary);
6612 // Make an EXIDX input section object for an EXIDX section whose index is
6613 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6614 // is the section index of the linked text section.
6616 template<bool big_endian>
6618 Arm_relobj<big_endian>::make_exidx_input_section(
6620 const elfcpp::Shdr<32, big_endian>& shdr,
6621 unsigned int text_shndx,
6622 const elfcpp::Shdr<32, big_endian>& text_shdr)
6624 // Create an Arm_exidx_input_section object for this EXIDX section.
6625 Arm_exidx_input_section* exidx_input_section =
6626 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6627 shdr.get_sh_addralign(),
6628 text_shdr.get_sh_size());
6630 gold_assert(this->exidx_section_map_[shndx] == NULL);
6631 this->exidx_section_map_[shndx] = exidx_input_section;
6633 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6635 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6636 this->section_name(shndx).c_str(), shndx, text_shndx,
6637 this->name().c_str());
6638 exidx_input_section->set_has_errors();
6640 else if (this->exidx_section_map_[text_shndx] != NULL)
6642 unsigned other_exidx_shndx =
6643 this->exidx_section_map_[text_shndx]->shndx();
6644 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6646 this->section_name(shndx).c_str(), shndx,
6647 this->section_name(other_exidx_shndx).c_str(),
6648 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6649 text_shndx, this->name().c_str());
6650 exidx_input_section->set_has_errors();
6653 this->exidx_section_map_[text_shndx] = exidx_input_section;
6655 // Check section flags of text section.
6656 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6658 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6660 this->section_name(shndx).c_str(), shndx,
6661 this->section_name(text_shndx).c_str(), text_shndx,
6662 this->name().c_str());
6663 exidx_input_section->set_has_errors();
6665 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6666 // I would like to make this an error but currently ld just ignores
6668 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6670 this->section_name(shndx).c_str(), shndx,
6671 this->section_name(text_shndx).c_str(), text_shndx,
6672 this->name().c_str());
6675 // Read the symbol information.
6677 template<bool big_endian>
6679 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6681 // Call parent class to read symbol information.
6682 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6684 // If this input file is a binary file, it has no processor
6685 // specific flags and attributes section.
6686 Input_file::Format format = this->input_file()->format();
6687 if (format != Input_file::FORMAT_ELF)
6689 gold_assert(format == Input_file::FORMAT_BINARY);
6690 this->merge_flags_and_attributes_ = false;
6694 // Read processor-specific flags in ELF file header.
6695 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6696 elfcpp::Elf_sizes<32>::ehdr_size,
6698 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6699 this->processor_specific_flags_ = ehdr.get_e_flags();
6701 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6703 std::vector<unsigned int> deferred_exidx_sections;
6704 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6705 const unsigned char* pshdrs = sd->section_headers->data();
6706 const unsigned char* ps = pshdrs + shdr_size;
6707 bool must_merge_flags_and_attributes = false;
6708 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6710 elfcpp::Shdr<32, big_endian> shdr(ps);
6712 // Sometimes an object has no contents except the section name string
6713 // table and an empty symbol table with the undefined symbol. We
6714 // don't want to merge processor-specific flags from such an object.
6715 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6717 // Symbol table is not empty.
6718 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6719 elfcpp::Elf_sizes<32>::sym_size;
6720 if (shdr.get_sh_size() > sym_size)
6721 must_merge_flags_and_attributes = true;
6723 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6724 // If this is neither an empty symbol table nor a string table,
6726 must_merge_flags_and_attributes = true;
6728 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6730 gold_assert(this->attributes_section_data_ == NULL);
6731 section_offset_type section_offset = shdr.get_sh_offset();
6732 section_size_type section_size =
6733 convert_to_section_size_type(shdr.get_sh_size());
6734 const unsigned char* view =
6735 this->get_view(section_offset, section_size, true, false);
6736 this->attributes_section_data_ =
6737 new Attributes_section_data(view, section_size);
6739 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6741 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6742 if (text_shndx == elfcpp::SHN_UNDEF)
6743 deferred_exidx_sections.push_back(i);
6746 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6747 + text_shndx * shdr_size);
6748 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6750 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6751 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6752 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6753 this->section_name(i).c_str(), this->name().c_str());
6758 if (!must_merge_flags_and_attributes)
6760 gold_assert(deferred_exidx_sections.empty());
6761 this->merge_flags_and_attributes_ = false;
6765 // Some tools are broken and they do not set the link of EXIDX sections.
6766 // We look at the first relocation to figure out the linked sections.
6767 if (!deferred_exidx_sections.empty())
6769 // We need to go over the section headers again to find the mapping
6770 // from sections being relocated to their relocation sections. This is
6771 // a bit inefficient as we could do that in the loop above. However,
6772 // we do not expect any deferred EXIDX sections normally. So we do not
6773 // want to slow down the most common path.
6774 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6775 Reloc_map reloc_map;
6776 ps = pshdrs + shdr_size;
6777 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6779 elfcpp::Shdr<32, big_endian> shdr(ps);
6780 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6781 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6783 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6784 if (info_shndx >= this->shnum())
6785 gold_error(_("relocation section %u has invalid info %u"),
6787 Reloc_map::value_type value(info_shndx, i);
6788 std::pair<Reloc_map::iterator, bool> result =
6789 reloc_map.insert(value);
6791 gold_error(_("section %u has multiple relocation sections "
6793 info_shndx, i, reloc_map[info_shndx]);
6797 // Read the symbol table section header.
6798 const unsigned int symtab_shndx = this->symtab_shndx();
6799 elfcpp::Shdr<32, big_endian>
6800 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6801 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6803 // Read the local symbols.
6804 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6805 const unsigned int loccount = this->local_symbol_count();
6806 gold_assert(loccount == symtabshdr.get_sh_info());
6807 off_t locsize = loccount * sym_size;
6808 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6809 locsize, true, true);
6811 // Process the deferred EXIDX sections.
6812 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6814 unsigned int shndx = deferred_exidx_sections[i];
6815 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6816 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6817 Reloc_map::const_iterator it = reloc_map.find(shndx);
6818 if (it != reloc_map.end())
6819 find_linked_text_section(pshdrs + it->second * shdr_size,
6820 psyms, &text_shndx);
6821 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6822 + text_shndx * shdr_size);
6823 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6828 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6829 // sections for unwinding. These sections are referenced implicitly by
6830 // text sections linked in the section headers. If we ignore these implicit
6831 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6832 // will be garbage-collected incorrectly. Hence we override the same function
6833 // in the base class to handle these implicit references.
6835 template<bool big_endian>
6837 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6839 Read_relocs_data* rd)
6841 // First, call base class method to process relocations in this object.
6842 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6844 // If --gc-sections is not specified, there is nothing more to do.
6845 // This happens when --icf is used but --gc-sections is not.
6846 if (!parameters->options().gc_sections())
6849 unsigned int shnum = this->shnum();
6850 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6851 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6855 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6856 // to these from the linked text sections.
6857 const unsigned char* ps = pshdrs + shdr_size;
6858 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6860 elfcpp::Shdr<32, big_endian> shdr(ps);
6861 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6863 // Found an .ARM.exidx section, add it to the set of reachable
6864 // sections from its linked text section.
6865 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6866 symtab->gc()->add_reference(this, text_shndx, this, i);
6871 // Update output local symbol count. Owing to EXIDX entry merging, some local
6872 // symbols will be removed in output. Adjust output local symbol count
6873 // accordingly. We can only changed the static output local symbol count. It
6874 // is too late to change the dynamic symbols.
6876 template<bool big_endian>
6878 Arm_relobj<big_endian>::update_output_local_symbol_count()
6880 // Caller should check that this needs updating. We want caller checking
6881 // because output_local_symbol_count_needs_update() is most likely inlined.
6882 gold_assert(this->output_local_symbol_count_needs_update_);
6884 gold_assert(this->symtab_shndx() != -1U);
6885 if (this->symtab_shndx() == 0)
6887 // This object has no symbols. Weird but legal.
6891 // Read the symbol table section header.
6892 const unsigned int symtab_shndx = this->symtab_shndx();
6893 elfcpp::Shdr<32, big_endian>
6894 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6895 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6897 // Read the local symbols.
6898 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6899 const unsigned int loccount = this->local_symbol_count();
6900 gold_assert(loccount == symtabshdr.get_sh_info());
6901 off_t locsize = loccount * sym_size;
6902 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6903 locsize, true, true);
6905 // Loop over the local symbols.
6907 typedef typename Sized_relobj<32, big_endian>::Output_sections
6909 const Output_sections& out_sections(this->output_sections());
6910 unsigned int shnum = this->shnum();
6911 unsigned int count = 0;
6912 // Skip the first, dummy, symbol.
6914 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6916 elfcpp::Sym<32, big_endian> sym(psyms);
6918 Symbol_value<32>& lv((*this->local_values())[i]);
6920 // This local symbol was already discarded by do_count_local_symbols.
6921 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6925 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6930 Output_section* os = out_sections[shndx];
6932 // This local symbol no longer has an output section. Discard it.
6935 lv.set_no_output_symtab_entry();
6939 // Currently we only discard parts of EXIDX input sections.
6940 // We explicitly check for a merged EXIDX input section to avoid
6941 // calling Output_section_data::output_offset unless necessary.
6942 if ((this->get_output_section_offset(shndx) == invalid_address)
6943 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6945 section_offset_type output_offset =
6946 os->output_offset(this, shndx, lv.input_value());
6947 if (output_offset == -1)
6949 // This symbol is defined in a part of an EXIDX input section
6950 // that is discarded due to entry merging.
6951 lv.set_no_output_symtab_entry();
6960 this->set_output_local_symbol_count(count);
6961 this->output_local_symbol_count_needs_update_ = false;
6964 // Arm_dynobj methods.
6966 // Read the symbol information.
6968 template<bool big_endian>
6970 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6972 // Call parent class to read symbol information.
6973 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6975 // Read processor-specific flags in ELF file header.
6976 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6977 elfcpp::Elf_sizes<32>::ehdr_size,
6979 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6980 this->processor_specific_flags_ = ehdr.get_e_flags();
6982 // Read the attributes section if there is one.
6983 // We read from the end because gas seems to put it near the end of
6984 // the section headers.
6985 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6986 const unsigned char* ps =
6987 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6988 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6990 elfcpp::Shdr<32, big_endian> shdr(ps);
6991 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6993 section_offset_type section_offset = shdr.get_sh_offset();
6994 section_size_type section_size =
6995 convert_to_section_size_type(shdr.get_sh_size());
6996 const unsigned char* view =
6997 this->get_view(section_offset, section_size, true, false);
6998 this->attributes_section_data_ =
6999 new Attributes_section_data(view, section_size);
7005 // Stub_addend_reader methods.
7007 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7009 template<bool big_endian>
7010 elfcpp::Elf_types<32>::Elf_Swxword
7011 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7012 unsigned int r_type,
7013 const unsigned char* view,
7014 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7016 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7020 case elfcpp::R_ARM_CALL:
7021 case elfcpp::R_ARM_JUMP24:
7022 case elfcpp::R_ARM_PLT32:
7024 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7025 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7026 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7027 return utils::sign_extend<26>(val << 2);
7030 case elfcpp::R_ARM_THM_CALL:
7031 case elfcpp::R_ARM_THM_JUMP24:
7032 case elfcpp::R_ARM_THM_XPC22:
7034 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7035 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7036 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7037 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7038 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7041 case elfcpp::R_ARM_THM_JUMP19:
7043 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7044 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7045 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7046 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7047 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7055 // Arm_output_data_got methods.
7057 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7058 // The first one is initialized to be 1, which is the module index for
7059 // the main executable and the second one 0. A reloc of the type
7060 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7061 // be applied by gold. GSYM is a global symbol.
7063 template<bool big_endian>
7065 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7066 unsigned int got_type,
7069 if (gsym->has_got_offset(got_type))
7072 // We are doing a static link. Just mark it as belong to module 1,
7074 unsigned int got_offset = this->add_constant(1);
7075 gsym->set_got_offset(got_type, got_offset);
7076 got_offset = this->add_constant(0);
7077 this->static_relocs_.push_back(Static_reloc(got_offset,
7078 elfcpp::R_ARM_TLS_DTPOFF32,
7082 // Same as the above but for a local symbol.
7084 template<bool big_endian>
7086 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7087 unsigned int got_type,
7088 Sized_relobj<32, big_endian>* object,
7091 if (object->local_has_got_offset(index, got_type))
7094 // We are doing a static link. Just mark it as belong to module 1,
7096 unsigned int got_offset = this->add_constant(1);
7097 object->set_local_got_offset(index, got_type, got_offset);
7098 got_offset = this->add_constant(0);
7099 this->static_relocs_.push_back(Static_reloc(got_offset,
7100 elfcpp::R_ARM_TLS_DTPOFF32,
7104 template<bool big_endian>
7106 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7108 // Call parent to write out GOT.
7109 Output_data_got<32, big_endian>::do_write(of);
7111 // We are done if there is no fix up.
7112 if (this->static_relocs_.empty())
7115 gold_assert(parameters->doing_static_link());
7117 const off_t offset = this->offset();
7118 const section_size_type oview_size =
7119 convert_to_section_size_type(this->data_size());
7120 unsigned char* const oview = of->get_output_view(offset, oview_size);
7122 Output_segment* tls_segment = this->layout_->tls_segment();
7123 gold_assert(tls_segment != NULL);
7125 // The thread pointer $tp points to the TCB, which is followed by the
7126 // TLS. So we need to adjust $tp relative addressing by this amount.
7127 Arm_address aligned_tcb_size =
7128 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7130 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7132 Static_reloc& reloc(this->static_relocs_[i]);
7135 if (!reloc.symbol_is_global())
7137 Sized_relobj<32, big_endian>* object = reloc.relobj();
7138 const Symbol_value<32>* psymval =
7139 reloc.relobj()->local_symbol(reloc.index());
7141 // We are doing static linking. Issue an error and skip this
7142 // relocation if the symbol is undefined or in a discarded_section.
7144 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7145 if ((shndx == elfcpp::SHN_UNDEF)
7147 && shndx != elfcpp::SHN_UNDEF
7148 && !object->is_section_included(shndx)
7149 && !this->symbol_table_->is_section_folded(object, shndx)))
7151 gold_error(_("undefined or discarded local symbol %u from "
7152 " object %s in GOT"),
7153 reloc.index(), reloc.relobj()->name().c_str());
7157 value = psymval->value(object, 0);
7161 const Symbol* gsym = reloc.symbol();
7162 gold_assert(gsym != NULL);
7163 if (gsym->is_forwarder())
7164 gsym = this->symbol_table_->resolve_forwards(gsym);
7166 // We are doing static linking. Issue an error and skip this
7167 // relocation if the symbol is undefined or in a discarded_section
7168 // unless it is a weakly_undefined symbol.
7169 if ((gsym->is_defined_in_discarded_section()
7170 || gsym->is_undefined())
7171 && !gsym->is_weak_undefined())
7173 gold_error(_("undefined or discarded symbol %s in GOT"),
7178 if (!gsym->is_weak_undefined())
7180 const Sized_symbol<32>* sym =
7181 static_cast<const Sized_symbol<32>*>(gsym);
7182 value = sym->value();
7188 unsigned got_offset = reloc.got_offset();
7189 gold_assert(got_offset < oview_size);
7191 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7192 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7194 switch (reloc.r_type())
7196 case elfcpp::R_ARM_TLS_DTPOFF32:
7199 case elfcpp::R_ARM_TLS_TPOFF32:
7200 x = value + aligned_tcb_size;
7205 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7208 of->write_output_view(offset, oview_size, oview);
7211 // A class to handle the PLT data.
7213 template<bool big_endian>
7214 class Output_data_plt_arm : public Output_section_data
7217 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7220 Output_data_plt_arm(Layout*, Output_data_space*);
7222 // Add an entry to the PLT.
7224 add_entry(Symbol* gsym);
7226 // Return the .rel.plt section data.
7227 const Reloc_section*
7229 { return this->rel_; }
7231 // Return the number of PLT entries.
7234 { return this->count_; }
7236 // Return the offset of the first non-reserved PLT entry.
7238 first_plt_entry_offset()
7239 { return sizeof(first_plt_entry); }
7241 // Return the size of a PLT entry.
7243 get_plt_entry_size()
7244 { return sizeof(plt_entry); }
7248 do_adjust_output_section(Output_section* os);
7250 // Write to a map file.
7252 do_print_to_mapfile(Mapfile* mapfile) const
7253 { mapfile->print_output_data(this, _("** PLT")); }
7256 // Template for the first PLT entry.
7257 static const uint32_t first_plt_entry[5];
7259 // Template for subsequent PLT entries.
7260 static const uint32_t plt_entry[3];
7262 // Set the final size.
7264 set_final_data_size()
7266 this->set_data_size(sizeof(first_plt_entry)
7267 + this->count_ * sizeof(plt_entry));
7270 // Write out the PLT data.
7272 do_write(Output_file*);
7274 // The reloc section.
7275 Reloc_section* rel_;
7276 // The .got.plt section.
7277 Output_data_space* got_plt_;
7278 // The number of PLT entries.
7279 unsigned int count_;
7282 // Create the PLT section. The ordinary .got section is an argument,
7283 // since we need to refer to the start. We also create our own .got
7284 // section just for PLT entries.
7286 template<bool big_endian>
7287 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7288 Output_data_space* got_plt)
7289 : Output_section_data(4), got_plt_(got_plt), count_(0)
7291 this->rel_ = new Reloc_section(false);
7292 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7293 elfcpp::SHF_ALLOC, this->rel_,
7294 ORDER_DYNAMIC_PLT_RELOCS, false);
7297 template<bool big_endian>
7299 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7304 // Add an entry to the PLT.
7306 template<bool big_endian>
7308 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7310 gold_assert(!gsym->has_plt_offset());
7312 // Note that when setting the PLT offset we skip the initial
7313 // reserved PLT entry.
