1 /* *INDENT-OFF* */ /* keep in sync with glibc */
2 /* Extended regular expression matching and search library,
4 (Implements POSIX draft P1003.2/D11.2, except for some of the
5 internationalization features.)
6 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000
7 Free Software Foundation, Inc.
9 NOTE: The canonical source of this file is maintained with the
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the
14 Free Software Foundation; either version 2, or (at your option) any
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software Foundation,
24 Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
27 /* AIX requires this to be the first thing in the file. */
28 #if defined _AIX && !defined REGEX_MALLOC
40 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
41 # define PARAMS(args) args
43 # define PARAMS(args) ()
45 #endif /* Not PARAMS. */
47 #if defined STDC_HEADERS && !defined emacs
50 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
51 # include <sys/types.h>
54 /* For platform which support the ISO C amendement 1 functionality we
55 support user defined character classes. */
56 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
57 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62 /* This is for other GNU distributions with internationalized messages. */
63 /* CYGNUS LOCAL: ../intl will handle this for us */
67 # define gettext(msgid) (msgid)
71 /* This define is so xgettext can find the internationalizable
73 # define gettext_noop(String) String
76 /* The `emacs' switch turns on certain matching commands
77 that make sense only in Emacs. */
86 /* If we are not linking with Emacs proper,
87 we can't use the relocating allocator
88 even if config.h says that we can. */
91 # if defined STDC_HEADERS || defined _LIBC
98 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
99 If nothing else has been done, use the method below. */
100 # ifdef INHIBIT_STRING_HEADER
101 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
102 # if !defined bzero && !defined bcopy
103 # undef INHIBIT_STRING_HEADER
108 /* This is the normal way of making sure we have a bcopy and a bzero.
109 This is used in most programs--a few other programs avoid this
110 by defining INHIBIT_STRING_HEADER. */
111 # ifndef INHIBIT_STRING_HEADER
112 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
116 # define bzero(s, n) (memset (s, '\0', n), (s))
118 # define bzero(s, n) __bzero (s, n)
122 # include <strings.h>
124 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
127 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
132 /* Define the syntax stuff for \<, \>, etc. */
134 /* This must be nonzero for the wordchar and notwordchar pattern
135 commands in re_match_2. */
140 # ifdef SWITCH_ENUM_BUG
141 # define SWITCH_ENUM_CAST(x) ((int)(x))
143 # define SWITCH_ENUM_CAST(x) (x)
146 /* How many characters in the character set. */
147 # define CHAR_SET_SIZE 256
149 /* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
150 #ifndef _REGEX_RE_COMP
151 #define _REGEX_RE_COMP
156 extern char *re_syntax_table;
158 # else /* not SYNTAX_TABLE */
160 static char re_syntax_table[CHAR_SET_SIZE];
171 bzero (re_syntax_table, sizeof re_syntax_table);
173 for (c = 'a'; c <= 'z'; c++)
174 re_syntax_table[c] = Sword;
176 for (c = 'A'; c <= 'Z'; c++)
177 re_syntax_table[c] = Sword;
179 for (c = '0'; c <= '9'; c++)
180 re_syntax_table[c] = Sword;
182 re_syntax_table['_'] = Sword;
187 # endif /* not SYNTAX_TABLE */
189 # define SYNTAX(c) re_syntax_table[c]
191 #endif /* not emacs */
193 /* Get the interface, including the syntax bits. */
194 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
195 #include "gnu-regex.h"
197 /* isalpha etc. are used for the character classes. */
200 /* Jim Meyering writes:
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
213 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 # define ISASCII(c) 1
216 # define ISASCII(c) isascii(c)
220 # define ISBLANK(c) (ISASCII (c) && isblank (c))
222 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
225 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
227 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
231 #define ISPRINT(c) (ISASCII (c) && isprint (c))
232 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 #define ISLOWER(c) (ISASCII (c) && islower (c))
237 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 #define ISSPACE(c) (ISASCII (c) && isspace (c))
239 #define ISUPPER(c) (ISASCII (c) && isupper (c))
240 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
243 # define NULL (void *)0
246 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
247 since ours (we hope) works properly with all combinations of
248 machines, compilers, `char' and `unsigned char' argument types.
249 (Per Bothner suggested the basic approach.) */
250 #undef SIGN_EXTEND_CHAR
252 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
253 #else /* not __STDC__ */
254 /* As in Harbison and Steele. */
255 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
258 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
259 use `alloca' instead of `malloc'. This is because using malloc in
260 re_search* or re_match* could cause memory leaks when C-g is used in
261 Emacs; also, malloc is slower and causes storage fragmentation. On
262 the other hand, malloc is more portable, and easier to debug.
264 Because we sometimes use alloca, some routines have to be macros,
265 not functions -- `alloca'-allocated space disappears at the end of the
266 function it is called in. */
270 # define REGEX_ALLOCATE malloc
271 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
272 # define REGEX_FREE free
274 #else /* not REGEX_MALLOC */
276 /* Emacs already defines alloca, sometimes. */
279 /* Make alloca work the best possible way. */
281 # define alloca __builtin_alloca
282 # else /* not __GNUC__ */
285 # endif /* HAVE_ALLOCA_H */
286 # endif /* not __GNUC__ */
288 # endif /* not alloca */
290 # define REGEX_ALLOCATE alloca
292 /* Assumes a `char *destination' variable. */
293 # define REGEX_REALLOCATE(source, osize, nsize) \
294 (destination = (char *) alloca (nsize), \
295 memcpy (destination, source, osize))
297 /* No need to do anything to free, after alloca. */
298 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
300 #endif /* not REGEX_MALLOC */
302 /* Define how to allocate the failure stack. */
304 #if defined REL_ALLOC && defined REGEX_MALLOC
306 # define REGEX_ALLOCATE_STACK(size) \
307 r_alloc (&failure_stack_ptr, (size))
308 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
309 r_re_alloc (&failure_stack_ptr, (nsize))
310 # define REGEX_FREE_STACK(ptr) \
311 r_alloc_free (&failure_stack_ptr)
313 #else /* not using relocating allocator */
317 # define REGEX_ALLOCATE_STACK malloc
318 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
319 # define REGEX_FREE_STACK free
321 # else /* not REGEX_MALLOC */
323 # define REGEX_ALLOCATE_STACK alloca
325 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
326 REGEX_REALLOCATE (source, osize, nsize)
327 /* No need to explicitly free anything. */
328 # define REGEX_FREE_STACK(arg)
330 # endif /* not REGEX_MALLOC */
331 #endif /* not using relocating allocator */
334 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
335 `string1' or just past its end. This works if PTR is NULL, which is
337 #define FIRST_STRING_P(ptr) \
338 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
340 /* (Re)Allocate N items of type T using malloc, or fail. */
341 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
342 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
343 #define RETALLOC_IF(addr, n, t) \
344 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
345 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
347 #define BYTEWIDTH 8 /* In bits. */
349 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
353 #define MAX(a, b) ((a) > (b) ? (a) : (b))
354 #define MIN(a, b) ((a) < (b) ? (a) : (b))
356 typedef char boolean;
360 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
361 const char *string1, int size1,
362 const char *string2, int size2,
364 struct re_registers *regs,
367 /* These are the command codes that appear in compiled regular
368 expressions. Some opcodes are followed by argument bytes. A
369 command code can specify any interpretation whatsoever for its
370 arguments. Zero bytes may appear in the compiled regular expression. */
376 /* Succeed right away--no more backtracking. */
379 /* Followed by one byte giving n, then by n literal bytes. */
382 /* Matches any (more or less) character. */
385 /* Matches any one char belonging to specified set. First
386 following byte is number of bitmap bytes. Then come bytes
387 for a bitmap saying which chars are in. Bits in each byte
388 are ordered low-bit-first. A character is in the set if its
389 bit is 1. A character too large to have a bit in the map is
390 automatically not in the set. */
393 /* Same parameters as charset, but match any character that is
394 not one of those specified. */
397 /* Start remembering the text that is matched, for storing in a
398 register. Followed by one byte with the register number, in
399 the range 0 to one less than the pattern buffer's re_nsub
400 field. Then followed by one byte with the number of groups
401 inner to this one. (This last has to be part of the
402 start_memory only because we need it in the on_failure_jump
406 /* Stop remembering the text that is matched and store it in a
407 memory register. Followed by one byte with the register
408 number, in the range 0 to one less than `re_nsub' in the
409 pattern buffer, and one byte with the number of inner groups,
410 just like `start_memory'. (We need the number of inner
411 groups here because we don't have any easy way of finding the
412 corresponding start_memory when we're at a stop_memory.) */
415 /* Match a duplicate of something remembered. Followed by one
416 byte containing the register number. */
419 /* Fail unless at beginning of line. */
422 /* Fail unless at end of line. */
425 /* Succeeds if at beginning of buffer (if emacs) or at beginning
426 of string to be matched (if not). */
429 /* Analogously, for end of buffer/string. */
432 /* Followed by two byte relative address to which to jump. */
435 /* Same as jump, but marks the end of an alternative. */
438 /* Followed by two-byte relative address of place to resume at
439 in case of failure. */
442 /* Like on_failure_jump, but pushes a placeholder instead of the
443 current string position when executed. */
444 on_failure_keep_string_jump,
446 /* Throw away latest failure point and then jump to following
447 two-byte relative address. */
450 /* Change to pop_failure_jump if know won't have to backtrack to
451 match; otherwise change to jump. This is used to jump
452 back to the beginning of a repeat. If what follows this jump
453 clearly won't match what the repeat does, such that we can be
454 sure that there is no use backtracking out of repetitions
455 already matched, then we change it to a pop_failure_jump.
456 Followed by two-byte address. */
459 /* Jump to following two-byte address, and push a dummy failure
460 point. This failure point will be thrown away if an attempt
461 is made to use it for a failure. A `+' construct makes this
462 before the first repeat. Also used as an intermediary kind
463 of jump when compiling an alternative. */
466 /* Push a dummy failure point and continue. Used at the end of
470 /* Followed by two-byte relative address and two-byte number n.
471 After matching N times, jump to the address upon failure. */
474 /* Followed by two-byte relative address, and two-byte number n.
475 Jump to the address N times, then fail. */
478 /* Set the following two-byte relative address to the
479 subsequent two-byte number. The address *includes* the two
483 wordchar, /* Matches any word-constituent character. */
484 notwordchar, /* Matches any char that is not a word-constituent. */
486 wordbeg, /* Succeeds if at word beginning. */
487 wordend, /* Succeeds if at word end. */
489 wordbound, /* Succeeds if at a word boundary. */
490 notwordbound /* Succeeds if not at a word boundary. */
493 ,before_dot, /* Succeeds if before point. */
494 at_dot, /* Succeeds if at point. */
495 after_dot, /* Succeeds if after point. */
497 /* Matches any character whose syntax is specified. Followed by
498 a byte which contains a syntax code, e.g., Sword. */
501 /* Matches any character whose syntax is not that specified. */
506 /* Common operations on the compiled pattern. */
508 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
510 #define STORE_NUMBER(destination, number) \
512 (destination)[0] = (number) & 0377; \
513 (destination)[1] = (number) >> 8; \
516 /* Same as STORE_NUMBER, except increment DESTINATION to
517 the byte after where the number is stored. Therefore, DESTINATION
518 must be an lvalue. */
520 #define STORE_NUMBER_AND_INCR(destination, number) \
522 STORE_NUMBER (destination, number); \
523 (destination) += 2; \
526 /* Put into DESTINATION a number stored in two contiguous bytes starting
529 #define EXTRACT_NUMBER(destination, source) \
531 (destination) = *(source) & 0377; \
532 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
536 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
538 extract_number (dest, source)
540 unsigned char *source;
542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
543 *dest = *source & 0377;
547 # ifndef EXTRACT_MACROS /* To debug the macros. */
548 # undef EXTRACT_NUMBER
549 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550 # endif /* not EXTRACT_MACROS */
554 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
557 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
559 EXTRACT_NUMBER (destination, source); \
564 static void extract_number_and_incr _RE_ARGS ((int *destination,
565 unsigned char **source));
567 extract_number_and_incr (destination, source)
569 unsigned char **source;
571 extract_number (destination, *source);
575 # ifndef EXTRACT_MACROS
576 # undef EXTRACT_NUMBER_AND_INCR
577 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
578 extract_number_and_incr (&dest, &src)
579 # endif /* not EXTRACT_MACROS */
583 /* If DEBUG is defined, Regex prints many voluminous messages about what
584 it is doing (if the variable `debug' is nonzero). If linked with the
585 main program in `iregex.c', you can enter patterns and strings
586 interactively. And if linked with the main program in `main.c' and
587 the other test files, you can run the already-written tests. */
591 /* We use standard I/O for debugging. */
594 /* It is useful to test things that ``must'' be true when debugging. */
597 static int debug = 0;
599 # define DEBUG_STATEMENT(e) e
600 # define DEBUG_PRINT1(x) if (debug) printf (x)
601 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
602 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
603 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
604 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
605 if (debug) print_partial_compiled_pattern (s, e)
606 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
607 if (debug) print_double_string (w, s1, sz1, s2, sz2)
610 /* Print the fastmap in human-readable form. */
613 print_fastmap (fastmap)
616 unsigned was_a_range = 0;
619 while (i < (1 << BYTEWIDTH))
625 while (i < (1 << BYTEWIDTH) && fastmap[i])
641 /* Print a compiled pattern string in human-readable form, starting at
642 the START pointer into it and ending just before the pointer END. */
645 print_partial_compiled_pattern (start, end)
646 unsigned char *start;
651 unsigned char *p = start;
652 unsigned char *pend = end;
660 /* Loop over pattern commands. */
663 printf ("%d:\t", p - start);
665 switch ((re_opcode_t) *p++)
673 printf ("/exactn/%d", mcnt);
684 printf ("/start_memory/%d/%d", mcnt, *p++);
689 printf ("/stop_memory/%d/%d", mcnt, *p++);
693 printf ("/duplicate/%d", *p++);
703 register int c, last = -100;
704 register int in_range = 0;
706 printf ("/charset [%s",
707 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
709 assert (p + *p < pend);
711 for (c = 0; c < 256; c++)
713 && (p[1 + (c/8)] & (1 << (c % 8))))
715 /* Are we starting a range? */
716 if (last + 1 == c && ! in_range)
721 /* Have we broken a range? */
722 else if (last + 1 != c && in_range)
751 case on_failure_jump:
752 extract_number_and_incr (&mcnt, &p);
753 printf ("/on_failure_jump to %d", p + mcnt - start);
756 case on_failure_keep_string_jump:
757 extract_number_and_incr (&mcnt, &p);
758 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
761 case dummy_failure_jump:
762 extract_number_and_incr (&mcnt, &p);
763 printf ("/dummy_failure_jump to %d", p + mcnt - start);
766 case push_dummy_failure:
767 printf ("/push_dummy_failure");
771 extract_number_and_incr (&mcnt, &p);
772 printf ("/maybe_pop_jump to %d", p + mcnt - start);
775 case pop_failure_jump:
776 extract_number_and_incr (&mcnt, &p);
777 printf ("/pop_failure_jump to %d", p + mcnt - start);
781 extract_number_and_incr (&mcnt, &p);
782 printf ("/jump_past_alt to %d", p + mcnt - start);
786 extract_number_and_incr (&mcnt, &p);
787 printf ("/jump to %d", p + mcnt - start);
791 extract_number_and_incr (&mcnt, &p);
793 extract_number_and_incr (&mcnt2, &p);
794 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
798 extract_number_and_incr (&mcnt, &p);
800 extract_number_and_incr (&mcnt2, &p);
801 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
805 extract_number_and_incr (&mcnt, &p);
807 extract_number_and_incr (&mcnt2, &p);
808 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
812 printf ("/wordbound");
816 printf ("/notwordbound");
828 printf ("/before_dot");
836 printf ("/after_dot");
840 printf ("/syntaxspec");
842 printf ("/%d", mcnt);
846 printf ("/notsyntaxspec");
848 printf ("/%d", mcnt);
853 printf ("/wordchar");
857 printf ("/notwordchar");
869 printf ("?%d", *(p-1));
875 printf ("%d:\tend of pattern.\n", p - start);
880 print_compiled_pattern (bufp)
881 struct re_pattern_buffer *bufp;
883 unsigned char *buffer = bufp->buffer;
885 print_partial_compiled_pattern (buffer, buffer + bufp->used);
886 printf ("%ld bytes used/%ld bytes allocated.\n",
887 bufp->used, bufp->allocated);
889 if (bufp->fastmap_accurate && bufp->fastmap)
891 printf ("fastmap: ");
892 print_fastmap (bufp->fastmap);
895 printf ("re_nsub: %d\t", bufp->re_nsub);
896 printf ("regs_alloc: %d\t", bufp->regs_allocated);
897 printf ("can_be_null: %d\t", bufp->can_be_null);
898 printf ("newline_anchor: %d\n", bufp->newline_anchor);
899 printf ("no_sub: %d\t", bufp->no_sub);
900 printf ("not_bol: %d\t", bufp->not_bol);
901 printf ("not_eol: %d\t", bufp->not_eol);
902 printf ("syntax: %lx\n", bufp->syntax);
903 /* Perhaps we should print the translate table? */
908 print_double_string (where, string1, size1, string2, size2)
921 if (FIRST_STRING_P (where))
923 for (this_char = where - string1; this_char < size1; this_char++)
924 putchar (string1[this_char]);
929 for (this_char = where - string2; this_char < size2; this_char++)
930 putchar (string2[this_char]);
941 #else /* not DEBUG */
946 # define DEBUG_STATEMENT(e)
947 # define DEBUG_PRINT1(x)
948 # define DEBUG_PRINT2(x1, x2)
949 # define DEBUG_PRINT3(x1, x2, x3)
950 # define DEBUG_PRINT4(x1, x2, x3, x4)
951 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
952 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
954 #endif /* not DEBUG */
956 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
957 also be assigned to arbitrarily: each pattern buffer stores its own
958 syntax, so it can be changed between regex compilations. */
959 /* This has no initializer because initialized variables in Emacs
960 become read-only after dumping. */
961 reg_syntax_t re_syntax_options;
964 /* Specify the precise syntax of regexps for compilation. This provides
965 for compatibility for various utilities which historically have
966 different, incompatible syntaxes.
