1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #include <sys/ioctl.h>
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
50 /*#include <sys/user.h> After a.out.h */
53 #include <machine/psl.h>
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
73 /* Routines to extract various sized constants out of hppa
76 /* This assumes that no garbage lies outside of the lower bits of
80 sign_extend (val, bits)
83 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
86 /* For many immediate values the sign bit is the low bit! */
89 low_sign_extend (val, bits)
92 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
94 /* extract the immediate field from a ld{bhw}s instruction */
97 get_field (val, from, to)
98 unsigned val, from, to;
100 val = val >> 31 - to;
101 return val & ((1 << 32 - from) - 1);
105 set_field (val, from, to, new_val)
106 unsigned *val, from, to;
108 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
109 return *val = *val & mask | (new_val << (31 - from));
112 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
117 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
120 extract_5_load (word)
123 return low_sign_extend (word >> 16 & MASK_5, 5);
126 /* extract the immediate field from a st{bhw}s instruction */
129 extract_5_store (word)
132 return low_sign_extend (word & MASK_5, 5);
135 /* extract the immediate field from a break instruction */
138 extract_5r_store (word)
141 return (word & MASK_5);
144 /* extract the immediate field from a {sr}sm instruction */
147 extract_5R_store (word)
150 return (word >> 16 & MASK_5);
153 /* extract an 11 bit immediate field */
159 return low_sign_extend (word & MASK_11, 11);
162 /* extract a 14 bit immediate field */
168 return low_sign_extend (word & MASK_14, 14);
171 /* deposit a 14 bit constant in a word */
174 deposit_14 (opnd, word)
178 unsigned sign = (opnd < 0 ? 1 : 0);
180 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
183 /* extract a 21 bit constant */
193 val = GET_FIELD (word, 20, 20);
195 val |= GET_FIELD (word, 9, 19);
197 val |= GET_FIELD (word, 5, 6);
199 val |= GET_FIELD (word, 0, 4);
201 val |= GET_FIELD (word, 7, 8);
202 return sign_extend (val, 21) << 11;
205 /* deposit a 21 bit constant in a word. Although 21 bit constants are
206 usually the top 21 bits of a 32 bit constant, we assume that only
207 the low 21 bits of opnd are relevant */
210 deposit_21 (opnd, word)
215 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
217 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
219 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
221 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
223 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
227 /* extract a 12 bit constant from branch instructions */
233 return sign_extend (GET_FIELD (word, 19, 28) |
234 GET_FIELD (word, 29, 29) << 10 |
235 (word & 0x1) << 11, 12) << 2;
238 /* extract a 17 bit constant from branch instructions, returning the
239 19 bit signed value. */
245 return sign_extend (GET_FIELD (word, 19, 28) |
246 GET_FIELD (word, 29, 29) << 10 |
247 GET_FIELD (word, 11, 15) << 11 |
248 (word & 0x1) << 16, 17) << 2;
251 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
252 of the objfiles seeking the unwind table entry for this PC. Each objfile
253 contains a sorted list of struct unwind_table_entry. Since we do a binary
254 search of the unwind tables, we depend upon them to be sorted. */
256 static struct unwind_table_entry *
257 find_unwind_entry(pc)
260 int first, middle, last;
261 struct objfile *objfile;
263 ALL_OBJFILES (objfile)
265 struct obj_unwind_info *ui;
267 ui = OBJ_UNWIND_INFO (objfile);
272 /* First, check the cache */
275 && pc >= ui->cache->region_start
276 && pc <= ui->cache->region_end)
279 /* Not in the cache, do a binary search */
284 while (first <= last)
286 middle = (first + last) / 2;
287 if (pc >= ui->table[middle].region_start
288 && pc <= ui->table[middle].region_end)
290 ui->cache = &ui->table[middle];
291 return &ui->table[middle];
294 if (pc < ui->table[middle].region_start)
299 } /* ALL_OBJFILES() */
303 /* Called to determine if PC is in an interrupt handler of some
307 pc_in_interrupt_handler (pc)
310 struct unwind_table_entry *u;
311 struct minimal_symbol *msym_us;
313 u = find_unwind_entry (pc);
317 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
318 its frame isn't a pure interrupt frame. Deal with this. */
319 msym_us = lookup_minimal_symbol_by_pc (pc);
321 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
324 /* Called when no unwind descriptor was found for PC. Returns 1 if it
325 appears that PC is in a linker stub. */
328 pc_in_linker_stub (pc)
331 int found_magic_instruction = 0;
335 /* If unable to read memory, assume pc is not in a linker stub. */
336 if (target_read_memory (pc, buf, 4) != 0)
339 /* We are looking for something like
341 ; $$dyncall jams RP into this special spot in the frame (RP')
342 ; before calling the "call stub"
345 ldsid (rp),r1 ; Get space associated with RP into r1
346 mtsp r1,sp ; Move it into space register 0
347 be,n 0(sr0),rp) ; back to your regularly scheduled program
350 /* Maximum known linker stub size is 4 instructions. Search forward
351 from the given PC, then backward. */
352 for (i = 0; i < 4; i++)
354 /* If we hit something with an unwind, stop searching this direction. */
356 if (find_unwind_entry (pc + i * 4) != 0)
359 /* Check for ldsid (rp),r1 which is the magic instruction for a