7314 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7315 + sizeof(first_plt_entry));
7319 section_offset_type got_offset = this->got_plt_->current_data_size();
7321 // Every PLT entry needs a GOT entry which points back to the PLT
7322 // entry (this will be changed by the dynamic linker, normally
7323 // lazily when the function is called).
7324 this->got_plt_->set_current_data_size(got_offset + 4);
7326 // Every PLT entry needs a reloc.
7327 gsym->set_needs_dynsym_entry();
7328 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7331 // Note that we don't need to save the symbol. The contents of the
7332 // PLT are independent of which symbols are used. The symbols only
7333 // appear in the relocations.
7337 // FIXME: This is not very flexible. Right now this has only been tested
7338 // on armv5te. If we are to support additional architecture features like
7339 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7341 // The first entry in the PLT.
7342 template<bool big_endian>
7343 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7345 0xe52de004, // str lr, [sp, #-4]!
7346 0xe59fe004, // ldr lr, [pc, #4]
7347 0xe08fe00e, // add lr, pc, lr
7348 0xe5bef008, // ldr pc, [lr, #8]!
7349 0x00000000, // &GOT[0] - .
7352 // Subsequent entries in the PLT.
7354 template<bool big_endian>
7355 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7357 0xe28fc600, // add ip, pc, #0xNN00000
7358 0xe28cca00, // add ip, ip, #0xNN000
7359 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7362 // Write out the PLT. This uses the hand-coded instructions above,
7363 // and adjusts them as needed. This is all specified by the arm ELF
7364 // Processor Supplement.
7366 template<bool big_endian>
7368 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7370 const off_t offset = this->offset();
7371 const section_size_type oview_size =
7372 convert_to_section_size_type(this->data_size());
7373 unsigned char* const oview = of->get_output_view(offset, oview_size);
7375 const off_t got_file_offset = this->got_plt_->offset();
7376 const section_size_type got_size =
7377 convert_to_section_size_type(this->got_plt_->data_size());
7378 unsigned char* const got_view = of->get_output_view(got_file_offset,
7380 unsigned char* pov = oview;
7382 Arm_address plt_address = this->address();
7383 Arm_address got_address = this->got_plt_->address();
7385 // Write first PLT entry. All but the last word are constants.
7386 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7387 / sizeof(plt_entry[0]));
7388 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7389 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7390 // Last word in first PLT entry is &GOT[0] - .
7391 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7392 got_address - (plt_address + 16));
7393 pov += sizeof(first_plt_entry);
7395 unsigned char* got_pov = got_view;
7397 memset(got_pov, 0, 12);
7400 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7401 unsigned int plt_offset = sizeof(first_plt_entry);
7402 unsigned int plt_rel_offset = 0;
7403 unsigned int got_offset = 12;
7404 const unsigned int count = this->count_;
7405 for (unsigned int i = 0;
7408 pov += sizeof(plt_entry),
7410 plt_offset += sizeof(plt_entry),
7411 plt_rel_offset += rel_size,
7414 // Set and adjust the PLT entry itself.
7415 int32_t offset = ((got_address + got_offset)
7416 - (plt_address + plt_offset + 8));
7418 gold_assert(offset >= 0 && offset < 0x0fffffff);
7419 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7420 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7421 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7422 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7423 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7424 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7426 // Set the entry in the GOT.
7427 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7430 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7431 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7433 of->write_output_view(offset, oview_size, oview);
7434 of->write_output_view(got_file_offset, got_size, got_view);
7437 // Create a PLT entry for a global symbol.
7439 template<bool big_endian>
7441 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7444 if (gsym->has_plt_offset())
7447 if (this->plt_ == NULL)
7449 // Create the GOT sections first.
7450 this->got_section(symtab, layout);
7452 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7453 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7455 | elfcpp::SHF_EXECINSTR),
7456 this->plt_, ORDER_PLT, false);
7458 this->plt_->add_entry(gsym);
7461 // Return the number of entries in the PLT.
7463 template<bool big_endian>
7465 Target_arm<big_endian>::plt_entry_count() const
7467 if (this->plt_ == NULL)
7469 return this->plt_->entry_count();
7472 // Return the offset of the first non-reserved PLT entry.
7474 template<bool big_endian>
7476 Target_arm<big_endian>::first_plt_entry_offset() const
7478 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7481 // Return the size of each PLT entry.
7483 template<bool big_endian>
7485 Target_arm<big_endian>::plt_entry_size() const
7487 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7490 // Get the section to use for TLS_DESC relocations.
7492 template<bool big_endian>
7493 typename Target_arm<big_endian>::Reloc_section*
7494 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7496 return this->plt_section()->rel_tls_desc(layout);
7499 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7501 template<bool big_endian>
7503 Target_arm<big_endian>::define_tls_base_symbol(
7504 Symbol_table* symtab,
7507 if (this->tls_base_symbol_defined_)
7510 Output_segment* tls_segment = layout->tls_segment();
7511 if (tls_segment != NULL)
7513 bool is_exec = parameters->options().output_is_executable();
7514 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7515 Symbol_table::PREDEFINED,
7519 elfcpp::STV_HIDDEN, 0,
7521 ? Symbol::SEGMENT_END
7522 : Symbol::SEGMENT_START),
7525 this->tls_base_symbol_defined_ = true;
7528 // Create a GOT entry for the TLS module index.
7530 template<bool big_endian>
7532 Target_arm<big_endian>::got_mod_index_entry(
7533 Symbol_table* symtab,
7535 Sized_relobj<32, big_endian>* object)
7537 if (this->got_mod_index_offset_ == -1U)
7539 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7540 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7541 unsigned int got_offset;
7542 if (!parameters->doing_static_link())
7544 got_offset = got->add_constant(0);
7545 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7546 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7551 // We are doing a static link. Just mark it as belong to module 1,
7553 got_offset = got->add_constant(1);
7556 got->add_constant(0);
7557 this->got_mod_index_offset_ = got_offset;
7559 return this->got_mod_index_offset_;
7562 // Optimize the TLS relocation type based on what we know about the
7563 // symbol. IS_FINAL is true if the final address of this symbol is
7564 // known at link time.
7566 template<bool big_endian>
7567 tls::Tls_optimization
7568 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7570 // FIXME: Currently we do not do any TLS optimization.
7571 return tls::TLSOPT_NONE;
7574 // Get the Reference_flags for a particular relocation.
7576 template<bool big_endian>
7578 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7582 case elfcpp::R_ARM_NONE:
7583 case elfcpp::R_ARM_V4BX:
7584 case elfcpp::R_ARM_GNU_VTENTRY:
7585 case elfcpp::R_ARM_GNU_VTINHERIT:
7586 // No symbol reference.
7589 case elfcpp::R_ARM_ABS32:
7590 case elfcpp::R_ARM_ABS16:
7591 case elfcpp::R_ARM_ABS12:
7592 case elfcpp::R_ARM_THM_ABS5:
7593 case elfcpp::R_ARM_ABS8:
7594 case elfcpp::R_ARM_BASE_ABS:
7595 case elfcpp::R_ARM_MOVW_ABS_NC:
7596 case elfcpp::R_ARM_MOVT_ABS:
7597 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7598 case elfcpp::R_ARM_THM_MOVT_ABS:
7599 case elfcpp::R_ARM_ABS32_NOI:
7600 return Symbol::ABSOLUTE_REF;
7602 case elfcpp::R_ARM_REL32:
7603 case elfcpp::R_ARM_LDR_PC_G0:
7604 case elfcpp::R_ARM_SBREL32:
7605 case elfcpp::R_ARM_THM_PC8:
7606 case elfcpp::R_ARM_BASE_PREL:
7607 case elfcpp::R_ARM_MOVW_PREL_NC:
7608 case elfcpp::R_ARM_MOVT_PREL:
7609 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7610 case elfcpp::R_ARM_THM_MOVT_PREL:
7611 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7612 case elfcpp::R_ARM_THM_PC12:
7613 case elfcpp::R_ARM_REL32_NOI:
7614 case elfcpp::R_ARM_ALU_PC_G0_NC:
7615 case elfcpp::R_ARM_ALU_PC_G0:
7616 case elfcpp::R_ARM_ALU_PC_G1_NC:
7617 case elfcpp::R_ARM_ALU_PC_G1:
7618 case elfcpp::R_ARM_ALU_PC_G2:
7619 case elfcpp::R_ARM_LDR_PC_G1:
7620 case elfcpp::R_ARM_LDR_PC_G2:
7621 case elfcpp::R_ARM_LDRS_PC_G0:
7622 case elfcpp::R_ARM_LDRS_PC_G1:
7623 case elfcpp::R_ARM_LDRS_PC_G2:
7624 case elfcpp::R_ARM_LDC_PC_G0:
7625 case elfcpp::R_ARM_LDC_PC_G1:
7626 case elfcpp::R_ARM_LDC_PC_G2:
7627 case elfcpp::R_ARM_ALU_SB_G0_NC:
7628 case elfcpp::R_ARM_ALU_SB_G0:
7629 case elfcpp::R_ARM_ALU_SB_G1_NC:
7630 case elfcpp::R_ARM_ALU_SB_G1:
7631 case elfcpp::R_ARM_ALU_SB_G2:
7632 case elfcpp::R_ARM_LDR_SB_G0:
7633 case elfcpp::R_ARM_LDR_SB_G1:
7634 case elfcpp::R_ARM_LDR_SB_G2:
7635 case elfcpp::R_ARM_LDRS_SB_G0:
7636 case elfcpp::R_ARM_LDRS_SB_G1:
7637 case elfcpp::R_ARM_LDRS_SB_G2:
7638 case elfcpp::R_ARM_LDC_SB_G0:
7639 case elfcpp::R_ARM_LDC_SB_G1:
7640 case elfcpp::R_ARM_LDC_SB_G2:
7641 case elfcpp::R_ARM_MOVW_BREL_NC:
7642 case elfcpp::R_ARM_MOVT_BREL:
7643 case elfcpp::R_ARM_MOVW_BREL:
7644 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7645 case elfcpp::R_ARM_THM_MOVT_BREL:
7646 case elfcpp::R_ARM_THM_MOVW_BREL:
7647 case elfcpp::R_ARM_GOTOFF32:
7648 case elfcpp::R_ARM_GOTOFF12:
7649 case elfcpp::R_ARM_SBREL31:
7650 return Symbol::RELATIVE_REF;
7652 case elfcpp::R_ARM_PLT32:
7653 case elfcpp::R_ARM_CALL:
7654 case elfcpp::R_ARM_JUMP24:
7655 case elfcpp::R_ARM_THM_CALL:
7656 case elfcpp::R_ARM_THM_JUMP24:
7657 case elfcpp::R_ARM_THM_JUMP19:
7658 case elfcpp::R_ARM_THM_JUMP6:
7659 case elfcpp::R_ARM_THM_JUMP11:
7660 case elfcpp::R_ARM_THM_JUMP8:
7661 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7662 // in unwind tables. It may point to functions via PLTs.
7663 // So we treat it like call/jump relocations above.
7664 case elfcpp::R_ARM_PREL31:
7665 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7667 case elfcpp::R_ARM_GOT_BREL:
7668 case elfcpp::R_ARM_GOT_ABS:
7669 case elfcpp::R_ARM_GOT_PREL:
7671 return Symbol::ABSOLUTE_REF;
7673 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7674 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7675 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7676 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7677 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7678 return Symbol::TLS_REF;
7680 case elfcpp::R_ARM_TARGET1:
7681 case elfcpp::R_ARM_TARGET2:
7682 case elfcpp::R_ARM_COPY:
7683 case elfcpp::R_ARM_GLOB_DAT:
7684 case elfcpp::R_ARM_JUMP_SLOT:
7685 case elfcpp::R_ARM_RELATIVE:
7686 case elfcpp::R_ARM_PC24:
7687 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7688 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7689 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7691 // Not expected. We will give an error later.
7696 // Report an unsupported relocation against a local symbol.
7698 template<bool big_endian>
7700 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7701 Sized_relobj<32, big_endian>* object,
7702 unsigned int r_type)
7704 gold_error(_("%s: unsupported reloc %u against local symbol"),
7705 object->name().c_str(), r_type);
7708 // We are about to emit a dynamic relocation of type R_TYPE. If the
7709 // dynamic linker does not support it, issue an error. The GNU linker
7710 // only issues a non-PIC error for an allocated read-only section.
7711 // Here we know the section is allocated, but we don't know that it is
7712 // read-only. But we check for all the relocation types which the
7713 // glibc dynamic linker supports, so it seems appropriate to issue an
7714 // error even if the section is not read-only.
7716 template<bool big_endian>
7718 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7719 unsigned int r_type)
7723 // These are the relocation types supported by glibc for ARM.
7724 case elfcpp::R_ARM_RELATIVE:
7725 case elfcpp::R_ARM_COPY:
7726 case elfcpp::R_ARM_GLOB_DAT:
7727 case elfcpp::R_ARM_JUMP_SLOT:
7728 case elfcpp::R_ARM_ABS32:
7729 case elfcpp::R_ARM_ABS32_NOI:
7730 case elfcpp::R_ARM_PC24:
7731 // FIXME: The following 3 types are not supported by Android's dynamic
7733 case elfcpp::R_ARM_TLS_DTPMOD32:
7734 case elfcpp::R_ARM_TLS_DTPOFF32:
7735 case elfcpp::R_ARM_TLS_TPOFF32:
7740 // This prevents us from issuing more than one error per reloc
7741 // section. But we can still wind up issuing more than one
7742 // error per object file.
7743 if (this->issued_non_pic_error_)
7745 const Arm_reloc_property* reloc_property =
7746 arm_reloc_property_table->get_reloc_property(r_type);
7747 gold_assert(reloc_property != NULL);
7748 object->error(_("requires unsupported dynamic reloc %s; "
7749 "recompile with -fPIC"),
7750 reloc_property->name().c_str());
7751 this->issued_non_pic_error_ = true;
7755 case elfcpp::R_ARM_NONE:
7760 // Scan a relocation for a local symbol.
7761 // FIXME: This only handles a subset of relocation types used by Android
7762 // on ARM v5te devices.
7764 template<bool big_endian>
7766 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7769 Sized_relobj<32, big_endian>* object,
7770 unsigned int data_shndx,
7771 Output_section* output_section,
7772 const elfcpp::Rel<32, big_endian>& reloc,
7773 unsigned int r_type,
7774 const elfcpp::Sym<32, big_endian>& lsym)
7776 r_type = get_real_reloc_type(r_type);
7779 case elfcpp::R_ARM_NONE:
7780 case elfcpp::R_ARM_V4BX:
7781 case elfcpp::R_ARM_GNU_VTENTRY:
7782 case elfcpp::R_ARM_GNU_VTINHERIT:
7785 case elfcpp::R_ARM_ABS32:
7786 case elfcpp::R_ARM_ABS32_NOI:
7787 // If building a shared library (or a position-independent
7788 // executable), we need to create a dynamic relocation for
7789 // this location. The relocation applied at link time will
7790 // apply the link-time value, so we flag the location with
7791 // an R_ARM_RELATIVE relocation so the dynamic loader can
7792 // relocate it easily.
7793 if (parameters->options().output_is_position_independent())
7795 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7796 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7797 // If we are to add more other reloc types than R_ARM_ABS32,
7798 // we need to add check_non_pic(object, r_type) here.
7799 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7800 output_section, data_shndx,
7801 reloc.get_r_offset());
7805 case elfcpp::R_ARM_ABS16:
7806 case elfcpp::R_ARM_ABS12:
7807 case elfcpp::R_ARM_THM_ABS5:
7808 case elfcpp::R_ARM_ABS8:
7809 case elfcpp::R_ARM_BASE_ABS:
7810 case elfcpp::R_ARM_MOVW_ABS_NC:
7811 case elfcpp::R_ARM_MOVT_ABS:
7812 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7813 case elfcpp::R_ARM_THM_MOVT_ABS:
7814 // If building a shared library (or a position-independent
7815 // executable), we need to create a dynamic relocation for
7816 // this location. Because the addend needs to remain in the
7817 // data section, we need to be careful not to apply this
7818 // relocation statically.