968 The argument SYNTAX is a bit mask comprised of the various bits
969 defined in gnu-regex.h. We return the old syntax. */
972 re_set_syntax (syntax)
975 reg_syntax_t ret = re_syntax_options;
977 re_syntax_options = syntax;
979 if (syntax & RE_DEBUG)
981 else if (debug) /* was on but now is not */
987 weak_alias (__re_set_syntax, re_set_syntax)
990 /* This table gives an error message for each of the error codes listed
991 in gnu-regex.h. Obviously the order here has to be same as there.
992 POSIX doesn't require that we do anything for REG_NOERROR,
993 but why not be nice? */
995 static const char *re_error_msgid[] =
997 gettext_noop ("Success"), /* REG_NOERROR */
998 gettext_noop ("No match"), /* REG_NOMATCH */
999 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1000 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1001 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1002 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1003 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1004 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1005 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1006 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1007 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1008 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1009 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1010 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1011 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1012 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1013 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1016 /* Avoiding alloca during matching, to placate r_alloc. */
1018 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1019 searching and matching functions should not call alloca. On some
1020 systems, alloca is implemented in terms of malloc, and if we're
1021 using the relocating allocator routines, then malloc could cause a
1022 relocation, which might (if the strings being searched are in the
1023 ralloc heap) shift the data out from underneath the regexp
1026 Here's another reason to avoid allocation: Emacs
1027 processes input from X in a signal handler; processing X input may
1028 call malloc; if input arrives while a matching routine is calling
1029 malloc, then we're scrod. But Emacs can't just block input while
1030 calling matching routines; then we don't notice interrupts when
1031 they come in. So, Emacs blocks input around all regexp calls
1032 except the matching calls, which it leaves unprotected, in the
1033 faith that they will not malloc. */
1035 /* Normally, this is fine. */
1036 #define MATCH_MAY_ALLOCATE
1038 /* When using GNU C, we are not REALLY using the C alloca, no matter
1039 what config.h may say. So don't take precautions for it. */
1044 /* The match routines may not allocate if (1) they would do it with malloc
1045 and (2) it's not safe for them to use malloc.
1046 Note that if REL_ALLOC is defined, matching would not use malloc for the
1047 failure stack, but we would still use it for the register vectors;
1048 so REL_ALLOC should not affect this. */
1049 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1050 # undef MATCH_MAY_ALLOCATE
1054 /* Failure stack declarations and macros; both re_compile_fastmap and
1055 re_match_2 use a failure stack. These have to be macros because of
1056 REGEX_ALLOCATE_STACK. */
1059 /* Number of failure points for which to initially allocate space
1060 when matching. If this number is exceeded, we allocate more
1061 space, so it is not a hard limit. */
1062 #ifndef INIT_FAILURE_ALLOC
1063 # define INIT_FAILURE_ALLOC 5
1066 /* Roughly the maximum number of failure points on the stack. Would be
1067 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1068 This is a variable only so users of regex can assign to it; we never
1069 change it ourselves. */
1073 # if defined MATCH_MAY_ALLOCATE
1074 /* 4400 was enough to cause a crash on Alpha OSF/1,
1075 whose default stack limit is 2mb. */
1076 long int re_max_failures = 4000;
1078 long int re_max_failures = 2000;
1081 union fail_stack_elt
1083 unsigned char *pointer;
1087 typedef union fail_stack_elt fail_stack_elt_t;
1091 fail_stack_elt_t *stack;
1092 unsigned long int size;
1093 unsigned long int avail; /* Offset of next open position. */
1096 #else /* not INT_IS_16BIT */
1098 # if defined MATCH_MAY_ALLOCATE
1099 /* 4400 was enough to cause a crash on Alpha OSF/1,
1100 whose default stack limit is 2mb. */
1101 int re_max_failures = 20000;
1103 int re_max_failures = 2000;
1106 union fail_stack_elt
1108 unsigned char *pointer;
1112 typedef union fail_stack_elt fail_stack_elt_t;
1116 fail_stack_elt_t *stack;
1118 unsigned avail; /* Offset of next open position. */
1121 #endif /* INT_IS_16BIT */
1123 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1124 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1125 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1128 /* Define macros to initialize and free the failure stack.
1129 Do `return -2' if the alloc fails. */
1131 #ifdef MATCH_MAY_ALLOCATE
1132 # define INIT_FAIL_STACK() \
1134 fail_stack.stack = (fail_stack_elt_t *) \
1135 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1137 if (fail_stack.stack == NULL) \
1140 fail_stack.size = INIT_FAILURE_ALLOC; \
1141 fail_stack.avail = 0; \
1144 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1146 # define INIT_FAIL_STACK() \
1148 fail_stack.avail = 0; \
1151 # define RESET_FAIL_STACK()
1155 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1157 Return 1 if succeeds, and 0 if either ran out of memory
1158 allocating space for it or it was already too large.
1160 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1162 #define DOUBLE_FAIL_STACK(fail_stack) \
1163 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1165 : ((fail_stack).stack = (fail_stack_elt_t *) \
1166 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1167 (fail_stack).size * sizeof (fail_stack_elt_t), \
1168 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1170 (fail_stack).stack == NULL \
1172 : ((fail_stack).size <<= 1, \
1176 /* Push pointer POINTER on FAIL_STACK.
1177 Return 1 if was able to do so and 0 if ran out of memory allocating
1179 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1180 ((FAIL_STACK_FULL () \
1181 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1183 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1186 /* Push a pointer value onto the failure stack.
1187 Assumes the variable `fail_stack'. Probably should only
1188 be called from within `PUSH_FAILURE_POINT'. */
1189 #define PUSH_FAILURE_POINTER(item) \
1190 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1192 /* This pushes an integer-valued item onto the failure stack.
1193 Assumes the variable `fail_stack'. Probably should only
1194 be called from within `PUSH_FAILURE_POINT'. */
1195 #define PUSH_FAILURE_INT(item) \
1196 fail_stack.stack[fail_stack.avail++].integer = (item)
1198 /* Push a fail_stack_elt_t value onto the failure stack.
1199 Assumes the variable `fail_stack'. Probably should only
1200 be called from within `PUSH_FAILURE_POINT'. */
1201 #define PUSH_FAILURE_ELT(item) \
1202 fail_stack.stack[fail_stack.avail++] = (item)
1204 /* These three POP... operations complement the three PUSH... operations.
1205 All assume that `fail_stack' is nonempty. */
1206 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1207 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1208 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1210 /* Used to omit pushing failure point id's when we're not debugging. */
1212 # define DEBUG_PUSH PUSH_FAILURE_INT
1213 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1215 # define DEBUG_PUSH(item)
1216 # define DEBUG_POP(item_addr)
1220 /* Push the information about the state we will need
1221 if we ever fail back to it.
1223 Requires variables fail_stack, regstart, regend, reg_info, and
1224 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1227 Does `return FAILURE_CODE' if runs out of memory. */
1229 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1231 char *destination; \
1232 /* Must be int, so when we don't save any registers, the arithmetic \
1233 of 0 + -1 isn't done as unsigned. */ \
1234 /* Can't be int, since there is not a shred of a guarantee that int \
1235 is wide enough to hold a value of something to which pointer can \
1237 active_reg_t this_reg; \
1239 DEBUG_STATEMENT (failure_id++); \
1240 DEBUG_STATEMENT (nfailure_points_pushed++); \
1241 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1242 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1243 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1245 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1246 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1248 /* Ensure we have enough space allocated for what we will push. */ \
1249 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1251 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1252 return failure_code; \
1254 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1255 (fail_stack).size); \
1256 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1259 /* Push the info, starting with the registers. */ \
1260 DEBUG_PRINT1 ("\n"); \
1263 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1266 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1267 DEBUG_STATEMENT (num_regs_pushed++); \
1269 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1270 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1272 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1273 PUSH_FAILURE_POINTER (regend[this_reg]); \
1275 DEBUG_PRINT2 (" info: %p\n ", \
1276 reg_info[this_reg].word.pointer); \
1277 DEBUG_PRINT2 (" match_null=%d", \
1278 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1279 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1280 DEBUG_PRINT2 (" matched_something=%d", \
1281 MATCHED_SOMETHING (reg_info[this_reg])); \
1282 DEBUG_PRINT2 (" ever_matched=%d", \
1283 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1284 DEBUG_PRINT1 ("\n"); \
1285 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1288 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1289 PUSH_FAILURE_INT (lowest_active_reg); \
1291 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1292 PUSH_FAILURE_INT (highest_active_reg); \
1294 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1295 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1296 PUSH_FAILURE_POINTER (pattern_place); \
1298 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1299 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1301 DEBUG_PRINT1 ("'\n"); \
1302 PUSH_FAILURE_POINTER (string_place); \
1304 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1305 DEBUG_PUSH (failure_id); \
1308 /* This is the number of items that are pushed and popped on the stack
1309 for each register. */
1310 #define NUM_REG_ITEMS 3
1312 /* Individual items aside from the registers. */
1314 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1316 # define NUM_NONREG_ITEMS 4
1319 /* We push at most this many items on the stack. */
1320 /* We used to use (num_regs - 1), which is the number of registers
1321 this regexp will save; but that was changed to 5
1322 to avoid stack overflow for a regexp with lots of parens. */
1323 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1325 /* We actually push this many items. */
1326 #define NUM_FAILURE_ITEMS \
1328 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1332 /* How many items can still be added to the stack without overflowing it. */
1333 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1336 /* Pops what PUSH_FAIL_STACK pushes.
1338 We restore into the parameters, all of which should be lvalues:
1339 STR -- the saved data position.
1340 PAT -- the saved pattern position.
1341 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1342 REGSTART, REGEND -- arrays of string positions.
1343 REG_INFO -- array of information about each subexpression.
1345 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1346 `pend', `string1', `size1', `string2', and `size2'. */
1348 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1350 DEBUG_STATEMENT (unsigned failure_id;) \
1351 active_reg_t this_reg; \
1352 const unsigned char *string_temp; \
1354 assert (!FAIL_STACK_EMPTY ()); \
1356 /* Remove failure points and point to how many regs pushed. */ \
1357 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1358 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1359 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1361 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1363 DEBUG_POP (&failure_id); \
1364 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1366 /* If the saved string location is NULL, it came from an \
1367 on_failure_keep_string_jump opcode, and we want to throw away the \
1368 saved NULL, thus retaining our current position in the string. */ \
1369 string_temp = POP_FAILURE_POINTER (); \
1370 if (string_temp != NULL) \
1371 str = (const char *) string_temp; \
1373 DEBUG_PRINT2 (" Popping string %p: `", str); \
1374 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1375 DEBUG_PRINT1 ("'\n"); \
1377 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1378 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1379 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1381 /* Restore register info. */ \
1382 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1383 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1385 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1386 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1389 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1391 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1393 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1394 DEBUG_PRINT2 (" info: %p\n", \
1395 reg_info[this_reg].word.pointer); \
1397 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1398 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1400 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1401 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1405 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1407 reg_info[this_reg].word.integer = 0; \
1408 regend[this_reg] = 0; \
1409 regstart[this_reg] = 0; \
1411 highest_active_reg = high_reg; \
1414 set_regs_matched_done = 0; \
1415 DEBUG_STATEMENT (nfailure_points_popped++); \
1416 } /* POP_FAILURE_POINT */
1420 /* Structure for per-register (a.k.a. per-group) information.
