1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry *h;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure is used to hold .got information when linking. */
119 /* The global symbol in the GOT with the lowest index in the dynamic
121 struct elf_link_hash_entry *global_gotsym;
122 /* The number of global .got entries. */
123 unsigned int global_gotno;
124 /* The number of .got slots used for TLS. */
125 unsigned int tls_gotno;
126 /* The first unused TLS .got entry. Used only during
127 mips_elf_initialize_tls_index. */
128 unsigned int tls_assigned_gotno;
129 /* The number of local .got entries. */
130 unsigned int local_gotno;
131 /* The number of local .got entries we have used. */
132 unsigned int assigned_gotno;
133 /* A hash table holding members of the got. */
134 struct htab *got_entries;
135 /* A hash table mapping input bfds to other mips_got_info. NULL
136 unless multi-got was necessary. */
137 struct htab *bfd2got;
138 /* In multi-got links, a pointer to the next got (err, rather, most
139 of the time, it points to the previous got). */
140 struct mips_got_info *next;
141 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
142 for none, or MINUS_TWO for not yet assigned. This is needed
143 because a single-GOT link may have multiple hash table entries
144 for the LDM. It does not get initialized in multi-GOT mode. */
145 bfd_vma tls_ldm_offset;
148 /* Map an input bfd to a got in a multi-got link. */
150 struct mips_elf_bfd2got_hash {
152 struct mips_got_info *g;
155 /* Structure passed when traversing the bfd2got hash table, used to
156 create and merge bfd's gots. */
158 struct mips_elf_got_per_bfd_arg
160 /* A hashtable that maps bfds to gots. */
162 /* The output bfd. */
164 /* The link information. */
165 struct bfd_link_info *info;
166 /* A pointer to the primary got, i.e., the one that's going to get
167 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
169 struct mips_got_info *primary;
170 /* A non-primary got we're trying to merge with other input bfd's
172 struct mips_got_info *current;
173 /* The maximum number of got entries that can be addressed with a
175 unsigned int max_count;
176 /* The number of local and global entries in the primary got. */
177 unsigned int primary_count;
178 /* The number of local and global entries in the current got. */
179 unsigned int current_count;
180 /* The total number of global entries which will live in the
181 primary got and be automatically relocated. This includes
182 those not referenced by the primary GOT but included in
184 unsigned int global_count;
187 /* Another structure used to pass arguments for got entries traversal. */
189 struct mips_elf_set_global_got_offset_arg
191 struct mips_got_info *g;
193 unsigned int needed_relocs;
194 struct bfd_link_info *info;
197 /* A structure used to count TLS relocations or GOT entries, for GOT
198 entry or ELF symbol table traversal. */
200 struct mips_elf_count_tls_arg
202 struct bfd_link_info *info;
206 struct _mips_elf_section_data
208 struct bfd_elf_section_data elf;
211 struct mips_got_info *got_info;
216 #define mips_elf_section_data(sec) \
217 ((struct _mips_elf_section_data *) elf_section_data (sec))
219 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
220 the dynamic symbols. */
222 struct mips_elf_hash_sort_data
224 /* The symbol in the global GOT with the lowest dynamic symbol table
226 struct elf_link_hash_entry *low;
227 /* The least dynamic symbol table index corresponding to a non-TLS
228 symbol with a GOT entry. */
229 long min_got_dynindx;
230 /* The greatest dynamic symbol table index corresponding to a symbol
231 with a GOT entry that is not referenced (e.g., a dynamic symbol
232 with dynamic relocations pointing to it from non-primary GOTs). */
233 long max_unref_got_dynindx;
234 /* The greatest dynamic symbol table index not corresponding to a
235 symbol without a GOT entry. */
236 long max_non_got_dynindx;
239 /* The MIPS ELF linker needs additional information for each symbol in
240 the global hash table. */
242 struct mips_elf_link_hash_entry
244 struct elf_link_hash_entry root;
246 /* External symbol information. */
249 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
251 unsigned int possibly_dynamic_relocs;
253 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
254 a readonly section. */
255 bfd_boolean readonly_reloc;
257 /* We must not create a stub for a symbol that has relocations
258 related to taking the function's address, i.e. any but
259 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
261 bfd_boolean no_fn_stub;
263 /* If there is a stub that 32 bit functions should use to call this
264 16 bit function, this points to the section containing the stub. */
267 /* Whether we need the fn_stub; this is set if this symbol appears
268 in any relocs other than a 16 bit call. */
269 bfd_boolean need_fn_stub;
271 /* If there is a stub that 16 bit functions should use to call this
272 32 bit function, this points to the section containing the stub. */
275 /* This is like the call_stub field, but it is used if the function
276 being called returns a floating point value. */
277 asection *call_fp_stub;
279 /* Are we forced local? This will only be set if we have converted
280 the initial global GOT entry to a local GOT entry. */
281 bfd_boolean forced_local;
283 /* Are we referenced by some kind of relocation? */
284 bfd_boolean is_relocation_target;
286 /* Are we referenced by branch relocations? */
287 bfd_boolean is_branch_target;
291 #define GOT_TLS_LDM 2
293 #define GOT_TLS_OFFSET_DONE 0x40
294 #define GOT_TLS_DONE 0x80
295 unsigned char tls_type;
296 /* This is only used in single-GOT mode; in multi-GOT mode there
297 is one mips_got_entry per GOT entry, so the offset is stored
298 there. In single-GOT mode there may be many mips_got_entry
299 structures all referring to the same GOT slot. It might be
300 possible to use root.got.offset instead, but that field is
301 overloaded already. */
302 bfd_vma tls_got_offset;
305 /* MIPS ELF linker hash table. */
307 struct mips_elf_link_hash_table
309 struct elf_link_hash_table root;
311 /* We no longer use this. */
312 /* String section indices for the dynamic section symbols. */
313 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
315 /* The number of .rtproc entries. */
316 bfd_size_type procedure_count;
317 /* The size of the .compact_rel section (if SGI_COMPAT). */
318 bfd_size_type compact_rel_size;
319 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
320 entry is set to the address of __rld_obj_head as in IRIX5. */
321 bfd_boolean use_rld_obj_head;
322 /* This is the value of the __rld_map or __rld_obj_head symbol. */
324 /* This is set if we see any mips16 stub sections. */
325 bfd_boolean mips16_stubs_seen;
326 /* True if we've computed the size of the GOT. */
327 bfd_boolean computed_got_sizes;
328 /* True if we're generating code for VxWorks. */
329 bfd_boolean is_vxworks;
330 /* True if we already reported the small-data section overflow. */
331 bfd_boolean small_data_overflow_reported;
332 /* Shortcuts to some dynamic sections, or NULL if they are not
340 /* The size of the PLT header in bytes (VxWorks only). */
341 bfd_vma plt_header_size;
342 /* The size of a PLT entry in bytes (VxWorks only). */
343 bfd_vma plt_entry_size;
344 /* The size of a function stub entry in bytes. */
345 bfd_vma function_stub_size;
348 #define TLS_RELOC_P(r_type) \
349 (r_type == R_MIPS_TLS_DTPMOD32 \
350 || r_type == R_MIPS_TLS_DTPMOD64 \
351 || r_type == R_MIPS_TLS_DTPREL32 \
352 || r_type == R_MIPS_TLS_DTPREL64 \
353 || r_type == R_MIPS_TLS_GD \
354 || r_type == R_MIPS_TLS_LDM \
355 || r_type == R_MIPS_TLS_DTPREL_HI16 \
356 || r_type == R_MIPS_TLS_DTPREL_LO16 \
357 || r_type == R_MIPS_TLS_GOTTPREL \
358 || r_type == R_MIPS_TLS_TPREL32 \
359 || r_type == R_MIPS_TLS_TPREL64 \
360 || r_type == R_MIPS_TLS_TPREL_HI16 \
361 || r_type == R_MIPS_TLS_TPREL_LO16)
363 /* Structure used to pass information to mips_elf_output_extsym. */
368 struct bfd_link_info *info;
369 struct ecoff_debug_info *debug;
370 const struct ecoff_debug_swap *swap;
374 /* The names of the runtime procedure table symbols used on IRIX5. */
376 static const char * const mips_elf_dynsym_rtproc_names[] =
379 "_procedure_string_table",
380 "_procedure_table_size",
384 /* These structures are used to generate the .compact_rel section on
389 unsigned long id1; /* Always one? */
390 unsigned long num; /* Number of compact relocation entries. */
391 unsigned long id2; /* Always two? */
392 unsigned long offset; /* The file offset of the first relocation. */
393 unsigned long reserved0; /* Zero? */
394 unsigned long reserved1; /* Zero? */
403 bfd_byte reserved0[4];
404 bfd_byte reserved1[4];
405 } Elf32_External_compact_rel;
409 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
410 unsigned int rtype : 4; /* Relocation types. See below. */
411 unsigned int dist2to : 8;
412 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
413 unsigned long konst; /* KONST field. See below. */
414 unsigned long vaddr; /* VADDR to be relocated. */
419 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
420 unsigned int rtype : 4; /* Relocation types. See below. */
421 unsigned int dist2to : 8;
422 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
423 unsigned long konst; /* KONST field. See below. */
431 } Elf32_External_crinfo;
437 } Elf32_External_crinfo2;
439 /* These are the constants used to swap the bitfields in a crinfo. */
441 #define CRINFO_CTYPE (0x1)
442 #define CRINFO_CTYPE_SH (31)
443 #define CRINFO_RTYPE (0xf)
444 #define CRINFO_RTYPE_SH (27)
445 #define CRINFO_DIST2TO (0xff)
446 #define CRINFO_DIST2TO_SH (19)
447 #define CRINFO_RELVADDR (0x7ffff)
448 #define CRINFO_RELVADDR_SH (0)
450 /* A compact relocation info has long (3 words) or short (2 words)
451 formats. A short format doesn't have VADDR field and relvaddr
452 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
453 #define CRF_MIPS_LONG 1
454 #define CRF_MIPS_SHORT 0
456 /* There are 4 types of compact relocation at least. The value KONST
457 has different meaning for each type:
460 CT_MIPS_REL32 Address in data
461 CT_MIPS_WORD Address in word (XXX)
462 CT_MIPS_GPHI_LO GP - vaddr
463 CT_MIPS_JMPAD Address to jump
466 #define CRT_MIPS_REL32 0xa
467 #define CRT_MIPS_WORD 0xb
468 #define CRT_MIPS_GPHI_LO 0xc
469 #define CRT_MIPS_JMPAD 0xd
471 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
472 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
473 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
474 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
476 /* The structure of the runtime procedure descriptor created by the
477 loader for use by the static exception system. */
479 typedef struct runtime_pdr {
480 bfd_vma adr; /* Memory address of start of procedure. */
481 long regmask; /* Save register mask. */
482 long regoffset; /* Save register offset. */
483 long fregmask; /* Save floating point register mask. */
484 long fregoffset; /* Save floating point register offset. */
485 long frameoffset; /* Frame size. */
486 short framereg; /* Frame pointer register. */
487 short pcreg; /* Offset or reg of return pc. */
488 long irpss; /* Index into the runtime string table. */
490 struct exception_info *exception_info;/* Pointer to exception array. */
492 #define cbRPDR sizeof (RPDR)
493 #define rpdNil ((pRPDR) 0)
495 static struct mips_got_entry *mips_elf_create_local_got_entry
496 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
497 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
498 static bfd_boolean mips_elf_sort_hash_table_f
499 (struct mips_elf_link_hash_entry *, void *);
500 static bfd_vma mips_elf_high
502 static bfd_boolean mips16_stub_section_p
504 static bfd_boolean mips_elf_create_dynamic_relocation
505 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
506 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
507 bfd_vma *, asection *);
508 static hashval_t mips_elf_got_entry_hash
510 static bfd_vma mips_elf_adjust_gp
511 (bfd *, struct mips_got_info *, bfd *);
512 static struct mips_got_info *mips_elf_got_for_ibfd
513 (struct mips_got_info *, bfd *);
515 /* This will be used when we sort the dynamic relocation records. */
516 static bfd *reldyn_sorting_bfd;
518 /* Nonzero if ABFD is using the N32 ABI. */
519 #define ABI_N32_P(abfd) \
520 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
522 /* Nonzero if ABFD is using the N64 ABI. */
523 #define ABI_64_P(abfd) \
524 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
526 /* Nonzero if ABFD is using NewABI conventions. */
527 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
529 /* The IRIX compatibility level we are striving for. */
530 #define IRIX_COMPAT(abfd) \
531 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
533 /* Whether we are trying to be compatible with IRIX at all. */
534 #define SGI_COMPAT(abfd) \
535 (IRIX_COMPAT (abfd) != ict_none)
537 /* The name of the options section. */
538 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
539 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
541 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
542 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
543 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
544 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
546 /* Whether the section is readonly. */
547 #define MIPS_ELF_READONLY_SECTION(sec) \
548 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
549 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
551 /* The name of the stub section. */
552 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
554 /* The size of an external REL relocation. */
555 #define MIPS_ELF_REL_SIZE(abfd) \
556 (get_elf_backend_data (abfd)->s->sizeof_rel)
558 /* The size of an external RELA relocation. */
559 #define MIPS_ELF_RELA_SIZE(abfd) \
560 (get_elf_backend_data (abfd)->s->sizeof_rela)
562 /* The size of an external dynamic table entry. */
563 #define MIPS_ELF_DYN_SIZE(abfd) \
564 (get_elf_backend_data (abfd)->s->sizeof_dyn)
566 /* The size of a GOT entry. */
567 #define MIPS_ELF_GOT_SIZE(abfd) \
568 (get_elf_backend_data (abfd)->s->arch_size / 8)
570 /* The size of a symbol-table entry. */
571 #define MIPS_ELF_SYM_SIZE(abfd) \
572 (get_elf_backend_data (abfd)->s->sizeof_sym)
574 /* The default alignment for sections, as a power of two. */
575 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
576 (get_elf_backend_data (abfd)->s->log_file_align)
578 /* Get word-sized data. */
579 #define MIPS_ELF_GET_WORD(abfd, ptr) \
580 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
582 /* Put out word-sized data. */
583 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
585 ? bfd_put_64 (abfd, val, ptr) \
586 : bfd_put_32 (abfd, val, ptr))
588 /* Add a dynamic symbol table-entry. */
589 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
590 _bfd_elf_add_dynamic_entry (info, tag, val)
592 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
593 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
595 /* Determine whether the internal relocation of index REL_IDX is REL
596 (zero) or RELA (non-zero). The assumption is that, if there are
597 two relocation sections for this section, one of them is REL and
598 the other is RELA. If the index of the relocation we're testing is
599 in range for the first relocation section, check that the external
600 relocation size is that for RELA. It is also assumed that, if
601 rel_idx is not in range for the first section, and this first
602 section contains REL relocs, then the relocation is in the second
603 section, that is RELA. */
604 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
605 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
606 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
607 > (bfd_vma)(rel_idx)) \
608 == (elf_section_data (sec)->rel_hdr.sh_entsize \
609 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
610 : sizeof (Elf32_External_Rela))))
612 /* The name of the dynamic relocation section. */
613 #define MIPS_ELF_REL_DYN_NAME(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
616 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
617 from smaller values. Start with zero, widen, *then* decrement. */
618 #define MINUS_ONE (((bfd_vma)0) - 1)
619 #define MINUS_TWO (((bfd_vma)0) - 2)
621 /* The number of local .got entries we reserve. */
622 #define MIPS_RESERVED_GOTNO(INFO) \
623 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
625 /* The offset of $gp from the beginning of the .got section. */
626 #define ELF_MIPS_GP_OFFSET(INFO) \
627 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
629 /* The maximum size of the GOT for it to be addressable using 16-bit
631 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
633 /* Instructions which appear in a stub. */
634 #define STUB_LW(abfd) \
636 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
637 : 0x8f998010)) /* lw t9,0x8010(gp) */
638 #define STUB_MOVE(abfd) \
640 ? 0x03e0782d /* daddu t7,ra */ \
641 : 0x03e07821)) /* addu t7,ra */
642 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
643 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
644 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
645 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
646 #define STUB_LI16S(abfd, VAL) \
648 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
649 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
651 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
652 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
654 /* The name of the dynamic interpreter. This is put in the .interp
657 #define ELF_DYNAMIC_INTERPRETER(abfd) \
658 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
659 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
660 : "/usr/lib/libc.so.1")
663 #define MNAME(bfd,pre,pos) \
664 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
665 #define ELF_R_SYM(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
667 #define ELF_R_TYPE(bfd, i) \
668 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
669 #define ELF_R_INFO(bfd, s, t) \
670 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
672 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
673 #define ELF_R_SYM(bfd, i) \
675 #define ELF_R_TYPE(bfd, i) \
677 #define ELF_R_INFO(bfd, s, t) \
678 (ELF32_R_INFO (s, t))
681 /* The mips16 compiler uses a couple of special sections to handle
682 floating point arguments.
684 Section names that look like .mips16.fn.FNNAME contain stubs that
685 copy floating point arguments from the fp regs to the gp regs and
686 then jump to FNNAME. If any 32 bit function calls FNNAME, the
687 call should be redirected to the stub instead. If no 32 bit
688 function calls FNNAME, the stub should be discarded. We need to
689 consider any reference to the function, not just a call, because
690 if the address of the function is taken we will need the stub,
691 since the address might be passed to a 32 bit function.
693 Section names that look like .mips16.call.FNNAME contain stubs
694 that copy floating point arguments from the gp regs to the fp
695 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
696 then any 16 bit function that calls FNNAME should be redirected
697 to the stub instead. If FNNAME is not a 32 bit function, the
698 stub should be discarded.
700 .mips16.call.fp.FNNAME sections are similar, but contain stubs
701 which call FNNAME and then copy the return value from the fp regs
702 to the gp regs. These stubs store the return value in $18 while
703 calling FNNAME; any function which might call one of these stubs
704 must arrange to save $18 around the call. (This case is not
705 needed for 32 bit functions that call 16 bit functions, because
706 16 bit functions always return floating point values in both
709 Note that in all cases FNNAME might be defined statically.
710 Therefore, FNNAME is not used literally. Instead, the relocation
711 information will indicate which symbol the section is for.
713 We record any stubs that we find in the symbol table. */
715 #define FN_STUB ".mips16.fn."
716 #define CALL_STUB ".mips16.call."
717 #define CALL_FP_STUB ".mips16.call.fp."
719 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
720 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
721 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
723 /* The format of the first PLT entry in a VxWorks executable. */
724 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
725 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
726 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
727 0x8f390008, /* lw t9, 8(t9) */
728 0x00000000, /* nop */
729 0x03200008, /* jr t9 */
733 /* The format of subsequent PLT entries. */
734 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000, /* li t8, <pltindex> */
737 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
738 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
739 0x8f390000, /* lw t9, 0(t9) */
740 0x00000000, /* nop */
741 0x03200008, /* jr t9 */
745 /* The format of the first PLT entry in a VxWorks shared object. */
746 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
747 0x8f990008, /* lw t9, 8(gp) */
748 0x00000000, /* nop */
749 0x03200008, /* jr t9 */
750 0x00000000, /* nop */
751 0x00000000, /* nop */
755 /* The format of subsequent PLT entries. */
756 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
757 0x10000000, /* b .PLT_resolver */
758 0x24180000 /* li t8, <pltindex> */
761 /* Look up an entry in a MIPS ELF linker hash table. */
763 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
764 ((struct mips_elf_link_hash_entry *) \
765 elf_link_hash_lookup (&(table)->root, (string), (create), \
768 /* Traverse a MIPS ELF linker hash table. */
770 #define mips_elf_link_hash_traverse(table, func, info) \
771 (elf_link_hash_traverse \
773 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
776 /* Get the MIPS ELF linker hash table from a link_info structure. */
778 #define mips_elf_hash_table(p) \
779 ((struct mips_elf_link_hash_table *) ((p)->hash))
781 /* Find the base offsets for thread-local storage in this object,
782 for GD/LD and IE/LE respectively. */
784 #define TP_OFFSET 0x7000
785 #define DTP_OFFSET 0x8000
788 dtprel_base (struct bfd_link_info *info)
790 /* If tls_sec is NULL, we should have signalled an error already. */
791 if (elf_hash_table (info)->tls_sec == NULL)
793 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
797 tprel_base (struct bfd_link_info *info)
799 /* If tls_sec is NULL, we should have signalled an error already. */
800 if (elf_hash_table (info)->tls_sec == NULL)
802 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
805 /* Create an entry in a MIPS ELF linker hash table. */
807 static struct bfd_hash_entry *
808 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
809 struct bfd_hash_table *table, const char *string)
811 struct mips_elf_link_hash_entry *ret =
812 (struct mips_elf_link_hash_entry *) entry;
814 /* Allocate the structure if it has not already been allocated by a
817 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
819 return (struct bfd_hash_entry *) ret;
821 /* Call the allocation method of the superclass. */
822 ret = ((struct mips_elf_link_hash_entry *)
823 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
827 /* Set local fields. */
828 memset (&ret->esym, 0, sizeof (EXTR));
829 /* We use -2 as a marker to indicate that the information has
830 not been set. -1 means there is no associated ifd. */
832 ret->possibly_dynamic_relocs = 0;
833 ret->readonly_reloc = FALSE;
834 ret->no_fn_stub = FALSE;
836 ret->need_fn_stub = FALSE;
837 ret->call_stub = NULL;
838 ret->call_fp_stub = NULL;
839 ret->forced_local = FALSE;
840 ret->is_branch_target = FALSE;
841 ret->is_relocation_target = FALSE;
842 ret->tls_type = GOT_NORMAL;
845 return (struct bfd_hash_entry *) ret;
849 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
851 if (!sec->used_by_bfd)
853 struct _mips_elf_section_data *sdata;
854 bfd_size_type amt = sizeof (*sdata);
856 sdata = bfd_zalloc (abfd, amt);
859 sec->used_by_bfd = sdata;
862 return _bfd_elf_new_section_hook (abfd, sec);
865 /* Read ECOFF debugging information from a .mdebug section into a
866 ecoff_debug_info structure. */
869 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
870 struct ecoff_debug_info *debug)
873 const struct ecoff_debug_swap *swap;
876 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
877 memset (debug, 0, sizeof (*debug));
879 ext_hdr = bfd_malloc (swap->external_hdr_size);
880 if (ext_hdr == NULL && swap->external_hdr_size != 0)
883 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
884 swap->external_hdr_size))
887 symhdr = &debug->symbolic_header;
888 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
890 /* The symbolic header contains absolute file offsets and sizes to
892 #define READ(ptr, offset, count, size, type) \
893 if (symhdr->count == 0) \
897 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
898 debug->ptr = bfd_malloc (amt); \
899 if (debug->ptr == NULL) \
901 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
902 || bfd_bread (debug->ptr, amt, abfd) != amt) \
906 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
907 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
908 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
909 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
910 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
911 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
913 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
914 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
915 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
916 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
917 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
927 if (debug->line != NULL)
929 if (debug->external_dnr != NULL)
930 free (debug->external_dnr);
931 if (debug->external_pdr != NULL)
932 free (debug->external_pdr);
933 if (debug->external_sym != NULL)
934 free (debug->external_sym);
935 if (debug->external_opt != NULL)
936 free (debug->external_opt);
937 if (debug->external_aux != NULL)
938 free (debug->external_aux);
939 if (debug->ss != NULL)
941 if (debug->ssext != NULL)
943 if (debug->external_fdr != NULL)
944 free (debug->external_fdr);
945 if (debug->external_rfd != NULL)
946 free (debug->external_rfd);
947 if (debug->external_ext != NULL)
948 free (debug->external_ext);
952 /* Swap RPDR (runtime procedure table entry) for output. */
955 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
957 H_PUT_S32 (abfd, in->adr, ex->p_adr);
958 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
959 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
960 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
961 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
962 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
964 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
965 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
967 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
970 /* Create a runtime procedure table from the .mdebug section. */
973 mips_elf_create_procedure_table (void *handle, bfd *abfd,
974 struct bfd_link_info *info, asection *s,
975 struct ecoff_debug_info *debug)
977 const struct ecoff_debug_swap *swap;
978 HDRR *hdr = &debug->symbolic_header;
980 struct rpdr_ext *erp;
982 struct pdr_ext *epdr;
983 struct sym_ext *esym;
988 unsigned long sindex;
992 const char *no_name_func = _("static procedure (no name)");
1000 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1002 sindex = strlen (no_name_func) + 1;
1003 count = hdr->ipdMax;
1006 size = swap->external_pdr_size;
1008 epdr = bfd_malloc (size * count);
1012 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1015 size = sizeof (RPDR);
1016 rp = rpdr = bfd_malloc (size * count);
1020 size = sizeof (char *);
1021 sv = bfd_malloc (size * count);
1025 count = hdr->isymMax;
1026 size = swap->external_sym_size;
1027 esym = bfd_malloc (size * count);
1031 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1034 count = hdr->issMax;
1035 ss = bfd_malloc (count);
1038 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1041 count = hdr->ipdMax;
1042 for (i = 0; i < (unsigned long) count; i++, rp++)
1044 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1045 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1046 rp->adr = sym.value;
1047 rp->regmask = pdr.regmask;
1048 rp->regoffset = pdr.regoffset;
1049 rp->fregmask = pdr.fregmask;
1050 rp->fregoffset = pdr.fregoffset;
1051 rp->frameoffset = pdr.frameoffset;
1052 rp->framereg = pdr.framereg;
1053 rp->pcreg = pdr.pcreg;
1055 sv[i] = ss + sym.iss;
1056 sindex += strlen (sv[i]) + 1;
1060 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1061 size = BFD_ALIGN (size, 16);
1062 rtproc = bfd_alloc (abfd, size);
1065 mips_elf_hash_table (info)->procedure_count = 0;
1069 mips_elf_hash_table (info)->procedure_count = count + 2;
1072 memset (erp, 0, sizeof (struct rpdr_ext));
1074 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1075 strcpy (str, no_name_func);
1076 str += strlen (no_name_func) + 1;
1077 for (i = 0; i < count; i++)
1079 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1080 strcpy (str, sv[i]);
1081 str += strlen (sv[i]) + 1;
1083 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1085 /* Set the size and contents of .rtproc section. */
1087 s->contents = rtproc;
1089 /* Skip this section later on (I don't think this currently
1090 matters, but someday it might). */
1091 s->map_head.link_order = NULL;
1120 /* Check the mips16 stubs for a particular symbol, and see if we can
1124 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1125 void *data ATTRIBUTE_UNUSED)
1127 if (h->root.root.type == bfd_link_hash_warning)
1128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1130 if (h->fn_stub != NULL
1131 && ! h->need_fn_stub)
1133 /* We don't need the fn_stub; the only references to this symbol
1134 are 16 bit calls. Clobber the size to 0 to prevent it from
1135 being included in the link. */
1136 h->fn_stub->size = 0;
1137 h->fn_stub->flags &= ~SEC_RELOC;
1138 h->fn_stub->reloc_count = 0;
1139 h->fn_stub->flags |= SEC_EXCLUDE;
1142 if (h->call_stub != NULL
1143 && h->root.other == STO_MIPS16)
1145 /* We don't need the call_stub; this is a 16 bit function, so
1146 calls from other 16 bit functions are OK. Clobber the size
1147 to 0 to prevent it from being included in the link. */
1148 h->call_stub->size = 0;
1149 h->call_stub->flags &= ~SEC_RELOC;
1150 h->call_stub->reloc_count = 0;
1151 h->call_stub->flags |= SEC_EXCLUDE;
1154 if (h->call_fp_stub != NULL
1155 && h->root.other == STO_MIPS16)
1157 /* We don't need the call_stub; this is a 16 bit function, so
1158 calls from other 16 bit functions are OK. Clobber the size
1159 to 0 to prevent it from being included in the link. */
1160 h->call_fp_stub->size = 0;
1161 h->call_fp_stub->flags &= ~SEC_RELOC;
1162 h->call_fp_stub->reloc_count = 0;
1163 h->call_fp_stub->flags |= SEC_EXCLUDE;
1169 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1170 Most mips16 instructions are 16 bits, but these instructions
1173 The format of these instructions is:
1175 +--------------+--------------------------------+
1176 | JALX | X| Imm 20:16 | Imm 25:21 |
1177 +--------------+--------------------------------+
1179 +-----------------------------------------------+
1181 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1182 Note that the immediate value in the first word is swapped.