7819 if (parameters->options().output_is_position_independent())
7821 check_non_pic(object, r_type);
7822 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7823 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7824 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7825 rel_dyn->add_local(object, r_sym, r_type, output_section,
7826 data_shndx, reloc.get_r_offset());
7829 gold_assert(lsym.get_st_value() == 0);
7830 unsigned int shndx = lsym.get_st_shndx();
7832 shndx = object->adjust_sym_shndx(r_sym, shndx,
7835 object->error(_("section symbol %u has bad shndx %u"),
7838 rel_dyn->add_local_section(object, shndx,
7839 r_type, output_section,
7840 data_shndx, reloc.get_r_offset());
7845 case elfcpp::R_ARM_REL32:
7846 case elfcpp::R_ARM_LDR_PC_G0:
7847 case elfcpp::R_ARM_SBREL32:
7848 case elfcpp::R_ARM_THM_CALL:
7849 case elfcpp::R_ARM_THM_PC8:
7850 case elfcpp::R_ARM_BASE_PREL:
7851 case elfcpp::R_ARM_PLT32:
7852 case elfcpp::R_ARM_CALL:
7853 case elfcpp::R_ARM_JUMP24:
7854 case elfcpp::R_ARM_THM_JUMP24:
7855 case elfcpp::R_ARM_SBREL31:
7856 case elfcpp::R_ARM_PREL31:
7857 case elfcpp::R_ARM_MOVW_PREL_NC:
7858 case elfcpp::R_ARM_MOVT_PREL:
7859 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7860 case elfcpp::R_ARM_THM_MOVT_PREL:
7861 case elfcpp::R_ARM_THM_JUMP19:
7862 case elfcpp::R_ARM_THM_JUMP6:
7863 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7864 case elfcpp::R_ARM_THM_PC12:
7865 case elfcpp::R_ARM_REL32_NOI:
7866 case elfcpp::R_ARM_ALU_PC_G0_NC:
7867 case elfcpp::R_ARM_ALU_PC_G0:
7868 case elfcpp::R_ARM_ALU_PC_G1_NC:
7869 case elfcpp::R_ARM_ALU_PC_G1:
7870 case elfcpp::R_ARM_ALU_PC_G2:
7871 case elfcpp::R_ARM_LDR_PC_G1:
7872 case elfcpp::R_ARM_LDR_PC_G2:
7873 case elfcpp::R_ARM_LDRS_PC_G0:
7874 case elfcpp::R_ARM_LDRS_PC_G1:
7875 case elfcpp::R_ARM_LDRS_PC_G2:
7876 case elfcpp::R_ARM_LDC_PC_G0:
7877 case elfcpp::R_ARM_LDC_PC_G1:
7878 case elfcpp::R_ARM_LDC_PC_G2:
7879 case elfcpp::R_ARM_ALU_SB_G0_NC:
7880 case elfcpp::R_ARM_ALU_SB_G0:
7881 case elfcpp::R_ARM_ALU_SB_G1_NC:
7882 case elfcpp::R_ARM_ALU_SB_G1:
7883 case elfcpp::R_ARM_ALU_SB_G2:
7884 case elfcpp::R_ARM_LDR_SB_G0:
7885 case elfcpp::R_ARM_LDR_SB_G1:
7886 case elfcpp::R_ARM_LDR_SB_G2:
7887 case elfcpp::R_ARM_LDRS_SB_G0:
7888 case elfcpp::R_ARM_LDRS_SB_G1:
7889 case elfcpp::R_ARM_LDRS_SB_G2:
7890 case elfcpp::R_ARM_LDC_SB_G0:
7891 case elfcpp::R_ARM_LDC_SB_G1:
7892 case elfcpp::R_ARM_LDC_SB_G2:
7893 case elfcpp::R_ARM_MOVW_BREL_NC:
7894 case elfcpp::R_ARM_MOVT_BREL:
7895 case elfcpp::R_ARM_MOVW_BREL:
7896 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7897 case elfcpp::R_ARM_THM_MOVT_BREL:
7898 case elfcpp::R_ARM_THM_MOVW_BREL:
7899 case elfcpp::R_ARM_THM_JUMP11:
7900 case elfcpp::R_ARM_THM_JUMP8:
7901 // We don't need to do anything for a relative addressing relocation
7902 // against a local symbol if it does not reference the GOT.
7905 case elfcpp::R_ARM_GOTOFF32:
7906 case elfcpp::R_ARM_GOTOFF12:
7907 // We need a GOT section:
7908 target->got_section(symtab, layout);
7911 case elfcpp::R_ARM_GOT_BREL:
7912 case elfcpp::R_ARM_GOT_PREL:
7914 // The symbol requires a GOT entry.
7915 Arm_output_data_got<big_endian>* got =
7916 target->got_section(symtab, layout);
7917 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7918 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7920 // If we are generating a shared object, we need to add a
7921 // dynamic RELATIVE relocation for this symbol's GOT entry.
7922 if (parameters->options().output_is_position_independent())
7924 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7925 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7926 rel_dyn->add_local_relative(
7927 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7928 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7934 case elfcpp::R_ARM_TARGET1:
7935 case elfcpp::R_ARM_TARGET2:
7936 // This should have been mapped to another type already.
7938 case elfcpp::R_ARM_COPY:
7939 case elfcpp::R_ARM_GLOB_DAT:
7940 case elfcpp::R_ARM_JUMP_SLOT:
7941 case elfcpp::R_ARM_RELATIVE:
7942 // These are relocations which should only be seen by the
7943 // dynamic linker, and should never be seen here.
7944 gold_error(_("%s: unexpected reloc %u in object file"),
7945 object->name().c_str(), r_type);
7949 // These are initial TLS relocs, which are expected when
7951 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7952 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7953 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7954 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7955 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7957 bool output_is_shared = parameters->options().shared();
7958 const tls::Tls_optimization optimized_type
7959 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7963 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7964 if (optimized_type == tls::TLSOPT_NONE)
7966 // Create a pair of GOT entries for the module index and
7967 // dtv-relative offset.
7968 Arm_output_data_got<big_endian>* got
7969 = target->got_section(symtab, layout);
7970 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7971 unsigned int shndx = lsym.get_st_shndx();
7973 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7976 object->error(_("local symbol %u has bad shndx %u"),
7981 if (!parameters->doing_static_link())
7982 got->add_local_pair_with_rel(object, r_sym, shndx,
7984 target->rel_dyn_section(layout),
7985 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7987 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7991 // FIXME: TLS optimization not supported yet.
7995 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7996 if (optimized_type == tls::TLSOPT_NONE)
7998 // Create a GOT entry for the module index.
7999 target->got_mod_index_entry(symtab, layout, object);
8002 // FIXME: TLS optimization not supported yet.
8006 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8009 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8010 layout->set_has_static_tls();
8011 if (optimized_type == tls::TLSOPT_NONE)
8013 // Create a GOT entry for the tp-relative offset.
8014 Arm_output_data_got<big_endian>* got
8015 = target->got_section(symtab, layout);
8016 unsigned int r_sym =
8017 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8018 if (!parameters->doing_static_link())
8019 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8020 target->rel_dyn_section(layout),
8021 elfcpp::R_ARM_TLS_TPOFF32);
8022 else if (!object->local_has_got_offset(r_sym,
8023 GOT_TYPE_TLS_OFFSET))
8025 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8026 unsigned int got_offset =
8027 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8028 got->add_static_reloc(got_offset,
8029 elfcpp::R_ARM_TLS_TPOFF32, object,
8034 // FIXME: TLS optimization not supported yet.
8038 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8039 layout->set_has_static_tls();
8040 if (output_is_shared)
8042 // We need to create a dynamic relocation.
8043 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8044 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8045 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8046 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8047 output_section, data_shndx,
8048 reloc.get_r_offset());
8058 case elfcpp::R_ARM_PC24:
8059 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8060 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8061 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8063 unsupported_reloc_local(object, r_type);
8068 // Report an unsupported relocation against a global symbol.
8070 template<bool big_endian>
8072 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8073 Sized_relobj<32, big_endian>* object,
8074 unsigned int r_type,
8077 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8078 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8081 template<bool big_endian>
8083 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8084 unsigned int r_type)
8088 case elfcpp::R_ARM_PC24:
8089 case elfcpp::R_ARM_THM_CALL:
8090 case elfcpp::R_ARM_PLT32:
8091 case elfcpp::R_ARM_CALL:
8092 case elfcpp::R_ARM_JUMP24:
8093 case elfcpp::R_ARM_THM_JUMP24:
8094 case elfcpp::R_ARM_SBREL31:
8095 case elfcpp::R_ARM_PREL31:
8096 case elfcpp::R_ARM_THM_JUMP19:
8097 case elfcpp::R_ARM_THM_JUMP6:
8098 case elfcpp::R_ARM_THM_JUMP11:
8099 case elfcpp::R_ARM_THM_JUMP8:
8100 // All the relocations above are branches except SBREL31 and PREL31.
8104 // Be conservative and assume this is a function pointer.
8109 template<bool big_endian>
8111 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8114 Target_arm<big_endian>* target,
8115 Sized_relobj<32, big_endian>*,
8118 const elfcpp::Rel<32, big_endian>&,
8119 unsigned int r_type,
8120 const elfcpp::Sym<32, big_endian>&)
8122 r_type = target->get_real_reloc_type(r_type);
8123 return possible_function_pointer_reloc(r_type);
8126 template<bool big_endian>
8128 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8131 Target_arm<big_endian>* target,
8132 Sized_relobj<32, big_endian>*,
8135 const elfcpp::Rel<32, big_endian>&,
8136 unsigned int r_type,
8139 // GOT is not a function.
8140 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8143 r_type = target->get_real_reloc_type(r_type);
8144 return possible_function_pointer_reloc(r_type);
8147 // Scan a relocation for a global symbol.
8149 template<bool big_endian>
8151 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8154 Sized_relobj<32, big_endian>* object,
8155 unsigned int data_shndx,
8156 Output_section* output_section,
8157 const elfcpp::Rel<32, big_endian>& reloc,
8158 unsigned int r_type,
8161 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8162 // section. We check here to avoid creating a dynamic reloc against
8163 // _GLOBAL_OFFSET_TABLE_.
8164 if (!target->has_got_section()
8165 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8166 target->got_section(symtab, layout);
8168 r_type = get_real_reloc_type(r_type);
8171 case elfcpp::R_ARM_NONE:
8172 case elfcpp::R_ARM_V4BX:
8173 case elfcpp::R_ARM_GNU_VTENTRY:
8174 case elfcpp::R_ARM_GNU_VTINHERIT:
8177 case elfcpp::R_ARM_ABS32:
8178 case elfcpp::R_ARM_ABS16:
8179 case elfcpp::R_ARM_ABS12:
8180 case elfcpp::R_ARM_THM_ABS5:
8181 case elfcpp::R_ARM_ABS8:
8182 case elfcpp::R_ARM_BASE_ABS:
8183 case elfcpp::R_ARM_MOVW_ABS_NC:
8184 case elfcpp::R_ARM_MOVT_ABS:
8185 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8186 case elfcpp::R_ARM_THM_MOVT_ABS:
8187 case elfcpp::R_ARM_ABS32_NOI:
8188 // Absolute addressing relocations.
8190 // Make a PLT entry if necessary.
8191 if (this->symbol_needs_plt_entry(gsym))
8193 target->make_plt_entry(symtab, layout, gsym);
8194 // Since this is not a PC-relative relocation, we may be
8195 // taking the address of a function. In that case we need to
8196 // set the entry in the dynamic symbol table to the address of
8198 if (gsym->is_from_dynobj() && !parameters->options().shared())
8199 gsym->set_needs_dynsym_value();
8201 // Make a dynamic relocation if necessary.
8202 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8204 if (gsym->may_need_copy_reloc())
8206 target->copy_reloc(symtab, layout, object,
8207 data_shndx, output_section, gsym, reloc);
8209 else if ((r_type == elfcpp::R_ARM_ABS32
8210 || r_type == elfcpp::R_ARM_ABS32_NOI)
8211 && gsym->can_use_relative_reloc(false))
8213 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8214 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8215 output_section, object,
8216 data_shndx, reloc.get_r_offset());
8220 check_non_pic(object, r_type);
8221 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8222 rel_dyn->add_global(gsym, r_type, output_section, object,
8223 data_shndx, reloc.get_r_offset());
8229 case elfcpp::R_ARM_GOTOFF32:
8230 case elfcpp::R_ARM_GOTOFF12:
8231 // We need a GOT section.
8232 target->got_section(symtab, layout);
8235 case elfcpp::R_ARM_REL32:
8236 case elfcpp::R_ARM_LDR_PC_G0:
8237 case elfcpp::R_ARM_SBREL32:
8238 case elfcpp::R_ARM_THM_PC8:
8239 case elfcpp::R_ARM_BASE_PREL:
8240 case elfcpp::R_ARM_MOVW_PREL_NC:
8241 case elfcpp::R_ARM_MOVT_PREL:
8242 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8243 case elfcpp::R_ARM_THM_MOVT_PREL:
8244 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8245 case elfcpp::R_ARM_THM_PC12:
8246 case elfcpp::R_ARM_REL32_NOI:
8247 case elfcpp::R_ARM_ALU_PC_G0_NC:
8248 case elfcpp::R_ARM_ALU_PC_G0:
8249 case elfcpp::R_ARM_ALU_PC_G1_NC:
8250 case elfcpp::R_ARM_ALU_PC_G1:
8251 case elfcpp::R_ARM_ALU_PC_G2:
8252 case elfcpp::R_ARM_LDR_PC_G1:
8253 case elfcpp::R_ARM_LDR_PC_G2:
8254 case elfcpp::R_ARM_LDRS_PC_G0:
8255 case elfcpp::R_ARM_LDRS_PC_G1:
8256 case elfcpp::R_ARM_LDRS_PC_G2:
8257 case elfcpp::R_ARM_LDC_PC_G0:
8258 case elfcpp::R_ARM_LDC_PC_G1:
8259 case elfcpp::R_ARM_LDC_PC_G2:
8260 case elfcpp::R_ARM_ALU_SB_G0_NC:
8261 case elfcpp::R_ARM_ALU_SB_G0:
8262 case elfcpp::R_ARM_ALU_SB_G1_NC:
8263 case elfcpp::R_ARM_ALU_SB_G1:
8264 case elfcpp::R_ARM_ALU_SB_G2:
8265 case elfcpp::R_ARM_LDR_SB_G0:
8266 case elfcpp::R_ARM_LDR_SB_G1:
8267 case elfcpp::R_ARM_LDR_SB_G2:
8268 case elfcpp::R_ARM_LDRS_SB_G0:
8269 case elfcpp::R_ARM_LDRS_SB_G1:
8270 case elfcpp::R_ARM_LDRS_SB_G2:
8271 case elfcpp::R_ARM_LDC_SB_G0:
8272 case elfcpp::R_ARM_LDC_SB_G1:
8273 case elfcpp::R_ARM_LDC_SB_G2:
8274 case elfcpp::R_ARM_MOVW_BREL_NC:
8275 case elfcpp::R_ARM_MOVT_BREL:
8276 case elfcpp::R_ARM_MOVW_BREL:
8277 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8278 case elfcpp::R_ARM_THM_MOVT_BREL:
8279 case elfcpp::R_ARM_THM_MOVW_BREL:
8280 // Relative addressing relocations.
8282 // Make a dynamic relocation if necessary.
8283 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8285 if (target->may_need_copy_reloc(gsym))
8287 target->copy_reloc(symtab, layout, object,
8288 data_shndx, output_section, gsym, reloc);
8292 check_non_pic(object, r_type);
8293 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8294 rel_dyn->add_global(gsym, r_type, output_section, object,
8295 data_shndx, reloc.get_r_offset());
8301 case elfcpp::R_ARM_THM_CALL:
8302 case elfcpp::R_ARM_PLT32:
8303 case elfcpp::R_ARM_CALL:
8304 case elfcpp::R_ARM_JUMP24:
8305 case elfcpp::R_ARM_THM_JUMP24:
8306 case elfcpp::R_ARM_SBREL31:
8307 case elfcpp::R_ARM_PREL31:
8308 case elfcpp::R_ARM_THM_JUMP19:
8309 case elfcpp::R_ARM_THM_JUMP6:
8310 case elfcpp::R_ARM_THM_JUMP11:
8311 case elfcpp::R_ARM_THM_JUMP8:
8312 // All the relocation above are branches except for the PREL31 ones.
8313 // A PREL31 relocation can point to a personality function in a shared
8314 // library. In that case we want to use a PLT because we want to
8315 // call the personality routine and the dynamic linkers we care about
8316 // do not support dynamic PREL31 relocations. An REL31 relocation may
8317 // point to a function whose unwinding behaviour is being described but
8318 // we will not mistakenly generate a PLT for that because we should use
8319 // a local section symbol.
8321 // If the symbol is fully resolved, this is just a relative
8322 // local reloc. Otherwise we need a PLT entry.
8323 if (gsym->final_value_is_known())
8325 // If building a shared library, we can also skip the PLT entry
8326 // if the symbol is defined in the output file and is protected
8328 if (gsym->is_defined()
8329 && !gsym->is_from_dynobj()
8330 && !gsym->is_preemptible())
8332 target->make_plt_entry(symtab, layout, gsym);
8335 case elfcpp::R_ARM_GOT_BREL:
8336 case elfcpp::R_ARM_GOT_ABS:
8337 case elfcpp::R_ARM_GOT_PREL:
8339 // The symbol requires a GOT entry.
8340 Arm_output_data_got<big_endian>* got =
8341 target->got_section(symtab, layout);
8342 if (gsym->final_value_is_known())
8343 got->add_global(gsym, GOT_TYPE_STANDARD);
8346 // If this symbol is not fully resolved, we need to add a
8347 // GOT entry with a dynamic relocation.
8348 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8349 if (gsym->is_from_dynobj()
8350 || gsym->is_undefined()
8351 || gsym->is_preemptible())
8352 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8353 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8356 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8357 rel_dyn->add_global_relative(
8358 gsym, elfcpp::R_ARM_RELATIVE, got,
8359 gsym->got_offset(GOT_TYPE_STANDARD));
8365 case elfcpp::R_ARM_TARGET1:
8366 case elfcpp::R_ARM_TARGET2:
8367 // These should have been mapped to other types already.
8369 case elfcpp::R_ARM_COPY:
8370 case elfcpp::R_ARM_GLOB_DAT:
8371 case elfcpp::R_ARM_JUMP_SLOT:
8372 case elfcpp::R_ARM_RELATIVE:
8373 // These are relocations which should only be seen by the
8374 // dynamic linker, and should never be seen here.
8375 gold_error(_("%s: unexpected reloc %u in object file"),
8376 object->name().c_str(), r_type);
8379 // These are initial tls relocs, which are expected when
8381 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8382 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8383 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8384 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8385 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8387 const bool is_final = gsym->final_value_is_known();
8388 const tls::Tls_optimization optimized_type
8389 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8392 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8393 if (optimized_type == tls::TLSOPT_NONE)
8395 // Create a pair of GOT entries for the module index and
8396 // dtv-relative offset.
8397 Arm_output_data_got<big_endian>* got
8398 = target->got_section(symtab, layout);
8399 if (!parameters->doing_static_link())
8400 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8401 target->rel_dyn_section(layout),
8402 elfcpp::R_ARM_TLS_DTPMOD32,
8403 elfcpp::R_ARM_TLS_DTPOFF32);
8405 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8408 // FIXME: TLS optimization not supported yet.
8412 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8413 if (optimized_type == tls::TLSOPT_NONE)
8415 // Create a GOT entry for the module index.