1421 Other register information, such as the
1422 starting and ending positions (which are addresses), and the list of
1423 inner groups (which is a bits list) are maintained in separate
1426 We are making a (strictly speaking) nonportable assumption here: that
1427 the compiler will pack our bit fields into something that fits into
1428 the type of `word', i.e., is something that fits into one item on the
1432 /* Declarations and macros for re_match_2. */
1436 fail_stack_elt_t word;
1439 /* This field is one if this group can match the empty string,
1440 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1441 #define MATCH_NULL_UNSET_VALUE 3
1442 unsigned match_null_string_p : 2;
1443 unsigned is_active : 1;
1444 unsigned matched_something : 1;
1445 unsigned ever_matched_something : 1;
1447 } register_info_type;
1449 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1450 #define IS_ACTIVE(R) ((R).bits.is_active)
1451 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1452 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1455 /* Call this when have matched a real character; it sets `matched' flags
1456 for the subexpressions which we are currently inside. Also records
1457 that those subexprs have matched. */
1458 #define SET_REGS_MATCHED() \
1461 if (!set_regs_matched_done) \
1464 set_regs_matched_done = 1; \
1465 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1467 MATCHED_SOMETHING (reg_info[r]) \
1468 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1475 /* Registers are set to a sentinel when they haven't yet matched. */
1476 static char reg_unset_dummy;
1477 #define REG_UNSET_VALUE (®_unset_dummy)
1478 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1480 /* Subroutine declarations and macros for regex_compile. */
1482 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1483 reg_syntax_t syntax,
1484 struct re_pattern_buffer *bufp));
1485 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1486 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1487 int arg1, int arg2));
1488 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1489 int arg, unsigned char *end));
1490 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1491 int arg1, int arg2, unsigned char *end));
1492 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1493 reg_syntax_t syntax));
1494 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1495 reg_syntax_t syntax));
1496 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1499 reg_syntax_t syntax,
1502 /* Fetch the next character in the uncompiled pattern---translating it
1503 if necessary. Also cast from a signed character in the constant
1504 string passed to us by the user to an unsigned char that we can use
1505 as an array index (in, e.g., `translate'). */
1507 # define PATFETCH(c) \
1508 do {if (p == pend) return REG_EEND; \
1509 c = (unsigned char) *p++; \
1510 if (translate) c = (unsigned char) translate[c]; \
1514 /* Fetch the next character in the uncompiled pattern, with no
1516 #define PATFETCH_RAW(c) \
1517 do {if (p == pend) return REG_EEND; \
1518 c = (unsigned char) *p++; \
1521 /* Go backwards one character in the pattern. */
1522 #define PATUNFETCH p--
1525 /* If `translate' is non-null, return translate[D], else just D. We
1526 cast the subscript to translate because some data is declared as
1527 `char *', to avoid warnings when a string constant is passed. But
1528 when we use a character as a subscript we must make it unsigned. */
1530 # define TRANSLATE(d) \
1531 (translate ? (char) translate[(unsigned char) (d)] : (d))
1535 /* Macros for outputting the compiled pattern into `buffer'. */
1537 /* If the buffer isn't allocated when it comes in, use this. */
1538 #define INIT_BUF_SIZE 32
1540 /* Make sure we have at least N more bytes of space in buffer. */
1541 #define GET_BUFFER_SPACE(n) \
1542 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1545 /* Make sure we have one more byte of buffer space and then add C to it. */
1546 #define BUF_PUSH(c) \
1548 GET_BUFFER_SPACE (1); \
1549 *b++ = (unsigned char) (c); \
1553 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1554 #define BUF_PUSH_2(c1, c2) \
1556 GET_BUFFER_SPACE (2); \
1557 *b++ = (unsigned char) (c1); \
1558 *b++ = (unsigned char) (c2); \
1562 /* As with BUF_PUSH_2, except for three bytes. */
1563 #define BUF_PUSH_3(c1, c2, c3) \
1565 GET_BUFFER_SPACE (3); \
1566 *b++ = (unsigned char) (c1); \
1567 *b++ = (unsigned char) (c2); \
1568 *b++ = (unsigned char) (c3); \
1572 /* Store a jump with opcode OP at LOC to location TO. We store a
1573 relative address offset by the three bytes the jump itself occupies. */
1574 #define STORE_JUMP(op, loc, to) \
1575 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1577 /* Likewise, for a two-argument jump. */
1578 #define STORE_JUMP2(op, loc, to, arg) \
1579 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1581 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1582 #define INSERT_JUMP(op, loc, to) \
1583 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1585 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1586 #define INSERT_JUMP2(op, loc, to, arg) \
1587 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1590 /* This is not an arbitrary limit: the arguments which represent offsets
1591 into the pattern are two bytes long. So if 2^16 bytes turns out to
1592 be too small, many things would have to change. */
1593 #define MAX_BUF_SIZE (1L << 16)
1594 #define REALLOC(p,s) realloc ((p), (s))
1596 /* Extend the buffer by twice its current size via realloc and
1597 reset the pointers that pointed into the old block to point to the
1598 correct places in the new one. If extending the buffer results in it
1599 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1600 #define EXTEND_BUFFER() \
1602 unsigned char *old_buffer = bufp->buffer; \
1603 if (bufp->allocated == MAX_BUF_SIZE) \
1605 bufp->allocated <<= 1; \
1606 if (bufp->allocated > MAX_BUF_SIZE) \
1607 bufp->allocated = MAX_BUF_SIZE; \
1608 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1609 if (bufp->buffer == NULL) \
1610 return REG_ESPACE; \
1611 /* If the buffer moved, move all the pointers into it. */ \
1612 if (old_buffer != bufp->buffer) \
1614 b = (b - old_buffer) + bufp->buffer; \
1615 begalt = (begalt - old_buffer) + bufp->buffer; \
1616 if (fixup_alt_jump) \
1617 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1619 laststart = (laststart - old_buffer) + bufp->buffer; \
1620 if (pending_exact) \
1621 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1626 /* Since we have one byte reserved for the register number argument to
1627 {start,stop}_memory, the maximum number of groups we can report
1628 things about is what fits in that byte. */
1629 #define MAX_REGNUM 255
1631 /* But patterns can have more than `MAX_REGNUM' registers. We just
1632 ignore the excess. */
1633 typedef unsigned regnum_t;
1636 /* Macros for the compile stack. */
1638 /* Since offsets can go either forwards or backwards, this type needs to
1639 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1640 /* int may be not enough when sizeof(int) == 2. */
1641 typedef long pattern_offset_t;
1645 pattern_offset_t begalt_offset;
1646 pattern_offset_t fixup_alt_jump;
1647 pattern_offset_t inner_group_offset;
1648 pattern_offset_t laststart_offset;
1650 } compile_stack_elt_t;
1655 compile_stack_elt_t *stack;
1657 unsigned avail; /* Offset of next open position. */
1658 } compile_stack_type;
1661 #define INIT_COMPILE_STACK_SIZE 32
1663 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1664 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1666 /* The next available element. */
1667 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1670 /* Set the bit for character C in a list. */
1671 #define SET_LIST_BIT(c) \
1672 (b[((unsigned char) (c)) / BYTEWIDTH] \
1673 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1676 /* Get the next unsigned number in the uncompiled pattern. */
1677 #define GET_UNSIGNED_NUMBER(num) \
1681 while (ISDIGIT (c)) \
1685 num = num * 10 + c - '0'; \
1693 /* Use this only if they have btowc(), since wctype() is used below
1694 together with btowc(). btowc() is defined in the 1994 Amendment 1
1695 to ISO C and may not be present on systems where we have wchar.h
1697 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
1698 /* The GNU C library provides support for user-defined character classes
1699 and the functions from ISO C amendement 1. */
1700 # ifdef CHARCLASS_NAME_MAX
1701 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1703 /* This shouldn't happen but some implementation might still have this
1704 problem. Use a reasonable default value. */
1705 # define CHAR_CLASS_MAX_LENGTH 256
1709 # define IS_CHAR_CLASS(string) __wctype (string)
1711 # define IS_CHAR_CLASS(string) wctype (string)
1714 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1716 # define IS_CHAR_CLASS(string) \
1717 (STREQ (string, "alpha") || STREQ (string, "upper") \
1718 || STREQ (string, "lower") || STREQ (string, "digit") \
1719 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1720 || STREQ (string, "space") || STREQ (string, "print") \
1721 || STREQ (string, "punct") || STREQ (string, "graph") \
1722 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1725 #ifndef MATCH_MAY_ALLOCATE
1727 /* If we cannot allocate large objects within re_match_2_internal,
1728 we make the fail stack and register vectors global.
1729 The fail stack, we grow to the maximum size when a regexp
1731 The register vectors, we adjust in size each time we
1732 compile a regexp, according to the number of registers it needs. */
1734 static fail_stack_type fail_stack;
1736 /* Size with which the following vectors are currently allocated.
1737 That is so we can make them bigger as needed,
1738 but never make them smaller. */
1739 static int regs_allocated_size;
1741 static const char ** regstart, ** regend;
1742 static const char ** old_regstart, ** old_regend;
1743 static const char **best_regstart, **best_regend;
1744 static register_info_type *reg_info;
1745 static const char **reg_dummy;
1746 static register_info_type *reg_info_dummy;
1748 /* Make the register vectors big enough for NUM_REGS registers,
1749 but don't make them smaller. */
1752 regex_grow_registers (num_regs)
1755 if (num_regs > regs_allocated_size)
1757 RETALLOC_IF (regstart, num_regs, const char *);
1758 RETALLOC_IF (regend, num_regs, const char *);
1759 RETALLOC_IF (old_regstart, num_regs, const char *);
1760 RETALLOC_IF (old_regend, num_regs, const char *);
1761 RETALLOC_IF (best_regstart, num_regs, const char *);
1762 RETALLOC_IF (best_regend, num_regs, const char *);
1763 RETALLOC_IF (reg_info, num_regs, register_info_type);
1764 RETALLOC_IF (reg_dummy, num_regs, const char *);
1765 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1767 regs_allocated_size = num_regs;
1771 #endif /* not MATCH_MAY_ALLOCATE */
1773 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1777 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1778 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1780 Assumes the `allocated' (and perhaps `buffer') and `translate'
1781 fields are set in BUFP on entry.
1783 If it succeeds, results are put in BUFP (if it returns an error, the
1784 contents of BUFP are undefined):
1785 `buffer' is the compiled pattern;
1786 `syntax' is set to SYNTAX;
1787 `used' is set to the length of the compiled pattern;
1788 `fastmap_accurate' is zero;
1789 `re_nsub' is the number of subexpressions in PATTERN;
1790 `not_bol' and `not_eol' are zero;
1792 The `fastmap' and `newline_anchor' fields are neither
1793 examined nor set. */
1795 /* Return, freeing storage we allocated. */
1796 #define FREE_STACK_RETURN(value) \
1797 return (free (compile_stack.stack), value)
1799 static reg_errcode_t
1800 regex_compile (pattern, size, syntax, bufp)
1801 const char *pattern;
1803 reg_syntax_t syntax;
1804 struct re_pattern_buffer *bufp;
1806 /* We fetch characters from PATTERN here. Even though PATTERN is
1807 `char *' (i.e., signed), we declare these variables as unsigned, so
1808 they can be reliably used as array indices. */
1809 register unsigned char c, c1;
1811 /* A random temporary spot in PATTERN. */
1814 /* Points to the end of the buffer, where we should append. */
1815 register unsigned char *b;
1817 /* Keeps track of unclosed groups. */
1818 compile_stack_type compile_stack;
1820 /* Points to the current (ending) position in the pattern. */
1821 const char *p = pattern;
1822 const char *pend = pattern + size;
1824 /* How to translate the characters in the pattern. */
1825 RE_TRANSLATE_TYPE translate = bufp->translate;
1827 /* Address of the count-byte of the most recently inserted `exactn'
1828 command. This makes it possible to tell if a new exact-match
1829 character can be added to that command or if the character requires
1830 a new `exactn' command. */
1831 unsigned char *pending_exact = 0;
1833 /* Address of start of the most recently finished expression.
1834 This tells, e.g., postfix * where to find the start of its
1835 operand. Reset at the beginning of groups and alternatives. */
1836 unsigned char *laststart = 0;
1838 /* Address of beginning of regexp, or inside of last group. */
1839 unsigned char *begalt;
1841 /* Place in the uncompiled pattern (i.e., the {) to
1842 which to go back if the interval is invalid. */
1843 const char *beg_interval;
1845 /* Address of the place where a forward jump should go to the end of
1846 the containing expression. Each alternative of an `or' -- except the
1847 last -- ends with a forward jump of this sort. */
1848 unsigned char *fixup_alt_jump = 0;
1850 /* Counts open-groups as they are encountered. Remembered for the
1851 matching close-group on the compile stack, so the same register
1852 number is put in the stop_memory as the start_memory. */
1853 regnum_t regnum = 0;
1856 DEBUG_PRINT1 ("\nCompiling pattern: ");
1859 unsigned debug_count;
1861 for (debug_count = 0; debug_count < size; debug_count++)
1862 putchar (pattern[debug_count]);
1867 /* Initialize the compile stack. */
1868 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1869 if (compile_stack.stack == NULL)
1872 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1873 compile_stack.avail = 0;
1875 /* Initialize the pattern buffer. */
1876 bufp->syntax = syntax;
1877 bufp->fastmap_accurate = 0;
1878 bufp->not_bol = bufp->not_eol = 0;
1880 /* Set `used' to zero, so that if we return an error, the pattern
1881 printer (for debugging) will think there's no pattern. We reset it
1885 /* Always count groups, whether or not bufp->no_sub is set. */
1888 #if !defined emacs && !defined SYNTAX_TABLE
1889 /* Initialize the syntax table. */
1890 init_syntax_once ();
1893 if (bufp->allocated == 0)
1896 { /* If zero allocated, but buffer is non-null, try to realloc
1897 enough space. This loses if buffer's address is bogus, but
1898 that is the user's responsibility. */
1899 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1902 { /* Caller did not allocate a buffer. Do it for them. */
1903 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1905 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1907 bufp->allocated = INIT_BUF_SIZE;
1910 begalt = b = bufp->buffer;
1912 /* Loop through the uncompiled pattern until we're at the end. */
1921 if ( /* If at start of pattern, it's an operator. */
1923 /* If context independent, it's an operator. */
1924 || syntax & RE_CONTEXT_INDEP_ANCHORS
1925 /* Otherwise, depends on what's come before. */
1926 || at_begline_loc_p (pattern, p, syntax))
1936 if ( /* If at end of pattern, it's an operator. */
1938 /* If context independent, it's an operator. */
1939 || syntax & RE_CONTEXT_INDEP_ANCHORS
1940 /* Otherwise, depends on what's next. */
1941 || at_endline_loc_p (p, pend, syntax))
1951 if ((syntax & RE_BK_PLUS_QM)
1952 || (syntax & RE_LIMITED_OPS))
1956 /* If there is no previous pattern... */
1959 if (syntax & RE_CONTEXT_INVALID_OPS)
1960 FREE_STACK_RETURN (REG_BADRPT);
1961 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1966 /* Are we optimizing this jump? */
1967 boolean keep_string_p = false;
1969 /* 1 means zero (many) matches is allowed. */
1970 char zero_times_ok = 0, many_times_ok = 0;
1972 /* If there is a sequence of repetition chars, collapse it
1973 down to just one (the right one). We can't combine
1974 interval operators with these because of, e.g., `a{2}*',
1975 which should only match an even number of `a's. */
1979 zero_times_ok |= c != '+';
1980 many_times_ok |= c != '?';
1988 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1991 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1996 if (!(c1 == '+' || c1 == '?'))
2011 /* If we get here, we found another repeat character. */
2014 /* Star, etc. applied to an empty pattern is equivalent
2015 to an empty pattern. */
2019 /* Now we know whether or not zero matches is allowed
2020 and also whether or not two or more matches is allowed. */
2022 { /* More than one repetition is allowed, so put in at the
2023 end a backward relative jump from `b' to before the next
2024 jump we're going to put in below (which jumps from
2025 laststart to after this jump).