1184 When producing a relocatable object file, R_MIPS16_26 is
1185 handled mostly like R_MIPS_26. In particular, the addend is
1186 stored as a straight 26-bit value in a 32-bit instruction.
1187 (gas makes life simpler for itself by never adjusting a
1188 R_MIPS16_26 reloc to be against a section, so the addend is
1189 always zero). However, the 32 bit instruction is stored as 2
1190 16-bit values, rather than a single 32-bit value. In a
1191 big-endian file, the result is the same; in a little-endian
1192 file, the two 16-bit halves of the 32 bit value are swapped.
1193 This is so that a disassembler can recognize the jal
1196 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1197 instruction stored as two 16-bit values. The addend A is the
1198 contents of the targ26 field. The calculation is the same as
1199 R_MIPS_26. When storing the calculated value, reorder the
1200 immediate value as shown above, and don't forget to store the
1201 value as two 16-bit values.
1203 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1207 +--------+----------------------+
1211 +--------+----------------------+
1214 +----------+------+-------------+
1218 +----------+--------------------+
1219 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1220 ((sub1 << 16) | sub2)).
1222 When producing a relocatable object file, the calculation is
1223 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224 When producing a fully linked file, the calculation is
1225 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1226 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1228 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1229 mode. A typical instruction will have a format like this:
1231 +--------------+--------------------------------+
1232 | EXTEND | Imm 10:5 | Imm 15:11 |
1233 +--------------+--------------------------------+
1234 | Major | rx | ry | Imm 4:0 |
1235 +--------------+--------------------------------+
1237 EXTEND is the five bit value 11110. Major is the instruction
1240 This is handled exactly like R_MIPS_GPREL16, except that the
1241 addend is retrieved and stored as shown in this diagram; that
1242 is, the Imm fields above replace the V-rel16 field.
1244 All we need to do here is shuffle the bits appropriately. As
1245 above, the two 16-bit halves must be swapped on a
1246 little-endian system.
1248 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1249 access data when neither GP-relative nor PC-relative addressing
1250 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1251 except that the addend is retrieved and stored as shown above
1255 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1256 bfd_boolean jal_shuffle, bfd_byte *data)
1258 bfd_vma extend, insn, val;
1260 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1261 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1264 /* Pick up the mips16 extend instruction and the real instruction. */
1265 extend = bfd_get_16 (abfd, data);
1266 insn = bfd_get_16 (abfd, data + 2);
1267 if (r_type == R_MIPS16_26)
1270 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1271 | ((extend & 0x1f) << 21) | insn;
1273 val = extend << 16 | insn;
1276 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1277 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1278 bfd_put_32 (abfd, val, data);
1282 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1283 bfd_boolean jal_shuffle, bfd_byte *data)
1285 bfd_vma extend, insn, val;
1287 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1288 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1291 val = bfd_get_32 (abfd, data);
1292 if (r_type == R_MIPS16_26)
1296 insn = val & 0xffff;
1297 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1298 | ((val >> 21) & 0x1f);
1302 insn = val & 0xffff;
1308 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1309 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1311 bfd_put_16 (abfd, insn, data + 2);
1312 bfd_put_16 (abfd, extend, data);
1315 bfd_reloc_status_type
1316 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1317 arelent *reloc_entry, asection *input_section,
1318 bfd_boolean relocatable, void *data, bfd_vma gp)
1322 bfd_reloc_status_type status;
1324 if (bfd_is_com_section (symbol->section))
1327 relocation = symbol->value;
1329 relocation += symbol->section->output_section->vma;
1330 relocation += symbol->section->output_offset;
1332 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1333 return bfd_reloc_outofrange;
1335 /* Set val to the offset into the section or symbol. */
1336 val = reloc_entry->addend;
1338 _bfd_mips_elf_sign_extend (val, 16);
1340 /* Adjust val for the final section location and GP value. If we
1341 are producing relocatable output, we don't want to do this for
1342 an external symbol. */
1344 || (symbol->flags & BSF_SECTION_SYM) != 0)
1345 val += relocation - gp;
1347 if (reloc_entry->howto->partial_inplace)
1349 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1351 + reloc_entry->address);
1352 if (status != bfd_reloc_ok)
1356 reloc_entry->addend = val;
1359 reloc_entry->address += input_section->output_offset;
1361 return bfd_reloc_ok;
1364 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1365 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1366 that contains the relocation field and DATA points to the start of
1371 struct mips_hi16 *next;
1373 asection *input_section;
1377 /* FIXME: This should not be a static variable. */
1379 static struct mips_hi16 *mips_hi16_list;
1381 /* A howto special_function for REL *HI16 relocations. We can only
1382 calculate the correct value once we've seen the partnering
1383 *LO16 relocation, so just save the information for later.
1385 The ABI requires that the *LO16 immediately follow the *HI16.
1386 However, as a GNU extension, we permit an arbitrary number of
1387 *HI16s to be associated with a single *LO16. This significantly
1388 simplies the relocation handling in gcc. */
1390 bfd_reloc_status_type
1391 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1392 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1393 asection *input_section, bfd *output_bfd,
1394 char **error_message ATTRIBUTE_UNUSED)
1396 struct mips_hi16 *n;
1398 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1399 return bfd_reloc_outofrange;
1401 n = bfd_malloc (sizeof *n);
1403 return bfd_reloc_outofrange;
1405 n->next = mips_hi16_list;
1407 n->input_section = input_section;
1408 n->rel = *reloc_entry;
1411 if (output_bfd != NULL)
1412 reloc_entry->address += input_section->output_offset;
1414 return bfd_reloc_ok;
1417 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1418 like any other 16-bit relocation when applied to global symbols, but is
1419 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1421 bfd_reloc_status_type
1422 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1423 void *data, asection *input_section,
1424 bfd *output_bfd, char **error_message)
1426 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1427 || bfd_is_und_section (bfd_get_section (symbol))
1428 || bfd_is_com_section (bfd_get_section (symbol)))
1429 /* The relocation is against a global symbol. */
1430 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1431 input_section, output_bfd,
1434 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1435 input_section, output_bfd, error_message);
1438 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1439 is a straightforward 16 bit inplace relocation, but we must deal with
1440 any partnering high-part relocations as well. */
1442 bfd_reloc_status_type
1443 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1444 void *data, asection *input_section,
1445 bfd *output_bfd, char **error_message)
1448 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1450 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1451 return bfd_reloc_outofrange;
1453 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1455 vallo = bfd_get_32 (abfd, location);
1456 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1459 while (mips_hi16_list != NULL)
1461 bfd_reloc_status_type ret;
1462 struct mips_hi16 *hi;
1464 hi = mips_hi16_list;
1466 /* R_MIPS_GOT16 relocations are something of a special case. We
1467 want to install the addend in the same way as for a R_MIPS_HI16
1468 relocation (with a rightshift of 16). However, since GOT16
1469 relocations can also be used with global symbols, their howto
1470 has a rightshift of 0. */
1471 if (hi->rel.howto->type == R_MIPS_GOT16)
1472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1475 carry or borrow will induce a change of +1 or -1 in the high part. */
1476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1479 hi->input_section, output_bfd,
1481 if (ret != bfd_reloc_ok)
1484 mips_hi16_list = hi->next;
1488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1489 input_section, output_bfd,
1493 /* A generic howto special_function. This calculates and installs the
1494 relocation itself, thus avoiding the oft-discussed problems in
1495 bfd_perform_relocation and bfd_install_relocation. */
1497 bfd_reloc_status_type
1498 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1500 asection *input_section, bfd *output_bfd,
1501 char **error_message ATTRIBUTE_UNUSED)
1504 bfd_reloc_status_type status;
1505 bfd_boolean relocatable;
1507 relocatable = (output_bfd != NULL);
1509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1510 return bfd_reloc_outofrange;
1512 /* Build up the field adjustment in VAL. */
1514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1516 /* Either we're calculating the final field value or we have a
1517 relocation against a section symbol. Add in the section's
1518 offset or address. */
1519 val += symbol->section->output_section->vma;
1520 val += symbol->section->output_offset;
1525 /* We're calculating the final field value. Add in the symbol's value
1526 and, if pc-relative, subtract the address of the field itself. */
1527 val += symbol->value;
1528 if (reloc_entry->howto->pc_relative)
1530 val -= input_section->output_section->vma;
1531 val -= input_section->output_offset;
1532 val -= reloc_entry->address;
1536 /* VAL is now the final adjustment. If we're keeping this relocation
1537 in the output file, and if the relocation uses a separate addend,
1538 we just need to add VAL to that addend. Otherwise we need to add
1539 VAL to the relocation field itself. */
1540 if (relocatable && !reloc_entry->howto->partial_inplace)
1541 reloc_entry->addend += val;
1544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1546 /* Add in the separate addend, if any. */
1547 val += reloc_entry->addend;
1549 /* Add VAL to the relocation field. */
1550 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1554 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1557 if (status != bfd_reloc_ok)
1562 reloc_entry->address += input_section->output_offset;
1564 return bfd_reloc_ok;
1567 /* Swap an entry in a .gptab section. Note that these routines rely
1568 on the equivalence of the two elements of the union. */
1571 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1579 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1580 Elf32_External_gptab *ex)
1582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1587 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1588 Elf32_External_compact_rel *ex)
1590 H_PUT_32 (abfd, in->id1, ex->id1);
1591 H_PUT_32 (abfd, in->num, ex->num);
1592 H_PUT_32 (abfd, in->id2, ex->id2);
1593 H_PUT_32 (abfd, in->offset, ex->offset);
1594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1599 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1600 Elf32_External_crinfo *ex)
1604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1608 H_PUT_32 (abfd, l, ex->info);
1609 H_PUT_32 (abfd, in->konst, ex->konst);
1610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1613 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1614 routines swap this structure in and out. They are used outside of
1615 BFD, so they are globally visible. */
1618 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1630 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1631 Elf32_External_RegInfo *ex)
1633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1641 /* In the 64 bit ABI, the .MIPS.options section holds register
1642 information in an Elf64_Reginfo structure. These routines swap
1643 them in and out. They are globally visible because they are used
1644 outside of BFD. These routines are here so that gas can call them
1645 without worrying about whether the 64 bit ABI has been included. */
1648 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1649 Elf64_Internal_RegInfo *in)
1651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1661 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1662 Elf64_External_RegInfo *ex)
1664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1673 /* Swap in an options header. */
1676 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1677 Elf_Internal_Options *in)
1679 in->kind = H_GET_8 (abfd, ex->kind);
1680 in->size = H_GET_8 (abfd, ex->size);
1681 in->section = H_GET_16 (abfd, ex->section);
1682 in->info = H_GET_32 (abfd, ex->info);
1685 /* Swap out an options header. */
1688 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1689 Elf_External_Options *ex)
1691 H_PUT_8 (abfd, in->kind, ex->kind);
1692 H_PUT_8 (abfd, in->size, ex->size);
1693 H_PUT_16 (abfd, in->section, ex->section);
1694 H_PUT_32 (abfd, in->info, ex->info);
1697 /* This function is called via qsort() to sort the dynamic relocation
1698 entries by increasing r_symndx value. */
1701 sort_dynamic_relocs (const void *arg1, const void *arg2)
1703 Elf_Internal_Rela int_reloc1;
1704 Elf_Internal_Rela int_reloc2;
1707 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1708 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1710 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1714 if (int_reloc1.r_offset < int_reloc2.r_offset)
1716 if (int_reloc1.r_offset > int_reloc2.r_offset)
1721 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1724 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1725 const void *arg2 ATTRIBUTE_UNUSED)
1728 Elf_Internal_Rela int_reloc1[3];
1729 Elf_Internal_Rela int_reloc2[3];
1731 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1732 (reldyn_sorting_bfd, arg1, int_reloc1);
1733 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1734 (reldyn_sorting_bfd, arg2, int_reloc2);
1736 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1738 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1741 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1743 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1752 /* This routine is used to write out ECOFF debugging external symbol
1753 information. It is called via mips_elf_link_hash_traverse. The
1754 ECOFF external symbol information must match the ELF external
1755 symbol information. Unfortunately, at this point we don't know
1756 whether a symbol is required by reloc information, so the two
1757 tables may wind up being different. We must sort out the external
1758 symbol information before we can set the final size of the .mdebug
1759 section, and we must set the size of the .mdebug section before we
1760 can relocate any sections, and we can't know which symbols are
1761 required by relocation until we relocate the sections.
1762 Fortunately, it is relatively unlikely that any symbol will be
1763 stripped but required by a reloc. In particular, it can not happen
1764 when generating a final executable. */
1767 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1769 struct extsym_info *einfo = data;
1771 asection *sec, *output_section;
1773 if (h->root.root.type == bfd_link_hash_warning)
1774 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1776 if (h->root.indx == -2)
1778 else if ((h->root.def_dynamic
1779 || h->root.ref_dynamic
1780 || h->root.type == bfd_link_hash_new)
1781 && !h->root.def_regular
1782 && !h->root.ref_regular)
1784 else if (einfo->info->strip == strip_all
1785 || (einfo->info->strip == strip_some
1786 && bfd_hash_lookup (einfo->info->keep_hash,
1787 h->root.root.root.string,
1788 FALSE, FALSE) == NULL))
1796 if (h->esym.ifd == -2)
1799 h->esym.cobol_main = 0;
1800 h->esym.weakext = 0;
1801 h->esym.reserved = 0;
1802 h->esym.ifd = ifdNil;
1803 h->esym.asym.value = 0;
1804 h->esym.asym.st = stGlobal;
1806 if (h->root.root.type == bfd_link_hash_undefined
1807 || h->root.root.type == bfd_link_hash_undefweak)
1811 /* Use undefined class. Also, set class and type for some
1813 name = h->root.root.root.string;
1814 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1815 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1817 h->esym.asym.sc = scData;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value = 0;
1821 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1823 h->esym.asym.sc = scAbs;
1824 h->esym.asym.st = stLabel;
1825 h->esym.asym.value =
1826 mips_elf_hash_table (einfo->info)->procedure_count;
1828 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1830 h->esym.asym.sc = scAbs;
1831 h->esym.asym.st = stLabel;
1832 h->esym.asym.value = elf_gp (einfo->abfd);
1835 h->esym.asym.sc = scUndefined;
1837 else if (h->root.root.type != bfd_link_hash_defined
1838 && h->root.root.type != bfd_link_hash_defweak)
1839 h->esym.asym.sc = scAbs;
1844 sec = h->root.root.u.def.section;
1845 output_section = sec->output_section;
1847 /* When making a shared library and symbol h is the one from
1848 the another shared library, OUTPUT_SECTION may be null. */
1849 if (output_section == NULL)
1850 h->esym.asym.sc = scUndefined;
1853 name = bfd_section_name (output_section->owner, output_section);
1855 if (strcmp (name, ".text") == 0)
1856 h->esym.asym.sc = scText;
1857 else if (strcmp (name, ".data") == 0)
1858 h->esym.asym.sc = scData;
1859 else if (strcmp (name, ".sdata") == 0)
1860 h->esym.asym.sc = scSData;
1861 else if (strcmp (name, ".rodata") == 0
1862 || strcmp (name, ".rdata") == 0)
1863 h->esym.asym.sc = scRData;
1864 else if (strcmp (name, ".bss") == 0)
1865 h->esym.asym.sc = scBss;
1866 else if (strcmp (name, ".sbss") == 0)
1867 h->esym.asym.sc = scSBss;
1868 else if (strcmp (name, ".init") == 0)
1869 h->esym.asym.sc = scInit;
1870 else if (strcmp (name, ".fini") == 0)
1871 h->esym.asym.sc = scFini;
1873 h->esym.asym.sc = scAbs;
1877 h->esym.asym.reserved = 0;
1878 h->esym.asym.index = indexNil;
1881 if (h->root.root.type == bfd_link_hash_common)
1882 h->esym.asym.value = h->root.root.u.c.size;
1883 else if (h->root.root.type == bfd_link_hash_defined
1884 || h->root.root.type == bfd_link_hash_defweak)
1886 if (h->esym.asym.sc == scCommon)
1887 h->esym.asym.sc = scBss;
1888 else if (h->esym.asym.sc == scSCommon)
1889 h->esym.asym.sc = scSBss;
1891 sec = h->root.root.u.def.section;
1892 output_section = sec->output_section;
1893 if (output_section != NULL)
1894 h->esym.asym.value = (h->root.root.u.def.value
1895 + sec->output_offset
1896 + output_section->vma);
1898 h->esym.asym.value = 0;
1900 else if (h->root.needs_plt)
1902 struct mips_elf_link_hash_entry *hd = h;
1903 bfd_boolean no_fn_stub = h->no_fn_stub;
1905 while (hd->root.root.type == bfd_link_hash_indirect)
1907 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1908 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1913 /* Set type and value for a symbol with a function stub. */
1914 h->esym.asym.st = stProc;
1915 sec = hd->root.root.u.def.section;
1917 h->esym.asym.value = 0;
1920 output_section = sec->output_section;
1921 if (output_section != NULL)
1922 h->esym.asym.value = (hd->root.plt.offset
1923 + sec->output_offset
1924 + output_section->vma);
1926 h->esym.asym.value = 0;
1931 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1932 h->root.root.root.string,
1935 einfo->failed = TRUE;
1942 /* A comparison routine used to sort .gptab entries. */
1945 gptab_compare (const void *p1, const void *p2)
1947 const Elf32_gptab *a1 = p1;
1948 const Elf32_gptab *a2 = p2;
1950 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1953 /* Functions to manage the got entry hash table. */
1955 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1958 static INLINE hashval_t
1959 mips_elf_hash_bfd_vma (bfd_vma addr)
1962 return addr + (addr >> 32);
1968 /* got_entries only match if they're identical, except for gotidx, so
1969 use all fields to compute the hash, and compare the appropriate
1973 mips_elf_got_entry_hash (const void *entry_)
1975 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1977 return entry->symndx
1978 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1979 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1981 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1982 : entry->d.h->root.root.root.hash));
1986 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1988 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1989 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1991 /* An LDM entry can only match another LDM entry. */
1992 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1995 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1996 && (! e1->abfd ? e1->d.address == e2->d.address
1997 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1998 : e1->d.h == e2->d.h);
2001 /* multi_got_entries are still a match in the case of global objects,
2002 even if the input bfd in which they're referenced differs, so the
2003 hash computation and compare functions are adjusted
2007 mips_elf_multi_got_entry_hash (const void *entry_)
2009 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2011 return entry->symndx
2013 ? mips_elf_hash_bfd_vma (entry->d.address)
2014 : entry->symndx >= 0
2015 ? ((entry->tls_type & GOT_TLS_LDM)
2016 ? (GOT_TLS_LDM << 17)
2018 + mips_elf_hash_bfd_vma (entry->d.addend)))
2019 : entry->d.h->root.root.root.hash);
2023 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2025 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2026 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2028 /* Any two LDM entries match. */
2029 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2032 /* Nothing else matches an LDM entry. */
2033 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2036 return e1->symndx == e2->symndx
2037 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2038 : e1->abfd == NULL || e2->abfd == NULL
2039 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2040 : e1->d.h == e2->d.h);
2043 /* Return the dynamic relocation section. If it doesn't exist, try to
2044 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2045 if creation fails. */
2048 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2054 dname = MIPS_ELF_REL_DYN_NAME (info);
2055 dynobj = elf_hash_table (info)->dynobj;
2056 sreloc = bfd_get_section_by_name (dynobj, dname);
2057 if (sreloc == NULL && create_p)
2059 sreloc = bfd_make_section_with_flags (dynobj, dname,
2064 | SEC_LINKER_CREATED
2067 || ! bfd_set_section_alignment (dynobj, sreloc,
2068 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2074 /* Returns the GOT section for ABFD. */
2077 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2079 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2081 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2086 /* Returns the GOT information associated with the link indicated by
2087 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2090 static struct mips_got_info *
2091 mips_elf_got_info (bfd *abfd, asection **sgotp)
2094 struct mips_got_info *g;
2096 sgot = mips_elf_got_section (abfd, TRUE);
2097 BFD_ASSERT (sgot != NULL);
2098 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2099 g = mips_elf_section_data (sgot)->u.got_info;
2100 BFD_ASSERT (g != NULL);
2103 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2108 /* Count the number of relocations needed for a TLS GOT entry, with
2109 access types from TLS_TYPE, and symbol H (or a local symbol if H
2113 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2114 struct elf_link_hash_entry *h)
2118 bfd_boolean need_relocs = FALSE;
2119 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2121 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2122 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2125 if ((info->shared || indx != 0)
2127 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2128 || h->root.type != bfd_link_hash_undefweak))
2134 if (tls_type & GOT_TLS_GD)
2141 if (tls_type & GOT_TLS_IE)
2144 if ((tls_type & GOT_TLS_LDM) && info->shared)
2150 /* Count the number of TLS relocations required for the GOT entry in
2151 ARG1, if it describes a local symbol. */
2154 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2156 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2157 struct mips_elf_count_tls_arg *arg = arg2;
2159 if (entry->abfd != NULL && entry->symndx != -1)
2160 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2165 /* Count the number of TLS GOT entries required for the global (or
2166 forced-local) symbol in ARG1. */
2169 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2171 struct mips_elf_link_hash_entry *hm
2172 = (struct mips_elf_link_hash_entry *) arg1;
2173 struct mips_elf_count_tls_arg *arg = arg2;
2175 if (hm->tls_type & GOT_TLS_GD)
2177 if (hm->tls_type & GOT_TLS_IE)
2183 /* Count the number of TLS relocations required for the global (or
2184 forced-local) symbol in ARG1. */
2187 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2189 struct mips_elf_link_hash_entry *hm
2190 = (struct mips_elf_link_hash_entry *) arg1;