8416 target->got_mod_index_entry(symtab, layout, object);
8419 // FIXME: TLS optimization not supported yet.
8423 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8426 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8427 layout->set_has_static_tls();
8428 if (optimized_type == tls::TLSOPT_NONE)
8430 // Create a GOT entry for the tp-relative offset.
8431 Arm_output_data_got<big_endian>* got
8432 = target->got_section(symtab, layout);
8433 if (!parameters->doing_static_link())
8434 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8435 target->rel_dyn_section(layout),
8436 elfcpp::R_ARM_TLS_TPOFF32);
8437 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8439 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8440 unsigned int got_offset =
8441 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8442 got->add_static_reloc(got_offset,
8443 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8447 // FIXME: TLS optimization not supported yet.
8451 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8452 layout->set_has_static_tls();
8453 if (parameters->options().shared())
8455 // We need to create a dynamic relocation.
8456 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8457 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8458 output_section, object,
8459 data_shndx, reloc.get_r_offset());
8469 case elfcpp::R_ARM_PC24:
8470 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8471 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8472 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8474 unsupported_reloc_global(object, r_type, gsym);
8479 // Process relocations for gc.
8481 template<bool big_endian>
8483 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8485 Sized_relobj<32, big_endian>* object,
8486 unsigned int data_shndx,
8488 const unsigned char* prelocs,
8490 Output_section* output_section,
8491 bool needs_special_offset_handling,
8492 size_t local_symbol_count,
8493 const unsigned char* plocal_symbols)
8495 typedef Target_arm<big_endian> Arm;
8496 typedef typename Target_arm<big_endian>::Scan Scan;
8498 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8499 typename Target_arm::Relocatable_size_for_reloc>(
8508 needs_special_offset_handling,
8513 // Scan relocations for a section.
8515 template<bool big_endian>
8517 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8519 Sized_relobj<32, big_endian>* object,
8520 unsigned int data_shndx,
8521 unsigned int sh_type,
8522 const unsigned char* prelocs,
8524 Output_section* output_section,
8525 bool needs_special_offset_handling,
8526 size_t local_symbol_count,
8527 const unsigned char* plocal_symbols)
8529 typedef typename Target_arm<big_endian>::Scan Scan;
8530 if (sh_type == elfcpp::SHT_RELA)
8532 gold_error(_("%s: unsupported RELA reloc section"),
8533 object->name().c_str());
8537 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8546 needs_special_offset_handling,
8551 // Finalize the sections.
8553 template<bool big_endian>
8555 Target_arm<big_endian>::do_finalize_sections(
8557 const Input_objects* input_objects,
8558 Symbol_table* symtab)
8560 bool merged_any_attributes = false;
8561 // Merge processor-specific flags.
8562 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8563 p != input_objects->relobj_end();
8566 Arm_relobj<big_endian>* arm_relobj =
8567 Arm_relobj<big_endian>::as_arm_relobj(*p);
8568 if (arm_relobj->merge_flags_and_attributes())
8570 this->merge_processor_specific_flags(
8572 arm_relobj->processor_specific_flags());
8573 this->merge_object_attributes(arm_relobj->name().c_str(),
8574 arm_relobj->attributes_section_data());
8575 merged_any_attributes = true;
8579 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8580 p != input_objects->dynobj_end();
8583 Arm_dynobj<big_endian>* arm_dynobj =
8584 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8585 this->merge_processor_specific_flags(
8587 arm_dynobj->processor_specific_flags());
8588 this->merge_object_attributes(arm_dynobj->name().c_str(),
8589 arm_dynobj->attributes_section_data());
8590 merged_any_attributes = true;
8593 // Create an empty uninitialized attribute section if we still don't have it
8594 // at this moment. This happens if there is no attributes sections in all
8596 if (this->attributes_section_data_ == NULL)
8597 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8600 const Object_attribute* cpu_arch_attr =
8601 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8602 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8603 this->set_may_use_blx(true);
8605 // Check if we need to use Cortex-A8 workaround.
8606 if (parameters->options().user_set_fix_cortex_a8())
8607 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8610 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8611 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8613 const Object_attribute* cpu_arch_profile_attr =
8614 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8615 this->fix_cortex_a8_ =
8616 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8617 && (cpu_arch_profile_attr->int_value() == 'A'
8618 || cpu_arch_profile_attr->int_value() == 0));
8621 // Check if we can use V4BX interworking.
8622 // The V4BX interworking stub contains BX instruction,
8623 // which is not specified for some profiles.
8624 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8625 && !this->may_use_blx())
8626 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8627 "the target profile does not support BX instruction"));
8629 // Fill in some more dynamic tags.
8630 const Reloc_section* rel_plt = (this->plt_ == NULL
8632 : this->plt_->rel_plt());
8633 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8634 this->rel_dyn_, true, false);
8636 // Emit any relocs we saved in an attempt to avoid generating COPY
8638 if (this->copy_relocs_.any_saved_relocs())
8639 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8641 // Handle the .ARM.exidx section.
8642 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8644 if (!parameters->options().relocatable())
8646 if (exidx_section != NULL
8647 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8649 // Create __exidx_start and __exidx_end symbols.
8650 symtab->define_in_output_data("__exidx_start", NULL,
8651 Symbol_table::PREDEFINED,
8652 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8653 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8655 symtab->define_in_output_data("__exidx_end", NULL,
8656 Symbol_table::PREDEFINED,
8657 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8658 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8661 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8662 // the .ARM.exidx section.
8663 if (!layout->script_options()->saw_phdrs_clause())
8665 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8668 Output_segment* exidx_segment =
8669 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8670 exidx_segment->add_output_section_to_nonload(exidx_section,
8676 symtab->define_as_constant("__exidx_start", NULL,
8677 Symbol_table::PREDEFINED,
8678 0, 0, elfcpp::STT_OBJECT,
8679 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8681 symtab->define_as_constant("__exidx_end", NULL,
8682 Symbol_table::PREDEFINED,
8683 0, 0, elfcpp::STT_OBJECT,
8684 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8689 // Create an .ARM.attributes section if we have merged any attributes
8691 if (merged_any_attributes)
8693 Output_attributes_section_data* attributes_section =
8694 new Output_attributes_section_data(*this->attributes_section_data_);
8695 layout->add_output_section_data(".ARM.attributes",
8696 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8697 attributes_section, ORDER_INVALID,
8701 // Fix up links in section EXIDX headers.
8702 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8703 p != layout->section_list().end();
8705 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8707 Arm_output_section<big_endian>* os =
8708 Arm_output_section<big_endian>::as_arm_output_section(*p);
8709 os->set_exidx_section_link();
8713 // Return whether a direct absolute static relocation needs to be applied.
8714 // In cases where Scan::local() or Scan::global() has created
8715 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8716 // of the relocation is carried in the data, and we must not
8717 // apply the static relocation.
8719 template<bool big_endian>
8721 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8722 const Sized_symbol<32>* gsym,
8723 unsigned int r_type,
8725 Output_section* output_section)
8727 // If the output section is not allocated, then we didn't call
8728 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8730 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8733 int ref_flags = Scan::get_reference_flags(r_type);
8735 // For local symbols, we will have created a non-RELATIVE dynamic
8736 // relocation only if (a) the output is position independent,
8737 // (b) the relocation is absolute (not pc- or segment-relative), and
8738 // (c) the relocation is not 32 bits wide.
8740 return !(parameters->options().output_is_position_independent()
8741 && (ref_flags & Symbol::ABSOLUTE_REF)
8744 // For global symbols, we use the same helper routines used in the
8745 // scan pass. If we did not create a dynamic relocation, or if we
8746 // created a RELATIVE dynamic relocation, we should apply the static
8748 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8749 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8750 && gsym->can_use_relative_reloc(ref_flags
8751 & Symbol::FUNCTION_CALL);
8752 return !has_dyn || is_rel;
8755 // Perform a relocation.
8757 template<bool big_endian>
8759 Target_arm<big_endian>::Relocate::relocate(
8760 const Relocate_info<32, big_endian>* relinfo,
8762 Output_section* output_section,
8764 const elfcpp::Rel<32, big_endian>& rel,
8765 unsigned int r_type,
8766 const Sized_symbol<32>* gsym,
8767 const Symbol_value<32>* psymval,
8768 unsigned char* view,
8769 Arm_address address,
8770 section_size_type view_size)
8772 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8774 r_type = get_real_reloc_type(r_type);
8775 const Arm_reloc_property* reloc_property =
8776 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8777 if (reloc_property == NULL)
8779 std::string reloc_name =
8780 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8781 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8782 _("cannot relocate %s in object file"),
8783 reloc_name.c_str());
8787 const Arm_relobj<big_endian>* object =
8788 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8790 // If the final branch target of a relocation is THUMB instruction, this
8791 // is 1. Otherwise it is 0.
8792 Arm_address thumb_bit = 0;
8793 Symbol_value<32> symval;
8794 bool is_weakly_undefined_without_plt = false;
8795 bool have_got_offset = false;
8796 unsigned int got_offset = 0;
8798 // If the relocation uses the GOT entry of a symbol instead of the symbol
8799 // itself, we don't care about whether the symbol is defined or what kind
8801 if (reloc_property->uses_got_entry())
8803 // Get the GOT offset.
8804 // The GOT pointer points to the end of the GOT section.
8805 // We need to subtract the size of the GOT section to get
8806 // the actual offset to use in the relocation.
8807 // TODO: We should move GOT offset computing code in TLS relocations
8811 case elfcpp::R_ARM_GOT_BREL:
8812 case elfcpp::R_ARM_GOT_PREL:
8815 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8816 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8817 - target->got_size());
8821 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8822 gold_assert(object->local_has_got_offset(r_sym,
8823 GOT_TYPE_STANDARD));
8824 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8825 - target->got_size());
8827 have_got_offset = true;
8834 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8838 // This is a global symbol. Determine if we use PLT and if the
8839 // final target is THUMB.
8840 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8842 // This uses a PLT, change the symbol value.
8843 symval.set_output_value(target->plt_section()->address()
8844 + gsym->plt_offset());
8847 else if (gsym->is_weak_undefined())
8849 // This is a weakly undefined symbol and we do not use PLT
8850 // for this relocation. A branch targeting this symbol will
8851 // be converted into an NOP.
8852 is_weakly_undefined_without_plt = true;
8854 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8856 // This relocation uses the symbol value but the symbol is
8857 // undefined. Exit early and have the caller reporting an
8863 // Set thumb bit if symbol:
8864 // -Has type STT_ARM_TFUNC or
8865 // -Has type STT_FUNC, is defined and with LSB in value set.
8867 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8868 || (gsym->type() == elfcpp::STT_FUNC
8869 && !gsym->is_undefined()
8870 && ((psymval->value(object, 0) & 1) != 0)))
8877 // This is a local symbol. Determine if the final target is THUMB.
8878 // We saved this information when all the local symbols were read.
8879 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8880 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8881 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8886 // This is a fake relocation synthesized for a stub. It does not have
8887 // a real symbol. We just look at the LSB of the symbol value to
8888 // determine if the target is THUMB or not.
8889 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8892 // Strip LSB if this points to a THUMB target.
8894 && reloc_property->uses_thumb_bit()
8895 && ((psymval->value(object, 0) & 1) != 0))
8897 Arm_address stripped_value =
8898 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8899 symval.set_output_value(stripped_value);
8903 // To look up relocation stubs, we need to pass the symbol table index of
8905 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8907 // Get the addressing origin of the output segment defining the
8908 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8909 Arm_address sym_origin = 0;
8910 if (reloc_property->uses_symbol_base())
8912 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8913 // R_ARM_BASE_ABS with the NULL symbol will give the
8914 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8915 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8916 sym_origin = target->got_plt_section()->address();
8917 else if (gsym == NULL)
8919 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8920 sym_origin = gsym->output_segment()->vaddr();
8921 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8922 sym_origin = gsym->output_data()->address();
8924 // TODO: Assumes the segment base to be zero for the global symbols
8925 // till the proper support for the segment-base-relative addressing
8926 // will be implemented. This is consistent with GNU ld.
8929 // For relative addressing relocation, find out the relative address base.
8930 Arm_address relative_address_base = 0;
8931 switch(reloc_property->relative_address_base())
8933 case Arm_reloc_property::RAB_NONE:
8934 // Relocations with relative address bases RAB_TLS and RAB_tp are
8935 // handled by relocate_tls. So we do not need to do anything here.
8936 case Arm_reloc_property::RAB_TLS:
8937 case Arm_reloc_property::RAB_tp:
8939 case Arm_reloc_property::RAB_B_S:
8940 relative_address_base = sym_origin;
8942 case Arm_reloc_property::RAB_GOT_ORG:
8943 relative_address_base = target->got_plt_section()->address();
8945 case Arm_reloc_property::RAB_P:
8946 relative_address_base = address;
8948 case Arm_reloc_property::RAB_Pa:
8949 relative_address_base = address & 0xfffffffcU;
8955 typename Arm_relocate_functions::Status reloc_status =
8956 Arm_relocate_functions::STATUS_OKAY;
8957 bool check_overflow = reloc_property->checks_overflow();
8960 case elfcpp::R_ARM_NONE:
8963 case elfcpp::R_ARM_ABS8:
8964 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8965 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8968 case elfcpp::R_ARM_ABS12:
8969 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8970 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8973 case elfcpp::R_ARM_ABS16:
8974 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8975 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8978 case elfcpp::R_ARM_ABS32:
8979 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8980 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8984 case elfcpp::R_ARM_ABS32_NOI:
8985 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8986 // No thumb bit for this relocation: (S + A)
8987 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8991 case elfcpp::R_ARM_MOVW_ABS_NC:
8992 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8993 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8998 case elfcpp::R_ARM_MOVT_ABS:
8999 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9000 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9003 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9004 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9005 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9006 0, thumb_bit, false);
9009 case elfcpp::R_ARM_THM_MOVT_ABS:
9010 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9011 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9015 case elfcpp::R_ARM_MOVW_PREL_NC:
9016 case elfcpp::R_ARM_MOVW_BREL_NC:
9017 case elfcpp::R_ARM_MOVW_BREL:
9019 Arm_relocate_functions::movw(view, object, psymval,
9020 relative_address_base, thumb_bit,
9024 case elfcpp::R_ARM_MOVT_PREL:
9025 case elfcpp::R_ARM_MOVT_BREL:
9027 Arm_relocate_functions::movt(view, object, psymval,
9028 relative_address_base);
9031 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9032 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9033 case elfcpp::R_ARM_THM_MOVW_BREL:
9035 Arm_relocate_functions::thm_movw(view, object, psymval,
9036 relative_address_base,
9037 thumb_bit, check_overflow);
9040 case elfcpp::R_ARM_THM_MOVT_PREL:
9041 case elfcpp::R_ARM_THM_MOVT_BREL:
9043 Arm_relocate_functions::thm_movt(view, object, psymval,
9044 relative_address_base);
9047 case elfcpp::R_ARM_REL32:
9048 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9049 address, thumb_bit);
9052 case elfcpp::R_ARM_THM_ABS5:
9053 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9054 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9057 // Thumb long branches.
9058 case elfcpp::R_ARM_THM_CALL:
9059 case elfcpp::R_ARM_THM_XPC22:
9060 case elfcpp::R_ARM_THM_JUMP24:
9062 Arm_relocate_functions::thumb_branch_common(
9063 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9064 thumb_bit, is_weakly_undefined_without_plt);
9067 case elfcpp::R_ARM_GOTOFF32:
9069 Arm_address got_origin;
9070 got_origin = target->got_plt_section()->address();
9071 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9072 got_origin, thumb_bit);
9076 case elfcpp::R_ARM_BASE_PREL:
9077 gold_assert(gsym != NULL);
9079 Arm_relocate_functions::base_prel(view, sym_origin, address);
9082 case elfcpp::R_ARM_BASE_ABS:
9083 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9084 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9087 case elfcpp::R_ARM_GOT_BREL:
9088 gold_assert(have_got_offset);
9089 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9092 case elfcpp::R_ARM_GOT_PREL:
9093 gold_assert(have_got_offset);
9094 // Get the address origin for GOT PLT, which is allocated right
9095 // after the GOT section, to calculate an absolute address of
9096 // the symbol GOT entry (got_origin + got_offset).