360 return from a cross-space function call. */
361 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
363 found_magic_instruction = 1;
366 /* Add code to handle long call/branch and argument relocation stubs
370 if (found_magic_instruction != 0)
373 /* Now look backward. */
374 for (i = 0; i < 4; i++)
376 /* If we hit something with an unwind, stop searching this direction. */
378 if (find_unwind_entry (pc - i * 4) != 0)
381 /* Check for ldsid (rp),r1 which is the magic instruction for a
382 return from a cross-space function call. */
383 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
385 found_magic_instruction = 1;
388 /* Add code to handle long call/branch and argument relocation stubs
391 return found_magic_instruction;
395 find_return_regnum(pc)
398 struct unwind_table_entry *u;
400 u = find_unwind_entry (pc);
411 /* Return size of frame, or -1 if we should use a frame pointer. */
413 find_proc_framesize (pc)
416 struct unwind_table_entry *u;
417 struct minimal_symbol *msym_us;
419 u = find_unwind_entry (pc);
423 if (pc_in_linker_stub (pc))
424 /* Linker stubs have a zero size frame. */
430 msym_us = lookup_minimal_symbol_by_pc (pc);
432 /* If Save_SP is set, and we're not in an interrupt or signal caller,
433 then we have a frame pointer. Use it. */
434 if (u->Save_SP && !pc_in_interrupt_handler (pc)
435 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
438 return u->Total_frame_size << 3;
441 /* Return offset from sp at which rp is saved, or 0 if not saved. */
442 static int rp_saved PARAMS ((CORE_ADDR));
448 struct unwind_table_entry *u;
450 u = find_unwind_entry (pc);
454 if (pc_in_linker_stub (pc))
455 /* This is the so-called RP'. */
463 else if (u->stub_type != 0)
465 switch (u->stub_type)
469 case PARAMETER_RELOCATION:
480 frameless_function_invocation (frame)
483 struct unwind_table_entry *u;
485 u = find_unwind_entry (frame->pc);
490 return (u->Total_frame_size == 0 && u->stub_type == 0);
494 saved_pc_after_call (frame)
499 ret_regnum = find_return_regnum (get_frame_pc (frame));
501 return read_register (ret_regnum) & ~0x3;
505 frame_saved_pc (frame)
508 CORE_ADDR pc = get_frame_pc (frame);
509 struct unwind_table_entry *u;
511 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
512 at the base of the frame in an interrupt handler. Registers within
513 are saved in the exact same order as GDB numbers registers. How
515 if (pc_in_interrupt_handler (pc))
516 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
518 /* Deal with signal handler caller frames too. */
519 if (frame->signal_handler_caller)
522 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
527 if (frameless_function_invocation (frame))
531 ret_regnum = find_return_regnum (pc);
533 /* If the next frame is an interrupt frame or a signal
534 handler caller, then we need to look in the saved
535 register area to get the return pointer (the values
536 in the registers may not correspond to anything useful). */
538 && (frame->next->signal_handler_caller
539 || pc_in_interrupt_handler (frame->next->pc)))
541 struct frame_info *fi;
542 struct frame_saved_regs saved_regs;
544 fi = get_frame_info (frame->next);
545 get_frame_saved_regs (fi, &saved_regs);
546 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
547 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
549 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
552 pc = read_register (ret_regnum) & ~0x3;
556 int rp_offset = rp_saved (pc);
558 /* Similar to code in frameless function case. If the next
559 frame is a signal or interrupt handler, then dig the right
560 information out of the saved register info. */
563 && (frame->next->signal_handler_caller
564 || pc_in_interrupt_handler (frame->next->pc)))
566 struct frame_info *fi;
567 struct frame_saved_regs saved_regs;
569 fi = get_frame_info (frame->next);
570 get_frame_saved_regs (fi, &saved_regs);
571 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
572 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
574 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
576 else if (rp_offset == 0)
577 pc = read_register (RP_REGNUM) & ~0x3;
579 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
582 /* If PC is inside a linker stub, then dig out the address the stub
584 u = find_unwind_entry (pc);
585 if (u && u->stub_type != 0)
591 /* We need to correct the PC and the FP for the outermost frame when we are
595 init_extra_frame_info (fromleaf, frame)
597 struct frame_info *frame;
602 if (frame->next && !fromleaf)
605 /* If the next frame represents a frameless function invocation
606 then we have to do some adjustments that are normally done by
607 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
610 /* Find the framesize of *this* frame without peeking at the PC
611 in the current frame structure (it isn't set yet). */
612 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
614 /* Now adjust our base frame accordingly. If we have a frame pointer
615 use it, else subtract the size of this frame from the current
616 frame. (we always want frame->frame to point at the lowest address
619 frame->frame = read_register (FP_REGNUM);
621 frame->frame -= framesize;
625 flags = read_register (FLAGS_REGNUM);
626 if (flags & 2) /* In system call? */
627 frame->pc = read_register (31) & ~0x3;
629 /* The outermost frame is always derived from PC-framesize
631 One might think frameless innermost frames should have
632 a frame->frame that is the same as the parent's frame->frame.