2191 struct mips_elf_count_tls_arg *arg = arg2;
2193 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2198 /* Output a simple dynamic relocation into SRELOC. */
2201 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2207 Elf_Internal_Rela rel[3];
2209 memset (rel, 0, sizeof (rel));
2211 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2212 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2214 if (ABI_64_P (output_bfd))
2216 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2217 (output_bfd, &rel[0],
2219 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2222 bfd_elf32_swap_reloc_out
2223 (output_bfd, &rel[0],
2225 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2226 ++sreloc->reloc_count;
2229 /* Initialize a set of TLS GOT entries for one symbol. */
2232 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2233 unsigned char *tls_type_p,
2234 struct bfd_link_info *info,
2235 struct mips_elf_link_hash_entry *h,
2239 asection *sreloc, *sgot;
2240 bfd_vma offset, offset2;
2242 bfd_boolean need_relocs = FALSE;
2244 dynobj = elf_hash_table (info)->dynobj;
2245 sgot = mips_elf_got_section (dynobj, FALSE);
2250 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2252 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2253 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2254 indx = h->root.dynindx;
2257 if (*tls_type_p & GOT_TLS_DONE)
2260 if ((info->shared || indx != 0)
2262 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2263 || h->root.type != bfd_link_hash_undefweak))
2266 /* MINUS_ONE means the symbol is not defined in this object. It may not
2267 be defined at all; assume that the value doesn't matter in that
2268 case. Otherwise complain if we would use the value. */
2269 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2270 || h->root.root.type == bfd_link_hash_undefweak);
2272 /* Emit necessary relocations. */
2273 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2275 /* General Dynamic. */
2276 if (*tls_type_p & GOT_TLS_GD)
2278 offset = got_offset;
2279 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2286 sgot->output_offset + sgot->output_section->vma + offset);
2289 mips_elf_output_dynamic_relocation
2290 (abfd, sreloc, indx,
2291 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2292 sgot->output_offset + sgot->output_section->vma + offset2);
2294 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2295 sgot->contents + offset2);
2299 MIPS_ELF_PUT_WORD (abfd, 1,
2300 sgot->contents + offset);
2301 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2302 sgot->contents + offset2);
2305 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2308 /* Initial Exec model. */
2309 if (*tls_type_p & GOT_TLS_IE)
2311 offset = got_offset;
2316 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2317 sgot->contents + offset);
2319 MIPS_ELF_PUT_WORD (abfd, 0,
2320 sgot->contents + offset);
2322 mips_elf_output_dynamic_relocation
2323 (abfd, sreloc, indx,
2324 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2325 sgot->output_offset + sgot->output_section->vma + offset);
2328 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2329 sgot->contents + offset);
2332 if (*tls_type_p & GOT_TLS_LDM)
2334 /* The initial offset is zero, and the LD offsets will include the
2335 bias by DTP_OFFSET. */
2336 MIPS_ELF_PUT_WORD (abfd, 0,
2337 sgot->contents + got_offset
2338 + MIPS_ELF_GOT_SIZE (abfd));
2341 MIPS_ELF_PUT_WORD (abfd, 1,
2342 sgot->contents + got_offset);
2344 mips_elf_output_dynamic_relocation
2345 (abfd, sreloc, indx,
2346 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2347 sgot->output_offset + sgot->output_section->vma + got_offset);
2350 *tls_type_p |= GOT_TLS_DONE;
2353 /* Return the GOT index to use for a relocation of type R_TYPE against
2354 a symbol accessed using TLS_TYPE models. The GOT entries for this
2355 symbol in this GOT start at GOT_INDEX. This function initializes the
2356 GOT entries and corresponding relocations. */
2359 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2360 int r_type, struct bfd_link_info *info,
2361 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2363 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2364 || r_type == R_MIPS_TLS_LDM);
2366 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2368 if (r_type == R_MIPS_TLS_GOTTPREL)
2370 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2371 if (*tls_type & GOT_TLS_GD)
2372 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2377 if (r_type == R_MIPS_TLS_GD)
2379 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2383 if (r_type == R_MIPS_TLS_LDM)
2385 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2392 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2393 for global symbol H. .got.plt comes before the GOT, so the offset
2394 will be negative. */
2397 mips_elf_gotplt_index (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *h)
2400 bfd_vma plt_index, got_address, got_value;
2401 struct mips_elf_link_hash_table *htab;
2403 htab = mips_elf_hash_table (info);
2404 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2406 /* Calculate the index of the symbol's PLT entry. */
2407 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2409 /* Calculate the address of the associated .got.plt entry. */
2410 got_address = (htab->sgotplt->output_section->vma
2411 + htab->sgotplt->output_offset
2414 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2415 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2416 + htab->root.hgot->root.u.def.section->output_offset
2417 + htab->root.hgot->root.u.def.value);
2419 return got_address - got_value;
2422 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2423 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2424 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2425 offset can be found. */
2428 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2429 bfd_vma value, unsigned long r_symndx,
2430 struct mips_elf_link_hash_entry *h, int r_type)
2433 struct mips_got_info *g;
2434 struct mips_got_entry *entry;
2436 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2438 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2439 value, r_symndx, h, r_type);
2443 if (TLS_RELOC_P (r_type))
2445 if (entry->symndx == -1 && g->next == NULL)
2446 /* A type (3) entry in the single-GOT case. We use the symbol's
2447 hash table entry to track the index. */
2448 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2449 r_type, info, h, value);
2451 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2452 r_type, info, h, value);
2455 return entry->gotidx;
2458 /* Returns the GOT index for the global symbol indicated by H. */
2461 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2462 int r_type, struct bfd_link_info *info)
2466 struct mips_got_info *g, *gg;
2467 long global_got_dynindx = 0;
2469 gg = g = mips_elf_got_info (abfd, &sgot);
2470 if (g->bfd2got && ibfd)
2472 struct mips_got_entry e, *p;
2474 BFD_ASSERT (h->dynindx >= 0);
2476 g = mips_elf_got_for_ibfd (g, ibfd);
2477 if (g->next != gg || TLS_RELOC_P (r_type))
2481 e.d.h = (struct mips_elf_link_hash_entry *)h;
2484 p = htab_find (g->got_entries, &e);
2486 BFD_ASSERT (p->gotidx > 0);
2488 if (TLS_RELOC_P (r_type))
2490 bfd_vma value = MINUS_ONE;
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2498 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2499 info, e.d.h, value);
2506 if (gg->global_gotsym != NULL)
2507 global_got_dynindx = gg->global_gotsym->dynindx;
2509 if (TLS_RELOC_P (r_type))
2511 struct mips_elf_link_hash_entry *hm
2512 = (struct mips_elf_link_hash_entry *) h;
2513 bfd_vma value = MINUS_ONE;
2515 if ((h->root.type == bfd_link_hash_defined
2516 || h->root.type == bfd_link_hash_defweak)
2517 && h->root.u.def.section->output_section)
2518 value = (h->root.u.def.value
2519 + h->root.u.def.section->output_offset
2520 + h->root.u.def.section->output_section->vma);
2522 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2523 r_type, info, hm, value);
2527 /* Once we determine the global GOT entry with the lowest dynamic
2528 symbol table index, we must put all dynamic symbols with greater
2529 indices into the GOT. That makes it easy to calculate the GOT
2531 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2532 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2533 * MIPS_ELF_GOT_SIZE (abfd));
2535 BFD_ASSERT (index < sgot->size);
2540 /* Find a GOT page entry that points to within 32KB of VALUE. These
2541 entries are supposed to be placed at small offsets in the GOT, i.e.,
2542 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2543 entry could be created. If OFFSETP is nonnull, use it to return the
2544 offset of the GOT entry from VALUE. */
2547 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2548 bfd_vma value, bfd_vma *offsetp)
2551 struct mips_got_info *g;
2552 bfd_vma page, index;
2553 struct mips_got_entry *entry;
2555 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2557 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2558 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2559 page, 0, NULL, R_MIPS_GOT_PAGE);
2564 index = entry->gotidx;
2567 *offsetp = value - entry->d.address;
2572 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2577 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2578 bfd_vma value, bfd_boolean external)
2581 struct mips_got_info *g;
2582 struct mips_got_entry *entry;
2584 /* GOT16 relocations against local symbols are followed by a LO16
2585 relocation; those against global symbols are not. Thus if the
2586 symbol was originally local, the GOT16 relocation should load the
2587 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2589 value = mips_elf_high (value) << 16;
2591 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2594 value, 0, NULL, R_MIPS_GOT16);
2596 return entry->gotidx;
2601 /* Returns the offset for the entry at the INDEXth position
2605 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2606 bfd *input_bfd, bfd_vma index)
2610 struct mips_got_info *g;
2612 g = mips_elf_got_info (dynobj, &sgot);
2613 gp = _bfd_get_gp_value (output_bfd)
2614 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2616 return sgot->output_section->vma + sgot->output_offset + index - gp;
2619 /* Create and return a local GOT entry for VALUE, which was calculated
2620 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2621 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 static struct mips_got_entry *
2625 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2626 bfd *ibfd, struct mips_got_info *gg,
2627 asection *sgot, bfd_vma value,
2628 unsigned long r_symndx,
2629 struct mips_elf_link_hash_entry *h,
2632 struct mips_got_entry entry, **loc;
2633 struct mips_got_info *g;
2634 struct mips_elf_link_hash_table *htab;
2636 htab = mips_elf_hash_table (info);
2640 entry.d.address = value;
2643 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 g = mips_elf_got_for_ibfd (gg, abfd);
2647 BFD_ASSERT (g != NULL);
2650 /* We might have a symbol, H, if it has been forced local. Use the
2651 global entry then. It doesn't matter whether an entry is local
2652 or global for TLS, since the dynamic linker does not
2653 automatically relocate TLS GOT entries. */
2654 BFD_ASSERT (h == NULL || h->root.forced_local);
2655 if (TLS_RELOC_P (r_type))
2657 struct mips_got_entry *p;
2660 if (r_type == R_MIPS_TLS_LDM)
2662 entry.tls_type = GOT_TLS_LDM;
2668 entry.symndx = r_symndx;
2674 p = (struct mips_got_entry *)
2675 htab_find (g->got_entries, &entry);
2681 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2686 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2689 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2694 memcpy (*loc, &entry, sizeof entry);
2696 if (g->assigned_gotno > g->local_gotno)
2698 (*loc)->gotidx = -1;
2699 /* We didn't allocate enough space in the GOT. */
2700 (*_bfd_error_handler)
2701 (_("not enough GOT space for local GOT entries"));
2702 bfd_set_error (bfd_error_bad_value);
2706 MIPS_ELF_PUT_WORD (abfd, value,
2707 (sgot->contents + entry.gotidx));
2709 /* These GOT entries need a dynamic relocation on VxWorks. */
2710 if (htab->is_vxworks)
2712 Elf_Internal_Rela outrel;
2715 bfd_vma got_address;
2717 s = mips_elf_rel_dyn_section (info, FALSE);
2718 got_address = (sgot->output_section->vma
2719 + sgot->output_offset
2722 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2723 outrel.r_offset = got_address;
2724 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2725 outrel.r_addend = value;
2726 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2732 /* Sort the dynamic symbol table so that symbols that need GOT entries
2733 appear towards the end. This reduces the amount of GOT space
2734 required. MAX_LOCAL is used to set the number of local symbols
2735 known to be in the dynamic symbol table. During
2736 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2737 section symbols are added and the count is higher. */
2740 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2742 struct mips_elf_hash_sort_data hsd;
2743 struct mips_got_info *g;
2746 dynobj = elf_hash_table (info)->dynobj;
2748 g = mips_elf_got_info (dynobj, NULL);
2751 hsd.max_unref_got_dynindx =
2752 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2753 /* In the multi-got case, assigned_gotno of the master got_info
2754 indicate the number of entries that aren't referenced in the
2755 primary GOT, but that must have entries because there are
2756 dynamic relocations that reference it. Since they aren't
2757 referenced, we move them to the end of the GOT, so that they
2758 don't prevent other entries that are referenced from getting
2759 too large offsets. */
2760 - (g->next ? g->assigned_gotno : 0);
2761 hsd.max_non_got_dynindx = max_local;
2762 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2763 elf_hash_table (info)),
2764 mips_elf_sort_hash_table_f,
2767 /* There should have been enough room in the symbol table to
2768 accommodate both the GOT and non-GOT symbols. */
2769 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2770 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2771 <= elf_hash_table (info)->dynsymcount);
2773 /* Now we know which dynamic symbol has the lowest dynamic symbol
2774 table index in the GOT. */
2775 g->global_gotsym = hsd.low;
2780 /* If H needs a GOT entry, assign it the highest available dynamic
2781 index. Otherwise, assign it the lowest available dynamic
2785 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2787 struct mips_elf_hash_sort_data *hsd = data;
2789 if (h->root.root.type == bfd_link_hash_warning)
2790 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2792 /* Symbols without dynamic symbol table entries aren't interesting
2794 if (h->root.dynindx == -1)
2797 /* Global symbols that need GOT entries that are not explicitly
2798 referenced are marked with got offset 2. Those that are
2799 referenced get a 1, and those that don't need GOT entries get
2800 -1. Forced local symbols may also be marked with got offset 1,
2801 but are never given global GOT entries. */
2802 if (h->root.got.offset == 2)
2804 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2806 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2807 hsd->low = (struct elf_link_hash_entry *) h;
2808 h->root.dynindx = hsd->max_unref_got_dynindx++;
2810 else if (h->root.got.offset != 1 || h->forced_local)
2811 h->root.dynindx = hsd->max_non_got_dynindx++;
2814 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2816 h->root.dynindx = --hsd->min_got_dynindx;
2817 hsd->low = (struct elf_link_hash_entry *) h;
2823 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2824 symbol table index lower than any we've seen to date, record it for
2828 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2829 bfd *abfd, struct bfd_link_info *info,
2830 struct mips_got_info *g,
2831 unsigned char tls_flag)
2833 struct mips_got_entry entry, **loc;
2835 /* A global symbol in the GOT must also be in the dynamic symbol
2837 if (h->dynindx == -1)
2839 switch (ELF_ST_VISIBILITY (h->other))
2843 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2846 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2850 /* Make sure we have a GOT to put this entry into. */
2851 BFD_ASSERT (g != NULL);
2855 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2858 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2861 /* If we've already marked this entry as needing GOT space, we don't
2862 need to do it again. */
2865 (*loc)->tls_type |= tls_flag;
2869 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2875 entry.tls_type = tls_flag;
2877 memcpy (*loc, &entry, sizeof entry);
2879 if (h->got.offset != MINUS_ONE)
2884 /* By setting this to a value other than -1, we are indicating that
2885 there needs to be a GOT entry for H. Avoid using zero, as the
2886 generic ELF copy_indirect_symbol tests for <= 0. */
2888 if (h->forced_local)
2895 /* Reserve space in G for a GOT entry containing the value of symbol
2896 SYMNDX in input bfd ABDF, plus ADDEND. */
2899 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2900 struct mips_got_info *g,
2901 unsigned char tls_flag)
2903 struct mips_got_entry entry, **loc;
2906 entry.symndx = symndx;
2907 entry.d.addend = addend;
2908 entry.tls_type = tls_flag;
2909 loc = (struct mips_got_entry **)
2910 htab_find_slot (g->got_entries, &entry, INSERT);
2914 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2917 (*loc)->tls_type |= tls_flag;
2919 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2922 (*loc)->tls_type |= tls_flag;
2930 entry.tls_type = tls_flag;
2931 if (tls_flag == GOT_TLS_IE)
2933 else if (tls_flag == GOT_TLS_GD)
2935 else if (g->tls_ldm_offset == MINUS_ONE)
2937 g->tls_ldm_offset = MINUS_TWO;
2943 entry.gotidx = g->local_gotno++;
2947 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952 memcpy (*loc, &entry, sizeof entry);
2957 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2960 mips_elf_bfd2got_entry_hash (const void *entry_)
2962 const struct mips_elf_bfd2got_hash *entry
2963 = (struct mips_elf_bfd2got_hash *)entry_;
2965 return entry->bfd->id;
2968 /* Check whether two hash entries have the same bfd. */
2971 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2973 const struct mips_elf_bfd2got_hash *e1
2974 = (const struct mips_elf_bfd2got_hash *)entry1;
2975 const struct mips_elf_bfd2got_hash *e2
2976 = (const struct mips_elf_bfd2got_hash *)entry2;
2978 return e1->bfd == e2->bfd;
2981 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2982 be the master GOT data. */
2984 static struct mips_got_info *
2985 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2987 struct mips_elf_bfd2got_hash e, *p;
2993 p = htab_find (g->bfd2got, &e);
2994 return p ? p->g : NULL;
2997 /* Create one separate got for each bfd that has entries in the global
2998 got, such that we can tell how many local and global entries each
3002 mips_elf_make_got_per_bfd (void **entryp, void *p)
3004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3006 htab_t bfd2got = arg->bfd2got;
3007 struct mips_got_info *g;
3008 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3011 /* Find the got_info for this GOT entry's input bfd. Create one if
3013 bfdgot_entry.bfd = entry->abfd;
3014 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3015 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3021 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3022 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3032 bfdgot->bfd = entry->abfd;
3033 bfdgot->g = g = (struct mips_got_info *)
3034 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3041 g->global_gotsym = NULL;
3042 g->global_gotno = 0;
3044 g->assigned_gotno = -1;
3046 g->tls_assigned_gotno = 0;
3047 g->tls_ldm_offset = MINUS_ONE;
3048 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3049 mips_elf_multi_got_entry_eq, NULL);
3050 if (g->got_entries == NULL)
3060 /* Insert the GOT entry in the bfd's got entry hash table. */
3061 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3062 if (*entryp != NULL)
3067 if (entry->tls_type)
3069 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3071 if (entry->tls_type & GOT_TLS_IE)
3074 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3082 /* Attempt to merge gots of different input bfds. Try to use as much
3083 as possible of the primary got, since it doesn't require explicit
3084 dynamic relocations, but don't use bfds that would reference global
3085 symbols out of the addressable range. Failing the primary got,
3086 attempt to merge with the current got, or finish the current got
3087 and then make make the new got current. */
3090 mips_elf_merge_gots (void **bfd2got_, void *p)
3092 struct mips_elf_bfd2got_hash *bfd2got
3093 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3094 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3095 unsigned int lcount = bfd2got->g->local_gotno;
3096 unsigned int gcount = bfd2got->g->global_gotno;
3097 unsigned int tcount = bfd2got->g->tls_gotno;
3098 unsigned int maxcnt = arg->max_count;
3099 bfd_boolean too_many_for_tls = FALSE;
3101 /* We place TLS GOT entries after both locals and globals. The globals
3102 for the primary GOT may overflow the normal GOT size limit, so be
3103 sure not to merge a GOT which requires TLS with the primary GOT in that
3104 case. This doesn't affect non-primary GOTs. */
3107 unsigned int primary_total = lcount + tcount + arg->global_count;
3108 if (primary_total > maxcnt)
3109 too_many_for_tls = TRUE;
3112 /* If we don't have a primary GOT and this is not too big, use it as
3113 a starting point for the primary GOT. */
3114 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3115 && ! too_many_for_tls)
3117 arg->primary = bfd2got->g;
3118 arg->primary_count = lcount + gcount;
3120 /* If it looks like we can merge this bfd's entries with those of
3121 the primary, merge them. The heuristics is conservative, but we
3122 don't have to squeeze it too hard. */
3123 else if (arg->primary && ! too_many_for_tls
3124 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3126 struct mips_got_info *g = bfd2got->g;
3127 int old_lcount = arg->primary->local_gotno;
3128 int old_gcount = arg->primary->global_gotno;
3129 int old_tcount = arg->primary->tls_gotno;
3131 bfd2got->g = arg->primary;
3133 htab_traverse (g->got_entries,
3134 mips_elf_make_got_per_bfd,
3136 if (arg->obfd == NULL)
3139 htab_delete (g->got_entries);
3140 /* We don't have to worry about releasing memory of the actual
3141 got entries, since they're all in the master got_entries hash
3144 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3145 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3146 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3148 arg->primary_count = arg->primary->local_gotno
3149 + arg->primary->global_gotno + arg->primary->tls_gotno;
3151 /* If we can merge with the last-created got, do it. */
3152 else if (arg->current
3153 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3155 struct mips_got_info *g = bfd2got->g;
3156 int old_lcount = arg->current->local_gotno;
3157 int old_gcount = arg->current->global_gotno;
3158 int old_tcount = arg->current->tls_gotno;
3160 bfd2got->g = arg->current;
3162 htab_traverse (g->got_entries,
3163 mips_elf_make_got_per_bfd,
3165 if (arg->obfd == NULL)
3168 htab_delete (g->got_entries);
3170 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3171 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3172 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3174 arg->current_count = arg->current->local_gotno
3175 + arg->current->global_gotno + arg->current->tls_gotno;
3177 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3178 fits; if it turns out that it doesn't, we'll get relocation
3179 overflows anyway. */
3182 bfd2got->g->next = arg->current;
3183 arg->current = bfd2got->g;
3185 arg->current_count = lcount + gcount + 2 * tcount;
3191 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3192 is null iff there is just a single GOT. */
3195 mips_elf_initialize_tls_index (void **entryp, void *p)
3197 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3198 struct mips_got_info *g = p;
3200 unsigned char tls_type;
3202 /* We're only interested in TLS symbols. */
3203 if (entry->tls_type == 0)
3206 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3208 if (entry->symndx == -1 && g->next == NULL)
3210 /* A type (3) got entry in the single-GOT case. We use the symbol's
3211 hash table entry to track its index. */
3212 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3214 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3215 entry->d.h->tls_got_offset = next_index;
3216 tls_type = entry->d.h->tls_type;
3220 if (entry->tls_type & GOT_TLS_LDM)
3222 /* There are separate mips_got_entry objects for each input bfd
3223 that requires an LDM entry. Make sure that all LDM entries in
3224 a GOT resolve to the same index. */
3225 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3227 entry->gotidx = g->tls_ldm_offset;
3230 g->tls_ldm_offset = next_index;
3232 entry->gotidx = next_index;
3233 tls_type = entry->tls_type;
3236 /* Account for the entries we've just allocated. */
3237 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3238 g->tls_assigned_gotno += 2;
3239 if (tls_type & GOT_TLS_IE)
3240 g->tls_assigned_gotno += 1;
3245 /* If passed a NULL mips_got_info in the argument, set the marker used
3246 to tell whether a global symbol needs a got entry (in the primary
3247 got) to the given VALUE.