2027 But if we are at the `*' in the exact sequence `.*\n',
2028 insert an unconditional jump backwards to the .,
2029 instead of the beginning of the loop. This way we only
2030 push a failure point once, instead of every time
2031 through the loop. */
2032 assert (p - 1 > pattern);
2034 /* Allocate the space for the jump. */
2035 GET_BUFFER_SPACE (3);
2037 /* We know we are not at the first character of the pattern,
2038 because laststart was nonzero. And we've already
2039 incremented `p', by the way, to be the character after
2040 the `*'. Do we have to do something analogous here
2041 for null bytes, because of RE_DOT_NOT_NULL? */
2042 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2044 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2045 && !(syntax & RE_DOT_NEWLINE))
2046 { /* We have .*\n. */
2047 STORE_JUMP (jump, b, laststart);
2048 keep_string_p = true;
2051 /* Anything else. */
2052 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2054 /* We've added more stuff to the buffer. */
2058 /* On failure, jump from laststart to b + 3, which will be the
2059 end of the buffer after this jump is inserted. */
2060 GET_BUFFER_SPACE (3);
2061 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2069 /* At least one repetition is required, so insert a
2070 `dummy_failure_jump' before the initial
2071 `on_failure_jump' instruction of the loop. This
2072 effects a skip over that instruction the first time
2073 we hit that loop. */
2074 GET_BUFFER_SPACE (3);
2075 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2090 boolean had_char_class = false;
2092 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2094 /* Ensure that we have enough space to push a charset: the
2095 opcode, the length count, and the bitset; 34 bytes in all. */
2096 GET_BUFFER_SPACE (34);
2100 /* We test `*p == '^' twice, instead of using an if
2101 statement, so we only need one BUF_PUSH. */
2102 BUF_PUSH (*p == '^' ? charset_not : charset);
2106 /* Remember the first position in the bracket expression. */
2109 /* Push the number of bytes in the bitmap. */
2110 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2112 /* Clear the whole map. */
2113 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2115 /* charset_not matches newline according to a syntax bit. */
2116 if ((re_opcode_t) b[-2] == charset_not
2117 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2118 SET_LIST_BIT ('\n');
2120 /* Read in characters and ranges, setting map bits. */
2123 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2127 /* \ might escape characters inside [...] and [^...]. */
2128 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2130 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2137 /* Could be the end of the bracket expression. If it's
2138 not (i.e., when the bracket expression is `[]' so
2139 far), the ']' character bit gets set way below. */
2140 if (c == ']' && p != p1 + 1)
2143 /* Look ahead to see if it's a range when the last thing
2144 was a character class. */
2145 if (had_char_class && c == '-' && *p != ']')
2146 FREE_STACK_RETURN (REG_ERANGE);
2148 /* Look ahead to see if it's a range when the last thing
2149 was a character: if this is a hyphen not at the
2150 beginning or the end of a list, then it's the range
2153 && !(p - 2 >= pattern && p[-2] == '[')
2154 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2158 = compile_range (&p, pend, translate, syntax, b);
2159 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2162 else if (p[0] == '-' && p[1] != ']')
2163 { /* This handles ranges made up of characters only. */
2166 /* Move past the `-'. */
2169 ret = compile_range (&p, pend, translate, syntax, b);
2170 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2173 /* See if we're at the beginning of a possible character
2176 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2177 { /* Leave room for the null. */
2178 char str[CHAR_CLASS_MAX_LENGTH + 1];
2183 /* If pattern is `[[:'. */
2184 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2189 if ((c == ':' && *p == ']') || p == pend
2190 || c1 == CHAR_CLASS_MAX_LENGTH)
2196 /* If isn't a word bracketed by `[:' and `:]':
2197 undo the ending character, the letters, and leave
2198 the leading `:' and `[' (but set bits for them). */
2199 if (c == ':' && *p == ']')
2201 /* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2202 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2203 /* systems where we have wchar.h and wctype.h. */
2204 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2205 boolean is_lower = STREQ (str, "lower");
2206 boolean is_upper = STREQ (str, "upper");
2210 wt = IS_CHAR_CLASS (str);
2212 FREE_STACK_RETURN (REG_ECTYPE);
2214 /* Throw away the ] at the end of the character
2218 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2220 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2223 if (__iswctype (__btowc (ch), wt))
2226 if (iswctype (btowc (ch), wt))
2230 if (translate && (is_upper || is_lower)
2231 && (ISUPPER (ch) || ISLOWER (ch)))
2235 had_char_class = true;
2238 boolean is_alnum = STREQ (str, "alnum");
2239 boolean is_alpha = STREQ (str, "alpha");
2240 boolean is_blank = STREQ (str, "blank");
2241 boolean is_cntrl = STREQ (str, "cntrl");
2242 boolean is_digit = STREQ (str, "digit");
2243 boolean is_graph = STREQ (str, "graph");
2244 boolean is_lower = STREQ (str, "lower");
2245 boolean is_print = STREQ (str, "print");
2246 boolean is_punct = STREQ (str, "punct");
2247 boolean is_space = STREQ (str, "space");
2248 boolean is_upper = STREQ (str, "upper");
2249 boolean is_xdigit = STREQ (str, "xdigit");
2251 if (!IS_CHAR_CLASS (str))
2252 FREE_STACK_RETURN (REG_ECTYPE);
2254 /* Throw away the ] at the end of the character
2258 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2260 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2262 /* This was split into 3 if's to
2263 avoid an arbitrary limit in some compiler. */
2264 if ( (is_alnum && ISALNUM (ch))
2265 || (is_alpha && ISALPHA (ch))
2266 || (is_blank && ISBLANK (ch))
2267 || (is_cntrl && ISCNTRL (ch)))
2269 if ( (is_digit && ISDIGIT (ch))
2270 || (is_graph && ISGRAPH (ch))
2271 || (is_lower && ISLOWER (ch))
2272 || (is_print && ISPRINT (ch)))
2274 if ( (is_punct && ISPUNCT (ch))
2275 || (is_space && ISSPACE (ch))
2276 || (is_upper && ISUPPER (ch))
2277 || (is_xdigit && ISXDIGIT (ch)))
2279 if ( translate && (is_upper || is_lower)
2280 && (ISUPPER (ch) || ISLOWER (ch)))
2283 had_char_class = true;
2284 #endif /* libc || wctype.h */
2293 had_char_class = false;
2298 had_char_class = false;
2303 /* Discard any (non)matching list bytes that are all 0 at the
2304 end of the map. Decrease the map-length byte too. */
2305 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2313 if (syntax & RE_NO_BK_PARENS)
2320 if (syntax & RE_NO_BK_PARENS)
2327 if (syntax & RE_NEWLINE_ALT)
2334 if (syntax & RE_NO_BK_VBAR)
2341 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2342 goto handle_interval;
2348 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2350 /* Do not translate the character after the \, so that we can
2351 distinguish, e.g., \B from \b, even if we normally would
2352 translate, e.g., B to b. */
2358 if (syntax & RE_NO_BK_PARENS)
2359 goto normal_backslash;
2365 if (COMPILE_STACK_FULL)
2367 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2368 compile_stack_elt_t);
2369 if (compile_stack.stack == NULL) return REG_ESPACE;
2371 compile_stack.size <<= 1;
2374 /* These are the values to restore when we hit end of this
2375 group. They are all relative offsets, so that if the
2376 whole pattern moves because of realloc, they will still
2378 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2379 COMPILE_STACK_TOP.fixup_alt_jump
2380 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2381 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2382 COMPILE_STACK_TOP.regnum = regnum;
2384 /* We will eventually replace the 0 with the number of
2385 groups inner to this one. But do not push a
2386 start_memory for groups beyond the last one we can
2387 represent in the compiled pattern. */
2388 if (regnum <= MAX_REGNUM)
2390 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2391 BUF_PUSH_3 (start_memory, regnum, 0);
2394 compile_stack.avail++;
2399 /* If we've reached MAX_REGNUM groups, then this open
2400 won't actually generate any code, so we'll have to
2401 clear pending_exact explicitly. */
2407 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2409 if (COMPILE_STACK_EMPTY)
2411 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2412 goto normal_backslash;
2414 FREE_STACK_RETURN (REG_ERPAREN);
2419 { /* Push a dummy failure point at the end of the
2420 alternative for a possible future
2421 `pop_failure_jump' to pop. See comments at
2422 `push_dummy_failure' in `re_match_2'. */
2423 BUF_PUSH (push_dummy_failure);
2425 /* We allocated space for this jump when we assigned
2426 to `fixup_alt_jump', in the `handle_alt' case below. */
2427 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2430 /* See similar code for backslashed left paren above. */
2431 if (COMPILE_STACK_EMPTY)
2433 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2436 FREE_STACK_RETURN (REG_ERPAREN);
2439 /* Since we just checked for an empty stack above, this
2440 ``can't happen''. */
2441 assert (compile_stack.avail != 0);
2443 /* We don't just want to restore into `regnum', because
2444 later groups should continue to be numbered higher,
2445 as in `(ab)c(de)' -- the second group is #2. */
2446 regnum_t this_group_regnum;
2448 compile_stack.avail--;
2449 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2451 = COMPILE_STACK_TOP.fixup_alt_jump
2452 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2454 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2455 this_group_regnum = COMPILE_STACK_TOP.regnum;
2456 /* If we've reached MAX_REGNUM groups, then this open
2457 won't actually generate any code, so we'll have to
2458 clear pending_exact explicitly. */
2461 /* We're at the end of the group, so now we know how many
2462 groups were inside this one. */
2463 if (this_group_regnum <= MAX_REGNUM)
2465 unsigned char *inner_group_loc
2466 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2468 *inner_group_loc = regnum - this_group_regnum;
2469 BUF_PUSH_3 (stop_memory, this_group_regnum,
2470 regnum - this_group_regnum);
2476 case '|': /* `\|'. */
2477 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2478 goto normal_backslash;
2480 if (syntax & RE_LIMITED_OPS)
2483 /* Insert before the previous alternative a jump which
2484 jumps to this alternative if the former fails. */
2485 GET_BUFFER_SPACE (3);
2486 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2490 /* The alternative before this one has a jump after it
2491 which gets executed if it gets matched. Adjust that
2492 jump so it will jump to this alternative's analogous
2493 jump (put in below, which in turn will jump to the next
2494 (if any) alternative's such jump, etc.). The last such
2495 jump jumps to the correct final destination. A picture:
2501 If we are at `b', then fixup_alt_jump right now points to a
2502 three-byte space after `a'. We'll put in the jump, set
2503 fixup_alt_jump to right after `b', and leave behind three
2504 bytes which we'll fill in when we get to after `c'. */
2507 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2509 /* Mark and leave space for a jump after this alternative,
2510 to be filled in later either by next alternative or
2511 when know we're at the end of a series of alternatives. */
2513 GET_BUFFER_SPACE (3);
2522 /* If \{ is a literal. */
2523 if (!(syntax & RE_INTERVALS)
2524 /* If we're at `\{' and it's not the open-interval
2526 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2527 || (p - 2 == pattern && p == pend))
2528 goto normal_backslash;
2532 /* If got here, then the syntax allows intervals. */
2534 /* At least (most) this many matches must be made. */
2535 int lower_bound = -1, upper_bound = -1;
2537 beg_interval = p - 1;
2541 if (syntax & RE_NO_BK_BRACES)
2542 goto unfetch_interval;
2544 FREE_STACK_RETURN (REG_EBRACE);
2547 GET_UNSIGNED_NUMBER (lower_bound);
2551 GET_UNSIGNED_NUMBER (upper_bound);
2552 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2555 /* Interval such as `{1}' => match exactly once. */
2556 upper_bound = lower_bound;
2558 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2559 || lower_bound > upper_bound)
2561 if (syntax & RE_NO_BK_BRACES)
2562 goto unfetch_interval;
2564 FREE_STACK_RETURN (REG_BADBR);
2567 if (!(syntax & RE_NO_BK_BRACES))
2569 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2576 if (syntax & RE_NO_BK_BRACES)
2577 goto unfetch_interval;
2579 FREE_STACK_RETURN (REG_BADBR);
2582 /* We just parsed a valid interval. */
2584 /* If it's invalid to have no preceding re. */
2587 if (syntax & RE_CONTEXT_INVALID_OPS)
2588 FREE_STACK_RETURN (REG_BADRPT);
2589 else if (syntax & RE_CONTEXT_INDEP_OPS)
2592 goto unfetch_interval;
2595 /* If the upper bound is zero, don't want to succeed at
2596 all; jump from `laststart' to `b + 3', which will be
2597 the end of the buffer after we insert the jump. */
2598 if (upper_bound == 0)
2600 GET_BUFFER_SPACE (3);
2601 INSERT_JUMP (jump, laststart, b + 3);
2605 /* Otherwise, we have a nontrivial interval. When
2606 we're all done, the pattern will look like:
2607 set_number_at <jump count> <upper bound>
2608 set_number_at <succeed_n count> <lower bound>
2609 succeed_n <after jump addr> <succeed_n count>
2611 jump_n <succeed_n addr> <jump count>
2612 (The upper bound and `jump_n' are omitted if
2613 `upper_bound' is 1, though.) */
2615 { /* If the upper bound is > 1, we need to insert
2616 more at the end of the loop. */
2617 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2619 GET_BUFFER_SPACE (nbytes);
2621 /* Initialize lower bound of the `succeed_n', even
2622 though it will be set during matching by its
2623 attendant `set_number_at' (inserted next),
2624 because `re_compile_fastmap' needs to know.
2625 Jump to the `jump_n' we might insert below. */
2626 INSERT_JUMP2 (succeed_n, laststart,
2627 b + 5 + (upper_bound > 1) * 5,
2631 /* Code to initialize the lower bound. Insert
2632 before the `succeed_n'. The `5' is the last two
2633 bytes of this `set_number_at', plus 3 bytes of
2634 the following `succeed_n'. */
2635 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2638 if (upper_bound > 1)
2639 { /* More than one repetition is allowed, so
2640 append a backward jump to the `succeed_n'
2641 that starts this interval.
2643 When we've reached this during matching,
2644 we'll have matched the interval once, so
2645 jump back only `upper_bound - 1' times. */
2646 STORE_JUMP2 (jump_n, b, laststart + 5,
2650 /* The location we want to set is the second
2651 parameter of the `jump_n'; that is `b-2' as
2652 an absolute address. `laststart' will be
2653 the `set_number_at' we're about to insert;
2654 `laststart+3' the number to set, the source
2655 for the relative address. But we are
2656 inserting into the middle of the pattern --
2657 so everything is getting moved up by 5.
2658 Conclusion: (b - 2) - (laststart + 3) + 5,
2659 i.e., b - laststart.
2661 We insert this at the beginning of the loop
2662 so that if we fail during matching, we'll
2663 reinitialize the bounds. */
2664 insert_op2 (set_number_at, laststart, b - laststart,
2665 upper_bound - 1, b);
2670 beg_interval = NULL;
2675 /* If an invalid interval, match the characters as literals. */
2676 assert (beg_interval);
2678 beg_interval = NULL;
2680 /* normal_char and normal_backslash need `c'. */
2683 if (!(syntax & RE_NO_BK_BRACES))
2685 if (p > pattern && p[-1] == '\\')
2686 goto normal_backslash;
2691 /* There is no way to specify the before_dot and after_dot
2692 operators. rms says this is ok. --karl */
2700 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2706 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2712 if (syntax & RE_NO_GNU_OPS)
2715 BUF_PUSH (wordchar);
2720 if (syntax & RE_NO_GNU_OPS)
2723 BUF_PUSH (notwordchar);
2728 if (syntax & RE_NO_GNU_OPS)
2734 if (syntax & RE_NO_GNU_OPS)
2740 if (syntax & RE_NO_GNU_OPS)
2742 BUF_PUSH (wordbound);
2746 if (syntax & RE_NO_GNU_OPS)
2748 BUF_PUSH (notwordbound);
2752 if (syntax & RE_NO_GNU_OPS)
2758 if (syntax & RE_NO_GNU_OPS)
2763 case '1': case '2': case '3': case '4': case '5':
2764 case '6': case '7': case '8': case '9':
2765 if (syntax & RE_NO_BK_REFS)
2771 FREE_STACK_RETURN (REG_ESUBREG);
2773 /* Can't back reference to a subexpression if inside of it. */
2774 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2778 BUF_PUSH_2 (duplicate, c1);
2784 if (syntax & RE_BK_PLUS_QM)
2787 goto normal_backslash;
2791 /* You might think it would be useful for \ to mean
2792 not to translate; but if we don't translate it
2793 it will never match anything. */
2801 /* Expects the character in `c'. */
2803 /* If no exactn currently being built. */
2806 /* If last exactn not at current position. */
2807 || pending_exact + *pending_exact + 1 != b
2809 /* We have only one byte following the exactn for the count. */
2810 || *pending_exact == (1 << BYTEWIDTH) - 1
2812 /* If followed by a repetition operator. */
2813 || *p == '*' || *p == '^'
2814 || ((syntax & RE_BK_PLUS_QM)
2815 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2816 : (*p == '+' || *p == '?'))