633 That is wrong; frame->frame in that case should be the *high*
634 address of the parent's frame. It's complicated as hell to
635 explain, but the parent *always* creates some stack space for
636 the child. So the child actually does have a frame of some
637 sorts, and its base is the high address in its parent's frame. */
638 framesize = find_proc_framesize(frame->pc);
640 frame->frame = read_register (FP_REGNUM);
642 frame->frame = read_register (SP_REGNUM) - framesize;
645 /* Given a GDB frame, determine the address of the calling function's frame.
646 This will be used to create a new GDB frame struct, and then
647 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
649 This may involve searching through prologues for several functions
650 at boundaries where GCC calls HP C code, or where code which has
651 a frame pointer calls code without a frame pointer. */
656 struct frame_info *frame;
658 int my_framesize, caller_framesize;
659 struct unwind_table_entry *u;
660 CORE_ADDR frame_base;
662 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
663 are easy; at *sp we have a full save state strucutre which we can
664 pull the old stack pointer from. Also see frame_saved_pc for
665 code to dig a saved PC out of the save state structure. */
666 if (pc_in_interrupt_handler (frame->pc))
667 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
668 else if (frame->signal_handler_caller)
670 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
673 frame_base = frame->frame;
675 /* Get frame sizes for the current frame and the frame of the
677 my_framesize = find_proc_framesize (frame->pc);
678 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
680 /* If caller does not have a frame pointer, then its frame
681 can be found at current_frame - caller_framesize. */
682 if (caller_framesize != -1)
683 return frame_base - caller_framesize;
685 /* Both caller and callee have frame pointers and are GCC compiled
686 (SAVE_SP bit in unwind descriptor is on for both functions.
687 The previous frame pointer is found at the top of the current frame. */
688 if (caller_framesize == -1 && my_framesize == -1)
689 return read_memory_integer (frame_base, 4);
691 /* Caller has a frame pointer, but callee does not. This is a little
692 more difficult as GCC and HP C lay out locals and callee register save
693 areas very differently.
695 The previous frame pointer could be in a register, or in one of
696 several areas on the stack.
698 Walk from the current frame to the innermost frame examining
699 unwind descriptors to determine if %r3 ever gets saved into the
700 stack. If so return whatever value got saved into the stack.
701 If it was never saved in the stack, then the value in %r3 is still
704 We use information from unwind descriptors to determine if %r3
705 is saved into the stack (Entry_GR field has this information). */
709 u = find_unwind_entry (frame->pc);
713 /* We could find this information by examining prologues. I don't
714 think anyone has actually written any tools (not even "strip")
715 which leave them out of an executable, so maybe this is a moot
717 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
721 /* Entry_GR specifies the number of callee-saved general registers
722 saved in the stack. It starts at %r3, so %r3 would be 1. */
723 if (u->Entry_GR >= 1 || u->Save_SP
724 || frame->signal_handler_caller
725 || pc_in_interrupt_handler (frame->pc))
733 /* We may have walked down the chain into a function with a frame
736 && !frame->signal_handler_caller
737 && !pc_in_interrupt_handler (frame->pc))
738 return read_memory_integer (frame->frame, 4);
739 /* %r3 was saved somewhere in the stack. Dig it out. */
742 struct frame_info *fi;
743 struct frame_saved_regs saved_regs;
745 fi = get_frame_info (frame);
746 get_frame_saved_regs (fi, &saved_regs);
747 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
752 /* The value in %r3 was never saved into the stack (thus %r3 still
753 holds the value of the previous frame pointer). */
754 return read_register (FP_REGNUM);
759 /* To see if a frame chain is valid, see if the caller looks like it
760 was compiled with gcc. */
763 frame_chain_valid (chain, thisframe)
767 struct minimal_symbol *msym_us;
768 struct minimal_symbol *msym_start;
769 struct unwind_table_entry *u, *next_u = NULL;
775 u = find_unwind_entry (thisframe->pc);
780 /* We can't just check that the same of msym_us is "_start", because
781 someone idiotically decided that they were going to make a Ltext_end
782 symbol with the same address. This Ltext_end symbol is totally
783 indistinguishable (as nearly as I can tell) from the symbol for a function
784 which is (legitimately, since it is in the user's namespace)
785 named Ltext_end, so we can't just ignore it. */
786 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
787 msym_start = lookup_minimal_symbol ("_start", NULL);
790 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
793 next = get_next_frame (thisframe);
795 next_u = find_unwind_entry (next->pc);
797 /* If this frame does not save SP, has no stack, isn't a stub,
798 and doesn't "call" an interrupt routine or signal handler caller,
799 then its not valid. */
800 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
801 || (thisframe->next && thisframe->next->signal_handler_caller)
802 || (next_u && next_u->HP_UX_interrupt_marker))
805 if (pc_in_linker_stub (thisframe->pc))
812 * These functions deal with saving and restoring register state
813 * around a function call in the inferior. They keep the stack
814 * double-word aligned; eventually, on an hp700, the stack will have
815 * to be aligned to a 64-byte boundary.
