3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -u ${file} new-${file}
30 echo "${file} unchanged" 1>&2
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
46 if test "${line}" = ""
49 elif test "${line}" = "#" -a "${comment}" = ""
52 elif expr "${line}" : "#" > /dev/null
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
73 if eval test \"\${${r}}\" = \"\ \"
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
98 if [ "${returntype}" = int ]
102 elif [ "${returntype}" = long ]
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
112 case "${invalid_p}" in
115 if [ -n "${predefault}" ]
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
124 * ) valid_p="!(${invalid_p})"
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
134 if [ -n "${postdefault}" ]
136 fallbackdefault="${postdefault}"
137 elif [ -n "${predefault}" ]
139 fallbackdefault="${predefault}"
144 #NOT YET: See gdbarch.log for basic verification of
159 fallback_default_p ()
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
165 class_is_variable_p ()
173 class_is_function_p ()
176 *f* | *F* | *m* | *M* ) true ;;
181 class_is_multiarch_p ()
189 class_is_predicate_p ()
192 *F* | *V* | *M* ) true ;;
206 # dump out/verify the doco
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
223 # hiding something from the ``struct info'' object
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
237 # The name of the MACRO that this method is to be accessed by.
241 # For functions, the return type; for variables, the data type
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
269 # To help with the GDB startup a static gdbarch object is
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
274 # If STATICDEFAULT is empty, zero is used.
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
283 # If PREDEFAULT is empty, zero is used.
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
289 # A zero PREDEFAULT function will force the fallback to call
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
297 # A value to assign to MEMBER of the new gdbarch object should
298 # the target architecture code fail to change the PREDEFAULT
301 # If POSTDEFAULT is empty, no post update is performed.
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
319 # A predicate equation that validates MEMBER. Non-zero is
320 # returned if the code creating the new architecture failed to
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
332 # See also PREDEFAULT and POSTDEFAULT.
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
340 # If FMT is empty, ``%ld'' is used.
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
347 # If PRINT is empty, ``(long)'' is used.
351 # An optional indicator for any predicte to wrap around the
354 # () -> Call a custom function to do the dump.
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
358 # If PRINT_P is empty, ``1'' is always used.
365 echo "Bad field ${field}"
373 # See below (DOCO) for description of each field
375 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
377 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
378 # Number of bits in a char or unsigned char for the target machine.
379 # Just like CHAR_BIT in <limits.h> but describes the target machine.
380 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
382 # Number of bits in a short or unsigned short for the target machine.
383 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384 # Number of bits in an int or unsigned int for the target machine.
385 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386 # Number of bits in a long or unsigned long for the target machine.
387 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388 # Number of bits in a long long or unsigned long long for the target
390 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # Number of bits in a float for the target machine.
392 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 # Number of bits in a double for the target machine.
394 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 # Number of bits in a long double for the target machine.
396 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400 # / addr_bit will be set from it.
402 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
405 # ptr_bit is the size of a pointer on the target
406 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
407 # addr_bit is the size of a target address as represented in gdb
408 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
409 # Number of bits in a BFD_VMA for the target object file format.
410 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
415 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
417 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
419 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
425 M:::void:register_read:int regnum, char *buf:regnum, buf:
426 M:::void:register_write:int regnum, char *buf:regnum, buf:
428 v:2:NUM_REGS:int:num_regs::::0:-1
429 # This macro gives the number of pseudo-registers that live in the
430 # register namespace but do not get fetched or stored on the target.
431 # These pseudo-registers may be aliases for other registers,
432 # combinations of other registers, or they may be computed by GDB.
433 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
434 v:2:SP_REGNUM:int:sp_regnum::::0:-1
435 v:2:FP_REGNUM:int:fp_regnum::::0:-1
436 v:2:PC_REGNUM:int:pc_regnum::::0:-1
437 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
438 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
439 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
440 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
441 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
442 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
443 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
444 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
445 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
446 # Convert from an sdb register number to an internal gdb register number.
447 # This should be defined in tm.h, if REGISTER_NAMES is not set up
448 # to map one to one onto the sdb register numbers.
449 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
450 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
451 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
452 v:2:REGISTER_SIZE:int:register_size::::0:-1
453 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
454 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
455 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
456 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
457 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
458 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
459 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
460 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
461 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
462 # MAP a GDB RAW register number onto a simulator register number. See
463 # also include/...-sim.h.
464 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
465 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
466 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
467 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
468 # setjmp/longjmp support.
469 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
471 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
472 # much better but at least they are vaguely consistent). The headers
473 # and body contain convoluted #if/#else sequences for determine how
474 # things should be compiled. Instead of trying to mimic that
475 # behaviour here (and hence entrench it further) gdbarch simply
476 # reqires that these methods be set up from the word go. This also
477 # avoids any potential problems with moving beyond multi-arch partial.
478 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
479 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
480 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
481 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
482 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
483 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
484 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
485 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
486 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
487 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
488 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
489 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
490 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
491 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
492 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
493 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
495 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
496 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
497 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
498 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
499 # old code has strange #ifdef interaction. So far no one has found
500 # that default_get_saved_register() is the default they are after.
501 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
503 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
504 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
505 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
506 # This function is called when the value of a pseudo-register needs to
507 # be updated. Typically it will be defined on a per-architecture
509 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
510 # This function is called when the value of a pseudo-register needs to
511 # be set or stored. Typically it will be defined on a
512 # per-architecture basis.