2817 || ((syntax & RE_INTERVALS)
2818 && ((syntax & RE_NO_BK_BRACES)
2820 : (p[0] == '\\' && p[1] == '{'))))
2822 /* Start building a new exactn. */
2826 BUF_PUSH_2 (exactn, 0);
2827 pending_exact = b - 1;
2834 } /* while p != pend */
2837 /* Through the pattern now. */
2840 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2842 if (!COMPILE_STACK_EMPTY)
2843 FREE_STACK_RETURN (REG_EPAREN);
2845 /* If we don't want backtracking, force success
2846 the first time we reach the end of the compiled pattern. */
2847 if (syntax & RE_NO_POSIX_BACKTRACKING)
2850 free (compile_stack.stack);
2852 /* We have succeeded; set the length of the buffer. */
2853 bufp->used = b - bufp->buffer;
2858 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2859 print_compiled_pattern (bufp);
2863 #ifndef MATCH_MAY_ALLOCATE
2864 /* Initialize the failure stack to the largest possible stack. This
2865 isn't necessary unless we're trying to avoid calling alloca in
2866 the search and match routines. */
2868 int num_regs = bufp->re_nsub + 1;
2870 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2871 is strictly greater than re_max_failures, the largest possible stack
2872 is 2 * re_max_failures failure points. */
2873 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2875 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2878 if (! fail_stack.stack)
2880 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2881 * sizeof (fail_stack_elt_t));
2884 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2886 * sizeof (fail_stack_elt_t)));
2887 # else /* not emacs */
2888 if (! fail_stack.stack)
2890 = (fail_stack_elt_t *) malloc (fail_stack.size
2891 * sizeof (fail_stack_elt_t));
2894 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2896 * sizeof (fail_stack_elt_t)));
2897 # endif /* not emacs */
2900 regex_grow_registers (num_regs);
2902 #endif /* not MATCH_MAY_ALLOCATE */
2905 } /* regex_compile */
2907 /* Subroutines for `regex_compile'. */
2909 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2912 store_op1 (op, loc, arg)
2917 *loc = (unsigned char) op;
2918 STORE_NUMBER (loc + 1, arg);
2922 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2925 store_op2 (op, loc, arg1, arg2)
2930 *loc = (unsigned char) op;
2931 STORE_NUMBER (loc + 1, arg1);
2932 STORE_NUMBER (loc + 3, arg2);
2936 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2937 for OP followed by two-byte integer parameter ARG. */
2940 insert_op1 (op, loc, arg, end)
2946 register unsigned char *pfrom = end;
2947 register unsigned char *pto = end + 3;
2949 while (pfrom != loc)
2952 store_op1 (op, loc, arg);
2956 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2959 insert_op2 (op, loc, arg1, arg2, end)
2965 register unsigned char *pfrom = end;
2966 register unsigned char *pto = end + 5;
2968 while (pfrom != loc)
2971 store_op2 (op, loc, arg1, arg2);
2975 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2976 after an alternative or a begin-subexpression. We assume there is at
2977 least one character before the ^. */
2980 at_begline_loc_p (pattern, p, syntax)
2981 const char *pattern, *p;
2982 reg_syntax_t syntax;
2984 const char *prev = p - 2;
2985 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2988 /* After a subexpression? */
2989 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2990 /* After an alternative? */
2991 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2995 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2996 at least one character after the $, i.e., `P < PEND'. */
2999 at_endline_loc_p (p, pend, syntax)
3000 const char *p, *pend;
3001 reg_syntax_t syntax;
3003 const char *next = p;
3004 boolean next_backslash = *next == '\\';
3005 const char *next_next = p + 1 < pend ? p + 1 : 0;
3008 /* Before a subexpression? */
3009 (syntax & RE_NO_BK_PARENS ? *next == ')'
3010 : next_backslash && next_next && *next_next == ')')
3011 /* Before an alternative? */
3012 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3013 : next_backslash && next_next && *next_next == '|');
3017 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3018 false if it's not. */
3021 group_in_compile_stack (compile_stack, regnum)
3022 compile_stack_type compile_stack;
3027 for (this_element = compile_stack.avail - 1;
3030 if (compile_stack.stack[this_element].regnum == regnum)
3037 /* Read the ending character of a range (in a bracket expression) from the
3038 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3039 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3040 Then we set the translation of all bits between the starting and
3041 ending characters (inclusive) in the compiled pattern B.
3043 Return an error code.
3045 We use these short variable names so we can use the same macros as
3046 `regex_compile' itself. */
3048 static reg_errcode_t
3049 compile_range (p_ptr, pend, translate, syntax, b)
3050 const char **p_ptr, *pend;
3051 RE_TRANSLATE_TYPE translate;
3052 reg_syntax_t syntax;
3057 const char *p = *p_ptr;
3058 unsigned int range_start, range_end;
3063 /* Even though the pattern is a signed `char *', we need to fetch
3064 with unsigned char *'s; if the high bit of the pattern character
3065 is set, the range endpoints will be negative if we fetch using a
3068 We also want to fetch the endpoints without translating them; the
3069 appropriate translation is done in the bit-setting loop below. */
3070 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3071 range_start = ((const unsigned char *) p)[-2];
3072 range_end = ((const unsigned char *) p)[0];
3074 /* Have to increment the pointer into the pattern string, so the
3075 caller isn't still at the ending character. */
3078 /* If the start is after the end, the range is empty. */
3079 if (range_start > range_end)
3080 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3082 /* Here we see why `this_char' has to be larger than an `unsigned
3083 char' -- the range is inclusive, so if `range_end' == 0xff
3084 (assuming 8-bit characters), we would otherwise go into an infinite
3085 loop, since all characters <= 0xff. */
3086 for (this_char = range_start; this_char <= range_end; this_char++)
3088 SET_LIST_BIT (TRANSLATE (this_char));
3094 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3095 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3096 characters can start a string that matches the pattern. This fastmap
3097 is used by re_search to skip quickly over impossible starting points.
3099 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3100 area as BUFP->fastmap.
3102 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3105 Returns 0 if we succeed, -2 if an internal error. */
3108 re_compile_fastmap (bufp)
3109 struct re_pattern_buffer *bufp;
3112 #ifdef MATCH_MAY_ALLOCATE
3113 fail_stack_type fail_stack;
3115 #ifndef REGEX_MALLOC
3119 register char *fastmap = bufp->fastmap;
3120 unsigned char *pattern = bufp->buffer;
3121 unsigned char *p = pattern;
3122 register unsigned char *pend = pattern + bufp->used;
3125 /* This holds the pointer to the failure stack, when
3126 it is allocated relocatably. */
3127 fail_stack_elt_t *failure_stack_ptr;
3130 /* Assume that each path through the pattern can be null until
3131 proven otherwise. We set this false at the bottom of switch
3132 statement, to which we get only if a particular path doesn't
3133 match the empty string. */
3134 boolean path_can_be_null = true;
3136 /* We aren't doing a `succeed_n' to begin with. */
3137 boolean succeed_n_p = false;
3139 assert (fastmap != NULL && p != NULL);
3142 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3143 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3144 bufp->can_be_null = 0;
3148 if (p == pend || *p == succeed)
3150 /* We have reached the (effective) end of pattern. */
3151 if (!FAIL_STACK_EMPTY ())
3153 bufp->can_be_null |= path_can_be_null;
3155 /* Reset for next path. */
3156 path_can_be_null = true;
3158 p = fail_stack.stack[--fail_stack.avail].pointer;
3166 /* We should never be about to go beyond the end of the pattern. */
3169 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3172 /* I guess the idea here is to simply not bother with a fastmap
3173 if a backreference is used, since it's too hard to figure out
3174 the fastmap for the corresponding group. Setting
3175 `can_be_null' stops `re_search_2' from using the fastmap, so
3176 that is all we do. */
3178 bufp->can_be_null = 1;
3182 /* Following are the cases which match a character. These end
3191 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3192 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3198 /* Chars beyond end of map must be allowed. */
3199 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3202 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3203 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3209 for (j = 0; j < (1 << BYTEWIDTH); j++)
3210 if (SYNTAX (j) == Sword)
3216 for (j = 0; j < (1 << BYTEWIDTH); j++)
3217 if (SYNTAX (j) != Sword)
3224 int fastmap_newline = fastmap['\n'];
3226 /* `.' matches anything ... */
3227 for (j = 0; j < (1 << BYTEWIDTH); j++)
3230 /* ... except perhaps newline. */
3231 if (!(bufp->syntax & RE_DOT_NEWLINE))
3232 fastmap['\n'] = fastmap_newline;
3234 /* Return if we have already set `can_be_null'; if we have,
3235 then the fastmap is irrelevant. Something's wrong here. */
3236 else if (bufp->can_be_null)
3239 /* Otherwise, have to check alternative paths. */
3246 for (j = 0; j < (1 << BYTEWIDTH); j++)
3247 if (SYNTAX (j) == (enum syntaxcode) k)
3254 for (j = 0; j < (1 << BYTEWIDTH); j++)
3255 if (SYNTAX (j) != (enum syntaxcode) k)
3260 /* All cases after this match the empty string. These end with
3280 case push_dummy_failure:
3285 case pop_failure_jump:
3286 case maybe_pop_jump:
3289 case dummy_failure_jump:
3290 EXTRACT_NUMBER_AND_INCR (j, p);
3295 /* Jump backward implies we just went through the body of a
3296 loop and matched nothing. Opcode jumped to should be
3297 `on_failure_jump' or `succeed_n'. Just treat it like an
3298 ordinary jump. For a * loop, it has pushed its failure
3299 point already; if so, discard that as redundant. */
3300 if ((re_opcode_t) *p != on_failure_jump
3301 && (re_opcode_t) *p != succeed_n)
3305 EXTRACT_NUMBER_AND_INCR (j, p);
3308 /* If what's on the stack is where we are now, pop it. */
3309 if (!FAIL_STACK_EMPTY ()
3310 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3316 case on_failure_jump:
3317 case on_failure_keep_string_jump:
3318 handle_on_failure_jump:
3319 EXTRACT_NUMBER_AND_INCR (j, p);
3321 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3322 end of the pattern. We don't want to push such a point,
3323 since when we restore it above, entering the switch will
3324 increment `p' past the end of the pattern. We don't need
3325 to push such a point since we obviously won't find any more
3326 fastmap entries beyond `pend'. Such a pattern can match
3327 the null string, though. */
3330 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3332 RESET_FAIL_STACK ();
3337 bufp->can_be_null = 1;
3341 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3342 succeed_n_p = false;
3349 /* Get to the number of times to succeed. */
3352 /* Increment p past the n for when k != 0. */
3353 EXTRACT_NUMBER_AND_INCR (k, p);
3357 succeed_n_p = true; /* Spaghetti code alert. */
3358 goto handle_on_failure_jump;
3375 abort (); /* We have listed all the cases. */
3378 /* Getting here means we have found the possible starting
3379 characters for one path of the pattern -- and that the empty
3380 string does not match. We need not follow this path further.
3381 Instead, look at the next alternative (remembered on the
3382 stack), or quit if no more. The test at the top of the loop
3383 does these things. */
3384 path_can_be_null = false;
3388 /* Set `can_be_null' for the last path (also the first path, if the
3389 pattern is empty). */
3390 bufp->can_be_null |= path_can_be_null;
3393 RESET_FAIL_STACK ();
3395 } /* re_compile_fastmap */
3397 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3400 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3401 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3402 this memory for recording register information. STARTS and ENDS
3403 must be allocated using the malloc library routine, and must each
3404 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3406 If NUM_REGS == 0, then subsequent matches should allocate their own
3409 Unless this function is called, the first search or match using
3410 PATTERN_BUFFER will allocate its own register data, without
3411 freeing the old data. */
3414 re_set_registers (bufp, regs, num_regs, starts, ends)
3415 struct re_pattern_buffer *bufp;
3416 struct re_registers *regs;
3418 regoff_t *starts, *ends;
3422 bufp->regs_allocated = REGS_REALLOCATE;
3423 regs->num_regs = num_regs;
3424 regs->start = starts;
3429 bufp->regs_allocated = REGS_UNALLOCATED;
3431 regs->start = regs->end = (regoff_t *) 0;
3435 weak_alias (__re_set_registers, re_set_registers)
3438 /* Searching routines. */
3440 /* Like re_search_2, below, but only one string is specified, and
3441 doesn't let you say where to stop matching. */
3444 re_search (bufp, string, size, startpos, range, regs)
3445 struct re_pattern_buffer *bufp;
3447 int size, startpos, range;
3448 struct re_registers *regs;
3450 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3454 weak_alias (__re_search, re_search)
3458 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3459 virtual concatenation of STRING1 and STRING2, starting first at index
3460 STARTPOS, then at STARTPOS + 1, and so on.
3462 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3464 RANGE is how far to scan while trying to match. RANGE = 0 means try
3465 only at STARTPOS; in general, the last start tried is STARTPOS +
3468 In REGS, return the indices of the virtual concatenation of STRING1
3469 and STRING2 that matched the entire BUFP->buffer and its contained
3472 Do not consider matching one past the index STOP in the virtual
3473 concatenation of STRING1 and STRING2.
3475 We return either the position in the strings at which the match was
3476 found, -1 if no match, or -2 if error (such as failure
3480 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3481 struct re_pattern_buffer *bufp;
3482 const char *string1, *string2;
3486 struct re_registers *regs;
3490 register char *fastmap = bufp->fastmap;
3491 register RE_TRANSLATE_TYPE translate = bufp->translate;
3492 int total_size = size1 + size2;
3493 int endpos = startpos + range;
3495 /* Check for out-of-range STARTPOS. */
3496 if (startpos < 0 || startpos > total_size)
3499 /* Fix up RANGE if it might eventually take us outside
3500 the virtual concatenation of STRING1 and STRING2.
3501 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3503 range = 0 - startpos;
3504 else if (endpos > total_size)
3505 range = total_size - startpos;
3507 /* If the search isn't to be a backwards one, don't waste time in a
3508 search for a pattern that must be anchored. */
3509 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3518 /* In a forward search for something that starts with \=.