821 register CORE_ADDR sp;
826 /* Space for "arguments"; the RP goes in here. */
827 sp = read_register (SP_REGNUM) + 48;
828 int_buffer = read_register (RP_REGNUM) | 0x3;
829 write_memory (sp - 20, (char *)&int_buffer, 4);
831 int_buffer = read_register (FP_REGNUM);
832 write_memory (sp, (char *)&int_buffer, 4);
834 write_register (FP_REGNUM, sp);
838 for (regnum = 1; regnum < 32; regnum++)
839 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
840 sp = push_word (sp, read_register (regnum));
844 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
846 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
847 sp = push_bytes (sp, (char *)&freg_buffer, 8);
849 sp = push_word (sp, read_register (IPSW_REGNUM));
850 sp = push_word (sp, read_register (SAR_REGNUM));
851 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
852 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
853 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
854 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
855 write_register (SP_REGNUM, sp);
858 find_dummy_frame_regs (frame, frame_saved_regs)
859 struct frame_info *frame;
860 struct frame_saved_regs *frame_saved_regs;
862 CORE_ADDR fp = frame->frame;
865 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
866 frame_saved_regs->regs[FP_REGNUM] = fp;
867 frame_saved_regs->regs[1] = fp + 8;
869 for (fp += 12, i = 3; i < 32; i++)
873 frame_saved_regs->regs[i] = fp;
879 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
880 frame_saved_regs->regs[i] = fp;
882 frame_saved_regs->regs[IPSW_REGNUM] = fp;
883 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
884 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
885 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
886 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
887 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
893 register FRAME frame = get_current_frame ();
894 register CORE_ADDR fp;
896 struct frame_saved_regs fsr;
897 struct frame_info *fi;
900 fi = get_frame_info (frame);
902 get_frame_saved_regs (fi, &fsr);
904 #ifndef NO_PC_SPACE_QUEUE_RESTORE
905 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
906 restore_pc_queue (&fsr);
909 for (regnum = 31; regnum > 0; regnum--)
910 if (fsr.regs[regnum])
911 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
913 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
914 if (fsr.regs[regnum])
916 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
917 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
920 if (fsr.regs[IPSW_REGNUM])
921 write_register (IPSW_REGNUM,
922 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
924 if (fsr.regs[SAR_REGNUM])
925 write_register (SAR_REGNUM,
926 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
928 /* If the PC was explicitly saved, then just restore it. */
929 if (fsr.regs[PCOQ_TAIL_REGNUM])
930 write_register (PCOQ_TAIL_REGNUM,
931 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
933 /* Else use the value in %rp to set the new PC. */
935 target_write_pc (read_register (RP_REGNUM));
937 write_register (FP_REGNUM, read_memory_integer (fp, 4));
939 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
940 write_register (SP_REGNUM, fp - 48);
942 write_register (SP_REGNUM, fp);
944 flush_cached_frames ();
945 set_current_frame (create_new_frame (read_register (FP_REGNUM),
950 * After returning to a dummy on the stack, restore the instruction
951 * queue space registers. */
954 restore_pc_queue (fsr)
955 struct frame_saved_regs *fsr;
957 CORE_ADDR pc = read_pc ();
958 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
960 struct target_waitstatus w;
963 /* Advance past break instruction in the call dummy. */
964 write_register (PCOQ_HEAD_REGNUM, pc + 4);
965 write_register (PCOQ_TAIL_REGNUM, pc + 8);
968 * HPUX doesn't let us set the space registers or the space
969 * registers of the PC queue through ptrace. Boo, hiss.
970 * Conveniently, the call dummy has this sequence of instructions
975 * So, load up the registers and single step until we are in the
979 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
980 write_register (22, new_pc);
982 for (insn_count = 0; insn_count < 3; insn_count++)
984 /* FIXME: What if the inferior gets a signal right now? Want to
985 merge this into wait_for_inferior (as a special kind of
986 watchpoint? By setting a breakpoint at the end? Is there
987 any other choice? Is there *any* way to do this stuff with
988 ptrace() or some equivalent?). */
990 target_wait (inferior_pid, &w);
992 if (w.kind == TARGET_WAITKIND_SIGNALLED)
994 stop_signal = w.value.sig;
995 terminal_ours_for_output ();
996 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
997 target_signal_to_name (stop_signal),
998 target_signal_to_string (stop_signal));
999 gdb_flush (gdb_stdout);
1003 target_terminal_ours ();
1004 fetch_inferior_registers (-1);
1009 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1014 CORE_ADDR struct_addr;
1016 /* array of arguments' offsets */
1017 int *offset = (int *)alloca(nargs * sizeof (int));
1021 for (i = 0; i < nargs; i++)
1023 /* Coerce chars to int & float to double if necessary */
1024 args[i] = value_arg_coerce (args[i]);
1026 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1028 /* value must go at proper alignment. Assume alignment is a
1030 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1031 if (cum % alignment)
1032 cum = (cum + alignment) & -alignment;
1035 sp += max ((cum + 7) & -8, 16);
1037 for (i = 0; i < nargs; i++)
1038 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1039 TYPE_LENGTH (VALUE_TYPE (args[i])));
1042 write_register (28, struct_addr);
1047 * Insert the specified number of args and function address
1048 * into a call sequence of the above form stored at DUMMYNAME.