3249 If passed a pointer G to a mips_got_info in the argument (it must
3250 not be the primary GOT), compute the offset from the beginning of
3251 the (primary) GOT section to the entry in G corresponding to the
3252 global symbol. G's assigned_gotno must contain the index of the
3253 first available global GOT entry in G. VALUE must contain the size
3254 of a GOT entry in bytes. For each global GOT entry that requires a
3255 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3256 marked as not eligible for lazy resolution through a function
3259 mips_elf_set_global_got_offset (void **entryp, void *p)
3261 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3262 struct mips_elf_set_global_got_offset_arg *arg
3263 = (struct mips_elf_set_global_got_offset_arg *)p;
3264 struct mips_got_info *g = arg->g;
3266 if (g && entry->tls_type != GOT_NORMAL)
3267 arg->needed_relocs +=
3268 mips_tls_got_relocs (arg->info, entry->tls_type,
3269 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271 if (entry->abfd != NULL && entry->symndx == -1
3272 && entry->d.h->root.dynindx != -1
3273 && !entry->d.h->forced_local
3274 && entry->d.h->tls_type == GOT_NORMAL)
3278 BFD_ASSERT (g->global_gotsym == NULL);
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
3285 ++arg->needed_relocs;
3288 entry->d.h->root.got.offset = arg->value;
3294 /* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3297 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3309 /* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3316 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3321 if (entry->abfd != NULL && entry->symndx == -1)
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3329 if (entry->d.h == h)
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3345 *(htab_t *)p = NULL;
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3355 /* Turn indirect got entries in a got_entries table into their final
3358 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3364 got_entries = g->got_entries;
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3370 while (got_entries == NULL);
3373 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3376 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3378 if (g->bfd2got == NULL)
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3385 BFD_ASSERT (g->next);
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
3393 /* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3397 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3407 mips_elf_bfd2got_entry_eq, NULL);
3408 if (g->bfd2got == NULL)
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3427 / MIPS_ELF_GOT_SIZE (abfd))
3428 - MIPS_RESERVED_GOTNO (info) - pages);
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3432 got_per_bfd_arg.global_count = g->global_gotno;
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3441 /* If we do not find any suitable primary GOT, create an empty one. */
3442 if (got_per_bfd_arg.primary == NULL)
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
3452 g->next->tls_gotno = 0;
3453 g->next->assigned_gotno = 0;
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
3459 if (g->next->got_entries == NULL)
3461 g->next->bfd2got = NULL;
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3467 /* GG is now the master GOT, and G is the primary GOT. */
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3477 struct mips_elf_bfd2got_hash *bfdgot;
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3490 BFD_ASSERT (*bfdgotp == NULL);
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
3561 struct mips_got_info *gn;
3563 assign += MIPS_RESERVED_GOTNO (info);
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3590 got->size = (gg->next->local_gotno
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3598 /* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3601 static const Elf_Internal_Rela *
3602 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3608 while (relocation < relend)
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3617 /* We didn't find it. */
3621 /* Return whether a relocation is against a local symbol. */
3624 mips_elf_local_relocation_p (bfd *input_bfd,
3625 const Elf_Internal_Rela *relocation,
3626 asection **local_sections,
3627 bfd_boolean check_forced)
3629 unsigned long r_symndx;
3630 Elf_Internal_Shdr *symtab_hdr;
3631 struct mips_elf_link_hash_entry *h;
3634 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3636 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3638 if (r_symndx < extsymoff)
3640 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3645 /* Look up the hash table to check whether the symbol
3646 was forced local. */
3647 h = (struct mips_elf_link_hash_entry *)
3648 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3649 /* Find the real hash-table entry for this symbol. */
3650 while (h->root.root.type == bfd_link_hash_indirect
3651 || h->root.root.type == bfd_link_hash_warning)
3652 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3653 if (h->root.forced_local)
3660 /* Sign-extend VALUE, which has the indicated number of BITS. */
3663 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3665 if (value & ((bfd_vma) 1 << (bits - 1)))
3666 /* VALUE is negative. */
3667 value |= ((bfd_vma) - 1) << bits;
3672 /* Return non-zero if the indicated VALUE has overflowed the maximum
3673 range expressible by a signed number with the indicated number of
3677 mips_elf_overflow_p (bfd_vma value, int bits)
3679 bfd_signed_vma svalue = (bfd_signed_vma) value;
3681 if (svalue > (1 << (bits - 1)) - 1)
3682 /* The value is too big. */
3684 else if (svalue < -(1 << (bits - 1)))
3685 /* The value is too small. */
3692 /* Calculate the %high function. */
3695 mips_elf_high (bfd_vma value)
3697 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3700 /* Calculate the %higher function. */
3703 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3706 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3713 /* Calculate the %highest function. */
3716 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3719 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3726 /* Create the .compact_rel section. */
3729 mips_elf_create_compact_rel_section
3730 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3733 register asection *s;
3735 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3737 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3740 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3742 || ! bfd_set_section_alignment (abfd, s,
3743 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3746 s->size = sizeof (Elf32_External_compact_rel);
3752 /* Create the .got section to hold the global offset table. */
3755 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3756 bfd_boolean maybe_exclude)
3759 register asection *s;
3760 struct elf_link_hash_entry *h;
3761 struct bfd_link_hash_entry *bh;
3762 struct mips_got_info *g;
3764 struct mips_elf_link_hash_table *htab;
3766 htab = mips_elf_hash_table (info);
3768 /* This function may be called more than once. */
3769 s = mips_elf_got_section (abfd, TRUE);
3772 if (! maybe_exclude)
3773 s->flags &= ~SEC_EXCLUDE;
3777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3778 | SEC_LINKER_CREATED);
3781 flags |= SEC_EXCLUDE;
3783 /* We have to use an alignment of 2**4 here because this is hardcoded
3784 in the function stub generation and in the linker script. */
3785 s = bfd_make_section_with_flags (abfd, ".got", flags);
3787 || ! bfd_set_section_alignment (abfd, s, 4))
3790 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3791 linker script because we don't want to define the symbol if we
3792 are not creating a global offset table. */
3794 if (! (_bfd_generic_link_add_one_symbol
3795 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3796 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3799 h = (struct elf_link_hash_entry *) bh;
3802 h->type = STT_OBJECT;
3803 elf_hash_table (info)->hgot = h;
3806 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3809 amt = sizeof (struct mips_got_info);
3810 g = bfd_alloc (abfd, amt);
3813 g->global_gotsym = NULL;
3814 g->global_gotno = 0;
3816 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3817 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3820 g->tls_ldm_offset = MINUS_ONE;
3821 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3822 mips_elf_got_entry_eq, NULL);
3823 if (g->got_entries == NULL)
3825 mips_elf_section_data (s)->u.got_info = g;
3826 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3827 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3829 /* VxWorks also needs a .got.plt section. */
3830 if (htab->is_vxworks)
3832 s = bfd_make_section_with_flags (abfd, ".got.plt",
3833 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3835 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3843 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3844 __GOTT_INDEX__ symbols. These symbols are only special for
3845 shared objects; they are not used in executables. */
3848 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3850 return (mips_elf_hash_table (info)->is_vxworks
3852 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3853 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3856 /* Calculate the value produced by the RELOCATION (which comes from
3857 the INPUT_BFD). The ADDEND is the addend to use for this
3858 RELOCATION; RELOCATION->R_ADDEND is ignored.
3860 The result of the relocation calculation is stored in VALUEP.
3861 REQUIRE_JALXP indicates whether or not the opcode used with this
3862 relocation must be JALX.
3864 This function returns bfd_reloc_continue if the caller need take no
3865 further action regarding this relocation, bfd_reloc_notsupported if
3866 something goes dramatically wrong, bfd_reloc_overflow if an
3867 overflow occurs, and bfd_reloc_ok to indicate success. */
3869 static bfd_reloc_status_type
3870 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3871 asection *input_section,
3872 struct bfd_link_info *info,
3873 const Elf_Internal_Rela *relocation,
3874 bfd_vma addend, reloc_howto_type *howto,
3875 Elf_Internal_Sym *local_syms,
3876 asection **local_sections, bfd_vma *valuep,
3877 const char **namep, bfd_boolean *require_jalxp,
3878 bfd_boolean save_addend)
3880 /* The eventual value we will return. */
3882 /* The address of the symbol against which the relocation is
3885 /* The final GP value to be used for the relocatable, executable, or
3886 shared object file being produced. */
3887 bfd_vma gp = MINUS_ONE;
3888 /* The place (section offset or address) of the storage unit being
3891 /* The value of GP used to create the relocatable object. */
3892 bfd_vma gp0 = MINUS_ONE;
3893 /* The offset into the global offset table at which the address of
3894 the relocation entry symbol, adjusted by the addend, resides
3895 during execution. */
3896 bfd_vma g = MINUS_ONE;
3897 /* The section in which the symbol referenced by the relocation is
3899 asection *sec = NULL;
3900 struct mips_elf_link_hash_entry *h = NULL;
3901 /* TRUE if the symbol referred to by this relocation is a local
3903 bfd_boolean local_p, was_local_p;
3904 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3905 bfd_boolean gp_disp_p = FALSE;
3906 /* TRUE if the symbol referred to by this relocation is
3907 "__gnu_local_gp". */
3908 bfd_boolean gnu_local_gp_p = FALSE;
3909 Elf_Internal_Shdr *symtab_hdr;
3911 unsigned long r_symndx;
3913 /* TRUE if overflow occurred during the calculation of the
3914 relocation value. */
3915 bfd_boolean overflowed_p;
3916 /* TRUE if this relocation refers to a MIPS16 function. */
3917 bfd_boolean target_is_16_bit_code_p = FALSE;
3918 struct mips_elf_link_hash_table *htab;
3921 dynobj = elf_hash_table (info)->dynobj;
3922 htab = mips_elf_hash_table (info);
3924 /* Parse the relocation. */
3925 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3926 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3927 p = (input_section->output_section->vma
3928 + input_section->output_offset
3929 + relocation->r_offset);
3931 /* Assume that there will be no overflow. */
3932 overflowed_p = FALSE;
3934 /* Figure out whether or not the symbol is local, and get the offset
3935 used in the array of hash table entries. */
3936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3937 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3938 local_sections, FALSE);
3939 was_local_p = local_p;
3940 if (! elf_bad_symtab (input_bfd))
3941 extsymoff = symtab_hdr->sh_info;
3944 /* The symbol table does not follow the rule that local symbols
3945 must come before globals. */
3949 /* Figure out the value of the symbol. */
3952 Elf_Internal_Sym *sym;
3954 sym = local_syms + r_symndx;
3955 sec = local_sections[r_symndx];
3957 symbol = sec->output_section->vma + sec->output_offset;
3958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3959 || (sec->flags & SEC_MERGE))
3960 symbol += sym->st_value;
3961 if ((sec->flags & SEC_MERGE)
3962 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3964 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3966 addend += sec->output_section->vma + sec->output_offset;
3969 /* MIPS16 text labels should be treated as odd. */
3970 if (sym->st_other == STO_MIPS16)
3973 /* Record the name of this symbol, for our caller. */
3974 *namep = bfd_elf_string_from_elf_section (input_bfd,
3975 symtab_hdr->sh_link,
3978 *namep = bfd_section_name (input_bfd, sec);
3980 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3984 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3986 /* For global symbols we look up the symbol in the hash-table. */
3987 h = ((struct mips_elf_link_hash_entry *)
3988 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3989 /* Find the real hash-table entry for this symbol. */
3990 while (h->root.root.type == bfd_link_hash_indirect
3991 || h->root.root.type == bfd_link_hash_warning)
3992 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3994 /* Record the name of this symbol, for our caller. */
3995 *namep = h->root.root.root.string;
3997 /* See if this is the special _gp_disp symbol. Note that such a
3998 symbol must always be a global symbol. */
3999 if (strcmp (*namep, "_gp_disp") == 0
4000 && ! NEWABI_P (input_bfd))
4002 /* Relocations against _gp_disp are permitted only with
4003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4005 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4006 return bfd_reloc_notsupported;
4010 /* See if this is the special _gp symbol. Note that such a
4011 symbol must always be a global symbol. */
4012 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4013 gnu_local_gp_p = TRUE;
4016 /* If this symbol is defined, calculate its address. Note that
4017 _gp_disp is a magic symbol, always implicitly defined by the
4018 linker, so it's inappropriate to check to see whether or not
4020 else if ((h->root.root.type == bfd_link_hash_defined
4021 || h->root.root.type == bfd_link_hash_defweak)
4022 && h->root.root.u.def.section)
4024 sec = h->root.root.u.def.section;
4025 if (sec->output_section)
4026 symbol = (h->root.root.u.def.value
4027 + sec->output_section->vma
4028 + sec->output_offset);
4030 symbol = h->root.root.u.def.value;
4032 else if (h->root.root.type == bfd_link_hash_undefweak)
4033 /* We allow relocations against undefined weak symbols, giving
4034 it the value zero, so that you can undefined weak functions
4035 and check to see if they exist by looking at their
4038 else if (info->unresolved_syms_in_objects == RM_IGNORE
4039 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4041 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4042 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4044 /* If this is a dynamic link, we should have created a
4045 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4046 in in _bfd_mips_elf_create_dynamic_sections.
4047 Otherwise, we should define the symbol with a value of 0.
4048 FIXME: It should probably get into the symbol table
4050 BFD_ASSERT (! info->shared);
4051 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4054 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4056 /* This is an optional symbol - an Irix specific extension to the
4057 ELF spec. Ignore it for now.
4058 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4059 than simply ignoring them, but we do not handle this for now.
4060 For information see the "64-bit ELF Object File Specification"
4061 which is available from here:
4062 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4067 if (! ((*info->callbacks->undefined_symbol)
4068 (info, h->root.root.root.string, input_bfd,
4069 input_section, relocation->r_offset,
4070 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4071 || ELF_ST_VISIBILITY (h->root.other))))
4072 return bfd_reloc_undefined;
4076 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4079 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4080 need to redirect the call to the stub, unless we're already *in*
4082 if (r_type != R_MIPS16_26 && !info->relocatable
4083 && ((h != NULL && h->fn_stub != NULL)
4085 && elf_tdata (input_bfd)->local_stubs != NULL
4086 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4087 && !mips16_stub_section_p (input_bfd, input_section))
4089 /* This is a 32- or 64-bit call to a 16-bit function. We should
4090 have already noticed that we were going to need the
4093 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4096 BFD_ASSERT (h->need_fn_stub);
4100 symbol = sec->output_section->vma + sec->output_offset;
4101 /* The target is 16-bit, but the stub isn't. */
4102 target_is_16_bit_code_p = FALSE;
4104 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4105 need to redirect the call to the stub. */
4106 else if (r_type == R_MIPS16_26 && !info->relocatable
4107 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4109 && elf_tdata (input_bfd)->local_call_stubs != NULL
4110 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4111 && !target_is_16_bit_code_p)
4114 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4117 /* If both call_stub and call_fp_stub are defined, we can figure
4118 out which one to use by checking which one appears in the input
4120 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4125 for (o = input_bfd->sections; o != NULL; o = o->next)
4127 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4129 sec = h->call_fp_stub;
4136 else if (h->call_stub != NULL)
4139 sec = h->call_fp_stub;
4142 BFD_ASSERT (sec->size > 0);
4143 symbol = sec->output_section->vma + sec->output_offset;
4146 /* Calls from 16-bit code to 32-bit code and vice versa require the
4147 special jalx instruction. */
4148 *require_jalxp = (!info->relocatable
4149 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4150 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4152 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4153 local_sections, TRUE);
4155 /* If we haven't already determined the GOT offset, or the GP value,
4156 and we're going to need it, get it now. */
4159 case R_MIPS_GOT_PAGE:
4160 case R_MIPS_GOT_OFST:
4161 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4163 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4164 if (local_p || r_type == R_MIPS_GOT_OFST)
4170 case R_MIPS_GOT_DISP:
4171 case R_MIPS_GOT_HI16:
4172 case R_MIPS_CALL_HI16:
4173 case R_MIPS_GOT_LO16:
4174 case R_MIPS_CALL_LO16:
4176 case R_MIPS_TLS_GOTTPREL:
4177 case R_MIPS_TLS_LDM:
4178 /* Find the index into the GOT where this value is located. */
4179 if (r_type == R_MIPS_TLS_LDM)
4181 g = mips_elf_local_got_index (abfd, input_bfd, info,
4182 0, 0, NULL, r_type);
4184 return bfd_reloc_outofrange;
4188 /* On VxWorks, CALL relocations should refer to the .got.plt
4189 entry, which is initialized to point at the PLT stub. */
4190 if (htab->is_vxworks
4191 && (r_type == R_MIPS_CALL_HI16
4192 || r_type == R_MIPS_CALL_LO16
4193 || r_type == R_MIPS_CALL16))
4195 BFD_ASSERT (addend == 0);
4196 BFD_ASSERT (h->root.needs_plt);
4197 g = mips_elf_gotplt_index (info, &h->root);
4201 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4202 GOT_PAGE relocation that decays to GOT_DISP because the
4203 symbol turns out to be global. The addend is then added
4205 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4206 g = mips_elf_global_got_index (dynobj, input_bfd,
4207 &h->root, r_type, info);
4208 if (h->tls_type == GOT_NORMAL
4209 && (! elf_hash_table(info)->dynamic_sections_created
4211 && (info->symbolic || h->root.forced_local)
4212 && h->root.def_regular)))
4214 /* This is a static link or a -Bsymbolic link. The
4215 symbol is defined locally, or was forced to be local.
4216 We must initialize this entry in the GOT. */
4217 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4218 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4222 else if (!htab->is_vxworks
4223 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4224 /* The calculation below does not involve "g". */
4228 g = mips_elf_local_got_index (abfd, input_bfd, info,
4229 symbol + addend, r_symndx, h, r_type);
4231 return bfd_reloc_outofrange;
4234 /* Convert GOT indices to actual offsets. */
4235 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4240 case R_MIPS_GPREL16:
4241 case R_MIPS_GPREL32:
4242 case R_MIPS_LITERAL:
4245 case R_MIPS16_GPREL:
4246 gp0 = _bfd_get_gp_value (input_bfd);
4247 gp = _bfd_get_gp_value (abfd);
4249 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4260 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4261 symbols are resolved by the loader. Add them to .rela.dyn. */
4262 if (h != NULL && is_gott_symbol (info, &h->root))
4264 Elf_Internal_Rela outrel;
4268 s = mips_elf_rel_dyn_section (info, FALSE);
4269 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4271 outrel.r_offset = (input_section->output_section->vma
4272 + input_section->output_offset
4273 + relocation->r_offset);
4274 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4275 outrel.r_addend = addend;
4276 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4278 /* If we've written this relocation for a readonly section,
4279 we need to set DF_TEXTREL again, so that we do not delete the
4281 if (MIPS_ELF_READONLY_SECTION (input_section))
4282 info->flags |= DF_TEXTREL;
4285 return bfd_reloc_ok;
4288 /* Figure out what kind of relocation is being performed. */
4292 return bfd_reloc_continue;
4295 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4296 overflowed_p = mips_elf_overflow_p (value, 16);
4303 || (!htab->is_vxworks
4304 && htab->root.dynamic_sections_created
4306 && h->root.def_dynamic
4307 && !h->root.def_regular))
4309 && (input_section->flags & SEC_ALLOC) != 0)
4311 /* If we're creating a shared library, or this relocation is
4312 against a symbol in a shared library, then we can't know
4313 where the symbol will end up. So, we create a relocation
4314 record in the output, and leave the job up to the dynamic
4317 In VxWorks executables, references to external symbols
4318 are handled using copy relocs or PLT stubs, so there's
4319 no need to add a dynamic relocation here. */
4321 if (!mips_elf_create_dynamic_relocation (abfd,
4329 return bfd_reloc_undefined;
4333 if (r_type != R_MIPS_REL32)
4334 value = symbol + addend;
4338 value &= howto->dst_mask;
4342 value = symbol + addend - p;
4343 value &= howto->dst_mask;
4347 /* The calculation for R_MIPS16_26 is just the same as for an
4348 R_MIPS_26. It's only the storage of the relocated field into
4349 the output file that's different. That's handled in
4350 mips_elf_perform_relocation. So, we just fall through to the
4351 R_MIPS_26 case here. */
4354 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4357 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4358 if (h->root.root.type != bfd_link_hash_undefweak)
4359 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4361 value &= howto->dst_mask;
4364 case R_MIPS_TLS_DTPREL_HI16:
4365 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4369 case R_MIPS_TLS_DTPREL_LO16:
4370 case R_MIPS_TLS_DTPREL32:
4371 case R_MIPS_TLS_DTPREL64:
4372 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4375 case R_MIPS_TLS_TPREL_HI16:
4376 value = (mips_elf_high (addend + symbol - tprel_base (info))
4380 case R_MIPS_TLS_TPREL_LO16:
4381 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4388 value = mips_elf_high (addend + symbol);
4389 value &= howto->dst_mask;
4393 /* For MIPS16 ABI code we generate this sequence
4394 0: li $v0,%hi(_gp_disp)
4395 4: addiupc $v1,%lo(_gp_disp)
4399 So the offsets of hi and lo relocs are the same, but the
4400 $pc is four higher than $t9 would be, so reduce
4401 both reloc addends by 4. */
4402 if (r_type == R_MIPS16_HI16)
4403 value = mips_elf_high (addend + gp - p - 4);
4405 value = mips_elf_high (addend + gp - p);
4406 overflowed_p = mips_elf_overflow_p (value, 16);
4413 value = (symbol + addend) & howto->dst_mask;
4416 /* See the comment for R_MIPS16_HI16 above for the reason
4417 for this conditional. */
4418 if (r_type == R_MIPS16_LO16)
4419 value = addend + gp - p;
4421 value = addend + gp - p + 4;
4422 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4423 for overflow. But, on, say, IRIX5, relocations against
4424 _gp_disp are normally generated from the .cpload
4425 pseudo-op. It generates code that normally looks like
4428 lui $gp,%hi(_gp_disp)
4429 addiu $gp,$gp,%lo(_gp_disp)
4432 Here $t9 holds the address of the function being called,
4433 as required by the MIPS ELF ABI. The R_MIPS_LO16
4434 relocation can easily overflow in this situation, but the
4435 R_MIPS_HI16 relocation will handle the overflow.
4436 Therefore, we consider this a bug in the MIPS ABI, and do
4437 not check for overflow here. */
4441 case R_MIPS_LITERAL:
4442 /* Because we don't merge literal sections, we can handle this
4443 just like R_MIPS_GPREL16. In the long run, we should merge
4444 shared literals, and then we will need to additional work
4449 case R_MIPS16_GPREL:
4450 /* The R_MIPS16_GPREL performs the same calculation as
4451 R_MIPS_GPREL16, but stores the relocated bits in a different
4452 order. We don't need to do anything special here; the
4453 differences are handled in mips_elf_perform_relocation. */
4454 case R_MIPS_GPREL16:
4455 /* Only sign-extend the addend if it was extracted from the
4456 instruction. If the addend was separate, leave it alone,
4457 otherwise we may lose significant bits. */
4458 if (howto->partial_inplace)
4459 addend = _bfd_mips_elf_sign_extend (addend, 16);
4460 value = symbol + addend - gp;
4461 /* If the symbol was local, any earlier relocatable links will
4462 have adjusted its addend with the gp offset, so compensate
4463 for that now. Don't do it for symbols forced local in this
4464 link, though, since they won't have had the gp offset applied
4468 overflowed_p = mips_elf_overflow_p (value, 16);
4473 /* VxWorks does not have separate local and global semantics for
4474 R_MIPS_GOT16; every relocation evaluates to "G". */
4475 if (!htab->is_vxworks && local_p)
4479 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4480 local_sections, FALSE);
4481 value = mips_elf_got16_entry (abfd, input_bfd, info,
4482 symbol + addend, forced);
4483 if (value == MINUS_ONE)
4484 return bfd_reloc_outofrange;
4486 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4487 overflowed_p = mips_elf_overflow_p (value, 16);
4494 case R_MIPS_TLS_GOTTPREL:
4495 case R_MIPS_TLS_LDM:
4496 case R_MIPS_GOT_DISP:
4499 overflowed_p = mips_elf_overflow_p (value, 16);
4502 case R_MIPS_GPREL32:
4503 value = (addend + symbol + gp0 - gp);
4505 value &= howto->dst_mask;
4509 case R_MIPS_GNU_REL16_S2:
4510 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4511 overflowed_p = mips_elf_overflow_p (value, 18);
4512 value >>= howto->rightshift;
4513 value &= howto->dst_mask;
4516 case R_MIPS_GOT_HI16:
4517 case R_MIPS_CALL_HI16:
4518 /* We're allowed to handle these two relocations identically.