513 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
515 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
516 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
517 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
519 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
520 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
521 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
522 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
523 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
524 f:2:POP_FRAME:void:pop_frame:void:-:::0
526 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
527 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
528 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
529 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
531 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
532 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
534 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
535 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
536 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
537 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
538 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
539 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
540 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
541 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
542 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
544 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
546 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
547 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
548 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
549 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
550 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
551 # given frame is the outermost one and has no caller.
553 # XXXX - both default and alternate frame_chain_valid functions are
554 # deprecated. New code should use dummy frames and one of the generic
556 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
557 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
558 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
559 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
560 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
561 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
563 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
564 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
565 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
566 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
567 v:2:PARM_BOUNDARY:int:parm_boundary
569 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
570 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
571 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
572 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
573 # On some machines there are bits in addresses which are not really
574 # part of the address, but are used by the kernel, the hardware, etc.
575 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
576 # we get a "real" address such as one would find in a symbol table.
577 # This is used only for addresses of instructions, and even then I'm
578 # not sure it's used in all contexts. It exists to deal with there
579 # being a few stray bits in the PC which would mislead us, not as some
580 # sort of generic thing to handle alignment or segmentation (it's
581 # possible it should be in TARGET_READ_PC instead).
582 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
583 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
585 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
586 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
587 # the target needs software single step. An ISA method to implement it.
589 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
590 # using the breakpoint system instead of blatting memory directly (as with rs6000).
592 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
593 # single step. If not, then implement single step using breakpoints.
594 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
595 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
596 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
597 # For SVR4 shared libraries, each call goes through a small piece of
598 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
599 # to nonzero if we are current stopped in one of these.
600 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
601 # A target might have problems with watchpoints as soon as the stack
602 # frame of the current function has been destroyed. This mostly happens
603 # as the first action in a funtion's epilogue. in_function_epilogue_p()
604 # is defined to return a non-zero value if either the given addr is one
605 # instruction after the stack destroying instruction up to the trailing
606 # return instruction or if we can figure out that the stack frame has
607 # already been invalidated regardless of the value of addr. Targets
608 # which don't suffer from that problem could just let this functionality
610 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
611 # Given a vector of command-line arguments, return a newly allocated
612 # string which, when passed to the create_inferior function, will be
613 # parsed (on Unix systems, by the shell) to yield the same vector.
614 # This function should call error() if the argument vector is not
615 # representable for this target or if this target does not support
616 # command-line arguments.
617 # ARGC is the number of elements in the vector.
618 # ARGV is an array of strings, one per argument.
619 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
620 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
621 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
622 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
629 exec > new-gdbarch.log
630 function_list | while do_read
633 ${class} ${macro}(${actual})
634 ${returntype} ${function} ($formal)${attrib}
638 eval echo \"\ \ \ \ ${r}=\${${r}}\"
640 # #fallbackdefault=${fallbackdefault}
641 # #valid_p=${valid_p}
643 if class_is_predicate_p && fallback_default_p
645 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
649 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
651 echo "Error: postdefault is useless when invalid_p=0" 1>&2
655 if class_is_multiarch_p
657 if class_is_predicate_p ; then :
658 elif test "x${predefault}" = "x"
660 echo "Error: pure multi-arch function must have a predefault" 1>&2
669 compare_new gdbarch.log
675 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
677 /* Dynamic architecture support for GDB, the GNU debugger.
678 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
680 This file is part of GDB.
682 This program is free software; you can redistribute it and/or modify
683 it under the terms of the GNU General Public License as published by
684 the Free Software Foundation; either version 2 of the License, or
685 (at your option) any later version.
687 This program is distributed in the hope that it will be useful,
688 but WITHOUT ANY WARRANTY; without even the implied warranty of
689 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
690 GNU General Public License for more details.
692 You should have received a copy of the GNU General Public License
693 along with this program; if not, write to the Free Software
694 Foundation, Inc., 59 Temple Place - Suite 330,
695 Boston, MA 02111-1307, USA. */
697 /* This file was created with the aid of \`\`gdbarch.sh''.
699 The Bourne shell script \`\`gdbarch.sh'' creates the files
700 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
701 against the existing \`\`gdbarch.[hc]''. Any differences found
704 If editing this file, please also run gdbarch.sh and merge any
705 changes into that script. Conversely, when making sweeping changes
706 to this file, modifying gdbarch.sh and using its output may prove
722 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
724 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
730 struct minimal_symbol;
732 extern struct gdbarch *current_gdbarch;
735 /* If any of the following are defined, the target wasn't correctly
739 #if defined (EXTRA_FRAME_INFO)
740 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
745 #if defined (FRAME_FIND_SAVED_REGS)
746 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
750 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
751 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
758 printf "/* The following are pre-initialized by GDBARCH. */\n"
759 function_list | while do_read
764 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
765 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
766 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
767 printf "#error \"Non multi-arch definition of ${macro}\"\n"
769 printf "#if GDB_MULTI_ARCH\n"
770 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
771 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
780 printf "/* The following are initialized by the target dependent code. */\n"
781 function_list | while do_read
783 if [ -n "${comment}" ]
785 echo "${comment}" | sed \
790 if class_is_multiarch_p
792 if class_is_predicate_p
795 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
798 if class_is_predicate_p
801 printf "#if defined (${macro})\n"
802 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
803 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
804 printf "#if !defined (${macro}_P)\n"
805 printf "#define ${macro}_P() (1)\n"
809 printf "/* Default predicate for non- multi-arch targets. */\n"
810 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
811 printf "#define ${macro}_P() (0)\n"
814 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
815 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
816 printf "#error \"Non multi-arch definition of ${macro}\"\n"
818 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
819 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
823 if class_is_variable_p
825 if fallback_default_p || class_is_predicate_p
828 printf "/* Default (value) for non- multi-arch platforms. */\n"
829 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
830 echo "#define ${macro} (${fallbackdefault})" \
831 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
835 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
836 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
837 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
838 printf "#error \"Non multi-arch definition of ${macro}\"\n"
840 printf "#if GDB_MULTI_ARCH\n"
841 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
842 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
846 if class_is_function_p
848 if class_is_multiarch_p ; then :
849 elif fallback_default_p || class_is_predicate_p
852 printf "/* Default (function) for non- multi-arch platforms. */\n"
853 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
854 if [ "x${fallbackdefault}" = "x0" ]
856 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
858 # FIXME: Should be passing current_gdbarch through!