3519 don't keep searching past point. */
3520 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3522 range = PT - startpos;
3528 /* Update the fastmap now if not correct already. */
3529 if (fastmap && !bufp->fastmap_accurate)
3530 if (re_compile_fastmap (bufp) == -2)
3533 /* Loop through the string, looking for a place to start matching. */
3536 /* If a fastmap is supplied, skip quickly over characters that
3537 cannot be the start of a match. If the pattern can match the
3538 null string, however, we don't need to skip characters; we want
3539 the first null string. */
3540 if (fastmap && startpos < total_size && !bufp->can_be_null)
3542 if (range > 0) /* Searching forwards. */
3544 register const char *d;
3545 register int lim = 0;
3548 if (startpos < size1 && startpos + range >= size1)
3549 lim = range - (size1 - startpos);
3551 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3553 /* Written out as an if-else to avoid testing `translate'
3557 && !fastmap[(unsigned char)
3558 translate[(unsigned char) *d++]])
3561 while (range > lim && !fastmap[(unsigned char) *d++])
3564 startpos += irange - range;
3566 else /* Searching backwards. */
3568 register char c = (size1 == 0 || startpos >= size1
3569 ? string2[startpos - size1]
3570 : string1[startpos]);
3572 if (!fastmap[(unsigned char) TRANSLATE (c)])
3577 /* If can't match the null string, and that's all we have left, fail. */
3578 if (range >= 0 && startpos == total_size && fastmap
3579 && !bufp->can_be_null)
3582 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3583 startpos, regs, stop);
3584 #ifndef REGEX_MALLOC
3613 weak_alias (__re_search_2, re_search_2)
3616 /* This converts PTR, a pointer into one of the search strings `string1'
3617 and `string2' into an offset from the beginning of that string. */
3618 #define POINTER_TO_OFFSET(ptr) \
3619 (FIRST_STRING_P (ptr) \
3620 ? ((regoff_t) ((ptr) - string1)) \
3621 : ((regoff_t) ((ptr) - string2 + size1)))
3623 /* Macros for dealing with the split strings in re_match_2. */
3625 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3627 /* Call before fetching a character with *d. This switches over to
3628 string2 if necessary. */
3629 #define PREFETCH() \
3632 /* End of string2 => fail. */ \
3633 if (dend == end_match_2) \
3635 /* End of string1 => advance to string2. */ \
3637 dend = end_match_2; \
3641 /* Test if at very beginning or at very end of the virtual concatenation
3642 of `string1' and `string2'. If only one string, it's `string2'. */
3643 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3644 #define AT_STRINGS_END(d) ((d) == end2)
3647 /* Test if D points to a character which is word-constituent. We have
3648 two special cases to check for: if past the end of string1, look at
3649 the first character in string2; and if before the beginning of
3650 string2, look at the last character in string1. */
3651 #define WORDCHAR_P(d) \
3652 (SYNTAX ((d) == end1 ? *string2 \
3653 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3656 /* Disabled due to a compiler bug -- see comment at case wordbound */
3658 /* Test if the character before D and the one at D differ with respect
3659 to being word-constituent. */
3660 #define AT_WORD_BOUNDARY(d) \
3661 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3662 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3665 /* Free everything we malloc. */
3666 #ifdef MATCH_MAY_ALLOCATE
3667 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3668 # define FREE_VARIABLES() \
3670 REGEX_FREE_STACK (fail_stack.stack); \
3671 FREE_VAR (regstart); \
3672 FREE_VAR (regend); \
3673 FREE_VAR (old_regstart); \
3674 FREE_VAR (old_regend); \
3675 FREE_VAR (best_regstart); \
3676 FREE_VAR (best_regend); \
3677 FREE_VAR (reg_info); \
3678 FREE_VAR (reg_dummy); \
3679 FREE_VAR (reg_info_dummy); \
3682 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3683 #endif /* not MATCH_MAY_ALLOCATE */
3685 /* These values must meet several constraints. They must not be valid
3686 register values; since we have a limit of 255 registers (because
3687 we use only one byte in the pattern for the register number), we can
3688 use numbers larger than 255. They must differ by 1, because of
3689 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3690 be larger than the value for the highest register, so we do not try
3691 to actually save any registers when none are active. */
3692 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3693 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3695 /* Matching routines. */
3697 #ifndef emacs /* Emacs never uses this. */
3698 /* re_match is like re_match_2 except it takes only a single string. */
3701 re_match (bufp, string, size, pos, regs)
3702 struct re_pattern_buffer *bufp;
3705 struct re_registers *regs;
3707 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3709 # ifndef REGEX_MALLOC
3717 weak_alias (__re_match, re_match)
3719 #endif /* not emacs */
3721 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3723 register_info_type *reg_info));
3724 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3726 register_info_type *reg_info));
3727 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3729 register_info_type *reg_info));
3730 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3731 int len, char *translate));
3733 /* re_match_2 matches the compiled pattern in BUFP against the
3734 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3735 and SIZE2, respectively). We start matching at POS, and stop
3738 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3739 store offsets for the substring each group matched in REGS. See the
3740 documentation for exactly how many groups we fill.
3742 We return -1 if no match, -2 if an internal error (such as the
3743 failure stack overflowing). Otherwise, we return the length of the
3744 matched substring. */
3747 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3748 struct re_pattern_buffer *bufp;
3749 const char *string1, *string2;
3752 struct re_registers *regs;
3755 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3757 #ifndef REGEX_MALLOC
3765 weak_alias (__re_match_2, re_match_2)
3768 /* This is a separate function so that we can force an alloca cleanup
3771 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3772 struct re_pattern_buffer *bufp;
3773 const char *string1, *string2;
3776 struct re_registers *regs;
3779 /* General temporaries. */
3783 /* Just past the end of the corresponding string. */
3784 const char *end1, *end2;
3786 /* Pointers into string1 and string2, just past the last characters in
3787 each to consider matching. */
3788 const char *end_match_1, *end_match_2;
3790 /* Where we are in the data, and the end of the current string. */
3791 const char *d, *dend;
3793 /* Where we are in the pattern, and the end of the pattern. */
3794 unsigned char *p = bufp->buffer;
3795 register unsigned char *pend = p + bufp->used;
3797 /* Mark the opcode just after a start_memory, so we can test for an
3798 empty subpattern when we get to the stop_memory. */
3799 unsigned char *just_past_start_mem = 0;
3801 /* We use this to map every character in the string. */
3802 RE_TRANSLATE_TYPE translate = bufp->translate;
3804 /* Failure point stack. Each place that can handle a failure further
3805 down the line pushes a failure point on this stack. It consists of
3806 restart, regend, and reg_info for all registers corresponding to
3807 the subexpressions we're currently inside, plus the number of such
3808 registers, and, finally, two char *'s. The first char * is where
3809 to resume scanning the pattern; the second one is where to resume
3810 scanning the strings. If the latter is zero, the failure point is
3811 a ``dummy''; if a failure happens and the failure point is a dummy,
3812 it gets discarded and the next next one is tried. */
3813 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3814 fail_stack_type fail_stack;
3817 static unsigned failure_id = 0;
3818 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3822 /* This holds the pointer to the failure stack, when
3823 it is allocated relocatably. */
3824 fail_stack_elt_t *failure_stack_ptr;
3827 /* We fill all the registers internally, independent of what we
3828 return, for use in backreferences. The number here includes
3829 an element for register zero. */
3830 size_t num_regs = bufp->re_nsub + 1;
3832 /* The currently active registers. */
3833 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3834 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3836 /* Information on the contents of registers. These are pointers into
3837 the input strings; they record just what was matched (on this
3838 attempt) by a subexpression part of the pattern, that is, the
3839 regnum-th regstart pointer points to where in the pattern we began
3840 matching and the regnum-th regend points to right after where we
3841 stopped matching the regnum-th subexpression. (The zeroth register
3842 keeps track of what the whole pattern matches.) */
3843 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3844 const char **regstart, **regend;
3847 /* If a group that's operated upon by a repetition operator fails to
3848 match anything, then the register for its start will need to be
3849 restored because it will have been set to wherever in the string we
3850 are when we last see its open-group operator. Similarly for a
3852 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3853 const char **old_regstart, **old_regend;
3856 /* The is_active field of reg_info helps us keep track of which (possibly
3857 nested) subexpressions we are currently in. The matched_something
3858 field of reg_info[reg_num] helps us tell whether or not we have
3859 matched any of the pattern so far this time through the reg_num-th
3860 subexpression. These two fields get reset each time through any
3861 loop their register is in. */
3862 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3863 register_info_type *reg_info;
3866 /* The following record the register info as found in the above
3867 variables when we find a match better than any we've seen before.
3868 This happens as we backtrack through the failure points, which in
3869 turn happens only if we have not yet matched the entire string. */
3870 unsigned best_regs_set = false;
3871 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3872 const char **best_regstart, **best_regend;
3875 /* Logically, this is `best_regend[0]'. But we don't want to have to
3876 allocate space for that if we're not allocating space for anything
3877 else (see below). Also, we never need info about register 0 for
3878 any of the other register vectors, and it seems rather a kludge to
3879 treat `best_regend' differently than the rest. So we keep track of
3880 the end of the best match so far in a separate variable. We
3881 initialize this to NULL so that when we backtrack the first time
3882 and need to test it, it's not garbage. */
3883 const char *match_end = NULL;
3885 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3886 int set_regs_matched_done = 0;
3888 /* Used when we pop values we don't care about. */
3889 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3890 const char **reg_dummy;
3891 register_info_type *reg_info_dummy;
3895 /* Counts the total number of registers pushed. */
3896 unsigned num_regs_pushed = 0;
3899 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3903 #ifdef MATCH_MAY_ALLOCATE
3904 /* Do not bother to initialize all the register variables if there are
3905 no groups in the pattern, as it takes a fair amount of time. If
3906 there are groups, we include space for register 0 (the whole
3907 pattern), even though we never use it, since it simplifies the
3908 array indexing. We should fix this. */
3911 regstart = REGEX_TALLOC (num_regs, const char *);
3912 regend = REGEX_TALLOC (num_regs, const char *);
3913 old_regstart = REGEX_TALLOC (num_regs, const char *);
3914 old_regend = REGEX_TALLOC (num_regs, const char *);
3915 best_regstart = REGEX_TALLOC (num_regs, const char *);
3916 best_regend = REGEX_TALLOC (num_regs, const char *);
3917 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3918 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3919 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3921 if (!(regstart && regend && old_regstart && old_regend && reg_info
3922 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3930 /* We must initialize all our variables to NULL, so that
3931 `FREE_VARIABLES' doesn't try to free them. */
3932 regstart = regend = old_regstart = old_regend = best_regstart
3933 = best_regend = reg_dummy = NULL;
3934 reg_info = reg_info_dummy = (register_info_type *) NULL;
3936 #endif /* MATCH_MAY_ALLOCATE */
3938 /* The starting position is bogus. */
3939 if (pos < 0 || pos > size1 + size2)
3945 /* Initialize subexpression text positions to -1 to mark ones that no
3946 start_memory/stop_memory has been seen for. Also initialize the
3947 register information struct. */
3948 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3950 regstart[mcnt] = regend[mcnt]
3951 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3953 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3954 IS_ACTIVE (reg_info[mcnt]) = 0;
3955 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3956 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3959 /* We move `string1' into `string2' if the latter's empty -- but not if
3960 `string1' is null. */
3961 if (size2 == 0 && string1 != NULL)
3968 end1 = string1 + size1;
3969 end2 = string2 + size2;
3971 /* Compute where to stop matching, within the two strings. */
3974 end_match_1 = string1 + stop;
3975 end_match_2 = string2;
3980 end_match_2 = string2 + stop - size1;
3983 /* `p' scans through the pattern as `d' scans through the data.
3984 `dend' is the end of the input string that `d' points within. `d'
3985 is advanced into the following input string whenever necessary, but
3986 this happens before fetching; therefore, at the beginning of the
3987 loop, `d' can be pointing at the end of a string, but it cannot
3989 if (size1 > 0 && pos <= size1)
3996 d = string2 + pos - size1;
4000 DEBUG_PRINT1 ("The compiled pattern is:\n");
4001 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4002 DEBUG_PRINT1 ("The string to match is: `");
4003 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4004 DEBUG_PRINT1 ("'\n");
4006 /* This loops over pattern commands. It exits by returning from the
4007 function if the match is complete, or it drops through if the match
4008 fails at this starting point in the input data. */
4012 DEBUG_PRINT2 ("\n%p: ", p);
4014 DEBUG_PRINT2 ("\n0x%x: ", p);
4018 { /* End of pattern means we might have succeeded. */
4019 DEBUG_PRINT1 ("end of pattern ... ");
4021 /* If we haven't matched the entire string, and we want the
4022 longest match, try backtracking. */
4023 if (d != end_match_2)
4025 /* 1 if this match ends in the same string (string1 or string2)
4026 as the best previous match. */
4027 boolean same_str_p = (FIRST_STRING_P (match_end)
4028 == MATCHING_IN_FIRST_STRING);
4029 /* 1 if this match is the best seen so far. */
4030 boolean best_match_p;
4032 /* AIX compiler got confused when this was combined
4033 with the previous declaration. */
4035 best_match_p = d > match_end;
4037 best_match_p = !MATCHING_IN_FIRST_STRING;
4039 DEBUG_PRINT1 ("backtracking.\n");
4041 if (!FAIL_STACK_EMPTY ())
4042 { /* More failure points to try. */
4044 /* If exceeds best match so far, save it. */
4045 if (!best_regs_set || best_match_p)
4047 best_regs_set = true;
4050 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4052 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4054 best_regstart[mcnt] = regstart[mcnt];
4055 best_regend[mcnt] = regend[mcnt];
4061 /* If no failure points, don't restore garbage. And if
4062 last match is real best match, don't restore second
4064 else if (best_regs_set && !best_match_p)
4067 /* Restore best match. It may happen that `dend ==
4068 end_match_1' while the restored d is in string2.
4069 For example, the pattern `x.*y.*z' against the
4070 strings `x-' and `y-z-', if the two strings are
4071 not consecutive in memory. */
4072 DEBUG_PRINT1 ("Restoring best registers.\n");
4075 dend = ((d >= string1 && d <= end1)
4076 ? end_match_1 : end_match_2);
4078 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4080 regstart[mcnt] = best_regstart[mcnt];
4081 regend[mcnt] = best_regend[mcnt];
4084 } /* d != end_match_2 */
4087 DEBUG_PRINT1 ("Accepting match.\n");
4089 /* If caller wants register contents data back, do it. */
4090 if (regs && !bufp->no_sub)
4092 /* Have the register data arrays been allocated? */
4093 if (bufp->regs_allocated == REGS_UNALLOCATED)
4094 { /* No. So allocate them with malloc. We need one
4095 extra element beyond `num_regs' for the `-1' marker
4097 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4098 regs->start = TALLOC (regs->num_regs, regoff_t);
4099 regs->end = TALLOC (regs->num_regs, regoff_t);
4100 if (regs->start == NULL || regs->end == NULL)
4105 bufp->regs_allocated = REGS_REALLOCATE;
4107 else if (bufp->regs_allocated == REGS_REALLOCATE)
4108 { /* Yes. If we need more elements than were already
4109 allocated, reallocate them. If we need fewer, just
4111 if (regs->num_regs < num_regs + 1)
4113 regs->num_regs = num_regs + 1;
4114 RETALLOC (regs->start, regs->num_regs, regoff_t);
4115 RETALLOC (regs->end, regs->num_regs, regoff_t);
4116 if (regs->start == NULL || regs->end == NULL)
4125 /* These braces fend off a "empty body in an else-statement"
4126 warning under GCC when assert expands to nothing. */
4127 assert (bufp->regs_allocated == REGS_FIXED);
4130 /* Convert the pointer data in `regstart' and `regend' to
4131 indices. Register zero has to be set differently,
4132 since we haven't kept track of any info for it. */
4133 if (regs->num_regs > 0)
4135 regs->start[0] = pos;
4136 regs->end[0] = (MATCHING_IN_FIRST_STRING
4137 ? ((regoff_t) (d - string1))
4138 : ((regoff_t) (d - string2 + size1)));
4141 /* Go through the first `min (num_regs, regs->num_regs)'
4142 registers, since that is all we initialized. */
4143 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4146 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4147 regs->start[mcnt] = regs->end[mcnt] = -1;
4151 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4153 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4157 /* If the regs structure we return has more elements than
4158 were in the pattern, set the extra elements to -1. If
4159 we (re)allocated the registers, this is the case,
4160 because we always allocate enough to have at least one
4162 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4163 regs->start[mcnt] = regs->end[mcnt] = -1;
4164 } /* regs && !bufp->no_sub */
4166 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4167 nfailure_points_pushed, nfailure_points_popped,
4168 nfailure_points_pushed - nfailure_points_popped);
4169 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4171 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4175 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4181 /* Otherwise match next pattern command. */
4182 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4184 /* Ignore these. Used to ignore the n of succeed_n's which
4185 currently have n == 0. */
4187 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4191 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4194 /* Match the next n pattern characters exactly. The following
4195 byte in the pattern defines n, and the n bytes after that
4196 are the characters to match. */
4199 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4201 /* This is written out as an if-else so we don't waste time
4202 testing `translate' inside the loop. */
4208 if ((unsigned char) translate[(unsigned char) *d++]
4209 != (unsigned char) *p++)
4219 if (*d++ != (char) *p++) goto fail;
4223 SET_REGS_MATCHED ();
4227 /* Match any character except possibly a newline or a null. */
4229 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4233 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4234 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4237 SET_REGS_MATCHED ();
4238 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4246 register unsigned char c;
4247 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4249 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4252 c = TRANSLATE (*d); /* The character to match. */
4254 /* Cast to `unsigned' instead of `unsigned char' in case the
4255 bit list is a full 32 bytes long. */
4256 if (c < (unsigned) (*p * BYTEWIDTH)
4257 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4262 if (!not) goto fail;
4264 SET_REGS_MATCHED ();
4270 /* The beginning of a group is represented by start_memory.