4519 The dynamic linker is allowed to handle the CALL relocations
4520 differently by creating a lazy evaluation stub. */
4522 value = mips_elf_high (value);
4523 value &= howto->dst_mask;
4526 case R_MIPS_GOT_LO16:
4527 case R_MIPS_CALL_LO16:
4528 value = g & howto->dst_mask;
4531 case R_MIPS_GOT_PAGE:
4532 /* GOT_PAGE relocations that reference non-local symbols decay
4533 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4537 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4538 if (value == MINUS_ONE)
4539 return bfd_reloc_outofrange;
4540 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4544 case R_MIPS_GOT_OFST:
4546 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4549 overflowed_p = mips_elf_overflow_p (value, 16);
4553 value = symbol - addend;
4554 value &= howto->dst_mask;
4558 value = mips_elf_higher (addend + symbol);
4559 value &= howto->dst_mask;
4562 case R_MIPS_HIGHEST:
4563 value = mips_elf_highest (addend + symbol);
4564 value &= howto->dst_mask;
4567 case R_MIPS_SCN_DISP:
4568 value = symbol + addend - sec->output_offset;
4569 value &= howto->dst_mask;
4573 /* This relocation is only a hint. In some cases, we optimize
4574 it into a bal instruction. But we don't try to optimize
4575 branches to the PLT; that will wind up wasting time. */
4576 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4577 return bfd_reloc_continue;
4578 value = symbol + addend;
4582 case R_MIPS_GNU_VTINHERIT:
4583 case R_MIPS_GNU_VTENTRY:
4584 /* We don't do anything with these at present. */
4585 return bfd_reloc_continue;
4588 /* An unrecognized relocation type. */
4589 return bfd_reloc_notsupported;
4592 /* Store the VALUE for our caller. */
4594 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4597 /* Obtain the field relocated by RELOCATION. */
4600 mips_elf_obtain_contents (reloc_howto_type *howto,
4601 const Elf_Internal_Rela *relocation,
4602 bfd *input_bfd, bfd_byte *contents)
4605 bfd_byte *location = contents + relocation->r_offset;
4607 /* Obtain the bytes. */
4608 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4613 /* It has been determined that the result of the RELOCATION is the
4614 VALUE. Use HOWTO to place VALUE into the output file at the
4615 appropriate position. The SECTION is the section to which the
4616 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4617 for the relocation must be either JAL or JALX, and it is
4618 unconditionally converted to JALX.
4620 Returns FALSE if anything goes wrong. */
4623 mips_elf_perform_relocation (struct bfd_link_info *info,
4624 reloc_howto_type *howto,
4625 const Elf_Internal_Rela *relocation,
4626 bfd_vma value, bfd *input_bfd,
4627 asection *input_section, bfd_byte *contents,
4628 bfd_boolean require_jalx)
4632 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4634 /* Figure out where the relocation is occurring. */
4635 location = contents + relocation->r_offset;
4637 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4639 /* Obtain the current value. */
4640 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4642 /* Clear the field we are setting. */
4643 x &= ~howto->dst_mask;
4645 /* Set the field. */
4646 x |= (value & howto->dst_mask);
4648 /* If required, turn JAL into JALX. */
4652 bfd_vma opcode = x >> 26;
4653 bfd_vma jalx_opcode;
4655 /* Check to see if the opcode is already JAL or JALX. */
4656 if (r_type == R_MIPS16_26)
4658 ok = ((opcode == 0x6) || (opcode == 0x7));
4663 ok = ((opcode == 0x3) || (opcode == 0x1d));
4667 /* If the opcode is not JAL or JALX, there's a problem. */
4670 (*_bfd_error_handler)
4671 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4674 (unsigned long) relocation->r_offset);
4675 bfd_set_error (bfd_error_bad_value);
4679 /* Make this the JALX opcode. */
4680 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4683 /* On the RM9000, bal is faster than jal, because bal uses branch
4684 prediction hardware. If we are linking for the RM9000, and we
4685 see jal, and bal fits, use it instead. Note that this
4686 transformation should be safe for all architectures. */
4687 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4688 && !info->relocatable
4690 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4691 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4697 addr = (input_section->output_section->vma
4698 + input_section->output_offset
4699 + relocation->r_offset
4701 if (r_type == R_MIPS_26)
4702 dest = (value << 2) | ((addr >> 28) << 28);
4706 if (off <= 0x1ffff && off >= -0x20000)
4707 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4710 /* Put the value into the output. */
4711 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4713 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4719 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4722 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4724 const char *name = bfd_get_section_name (abfd, section);
4726 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4729 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4732 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4736 struct mips_elf_link_hash_table *htab;
4738 htab = mips_elf_hash_table (info);
4739 s = mips_elf_rel_dyn_section (info, FALSE);
4740 BFD_ASSERT (s != NULL);
4742 if (htab->is_vxworks)
4743 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4748 /* Make room for a null element. */
4749 s->size += MIPS_ELF_REL_SIZE (abfd);
4752 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4756 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4757 is the original relocation, which is now being transformed into a
4758 dynamic relocation. The ADDENDP is adjusted if necessary; the
4759 caller should store the result in place of the original addend. */
4762 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4763 struct bfd_link_info *info,
4764 const Elf_Internal_Rela *rel,
4765 struct mips_elf_link_hash_entry *h,
4766 asection *sec, bfd_vma symbol,
4767 bfd_vma *addendp, asection *input_section)
4769 Elf_Internal_Rela outrel[3];
4774 bfd_boolean defined_p;
4775 struct mips_elf_link_hash_table *htab;
4777 htab = mips_elf_hash_table (info);
4778 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4779 dynobj = elf_hash_table (info)->dynobj;
4780 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4781 BFD_ASSERT (sreloc != NULL);
4782 BFD_ASSERT (sreloc->contents != NULL);
4783 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4786 outrel[0].r_offset =
4787 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4788 if (ABI_64_P (output_bfd))
4790 outrel[1].r_offset =
4791 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4792 outrel[2].r_offset =
4793 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4796 if (outrel[0].r_offset == MINUS_ONE)
4797 /* The relocation field has been deleted. */
4800 if (outrel[0].r_offset == MINUS_TWO)
4802 /* The relocation field has been converted into a relative value of
4803 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4804 the field to be fully relocated, so add in the symbol's value. */
4809 /* We must now calculate the dynamic symbol table index to use
4810 in the relocation. */
4812 && (!h->root.def_regular
4813 || (info->shared && !info->symbolic && !h->root.forced_local)))
4815 indx = h->root.dynindx;
4816 if (SGI_COMPAT (output_bfd))
4817 defined_p = h->root.def_regular;
4819 /* ??? glibc's ld.so just adds the final GOT entry to the
4820 relocation field. It therefore treats relocs against
4821 defined symbols in the same way as relocs against
4822 undefined symbols. */
4827 if (sec != NULL && bfd_is_abs_section (sec))
4829 else if (sec == NULL || sec->owner == NULL)
4831 bfd_set_error (bfd_error_bad_value);
4836 indx = elf_section_data (sec->output_section)->dynindx;
4839 asection *osec = htab->root.text_index_section;
4840 indx = elf_section_data (osec)->dynindx;
4846 /* Instead of generating a relocation using the section
4847 symbol, we may as well make it a fully relative
4848 relocation. We want to avoid generating relocations to
4849 local symbols because we used to generate them
4850 incorrectly, without adding the original symbol value,
4851 which is mandated by the ABI for section symbols. In
4852 order to give dynamic loaders and applications time to
4853 phase out the incorrect use, we refrain from emitting
4854 section-relative relocations. It's not like they're
4855 useful, after all. This should be a bit more efficient
4857 /* ??? Although this behavior is compatible with glibc's ld.so,
4858 the ABI says that relocations against STN_UNDEF should have
4859 a symbol value of 0. Irix rld honors this, so relocations
4860 against STN_UNDEF have no effect. */
4861 if (!SGI_COMPAT (output_bfd))
4866 /* If the relocation was previously an absolute relocation and
4867 this symbol will not be referred to by the relocation, we must
4868 adjust it by the value we give it in the dynamic symbol table.
4869 Otherwise leave the job up to the dynamic linker. */
4870 if (defined_p && r_type != R_MIPS_REL32)
4873 if (htab->is_vxworks)
4874 /* VxWorks uses non-relative relocations for this. */
4875 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4877 /* The relocation is always an REL32 relocation because we don't
4878 know where the shared library will wind up at load-time. */
4879 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4882 /* For strict adherence to the ABI specification, we should
4883 generate a R_MIPS_64 relocation record by itself before the
4884 _REL32/_64 record as well, such that the addend is read in as
4885 a 64-bit value (REL32 is a 32-bit relocation, after all).
4886 However, since none of the existing ELF64 MIPS dynamic
4887 loaders seems to care, we don't waste space with these
4888 artificial relocations. If this turns out to not be true,
4889 mips_elf_allocate_dynamic_relocation() should be tweaked so
4890 as to make room for a pair of dynamic relocations per
4891 invocation if ABI_64_P, and here we should generate an
4892 additional relocation record with R_MIPS_64 by itself for a
4893 NULL symbol before this relocation record. */
4894 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4895 ABI_64_P (output_bfd)
4898 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4900 /* Adjust the output offset of the relocation to reference the
4901 correct location in the output file. */
4902 outrel[0].r_offset += (input_section->output_section->vma
4903 + input_section->output_offset);
4904 outrel[1].r_offset += (input_section->output_section->vma
4905 + input_section->output_offset);
4906 outrel[2].r_offset += (input_section->output_section->vma
4907 + input_section->output_offset);
4909 /* Put the relocation back out. We have to use the special
4910 relocation outputter in the 64-bit case since the 64-bit
4911 relocation format is non-standard. */
4912 if (ABI_64_P (output_bfd))
4914 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4915 (output_bfd, &outrel[0],
4917 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4919 else if (htab->is_vxworks)
4921 /* VxWorks uses RELA rather than REL dynamic relocations. */
4922 outrel[0].r_addend = *addendp;
4923 bfd_elf32_swap_reloca_out
4924 (output_bfd, &outrel[0],
4926 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4929 bfd_elf32_swap_reloc_out
4930 (output_bfd, &outrel[0],
4931 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4933 /* We've now added another relocation. */
4934 ++sreloc->reloc_count;
4936 /* Make sure the output section is writable. The dynamic linker
4937 will be writing to it. */
4938 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4941 /* On IRIX5, make an entry of compact relocation info. */
4942 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4944 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4949 Elf32_crinfo cptrel;
4951 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4952 cptrel.vaddr = (rel->r_offset
4953 + input_section->output_section->vma
4954 + input_section->output_offset);
4955 if (r_type == R_MIPS_REL32)
4956 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4958 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4959 mips_elf_set_cr_dist2to (cptrel, 0);
4960 cptrel.konst = *addendp;
4962 cr = (scpt->contents
4963 + sizeof (Elf32_External_compact_rel));
4964 mips_elf_set_cr_relvaddr (cptrel, 0);
4965 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4966 ((Elf32_External_crinfo *) cr
4967 + scpt->reloc_count));
4968 ++scpt->reloc_count;
4972 /* If we've written this relocation for a readonly section,
4973 we need to set DF_TEXTREL again, so that we do not delete the
4975 if (MIPS_ELF_READONLY_SECTION (input_section))
4976 info->flags |= DF_TEXTREL;
4981 /* Return the MACH for a MIPS e_flags value. */
4984 _bfd_elf_mips_mach (flagword flags)
4986 switch (flags & EF_MIPS_MACH)
4988 case E_MIPS_MACH_3900:
4989 return bfd_mach_mips3900;
4991 case E_MIPS_MACH_4010:
4992 return bfd_mach_mips4010;
4994 case E_MIPS_MACH_4100:
4995 return bfd_mach_mips4100;
4997 case E_MIPS_MACH_4111:
4998 return bfd_mach_mips4111;
5000 case E_MIPS_MACH_4120:
5001 return bfd_mach_mips4120;
5003 case E_MIPS_MACH_4650:
5004 return bfd_mach_mips4650;
5006 case E_MIPS_MACH_5400:
5007 return bfd_mach_mips5400;
5009 case E_MIPS_MACH_5500:
5010 return bfd_mach_mips5500;
5012 case E_MIPS_MACH_9000:
5013 return bfd_mach_mips9000;
5015 case E_MIPS_MACH_SB1:
5016 return bfd_mach_mips_sb1;
5019 switch (flags & EF_MIPS_ARCH)
5023 return bfd_mach_mips3000;
5026 return bfd_mach_mips6000;
5029 return bfd_mach_mips4000;
5032 return bfd_mach_mips8000;
5035 return bfd_mach_mips5;
5037 case E_MIPS_ARCH_32:
5038 return bfd_mach_mipsisa32;
5040 case E_MIPS_ARCH_64:
5041 return bfd_mach_mipsisa64;
5043 case E_MIPS_ARCH_32R2:
5044 return bfd_mach_mipsisa32r2;
5046 case E_MIPS_ARCH_64R2:
5047 return bfd_mach_mipsisa64r2;
5054 /* Return printable name for ABI. */
5056 static INLINE char *
5057 elf_mips_abi_name (bfd *abfd)
5061 flags = elf_elfheader (abfd)->e_flags;
5062 switch (flags & EF_MIPS_ABI)
5065 if (ABI_N32_P (abfd))
5067 else if (ABI_64_P (abfd))
5071 case E_MIPS_ABI_O32:
5073 case E_MIPS_ABI_O64:
5075 case E_MIPS_ABI_EABI32:
5077 case E_MIPS_ABI_EABI64:
5080 return "unknown abi";
5084 /* MIPS ELF uses two common sections. One is the usual one, and the
5085 other is for small objects. All the small objects are kept
5086 together, and then referenced via the gp pointer, which yields
5087 faster assembler code. This is what we use for the small common
5088 section. This approach is copied from ecoff.c. */
5089 static asection mips_elf_scom_section;
5090 static asymbol mips_elf_scom_symbol;
5091 static asymbol *mips_elf_scom_symbol_ptr;
5093 /* MIPS ELF also uses an acommon section, which represents an
5094 allocated common symbol which may be overridden by a
5095 definition in a shared library. */
5096 static asection mips_elf_acom_section;
5097 static asymbol mips_elf_acom_symbol;
5098 static asymbol *mips_elf_acom_symbol_ptr;
5100 /* Handle the special MIPS section numbers that a symbol may use.
5101 This is used for both the 32-bit and the 64-bit ABI. */
5104 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5106 elf_symbol_type *elfsym;
5108 elfsym = (elf_symbol_type *) asym;
5109 switch (elfsym->internal_elf_sym.st_shndx)
5111 case SHN_MIPS_ACOMMON:
5112 /* This section is used in a dynamically linked executable file.
5113 It is an allocated common section. The dynamic linker can
5114 either resolve these symbols to something in a shared
5115 library, or it can just leave them here. For our purposes,
5116 we can consider these symbols to be in a new section. */
5117 if (mips_elf_acom_section.name == NULL)
5119 /* Initialize the acommon section. */
5120 mips_elf_acom_section.name = ".acommon";
5121 mips_elf_acom_section.flags = SEC_ALLOC;
5122 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5123 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5124 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5125 mips_elf_acom_symbol.name = ".acommon";
5126 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5127 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5128 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5130 asym->section = &mips_elf_acom_section;
5134 /* Common symbols less than the GP size are automatically
5135 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5136 if (asym->value > elf_gp_size (abfd)
5137 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5138 || IRIX_COMPAT (abfd) == ict_irix6)
5141 case SHN_MIPS_SCOMMON:
5142 if (mips_elf_scom_section.name == NULL)
5144 /* Initialize the small common section. */
5145 mips_elf_scom_section.name = ".scommon";
5146 mips_elf_scom_section.flags = SEC_IS_COMMON;
5147 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5148 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5149 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5150 mips_elf_scom_symbol.name = ".scommon";
5151 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5152 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5153 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5155 asym->section = &mips_elf_scom_section;
5156 asym->value = elfsym->internal_elf_sym.st_size;
5159 case SHN_MIPS_SUNDEFINED:
5160 asym->section = bfd_und_section_ptr;
5165 asection *section = bfd_get_section_by_name (abfd, ".text");
5167 BFD_ASSERT (SGI_COMPAT (abfd));
5168 if (section != NULL)
5170 asym->section = section;
5171 /* MIPS_TEXT is a bit special, the address is not an offset
5172 to the base of the .text section. So substract the section
5173 base address to make it an offset. */
5174 asym->value -= section->vma;
5181 asection *section = bfd_get_section_by_name (abfd, ".data");
5183 BFD_ASSERT (SGI_COMPAT (abfd));
5184 if (section != NULL)
5186 asym->section = section;
5187 /* MIPS_DATA is a bit special, the address is not an offset
5188 to the base of the .data section. So substract the section
5189 base address to make it an offset. */
5190 asym->value -= section->vma;
5197 /* Implement elf_backend_eh_frame_address_size. This differs from
5198 the default in the way it handles EABI64.
5200 EABI64 was originally specified as an LP64 ABI, and that is what
5201 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5202 historically accepted the combination of -mabi=eabi and -mlong32,
5203 and this ILP32 variation has become semi-official over time.
5204 Both forms use elf32 and have pointer-sized FDE addresses.
5206 If an EABI object was generated by GCC 4.0 or above, it will have
5207 an empty .gcc_compiled_longXX section, where XX is the size of longs
5208 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5209 have no special marking to distinguish them from LP64 objects.
5211 We don't want users of the official LP64 ABI to be punished for the
5212 existence of the ILP32 variant, but at the same time, we don't want
5213 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5214 We therefore take the following approach:
5216 - If ABFD contains a .gcc_compiled_longXX section, use it to
5217 determine the pointer size.
5219 - Otherwise check the type of the first relocation. Assume that
5220 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5224 The second check is enough to detect LP64 objects generated by pre-4.0
5225 compilers because, in the kind of output generated by those compilers,
5226 the first relocation will be associated with either a CIE personality
5227 routine or an FDE start address. Furthermore, the compilers never
5228 used a special (non-pointer) encoding for this ABI.
5230 Checking the relocation type should also be safe because there is no
5231 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5235 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5237 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5239 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5241 bfd_boolean long32_p, long64_p;
5243 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5244 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5245 if (long32_p && long64_p)
5252 if (sec->reloc_count > 0
5253 && elf_section_data (sec)->relocs != NULL
5254 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5263 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5264 relocations against two unnamed section symbols to resolve to the
5265 same address. For example, if we have code like:
5267 lw $4,%got_disp(.data)($gp)
5268 lw $25,%got_disp(.text)($gp)
5271 then the linker will resolve both relocations to .data and the program
5272 will jump there rather than to .text.
5274 We can work around this problem by giving names to local section symbols.
5275 This is also what the MIPSpro tools do. */
5278 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5280 return SGI_COMPAT (abfd);
5283 /* Work over a section just before writing it out. This routine is
5284 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5285 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5289 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5291 if (hdr->sh_type == SHT_MIPS_REGINFO
5292 && hdr->sh_size > 0)
5296 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5297 BFD_ASSERT (hdr->contents == NULL);
5300 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5303 H_PUT_32 (abfd, elf_gp (abfd), buf);
5304 if (bfd_bwrite (buf, 4, abfd) != 4)
5308 if (hdr->sh_type == SHT_MIPS_OPTIONS
5309 && hdr->bfd_section != NULL
5310 && mips_elf_section_data (hdr->bfd_section) != NULL
5311 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5313 bfd_byte *contents, *l, *lend;
5315 /* We stored the section contents in the tdata field in the
5316 set_section_contents routine. We save the section contents
5317 so that we don't have to read them again.
5318 At this point we know that elf_gp is set, so we can look
5319 through the section contents to see if there is an
5320 ODK_REGINFO structure. */
5322 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5324 lend = contents + hdr->sh_size;
5325 while (l + sizeof (Elf_External_Options) <= lend)
5327 Elf_Internal_Options intopt;
5329 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5331 if (intopt.size < sizeof (Elf_External_Options))
5333 (*_bfd_error_handler)
5334 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5335 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5338 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5345 + sizeof (Elf_External_Options)
5346 + (sizeof (Elf64_External_RegInfo) - 8)),
5349 H_PUT_64 (abfd, elf_gp (abfd), buf);
5350 if (bfd_bwrite (buf, 8, abfd) != 8)
5353 else if (intopt.kind == ODK_REGINFO)
5360 + sizeof (Elf_External_Options)
5361 + (sizeof (Elf32_External_RegInfo) - 4)),
5364 H_PUT_32 (abfd, elf_gp (abfd), buf);
5365 if (bfd_bwrite (buf, 4, abfd) != 4)
5372 if (hdr->bfd_section != NULL)
5374 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5376 if (strcmp (name, ".sdata") == 0
5377 || strcmp (name, ".lit8") == 0
5378 || strcmp (name, ".lit4") == 0)
5380 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5381 hdr->sh_type = SHT_PROGBITS;
5383 else if (strcmp (name, ".sbss") == 0)
5385 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5386 hdr->sh_type = SHT_NOBITS;
5388 else if (strcmp (name, ".srdata") == 0)
5390 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5391 hdr->sh_type = SHT_PROGBITS;
5393 else if (strcmp (name, ".compact_rel") == 0)
5396 hdr->sh_type = SHT_PROGBITS;
5398 else if (strcmp (name, ".rtproc") == 0)
5400 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5402 unsigned int adjust;
5404 adjust = hdr->sh_size % hdr->sh_addralign;
5406 hdr->sh_size += hdr->sh_addralign - adjust;
5414 /* Handle a MIPS specific section when reading an object file. This
5415 is called when elfcode.h finds a section with an unknown type.
5416 This routine supports both the 32-bit and 64-bit ELF ABI.
5418 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5422 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5423 Elf_Internal_Shdr *hdr,
5429 /* There ought to be a place to keep ELF backend specific flags, but
5430 at the moment there isn't one. We just keep track of the
5431 sections by their name, instead. Fortunately, the ABI gives
5432 suggested names for all the MIPS specific sections, so we will
5433 probably get away with this. */
5434 switch (hdr->sh_type)
5436 case SHT_MIPS_LIBLIST:
5437 if (strcmp (name, ".liblist") != 0)
5441 if (strcmp (name, ".msym") != 0)
5444 case SHT_MIPS_CONFLICT:
5445 if (strcmp (name, ".conflict") != 0)
5448 case SHT_MIPS_GPTAB:
5449 if (! CONST_STRNEQ (name, ".gptab."))