9097 Arm_address got_origin;
9098 got_origin = target->got_plt_section()->address();
9099 reloc_status = Arm_relocate_functions::got_prel(view,
9100 got_origin + got_offset,
9104 case elfcpp::R_ARM_PLT32:
9105 case elfcpp::R_ARM_CALL:
9106 case elfcpp::R_ARM_JUMP24:
9107 case elfcpp::R_ARM_XPC25:
9108 gold_assert(gsym == NULL
9109 || gsym->has_plt_offset()
9110 || gsym->final_value_is_known()
9111 || (gsym->is_defined()
9112 && !gsym->is_from_dynobj()
9113 && !gsym->is_preemptible()));
9115 Arm_relocate_functions::arm_branch_common(
9116 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9117 thumb_bit, is_weakly_undefined_without_plt);
9120 case elfcpp::R_ARM_THM_JUMP19:
9122 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9126 case elfcpp::R_ARM_THM_JUMP6:
9128 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9131 case elfcpp::R_ARM_THM_JUMP8:
9133 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9136 case elfcpp::R_ARM_THM_JUMP11:
9138 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9141 case elfcpp::R_ARM_PREL31:
9142 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9143 address, thumb_bit);
9146 case elfcpp::R_ARM_V4BX:
9147 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9149 const bool is_v4bx_interworking =
9150 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9152 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9153 is_v4bx_interworking);
9157 case elfcpp::R_ARM_THM_PC8:
9159 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9162 case elfcpp::R_ARM_THM_PC12:
9164 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9167 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9169 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9173 case elfcpp::R_ARM_ALU_PC_G0_NC:
9174 case elfcpp::R_ARM_ALU_PC_G0:
9175 case elfcpp::R_ARM_ALU_PC_G1_NC:
9176 case elfcpp::R_ARM_ALU_PC_G1:
9177 case elfcpp::R_ARM_ALU_PC_G2:
9178 case elfcpp::R_ARM_ALU_SB_G0_NC:
9179 case elfcpp::R_ARM_ALU_SB_G0:
9180 case elfcpp::R_ARM_ALU_SB_G1_NC:
9181 case elfcpp::R_ARM_ALU_SB_G1:
9182 case elfcpp::R_ARM_ALU_SB_G2:
9184 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9185 reloc_property->group_index(),
9186 relative_address_base,
9187 thumb_bit, check_overflow);
9190 case elfcpp::R_ARM_LDR_PC_G0:
9191 case elfcpp::R_ARM_LDR_PC_G1:
9192 case elfcpp::R_ARM_LDR_PC_G2:
9193 case elfcpp::R_ARM_LDR_SB_G0:
9194 case elfcpp::R_ARM_LDR_SB_G1:
9195 case elfcpp::R_ARM_LDR_SB_G2:
9197 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9198 reloc_property->group_index(),
9199 relative_address_base);
9202 case elfcpp::R_ARM_LDRS_PC_G0:
9203 case elfcpp::R_ARM_LDRS_PC_G1:
9204 case elfcpp::R_ARM_LDRS_PC_G2:
9205 case elfcpp::R_ARM_LDRS_SB_G0:
9206 case elfcpp::R_ARM_LDRS_SB_G1:
9207 case elfcpp::R_ARM_LDRS_SB_G2:
9209 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9210 reloc_property->group_index(),
9211 relative_address_base);
9214 case elfcpp::R_ARM_LDC_PC_G0:
9215 case elfcpp::R_ARM_LDC_PC_G1:
9216 case elfcpp::R_ARM_LDC_PC_G2:
9217 case elfcpp::R_ARM_LDC_SB_G0:
9218 case elfcpp::R_ARM_LDC_SB_G1:
9219 case elfcpp::R_ARM_LDC_SB_G2:
9221 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9222 reloc_property->group_index(),
9223 relative_address_base);
9226 // These are initial tls relocs, which are expected when
9228 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9229 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9230 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9231 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9232 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9234 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9235 view, address, view_size);
9238 // The known and unknown unsupported and/or deprecated relocations.
9239 case elfcpp::R_ARM_PC24:
9240 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9241 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9242 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9244 // Just silently leave the method. We should get an appropriate error
9245 // message in the scan methods.
9249 // Report any errors.
9250 switch (reloc_status)
9252 case Arm_relocate_functions::STATUS_OKAY:
9254 case Arm_relocate_functions::STATUS_OVERFLOW:
9255 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9256 _("relocation overflow in %s"),
9257 reloc_property->name().c_str());
9259 case Arm_relocate_functions::STATUS_BAD_RELOC:
9260 gold_error_at_location(
9264 _("unexpected opcode while processing relocation %s"),
9265 reloc_property->name().c_str());
9274 // Perform a TLS relocation.
9276 template<bool big_endian>
9277 inline typename Arm_relocate_functions<big_endian>::Status
9278 Target_arm<big_endian>::Relocate::relocate_tls(
9279 const Relocate_info<32, big_endian>* relinfo,
9280 Target_arm<big_endian>* target,
9282 const elfcpp::Rel<32, big_endian>& rel,
9283 unsigned int r_type,
9284 const Sized_symbol<32>* gsym,
9285 const Symbol_value<32>* psymval,
9286 unsigned char* view,
9287 elfcpp::Elf_types<32>::Elf_Addr address,
9288 section_size_type /*view_size*/ )
9290 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9291 typedef Relocate_functions<32, big_endian> RelocFuncs;
9292 Output_segment* tls_segment = relinfo->layout->tls_segment();
9294 const Sized_relobj<32, big_endian>* object = relinfo->object;
9296 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9298 const bool is_final = (gsym == NULL
9299 ? !parameters->options().shared()
9300 : gsym->final_value_is_known());
9301 const tls::Tls_optimization optimized_type
9302 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9305 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9307 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9308 unsigned int got_offset;
9311 gold_assert(gsym->has_got_offset(got_type));
9312 got_offset = gsym->got_offset(got_type) - target->got_size();
9316 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9317 gold_assert(object->local_has_got_offset(r_sym, got_type));
9318 got_offset = (object->local_got_offset(r_sym, got_type)
9319 - target->got_size());
9321 if (optimized_type == tls::TLSOPT_NONE)
9323 Arm_address got_entry =
9324 target->got_plt_section()->address() + got_offset;
9326 // Relocate the field with the PC relative offset of the pair of
9328 RelocFuncs::pcrel32(view, got_entry, address);
9329 return ArmRelocFuncs::STATUS_OKAY;
9334 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9335 if (optimized_type == tls::TLSOPT_NONE)
9337 // Relocate the field with the offset of the GOT entry for
9338 // the module index.
9339 unsigned int got_offset;
9340 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9341 - target->got_size());
9342 Arm_address got_entry =
9343 target->got_plt_section()->address() + got_offset;
9345 // Relocate the field with the PC relative offset of the pair of
9347 RelocFuncs::pcrel32(view, got_entry, address);
9348 return ArmRelocFuncs::STATUS_OKAY;
9352 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9353 RelocFuncs::rel32(view, value);
9354 return ArmRelocFuncs::STATUS_OKAY;
9356 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9357 if (optimized_type == tls::TLSOPT_NONE)
9359 // Relocate the field with the offset of the GOT entry for
9360 // the tp-relative offset of the symbol.
9361 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9362 unsigned int got_offset;
9365 gold_assert(gsym->has_got_offset(got_type));
9366 got_offset = gsym->got_offset(got_type);
9370 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9371 gold_assert(object->local_has_got_offset(r_sym, got_type));
9372 got_offset = object->local_got_offset(r_sym, got_type);
9375 // All GOT offsets are relative to the end of the GOT.
9376 got_offset -= target->got_size();
9378 Arm_address got_entry =
9379 target->got_plt_section()->address() + got_offset;
9381 // Relocate the field with the PC relative offset of the GOT entry.
9382 RelocFuncs::pcrel32(view, got_entry, address);
9383 return ArmRelocFuncs::STATUS_OKAY;
9387 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9388 // If we're creating a shared library, a dynamic relocation will
9389 // have been created for this location, so do not apply it now.
9390 if (!parameters->options().shared())
9392 gold_assert(tls_segment != NULL);
9394 // $tp points to the TCB, which is followed by the TLS, so we
9395 // need to add TCB size to the offset.
9396 Arm_address aligned_tcb_size =
9397 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9398 RelocFuncs::rel32(view, value + aligned_tcb_size);
9401 return ArmRelocFuncs::STATUS_OKAY;
9407 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9408 _("unsupported reloc %u"),
9410 return ArmRelocFuncs::STATUS_BAD_RELOC;
9413 // Relocate section data.
9415 template<bool big_endian>
9417 Target_arm<big_endian>::relocate_section(
9418 const Relocate_info<32, big_endian>* relinfo,
9419 unsigned int sh_type,
9420 const unsigned char* prelocs,
9422 Output_section* output_section,
9423 bool needs_special_offset_handling,
9424 unsigned char* view,
9425 Arm_address address,
9426 section_size_type view_size,
9427 const Reloc_symbol_changes* reloc_symbol_changes)
9429 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9430 gold_assert(sh_type == elfcpp::SHT_REL);
9432 // See if we are relocating a relaxed input section. If so, the view
9433 // covers the whole output section and we need to adjust accordingly.
9434 if (needs_special_offset_handling)
9436 const Output_relaxed_input_section* poris =
9437 output_section->find_relaxed_input_section(relinfo->object,
9438 relinfo->data_shndx);
9441 Arm_address section_address = poris->address();
9442 section_size_type section_size = poris->data_size();
9444 gold_assert((section_address >= address)
9445 && ((section_address + section_size)
9446 <= (address + view_size)));
9448 off_t offset = section_address - address;
9451 view_size = section_size;
9455 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9462 needs_special_offset_handling,
9466 reloc_symbol_changes);
9469 // Return the size of a relocation while scanning during a relocatable
9472 template<bool big_endian>
9474 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9475 unsigned int r_type,
9478 r_type = get_real_reloc_type(r_type);
9479 const Arm_reloc_property* arp =
9480 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9485 std::string reloc_name =
9486 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9487 gold_error(_("%s: unexpected %s in object file"),
9488 object->name().c_str(), reloc_name.c_str());
9493 // Scan the relocs during a relocatable link.
9495 template<bool big_endian>
9497 Target_arm<big_endian>::scan_relocatable_relocs(
9498 Symbol_table* symtab,
9500 Sized_relobj<32, big_endian>* object,
9501 unsigned int data_shndx,
9502 unsigned int sh_type,
9503 const unsigned char* prelocs,
9505 Output_section* output_section,
9506 bool needs_special_offset_handling,
9507 size_t local_symbol_count,
9508 const unsigned char* plocal_symbols,
9509 Relocatable_relocs* rr)
9511 gold_assert(sh_type == elfcpp::SHT_REL);
9513 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9514 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9516 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9517 Scan_relocatable_relocs>(
9525 needs_special_offset_handling,
9531 // Relocate a section during a relocatable link.
9533 template<bool big_endian>
9535 Target_arm<big_endian>::relocate_for_relocatable(
9536 const Relocate_info<32, big_endian>* relinfo,
9537 unsigned int sh_type,
9538 const unsigned char* prelocs,
9540 Output_section* output_section,
9541 off_t offset_in_output_section,
9542 const Relocatable_relocs* rr,
9543 unsigned char* view,
9544 Arm_address view_address,
9545 section_size_type view_size,
9546 unsigned char* reloc_view,
9547 section_size_type reloc_view_size)
9549 gold_assert(sh_type == elfcpp::SHT_REL);
9551 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9556 offset_in_output_section,
9565 // Perform target-specific processing in a relocatable link. This is
9566 // only used if we use the relocation strategy RELOC_SPECIAL.
9568 template<bool big_endian>
9570 Target_arm<big_endian>::relocate_special_relocatable(
9571 const Relocate_info<32, big_endian>* relinfo,
9572 unsigned int sh_type,
9573 const unsigned char* preloc_in,
9575 Output_section* output_section,
9576 off_t offset_in_output_section,
9577 unsigned char* view,
9578 elfcpp::Elf_types<32>::Elf_Addr view_address,
9580 unsigned char* preloc_out)
9582 // We can only handle REL type relocation sections.
9583 gold_assert(sh_type == elfcpp::SHT_REL);
9585 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9586 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9588 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9590 const Arm_relobj<big_endian>* object =
9591 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9592 const unsigned int local_count = object->local_symbol_count();
9594 Reltype reloc(preloc_in);
9595 Reltype_write reloc_write(preloc_out);
9597 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9598 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9599 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9601 const Arm_reloc_property* arp =
9602 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9603 gold_assert(arp != NULL);
9605 // Get the new symbol index.
9606 // We only use RELOC_SPECIAL strategy in local relocations.
9607 gold_assert(r_sym < local_count);
9609 // We are adjusting a section symbol. We need to find
9610 // the symbol table index of the section symbol for
9611 // the output section corresponding to input section
9612 // in which this symbol is defined.
9614 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9615 gold_assert(is_ordinary);
9616 Output_section* os = object->output_section(shndx);
9617 gold_assert(os != NULL);
9618 gold_assert(os->needs_symtab_index());
9619 unsigned int new_symndx = os->symtab_index();
9621 // Get the new offset--the location in the output section where
9622 // this relocation should be applied.
9624 Arm_address offset = reloc.get_r_offset();
9625 Arm_address new_offset;
9626 if (offset_in_output_section != invalid_address)
9627 new_offset = offset + offset_in_output_section;
9630 section_offset_type sot_offset =
9631 convert_types<section_offset_type, Arm_address>(offset);
9632 section_offset_type new_sot_offset =
9633 output_section->output_offset(object, relinfo->data_shndx,
9635 gold_assert(new_sot_offset != -1);
9636 new_offset = new_sot_offset;
9639 // In an object file, r_offset is an offset within the section.
9640 // In an executable or dynamic object, generated by
9641 // --emit-relocs, r_offset is an absolute address.
9642 if (!parameters->options().relocatable())
9644 new_offset += view_address;
9645 if (offset_in_output_section != invalid_address)
9646 new_offset -= offset_in_output_section;
9649 reloc_write.put_r_offset(new_offset);
9650 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9652 // Handle the reloc addend.
9653 // The relocation uses a section symbol in the input file.
9654 // We are adjusting it to use a section symbol in the output
9655 // file. The input section symbol refers to some address in
9656 // the input section. We need the relocation in the output
9657 // file to refer to that same address. This adjustment to
9658 // the addend is the same calculation we use for a simple
9659 // absolute relocation for the input section symbol.
9661 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9663 // Handle THUMB bit.
9664 Symbol_value<32> symval;
9665 Arm_address thumb_bit =
9666 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9668 && arp->uses_thumb_bit()
9669 && ((psymval->value(object, 0) & 1) != 0))
9671 Arm_address stripped_value =
9672 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9673 symval.set_output_value(stripped_value);
9677 unsigned char* paddend = view + offset;
9678 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9679 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9682 case elfcpp::R_ARM_ABS8:
9683 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9687 case elfcpp::R_ARM_ABS12:
9688 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9692 case elfcpp::R_ARM_ABS16:
9693 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9697 case elfcpp::R_ARM_THM_ABS5:
9698 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9703 case elfcpp::R_ARM_MOVW_ABS_NC:
9704 case elfcpp::R_ARM_MOVW_PREL_NC:
9705 case elfcpp::R_ARM_MOVW_BREL_NC:
9706 case elfcpp::R_ARM_MOVW_BREL:
9707 reloc_status = Arm_relocate_functions<big_endian>::movw(
9708 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9711 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9712 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9713 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9714 case elfcpp::R_ARM_THM_MOVW_BREL:
9715 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9716 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9719 case elfcpp::R_ARM_THM_CALL:
9720 case elfcpp::R_ARM_THM_XPC22:
9721 case elfcpp::R_ARM_THM_JUMP24:
9723 Arm_relocate_functions<big_endian>::thumb_branch_common(
9724 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9728 case elfcpp::R_ARM_PLT32:
9729 case elfcpp::R_ARM_CALL:
9730 case elfcpp::R_ARM_JUMP24:
9731 case elfcpp::R_ARM_XPC25:
9733 Arm_relocate_functions<big_endian>::arm_branch_common(
9734 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9738 case elfcpp::R_ARM_THM_JUMP19:
9740 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9741 psymval, 0, thumb_bit);
9744 case elfcpp::R_ARM_THM_JUMP6:
9746 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9750 case elfcpp::R_ARM_THM_JUMP8:
9752 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9756 case elfcpp::R_ARM_THM_JUMP11:
9758 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9762 case elfcpp::R_ARM_PREL31:
9764 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9768 case elfcpp::R_ARM_THM_PC8:
9770 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9774 case elfcpp::R_ARM_THM_PC12:
9776 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9780 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9782 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9786 // These relocation truncate relocation results so we cannot handle them
9787 // in a relocatable link.
9788 case elfcpp::R_ARM_MOVT_ABS:
9789 case elfcpp::R_ARM_THM_MOVT_ABS:
9790 case elfcpp::R_ARM_MOVT_PREL:
9791 case elfcpp::R_ARM_MOVT_BREL:
9792 case elfcpp::R_ARM_THM_MOVT_PREL:
9793 case elfcpp::R_ARM_THM_MOVT_BREL:
9794 case elfcpp::R_ARM_ALU_PC_G0_NC:
9795 case elfcpp::R_ARM_ALU_PC_G0:
9796 case elfcpp::R_ARM_ALU_PC_G1_NC:
9797 case elfcpp::R_ARM_ALU_PC_G1:
9798 case elfcpp::R_ARM_ALU_PC_G2:
9799 case elfcpp::R_ARM_ALU_SB_G0_NC:
9800 case elfcpp::R_ARM_ALU_SB_G0:
9801 case elfcpp::R_ARM_ALU_SB_G1_NC:
9802 case elfcpp::R_ARM_ALU_SB_G1:
9803 case elfcpp::R_ARM_ALU_SB_G2:
9804 case elfcpp::R_ARM_LDR_PC_G0:
9805 case elfcpp::R_ARM_LDR_PC_G1:
9806 case elfcpp::R_ARM_LDR_PC_G2:
9807 case elfcpp::R_ARM_LDR_SB_G0:
9808 case elfcpp::R_ARM_LDR_SB_G1:
9809 case elfcpp::R_ARM_LDR_SB_G2:
9810 case elfcpp::R_ARM_LDRS_PC_G0:
9811 case elfcpp::R_ARM_LDRS_PC_G1:
9812 case elfcpp::R_ARM_LDRS_PC_G2:
9813 case elfcpp::R_ARM_LDRS_SB_G0:
9814 case elfcpp::R_ARM_LDRS_SB_G1:
9815 case elfcpp::R_ARM_LDRS_SB_G2:
9816 case elfcpp::R_ARM_LDC_PC_G0:
9817 case elfcpp::R_ARM_LDC_PC_G1:
9818 case elfcpp::R_ARM_LDC_PC_G2:
9819 case elfcpp::R_ARM_LDC_SB_G0:
9820 case elfcpp::R_ARM_LDC_SB_G1:
9821 case elfcpp::R_ARM_LDC_SB_G2:
9822 gold_error(_("cannot handle %s in a relocatable link"),
9823 arp->name().c_str());
9830 // Report any errors.
9831 switch (reloc_status)
9833 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9835 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9836 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9837 _("relocation overflow in %s"),
9838 arp->name().c_str());
9840 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9841 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9842 _("unexpected opcode while processing relocation %s"),
9843 arp->name().c_str());
9850 // Return the value to use for a dynamic symbol which requires special
9851 // treatment. This is how we support equality comparisons of function
9852 // pointers across shared library boundaries, as described in the
9853 // processor specific ABI supplement.