859 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
860 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
865 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
867 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
868 elif class_is_multiarch_p
870 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
872 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
874 if [ "x${formal}" = "xvoid" ]
876 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
878 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
880 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
881 if class_is_multiarch_p ; then :
883 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
884 printf "#error \"Non multi-arch definition of ${macro}\"\n"
886 printf "#if GDB_MULTI_ARCH\n"
887 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
888 if [ "x${actual}" = "x" ]
890 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
891 elif [ "x${actual}" = "x-" ]
893 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
895 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
906 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
909 /* Mechanism for co-ordinating the selection of a specific
912 GDB targets (*-tdep.c) can register an interest in a specific
913 architecture. Other GDB components can register a need to maintain
914 per-architecture data.
916 The mechanisms below ensures that there is only a loose connection
917 between the set-architecture command and the various GDB
918 components. Each component can independently register their need
919 to maintain architecture specific data with gdbarch.
923 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
926 The more traditional mega-struct containing architecture specific
927 data for all the various GDB components was also considered. Since
928 GDB is built from a variable number of (fairly independent)
929 components it was determined that the global aproach was not
933 /* Register a new architectural family with GDB.
935 Register support for the specified ARCHITECTURE with GDB. When
936 gdbarch determines that the specified architecture has been
937 selected, the corresponding INIT function is called.
941 The INIT function takes two parameters: INFO which contains the
942 information available to gdbarch about the (possibly new)
943 architecture; ARCHES which is a list of the previously created
944 \`\`struct gdbarch'' for this architecture.
946 The INIT function parameter INFO shall, as far as possible, be
947 pre-initialized with information obtained from INFO.ABFD or
948 previously selected architecture (if similar).
950 The INIT function shall return any of: NULL - indicating that it
951 doesn't recognize the selected architecture; an existing \`\`struct
952 gdbarch'' from the ARCHES list - indicating that the new
953 architecture is just a synonym for an earlier architecture (see
954 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
955 - that describes the selected architecture (see gdbarch_alloc()).
957 The DUMP_TDEP function shall print out all target specific values.
958 Care should be taken to ensure that the function works in both the
959 multi-arch and non- multi-arch cases. */
963 struct gdbarch *gdbarch;
964 struct gdbarch_list *next;
969 /* Use default: NULL (ZERO). */
970 const struct bfd_arch_info *bfd_arch_info;
972 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
975 /* Use default: NULL (ZERO). */
978 /* Use default: NULL (ZERO). */
979 struct gdbarch_tdep_info *tdep_info;
982 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
983 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
985 /* DEPRECATED - use gdbarch_register() */
986 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
988 extern void gdbarch_register (enum bfd_architecture architecture,
989 gdbarch_init_ftype *,
990 gdbarch_dump_tdep_ftype *);
993 /* Return a freshly allocated, NULL terminated, array of the valid
994 architecture names. Since architectures are registered during the
995 _initialize phase this function only returns useful information
996 once initialization has been completed. */
998 extern const char **gdbarch_printable_names (void);
1001 /* Helper function. Search the list of ARCHES for a GDBARCH that
1002 matches the information provided by INFO. */
1004 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1007 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1008 basic initialization using values obtained from the INFO andTDEP
1009 parameters. set_gdbarch_*() functions are called to complete the
1010 initialization of the object. */
1012 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1015 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1016 It is assumed that the caller freeds the \`\`struct
1019 extern void gdbarch_free (struct gdbarch *);
1022 /* Helper function. Force an update of the current architecture.
1024 The actual architecture selected is determined by INFO, \`\`(gdb) set
1025 architecture'' et.al., the existing architecture and BFD's default
1026 architecture. INFO should be initialized to zero and then selected
1027 fields should be updated.
1029 Returns non-zero if the update succeeds */
1031 extern int gdbarch_update_p (struct gdbarch_info info);
1035 /* Register per-architecture data-pointer.
1037 Reserve space for a per-architecture data-pointer. An identifier
1038 for the reserved data-pointer is returned. That identifer should
1039 be saved in a local static variable.
1041 The per-architecture data-pointer can be initialized in one of two
1042 ways: The value can be set explicitly using a call to
1043 set_gdbarch_data(); the value can be set implicitly using the value
1044 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1045 called after the basic architecture vector has been created.
1047 When a previously created architecture is re-selected, the
1048 per-architecture data-pointer for that previous architecture is
1049 restored. INIT() is not called.
1051 During initialization, multiple assignments of the data-pointer are
1052 allowed, non-NULL values are deleted by calling FREE(). If the
1053 architecture is deleted using gdbarch_free() all non-NULL data
1054 pointers are also deleted using FREE().