5452 case SHT_MIPS_UCODE:
5453 if (strcmp (name, ".ucode") != 0)
5456 case SHT_MIPS_DEBUG:
5457 if (strcmp (name, ".mdebug") != 0)
5459 flags = SEC_DEBUGGING;
5461 case SHT_MIPS_REGINFO:
5462 if (strcmp (name, ".reginfo") != 0
5463 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5465 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5467 case SHT_MIPS_IFACE:
5468 if (strcmp (name, ".MIPS.interfaces") != 0)
5471 case SHT_MIPS_CONTENT:
5472 if (! CONST_STRNEQ (name, ".MIPS.content"))
5475 case SHT_MIPS_OPTIONS:
5476 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5479 case SHT_MIPS_DWARF:
5480 if (! CONST_STRNEQ (name, ".debug_"))
5483 case SHT_MIPS_SYMBOL_LIB:
5484 if (strcmp (name, ".MIPS.symlib") != 0)
5487 case SHT_MIPS_EVENTS:
5488 if (! CONST_STRNEQ (name, ".MIPS.events")
5489 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5501 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5502 (bfd_get_section_flags (abfd,
5508 /* FIXME: We should record sh_info for a .gptab section. */
5510 /* For a .reginfo section, set the gp value in the tdata information
5511 from the contents of this section. We need the gp value while
5512 processing relocs, so we just get it now. The .reginfo section
5513 is not used in the 64-bit MIPS ELF ABI. */
5514 if (hdr->sh_type == SHT_MIPS_REGINFO)
5516 Elf32_External_RegInfo ext;
5519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5520 &ext, 0, sizeof ext))
5522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5523 elf_gp (abfd) = s.ri_gp_value;
5526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5527 set the gp value based on what we find. We may see both
5528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5529 they should agree. */
5530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5532 bfd_byte *contents, *l, *lend;
5534 contents = bfd_malloc (hdr->sh_size);
5535 if (contents == NULL)
5537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5544 lend = contents + hdr->sh_size;
5545 while (l + sizeof (Elf_External_Options) <= lend)
5547 Elf_Internal_Options intopt;
5549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5551 if (intopt.size < sizeof (Elf_External_Options))
5553 (*_bfd_error_handler)
5554 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5555 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5558 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5560 Elf64_Internal_RegInfo intreg;
5562 bfd_mips_elf64_swap_reginfo_in
5564 ((Elf64_External_RegInfo *)
5565 (l + sizeof (Elf_External_Options))),
5567 elf_gp (abfd) = intreg.ri_gp_value;
5569 else if (intopt.kind == ODK_REGINFO)
5571 Elf32_RegInfo intreg;
5573 bfd_mips_elf32_swap_reginfo_in
5575 ((Elf32_External_RegInfo *)
5576 (l + sizeof (Elf_External_Options))),
5578 elf_gp (abfd) = intreg.ri_gp_value;
5588 /* Set the correct type for a MIPS ELF section. We do this by the
5589 section name, which is a hack, but ought to work. This routine is
5590 used by both the 32-bit and the 64-bit ABI. */
5593 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5595 const char *name = bfd_get_section_name (abfd, sec);
5597 if (strcmp (name, ".liblist") == 0)
5599 hdr->sh_type = SHT_MIPS_LIBLIST;
5600 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5601 /* The sh_link field is set in final_write_processing. */
5603 else if (strcmp (name, ".conflict") == 0)
5604 hdr->sh_type = SHT_MIPS_CONFLICT;
5605 else if (CONST_STRNEQ (name, ".gptab."))
5607 hdr->sh_type = SHT_MIPS_GPTAB;
5608 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5609 /* The sh_info field is set in final_write_processing. */
5611 else if (strcmp (name, ".ucode") == 0)
5612 hdr->sh_type = SHT_MIPS_UCODE;
5613 else if (strcmp (name, ".mdebug") == 0)
5615 hdr->sh_type = SHT_MIPS_DEBUG;
5616 /* In a shared object on IRIX 5.3, the .mdebug section has an
5617 entsize of 0. FIXME: Does this matter? */
5618 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5619 hdr->sh_entsize = 0;
5621 hdr->sh_entsize = 1;
5623 else if (strcmp (name, ".reginfo") == 0)
5625 hdr->sh_type = SHT_MIPS_REGINFO;
5626 /* In a shared object on IRIX 5.3, the .reginfo section has an
5627 entsize of 0x18. FIXME: Does this matter? */
5628 if (SGI_COMPAT (abfd))
5630 if ((abfd->flags & DYNAMIC) != 0)
5631 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5633 hdr->sh_entsize = 1;
5636 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5638 else if (SGI_COMPAT (abfd)
5639 && (strcmp (name, ".hash") == 0
5640 || strcmp (name, ".dynamic") == 0
5641 || strcmp (name, ".dynstr") == 0))
5643 if (SGI_COMPAT (abfd))
5644 hdr->sh_entsize = 0;
5646 /* This isn't how the IRIX6 linker behaves. */
5647 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5650 else if (strcmp (name, ".got") == 0
5651 || strcmp (name, ".srdata") == 0
5652 || strcmp (name, ".sdata") == 0
5653 || strcmp (name, ".sbss") == 0
5654 || strcmp (name, ".lit4") == 0
5655 || strcmp (name, ".lit8") == 0)
5656 hdr->sh_flags |= SHF_MIPS_GPREL;
5657 else if (strcmp (name, ".MIPS.interfaces") == 0)
5659 hdr->sh_type = SHT_MIPS_IFACE;
5660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5662 else if (CONST_STRNEQ (name, ".MIPS.content"))
5664 hdr->sh_type = SHT_MIPS_CONTENT;
5665 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5666 /* The sh_info field is set in final_write_processing. */
5668 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5670 hdr->sh_type = SHT_MIPS_OPTIONS;
5671 hdr->sh_entsize = 1;
5672 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5674 else if (CONST_STRNEQ (name, ".debug_"))
5675 hdr->sh_type = SHT_MIPS_DWARF;
5676 else if (strcmp (name, ".MIPS.symlib") == 0)
5678 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5679 /* The sh_link and sh_info fields are set in
5680 final_write_processing. */
5682 else if (CONST_STRNEQ (name, ".MIPS.events")
5683 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5685 hdr->sh_type = SHT_MIPS_EVENTS;
5686 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5687 /* The sh_link field is set in final_write_processing. */
5689 else if (strcmp (name, ".msym") == 0)
5691 hdr->sh_type = SHT_MIPS_MSYM;
5692 hdr->sh_flags |= SHF_ALLOC;
5693 hdr->sh_entsize = 8;
5696 /* The generic elf_fake_sections will set up REL_HDR using the default
5697 kind of relocations. We used to set up a second header for the
5698 non-default kind of relocations here, but only NewABI would use
5699 these, and the IRIX ld doesn't like resulting empty RELA sections.
5700 Thus we create those header only on demand now. */
5705 /* Given a BFD section, try to locate the corresponding ELF section
5706 index. This is used by both the 32-bit and the 64-bit ABI.
5707 Actually, it's not clear to me that the 64-bit ABI supports these,
5708 but for non-PIC objects we will certainly want support for at least
5709 the .scommon section. */
5712 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5713 asection *sec, int *retval)
5715 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5717 *retval = SHN_MIPS_SCOMMON;
5720 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5722 *retval = SHN_MIPS_ACOMMON;
5728 /* Hook called by the linker routine which adds symbols from an object
5729 file. We must handle the special MIPS section numbers here. */
5732 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5733 Elf_Internal_Sym *sym, const char **namep,
5734 flagword *flagsp ATTRIBUTE_UNUSED,
5735 asection **secp, bfd_vma *valp)
5737 if (SGI_COMPAT (abfd)
5738 && (abfd->flags & DYNAMIC) != 0
5739 && strcmp (*namep, "_rld_new_interface") == 0)
5741 /* Skip IRIX5 rld entry name. */
5746 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5747 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5748 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5749 a magic symbol resolved by the linker, we ignore this bogus definition
5750 of _gp_disp. New ABI objects do not suffer from this problem so this
5751 is not done for them. */
5753 && (sym->st_shndx == SHN_ABS)
5754 && (strcmp (*namep, "_gp_disp") == 0))
5760 switch (sym->st_shndx)
5763 /* Common symbols less than the GP size are automatically
5764 treated as SHN_MIPS_SCOMMON symbols. */
5765 if (sym->st_size > elf_gp_size (abfd)
5766 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5767 || IRIX_COMPAT (abfd) == ict_irix6)
5770 case SHN_MIPS_SCOMMON:
5771 *secp = bfd_make_section_old_way (abfd, ".scommon");
5772 (*secp)->flags |= SEC_IS_COMMON;
5773 *valp = sym->st_size;
5777 /* This section is used in a shared object. */
5778 if (elf_tdata (abfd)->elf_text_section == NULL)
5780 asymbol *elf_text_symbol;
5781 asection *elf_text_section;
5782 bfd_size_type amt = sizeof (asection);
5784 elf_text_section = bfd_zalloc (abfd, amt);
5785 if (elf_text_section == NULL)
5788 amt = sizeof (asymbol);
5789 elf_text_symbol = bfd_zalloc (abfd, amt);
5790 if (elf_text_symbol == NULL)
5793 /* Initialize the section. */
5795 elf_tdata (abfd)->elf_text_section = elf_text_section;
5796 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5798 elf_text_section->symbol = elf_text_symbol;
5799 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5801 elf_text_section->name = ".text";
5802 elf_text_section->flags = SEC_NO_FLAGS;
5803 elf_text_section->output_section = NULL;
5804 elf_text_section->owner = abfd;
5805 elf_text_symbol->name = ".text";
5806 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5807 elf_text_symbol->section = elf_text_section;
5809 /* This code used to do *secp = bfd_und_section_ptr if
5810 info->shared. I don't know why, and that doesn't make sense,
5811 so I took it out. */
5812 *secp = elf_tdata (abfd)->elf_text_section;
5815 case SHN_MIPS_ACOMMON:
5816 /* Fall through. XXX Can we treat this as allocated data? */
5818 /* This section is used in a shared object. */
5819 if (elf_tdata (abfd)->elf_data_section == NULL)
5821 asymbol *elf_data_symbol;
5822 asection *elf_data_section;
5823 bfd_size_type amt = sizeof (asection);
5825 elf_data_section = bfd_zalloc (abfd, amt);
5826 if (elf_data_section == NULL)
5829 amt = sizeof (asymbol);
5830 elf_data_symbol = bfd_zalloc (abfd, amt);
5831 if (elf_data_symbol == NULL)
5834 /* Initialize the section. */
5836 elf_tdata (abfd)->elf_data_section = elf_data_section;
5837 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5839 elf_data_section->symbol = elf_data_symbol;
5840 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5842 elf_data_section->name = ".data";
5843 elf_data_section->flags = SEC_NO_FLAGS;
5844 elf_data_section->output_section = NULL;
5845 elf_data_section->owner = abfd;
5846 elf_data_symbol->name = ".data";
5847 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5848 elf_data_symbol->section = elf_data_section;
5850 /* This code used to do *secp = bfd_und_section_ptr if
5851 info->shared. I don't know why, and that doesn't make sense,
5852 so I took it out. */
5853 *secp = elf_tdata (abfd)->elf_data_section;
5856 case SHN_MIPS_SUNDEFINED:
5857 *secp = bfd_und_section_ptr;
5861 if (SGI_COMPAT (abfd)
5863 && info->hash->creator == abfd->xvec
5864 && strcmp (*namep, "__rld_obj_head") == 0)
5866 struct elf_link_hash_entry *h;
5867 struct bfd_link_hash_entry *bh;
5869 /* Mark __rld_obj_head as dynamic. */
5871 if (! (_bfd_generic_link_add_one_symbol
5872 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5873 get_elf_backend_data (abfd)->collect, &bh)))
5876 h = (struct elf_link_hash_entry *) bh;
5879 h->type = STT_OBJECT;
5881 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5884 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5887 /* If this is a mips16 text symbol, add 1 to the value to make it
5888 odd. This will cause something like .word SYM to come up with
5889 the right value when it is loaded into the PC. */
5890 if (sym->st_other == STO_MIPS16)
5896 /* This hook function is called before the linker writes out a global
5897 symbol. We mark symbols as small common if appropriate. This is
5898 also where we undo the increment of the value for a mips16 symbol. */
5901 _bfd_mips_elf_link_output_symbol_hook
5902 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5903 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5904 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5906 /* If we see a common symbol, which implies a relocatable link, then
5907 if a symbol was small common in an input file, mark it as small
5908 common in the output file. */
5909 if (sym->st_shndx == SHN_COMMON
5910 && strcmp (input_sec->name, ".scommon") == 0)
5911 sym->st_shndx = SHN_MIPS_SCOMMON;
5913 if (sym->st_other == STO_MIPS16)
5914 sym->st_value &= ~1;
5919 /* Functions for the dynamic linker. */
5921 /* Create dynamic sections when linking against a dynamic object. */
5924 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5926 struct elf_link_hash_entry *h;
5927 struct bfd_link_hash_entry *bh;
5929 register asection *s;
5930 const char * const *namep;
5931 struct mips_elf_link_hash_table *htab;
5933 htab = mips_elf_hash_table (info);
5934 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5935 | SEC_LINKER_CREATED | SEC_READONLY);
5937 /* The psABI requires a read-only .dynamic section, but the VxWorks
5939 if (!htab->is_vxworks)
5941 s = bfd_get_section_by_name (abfd, ".dynamic");
5944 if (! bfd_set_section_flags (abfd, s, flags))
5949 /* We need to create .got section. */
5950 if (! mips_elf_create_got_section (abfd, info, FALSE))
5953 if (! mips_elf_rel_dyn_section (info, TRUE))
5956 /* Create .stub section. */
5957 if (bfd_get_section_by_name (abfd,
5958 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5960 s = bfd_make_section_with_flags (abfd,
5961 MIPS_ELF_STUB_SECTION_NAME (abfd),
5964 || ! bfd_set_section_alignment (abfd, s,
5965 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5969 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5971 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5973 s = bfd_make_section_with_flags (abfd, ".rld_map",
5974 flags &~ (flagword) SEC_READONLY);
5976 || ! bfd_set_section_alignment (abfd, s,
5977 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5981 /* On IRIX5, we adjust add some additional symbols and change the
5982 alignments of several sections. There is no ABI documentation
5983 indicating that this is necessary on IRIX6, nor any evidence that
5984 the linker takes such action. */
5985 if (IRIX_COMPAT (abfd) == ict_irix5)
5987 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5990 if (! (_bfd_generic_link_add_one_symbol
5991 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5992 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5995 h = (struct elf_link_hash_entry *) bh;
5998 h->type = STT_SECTION;
6000 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6004 /* We need to create a .compact_rel section. */
6005 if (SGI_COMPAT (abfd))
6007 if (!mips_elf_create_compact_rel_section (abfd, info))
6011 /* Change alignments of some sections. */
6012 s = bfd_get_section_by_name (abfd, ".hash");
6014 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6015 s = bfd_get_section_by_name (abfd, ".dynsym");
6017 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6018 s = bfd_get_section_by_name (abfd, ".dynstr");
6020 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6021 s = bfd_get_section_by_name (abfd, ".reginfo");
6023 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6024 s = bfd_get_section_by_name (abfd, ".dynamic");
6026 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6033 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6035 if (!(_bfd_generic_link_add_one_symbol
6036 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6037 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6040 h = (struct elf_link_hash_entry *) bh;
6043 h->type = STT_SECTION;
6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6048 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6050 /* __rld_map is a four byte word located in the .data section
6051 and is filled in by the rtld to contain a pointer to
6052 the _r_debug structure. Its symbol value will be set in
6053 _bfd_mips_elf_finish_dynamic_symbol. */
6054 s = bfd_get_section_by_name (abfd, ".rld_map");
6055 BFD_ASSERT (s != NULL);
6057 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6059 if (!(_bfd_generic_link_add_one_symbol
6060 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6061 get_elf_backend_data (abfd)->collect, &bh)))
6064 h = (struct elf_link_hash_entry *) bh;
6067 h->type = STT_OBJECT;
6069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6074 if (htab->is_vxworks)
6076 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6077 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6078 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6081 /* Cache the sections created above. */
6082 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6083 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6084 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6085 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6087 || (!htab->srelbss && !info->shared)
6092 /* Do the usual VxWorks handling. */
6093 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6096 /* Work out the PLT sizes. */
6099 htab->plt_header_size
6100 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6101 htab->plt_entry_size
6102 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6106 htab->plt_header_size
6107 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6108 htab->plt_entry_size
6109 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6116 /* Look through the relocs for a section during the first phase, and
6117 allocate space in the global offset table. */
6120 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6121 asection *sec, const Elf_Internal_Rela *relocs)
6125 Elf_Internal_Shdr *symtab_hdr;
6126 struct elf_link_hash_entry **sym_hashes;
6127 struct mips_got_info *g;
6129 const Elf_Internal_Rela *rel;
6130 const Elf_Internal_Rela *rel_end;
6133 const struct elf_backend_data *bed;
6134 struct mips_elf_link_hash_table *htab;
6136 if (info->relocatable)
6139 htab = mips_elf_hash_table (info);
6140 dynobj = elf_hash_table (info)->dynobj;
6141 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6142 sym_hashes = elf_sym_hashes (abfd);
6143 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6145 /* Check for the mips16 stub sections. */
6147 name = bfd_get_section_name (abfd, sec);
6148 if (FN_STUB_P (name))
6150 unsigned long r_symndx;
6152 /* Look at the relocation information to figure out which symbol
6155 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6157 if (r_symndx < extsymoff
6158 || sym_hashes[r_symndx - extsymoff] == NULL)
6162 /* This stub is for a local symbol. This stub will only be
6163 needed if there is some relocation in this BFD, other
6164 than a 16 bit function call, which refers to this symbol. */
6165 for (o = abfd->sections; o != NULL; o = o->next)
6167 Elf_Internal_Rela *sec_relocs;
6168 const Elf_Internal_Rela *r, *rend;
6170 /* We can ignore stub sections when looking for relocs. */
6171 if ((o->flags & SEC_RELOC) == 0
6172 || o->reloc_count == 0
6173 || mips16_stub_section_p (abfd, o))
6177 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6179 if (sec_relocs == NULL)
6182 rend = sec_relocs + o->reloc_count;
6183 for (r = sec_relocs; r < rend; r++)
6184 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6185 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6188 if (elf_section_data (o)->relocs != sec_relocs)
6197 /* There is no non-call reloc for this stub, so we do
6198 not need it. Since this function is called before
6199 the linker maps input sections to output sections, we
6200 can easily discard it by setting the SEC_EXCLUDE
6202 sec->flags |= SEC_EXCLUDE;
6206 /* Record this stub in an array of local symbol stubs for
6208 if (elf_tdata (abfd)->local_stubs == NULL)
6210 unsigned long symcount;
6214 if (elf_bad_symtab (abfd))
6215 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6217 symcount = symtab_hdr->sh_info;
6218 amt = symcount * sizeof (asection *);
6219 n = bfd_zalloc (abfd, amt);
6222 elf_tdata (abfd)->local_stubs = n;
6225 sec->flags |= SEC_KEEP;
6226 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6228 /* We don't need to set mips16_stubs_seen in this case.
6229 That flag is used to see whether we need to look through
6230 the global symbol table for stubs. We don't need to set
6231 it here, because we just have a local stub. */
6235 struct mips_elf_link_hash_entry *h;
6237 h = ((struct mips_elf_link_hash_entry *)
6238 sym_hashes[r_symndx - extsymoff]);
6240 while (h->root.root.type == bfd_link_hash_indirect
6241 || h->root.root.type == bfd_link_hash_warning)
6242 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6244 /* H is the symbol this stub is for. */
6246 /* If we already have an appropriate stub for this function, we
6247 don't need another one, so we can discard this one. Since
6248 this function is called before the linker maps input sections
6249 to output sections, we can easily discard it by setting the
6250 SEC_EXCLUDE flag. */
6251 if (h->fn_stub != NULL)
6253 sec->flags |= SEC_EXCLUDE;
6257 sec->flags |= SEC_KEEP;
6259 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6262 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6264 unsigned long r_symndx;
6265 struct mips_elf_link_hash_entry *h;
6268 /* Look at the relocation information to figure out which symbol
6271 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6273 if (r_symndx < extsymoff
6274 || sym_hashes[r_symndx - extsymoff] == NULL)
6278 /* This stub is for a local symbol. This stub will only be
6279 needed if there is some relocation (R_MIPS16_26) in this BFD
6280 that refers to this symbol. */
6281 for (o = abfd->sections; o != NULL; o = o->next)
6283 Elf_Internal_Rela *sec_relocs;
6284 const Elf_Internal_Rela *r, *rend;
6286 /* We can ignore stub sections when looking for relocs. */
6287 if ((o->flags & SEC_RELOC) == 0
6288 || o->reloc_count == 0
6289 || mips16_stub_section_p (abfd, o))
6293 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6295 if (sec_relocs == NULL)
6298 rend = sec_relocs + o->reloc_count;
6299 for (r = sec_relocs; r < rend; r++)
6300 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6301 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6304 if (elf_section_data (o)->relocs != sec_relocs)
6313 /* There is no non-call reloc for this stub, so we do
6314 not need it. Since this function is called before
6315 the linker maps input sections to output sections, we
6316 can easily discard it by setting the SEC_EXCLUDE
6318 sec->flags |= SEC_EXCLUDE;
6322 /* Record this stub in an array of local symbol call_stubs for
6324 if (elf_tdata (abfd)->local_call_stubs == NULL)
6326 unsigned long symcount;
6330 if (elf_bad_symtab (abfd))
6331 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6333 symcount = symtab_hdr->sh_info;
6334 amt = symcount * sizeof (asection *);
6335 n = bfd_zalloc (abfd, amt);
6338 elf_tdata (abfd)->local_call_stubs = n;
6341 sec->flags |= SEC_KEEP;
6342 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6344 /* We don't need to set mips16_stubs_seen in this case.
6345 That flag is used to see whether we need to look through
6346 the global symbol table for stubs. We don't need to set
6347 it here, because we just have a local stub. */
6351 h = ((struct mips_elf_link_hash_entry *)
6352 sym_hashes[r_symndx - extsymoff]);
6354 /* H is the symbol this stub is for. */
6356 if (CALL_FP_STUB_P (name))
6357 loc = &h->call_fp_stub;
6359 loc = &h->call_stub;
6361 /* If we already have an appropriate stub for this function, we
6362 don't need another one, so we can discard this one. Since
6363 this function is called before the linker maps input sections
6364 to output sections, we can easily discard it by setting the
6365 SEC_EXCLUDE flag. */
6368 sec->flags |= SEC_EXCLUDE;
6372 sec->flags |= SEC_KEEP;
6374 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6385 sgot = mips_elf_got_section (dynobj, FALSE);
6390 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6391 g = mips_elf_section_data (sgot)->u.got_info;
6392 BFD_ASSERT (g != NULL);
6397 bed = get_elf_backend_data (abfd);
6398 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6399 for (rel = relocs; rel < rel_end; ++rel)
6401 unsigned long r_symndx;
6402 unsigned int r_type;
6403 struct elf_link_hash_entry *h;
6405 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6406 r_type = ELF_R_TYPE (abfd, rel->r_info);
6408 if (r_symndx < extsymoff)
6410 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6412 (*_bfd_error_handler)
6413 (_("%B: Malformed reloc detected for section %s"),
6415 bfd_set_error (bfd_error_bad_value);
6420 h = sym_hashes[r_symndx - extsymoff];
6422 /* This may be an indirect symbol created because of a version. */
6425 while (h->root.type == bfd_link_hash_indirect)
6426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6430 /* Some relocs require a global offset table. */
6431 if (dynobj == NULL || sgot == NULL)
6437 case R_MIPS_CALL_HI16:
6438 case R_MIPS_CALL_LO16:
6439 case R_MIPS_GOT_HI16:
6440 case R_MIPS_GOT_LO16:
6441 case R_MIPS_GOT_PAGE:
6442 case R_MIPS_GOT_OFST:
6443 case R_MIPS_GOT_DISP:
6444 case R_MIPS_TLS_GOTTPREL:
6446 case R_MIPS_TLS_LDM:
6448 elf_hash_table (info)->dynobj = dynobj = abfd;
6449 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6451 g = mips_elf_got_info (dynobj, &sgot);
6452 if (htab->is_vxworks && !info->shared)
6454 (*_bfd_error_handler)
6455 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6456 abfd, (unsigned long) rel->r_offset);
6457 bfd_set_error (bfd_error_bad_value);
6465 /* In VxWorks executables, references to external symbols
6466 are handled using copy relocs or PLT stubs, so there's
6467 no need to add a dynamic relocation here. */
6469 && (info->shared || (h != NULL && !htab->is_vxworks))
6470 && (sec->flags & SEC_ALLOC) != 0)
6471 elf_hash_table (info)->dynobj = dynobj = abfd;
6481 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6483 /* Relocations against the special VxWorks __GOTT_BASE__ and
6484 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6485 room for them in .rela.dyn. */
6486 if (is_gott_symbol (info, h))
6490 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6494 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6495 if (MIPS_ELF_READONLY_SECTION (sec))
6496 /* We tell the dynamic linker that there are
6497 relocations against the text segment. */
6498 info->flags |= DF_TEXTREL;
6501 else if (r_type == R_MIPS_CALL_LO16
6502 || r_type == R_MIPS_GOT_LO16
6503 || r_type == R_MIPS_GOT_DISP
6504 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6506 /* We may need a local GOT entry for this relocation. We
6507 don't count R_MIPS_GOT_PAGE because we can estimate the
6508 maximum number of pages needed by looking at the size of
6509 the segment. Similar comments apply to R_MIPS_GOT16 and
6510 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6511 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6512 R_MIPS_CALL_HI16 because these are always followed by an
6513 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6514 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6515 rel->r_addend, g, 0))
6524 (*_bfd_error_handler)
6525 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6526 abfd, (unsigned long) rel->r_offset);
6527 bfd_set_error (bfd_error_bad_value);
6532 case R_MIPS_CALL_HI16:
6533 case R_MIPS_CALL_LO16:
6536 /* VxWorks call relocations point the function's .got.plt
6537 entry, which will be allocated by adjust_dynamic_symbol.