9855 template<bool big_endian>
9857 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9859 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9860 return this->plt_section()->address() + gsym->plt_offset();
9863 // Map platform-specific relocs to real relocs
9865 template<bool big_endian>
9867 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9871 case elfcpp::R_ARM_TARGET1:
9872 // This is either R_ARM_ABS32 or R_ARM_REL32;
9873 return elfcpp::R_ARM_ABS32;
9875 case elfcpp::R_ARM_TARGET2:
9876 // This can be any reloc type but usually is R_ARM_GOT_PREL
9877 return elfcpp::R_ARM_GOT_PREL;
9884 // Whether if two EABI versions V1 and V2 are compatible.
9886 template<bool big_endian>
9888 Target_arm<big_endian>::are_eabi_versions_compatible(
9889 elfcpp::Elf_Word v1,
9890 elfcpp::Elf_Word v2)
9892 // v4 and v5 are the same spec before and after it was released,
9893 // so allow mixing them.
9894 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9895 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9896 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9902 // Combine FLAGS from an input object called NAME and the processor-specific
9903 // flags in the ELF header of the output. Much of this is adapted from the
9904 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9905 // in bfd/elf32-arm.c.
9907 template<bool big_endian>
9909 Target_arm<big_endian>::merge_processor_specific_flags(
9910 const std::string& name,
9911 elfcpp::Elf_Word flags)
9913 if (this->are_processor_specific_flags_set())
9915 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9917 // Nothing to merge if flags equal to those in output.
9918 if (flags == out_flags)
9921 // Complain about various flag mismatches.
9922 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9923 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9924 if (!this->are_eabi_versions_compatible(version1, version2)
9925 && parameters->options().warn_mismatch())
9926 gold_error(_("Source object %s has EABI version %d but output has "
9927 "EABI version %d."),
9929 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9930 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9934 // If the input is the default architecture and had the default
9935 // flags then do not bother setting the flags for the output
9936 // architecture, instead allow future merges to do this. If no
9937 // future merges ever set these flags then they will retain their
9938 // uninitialised values, which surprise surprise, correspond
9939 // to the default values.
9943 // This is the first time, just copy the flags.
9944 // We only copy the EABI version for now.
9945 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9949 // Adjust ELF file header.
9950 template<bool big_endian>
9952 Target_arm<big_endian>::do_adjust_elf_header(
9953 unsigned char* view,
9956 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9958 elfcpp::Ehdr<32, big_endian> ehdr(view);
9959 unsigned char e_ident[elfcpp::EI_NIDENT];
9960 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9962 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9963 == elfcpp::EF_ARM_EABI_UNKNOWN)
9964 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9966 e_ident[elfcpp::EI_OSABI] = 0;
9967 e_ident[elfcpp::EI_ABIVERSION] = 0;
9969 // FIXME: Do EF_ARM_BE8 adjustment.
9971 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9972 oehdr.put_e_ident(e_ident);
9975 // do_make_elf_object to override the same function in the base class.
9976 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9977 // to store ARM specific information. Hence we need to have our own
9978 // ELF object creation.
9980 template<bool big_endian>
9982 Target_arm<big_endian>::do_make_elf_object(
9983 const std::string& name,
9984 Input_file* input_file,
9985 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9987 int et = ehdr.get_e_type();
9988 if (et == elfcpp::ET_REL)
9990 Arm_relobj<big_endian>* obj =
9991 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9995 else if (et == elfcpp::ET_DYN)
9997 Sized_dynobj<32, big_endian>* obj =
9998 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10004 gold_error(_("%s: unsupported ELF file type %d"),
10010 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10011 // Returns -1 if no architecture could be read.
10012 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10014 template<bool big_endian>
10016 Target_arm<big_endian>::get_secondary_compatible_arch(
10017 const Attributes_section_data* pasd)
10019 const Object_attribute* known_attributes =
10020 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10022 // Note: the tag and its argument below are uleb128 values, though
10023 // currently-defined values fit in one byte for each.
10024 const std::string& sv =
10025 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10027 && sv.data()[0] == elfcpp::Tag_CPU_arch
10028 && (sv.data()[1] & 128) != 128)
10029 return sv.data()[1];
10031 // This tag is "safely ignorable", so don't complain if it looks funny.
10035 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10036 // The tag is removed if ARCH is -1.
10037 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10039 template<bool big_endian>
10041 Target_arm<big_endian>::set_secondary_compatible_arch(
10042 Attributes_section_data* pasd,
10045 Object_attribute* known_attributes =
10046 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10050 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10054 // Note: the tag and its argument below are uleb128 values, though
10055 // currently-defined values fit in one byte for each.
10057 sv[0] = elfcpp::Tag_CPU_arch;
10058 gold_assert(arch != 0);
10062 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10065 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10067 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10069 template<bool big_endian>
10071 Target_arm<big_endian>::tag_cpu_arch_combine(
10074 int* secondary_compat_out,
10076 int secondary_compat)
10078 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10079 static const int v6t2[] =
10081 T(V6T2), // PRE_V4.
10091 static const int v6k[] =
10104 static const int v7[] =
10118 static const int v6_m[] =
10133 static const int v6s_m[] =
10149 static const int v7e_m[] =
10156 T(V7E_M), // V5TEJ.
10163 T(V7E_M), // V6S_M.
10166 static const int v4t_plus_v6_m[] =
10173 T(V5TEJ), // V5TEJ.
10180 T(V6S_M), // V6S_M.
10181 T(V7E_M), // V7E_M.
10182 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10184 static const int* comb[] =
10192 // Pseudo-architecture.
10196 // Check we've not got a higher architecture than we know about.
10198 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
10200 gold_error(_("%s: unknown CPU architecture"), name);
10204 // Override old tag if we have a Tag_also_compatible_with on the output.
10206 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10207 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10208 oldtag = T(V4T_PLUS_V6_M);
10210 // And override the new tag if we have a Tag_also_compatible_with on the
10213 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10214 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10215 newtag = T(V4T_PLUS_V6_M);
10217 // Architectures before V6KZ add features monotonically.
10218 int tagh = std::max(oldtag, newtag);
10219 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10222 int tagl = std::min(oldtag, newtag);
10223 int result = comb[tagh - T(V6T2)][tagl];
10225 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10226 // as the canonical version.
10227 if (result == T(V4T_PLUS_V6_M))
10230 *secondary_compat_out = T(V6_M);
10233 *secondary_compat_out = -1;
10237 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10238 name, oldtag, newtag);
10246 // Helper to print AEABI enum tag value.
10248 template<bool big_endian>
10250 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10252 static const char* aeabi_enum_names[] =
10253 { "", "variable-size", "32-bit", "" };
10254 const size_t aeabi_enum_names_size =
10255 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10257 if (value < aeabi_enum_names_size)
10258 return std::string(aeabi_enum_names[value]);
10262 sprintf(buffer, "<unknown value %u>", value);
10263 return std::string(buffer);
10267 // Return the string value to store in TAG_CPU_name.
10269 template<bool big_endian>
10271 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10273 static const char* name_table[] = {
10274 // These aren't real CPU names, but we can't guess
10275 // that from the architecture version alone.
10291 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10293 if (value < name_table_size)
10294 return std::string(name_table[value]);
10298 sprintf(buffer, "<unknown CPU value %u>", value);
10299 return std::string(buffer);
10303 // Merge object attributes from input file called NAME with those of the
10304 // output. The input object attributes are in the object pointed by PASD.
10306 template<bool big_endian>
10308 Target_arm<big_endian>::merge_object_attributes(
10310 const Attributes_section_data* pasd)
10312 // Return if there is no attributes section data.
10316 // If output has no object attributes, just copy.
10317 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10318 if (this->attributes_section_data_ == NULL)
10320 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10321 Object_attribute* out_attr =
10322 this->attributes_section_data_->known_attributes(vendor);
10324 // We do not output objects with Tag_MPextension_use_legacy - we move
10325 // the attribute's value to Tag_MPextension_use. */
10326 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10328 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10329 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10330 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10332 gold_error(_("%s has both the current and legacy "
10333 "Tag_MPextension_use attributes"),
10337 out_attr[elfcpp::Tag_MPextension_use] =
10338 out_attr[elfcpp::Tag_MPextension_use_legacy];
10339 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10340 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10346 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10347 Object_attribute* out_attr =
10348 this->attributes_section_data_->known_attributes(vendor);
10350 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10351 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10352 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10354 // Ignore mismatches if the object doesn't use floating point. */
10355 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10356 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10357 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10358 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10359 && parameters->options().warn_mismatch())
10360 gold_error(_("%s uses VFP register arguments, output does not"),
10364 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10366 // Merge this attribute with existing attributes.
10369 case elfcpp::Tag_CPU_raw_name:
10370 case elfcpp::Tag_CPU_name:
10371 // These are merged after Tag_CPU_arch.
10374 case elfcpp::Tag_ABI_optimization_goals:
10375 case elfcpp::Tag_ABI_FP_optimization_goals:
10376 // Use the first value seen.
10379 case elfcpp::Tag_CPU_arch:
10381 unsigned int saved_out_attr = out_attr->int_value();
10382 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10383 int secondary_compat =
10384 this->get_secondary_compatible_arch(pasd);
10385 int secondary_compat_out =
10386 this->get_secondary_compatible_arch(
10387 this->attributes_section_data_);
10388 out_attr[i].set_int_value(
10389 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10390 &secondary_compat_out,
10391 in_attr[i].int_value(),
10392 secondary_compat));
10393 this->set_secondary_compatible_arch(this->attributes_section_data_,
10394 secondary_compat_out);
10396 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10397 if (out_attr[i].int_value() == saved_out_attr)
10398 ; // Leave the names alone.
10399 else if (out_attr[i].int_value() == in_attr[i].int_value())
10401 // The output architecture has been changed to match the
10402 // input architecture. Use the input names.
10403 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10404 in_attr[elfcpp::Tag_CPU_name].string_value());
10405 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10406 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10410 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10411 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10414 // If we still don't have a value for Tag_CPU_name,
10415 // make one up now. Tag_CPU_raw_name remains blank.
10416 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10418 const std::string cpu_name =
10419 this->tag_cpu_name_value(out_attr[i].int_value());
10420 // FIXME: If we see an unknown CPU, this will be set
10421 // to "<unknown CPU n>", where n is the attribute value.
10422 // This is different from BFD, which leaves the name alone.
10423 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10428 case elfcpp::Tag_ARM_ISA_use:
10429 case elfcpp::Tag_THUMB_ISA_use:
10430 case elfcpp::Tag_WMMX_arch:
10431 case elfcpp::Tag_Advanced_SIMD_arch:
10432 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10433 case elfcpp::Tag_ABI_FP_rounding:
10434 case elfcpp::Tag_ABI_FP_exceptions:
10435 case elfcpp::Tag_ABI_FP_user_exceptions:
10436 case elfcpp::Tag_ABI_FP_number_model:
10437 case elfcpp::Tag_VFP_HP_extension:
10438 case elfcpp::Tag_CPU_unaligned_access:
10439 case elfcpp::Tag_T2EE_use:
10440 case elfcpp::Tag_Virtualization_use:
10441 case elfcpp::Tag_MPextension_use:
10442 // Use the largest value specified.
10443 if (in_attr[i].int_value() > out_attr[i].int_value())
10444 out_attr[i].set_int_value(in_attr[i].int_value());
10447 case elfcpp::Tag_ABI_align8_preserved:
10448 case elfcpp::Tag_ABI_PCS_RO_data:
10449 // Use the smallest value specified.
10450 if (in_attr[i].int_value() < out_attr[i].int_value())
10451 out_attr[i].set_int_value(in_attr[i].int_value());
10454 case elfcpp::Tag_ABI_align8_needed:
10455 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10456 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10457 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10460 // This error message should be enabled once all non-conforming
10461 // binaries in the toolchain have had the attributes set
10463 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10467 case elfcpp::Tag_ABI_FP_denormal:
10468 case elfcpp::Tag_ABI_PCS_GOT_use:
10470 // These tags have 0 = don't care, 1 = strong requirement,
10471 // 2 = weak requirement.
10472 static const int order_021[3] = {0, 2, 1};
10474 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10475 // value if greater than 2 (for future-proofing).
10476 if ((in_attr[i].int_value() > 2
10477 && in_attr[i].int_value() > out_attr[i].int_value())
10478 || (in_attr[i].int_value() <= 2
10479 && out_attr[i].int_value() <= 2
10480 && (order_021[in_attr[i].int_value()]
10481 > order_021[out_attr[i].int_value()])))
10482 out_attr[i].set_int_value(in_attr[i].int_value());
10486 case elfcpp::Tag_CPU_arch_profile:
10487 if (out_attr[i].int_value() != in_attr[i].int_value())
10489 // 0 will merge with anything.
10490 // 'A' and 'S' merge to 'A'.
10491 // 'R' and 'S' merge to 'R'.
10492 // 'M' and 'A|R|S' is an error.
10493 if (out_attr[i].int_value() == 0
10494 || (out_attr[i].int_value() == 'S'
10495 && (in_attr[i].int_value() == 'A'
10496 || in_attr[i].int_value() == 'R')))
10497 out_attr[i].set_int_value(in_attr[i].int_value());
10498 else if (in_attr[i].int_value() == 0
10499 || (in_attr[i].int_value() == 'S'
10500 && (out_attr[i].int_value() == 'A'
10501 || out_attr[i].int_value() == 'R')))
10503 else if (parameters->options().warn_mismatch())
10506 (_("conflicting architecture profiles %c/%c"),
10507 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10508 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10512 case elfcpp::Tag_VFP_arch:
10514 static const struct
10518 } vfp_versions[7] =
10529 // Values greater than 6 aren't defined, so just pick the
10531 if (in_attr[i].int_value() > 6
10532 && in_attr[i].int_value() > out_attr[i].int_value())
10534 *out_attr = *in_attr;
10537 // The output uses the superset of input features
10538 // (ISA version) and registers.
10539 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10540 vfp_versions[out_attr[i].int_value()].ver);
10541 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10542 vfp_versions[out_attr[i].int_value()].regs);
10543 // This assumes all possible supersets are also a valid
10546 for (newval = 6; newval > 0; newval--)
10548 if (regs == vfp_versions[newval].regs
10549 && ver == vfp_versions[newval].ver)
10552 out_attr[i].set_int_value(newval);
10555 case elfcpp::Tag_PCS_config:
10556 if (out_attr[i].int_value() == 0)
10557 out_attr[i].set_int_value(in_attr[i].int_value());
10558 else if (in_attr[i].int_value() != 0
10559 && out_attr[i].int_value() != 0
10560 && parameters->options().warn_mismatch())
10562 // It's sometimes ok to mix different configs, so this is only
10564 gold_warning(_("%s: conflicting platform configuration"), name);
10567 case elfcpp::Tag_ABI_PCS_R9_use:
10568 if (in_attr[i].int_value() != out_attr[i].int_value()
10569 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10570 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10571 && parameters->options().warn_mismatch())
10573 gold_error(_("%s: conflicting use of R9"), name);
10575 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10576 out_attr[i].set_int_value(in_attr[i].int_value());
10578 case elfcpp::Tag_ABI_PCS_RW_data:
10579 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10580 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10581 != elfcpp::AEABI_R9_SB)
10582 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10583 != elfcpp::AEABI_R9_unused)
10584 && parameters->options().warn_mismatch())
10586 gold_error(_("%s: SB relative addressing conflicts with use "
10590 // Use the smallest value specified.
10591 if (in_attr[i].int_value() < out_attr[i].int_value())
10592 out_attr[i].set_int_value(in_attr[i].int_value());
10594 case elfcpp::Tag_ABI_PCS_wchar_t:
10595 if (out_attr[i].int_value()
10596 && in_attr[i].int_value()
10597 && out_attr[i].int_value() != in_attr[i].int_value()
10598 && parameters->options().warn_mismatch()
10599 && parameters->options().wchar_size_warning())
10601 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10602 "use %u-byte wchar_t; use of wchar_t values "
10603 "across objects may fail"),
10604 name, in_attr[i].int_value(),
10605 out_attr[i].int_value());
10607 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10608 out_attr[i].set_int_value(in_attr[i].int_value());
10610 case elfcpp::Tag_ABI_enum_size:
10611 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10613 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10614 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10616 // The existing object is compatible with anything.
10617 // Use whatever requirements the new object has.
10618 out_attr[i].set_int_value(in_attr[i].int_value());
10620 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10621 && out_attr[i].int_value() != in_attr[i].int_value()
10622 && parameters->options().warn_mismatch()
10623 && parameters->options().enum_size_warning())
10625 unsigned int in_value = in_attr[i].int_value();
10626 unsigned int out_value = out_attr[i].int_value();
10627 gold_warning(_("%s uses %s enums yet the output is to use "
10628 "%s enums; use of enum values across objects "
10631 this->aeabi_enum_name(in_value).c_str(),
10632 this->aeabi_enum_name(out_value).c_str());
10636 case elfcpp::Tag_ABI_VFP_args:
10639 case elfcpp::Tag_ABI_WMMX_args:
10640 if (in_attr[i].int_value() != out_attr[i].int_value()
10641 && parameters->options().warn_mismatch())
10643 gold_error(_("%s uses iWMMXt register arguments, output does "
10648 case Object_attribute::Tag_compatibility:
10649 // Merged in target-independent code.