1056 Multiple registrarants for any architecture are allowed (and
1057 strongly encouraged). */
1059 struct gdbarch_data;
1061 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1062 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1064 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1065 gdbarch_data_free_ftype *free);
1066 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1067 struct gdbarch_data *data,
1070 extern void *gdbarch_data (struct gdbarch_data*);
1073 /* Register per-architecture memory region.
1075 Provide a memory-region swap mechanism. Per-architecture memory
1076 region are created. These memory regions are swapped whenever the
1077 architecture is changed. For a new architecture, the memory region
1078 is initialized with zero (0) and the INIT function is called.
1080 Memory regions are swapped / initialized in the order that they are
1081 registered. NULL DATA and/or INIT values can be specified.
1083 New code should use register_gdbarch_data(). */
1085 typedef void (gdbarch_swap_ftype) (void);
1086 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1087 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1091 /* The target-system-dependent byte order is dynamic */
1093 extern int target_byte_order;
1094 #ifndef TARGET_BYTE_ORDER
1095 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1098 extern int target_byte_order_auto;
1099 #ifndef TARGET_BYTE_ORDER_AUTO
1100 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1105 /* The target-system-dependent BFD architecture is dynamic */
1107 extern int target_architecture_auto;
1108 #ifndef TARGET_ARCHITECTURE_AUTO
1109 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1112 extern const struct bfd_arch_info *target_architecture;
1113 #ifndef TARGET_ARCHITECTURE
1114 #define TARGET_ARCHITECTURE (target_architecture + 0)
1118 /* The target-system-dependent disassembler is semi-dynamic */
1120 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1121 unsigned int len, disassemble_info *info);
1123 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1124 disassemble_info *info);
1126 extern void dis_asm_print_address (bfd_vma addr,
1127 disassemble_info *info);
1129 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1130 extern disassemble_info tm_print_insn_info;
1131 #ifndef TARGET_PRINT_INSN_INFO
1132 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1137 /* Set the dynamic target-system-dependent parameters (architecture,
1138 byte-order, ...) using information found in the BFD */
1140 extern void set_gdbarch_from_file (bfd *);
1143 /* Initialize the current architecture to the "first" one we find on
1146 extern void initialize_current_architecture (void);
1148 /* For non-multiarched targets, do any initialization of the default
1149 gdbarch object necessary after the _initialize_MODULE functions
1151 extern void initialize_non_multiarch ();
1153 /* gdbarch trace variable */
1154 extern int gdbarch_debug;
1156 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1161 #../move-if-change new-gdbarch.h gdbarch.h
1162 compare_new gdbarch.h
1169 exec > new-gdbarch.c
1174 #include "arch-utils.h"
1178 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1180 /* Just include everything in sight so that the every old definition
1181 of macro is visible. */
1182 #include "gdb_string.h"
1186 #include "inferior.h"
1187 #include "breakpoint.h"
1188 #include "gdb_wait.h"
1189 #include "gdbcore.h"
1192 #include "gdbthread.h"
1193 #include "annotate.h"
1194 #include "symfile.h" /* for overlay functions */
1195 #include "value.h" /* For old tm.h/nm.h macros. */
1199 #include "floatformat.h"
1201 #include "gdb_assert.h"
1202 #include "gdb-events.h"
1204 /* Static function declarations */
1206 static void verify_gdbarch (struct gdbarch *gdbarch);
1207 static void alloc_gdbarch_data (struct gdbarch *);
1208 static void init_gdbarch_data (struct gdbarch *);
1209 static void free_gdbarch_data (struct gdbarch *);
1210 static void init_gdbarch_swap (struct gdbarch *);
1211 static void swapout_gdbarch_swap (struct gdbarch *);
1212 static void swapin_gdbarch_swap (struct gdbarch *);
1214 /* Non-zero if we want to trace architecture code. */
1216 #ifndef GDBARCH_DEBUG
1217 #define GDBARCH_DEBUG 0
1219 int gdbarch_debug = GDBARCH_DEBUG;
1223 # gdbarch open the gdbarch object
1225 printf "/* Maintain the struct gdbarch object */\n"
1227 printf "struct gdbarch\n"
1229 printf " /* basic architectural information */\n"
1230 function_list | while do_read
1234 printf " ${returntype} ${function};\n"
1238 printf " /* target specific vector. */\n"
1239 printf " struct gdbarch_tdep *tdep;\n"
1240 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1242 printf " /* per-architecture data-pointers */\n"
1243 printf " unsigned nr_data;\n"
1244 printf " void **data;\n"
1246 printf " /* per-architecture swap-regions */\n"
1247 printf " struct gdbarch_swap *swap;\n"
1250 /* Multi-arch values.
1252 When extending this structure you must:
1254 Add the field below.
1256 Declare set/get functions and define the corresponding
1259 gdbarch_alloc(): If zero/NULL is not a suitable default,
1260 initialize the new field.
1262 verify_gdbarch(): Confirm that the target updated the field
1265 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1268 \`\`startup_gdbarch()'': Append an initial value to the static
1269 variable (base values on the host's c-type system).
1271 get_gdbarch(): Implement the set/get functions (probably using
1272 the macro's as shortcuts).