4271 The arguments are the register number in the next byte, and the
4272 number of groups inner to this one in the next. The text
4273 matched within the group is recorded (in the internal
4274 registers data structure) under the register number. */
4276 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4278 /* Find out if this group can match the empty string. */
4279 p1 = p; /* To send to group_match_null_string_p. */
4281 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4282 REG_MATCH_NULL_STRING_P (reg_info[*p])
4283 = group_match_null_string_p (&p1, pend, reg_info);
4285 /* Save the position in the string where we were the last time
4286 we were at this open-group operator in case the group is
4287 operated upon by a repetition operator, e.g., with `(a*)*b'
4288 against `ab'; then we want to ignore where we are now in
4289 the string in case this attempt to match fails. */
4290 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4291 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4293 DEBUG_PRINT2 (" old_regstart: %d\n",
4294 POINTER_TO_OFFSET (old_regstart[*p]));
4297 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4299 IS_ACTIVE (reg_info[*p]) = 1;
4300 MATCHED_SOMETHING (reg_info[*p]) = 0;
4302 /* Clear this whenever we change the register activity status. */
4303 set_regs_matched_done = 0;
4305 /* This is the new highest active register. */
4306 highest_active_reg = *p;
4308 /* If nothing was active before, this is the new lowest active
4310 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4311 lowest_active_reg = *p;
4313 /* Move past the register number and inner group count. */
4315 just_past_start_mem = p;
4320 /* The stop_memory opcode represents the end of a group. Its
4321 arguments are the same as start_memory's: the register
4322 number, and the number of inner groups. */
4324 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4326 /* We need to save the string position the last time we were at
4327 this close-group operator in case the group is operated
4328 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4329 against `aba'; then we want to ignore where we are now in
4330 the string in case this attempt to match fails. */
4331 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4332 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4334 DEBUG_PRINT2 (" old_regend: %d\n",
4335 POINTER_TO_OFFSET (old_regend[*p]));
4338 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4340 /* This register isn't active anymore. */
4341 IS_ACTIVE (reg_info[*p]) = 0;
4343 /* Clear this whenever we change the register activity status. */
4344 set_regs_matched_done = 0;
4346 /* If this was the only register active, nothing is active
4348 if (lowest_active_reg == highest_active_reg)
4350 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4351 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4354 { /* We must scan for the new highest active register, since
4355 it isn't necessarily one less than now: consider
4356 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4357 new highest active register is 1. */
4358 unsigned char r = *p - 1;
4359 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4362 /* If we end up at register zero, that means that we saved
4363 the registers as the result of an `on_failure_jump', not
4364 a `start_memory', and we jumped to past the innermost
4365 `stop_memory'. For example, in ((.)*) we save
4366 registers 1 and 2 as a result of the *, but when we pop
4367 back to the second ), we are at the stop_memory 1.
4368 Thus, nothing is active. */
4371 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4372 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4375 highest_active_reg = r;
4378 /* If just failed to match something this time around with a
4379 group that's operated on by a repetition operator, try to
4380 force exit from the ``loop'', and restore the register
4381 information for this group that we had before trying this
4383 if ((!MATCHED_SOMETHING (reg_info[*p])
4384 || just_past_start_mem == p - 1)
4387 boolean is_a_jump_n = false;
4391 switch ((re_opcode_t) *p1++)
4395 case pop_failure_jump:
4396 case maybe_pop_jump:
4398 case dummy_failure_jump:
4399 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4409 /* If the next operation is a jump backwards in the pattern
4410 to an on_failure_jump right before the start_memory
4411 corresponding to this stop_memory, exit from the loop
4412 by forcing a failure after pushing on the stack the
4413 on_failure_jump's jump in the pattern, and d. */
4414 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4415 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4417 /* If this group ever matched anything, then restore
4418 what its registers were before trying this last
4419 failed match, e.g., with `(a*)*b' against `ab' for
4420 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4421 against `aba' for regend[3].
4423 Also restore the registers for inner groups for,
4424 e.g., `((a*)(b*))*' against `aba' (register 3 would
4425 otherwise get trashed). */
4427 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4431 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4433 /* Restore this and inner groups' (if any) registers. */
4434 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4437 regstart[r] = old_regstart[r];
4439 /* xx why this test? */
4440 if (old_regend[r] >= regstart[r])
4441 regend[r] = old_regend[r];
4445 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4446 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4452 /* Move past the register number and the inner group count. */
4457 /* \<digit> has been turned into a `duplicate' command which is
4458 followed by the numeric value of <digit> as the register number. */
4461 register const char *d2, *dend2;
4462 int regno = *p++; /* Get which register to match against. */
4463 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4465 /* Can't back reference a group which we've never matched. */
4466 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4469 /* Where in input to try to start matching. */
4470 d2 = regstart[regno];
4472 /* Where to stop matching; if both the place to start and
4473 the place to stop matching are in the same string, then
4474 set to the place to stop, otherwise, for now have to use
4475 the end of the first string. */
4477 dend2 = ((FIRST_STRING_P (regstart[regno])
4478 == FIRST_STRING_P (regend[regno]))
4479 ? regend[regno] : end_match_1);
4482 /* If necessary, advance to next segment in register
4486 if (dend2 == end_match_2) break;
4487 if (dend2 == regend[regno]) break;
4489 /* End of string1 => advance to string2. */
4491 dend2 = regend[regno];
4493 /* At end of register contents => success */
4494 if (d2 == dend2) break;
4496 /* If necessary, advance to next segment in data. */
4499 /* How many characters left in this segment to match. */
4502 /* Want how many consecutive characters we can match in
4503 one shot, so, if necessary, adjust the count. */
4504 if (mcnt > dend2 - d2)
4507 /* Compare that many; failure if mismatch, else move
4510 ? bcmp_translate (d, d2, mcnt, translate)
4511 : memcmp (d, d2, mcnt))
4513 d += mcnt, d2 += mcnt;
4515 /* Do this because we've match some characters. */
4516 SET_REGS_MATCHED ();
4522 /* begline matches the empty string at the beginning of the string
4523 (unless `not_bol' is set in `bufp'), and, if
4524 `newline_anchor' is set, after newlines. */
4526 DEBUG_PRINT1 ("EXECUTING begline.\n");
4528 if (AT_STRINGS_BEG (d))
4530 if (!bufp->not_bol) break;
4532 else if (d[-1] == '\n' && bufp->newline_anchor)
4536 /* In all other cases, we fail. */
4540 /* endline is the dual of begline. */
4542 DEBUG_PRINT1 ("EXECUTING endline.\n");
4544 if (AT_STRINGS_END (d))
4546 if (!bufp->not_eol) break;
4549 /* We have to ``prefetch'' the next character. */
4550 else if ((d == end1 ? *string2 : *d) == '\n'
4551 && bufp->newline_anchor)
4558 /* Match at the very beginning of the data. */
4560 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4561 if (AT_STRINGS_BEG (d))
4566 /* Match at the very end of the data. */
4568 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4569 if (AT_STRINGS_END (d))
4574 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4575 pushes NULL as the value for the string on the stack. Then
4576 `pop_failure_point' will keep the current value for the
4577 string, instead of restoring it. To see why, consider
4578 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4579 then the . fails against the \n. But the next thing we want
4580 to do is match the \n against the \n; if we restored the
4581 string value, we would be back at the foo.
4583 Because this is used only in specific cases, we don't need to
4584 check all the things that `on_failure_jump' does, to make
4585 sure the right things get saved on the stack. Hence we don't
4586 share its code. The only reason to push anything on the
4587 stack at all is that otherwise we would have to change
4588 `anychar's code to do something besides goto fail in this
4589 case; that seems worse than this. */
4590 case on_failure_keep_string_jump:
4591 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4593 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4595 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4597 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4600 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4604 /* Uses of on_failure_jump:
4606 Each alternative starts with an on_failure_jump that points
4607 to the beginning of the next alternative. Each alternative
4608 except the last ends with a jump that in effect jumps past
4609 the rest of the alternatives. (They really jump to the
4610 ending jump of the following alternative, because tensioning
4611 these jumps is a hassle.)
4613 Repeats start with an on_failure_jump that points past both
4614 the repetition text and either the following jump or
4615 pop_failure_jump back to this on_failure_jump. */
4616 case on_failure_jump:
4618 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4620 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4622 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4624 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4627 /* If this on_failure_jump comes right before a group (i.e.,
4628 the original * applied to a group), save the information
4629 for that group and all inner ones, so that if we fail back
4630 to this point, the group's information will be correct.
4631 For example, in \(a*\)*\1, we need the preceding group,
4632 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4634 /* We can't use `p' to check ahead because we push
4635 a failure point to `p + mcnt' after we do this. */
4638 /* We need to skip no_op's before we look for the
4639 start_memory in case this on_failure_jump is happening as
4640 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4642 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4645 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4647 /* We have a new highest active register now. This will
4648 get reset at the start_memory we are about to get to,
4649 but we will have saved all the registers relevant to
4650 this repetition op, as described above. */
4651 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4652 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4653 lowest_active_reg = *(p1 + 1);
4656 DEBUG_PRINT1 (":\n");
4657 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4661 /* A smart repeat ends with `maybe_pop_jump'.
4662 We change it to either `pop_failure_jump' or `jump'. */
4663 case maybe_pop_jump:
4664 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4665 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4667 register unsigned char *p2 = p;
4669 /* Compare the beginning of the repeat with what in the
4670 pattern follows its end. If we can establish that there
4671 is nothing that they would both match, i.e., that we
4672 would have to backtrack because of (as in, e.g., `a*a')
4673 then we can change to pop_failure_jump, because we'll
4674 never have to backtrack.
4676 This is not true in the case of alternatives: in
4677 `(a|ab)*' we do need to backtrack to the `ab' alternative
4678 (e.g., if the string was `ab'). But instead of trying to
4679 detect that here, the alternative has put on a dummy
4680 failure point which is what we will end up popping. */
4682 /* Skip over open/close-group commands.
4683 If what follows this loop is a ...+ construct,
4684 look at what begins its body, since we will have to
4685 match at least one of that. */
4689 && ((re_opcode_t) *p2 == stop_memory
4690 || (re_opcode_t) *p2 == start_memory))
4692 else if (p2 + 6 < pend
4693 && (re_opcode_t) *p2 == dummy_failure_jump)
4700 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4701 to the `maybe_finalize_jump' of this case. Examine what
4704 /* If we're at the end of the pattern, we can change. */
4707 /* Consider what happens when matching ":\(.*\)"
4708 against ":/". I don't really understand this code
4710 p[-3] = (unsigned char) pop_failure_jump;
4712 (" End of pattern: change to `pop_failure_jump'.\n");
4715 else if ((re_opcode_t) *p2 == exactn
4716 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4718 register unsigned char c
4719 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4721 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4723 p[-3] = (unsigned char) pop_failure_jump;
4724 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4728 else if ((re_opcode_t) p1[3] == charset
4729 || (re_opcode_t) p1[3] == charset_not)
4731 int not = (re_opcode_t) p1[3] == charset_not;
4733 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4734 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4737 /* `not' is equal to 1 if c would match, which means
4738 that we can't change to pop_failure_jump. */
4741 p[-3] = (unsigned char) pop_failure_jump;
4742 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4746 else if ((re_opcode_t) *p2 == charset)
4749 register unsigned char c
4750 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4754 if ((re_opcode_t) p1[3] == exactn
4755 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4756 && (p2[2 + p1[5] / BYTEWIDTH]
4757 & (1 << (p1[5] % BYTEWIDTH)))))
4759 if ((re_opcode_t) p1[3] == exactn
4760 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4761 && (p2[2 + p1[4] / BYTEWIDTH]
4762 & (1 << (p1[4] % BYTEWIDTH)))))
4765 p[-3] = (unsigned char) pop_failure_jump;
4766 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4770 else if ((re_opcode_t) p1[3] == charset_not)
4773 /* We win if the charset_not inside the loop
4774 lists every character listed in the charset after. */
4775 for (idx = 0; idx < (int) p2[1]; idx++)
4776 if (! (p2[2 + idx] == 0
4777 || (idx < (int) p1[4]
4778 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4783 p[-3] = (unsigned char) pop_failure_jump;
4784 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4787 else if ((re_opcode_t) p1[3] == charset)
4790 /* We win if the charset inside the loop
4791 has no overlap with the one after the loop. */
4793 idx < (int) p2[1] && idx < (int) p1[4];
4795 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4798 if (idx == p2[1] || idx == p1[4])
4800 p[-3] = (unsigned char) pop_failure_jump;
4801 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4806 p -= 2; /* Point at relative address again. */
4807 if ((re_opcode_t) p[-1] != pop_failure_jump)
4809 p[-1] = (unsigned char) jump;
4810 DEBUG_PRINT1 (" Match => jump.\n");
4811 goto unconditional_jump;
4813 /* Note fall through. */
4816 /* The end of a simple repeat has a pop_failure_jump back to
4817 its matching on_failure_jump, where the latter will push a
4818 failure point. The pop_failure_jump takes off failure
4819 points put on by this pop_failure_jump's matching
4820 on_failure_jump; we got through the pattern to here from the
4821 matching on_failure_jump, so didn't fail. */
4822 case pop_failure_jump:
4824 /* We need to pass separate storage for the lowest and
4825 highest registers, even though we don't care about the
4826 actual values. Otherwise, we will restore only one
4827 register from the stack, since lowest will == highest in
4828 `pop_failure_point'. */
4829 active_reg_t dummy_low_reg, dummy_high_reg;
4830 unsigned char *pdummy;
4833 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4834 POP_FAILURE_POINT (sdummy, pdummy,
4835 dummy_low_reg, dummy_high_reg,
4836 reg_dummy, reg_dummy, reg_info_dummy);
4838 /* Note fall through. */
4842 DEBUG_PRINT2 ("\n%p: ", p);
4844 DEBUG_PRINT2 ("\n0x%x: ", p);
4846 /* Note fall through. */
4848 /* Unconditionally jump (without popping any failure points). */
4850 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4851 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4852 p += mcnt; /* Do the jump. */
4854 DEBUG_PRINT2 ("(to %p).\n", p);
4856 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4861 /* We need this opcode so we can detect where alternatives end
4862 in `group_match_null_string_p' et al. */
4864 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4865 goto unconditional_jump;
4868 /* Normally, the on_failure_jump pushes a failure point, which
4869 then gets popped at pop_failure_jump. We will end up at
4870 pop_failure_jump, also, and with a pattern of, say, `a+', we
4871 are skipping over the on_failure_jump, so we have to push
4872 something meaningless for pop_failure_jump to pop. */
4873 case dummy_failure_jump:
4874 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4875 /* It doesn't matter what we push for the string here. What
4876 the code at `fail' tests is the value for the pattern. */
4877 PUSH_FAILURE_POINT (NULL, NULL, -2);
4878 goto unconditional_jump;
4881 /* At the end of an alternative, we need to push a dummy failure
4882 point in case we are followed by a `pop_failure_jump', because
4883 we don't want the failure point for the alternative to be
4884 popped. For example, matching `(a|ab)*' against `aab'
4885 requires that we match the `ab' alternative. */
4886 case push_dummy_failure:
4887 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4888 /* See comments just above at `dummy_failure_jump' about the
4890 PUSH_FAILURE_POINT (NULL, NULL, -2);
4893 /* Have to succeed matching what follows at least n times.