10651 case elfcpp::Tag_ABI_HardFP_use:
10652 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10653 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10654 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10655 out_attr[i].set_int_value(3);
10656 else if (in_attr[i].int_value() > out_attr[i].int_value())
10657 out_attr[i].set_int_value(in_attr[i].int_value());
10659 case elfcpp::Tag_ABI_FP_16bit_format:
10660 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10662 if (in_attr[i].int_value() != out_attr[i].int_value()
10663 && parameters->options().warn_mismatch())
10664 gold_error(_("fp16 format mismatch between %s and output"),
10667 if (in_attr[i].int_value() != 0)
10668 out_attr[i].set_int_value(in_attr[i].int_value());
10671 case elfcpp::Tag_DIV_use:
10672 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10673 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10674 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10675 // CPU. We will merge as follows: If the input attribute's value
10676 // is one then the output attribute's value remains unchanged. If
10677 // the input attribute's value is zero or two then if the output
10678 // attribute's value is one the output value is set to the input
10679 // value, otherwise the output value must be the same as the
10681 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10683 if (in_attr[i].int_value() != out_attr[i].int_value())
10685 gold_error(_("DIV usage mismatch between %s and output"),
10690 if (in_attr[i].int_value() != 1)
10691 out_attr[i].set_int_value(in_attr[i].int_value());
10695 case elfcpp::Tag_MPextension_use_legacy:
10696 // We don't output objects with Tag_MPextension_use_legacy - we
10697 // move the value to Tag_MPextension_use.
10698 if (in_attr[i].int_value() != 0
10699 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10701 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10702 != in_attr[i].int_value())
10704 gold_error(_("%s has has both the current and legacy "
10705 "Tag_MPextension_use attributes"),
10710 if (in_attr[i].int_value()
10711 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10712 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10716 case elfcpp::Tag_nodefaults:
10717 // This tag is set if it exists, but the value is unused (and is
10718 // typically zero). We don't actually need to do anything here -
10719 // the merge happens automatically when the type flags are merged
10722 case elfcpp::Tag_also_compatible_with:
10723 // Already done in Tag_CPU_arch.
10725 case elfcpp::Tag_conformance:
10726 // Keep the attribute if it matches. Throw it away otherwise.
10727 // No attribute means no claim to conform.
10728 if (in_attr[i].string_value() != out_attr[i].string_value())
10729 out_attr[i].set_string_value("");
10734 const char* err_object = NULL;
10736 // The "known_obj_attributes" table does contain some undefined
10737 // attributes. Ensure that there are unused.
10738 if (out_attr[i].int_value() != 0
10739 || out_attr[i].string_value() != "")
10740 err_object = "output";
10741 else if (in_attr[i].int_value() != 0
10742 || in_attr[i].string_value() != "")
10745 if (err_object != NULL
10746 && parameters->options().warn_mismatch())
10748 // Attribute numbers >=64 (mod 128) can be safely ignored.
10749 if ((i & 127) < 64)
10750 gold_error(_("%s: unknown mandatory EABI object attribute "
10754 gold_warning(_("%s: unknown EABI object attribute %d"),
10758 // Only pass on attributes that match in both inputs.
10759 if (!in_attr[i].matches(out_attr[i]))
10761 out_attr[i].set_int_value(0);
10762 out_attr[i].set_string_value("");
10767 // If out_attr was copied from in_attr then it won't have a type yet.
10768 if (in_attr[i].type() && !out_attr[i].type())
10769 out_attr[i].set_type(in_attr[i].type());
10772 // Merge Tag_compatibility attributes and any common GNU ones.
10773 this->attributes_section_data_->merge(name, pasd);
10775 // Check for any attributes not known on ARM.
10776 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10777 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10778 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10779 Other_attributes* out_other_attributes =
10780 this->attributes_section_data_->other_attributes(vendor);
10781 Other_attributes::iterator out_iter = out_other_attributes->begin();
10783 while (in_iter != in_other_attributes->end()
10784 || out_iter != out_other_attributes->end())
10786 const char* err_object = NULL;
10789 // The tags for each list are in numerical order.
10790 // If the tags are equal, then merge.
10791 if (out_iter != out_other_attributes->end()
10792 && (in_iter == in_other_attributes->end()
10793 || in_iter->first > out_iter->first))
10795 // This attribute only exists in output. We can't merge, and we
10796 // don't know what the tag means, so delete it.
10797 err_object = "output";
10798 err_tag = out_iter->first;
10799 int saved_tag = out_iter->first;
10800 delete out_iter->second;
10801 out_other_attributes->erase(out_iter);
10802 out_iter = out_other_attributes->upper_bound(saved_tag);
10804 else if (in_iter != in_other_attributes->end()
10805 && (out_iter != out_other_attributes->end()
10806 || in_iter->first < out_iter->first))
10808 // This attribute only exists in input. We can't merge, and we
10809 // don't know what the tag means, so ignore it.
10811 err_tag = in_iter->first;
10814 else // The tags are equal.
10816 // As present, all attributes in the list are unknown, and
10817 // therefore can't be merged meaningfully.
10818 err_object = "output";
10819 err_tag = out_iter->first;
10821 // Only pass on attributes that match in both inputs.
10822 if (!in_iter->second->matches(*(out_iter->second)))
10824 // No match. Delete the attribute.
10825 int saved_tag = out_iter->first;
10826 delete out_iter->second;
10827 out_other_attributes->erase(out_iter);
10828 out_iter = out_other_attributes->upper_bound(saved_tag);
10832 // Matched. Keep the attribute and move to the next.
10838 if (err_object && parameters->options().warn_mismatch())
10840 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10841 if ((err_tag & 127) < 64)
10843 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10844 err_object, err_tag);
10848 gold_warning(_("%s: unknown EABI object attribute %d"),
10849 err_object, err_tag);
10855 // Stub-generation methods for Target_arm.
10857 // Make a new Arm_input_section object.
10859 template<bool big_endian>
10860 Arm_input_section<big_endian>*
10861 Target_arm<big_endian>::new_arm_input_section(
10863 unsigned int shndx)
10865 Section_id sid(relobj, shndx);
10867 Arm_input_section<big_endian>* arm_input_section =
10868 new Arm_input_section<big_endian>(relobj, shndx);
10869 arm_input_section->init();
10871 // Register new Arm_input_section in map for look-up.
10872 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10873 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10875 // Make sure that it we have not created another Arm_input_section
10876 // for this input section already.
10877 gold_assert(ins.second);
10879 return arm_input_section;
10882 // Find the Arm_input_section object corresponding to the SHNDX-th input
10883 // section of RELOBJ.
10885 template<bool big_endian>
10886 Arm_input_section<big_endian>*
10887 Target_arm<big_endian>::find_arm_input_section(
10889 unsigned int shndx) const
10891 Section_id sid(relobj, shndx);
10892 typename Arm_input_section_map::const_iterator p =
10893 this->arm_input_section_map_.find(sid);
10894 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10897 // Make a new stub table.
10899 template<bool big_endian>
10900 Stub_table<big_endian>*
10901 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10903 Stub_table<big_endian>* stub_table =
10904 new Stub_table<big_endian>(owner);
10905 this->stub_tables_.push_back(stub_table);
10907 stub_table->set_address(owner->address() + owner->data_size());
10908 stub_table->set_file_offset(owner->offset() + owner->data_size());
10909 stub_table->finalize_data_size();
10914 // Scan a relocation for stub generation.
10916 template<bool big_endian>
10918 Target_arm<big_endian>::scan_reloc_for_stub(
10919 const Relocate_info<32, big_endian>* relinfo,
10920 unsigned int r_type,
10921 const Sized_symbol<32>* gsym,
10922 unsigned int r_sym,
10923 const Symbol_value<32>* psymval,
10924 elfcpp::Elf_types<32>::Elf_Swxword addend,
10925 Arm_address address)
10927 typedef typename Target_arm<big_endian>::Relocate Relocate;
10929 const Arm_relobj<big_endian>* arm_relobj =
10930 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10932 bool target_is_thumb;
10933 Symbol_value<32> symval;
10936 // This is a global symbol. Determine if we use PLT and if the
10937 // final target is THUMB.
10938 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10940 // This uses a PLT, change the symbol value.
10941 symval.set_output_value(this->plt_section()->address()
10942 + gsym->plt_offset());
10944 target_is_thumb = false;
10946 else if (gsym->is_undefined())
10947 // There is no need to generate a stub symbol is undefined.
10952 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10953 || (gsym->type() == elfcpp::STT_FUNC
10954 && !gsym->is_undefined()
10955 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10960 // This is a local symbol. Determine if the final target is THUMB.
10961 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10964 // Strip LSB if this points to a THUMB target.
10965 const Arm_reloc_property* reloc_property =
10966 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10967 gold_assert(reloc_property != NULL);
10968 if (target_is_thumb
10969 && reloc_property->uses_thumb_bit()
10970 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10972 Arm_address stripped_value =
10973 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10974 symval.set_output_value(stripped_value);
10978 // Get the symbol value.
10979 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10981 // Owing to pipelining, the PC relative branches below actually skip
10982 // two instructions when the branch offset is 0.
10983 Arm_address destination;
10986 case elfcpp::R_ARM_CALL:
10987 case elfcpp::R_ARM_JUMP24:
10988 case elfcpp::R_ARM_PLT32:
10990 destination = value + addend + 8;
10992 case elfcpp::R_ARM_THM_CALL:
10993 case elfcpp::R_ARM_THM_XPC22:
10994 case elfcpp::R_ARM_THM_JUMP24:
10995 case elfcpp::R_ARM_THM_JUMP19:
10997 destination = value + addend + 4;
11000 gold_unreachable();
11003 Reloc_stub* stub = NULL;
11004 Stub_type stub_type =
11005 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11007 if (stub_type != arm_stub_none)
11009 // Try looking up an existing stub from a stub table.
11010 Stub_table<big_endian>* stub_table =
11011 arm_relobj->stub_table(relinfo->data_shndx);
11012 gold_assert(stub_table != NULL);
11014 // Locate stub by destination.
11015 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11017 // Create a stub if there is not one already
11018 stub = stub_table->find_reloc_stub(stub_key);
11021 // create a new stub and add it to stub table.
11022 stub = this->stub_factory().make_reloc_stub(stub_type);
11023 stub_table->add_reloc_stub(stub, stub_key);
11026 // Record the destination address.
11027 stub->set_destination_address(destination
11028 | (target_is_thumb ? 1 : 0));
11031 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11032 if (this->fix_cortex_a8_
11033 && (r_type == elfcpp::R_ARM_THM_JUMP24
11034 || r_type == elfcpp::R_ARM_THM_JUMP19
11035 || r_type == elfcpp::R_ARM_THM_CALL
11036 || r_type == elfcpp::R_ARM_THM_XPC22)
11037 && (address & 0xfffU) == 0xffeU)
11039 // Found a candidate. Note we haven't checked the destination is
11040 // within 4K here: if we do so (and don't create a record) we can't
11041 // tell that a branch should have been relocated when scanning later.
11042 this->cortex_a8_relocs_info_[address] =
11043 new Cortex_a8_reloc(stub, r_type,
11044 destination | (target_is_thumb ? 1 : 0));
11048 // This function scans a relocation sections for stub generation.
11049 // The template parameter Relocate must be a class type which provides
11050 // a single function, relocate(), which implements the machine
11051 // specific part of a relocation.
11053 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11054 // SHT_REL or SHT_RELA.
11056 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11057 // of relocs. OUTPUT_SECTION is the output section.
11058 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11059 // mapped to output offsets.
11061 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11062 // VIEW_SIZE is the size. These refer to the input section, unless
11063 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11064 // the output section.
11066 template<bool big_endian>
11067 template<int sh_type>
11069 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11070 const Relocate_info<32, big_endian>* relinfo,
11071 const unsigned char* prelocs,
11072 size_t reloc_count,
11073 Output_section* output_section,
11074 bool needs_special_offset_handling,
11075 const unsigned char* view,
11076 elfcpp::Elf_types<32>::Elf_Addr view_address,
11079 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11080 const int reloc_size =
11081 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11083 Arm_relobj<big_endian>* arm_object =
11084 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11085 unsigned int local_count = arm_object->local_symbol_count();
11087 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11089 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11091 Reltype reloc(prelocs);
11093 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11094 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11095 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11097 r_type = this->get_real_reloc_type(r_type);
11099 // Only a few relocation types need stubs.
11100 if ((r_type != elfcpp::R_ARM_CALL)
11101 && (r_type != elfcpp::R_ARM_JUMP24)
11102 && (r_type != elfcpp::R_ARM_PLT32)
11103 && (r_type != elfcpp::R_ARM_THM_CALL)
11104 && (r_type != elfcpp::R_ARM_THM_XPC22)
11105 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11106 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11107 && (r_type != elfcpp::R_ARM_V4BX))
11110 section_offset_type offset =
11111 convert_to_section_size_type(reloc.get_r_offset());
11113 if (needs_special_offset_handling)
11115 offset = output_section->output_offset(relinfo->object,
11116 relinfo->data_shndx,
11122 // Create a v4bx stub if --fix-v4bx-interworking is used.
11123 if (r_type == elfcpp::R_ARM_V4BX)
11125 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11127 // Get the BX instruction.
11128 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11129 const Valtype* wv =
11130 reinterpret_cast<const Valtype*>(view + offset);
11131 elfcpp::Elf_types<32>::Elf_Swxword insn =
11132 elfcpp::Swap<32, big_endian>::readval(wv);
11133 const uint32_t reg = (insn & 0xf);
11137 // Try looking up an existing stub from a stub table.
11138 Stub_table<big_endian>* stub_table =
11139 arm_object->stub_table(relinfo->data_shndx);
11140 gold_assert(stub_table != NULL);
11142 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11144 // create a new stub and add it to stub table.
11145 Arm_v4bx_stub* stub =
11146 this->stub_factory().make_arm_v4bx_stub(reg);
11147 gold_assert(stub != NULL);
11148 stub_table->add_arm_v4bx_stub(stub);
11156 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11157 elfcpp::Elf_types<32>::Elf_Swxword addend =
11158 stub_addend_reader(r_type, view + offset, reloc);
11160 const Sized_symbol<32>* sym;
11162 Symbol_value<32> symval;
11163 const Symbol_value<32> *psymval;
11164 bool is_defined_in_discarded_section;
11165 unsigned int shndx;
11166 if (r_sym < local_count)
11169 psymval = arm_object->local_symbol(r_sym);
11171 // If the local symbol belongs to a section we are discarding,
11172 // and that section is a debug section, try to find the
11173 // corresponding kept section and map this symbol to its
11174 // counterpart in the kept section. The symbol must not
11175 // correspond to a section we are folding.
11177 shndx = psymval->input_shndx(&is_ordinary);
11178 is_defined_in_discarded_section =
11180 && shndx != elfcpp::SHN_UNDEF
11181 && !arm_object->is_section_included(shndx)
11182 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11184 // We need to compute the would-be final value of this local
11186 if (!is_defined_in_discarded_section)
11188 typedef Sized_relobj<32, big_endian> ObjType;
11189 typename ObjType::Compute_final_local_value_status status =
11190 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11192 if (status == ObjType::CFLV_OK)
11194 // Currently we cannot handle a branch to a target in
11195 // a merged section. If this is the case, issue an error
11196 // and also free the merge symbol value.
11197 if (!symval.has_output_value())
11199 const std::string& section_name =
11200 arm_object->section_name(shndx);
11201 arm_object->error(_("cannot handle branch to local %u "
11202 "in a merged section %s"),
11203 r_sym, section_name.c_str());
11209 // We cannot determine the final value.
11216 const Symbol* gsym;
11217 gsym = arm_object->global_symbol(r_sym);
11218 gold_assert(gsym != NULL);
11219 if (gsym->is_forwarder())
11220 gsym = relinfo->symtab->resolve_forwards(gsym);
11222 sym = static_cast<const Sized_symbol<32>*>(gsym);
11223 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11224 symval.set_output_symtab_index(sym->symtab_index());
11226 symval.set_no_output_symtab_entry();
11228 // We need to compute the would-be final value of this global
11230 const Symbol_table* symtab = relinfo->symtab;
11231 const Sized_symbol<32>* sized_symbol =
11232 symtab->get_sized_symbol<32>(gsym);
11233 Symbol_table::Compute_final_value_status status;
11234 Arm_address value =
11235 symtab->compute_final_value<32>(sized_symbol, &status);
11237 // Skip this if the symbol has not output section.
11238 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11240 symval.set_output_value(value);
11242 if (gsym->type() == elfcpp::STT_TLS)
11243 symval.set_is_tls_symbol();
11244 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11245 symval.set_is_ifunc_symbol();
11248 is_defined_in_discarded_section =
11249 (gsym->is_defined_in_discarded_section()
11250 && gsym->is_undefined());
11254 Symbol_value<32> symval2;
11255 if (is_defined_in_discarded_section)
11257 if (comdat_behavior == CB_UNDETERMINED)
11259 std::string name = arm_object->section_name(relinfo->data_shndx);
11260 comdat_behavior = get_comdat_behavior(name.c_str());
11262 if (comdat_behavior == CB_PRETEND)
11264 // FIXME: This case does not work for global symbols.
11265 // We have no place to store the original section index.
11266 // Fortunately this does not matter for comdat sections,
11267 // only for sections explicitly discarded by a linker
11270 typename elfcpp::Elf_types<32>::Elf_Addr value =
11271 arm_object->map_to_kept_section(shndx, &found);
11273 symval2.set_output_value(value + psymval->input_value());
11275 symval2.set_output_value(0);
11279 if (comdat_behavior == CB_WARNING)
11280 gold_warning_at_location(relinfo, i, offset,
11281 _("relocation refers to discarded "
11283 symval2.set_output_value(0);
11285 symval2.set_no_output_symtab_entry();
11286 psymval = &symval2;
11289 // If symbol is a section symbol, we don't know the actual type of
11290 // destination. Give up.
11291 if (psymval->is_section_symbol())
11294 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11295 addend, view_address + offset);
11299 // Scan an input section for stub generation.