1277 function_list | while do_read
1279 if class_is_variable_p
1281 printf " ${returntype} ${function};\n"
1282 elif class_is_function_p
1284 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1289 # A pre-initialized vector
1293 /* The default architecture uses host values (for want of a better
1297 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1299 printf "struct gdbarch startup_gdbarch =\n"
1301 printf " /* basic architecture information */\n"
1302 function_list | while do_read
1306 printf " ${staticdefault},\n"
1310 /* target specific vector and its dump routine */
1312 /*per-architecture data-pointers and swap regions */
1314 /* Multi-arch values */
1316 function_list | while do_read
1318 if class_is_function_p || class_is_variable_p
1320 printf " ${staticdefault},\n"
1324 /* startup_gdbarch() */
1327 struct gdbarch *current_gdbarch = &startup_gdbarch;
1329 /* Do any initialization needed for a non-multiarch configuration
1330 after the _initialize_MODULE functions have been run. */
1332 initialize_non_multiarch ()
1334 alloc_gdbarch_data (&startup_gdbarch);
1335 init_gdbarch_data (&startup_gdbarch);
1339 # Create a new gdbarch struct
1343 /* Create a new \`\`struct gdbarch'' based on information provided by
1344 \`\`struct gdbarch_info''. */
1349 gdbarch_alloc (const struct gdbarch_info *info,
1350 struct gdbarch_tdep *tdep)
1352 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1353 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1354 the current local architecture and not the previous global
1355 architecture. This ensures that the new architectures initial
1356 values are not influenced by the previous architecture. Once
1357 everything is parameterised with gdbarch, this will go away. */
1358 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1359 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1361 alloc_gdbarch_data (current_gdbarch);
1363 current_gdbarch->tdep = tdep;
1366 function_list | while do_read
1370 printf " current_gdbarch->${function} = info->${function};\n"
1374 printf " /* Force the explicit initialization of these. */\n"
1375 function_list | while do_read
1377 if class_is_function_p || class_is_variable_p
1379 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1381 printf " current_gdbarch->${function} = ${predefault};\n"
1386 /* gdbarch_alloc() */
1388 return current_gdbarch;
1392 # Free a gdbarch struct.
1396 /* Free a gdbarch struct. This should never happen in normal
1397 operation --- once you've created a gdbarch, you keep it around.
1398 However, if an architecture's init function encounters an error
1399 building the structure, it may need to clean up a partially
1400 constructed gdbarch. */
1403 gdbarch_free (struct gdbarch *arch)
1405 gdb_assert (arch != NULL);
1406 free_gdbarch_data (arch);
1411 # verify a new architecture
1414 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1418 verify_gdbarch (struct gdbarch *gdbarch)
1420 struct ui_file *log;
1421 struct cleanup *cleanups;
1424 /* Only perform sanity checks on a multi-arch target. */
1425 if (!GDB_MULTI_ARCH)
1427 log = mem_fileopen ();
1428 cleanups = make_cleanup_ui_file_delete (log);
1430 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1431 fprintf_unfiltered (log, "\n\tbyte-order");
1432 if (gdbarch->bfd_arch_info == NULL)
1433 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1434 /* Check those that need to be defined for the given multi-arch level. */
1436 function_list | while do_read
1438 if class_is_function_p || class_is_variable_p
1440 if [ "x${invalid_p}" = "x0" ]
1442 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1443 elif class_is_predicate_p
1445 printf " /* Skip verify of ${function}, has predicate */\n"
1446 # FIXME: See do_read for potential simplification
1447 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1449 printf " if (${invalid_p})\n"
1450 printf " gdbarch->${function} = ${postdefault};\n"
1451 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1453 printf " if (gdbarch->${function} == ${predefault})\n"
1454 printf " gdbarch->${function} = ${postdefault};\n"
1455 elif [ -n "${postdefault}" ]
1457 printf " if (gdbarch->${function} == 0)\n"
1458 printf " gdbarch->${function} = ${postdefault};\n"
1459 elif [ -n "${invalid_p}" ]
1461 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1462 printf " && (${invalid_p}))\n"
1463 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1464 elif [ -n "${predefault}" ]
1466 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1467 printf " && (gdbarch->${function} == ${predefault}))\n"
1468 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1473 buf = ui_file_xstrdup (log, &dummy);
1474 make_cleanup (xfree, buf);
1475 if (strlen (buf) > 0)
1476 internal_error (__FILE__, __LINE__,
1477 "verify_gdbarch: the following are invalid ...%s",
1479 do_cleanups (cleanups);
1483 # dump the structure
1487 /* Print out the details of the current architecture. */
1489 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1490 just happens to match the global variable \`\`current_gdbarch''. That
1491 way macros refering to that variable get the local and not the global
1492 version - ulgh. Once everything is parameterised with gdbarch, this
1496 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1502 function_list | sort -t: +2 | while do_read
1504 # multiarch functions don't have macros.
1505 if class_is_multiarch_p
1507 printf " if (GDB_MULTI_ARCH)\n"
1508 printf " fprintf_unfiltered (file,\n"
1509 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1510 printf " (long) current_gdbarch->${function});\n"
1513 # Print the macro definition.