1050 * On the hppa we need to call the stack dummy through $$dyncall.
1051 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1052 * real_pc, which is the location where gdb should start up the
1053 * inferior to do the function call.
1057 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1066 CORE_ADDR dyncall_addr, sr4export_addr;
1067 struct minimal_symbol *msymbol;
1068 int flags = read_register (FLAGS_REGNUM);
1069 struct unwind_table_entry *u;
1071 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1072 if (msymbol == NULL)
1073 error ("Can't find an address for $$dyncall trampoline");
1075 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1077 /* If we are calling an import stub (eg calling into a dynamic library)
1078 then have sr4export call the magic __d_plt_call routine which is linked
1079 in from end.o. (You can't use _sr4export to call the import stub as
1080 the value in sp-24 will get fried and you end up returning to the
1081 wrong location. You can't call the import stub directly as the code
1082 to bind the PLT entry to a function can't return to a stack address.) */
1083 u = find_unwind_entry (fun);
1084 if (u && u->stub_type == IMPORT)
1087 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1088 if (msymbol == NULL)
1089 error ("Can't find an address for __d_plt_call trampoline");
1091 /* This is where sr4export will jump to. */
1092 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1094 /* We have to store the address of the stub in __shlib_funcptr. */
1095 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1096 (struct objfile *)NULL);
1097 if (msymbol == NULL)
1098 error ("Can't find an address for __shlib_funcptr");
1100 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1105 /* We still need sr4export's address too. */
1106 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1107 if (msymbol == NULL)
1108 error ("Can't find an address for _sr4export trampoline");
1110 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1112 store_unsigned_integer
1113 (&dummy[9*REGISTER_SIZE],
1115 deposit_21 (fun >> 11,
1116 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1118 store_unsigned_integer
1119 (&dummy[10*REGISTER_SIZE],
1121 deposit_14 (fun & MASK_11,
1122 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1124 store_unsigned_integer
1125 (&dummy[12*REGISTER_SIZE],
1127 deposit_21 (sr4export_addr >> 11,
1128 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1130 store_unsigned_integer
1131 (&dummy[13*REGISTER_SIZE],
1133 deposit_14 (sr4export_addr & MASK_11,
1134 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1137 write_register (22, pc);
1139 /* If we are in a syscall, then we should call the stack dummy
1140 directly. $$dyncall is not needed as the kernel sets up the
1141 space id registers properly based on the value in %r31. In
1142 fact calling $$dyncall will not work because the value in %r22
1143 will be clobbered on the syscall exit path. */
1147 return dyncall_addr;
1151 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1156 int flags = read_register (FLAGS_REGNUM);
1159 return read_register (31) & ~0x3;
1160 return read_register (PC_REGNUM) & ~0x3;
1163 /* Write out the PC. If currently in a syscall, then also write the new
1164 PC value into %r31. */
1169 int flags = read_register (FLAGS_REGNUM);
1171 /* If in a syscall, then set %r31. Also make sure to get the
1172 privilege bits set correctly. */
1174 write_register (31, (long) (v | 0x3));
1176 write_register (PC_REGNUM, (long) v);
1177 write_register (NPC_REGNUM, (long) v + 4);
1180 /* return the alignment of a type in bytes. Structures have the maximum
1181 alignment required by their fields. */
1187 int max_align, align, i;
1188 switch (TYPE_CODE (arg))
1193 return TYPE_LENGTH (arg);
1194 case TYPE_CODE_ARRAY:
1195 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1196 case TYPE_CODE_STRUCT:
1197 case TYPE_CODE_UNION:
1199 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1201 /* Bit fields have no real alignment. */
1202 if (!TYPE_FIELD_BITPOS (arg, i))
1204 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1205 max_align = max (max_align, align);
1214 /* Print the register regnum, or all registers if regnum is -1 */
1216 pa_do_registers_info (regnum, fpregs)
1220 char raw_regs [REGISTER_BYTES];
1223 for (i = 0; i < NUM_REGS; i++)
1224 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1226 pa_print_registers (raw_regs, regnum, fpregs);
1227 else if (regnum < FP0_REGNUM)
1228 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1229 REGISTER_BYTE (regnum)));
1231 pa_print_fp_reg (regnum);
1234 pa_print_registers (raw_regs, regnum, fpregs)
1241 for (i = 0; i < 18; i++)
1242 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1244 *(int *)(raw_regs + REGISTER_BYTE (i)),
1246 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1248 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1250 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1253 for (i = 72; i < NUM_REGS; i++)
1254 pa_print_fp_reg (i);
1260 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1261 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1263 /* Get 32bits of data. */
1264 read_relative_register_raw_bytes (i, raw_buffer);
1266 /* Put it in the buffer. No conversions are ever necessary. */
1267 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1269 fputs_filtered (reg_names[i], gdb_stdout);
1270 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1271 fputs_filtered ("(single precision) ", gdb_stdout);
1273 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1274 1, 0, Val_pretty_default);
1275 printf_filtered ("\n");
1277 /* If "i" is even, then this register can also be a double-precision
1278 FP register. Dump it out as such. */
1281 /* Get the data in raw format for the 2nd half. */
1282 read_relative_register_raw_bytes (i + 1, raw_buffer);
1284 /* Copy it into the appropriate part of the virtual buffer. */
1285 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1286 REGISTER_RAW_SIZE (i));
1288 /* Dump it as a double. */
1289 fputs_filtered (reg_names[i], gdb_stdout);
1290 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1291 fputs_filtered ("(double precision) ", gdb_stdout);
1293 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1294 1, 0, Val_pretty_default);
1295 printf_filtered ("\n");
1299 /* Figure out if PC is in a trampoline, and if so find out where
1300 the trampoline will jump to. If not in a trampoline, return zero.