11301 template<bool big_endian>
11303 Target_arm<big_endian>::scan_section_for_stubs(
11304 const Relocate_info<32, big_endian>* relinfo,
11305 unsigned int sh_type,
11306 const unsigned char* prelocs,
11307 size_t reloc_count,
11308 Output_section* output_section,
11309 bool needs_special_offset_handling,
11310 const unsigned char* view,
11311 Arm_address view_address,
11312 section_size_type view_size)
11314 if (sh_type == elfcpp::SHT_REL)
11315 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11320 needs_special_offset_handling,
11324 else if (sh_type == elfcpp::SHT_RELA)
11325 // We do not support RELA type relocations yet. This is provided for
11327 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11332 needs_special_offset_handling,
11337 gold_unreachable();
11340 // Group input sections for stub generation.
11342 // We group input sections in an output section so that the total size,
11343 // including any padding space due to alignment is smaller than GROUP_SIZE
11344 // unless the only input section in group is bigger than GROUP_SIZE already.
11345 // Then an ARM stub table is created to follow the last input section
11346 // in group. For each group an ARM stub table is created an is placed
11347 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11348 // extend the group after the stub table.
11350 template<bool big_endian>
11352 Target_arm<big_endian>::group_sections(
11354 section_size_type group_size,
11355 bool stubs_always_after_branch,
11358 // Group input sections and insert stub table
11359 Layout::Section_list section_list;
11360 layout->get_allocated_sections(§ion_list);
11361 for (Layout::Section_list::const_iterator p = section_list.begin();
11362 p != section_list.end();
11365 Arm_output_section<big_endian>* output_section =
11366 Arm_output_section<big_endian>::as_arm_output_section(*p);
11367 output_section->group_sections(group_size, stubs_always_after_branch,
11372 // Relaxation hook. This is where we do stub generation.
11374 template<bool big_endian>
11376 Target_arm<big_endian>::do_relax(
11378 const Input_objects* input_objects,
11379 Symbol_table* symtab,
11383 // No need to generate stubs if this is a relocatable link.
11384 gold_assert(!parameters->options().relocatable());
11386 // If this is the first pass, we need to group input sections into
11388 bool done_exidx_fixup = false;
11389 typedef typename Stub_table_list::iterator Stub_table_iterator;
11392 // Determine the stub group size. The group size is the absolute
11393 // value of the parameter --stub-group-size. If --stub-group-size
11394 // is passed a negative value, we restrict stubs to be always after
11395 // the stubbed branches.
11396 int32_t stub_group_size_param =
11397 parameters->options().stub_group_size();
11398 bool stubs_always_after_branch = stub_group_size_param < 0;
11399 section_size_type stub_group_size = abs(stub_group_size_param);
11401 if (stub_group_size == 1)
11404 // Thumb branch range is +-4MB has to be used as the default
11405 // maximum size (a given section can contain both ARM and Thumb
11406 // code, so the worst case has to be taken into account). If we are
11407 // fixing cortex-a8 errata, the branch range has to be even smaller,
11408 // since wide conditional branch has a range of +-1MB only.
11410 // This value is 48K less than that, which allows for 4096
11411 // 12-byte stubs. If we exceed that, then we will fail to link.
11412 // The user will have to relink with an explicit group size
11414 stub_group_size = 4145152;
11417 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11418 // page as the first half of a 32-bit branch straddling two 4K pages.
11419 // This is a crude way of enforcing that. In addition, long conditional
11420 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11421 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11422 // cortex-A8 stubs from long conditional branches.
11423 if (this->fix_cortex_a8_)
11425 stubs_always_after_branch = true;
11426 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11427 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11430 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11432 // Also fix .ARM.exidx section coverage.
11433 Arm_output_section<big_endian>* exidx_output_section = NULL;
11434 for (Layout::Section_list::const_iterator p =
11435 layout->section_list().begin();
11436 p != layout->section_list().end();
11438 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11440 if (exidx_output_section == NULL)
11441 exidx_output_section =
11442 Arm_output_section<big_endian>::as_arm_output_section(*p);
11444 // We cannot handle this now.
11445 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11446 "non-relocatable link"),
11447 exidx_output_section->name(),
11451 if (exidx_output_section != NULL)
11453 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11455 done_exidx_fixup = true;
11460 // If this is not the first pass, addresses and file offsets have
11461 // been reset at this point, set them here.
11462 for (Stub_table_iterator sp = this->stub_tables_.begin();
11463 sp != this->stub_tables_.end();
11466 Arm_input_section<big_endian>* owner = (*sp)->owner();
11467 off_t off = align_address(owner->original_size(),
11468 (*sp)->addralign());
11469 (*sp)->set_address_and_file_offset(owner->address() + off,
11470 owner->offset() + off);
11474 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11475 // beginning of each relaxation pass, just blow away all the stubs.
11476 // Alternatively, we could selectively remove only the stubs and reloc
11477 // information for code sections that have moved since the last pass.
11478 // That would require more book-keeping.
11479 if (this->fix_cortex_a8_)
11481 // Clear all Cortex-A8 reloc information.
11482 for (typename Cortex_a8_relocs_info::const_iterator p =
11483 this->cortex_a8_relocs_info_.begin();
11484 p != this->cortex_a8_relocs_info_.end();
11487 this->cortex_a8_relocs_info_.clear();
11489 // Remove all Cortex-A8 stubs.
11490 for (Stub_table_iterator sp = this->stub_tables_.begin();
11491 sp != this->stub_tables_.end();
11493 (*sp)->remove_all_cortex_a8_stubs();
11496 // Scan relocs for relocation stubs
11497 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11498 op != input_objects->relobj_end();
11501 Arm_relobj<big_endian>* arm_relobj =
11502 Arm_relobj<big_endian>::as_arm_relobj(*op);
11503 // Lock the object so we can read from it. This is only called
11504 // single-threaded from Layout::finalize, so it is OK to lock.
11505 Task_lock_obj<Object> tl(task, arm_relobj);
11506 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11509 // Check all stub tables to see if any of them have their data sizes
11510 // or addresses alignments changed. These are the only things that
11512 bool any_stub_table_changed = false;
11513 Unordered_set<const Output_section*> sections_needing_adjustment;
11514 for (Stub_table_iterator sp = this->stub_tables_.begin();
11515 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11518 if ((*sp)->update_data_size_and_addralign())
11520 // Update data size of stub table owner.
11521 Arm_input_section<big_endian>* owner = (*sp)->owner();
11522 uint64_t address = owner->address();
11523 off_t offset = owner->offset();
11524 owner->reset_address_and_file_offset();
11525 owner->set_address_and_file_offset(address, offset);
11527 sections_needing_adjustment.insert(owner->output_section());
11528 any_stub_table_changed = true;
11532 // Output_section_data::output_section() returns a const pointer but we
11533 // need to update output sections, so we record all output sections needing
11534 // update above and scan the sections here to find out what sections need
11536 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11537 p != layout->section_list().end();
11540 if (sections_needing_adjustment.find(*p)
11541 != sections_needing_adjustment.end())
11542 (*p)->set_section_offsets_need_adjustment();
11545 // Stop relaxation if no EXIDX fix-up and no stub table change.
11546 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11548 // Finalize the stubs in the last relaxation pass.
11549 if (!continue_relaxation)
11551 for (Stub_table_iterator sp = this->stub_tables_.begin();
11552 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11554 (*sp)->finalize_stubs();
11556 // Update output local symbol counts of objects if necessary.
11557 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11558 op != input_objects->relobj_end();
11561 Arm_relobj<big_endian>* arm_relobj =
11562 Arm_relobj<big_endian>::as_arm_relobj(*op);
11564 // Update output local symbol counts. We need to discard local
11565 // symbols defined in parts of input sections that are discarded by
11567 if (arm_relobj->output_local_symbol_count_needs_update())
11569 // We need to lock the object's file to update it.
11570 Task_lock_obj<Object> tl(task, arm_relobj);
11571 arm_relobj->update_output_local_symbol_count();
11576 return continue_relaxation;
11579 // Relocate a stub.
11581 template<bool big_endian>
11583 Target_arm<big_endian>::relocate_stub(
11585 const Relocate_info<32, big_endian>* relinfo,
11586 Output_section* output_section,
11587 unsigned char* view,
11588 Arm_address address,
11589 section_size_type view_size)
11592 const Stub_template* stub_template = stub->stub_template();
11593 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11595 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11596 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11598 unsigned int r_type = insn->r_type();
11599 section_size_type reloc_offset = stub_template->reloc_offset(i);
11600 section_size_type reloc_size = insn->size();
11601 gold_assert(reloc_offset + reloc_size <= view_size);
11603 // This is the address of the stub destination.
11604 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11605 Symbol_value<32> symval;
11606 symval.set_output_value(target);
11608 // Synthesize a fake reloc just in case. We don't have a symbol so
11610 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11611 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11612 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11613 reloc_write.put_r_offset(reloc_offset);
11614 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11615 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11617 relocate.relocate(relinfo, this, output_section,
11618 this->fake_relnum_for_stubs, rel, r_type,
11619 NULL, &symval, view + reloc_offset,
11620 address + reloc_offset, reloc_size);
11624 // Determine whether an object attribute tag takes an integer, a
11627 template<bool big_endian>
11629 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11631 if (tag == Object_attribute::Tag_compatibility)
11632 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11633 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11634 else if (tag == elfcpp::Tag_nodefaults)
11635 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11636 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11637 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11638 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11640 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11642 return ((tag & 1) != 0
11643 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11644 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11647 // Reorder attributes.
11649 // The ABI defines that Tag_conformance should be emitted first, and that
11650 // Tag_nodefaults should be second (if either is defined). This sets those
11651 // two positions, and bumps up the position of all the remaining tags to
11654 template<bool big_endian>
11656 Target_arm<big_endian>::do_attributes_order(int num) const
11658 // Reorder the known object attributes in output. We want to move
11659 // Tag_conformance to position 4 and Tag_conformance to position 5
11660 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11662 return elfcpp::Tag_conformance;
11664 return elfcpp::Tag_nodefaults;
11665 if ((num - 2) < elfcpp::Tag_nodefaults)
11667 if ((num - 1) < elfcpp::Tag_conformance)
11672 // Scan a span of THUMB code for Cortex-A8 erratum.
11674 template<bool big_endian>
11676 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11677 Arm_relobj<big_endian>* arm_relobj,
11678 unsigned int shndx,
11679 section_size_type span_start,
11680 section_size_type span_end,
11681 const unsigned char* view,
11682 Arm_address address)
11684 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11686 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11687 // The branch target is in the same 4KB region as the
11688 // first half of the branch.
11689 // The instruction before the branch is a 32-bit
11690 // length non-branch instruction.
11691 section_size_type i = span_start;
11692 bool last_was_32bit = false;
11693 bool last_was_branch = false;
11694 while (i < span_end)
11696 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11697 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11698 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11699 bool is_blx = false, is_b = false;
11700 bool is_bl = false, is_bcc = false;
11702 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11705 // Load the rest of the insn (in manual-friendly order).
11706 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11708 // Encoding T4: B<c>.W.
11709 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11710 // Encoding T1: BL<c>.W.
11711 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11712 // Encoding T2: BLX<c>.W.
11713 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11714 // Encoding T3: B<c>.W (not permitted in IT block).
11715 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11716 && (insn & 0x07f00000U) != 0x03800000U);
11719 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11721 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11722 // page boundary and it follows 32-bit non-branch instruction,
11723 // we need to work around.
11724 if (is_32bit_branch
11725 && ((address + i) & 0xfffU) == 0xffeU
11727 && !last_was_branch)
11729 // Check to see if there is a relocation stub for this branch.
11730 bool force_target_arm = false;
11731 bool force_target_thumb = false;
11732 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11733 Cortex_a8_relocs_info::const_iterator p =
11734 this->cortex_a8_relocs_info_.find(address + i);
11736 if (p != this->cortex_a8_relocs_info_.end())
11738 cortex_a8_reloc = p->second;
11739 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11741 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11742 && !target_is_thumb)
11743 force_target_arm = true;
11744 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11745 && target_is_thumb)
11746 force_target_thumb = true;
11750 Stub_type stub_type = arm_stub_none;
11752 // Check if we have an offending branch instruction.
11753 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11754 uint16_t lower_insn = insn & 0xffffU;
11755 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11757 if (cortex_a8_reloc != NULL
11758 && cortex_a8_reloc->reloc_stub() != NULL)
11759 // We've already made a stub for this instruction, e.g.
11760 // it's a long branch or a Thumb->ARM stub. Assume that
11761 // stub will suffice to work around the A8 erratum (see
11762 // setting of always_after_branch above).
11766 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11768 stub_type = arm_stub_a8_veneer_b_cond;
11770 else if (is_b || is_bl || is_blx)
11772 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11777 stub_type = (is_blx
11778 ? arm_stub_a8_veneer_blx
11780 ? arm_stub_a8_veneer_bl
11781 : arm_stub_a8_veneer_b));
11784 if (stub_type != arm_stub_none)
11786 Arm_address pc_for_insn = address + i + 4;
11788 // The original instruction is a BL, but the target is
11789 // an ARM instruction. If we were not making a stub,
11790 // the BL would have been converted to a BLX. Use the
11791 // BLX stub instead in that case.
11792 if (this->may_use_blx() && force_target_arm
11793 && stub_type == arm_stub_a8_veneer_bl)
11795 stub_type = arm_stub_a8_veneer_blx;
11799 // Conversely, if the original instruction was
11800 // BLX but the target is Thumb mode, use the BL stub.
11801 else if (force_target_thumb
11802 && stub_type == arm_stub_a8_veneer_blx)
11804 stub_type = arm_stub_a8_veneer_bl;
11812 // If we found a relocation, use the proper destination,
11813 // not the offset in the (unrelocated) instruction.
11814 // Note this is always done if we switched the stub type above.
11815 if (cortex_a8_reloc != NULL)
11816 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11818 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11820 // Add a new stub if destination address in in the same page.
11821 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11823 Cortex_a8_stub* stub =
11824 this->stub_factory_.make_cortex_a8_stub(stub_type,
11828 Stub_table<big_endian>* stub_table =
11829 arm_relobj->stub_table(shndx);
11830 gold_assert(stub_table != NULL);
11831 stub_table->add_cortex_a8_stub(address + i, stub);
11836 i += insn_32bit ? 4 : 2;
11837 last_was_32bit = insn_32bit;
11838 last_was_branch = is_32bit_branch;
11842 // Apply the Cortex-A8 workaround.
11844 template<bool big_endian>
11846 Target_arm<big_endian>::apply_cortex_a8_workaround(
11847 const Cortex_a8_stub* stub,
11848 Arm_address stub_address,
11849 unsigned char* insn_view,
11850 Arm_address insn_address)
11852 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11853 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11854 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11855 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11856 off_t branch_offset = stub_address - (insn_address + 4);
11858 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11859 switch (stub->stub_template()->type())
11861 case arm_stub_a8_veneer_b_cond:
11862 // For a conditional branch, we re-write it to be an unconditional
11863 // branch to the stub. We use the THUMB-2 encoding here.
11864 upper_insn = 0xf000U;
11865 lower_insn = 0xb800U;
11867 case arm_stub_a8_veneer_b:
11868 case arm_stub_a8_veneer_bl:
11869 case arm_stub_a8_veneer_blx:
11870 if ((lower_insn & 0x5000U) == 0x4000U)
11871 // For a BLX instruction, make sure that the relocation is
11872 // rounded up to a word boundary. This follows the semantics of
11873 // the instruction which specifies that bit 1 of the target
11874 // address will come from bit 1 of the base address.
11875 branch_offset = (branch_offset + 2) & ~3;
11877 // Put BRANCH_OFFSET back into the insn.
11878 gold_assert(!utils::has_overflow<25>(branch_offset));
11879 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11880 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11884 gold_unreachable();
11887 // Put the relocated value back in the object file:
11888 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11889 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11892 template<bool big_endian>
11893 class Target_selector_arm : public Target_selector
11896 Target_selector_arm()
11897 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11898 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11902 do_instantiate_target()
11903 { return new Target_arm<big_endian>(); }
11906 // Fix .ARM.exidx section coverage.
11908 template<bool big_endian>
11910 Target_arm<big_endian>::fix_exidx_coverage(
11912 const Input_objects* input_objects,
11913 Arm_output_section<big_endian>* exidx_section,
11914 Symbol_table* symtab,
11917 // We need to look at all the input sections in output in ascending
11918 // order of of output address. We do that by building a sorted list
11919 // of output sections by addresses. Then we looks at the output sections
11920 // in order. The input sections in an output section are already sorted
11921 // by addresses within the output section.
11923 typedef std::set<Output_section*, output_section_address_less_than>
11924 Sorted_output_section_list;
11925 Sorted_output_section_list sorted_output_sections;
11927 // Find out all the output sections of input sections pointed by
11928 // EXIDX input sections.
11929 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11930 p != input_objects->relobj_end();
11933 Arm_relobj<big_endian>* arm_relobj =
11934 Arm_relobj<big_endian>::as_arm_relobj(*p);
11935 std::vector<unsigned int> shndx_list;
11936 arm_relobj->get_exidx_shndx_list(&shndx_list);
11937 for (size_t i = 0; i < shndx_list.size(); ++i)
11939 const Arm_exidx_input_section* exidx_input_section =
11940 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11941 gold_assert(exidx_input_section != NULL);
11942 if (!exidx_input_section->has_errors())
11944 unsigned int text_shndx = exidx_input_section->link();
11945 Output_section* os = arm_relobj->output_section(text_shndx);
11946 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11947 sorted_output_sections.insert(os);
11952 // Go over the output sections in ascending order of output addresses.
11953 typedef typename Arm_output_section<big_endian>::Text_section_list
11955 Text_section_list sorted_text_sections;
11956 for (typename Sorted_output_section_list::iterator p =
11957 sorted_output_sections.begin();
11958 p != sorted_output_sections.end();
11961 Arm_output_section<big_endian>* arm_output_section =
11962 Arm_output_section<big_endian>::as_arm_output_section(*p);
11963 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11966 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11967 merge_exidx_entries(), task);
11970 Target_selector_arm<false> target_selector_arm;
11971 Target_selector_arm<true> target_selector_armbe;
11973 } // End anonymous namespace.