1514 printf "#ifdef ${macro}\n"
1515 if [ "x${returntype}" = "xvoid" ]
1517 printf "#if GDB_MULTI_ARCH\n"
1518 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1520 if class_is_function_p
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1524 printf " \"${macro}(${actual})\",\n"
1525 printf " XSTRING (${macro} (${actual})));\n"
1527 printf " fprintf_unfiltered (file,\n"
1528 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1529 printf " XSTRING (${macro}));\n"
1531 # Print the architecture vector value
1532 if [ "x${returntype}" = "xvoid" ]
1536 if [ "x${print_p}" = "x()" ]
1538 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1539 elif [ "x${print_p}" = "x0" ]
1541 printf " /* skip print of ${macro}, print_p == 0. */\n"
1542 elif [ -n "${print_p}" ]
1544 printf " if (${print_p})\n"
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1547 printf " ${print});\n"
1548 elif class_is_function_p
1550 printf " if (GDB_MULTI_ARCH)\n"
1551 printf " fprintf_unfiltered (file,\n"
1552 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1553 printf " (long) current_gdbarch->${function}\n"
1554 printf " /*${macro} ()*/);\n"
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1558 printf " ${print});\n"
1563 if (current_gdbarch->dump_tdep != NULL)
1564 current_gdbarch->dump_tdep (current_gdbarch, file);
1572 struct gdbarch_tdep *
1573 gdbarch_tdep (struct gdbarch *gdbarch)
1575 if (gdbarch_debug >= 2)
1576 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1577 return gdbarch->tdep;
1581 function_list | while do_read
1583 if class_is_predicate_p
1587 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1589 if [ -n "${valid_p}" ]
1591 printf " return ${valid_p};\n"
1593 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1597 if class_is_function_p
1600 printf "${returntype}\n"
1601 if [ "x${formal}" = "xvoid" ]
1603 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1605 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1608 printf " if (gdbarch->${function} == 0)\n"
1609 printf " internal_error (__FILE__, __LINE__,\n"
1610 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1611 printf " if (gdbarch_debug >= 2)\n"
1612 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1613 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1615 if class_is_multiarch_p
1622 if class_is_multiarch_p
1624 params="gdbarch, ${actual}"
1629 if [ "x${returntype}" = "xvoid" ]
1631 printf " gdbarch->${function} (${params});\n"
1633 printf " return gdbarch->${function} (${params});\n"
1638 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1639 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1641 printf " gdbarch->${function} = ${function};\n"
1643 elif class_is_variable_p
1646 printf "${returntype}\n"
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1649 if [ "x${invalid_p}" = "x0" ]
1651 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1652 elif [ -n "${invalid_p}" ]
1654 printf " if (${invalid_p})\n"
1655 printf " internal_error (__FILE__, __LINE__,\n"
1656 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1657 elif [ -n "${predefault}" ]
1659 printf " if (gdbarch->${function} == ${predefault})\n"
1660 printf " internal_error (__FILE__, __LINE__,\n"
1661 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1663 printf " if (gdbarch_debug >= 2)\n"
1664 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1665 printf " return gdbarch->${function};\n"
1669 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1670 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1672 printf " gdbarch->${function} = ${function};\n"
1674 elif class_is_info_p
1677 printf "${returntype}\n"
1678 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1680 printf " if (gdbarch_debug >= 2)\n"
1681 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1682 printf " return gdbarch->${function};\n"
1687 # All the trailing guff
1691 /* Keep a registry of per-architecture data-pointers required by GDB
1697 gdbarch_data_init_ftype *init;
1698 gdbarch_data_free_ftype *free;
1701 struct gdbarch_data_registration
1703 struct gdbarch_data *data;
1704 struct gdbarch_data_registration *next;
1707 struct gdbarch_data_registry
1710 struct gdbarch_data_registration *registrations;
1713 struct gdbarch_data_registry gdbarch_data_registry =
1718 struct gdbarch_data *
1719 register_gdbarch_data (gdbarch_data_init_ftype *init,
1720 gdbarch_data_free_ftype *free)
1722 struct gdbarch_data_registration **curr;
1723 for (curr = &gdbarch_data_registry.registrations;
1725 curr = &(*curr)->next);
1726 (*curr) = XMALLOC (struct gdbarch_data_registration);
1727 (*curr)->next = NULL;
1728 (*curr)->data = XMALLOC (struct gdbarch_data);
1729 (*curr)->data->index = gdbarch_data_registry.nr++;
1730 (*curr)->data->init = init;
1731 (*curr)->data->free = free;
1732 return (*curr)->data;
1736 /* Walk through all the registered users initializing each in turn. */
1739 init_gdbarch_data (struct gdbarch *gdbarch)
1741 struct gdbarch_data_registration *rego;
1742 for (rego = gdbarch_data_registry.registrations;
1746 struct gdbarch_data *data = rego->data;
1747 gdb_assert (data->index < gdbarch->nr_data);
1748 if (data->init != NULL)
1750 void *pointer = data->init (gdbarch);
1751 set_gdbarch_data (gdbarch, data, pointer);
1756 /* Create/delete the gdbarch data vector. */
1759 alloc_gdbarch_data (struct gdbarch *gdbarch)
1761 gdb_assert (gdbarch->data == NULL);
1762 gdbarch->nr_data = gdbarch_data_registry.nr;
1763 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1767 free_gdbarch_data (struct gdbarch *gdbarch)
1769 struct gdbarch_data_registration *rego;