6538 Otherwise, this symbol requires a global GOT entry. */
6539 if ((!htab->is_vxworks || h->forced_local)
6540 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6543 /* We need a stub, not a plt entry for the undefined
6544 function. But we record it as if it needs plt. See
6545 _bfd_elf_adjust_dynamic_symbol. */
6551 case R_MIPS_GOT_PAGE:
6552 /* If this is a global, overridable symbol, GOT_PAGE will
6553 decay to GOT_DISP, so we'll need a GOT entry for it. */
6558 struct mips_elf_link_hash_entry *hmips =
6559 (struct mips_elf_link_hash_entry *) h;
6561 while (hmips->root.root.type == bfd_link_hash_indirect
6562 || hmips->root.root.type == bfd_link_hash_warning)
6563 hmips = (struct mips_elf_link_hash_entry *)
6564 hmips->root.root.u.i.link;
6566 if (hmips->root.def_regular
6567 && ! (info->shared && ! info->symbolic
6568 && ! hmips->root.forced_local))
6574 case R_MIPS_GOT_HI16:
6575 case R_MIPS_GOT_LO16:
6576 case R_MIPS_GOT_DISP:
6577 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6581 case R_MIPS_TLS_GOTTPREL:
6583 info->flags |= DF_STATIC_TLS;
6586 case R_MIPS_TLS_LDM:
6587 if (r_type == R_MIPS_TLS_LDM)
6595 /* This symbol requires a global offset table entry, or two
6596 for TLS GD relocations. */
6598 unsigned char flag = (r_type == R_MIPS_TLS_GD
6600 : r_type == R_MIPS_TLS_LDM
6605 struct mips_elf_link_hash_entry *hmips =
6606 (struct mips_elf_link_hash_entry *) h;
6607 hmips->tls_type |= flag;
6609 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6614 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6616 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6617 rel->r_addend, g, flag))
6626 /* In VxWorks executables, references to external symbols
6627 are handled using copy relocs or PLT stubs, so there's
6628 no need to add a .rela.dyn entry for this relocation. */
6629 if ((info->shared || (h != NULL && !htab->is_vxworks))
6630 && (sec->flags & SEC_ALLOC) != 0)
6634 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6640 /* When creating a shared object, we must copy these
6641 reloc types into the output file as R_MIPS_REL32
6642 relocs. Make room for this reloc in .rel(a).dyn. */
6643 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6644 if (MIPS_ELF_READONLY_SECTION (sec))
6645 /* We tell the dynamic linker that there are
6646 relocations against the text segment. */
6647 info->flags |= DF_TEXTREL;
6651 struct mips_elf_link_hash_entry *hmips;
6653 /* We only need to copy this reloc if the symbol is
6654 defined in a dynamic object. */
6655 hmips = (struct mips_elf_link_hash_entry *) h;
6656 ++hmips->possibly_dynamic_relocs;
6657 if (MIPS_ELF_READONLY_SECTION (sec))
6658 /* We need it to tell the dynamic linker if there
6659 are relocations against the text segment. */
6660 hmips->readonly_reloc = TRUE;
6663 /* Even though we don't directly need a GOT entry for
6664 this symbol, a symbol must have a dynamic symbol
6665 table index greater that DT_MIPS_GOTSYM if there are
6666 dynamic relocations against it. This does not apply
6667 to VxWorks, which does not have the usual coupling
6668 between global GOT entries and .dynsym entries. */
6669 if (h != NULL && !htab->is_vxworks)
6672 elf_hash_table (info)->dynobj = dynobj = abfd;
6673 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6675 g = mips_elf_got_info (dynobj, &sgot);
6676 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6681 if (SGI_COMPAT (abfd))
6682 mips_elf_hash_table (info)->compact_rel_size +=
6683 sizeof (Elf32_External_crinfo);
6688 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6693 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6696 case R_MIPS_GPREL16:
6697 case R_MIPS_LITERAL:
6698 case R_MIPS_GPREL32:
6699 if (SGI_COMPAT (abfd))
6700 mips_elf_hash_table (info)->compact_rel_size +=
6701 sizeof (Elf32_External_crinfo);
6704 /* This relocation describes the C++ object vtable hierarchy.
6705 Reconstruct it for later use during GC. */
6706 case R_MIPS_GNU_VTINHERIT:
6707 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6711 /* This relocation describes which C++ vtable entries are actually
6712 used. Record for later use during GC. */
6713 case R_MIPS_GNU_VTENTRY:
6714 BFD_ASSERT (h != NULL);
6716 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6724 /* We must not create a stub for a symbol that has relocations
6725 related to taking the function's address. This doesn't apply to
6726 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6727 a normal .got entry. */
6728 if (!htab->is_vxworks && h != NULL)
6732 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6735 case R_MIPS_CALL_HI16:
6736 case R_MIPS_CALL_LO16:
6741 /* If this reloc is not a 16 bit call, and it has a global
6742 symbol, then we will need the fn_stub if there is one.
6743 References from a stub section do not count. */
6745 && r_type != R_MIPS16_26
6746 && !mips16_stub_section_p (abfd, sec))
6748 struct mips_elf_link_hash_entry *mh;
6750 mh = (struct mips_elf_link_hash_entry *) h;
6751 mh->need_fn_stub = TRUE;
6759 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6760 struct bfd_link_info *link_info,
6763 Elf_Internal_Rela *internal_relocs;
6764 Elf_Internal_Rela *irel, *irelend;
6765 Elf_Internal_Shdr *symtab_hdr;
6766 bfd_byte *contents = NULL;
6768 bfd_boolean changed_contents = FALSE;
6769 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6770 Elf_Internal_Sym *isymbuf = NULL;
6772 /* We are not currently changing any sizes, so only one pass. */
6775 if (link_info->relocatable)
6778 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6779 link_info->keep_memory);
6780 if (internal_relocs == NULL)
6783 irelend = internal_relocs + sec->reloc_count
6784 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6785 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6786 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6788 for (irel = internal_relocs; irel < irelend; irel++)
6791 bfd_signed_vma sym_offset;
6792 unsigned int r_type;
6793 unsigned long r_symndx;
6795 unsigned long instruction;
6797 /* Turn jalr into bgezal, and jr into beq, if they're marked
6798 with a JALR relocation, that indicate where they jump to.
6799 This saves some pipeline bubbles. */
6800 r_type = ELF_R_TYPE (abfd, irel->r_info);
6801 if (r_type != R_MIPS_JALR)
6804 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6805 /* Compute the address of the jump target. */
6806 if (r_symndx >= extsymoff)
6808 struct mips_elf_link_hash_entry *h
6809 = ((struct mips_elf_link_hash_entry *)
6810 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6812 while (h->root.root.type == bfd_link_hash_indirect
6813 || h->root.root.type == bfd_link_hash_warning)
6814 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6816 /* If a symbol is undefined, or if it may be overridden,
6818 if (! ((h->root.root.type == bfd_link_hash_defined
6819 || h->root.root.type == bfd_link_hash_defweak)
6820 && h->root.root.u.def.section)
6821 || (link_info->shared && ! link_info->symbolic
6822 && !h->root.forced_local))
6825 sym_sec = h->root.root.u.def.section;
6826 if (sym_sec->output_section)
6827 symval = (h->root.root.u.def.value
6828 + sym_sec->output_section->vma
6829 + sym_sec->output_offset);
6831 symval = h->root.root.u.def.value;
6835 Elf_Internal_Sym *isym;
6837 /* Read this BFD's symbols if we haven't done so already. */
6838 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6840 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6841 if (isymbuf == NULL)
6842 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6843 symtab_hdr->sh_info, 0,
6845 if (isymbuf == NULL)
6849 isym = isymbuf + r_symndx;
6850 if (isym->st_shndx == SHN_UNDEF)
6852 else if (isym->st_shndx == SHN_ABS)
6853 sym_sec = bfd_abs_section_ptr;
6854 else if (isym->st_shndx == SHN_COMMON)
6855 sym_sec = bfd_com_section_ptr;
6858 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6859 symval = isym->st_value
6860 + sym_sec->output_section->vma
6861 + sym_sec->output_offset;
6864 /* Compute branch offset, from delay slot of the jump to the
6866 sym_offset = (symval + irel->r_addend)
6867 - (sec_start + irel->r_offset + 4);
6869 /* Branch offset must be properly aligned. */
6870 if ((sym_offset & 3) != 0)
6875 /* Check that it's in range. */
6876 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6879 /* Get the section contents if we haven't done so already. */
6880 if (contents == NULL)
6882 /* Get cached copy if it exists. */
6883 if (elf_section_data (sec)->this_hdr.contents != NULL)
6884 contents = elf_section_data (sec)->this_hdr.contents;
6887 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6892 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6894 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6895 if ((instruction & 0xfc1fffff) == 0x0000f809)
6896 instruction = 0x04110000;
6897 /* If it was jr <reg>, turn it into b <target>. */
6898 else if ((instruction & 0xfc1fffff) == 0x00000008)
6899 instruction = 0x10000000;
6903 instruction |= (sym_offset & 0xffff);
6904 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6905 changed_contents = TRUE;
6908 if (contents != NULL
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6911 if (!changed_contents && !link_info->keep_memory)
6915 /* Cache the section contents for elf_link_input_bfd. */
6916 elf_section_data (sec)->this_hdr.contents = contents;
6922 if (contents != NULL
6923 && elf_section_data (sec)->this_hdr.contents != contents)
6928 /* Adjust a symbol defined by a dynamic object and referenced by a
6929 regular object. The current definition is in some section of the
6930 dynamic object, but we're not including those sections. We have to
6931 change the definition to something the rest of the link can
6935 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6936 struct elf_link_hash_entry *h)
6939 struct mips_elf_link_hash_entry *hmips;
6941 struct mips_elf_link_hash_table *htab;
6943 htab = mips_elf_hash_table (info);
6944 dynobj = elf_hash_table (info)->dynobj;
6946 /* Make sure we know what is going on here. */
6947 BFD_ASSERT (dynobj != NULL
6949 || h->u.weakdef != NULL
6952 && !h->def_regular)));
6954 /* If this symbol is defined in a dynamic object, we need to copy
6955 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6957 hmips = (struct mips_elf_link_hash_entry *) h;
6958 if (! info->relocatable
6959 && hmips->possibly_dynamic_relocs != 0
6960 && (h->root.type == bfd_link_hash_defweak
6961 || !h->def_regular))
6963 mips_elf_allocate_dynamic_relocations
6964 (dynobj, info, hmips->possibly_dynamic_relocs);
6965 if (hmips->readonly_reloc)
6966 /* We tell the dynamic linker that there are relocations
6967 against the text segment. */
6968 info->flags |= DF_TEXTREL;
6971 /* For a function, create a stub, if allowed. */
6972 if (! hmips->no_fn_stub
6975 if (! elf_hash_table (info)->dynamic_sections_created)
6978 /* If this symbol is not defined in a regular file, then set
6979 the symbol to the stub location. This is required to make
6980 function pointers compare as equal between the normal
6981 executable and the shared library. */
6982 if (!h->def_regular)
6984 /* We need .stub section. */
6985 s = bfd_get_section_by_name (dynobj,
6986 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6987 BFD_ASSERT (s != NULL);
6989 h->root.u.def.section = s;
6990 h->root.u.def.value = s->size;
6992 /* XXX Write this stub address somewhere. */
6993 h->plt.offset = s->size;
6995 /* Make room for this stub code. */
6996 s->size += htab->function_stub_size;
6998 /* The last half word of the stub will be filled with the index
6999 of this symbol in .dynsym section. */
7003 else if ((h->type == STT_FUNC)
7006 /* This will set the entry for this symbol in the GOT to 0, and
7007 the dynamic linker will take care of this. */
7008 h->root.u.def.value = 0;
7012 /* If this is a weak symbol, and there is a real definition, the
7013 processor independent code will have arranged for us to see the
7014 real definition first, and we can just use the same value. */
7015 if (h->u.weakdef != NULL)
7017 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7018 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7019 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7020 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7024 /* This is a reference to a symbol defined by a dynamic object which
7025 is not a function. */
7030 /* Likewise, for VxWorks. */
7033 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7034 struct elf_link_hash_entry *h)
7037 struct mips_elf_link_hash_entry *hmips;
7038 struct mips_elf_link_hash_table *htab;
7040 htab = mips_elf_hash_table (info);
7041 dynobj = elf_hash_table (info)->dynobj;
7042 hmips = (struct mips_elf_link_hash_entry *) h;
7044 /* Make sure we know what is going on here. */
7045 BFD_ASSERT (dynobj != NULL
7048 || h->u.weakdef != NULL
7051 && !h->def_regular)));
7053 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7054 either (a) we want to branch to the symbol or (b) we're linking an
7055 executable that needs a canonical function address. In the latter
7056 case, the canonical address will be the address of the executable's
7058 if ((hmips->is_branch_target
7060 && h->type == STT_FUNC
7061 && hmips->is_relocation_target))
7065 && !h->forced_local)
7068 /* Locally-binding symbols do not need a PLT stub; we can refer to
7069 the functions directly. */
7070 else if (h->needs_plt
7071 && (SYMBOL_CALLS_LOCAL (info, h)
7072 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7073 && h->root.type == bfd_link_hash_undefweak)))
7081 /* If this is the first symbol to need a PLT entry, allocate room
7082 for the header, and for the header's .rela.plt.unloaded entries. */
7083 if (htab->splt->size == 0)
7085 htab->splt->size += htab->plt_header_size;
7087 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7090 /* Assign the next .plt entry to this symbol. */
7091 h->plt.offset = htab->splt->size;
7092 htab->splt->size += htab->plt_entry_size;
7094 /* If the output file has no definition of the symbol, set the
7095 symbol's value to the address of the stub. For executables,
7096 point at the PLT load stub rather than the lazy resolution stub;
7097 this stub will become the canonical function address. */
7098 if (!h->def_regular)
7100 h->root.u.def.section = htab->splt;
7101 h->root.u.def.value = h->plt.offset;
7103 h->root.u.def.value += 8;
7106 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7107 htab->sgotplt->size += 4;
7108 htab->srelplt->size += sizeof (Elf32_External_Rela);
7110 /* Make room for the .rela.plt.unloaded relocations. */
7112 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7117 /* If a function symbol is defined by a dynamic object, and we do not
7118 need a PLT stub for it, the symbol's value should be zero. */
7119 if (h->type == STT_FUNC
7124 h->root.u.def.value = 0;
7128 /* If this is a weak symbol, and there is a real definition, the
7129 processor independent code will have arranged for us to see the
7130 real definition first, and we can just use the same value. */
7131 if (h->u.weakdef != NULL)
7133 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7134 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7135 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7136 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7140 /* This is a reference to a symbol defined by a dynamic object which
7141 is not a function. */
7145 /* We must allocate the symbol in our .dynbss section, which will
7146 become part of the .bss section of the executable. There will be
7147 an entry for this symbol in the .dynsym section. The dynamic
7148 object will contain position independent code, so all references
7149 from the dynamic object to this symbol will go through the global
7150 offset table. The dynamic linker will use the .dynsym entry to
7151 determine the address it must put in the global offset table, so
7152 both the dynamic object and the regular object will refer to the
7153 same memory location for the variable. */
7155 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7157 htab->srelbss->size += sizeof (Elf32_External_Rela);
7161 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7164 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7165 The number might be exact or a worst-case estimate, depending on how
7166 much information is available to elf_backend_omit_section_dynsym at
7167 the current linking stage. */
7169 static bfd_size_type
7170 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7172 bfd_size_type count;
7175 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7178 const struct elf_backend_data *bed;
7180 bed = get_elf_backend_data (output_bfd);
7181 for (p = output_bfd->sections; p ; p = p->next)
7182 if ((p->flags & SEC_EXCLUDE) == 0
7183 && (p->flags & SEC_ALLOC) != 0
7184 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7190 /* This function is called after all the input files have been read,
7191 and the input sections have been assigned to output sections. We
7192 check for any mips16 stub sections that we can discard. */
7195 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7196 struct bfd_link_info *info)
7202 struct mips_got_info *g;
7204 bfd_size_type loadable_size = 0;
7205 bfd_size_type local_gotno;
7206 bfd_size_type dynsymcount;
7208 struct mips_elf_count_tls_arg count_tls_arg;
7209 struct mips_elf_link_hash_table *htab;
7211 htab = mips_elf_hash_table (info);
7213 /* The .reginfo section has a fixed size. */
7214 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7216 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7218 if (! (info->relocatable
7219 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7220 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7221 mips_elf_check_mips16_stubs, NULL);
7223 dynobj = elf_hash_table (info)->dynobj;
7225 /* Relocatable links don't have it. */
7228 g = mips_elf_got_info (dynobj, &s);
7232 /* Calculate the total loadable size of the output. That
7233 will give us the maximum number of GOT_PAGE entries
7235 for (sub = info->input_bfds; sub; sub = sub->link_next)
7237 asection *subsection;
7239 for (subsection = sub->sections;
7241 subsection = subsection->next)
7243 if ((subsection->flags & SEC_ALLOC) == 0)
7245 loadable_size += ((subsection->size + 0xf)
7246 &~ (bfd_size_type) 0xf);
7250 /* There has to be a global GOT entry for every symbol with
7251 a dynamic symbol table index of DT_MIPS_GOTSYM or
7252 higher. Therefore, it make sense to put those symbols
7253 that need GOT entries at the end of the symbol table. We
7255 if (! mips_elf_sort_hash_table (info, 1))
7258 if (g->global_gotsym != NULL)
7259 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7261 /* If there are no global symbols, or none requiring
7262 relocations, then GLOBAL_GOTSYM will be NULL. */
7265 /* Get a worst-case estimate of the number of dynamic symbols needed.
7266 At this point, dynsymcount does not account for section symbols
7267 and count_section_dynsyms may overestimate the number that will
7269 dynsymcount = (elf_hash_table (info)->dynsymcount
7270 + count_section_dynsyms (output_bfd, info));
7272 /* Determine the size of one stub entry. */
7273 htab->function_stub_size = (dynsymcount > 0x10000
7274 ? MIPS_FUNCTION_STUB_BIG_SIZE
7275 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7277 /* In the worst case, we'll get one stub per dynamic symbol, plus
7278 one to account for the dummy entry at the end required by IRIX
7280 loadable_size += htab->function_stub_size * (i + 1);
7282 if (htab->is_vxworks)
7283 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7284 relocations against local symbols evaluate to "G", and the EABI does
7285 not include R_MIPS_GOT_PAGE. */
7288 /* Assume there are two loadable segments consisting of contiguous
7289 sections. Is 5 enough? */
7290 local_gotno = (loadable_size >> 16) + 5;
7292 g->local_gotno += local_gotno;
7293 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7295 g->global_gotno = i;
7296 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7298 /* We need to calculate tls_gotno for global symbols at this point
7299 instead of building it up earlier, to avoid doublecounting
7300 entries for one global symbol from multiple input files. */
7301 count_tls_arg.info = info;
7302 count_tls_arg.needed = 0;
7303 elf_link_hash_traverse (elf_hash_table (info),
7304 mips_elf_count_global_tls_entries,
7306 g->tls_gotno += count_tls_arg.needed;
7307 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7309 mips_elf_resolve_final_got_entries (g);
7311 /* VxWorks does not support multiple GOTs. It initializes $gp to
7312 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7314 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7316 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7321 /* Set up TLS entries for the first GOT. */
7322 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7323 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7325 htab->computed_got_sizes = TRUE;
7330 /* Set the sizes of the dynamic sections. */
7333 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7334 struct bfd_link_info *info)
7337 asection *s, *sreldyn;
7338 bfd_boolean reltext;
7339 struct mips_elf_link_hash_table *htab;
7341 htab = mips_elf_hash_table (info);
7342 dynobj = elf_hash_table (info)->dynobj;
7343 BFD_ASSERT (dynobj != NULL);
7345 if (elf_hash_table (info)->dynamic_sections_created)
7347 /* Set the contents of the .interp section to the interpreter. */
7348 if (info->executable)
7350 s = bfd_get_section_by_name (dynobj, ".interp");
7351 BFD_ASSERT (s != NULL);
7353 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7355 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7359 /* The check_relocs and adjust_dynamic_symbol entry points have
7360 determined the sizes of the various dynamic sections. Allocate
7364 for (s = dynobj->sections; s != NULL; s = s->next)
7368 /* It's OK to base decisions on the section name, because none
7369 of the dynobj section names depend upon the input files. */
7370 name = bfd_get_section_name (dynobj, s);
7372 if ((s->flags & SEC_LINKER_CREATED) == 0)
7375 if (CONST_STRNEQ (name, ".rel"))
7379 const char *outname;
7382 /* If this relocation section applies to a read only
7383 section, then we probably need a DT_TEXTREL entry.