4894 After that, handle like `on_failure_jump'. */
4896 EXTRACT_NUMBER (mcnt, p + 2);
4897 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4900 /* Originally, this is how many times we HAVE to succeed. */
4905 STORE_NUMBER_AND_INCR (p, mcnt);
4907 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4909 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4915 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4917 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4919 p[2] = (unsigned char) no_op;
4920 p[3] = (unsigned char) no_op;
4926 EXTRACT_NUMBER (mcnt, p + 2);
4927 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4929 /* Originally, this is how many times we CAN jump. */
4933 STORE_NUMBER (p + 2, mcnt);
4935 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4937 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4939 goto unconditional_jump;
4941 /* If don't have to jump any more, skip over the rest of command. */
4948 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4950 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4952 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4954 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4956 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4958 STORE_NUMBER (p1, mcnt);
4963 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4964 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4965 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4966 macro and introducing temporary variables works around the bug. */
4969 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4970 if (AT_WORD_BOUNDARY (d))
4975 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4976 if (AT_WORD_BOUNDARY (d))
4982 boolean prevchar, thischar;
4984 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4985 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4988 prevchar = WORDCHAR_P (d - 1);
4989 thischar = WORDCHAR_P (d);
4990 if (prevchar != thischar)
4997 boolean prevchar, thischar;
4999 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5000 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5003 prevchar = WORDCHAR_P (d - 1);
5004 thischar = WORDCHAR_P (d);
5005 if (prevchar != thischar)
5012 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5013 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5018 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5019 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5020 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5026 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5027 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5032 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5033 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5038 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5039 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5044 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5049 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5053 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5055 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5057 SET_REGS_MATCHED ();
5061 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5063 goto matchnotsyntax;
5066 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5070 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5072 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5074 SET_REGS_MATCHED ();
5077 #else /* not emacs */
5079 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5081 if (!WORDCHAR_P (d))
5083 SET_REGS_MATCHED ();
5088 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5092 SET_REGS_MATCHED ();
5095 #endif /* not emacs */
5100 continue; /* Successfully executed one pattern command; keep going. */
5103 /* We goto here if a matching operation fails. */
5105 if (!FAIL_STACK_EMPTY ())
5106 { /* A restart point is known. Restore to that state. */
5107 DEBUG_PRINT1 ("\nFAIL:\n");
5108 POP_FAILURE_POINT (d, p,
5109 lowest_active_reg, highest_active_reg,
5110 regstart, regend, reg_info);
5112 /* If this failure point is a dummy, try the next one. */
5116 /* If we failed to the end of the pattern, don't examine *p. */
5120 boolean is_a_jump_n = false;
5122 /* If failed to a backwards jump that's part of a repetition
5123 loop, need to pop this failure point and use the next one. */
5124 switch ((re_opcode_t) *p)
5128 case maybe_pop_jump:
5129 case pop_failure_jump:
5132 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5135 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5137 && (re_opcode_t) *p1 == on_failure_jump))
5145 if (d >= string1 && d <= end1)
5149 break; /* Matching at this starting point really fails. */
5153 goto restore_best_regs;
5157 return -1; /* Failure to match. */
5160 /* Subroutine definitions for re_match_2. */
5163 /* We are passed P pointing to a register number after a start_memory.
5165 Return true if the pattern up to the corresponding stop_memory can
5166 match the empty string, and false otherwise.
5168 If we find the matching stop_memory, sets P to point to one past its number.
5169 Otherwise, sets P to an undefined byte less than or equal to END.
5171 We don't handle duplicates properly (yet). */
5174 group_match_null_string_p (p, end, reg_info)
5175 unsigned char **p, *end;
5176 register_info_type *reg_info;
5179 /* Point to after the args to the start_memory. */
5180 unsigned char *p1 = *p + 2;
5184 /* Skip over opcodes that can match nothing, and return true or
5185 false, as appropriate, when we get to one that can't, or to the
5186 matching stop_memory. */
5188 switch ((re_opcode_t) *p1)
5190 /* Could be either a loop or a series of alternatives. */
5191 case on_failure_jump:
5193 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5195 /* If the next operation is not a jump backwards in the
5200 /* Go through the on_failure_jumps of the alternatives,
5201 seeing if any of the alternatives cannot match nothing.
5202 The last alternative starts with only a jump,
5203 whereas the rest start with on_failure_jump and end
5204 with a jump, e.g., here is the pattern for `a|b|c':
5206 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5207 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5210 So, we have to first go through the first (n-1)
5211 alternatives and then deal with the last one separately. */
5214 /* Deal with the first (n-1) alternatives, which start
5215 with an on_failure_jump (see above) that jumps to right
5216 past a jump_past_alt. */
5218 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5220 /* `mcnt' holds how many bytes long the alternative
5221 is, including the ending `jump_past_alt' and
5224 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5228 /* Move to right after this alternative, including the
5232 /* Break if it's the beginning of an n-th alternative
5233 that doesn't begin with an on_failure_jump. */
5234 if ((re_opcode_t) *p1 != on_failure_jump)
5237 /* Still have to check that it's not an n-th
5238 alternative that starts with an on_failure_jump. */
5240 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5241 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5243 /* Get to the beginning of the n-th alternative. */
5249 /* Deal with the last alternative: go back and get number
5250 of the `jump_past_alt' just before it. `mcnt' contains
5251 the length of the alternative. */
5252 EXTRACT_NUMBER (mcnt, p1 - 2);
5254 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5257 p1 += mcnt; /* Get past the n-th alternative. */
5263 assert (p1[1] == **p);
5269 if (!common_op_match_null_string_p (&p1, end, reg_info))
5272 } /* while p1 < end */
5275 } /* group_match_null_string_p */
5278 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5279 It expects P to be the first byte of a single alternative and END one
5280 byte past the last. The alternative can contain groups. */
5283 alt_match_null_string_p (p, end, reg_info)
5284 unsigned char *p, *end;
5285 register_info_type *reg_info;
5288 unsigned char *p1 = p;
5292 /* Skip over opcodes that can match nothing, and break when we get
5293 to one that can't. */
5295 switch ((re_opcode_t) *p1)
5298 case on_failure_jump:
5300 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5305 if (!common_op_match_null_string_p (&p1, end, reg_info))
5308 } /* while p1 < end */
5311 } /* alt_match_null_string_p */
5314 /* Deals with the ops common to group_match_null_string_p and
5315 alt_match_null_string_p.
5317 Sets P to one after the op and its arguments, if any. */
5320 common_op_match_null_string_p (p, end, reg_info)
5321 unsigned char **p, *end;
5322 register_info_type *reg_info;
5327 unsigned char *p1 = *p;
5329 switch ((re_opcode_t) *p1++)
5349 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5350 ret = group_match_null_string_p (&p1, end, reg_info);
5352 /* Have to set this here in case we're checking a group which
5353 contains a group and a back reference to it. */
5355 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5356 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5362 /* If this is an optimized succeed_n for zero times, make the jump. */
5364 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5372 /* Get to the number of times to succeed. */
5374 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5379 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5387 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5395 /* All other opcodes mean we cannot match the empty string. */
5401 } /* common_op_match_null_string_p */
5404 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5405 bytes; nonzero otherwise. */
5408 bcmp_translate (s1, s2, len, translate)
5409 const char *s1, *s2;
5411 RE_TRANSLATE_TYPE translate;
5413 register const unsigned char *p1 = (const unsigned char *) s1;
5414 register const unsigned char *p2 = (const unsigned char *) s2;
5417 if (translate[*p1++] != translate[*p2++]) return 1;
5423 /* Entry points for GNU code. */
5425 /* re_compile_pattern is the GNU regular expression compiler: it
5426 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5427 Returns 0 if the pattern was valid, otherwise an error string.
5429 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5430 are set in BUFP on entry.
5432 We call regex_compile to do the actual compilation. */
5435 re_compile_pattern (pattern, length, bufp)
5436 const char *pattern;
5438 struct re_pattern_buffer *bufp;
5442 /* GNU code is written to assume at least RE_NREGS registers will be set
5443 (and at least one extra will be -1). */
5444 bufp->regs_allocated = REGS_UNALLOCATED;
5446 /* And GNU code determines whether or not to get register information
5447 by passing null for the REGS argument to re_match, etc., not by
5451 /* Match anchors at newline. */
5452 bufp->newline_anchor = 1;
5454 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5458 return gettext (re_error_msgid[(int) ret]);
5461 weak_alias (__re_compile_pattern, re_compile_pattern)
5464 /* Entry points compatible with 4.2 BSD regex library. We don't define
5465 them unless specifically requested. */
5467 #if defined _REGEX_RE_COMP || defined _LIBC
5469 /* BSD has one and only one pattern buffer. */
5470 static struct re_pattern_buffer re_comp_buf;
5474 /* Make these definitions weak in libc, so POSIX programs can redefine
5475 these names if they don't use our functions, and still use
5476 regcomp/regexec below without link errors. */
5486 if (!re_comp_buf.buffer)
5487 return gettext ("No previous regular expression");
5491 if (!re_comp_buf.buffer)
5493 re_comp_buf.buffer = (unsigned char *) malloc (200);
5494 if (re_comp_buf.buffer == NULL)
5495 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5496 re_comp_buf.allocated = 200;
5498 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5499 if (re_comp_buf.fastmap == NULL)
5500 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5503 /* Since `re_exec' always passes NULL for the `regs' argument, we
5504 don't need to initialize the pattern buffer fields which affect it. */
5506 /* Match anchors at newlines. */
5507 re_comp_buf.newline_anchor = 1;
5509 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5514 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5515 return (char *) gettext (re_error_msgid[(int) ret]);
5526 const int len = strlen (s);
5528 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5531 #endif /* _REGEX_RE_COMP */
5533 /* POSIX.2 functions. Don't define these for Emacs. */
5537 /* regcomp takes a regular expression as a string and compiles it.
5539 PREG is a regex_t *. We do not expect any fields to be initialized,
5540 since POSIX says we shouldn't. Thus, we set
5542 `buffer' to the compiled pattern;
5543 `used' to the length of the compiled pattern;
5544 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5545 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5546 RE_SYNTAX_POSIX_BASIC;
5547 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5548 `fastmap' and `fastmap_accurate' to zero;
5549 `re_nsub' to the number of subexpressions in PATTERN.
5551 PATTERN is the address of the pattern string.
5553 CFLAGS is a series of bits which affect compilation.
5555 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5556 use POSIX basic syntax.
5558 If REG_NEWLINE is set, then . and [^...] don't match newline.
5559 Also, regexec will try a match beginning after every newline.
5561 If REG_ICASE is set, then we considers upper- and lowercase
5562 versions of letters to be equivalent when matching.
5564 If REG_NOSUB is set, then when PREG is passed to regexec, that
5565 routine will report only success or failure, and nothing about the
5568 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5569 the return codes and their meanings.) */
5572 regcomp (preg, pattern, cflags)
5574 const char *pattern;
5579 = (cflags & REG_EXTENDED) ?
5580 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5582 /* regex_compile will allocate the space for the compiled pattern. */
5584 preg->allocated = 0;
5587 /* Don't bother to use a fastmap when searching. This simplifies the
5588 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5589 characters after newlines into the fastmap. This way, we just try
5593 if (cflags & REG_ICASE)
5598 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5599 * sizeof (*(RE_TRANSLATE_TYPE)0));
5600 if (preg->translate == NULL)
5601 return (int) REG_ESPACE;
5603 /* Map uppercase characters to corresponding lowercase ones. */
5604 for (i = 0; i < CHAR_SET_SIZE; i++)
5605 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5608 preg->translate = NULL;
5610 /* If REG_NEWLINE is set, newlines are treated differently. */
5611 if (cflags & REG_NEWLINE)
5612 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5613 syntax &= ~RE_DOT_NEWLINE;
5614 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5615 /* It also changes the matching behavior. */
5616 preg->newline_anchor = 1;
5619 preg->newline_anchor = 0;
5621 preg->no_sub = !!(cflags & REG_NOSUB);
5623 /* POSIX says a null character in the pattern terminates it, so we
5624 can use strlen here in compiling the pattern. */
5625 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5627 /* POSIX doesn't distinguish between an unmatched open-group and an
5628 unmatched close-group: both are REG_EPAREN. */
5629 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5634 weak_alias (__regcomp, regcomp)
5638 /* regexec searches for a given pattern, specified by PREG, in the
5641 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5642 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5643 least NMATCH elements, and we set them to the offsets of the
5644 corresponding matched substrings.
5646 EFLAGS specifies `execution flags' which affect matching: if
5647 REG_NOTBOL is set, then ^ does not match at the beginning of the
5648 string; if REG_NOTEOL is set, then $ does not match at the end.
5650 We return 0 if we find a match and REG_NOMATCH if not. */
5653 regexec (preg, string, nmatch, pmatch, eflags)
5654 const regex_t *preg;
5657 regmatch_t pmatch[];
5661 struct re_registers regs;
5662 regex_t private_preg;
5663 int len = strlen (string);
5664 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5666 private_preg = *preg;
5668 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5669 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5671 /* The user has told us exactly how many registers to return
5672 information about, via `nmatch'. We have to pass that on to the
5673 matching routines. */
5674 private_preg.regs_allocated = REGS_FIXED;
5678 regs.num_regs = nmatch;
5679 regs.start = TALLOC (nmatch, regoff_t);
5680 regs.end = TALLOC (nmatch, regoff_t);
5681 if (regs.start == NULL || regs.end == NULL)
5682 return (int) REG_NOMATCH;
5685 /* Perform the searching operation. */
5686 ret = re_search (&private_preg, string, len,
5687 /* start: */ 0, /* range: */ len,
5688 want_reg_info ? ®s : (struct re_registers *) 0);
5690 /* Copy the register information to the POSIX structure. */
5697 for (r = 0; r < nmatch; r++)
5699 pmatch[r].rm_so = regs.start[r];
5700 pmatch[r].rm_eo = regs.end[r];
5704 /* If we needed the temporary register info, free the space now. */
5709 /* We want zero return to mean success, unlike `re_search'. */
5710 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5713 weak_alias (__regexec, regexec)
5717 /* Returns a message corresponding to an error code, ERRCODE, returned
5718 from either regcomp or regexec. We don't use PREG here. */
5721 regerror (errcode, preg, errbuf, errbuf_size)
5723 const regex_t *preg;
5731 || errcode >= (int) (sizeof (re_error_msgid)
5732 / sizeof (re_error_msgid[0])))
5733 /* Only error codes returned by the rest of the code should be passed
5734 to this routine. If we are given anything else, or if other regex
5735 code generates an invalid error code, then the program has a bug.
5736 Dump core so we can fix it. */
5739 msg = gettext (re_error_msgid[errcode]);
5741 msg_size = strlen (msg) + 1; /* Includes the null. */
5743 if (errbuf_size != 0)
5745 if (msg_size > errbuf_size)
5747 #if defined HAVE_MEMPCPY || defined _LIBC
5748 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5750 memcpy (errbuf, msg, errbuf_size - 1);
5751 errbuf[errbuf_size - 1] = 0;
5755 memcpy (errbuf, msg, msg_size);
5761 weak_alias (__regerror, regerror)
5765 /* Free dynamically allocated space used by PREG. */
5771 if (preg->buffer != NULL)
5772 free (preg->buffer);
5773 preg->buffer = NULL;
5775 preg->allocated = 0;
5778 if (preg->fastmap != NULL)
5779 free (preg->fastmap);
5780 preg->fastmap = NULL;
5781 preg->fastmap_accurate = 0;
5783 if (preg->translate != NULL)
5784 free (preg->translate);
5785 preg->translate = NULL;
5788 weak_alias (__regfree, regfree)
5791 #endif /* not emacs */