1770 gdb_assert (gdbarch->data != NULL);
1771 for (rego = gdbarch_data_registry.registrations;
1775 struct gdbarch_data *data = rego->data;
1776 gdb_assert (data->index < gdbarch->nr_data);
1777 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1779 data->free (gdbarch, gdbarch->data[data->index]);
1780 gdbarch->data[data->index] = NULL;
1783 xfree (gdbarch->data);
1784 gdbarch->data = NULL;
1788 /* Initialize the current value of thee specified per-architecture
1792 set_gdbarch_data (struct gdbarch *gdbarch,
1793 struct gdbarch_data *data,
1796 gdb_assert (data->index < gdbarch->nr_data);
1797 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1798 data->free (gdbarch, gdbarch->data[data->index]);
1799 gdbarch->data[data->index] = pointer;
1802 /* Return the current value of the specified per-architecture
1806 gdbarch_data (struct gdbarch_data *data)
1808 gdb_assert (data->index < current_gdbarch->nr_data);
1809 return current_gdbarch->data[data->index];
1814 /* Keep a registry of swapped data required by GDB modules. */
1819 struct gdbarch_swap_registration *source;
1820 struct gdbarch_swap *next;
1823 struct gdbarch_swap_registration
1826 unsigned long sizeof_data;
1827 gdbarch_swap_ftype *init;
1828 struct gdbarch_swap_registration *next;
1831 struct gdbarch_swap_registry
1834 struct gdbarch_swap_registration *registrations;
1837 struct gdbarch_swap_registry gdbarch_swap_registry =
1843 register_gdbarch_swap (void *data,
1844 unsigned long sizeof_data,
1845 gdbarch_swap_ftype *init)
1847 struct gdbarch_swap_registration **rego;
1848 for (rego = &gdbarch_swap_registry.registrations;
1850 rego = &(*rego)->next);
1851 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1852 (*rego)->next = NULL;
1853 (*rego)->init = init;
1854 (*rego)->data = data;
1855 (*rego)->sizeof_data = sizeof_data;
1860 init_gdbarch_swap (struct gdbarch *gdbarch)
1862 struct gdbarch_swap_registration *rego;
1863 struct gdbarch_swap **curr = &gdbarch->swap;
1864 for (rego = gdbarch_swap_registry.registrations;
1868 if (rego->data != NULL)
1870 (*curr) = XMALLOC (struct gdbarch_swap);
1871 (*curr)->source = rego;
1872 (*curr)->swap = xmalloc (rego->sizeof_data);
1873 (*curr)->next = NULL;
1874 memset (rego->data, 0, rego->sizeof_data);
1875 curr = &(*curr)->next;
1877 if (rego->init != NULL)
1883 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1885 struct gdbarch_swap *curr;
1886 for (curr = gdbarch->swap;
1889 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1893 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1895 struct gdbarch_swap *curr;
1896 for (curr = gdbarch->swap;
1899 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1903 /* Keep a registry of the architectures known by GDB. */
1905 struct gdbarch_registration
1907 enum bfd_architecture bfd_architecture;
1908 gdbarch_init_ftype *init;
1909 gdbarch_dump_tdep_ftype *dump_tdep;
1910 struct gdbarch_list *arches;
1911 struct gdbarch_registration *next;
1914 static struct gdbarch_registration *gdbarch_registry = NULL;
1917 append_name (const char ***buf, int *nr, const char *name)
1919 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1925 gdbarch_printable_names (void)
1929 /* Accumulate a list of names based on the registed list of
1931 enum bfd_architecture a;
1933 const char **arches = NULL;
1934 struct gdbarch_registration *rego;
1935 for (rego = gdbarch_registry;
1939 const struct bfd_arch_info *ap;
1940 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1942 internal_error (__FILE__, __LINE__,
1943 "gdbarch_architecture_names: multi-arch unknown");
1946 append_name (&arches, &nr_arches, ap->printable_name);
1951 append_name (&arches, &nr_arches, NULL);
1955 /* Just return all the architectures that BFD knows. Assume that
1956 the legacy architecture framework supports them. */
1957 return bfd_arch_list ();
1962 gdbarch_register (enum bfd_architecture bfd_architecture,
1963 gdbarch_init_ftype *init,
1964 gdbarch_dump_tdep_ftype *dump_tdep)
1966 struct gdbarch_registration **curr;
1967 const struct bfd_arch_info *bfd_arch_info;
1968 /* Check that BFD recognizes this architecture */
1969 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1970 if (bfd_arch_info == NULL)
1972 internal_error (__FILE__, __LINE__,
1973 "gdbarch: Attempt to register unknown architecture (%d)",
1976 /* Check that we haven't seen this architecture before */
1977 for (curr = &gdbarch_registry;
1979 curr = &(*curr)->next)
1981 if (bfd_architecture == (*curr)->bfd_architecture)
1982 internal_error (__FILE__, __LINE__,
1983 "gdbarch: Duplicate registraration of architecture (%s)",
1984 bfd_arch_info->printable_name);
1988 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1989 bfd_arch_info->printable_name,
1992 (*curr) = XMALLOC (struct gdbarch_registration);
1993 (*curr)->bfd_architecture = bfd_architecture;
1994 (*curr)->init = init;
1995 (*curr)->dump_tdep = dump_tdep;
1996 (*curr)->arches = NULL;
1997 (*curr)->next = NULL;
1998 /* When non- multi-arch, install whatever target dump routine we've
1999 been provided - hopefully that routine has been written correctly
2000 and works regardless of multi-arch. */
2001 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2002 && startup_gdbarch.dump_tdep == NULL)
2003 startup_gdbarch.dump_tdep = dump_tdep;
2007 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2008 gdbarch_init_ftype *init)
2010 gdbarch_register (bfd_architecture, init, NULL);
2014 /* Look for an architecture using gdbarch_info. Base search on only
2015 BFD_ARCH_INFO and BYTE_ORDER. */
2017 struct gdbarch_list *
2018 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2019 const struct gdbarch_info *info)