1302 Simple code examination probably is not a good idea since the code
1303 sequences in trampolines can also appear in user code.
1305 We use unwinds and information from the minimal symbol table to
1306 determine when we're in a trampoline. This won't work for ELF
1307 (yet) since it doesn't create stub unwind entries. Whether or
1308 not ELF will create stub unwinds or normal unwinds for linker
1309 stubs is still being debated.
1311 This should handle simple calls through dyncall or sr4export,
1312 long calls, argument relocation stubs, and dyncall/sr4export
1313 calling an argument relocation stub. It even handles some stubs
1314 used in dynamic executables. */
1317 skip_trampoline_code (pc, name)
1322 long prev_inst, curr_inst, loc;
1323 static CORE_ADDR dyncall = 0;
1324 static CORE_ADDR sr4export = 0;
1325 struct minimal_symbol *msym;
1326 struct unwind_table_entry *u;
1328 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1333 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1335 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1342 msym = lookup_minimal_symbol ("_sr4export", NULL);
1344 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1349 /* Addresses passed to dyncall may *NOT* be the actual address
1350 of the funtion. So we may have to do something special. */
1353 pc = (CORE_ADDR) read_register (22);
1355 /* If bit 30 (counting from the left) is on, then pc is the address of
1356 the PLT entry for this function, not the address of the function
1357 itself. Bit 31 has meaning too, but only for MPE. */
1359 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1361 else if (pc == sr4export)
1362 pc = (CORE_ADDR) (read_register (22));
1364 /* Get the unwind descriptor corresponding to PC, return zero
1365 if no unwind was found. */
1366 u = find_unwind_entry (pc);
1370 /* If this isn't a linker stub, then return now. */
1371 if (u->stub_type == 0)
1372 return orig_pc == pc ? 0 : pc & ~0x3;
1374 /* It's a stub. Search for a branch and figure out where it goes.
1375 Note we have to handle multi insn branch sequences like ldil;ble.
1376 Most (all?) other branches can be determined by examining the contents
1377 of certain registers and the stack. */
1383 /* Make sure we haven't walked outside the range of this stub. */
1384 if (u != find_unwind_entry (loc))
1386 warning ("Unable to find branch in linker stub");
1387 return orig_pc == pc ? 0 : pc & ~0x3;
1390 prev_inst = curr_inst;
1391 curr_inst = read_memory_integer (loc, 4);
1393 /* Does it look like a branch external using %r1? Then it's the
1394 branch from the stub to the actual function. */
1395 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1397 /* Yup. See if the previous instruction loaded
1398 a value into %r1. If so compute and return the jump address. */
1399 if ((prev_inst & 0xffe00000) == 0x20202000)
1400 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1403 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1404 return orig_pc == pc ? 0 : pc & ~0x3;
1408 /* Does it look like bl X,rp? Another way to do a branch from the
1409 stub to the actual function. */
1410 else if ((curr_inst & 0xffe0e000) == 0xe8400000)
1411 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1413 /* Does it look like bv (rp)? Note this depends on the
1414 current stack pointer being the same as the stack
1415 pointer in the stub itself! This is a branch on from the
1416 stub back to the original caller. */
1417 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1419 /* Yup. See if the previous instruction loaded
1421 if (prev_inst == 0x4bc23ff1)
1422 return (read_memory_integer
1423 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1426 warning ("Unable to find restore of %%rp before bv (%%rp).");
1427 return orig_pc == pc ? 0 : pc & ~0x3;
1431 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1432 the original caller from the stub. Used in dynamic executables. */
1433 else if (curr_inst == 0xe0400002)
1435 /* The value we jump to is sitting in sp - 24. But that's
1436 loaded several instructions before the be instruction.
1437 I guess we could check for the previous instruction being
1438 mtsp %r1,%sr0 if we want to do sanity checking. */
1439 return (read_memory_integer
1440 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1443 /* Haven't found the branch yet, but we're still in the stub.
1449 /* For the given instruction (INST), return any adjustment it makes
1450 to the stack pointer or zero for no adjustment.
1452 This only handles instructions commonly found in prologues. */
1455 prologue_inst_adjust_sp (inst)
1458 /* This must persist across calls. */
1459 static int save_high21;
1461 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1462 if ((inst & 0xffffc000) == 0x37de0000)
1463 return extract_14 (inst);
1466 if ((inst & 0xffe00000) == 0x6fc00000)
1467 return extract_14 (inst);
1469 /* addil high21,%r1; ldo low11,(%r1),%r30)
1470 save high bits in save_high21 for later use. */
1471 if ((inst & 0xffe00000) == 0x28200000)
1473 save_high21 = extract_21 (inst);
1477 if ((inst & 0xffff0000) == 0x343e0000)
1478 return save_high21 + extract_14 (inst);
1480 /* fstws as used by the HP compilers. */
1481 if ((inst & 0xffffffe0) == 0x2fd01220)
1482 return extract_5_load (inst);
1484 /* No adjustment. */
1488 /* Return nonzero if INST is a branch of some kind, else return zero. */
1518 /* Return the register number for a GR which is saved by INST or
1519 zero it INST does not save a GR.
1521 Note we only care about full 32bit register stores (that's the only
1522 kind of stores the prologue will use). */
1525 inst_saves_gr (inst)
1528 /* Does it look like a stw? */
1529 if ((inst >> 26) == 0x1a)
1530 return extract_5R_store (inst);
1532 /* Does it look like a stwm? */
1533 if ((inst >> 26) == 0x1b)
1534 return extract_5R_store (inst);
1539 /* Return the register number for a FR which is saved by INST or
1540 zero it INST does not save a FR.
1542 Note we only care about full 64bit register stores (that's the only
1543 kind of stores the prologue will use). */
1546 inst_saves_fr (inst)
1549 if ((inst & 0xfc1fffe0) == 0x2c101220)
1550 return extract_5r_store (inst);
1554 /* Advance PC across any function entry prologue instructions
1555 to reach some "real" code.
1557 Use information in the unwind table to determine what exactly should
1558 be in the prologue. */
1565 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1567 struct unwind_table_entry *u;
1569 u = find_unwind_entry (pc);
1573 /* If we are not at the beginning of a function, then return now. */
1574 if ((pc & ~0x3) != u->region_start)
1577 /* This is how much of a frame adjustment we need to account for. */
1578 stack_remaining = u->Total_frame_size << 3;
1580 /* Magic register saves we want to know about. */
1581 save_rp = u->Save_RP;
1582 save_sp = u->Save_SP;
1584 /* Turn the Entry_GR field into a bitmask. */
1586 for (i = 3; i < u->Entry_GR + 3; i++)
1588 /* Frame pointer gets saved into a special location. */
1589 if (u->Save_SP && i == FP_REGNUM)
1592 save_gr |= (1 << i);
1595 /* Turn the Entry_FR field into a bitmask too. */
1597 for (i = 12; i < u->Entry_FR + 12; i++)
1598 save_fr |= (1 << i);
1600 /* Loop until we find everything of interest or hit a branch.
1602 For unoptimized GCC code and for any HP CC code this will never ever
1603 examine any user instructions.
1605 For optimzied GCC code we're faced with problems. GCC will schedule
1606 its prologue and make prologue instructions available for delay slot
1607 filling. The end result is user code gets mixed in with the prologue
1608 and a prologue instruction may be in the delay slot of the first branch
1611 Some unexpected things are expected with debugging optimized code, so
1612 we allow this routine to walk past user instructions in optimized
1614 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1616 status = target_read_memory (pc, buf, 4);
1617 inst = extract_unsigned_integer (buf, 4);
1623 /* Note the interesting effects of this instruction. */
1624 stack_remaining -= prologue_inst_adjust_sp (inst);
1626 /* There is only one instruction used for saving RP into the stack. */
1627 if (inst == 0x6bc23fd9)
1630 /* This is the only way we save SP into the stack. At this time
1631 the HP compilers never bother to save SP into the stack. */
1632 if ((inst & 0xffffc000) == 0x6fc10000)
1635 /* Account for general and floating-point register saves. */
1636 save_gr &= ~(1 << inst_saves_gr (inst));
1637 save_fr &= ~(1 << inst_saves_fr (inst));
1639 /* Quit if we hit any kind of branch. This can happen if a prologue
1640 instruction is in the delay slot of the first call/branch. */
1641 if (is_branch (inst))
1651 /* Put here the code to store, into a struct frame_saved_regs,
1652 the addresses of the saved registers of frame described by FRAME_INFO.