2021 for (; arches != NULL; arches = arches->next)
2023 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2025 if (info->byte_order != arches->gdbarch->byte_order)
2033 /* Update the current architecture. Return ZERO if the update request
2037 gdbarch_update_p (struct gdbarch_info info)
2039 struct gdbarch *new_gdbarch;
2040 struct gdbarch_list **list;
2041 struct gdbarch_registration *rego;
2043 /* Fill in missing parts of the INFO struct using a number of
2044 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2046 /* \`\`(gdb) set architecture ...'' */
2047 if (info.bfd_arch_info == NULL
2048 && !TARGET_ARCHITECTURE_AUTO)
2049 info.bfd_arch_info = TARGET_ARCHITECTURE;
2050 if (info.bfd_arch_info == NULL
2051 && info.abfd != NULL
2052 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2053 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2054 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2055 if (info.bfd_arch_info == NULL)
2056 info.bfd_arch_info = TARGET_ARCHITECTURE;
2058 /* \`\`(gdb) set byte-order ...'' */
2059 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2060 && !TARGET_BYTE_ORDER_AUTO)
2061 info.byte_order = TARGET_BYTE_ORDER;
2062 /* From the INFO struct. */
2063 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2064 && info.abfd != NULL)
2065 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2066 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2067 : BFD_ENDIAN_UNKNOWN);
2068 /* From the current target. */
2069 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2070 info.byte_order = TARGET_BYTE_ORDER;
2072 /* Must have found some sort of architecture. */
2073 gdb_assert (info.bfd_arch_info != NULL);
2077 fprintf_unfiltered (gdb_stdlog,
2078 "gdbarch_update: info.bfd_arch_info %s\n",
2079 (info.bfd_arch_info != NULL
2080 ? info.bfd_arch_info->printable_name
2082 fprintf_unfiltered (gdb_stdlog,
2083 "gdbarch_update: info.byte_order %d (%s)\n",
2085 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2086 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2088 fprintf_unfiltered (gdb_stdlog,
2089 "gdbarch_update: info.abfd 0x%lx\n",
2091 fprintf_unfiltered (gdb_stdlog,
2092 "gdbarch_update: info.tdep_info 0x%lx\n",
2093 (long) info.tdep_info);
2096 /* Find the target that knows about this architecture. */
2097 for (rego = gdbarch_registry;
2100 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2105 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2109 /* Ask the target for a replacement architecture. */
2110 new_gdbarch = rego->init (info, rego->arches);
2112 /* Did the target like it? No. Reject the change. */
2113 if (new_gdbarch == NULL)
2116 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2120 /* Did the architecture change? No. Do nothing. */
2121 if (current_gdbarch == new_gdbarch)
2124 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2126 new_gdbarch->bfd_arch_info->printable_name);
2130 /* Swap all data belonging to the old target out */
2131 swapout_gdbarch_swap (current_gdbarch);
2133 /* Is this a pre-existing architecture? Yes. Swap it in. */
2134 for (list = ®o->arches;
2136 list = &(*list)->next)
2138 if ((*list)->gdbarch == new_gdbarch)
2141 fprintf_unfiltered (gdb_stdlog,
2142 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2144 new_gdbarch->bfd_arch_info->printable_name);
2145 current_gdbarch = new_gdbarch;
2146 swapin_gdbarch_swap (new_gdbarch);
2147 architecture_changed_event ();
2152 /* Append this new architecture to this targets list. */
2153 (*list) = XMALLOC (struct gdbarch_list);
2154 (*list)->next = NULL;
2155 (*list)->gdbarch = new_gdbarch;
2157 /* Switch to this new architecture. Dump it out. */
2158 current_gdbarch = new_gdbarch;
2161 fprintf_unfiltered (gdb_stdlog,
2162 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2164 new_gdbarch->bfd_arch_info->printable_name);
2167 /* Check that the newly installed architecture is valid. Plug in
2168 any post init values. */
2169 new_gdbarch->dump_tdep = rego->dump_tdep;
2170 verify_gdbarch (new_gdbarch);
2172 /* Initialize the per-architecture memory (swap) areas.
2173 CURRENT_GDBARCH must be update before these modules are
2175 init_gdbarch_swap (new_gdbarch);
2177 /* Initialize the per-architecture data-pointer of all parties that
2178 registered an interest in this architecture. CURRENT_GDBARCH
2179 must be updated before these modules are called. */
2180 init_gdbarch_data (new_gdbarch);
2181 architecture_changed_event ();
2184 gdbarch_dump (current_gdbarch, gdb_stdlog);
2192 /* Pointer to the target-dependent disassembly function. */
2193 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2194 disassemble_info tm_print_insn_info;
2197 extern void _initialize_gdbarch (void);
2200 _initialize_gdbarch (void)
2202 struct cmd_list_element *c;
2204 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2205 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2206 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2207 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2208 tm_print_insn_info.print_address_func = dis_asm_print_address;
2210 add_show_from_set (add_set_cmd ("arch",
2213 (char *)&gdbarch_debug,
2214 "Set architecture debugging.\\n\\
2215 When non-zero, architecture debugging is enabled.", &setdebuglist),
2217 c = add_set_cmd ("archdebug",
2220 (char *)&gdbarch_debug,
2221 "Set architecture debugging.\\n\\
2222 When non-zero, architecture debugging is enabled.", &setlist);
2224 deprecate_cmd (c, "set debug arch");
2225 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2231 #../move-if-change new-gdbarch.c gdbarch.c
2232 compare_new gdbarch.c