1653 This includes special registers such as pc and fp saved in special
1654 ways in the stack frame. sp is even more special:
1655 the address we return for it IS the sp for the next frame. */
1658 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
1659 struct frame_info *frame_info;
1660 struct frame_saved_regs *frame_saved_regs;
1663 struct unwind_table_entry *u;
1664 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1669 /* Zero out everything. */
1670 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
1672 /* Call dummy frames always look the same, so there's no need to
1673 examine the dummy code to determine locations of saved registers;
1674 instead, let find_dummy_frame_regs fill in the correct offsets
1675 for the saved registers. */
1676 if ((frame_info->pc >= frame_info->frame
1677 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
1678 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
1680 find_dummy_frame_regs (frame_info, frame_saved_regs);
1682 /* Interrupt handlers are special too. They lay out the register
1683 state in the exact same order as the register numbers in GDB. */
1684 if (pc_in_interrupt_handler (frame_info->pc))
1686 for (i = 0; i < NUM_REGS; i++)
1688 /* SP is a little special. */
1690 frame_saved_regs->regs[SP_REGNUM]
1691 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
1693 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
1698 /* Handle signal handler callers. */
1699 if (frame_info->signal_handler_caller)
1701 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
1705 /* Get the starting address of the function referred to by the PC
1706 saved in frame_info. */
1707 pc = get_pc_function_start (frame_info->pc);
1710 u = find_unwind_entry (pc);
1714 /* This is how much of a frame adjustment we need to account for. */
1715 stack_remaining = u->Total_frame_size << 3;
1717 /* Magic register saves we want to know about. */
1718 save_rp = u->Save_RP;
1719 save_sp = u->Save_SP;
1721 /* Turn the Entry_GR field into a bitmask. */
1723 for (i = 3; i < u->Entry_GR + 3; i++)
1725 /* Frame pointer gets saved into a special location. */
1726 if (u->Save_SP && i == FP_REGNUM)
1729 save_gr |= (1 << i);
1732 /* Turn the Entry_FR field into a bitmask too. */
1734 for (i = 12; i < u->Entry_FR + 12; i++)
1735 save_fr |= (1 << i);
1737 /* The frame always represents the value of %sp at entry to the
1738 current function (and is thus equivalent to the "saved" stack
1740 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
1742 /* Loop until we find everything of interest or hit a branch.
1744 For unoptimized GCC code and for any HP CC code this will never ever
1745 examine any user instructions.
1747 For optimzied GCC code we're faced with problems. GCC will schedule
1748 its prologue and make prologue instructions available for delay slot
1749 filling. The end result is user code gets mixed in with the prologue
1750 and a prologue instruction may be in the delay slot of the first branch
1753 Some unexpected things are expected with debugging optimized code, so
1754 we allow this routine to walk past user instructions in optimized
1756 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1758 status = target_read_memory (pc, buf, 4);
1759 inst = extract_unsigned_integer (buf, 4);
1765 /* Note the interesting effects of this instruction. */
1766 stack_remaining -= prologue_inst_adjust_sp (inst);
1768 /* There is only one instruction used for saving RP into the stack. */
1769 if (inst == 0x6bc23fd9)
1772 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
1775 /* Just note that we found the save of SP into the stack. The
1776 value for frame_saved_regs was computed above. */
1777 if ((inst & 0xffffc000) == 0x6fc10000)
1780 /* Account for general and floating-point register saves. */
1781 reg = inst_saves_gr (inst);
1782 if (reg >= 3 && reg <= 18
1783 && (!u->Save_SP || reg != FP_REGNUM))
1785 save_gr &= ~(1 << reg);
1787 /* stwm with a positive displacement is a *post modify*. */
1788 if ((inst >> 26) == 0x1b
1789 && extract_14 (inst) >= 0)
1790 frame_saved_regs->regs[reg] = frame_info->frame;
1793 /* Handle code with and without frame pointers. */
1795 frame_saved_regs->regs[reg]
1796 = frame_info->frame + extract_14 (inst);
1798 frame_saved_regs->regs[reg]
1799 = frame_info->frame + (u->Total_frame_size << 3)
1800 + extract_14 (inst);
1805 /* GCC handles callee saved FP regs a little differently.
1807 It emits an instruction to put the value of the start of
1808 the FP store area into %r1. It then uses fstds,ma with
1809 a basereg of %r1 for the stores.
1811 HP CC emits them at the current stack pointer modifying
1812 the stack pointer as it stores each register. */
1814 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1815 if ((inst & 0xffffc000) == 0x34610000
1816 || (inst & 0xffffc000) == 0x37c10000)
1817 fp_loc = extract_14 (inst);
1819 reg = inst_saves_fr (inst);
1820 if (reg >= 12 && reg <= 21)
1822 /* Note +4 braindamage below is necessary because the FP status
1823 registers are internally 8 registers rather than the expected
1825 save_fr &= ~(1 << reg);
1828 /* 1st HP CC FP register store. After this instruction
1829 we've set enough state that the GCC and HPCC code are
1830 both handled in the same manner. */
1831 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
1836 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
1837 = frame_info->frame + fp_loc;
1842 /* Quit if we hit any kind of branch. This can happen if a prologue
1843 instruction is in the delay slot of the first call/branch. */
1844 if (is_branch (inst))
1852 #ifdef MAINTENANCE_CMDS
1855 unwind_command (exp, from_tty)
1863 struct unwind_table_entry *u;
1866 /* If we have an expression, evaluate it and use it as the address. */
1868 if (exp != 0 && *exp != 0)
1869 address = parse_and_eval_address (exp);
1873 xxx.u = find_unwind_entry (address);
1877 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
1881 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1884 #endif /* MAINTENANCE_CMDS */
1887 _initialize_hppa_tdep ()
1889 #ifdef MAINTENANCE_CMDS
1890 add_cmd ("unwind", class_maintenance, unwind_command,
1891 "Print unwind table entry at given address.",
1892 &maintenanceprintlist);
1893 #endif /* MAINTENANCE_CMDS */