7384 If the relocation section is .rel(a).dyn, we always
7385 assert a DT_TEXTREL entry rather than testing whether
7386 there exists a relocation to a read only section or
7388 outname = bfd_get_section_name (output_bfd,
7390 target = bfd_get_section_by_name (output_bfd, outname + 4);
7392 && (target->flags & SEC_READONLY) != 0
7393 && (target->flags & SEC_ALLOC) != 0)
7394 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7397 /* We use the reloc_count field as a counter if we need
7398 to copy relocs into the output file. */
7399 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7402 /* If combreloc is enabled, elf_link_sort_relocs() will
7403 sort relocations, but in a different way than we do,
7404 and before we're done creating relocations. Also, it
7405 will move them around between input sections'
7406 relocation's contents, so our sorting would be
7407 broken, so don't let it run. */
7408 info->combreloc = 0;
7411 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7413 /* Executables do not need a GOT. */
7416 /* Allocate relocations for all but the reserved entries. */
7417 struct mips_got_info *g;
7420 g = mips_elf_got_info (dynobj, NULL);
7421 count = (g->global_gotno
7423 - MIPS_RESERVED_GOTNO (info));
7424 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7427 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7429 /* _bfd_mips_elf_always_size_sections() has already done
7430 most of the work, but some symbols may have been mapped
7431 to versions that we must now resolve in the got_entries
7433 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7434 struct mips_got_info *g = gg;
7435 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7436 unsigned int needed_relocs = 0;
7440 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7441 set_got_offset_arg.info = info;
7443 /* NOTE 2005-02-03: How can this call, or the next, ever
7444 find any indirect entries to resolve? They were all
7445 resolved in mips_elf_multi_got. */
7446 mips_elf_resolve_final_got_entries (gg);
7447 for (g = gg->next; g && g->next != gg; g = g->next)
7449 unsigned int save_assign;
7451 mips_elf_resolve_final_got_entries (g);
7453 /* Assign offsets to global GOT entries. */
7454 save_assign = g->assigned_gotno;
7455 g->assigned_gotno = g->local_gotno;
7456 set_got_offset_arg.g = g;
7457 set_got_offset_arg.needed_relocs = 0;
7458 htab_traverse (g->got_entries,
7459 mips_elf_set_global_got_offset,
7460 &set_got_offset_arg);
7461 needed_relocs += set_got_offset_arg.needed_relocs;
7462 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7463 <= g->global_gotno);
7465 g->assigned_gotno = save_assign;
7468 needed_relocs += g->local_gotno - g->assigned_gotno;
7469 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7470 + g->next->global_gotno
7471 + g->next->tls_gotno
7472 + MIPS_RESERVED_GOTNO (info));
7478 struct mips_elf_count_tls_arg arg;
7482 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7484 elf_link_hash_traverse (elf_hash_table (info),
7485 mips_elf_count_global_tls_relocs,
7488 needed_relocs += arg.needed;
7492 mips_elf_allocate_dynamic_relocations (dynobj, info,
7495 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7497 /* IRIX rld assumes that the function stub isn't at the end
7498 of .text section. So put a dummy. XXX */
7499 s->size += htab->function_stub_size;
7501 else if (! info->shared
7502 && ! mips_elf_hash_table (info)->use_rld_obj_head
7503 && CONST_STRNEQ (name, ".rld_map"))
7505 /* We add a room for __rld_map. It will be filled in by the
7506 rtld to contain a pointer to the _r_debug structure. */
7509 else if (SGI_COMPAT (output_bfd)
7510 && CONST_STRNEQ (name, ".compact_rel"))
7511 s->size += mips_elf_hash_table (info)->compact_rel_size;
7512 else if (! CONST_STRNEQ (name, ".init")
7513 && s != htab->sgotplt
7516 /* It's not one of our sections, so don't allocate space. */
7522 s->flags |= SEC_EXCLUDE;
7526 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7529 /* Allocate memory for this section last, since we may increase its
7531 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7537 /* Allocate memory for the section contents. */
7538 s->contents = bfd_zalloc (dynobj, s->size);
7539 if (s->contents == NULL)
7541 bfd_set_error (bfd_error_no_memory);
7546 /* Allocate memory for the .rel(a).dyn section. */
7547 if (sreldyn != NULL)
7549 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7550 if (sreldyn->contents == NULL)
7552 bfd_set_error (bfd_error_no_memory);
7557 if (elf_hash_table (info)->dynamic_sections_created)
7559 /* Add some entries to the .dynamic section. We fill in the
7560 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7561 must add the entries now so that we get the correct size for
7562 the .dynamic section. */
7564 /* SGI object has the equivalence of DT_DEBUG in the
7565 DT_MIPS_RLD_MAP entry. This must come first because glibc
7566 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7567 looks at the first one it sees. */
7569 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7572 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7573 used by the debugger. */
7574 if (info->executable
7575 && !SGI_COMPAT (output_bfd)
7576 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7579 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7580 info->flags |= DF_TEXTREL;
7582 if ((info->flags & DF_TEXTREL) != 0)
7584 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7587 /* Clear the DF_TEXTREL flag. It will be set again if we
7588 write out an actual text relocation; we may not, because
7589 at this point we do not know whether e.g. any .eh_frame
7590 absolute relocations have been converted to PC-relative. */
7591 info->flags &= ~DF_TEXTREL;
7594 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7597 if (htab->is_vxworks)
7599 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7600 use any of the DT_MIPS_* tags. */
7601 if (mips_elf_rel_dyn_section (info, FALSE))
7603 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7606 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7612 if (htab->splt->size > 0)
7614 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7617 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7620 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7626 if (mips_elf_rel_dyn_section (info, FALSE))
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7641 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7644 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7647 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7650 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7653 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7659 if (IRIX_COMPAT (dynobj) == ict_irix5
7660 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7663 if (IRIX_COMPAT (dynobj) == ict_irix6
7664 && (bfd_get_section_by_name
7665 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7666 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7674 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7675 Adjust its R_ADDEND field so that it is correct for the output file.
7676 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7677 and sections respectively; both use symbol indexes. */
7680 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7681 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7682 asection **local_sections, Elf_Internal_Rela *rel)
7684 unsigned int r_type, r_symndx;
7685 Elf_Internal_Sym *sym;
7688 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7690 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7691 if (r_type == R_MIPS16_GPREL
7692 || r_type == R_MIPS_GPREL16
7693 || r_type == R_MIPS_GPREL32
7694 || r_type == R_MIPS_LITERAL)
7696 rel->r_addend += _bfd_get_gp_value (input_bfd);
7697 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7700 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7701 sym = local_syms + r_symndx;
7703 /* Adjust REL's addend to account for section merging. */
7704 if (!info->relocatable)
7706 sec = local_sections[r_symndx];
7707 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7710 /* This would normally be done by the rela_normal code in elflink.c. */
7711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7712 rel->r_addend += local_sections[r_symndx]->output_offset;
7716 /* Relocate a MIPS ELF section. */
7719 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7720 bfd *input_bfd, asection *input_section,
7721 bfd_byte *contents, Elf_Internal_Rela *relocs,
7722 Elf_Internal_Sym *local_syms,
7723 asection **local_sections)
7725 Elf_Internal_Rela *rel;
7726 const Elf_Internal_Rela *relend;
7728 bfd_boolean use_saved_addend_p = FALSE;
7729 const struct elf_backend_data *bed;
7731 bed = get_elf_backend_data (output_bfd);
7732 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7733 for (rel = relocs; rel < relend; ++rel)
7737 reloc_howto_type *howto;
7738 bfd_boolean require_jalx;
7739 /* TRUE if the relocation is a RELA relocation, rather than a
7741 bfd_boolean rela_relocation_p = TRUE;
7742 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7744 unsigned long r_symndx;
7746 Elf_Internal_Shdr *symtab_hdr;
7747 struct elf_link_hash_entry *h;
7749 /* Find the relocation howto for this relocation. */
7750 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7751 NEWABI_P (input_bfd)
7752 && (MIPS_RELOC_RELA_P
7753 (input_bfd, input_section,
7756 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7757 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7758 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7760 sec = local_sections[r_symndx];
7765 unsigned long extsymoff;
7768 if (!elf_bad_symtab (input_bfd))
7769 extsymoff = symtab_hdr->sh_info;
7770 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7771 while (h->root.type == bfd_link_hash_indirect
7772 || h->root.type == bfd_link_hash_warning)
7773 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7776 if (h->root.type == bfd_link_hash_defined
7777 || h->root.type == bfd_link_hash_defweak)
7778 sec = h->root.u.def.section;
7781 if (sec != NULL && elf_discarded_section (sec))
7783 /* For relocs against symbols from removed linkonce sections,
7784 or sections discarded by a linker script, we just want the
7785 section contents zeroed. Avoid any special processing. */
7786 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7792 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7794 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7795 64-bit code, but make sure all their addresses are in the
7796 lowermost or uppermost 32-bit section of the 64-bit address
7797 space. Thus, when they use an R_MIPS_64 they mean what is
7798 usually meant by R_MIPS_32, with the exception that the
7799 stored value is sign-extended to 64 bits. */
7800 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7802 /* On big-endian systems, we need to lie about the position
7804 if (bfd_big_endian (input_bfd))
7808 if (!use_saved_addend_p)
7810 Elf_Internal_Shdr *rel_hdr;
7812 /* If these relocations were originally of the REL variety,
7813 we must pull the addend out of the field that will be
7814 relocated. Otherwise, we simply use the contents of the
7815 RELA relocation. To determine which flavor or relocation
7816 this is, we depend on the fact that the INPUT_SECTION's
7817 REL_HDR is read before its REL_HDR2. */
7818 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7819 if ((size_t) (rel - relocs)
7820 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7821 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7822 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7824 bfd_byte *location = contents + rel->r_offset;
7826 /* Note that this is a REL relocation. */
7827 rela_relocation_p = FALSE;
7829 /* Get the addend, which is stored in the input file. */
7830 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7832 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7834 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7837 addend &= howto->src_mask;
7839 /* For some kinds of relocations, the ADDEND is a
7840 combination of the addend stored in two different
7842 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7843 || (r_type == R_MIPS_GOT16
7844 && mips_elf_local_relocation_p (input_bfd, rel,
7845 local_sections, FALSE)))
7847 const Elf_Internal_Rela *lo16_relocation;
7848 reloc_howto_type *lo16_howto;
7851 if (r_type == R_MIPS16_HI16)
7852 lo16_type = R_MIPS16_LO16;
7854 lo16_type = R_MIPS_LO16;
7856 /* The combined value is the sum of the HI16 addend,
7857 left-shifted by sixteen bits, and the LO16
7858 addend, sign extended. (Usually, the code does
7859 a `lui' of the HI16 value, and then an `addiu' of
7862 Scan ahead to find a matching LO16 relocation.
7864 According to the MIPS ELF ABI, the R_MIPS_LO16
7865 relocation must be immediately following.
7866 However, for the IRIX6 ABI, the next relocation
7867 may be a composed relocation consisting of
7868 several relocations for the same address. In
7869 that case, the R_MIPS_LO16 relocation may occur
7870 as one of these. We permit a similar extension
7871 in general, as that is useful for GCC.
7873 In some cases GCC dead code elimination removes
7874 the LO16 but keeps the corresponding HI16. This
7875 is strictly speaking a violation of the ABI but
7876 not immediately harmful. */
7877 lo16_relocation = mips_elf_next_relocation (input_bfd,
7880 if (lo16_relocation == NULL)
7885 name = h->root.root.string;
7887 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7888 local_syms + r_symndx,
7890 (*_bfd_error_handler)
7891 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7892 input_bfd, input_section, name, howto->name,
7897 bfd_byte *lo16_location;
7900 lo16_location = contents + lo16_relocation->r_offset;
7902 /* Obtain the addend kept there. */
7903 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7905 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7906 FALSE, lo16_location);
7907 l = mips_elf_obtain_contents (lo16_howto,
7909 input_bfd, contents);
7910 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7911 FALSE, lo16_location);
7912 l &= lo16_howto->src_mask;
7913 l <<= lo16_howto->rightshift;
7914 l = _bfd_mips_elf_sign_extend (l, 16);
7918 /* Compute the combined addend. */
7923 addend <<= howto->rightshift;
7926 addend = rel->r_addend;
7927 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7928 local_syms, local_sections, rel);
7931 if (info->relocatable)
7933 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7934 && bfd_big_endian (input_bfd))
7937 if (!rela_relocation_p && rel->r_addend)
7939 addend += rel->r_addend;
7940 if (r_type == R_MIPS_HI16
7941 || r_type == R_MIPS_GOT16)
7942 addend = mips_elf_high (addend);
7943 else if (r_type == R_MIPS_HIGHER)
7944 addend = mips_elf_higher (addend);
7945 else if (r_type == R_MIPS_HIGHEST)
7946 addend = mips_elf_highest (addend);
7948 addend >>= howto->rightshift;
7950 /* We use the source mask, rather than the destination
7951 mask because the place to which we are writing will be
7952 source of the addend in the final link. */
7953 addend &= howto->src_mask;
7955 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7956 /* See the comment above about using R_MIPS_64 in the 32-bit
7957 ABI. Here, we need to update the addend. It would be
7958 possible to get away with just using the R_MIPS_32 reloc
7959 but for endianness. */
7965 if (addend & ((bfd_vma) 1 << 31))
7967 sign_bits = ((bfd_vma) 1 << 32) - 1;
7974 /* If we don't know that we have a 64-bit type,
7975 do two separate stores. */
7976 if (bfd_big_endian (input_bfd))
7978 /* Store the sign-bits (which are most significant)
7980 low_bits = sign_bits;
7986 high_bits = sign_bits;
7988 bfd_put_32 (input_bfd, low_bits,
7989 contents + rel->r_offset);
7990 bfd_put_32 (input_bfd, high_bits,
7991 contents + rel->r_offset + 4);
7995 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7996 input_bfd, input_section,
8001 /* Go on to the next relocation. */
8005 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8006 relocations for the same offset. In that case we are
8007 supposed to treat the output of each relocation as the addend
8009 if (rel + 1 < relend
8010 && rel->r_offset == rel[1].r_offset
8011 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8012 use_saved_addend_p = TRUE;
8014 use_saved_addend_p = FALSE;
8016 /* Figure out what value we are supposed to relocate. */
8017 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8018 input_section, info, rel,
8019 addend, howto, local_syms,
8020 local_sections, &value,
8021 &name, &require_jalx,
8022 use_saved_addend_p))
8024 case bfd_reloc_continue:
8025 /* There's nothing to do. */
8028 case bfd_reloc_undefined:
8029 /* mips_elf_calculate_relocation already called the
8030 undefined_symbol callback. There's no real point in
8031 trying to perform the relocation at this point, so we
8032 just skip ahead to the next relocation. */
8035 case bfd_reloc_notsupported:
8036 msg = _("internal error: unsupported relocation error");
8037 info->callbacks->warning
8038 (info, msg, name, input_bfd, input_section, rel->r_offset);
8041 case bfd_reloc_overflow:
8042 if (use_saved_addend_p)
8043 /* Ignore overflow until we reach the last relocation for
8044 a given location. */
8048 struct mips_elf_link_hash_table *htab;
8050 htab = mips_elf_hash_table (info);
8051 BFD_ASSERT (name != NULL);
8052 if (!htab->small_data_overflow_reported
8053 && (howto->type == R_MIPS_GPREL16
8054 || howto->type == R_MIPS_LITERAL))
8057 _("small-data section exceeds 64KB;"
8058 " lower small-data size limit (see option -G)");
8060 htab->small_data_overflow_reported = TRUE;
8061 (*info->callbacks->einfo) ("%P: %s\n", msg);
8063 if (! ((*info->callbacks->reloc_overflow)
8064 (info, NULL, name, howto->name, (bfd_vma) 0,
8065 input_bfd, input_section, rel->r_offset)))
8078 /* If we've got another relocation for the address, keep going
8079 until we reach the last one. */
8080 if (use_saved_addend_p)
8086 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8087 /* See the comment above about using R_MIPS_64 in the 32-bit
8088 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8089 that calculated the right value. Now, however, we
8090 sign-extend the 32-bit result to 64-bits, and store it as a
8091 64-bit value. We are especially generous here in that we
8092 go to extreme lengths to support this usage on systems with
8093 only a 32-bit VMA. */
8099 if (value & ((bfd_vma) 1 << 31))
8101 sign_bits = ((bfd_vma) 1 << 32) - 1;
8108 /* If we don't know that we have a 64-bit type,
8109 do two separate stores. */
8110 if (bfd_big_endian (input_bfd))
8112 /* Undo what we did above. */
8114 /* Store the sign-bits (which are most significant)
8116 low_bits = sign_bits;
8122 high_bits = sign_bits;
8124 bfd_put_32 (input_bfd, low_bits,
8125 contents + rel->r_offset);
8126 bfd_put_32 (input_bfd, high_bits,
8127 contents + rel->r_offset + 4);
8131 /* Actually perform the relocation. */
8132 if (! mips_elf_perform_relocation (info, howto, rel, value,
8133 input_bfd, input_section,
8134 contents, require_jalx))
8141 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8142 adjust it appropriately now. */
8145 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8146 const char *name, Elf_Internal_Sym *sym)
8148 /* The linker script takes care of providing names and values for
8149 these, but we must place them into the right sections. */
8150 static const char* const text_section_symbols[] = {
8153 "__dso_displacement",
8155 "__program_header_table",
8159 static const char* const data_section_symbols[] = {
8167 const char* const *p;
8170 for (i = 0; i < 2; ++i)
8171 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8174 if (strcmp (*p, name) == 0)
8176 /* All of these symbols are given type STT_SECTION by the
8178 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8179 sym->st_other = STO_PROTECTED;
8181 /* The IRIX linker puts these symbols in special sections. */
8183 sym->st_shndx = SHN_MIPS_TEXT;
8185 sym->st_shndx = SHN_MIPS_DATA;
8191 /* Finish up dynamic symbol handling. We set the contents of various
8192 dynamic sections here. */
8195 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8196 struct bfd_link_info *info,
8197 struct elf_link_hash_entry *h,
8198 Elf_Internal_Sym *sym)
8202 struct mips_got_info *g, *gg;
8205 struct mips_elf_link_hash_table *htab;
8207 htab = mips_elf_hash_table (info);
8208 dynobj = elf_hash_table (info)->dynobj;
8210 if (h->plt.offset != MINUS_ONE)
8213 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8215 /* This symbol has a stub. Set it up. */
8217 BFD_ASSERT (h->dynindx != -1);
8219 s = bfd_get_section_by_name (dynobj,
8220 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8221 BFD_ASSERT (s != NULL);
8223 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8224 || (h->dynindx <= 0xffff));
8226 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8227 sign extension at runtime in the stub, resulting in a negative
8229 if (h->dynindx & ~0x7fffffff)
8232 /* Fill the stub. */
8234 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8236 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8238 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8240 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8244 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8247 /* If a large stub is not required and sign extension is not a
8248 problem, then use legacy code in the stub. */
8249 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8250 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8251 else if (h->dynindx & ~0x7fff)
8252 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8254 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8257 BFD_ASSERT (h->plt.offset <= s->size);
8258 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8260 /* Mark the symbol as undefined. plt.offset != -1 occurs
8261 only for the referenced symbol. */
8262 sym->st_shndx = SHN_UNDEF;
8264 /* The run-time linker uses the st_value field of the symbol
8265 to reset the global offset table entry for this external
8266 to its stub address when unlinking a shared object. */
8267 sym->st_value = (s->output_section->vma + s->output_offset
8271 BFD_ASSERT (h->dynindx != -1
8272 || h->forced_local);
8274 sgot = mips_elf_got_section (dynobj, FALSE);
8275 BFD_ASSERT (sgot != NULL);
8276 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8277 g = mips_elf_section_data (sgot)->u.got_info;
8278 BFD_ASSERT (g != NULL);
8280 /* Run through the global symbol table, creating GOT entries for all
8281 the symbols that need them. */
8282 if (g->global_gotsym != NULL
8283 && h->dynindx >= g->global_gotsym->dynindx)
8288 value = sym->st_value;
8289 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8290 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8293 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8295 struct mips_got_entry e, *p;
8301 e.abfd = output_bfd;
8303 e.d.h = (struct mips_elf_link_hash_entry *)h;
8306 for (g = g->next; g->next != gg; g = g->next)
8309 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8314 || (elf_hash_table (info)->dynamic_sections_created
8316 && p->d.h->root.def_dynamic
8317 && !p->d.h->root.def_regular))
8319 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8320 the various compatibility problems, it's easier to mock
8321 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8322 mips_elf_create_dynamic_relocation to calculate the
8323 appropriate addend. */
8324 Elf_Internal_Rela rel[3];
8326 memset (rel, 0, sizeof (rel));
8327 if (ABI_64_P (output_bfd))
8328 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8330 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8331 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8334 if (! (mips_elf_create_dynamic_relocation
8335 (output_bfd, info, rel,
8336 e.d.h, NULL, sym->st_value, &entry, sgot)))
8340 entry = sym->st_value;
8341 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8346 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8347 name = h->root.root.string;
8348 if (strcmp (name, "_DYNAMIC") == 0
8349 || h == elf_hash_table (info)->hgot)
8350 sym->st_shndx = SHN_ABS;
8351 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8352 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8354 sym->st_shndx = SHN_ABS;
8355 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8358 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8360 sym->st_shndx = SHN_ABS;
8361 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8362 sym->st_value = elf_gp (output_bfd);
8364 else if (SGI_COMPAT (output_bfd))
8366 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8367 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8369 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8370 sym->st_other = STO_PROTECTED;
8372 sym->st_shndx = SHN_MIPS_DATA;
8374 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8376 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8377 sym->st_other = STO_PROTECTED;
8378 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8379 sym->st_shndx = SHN_ABS;
8381 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8383 if (h->type == STT_FUNC)
8384 sym->st_shndx = SHN_MIPS_TEXT;
8385 else if (h->type == STT_OBJECT)
8386 sym->st_shndx = SHN_MIPS_DATA;
8390 /* Handle the IRIX6-specific symbols. */
8391 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8392 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8396 if (! mips_elf_hash_table (info)->use_rld_obj_head
8397 && (strcmp (name, "__rld_map") == 0
8398 || strcmp (name, "__RLD_MAP") == 0))
8400 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8401 BFD_ASSERT (s != NULL);
8402 sym->st_value = s->output_section->vma + s->output_offset;
8403 bfd_put_32 (output_bfd, 0, s->contents);
8404 if (mips_elf_hash_table (info)->rld_value == 0)
8405 mips_elf_hash_table (info)->rld_value = sym->st_value;
8407 else if (mips_elf_hash_table (info)->use_rld_obj_head
8408 && strcmp (name, "__rld_obj_head") == 0)
8410 /* IRIX6 does not use a .rld_map section. */
8411 if (IRIX_COMPAT (output_bfd) == ict_irix5
8412 || IRIX_COMPAT (output_bfd) == ict_none)
8413 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8415 mips_elf_hash_table (info)->rld_value = sym->st_value;
8419 /* If this is a mips16 symbol, force the value to be even. */
8420 if (sym->st_other == STO_MIPS16)
8421 sym->st_value &= ~1;
8426 /* Likewise, for VxWorks. */
8429 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8430 struct bfd_link_info *info,
8431 struct elf_link_hash_entry *h,
8432 Elf_Internal_Sym *sym)
8436 struct mips_got_info *g;
8437 struct mips_elf_link_hash_table *htab;
8439 htab = mips_elf_hash_table (info);
8440 dynobj = elf_hash_table (info)->dynobj;
8442 if (h->plt.offset != (bfd_vma) -1)
8445 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8446 Elf_Internal_Rela rel;
8447 static const bfd_vma *plt_entry;
8449 BFD_ASSERT (h->dynindx != -1);
8450 BFD_ASSERT (htab->splt != NULL);
8451 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8453 /* Calculate the address of the .plt entry. */
8454 plt_address = (htab->splt->output_section->vma
8455 + htab->splt->output_offset
8458 /* Calculate the index of the entry. */
8459 plt_index = ((h->plt.offset - htab->plt_header_size)
8460 / htab->plt_entry_size);
8462 /* Calculate the address of the .got.plt entry. */
8463 got_address = (htab->sgotplt->output_section->vma
8464 + htab->sgotplt->output_offset
8467 /* Calculate the offset of the .got.plt entry from
8468 _GLOBAL_OFFSET_TABLE_. */
8469 got_offset = mips_elf_gotplt_index (info, h);
8471 /* Calculate the offset for the branch at the start of the PLT
8472 entry. The branch jumps to the beginning of .plt. */
8473 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8475 /* Fill in the initial value of the .got.plt entry. */
8476 bfd_put_32 (output_bfd, plt_address,
8477 htab->sgotplt->contents + plt_index * 4);
8479 /* Find out where the .plt entry should go. */
8480 loc = htab->splt->contents + h->plt.offset;
8484 plt_entry = mips_vxworks_shared_plt_entry;
8485 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8486 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8490 bfd_vma got_address_high, got_address_low;
8492 plt_entry = mips_vxworks_exec_plt_entry;
8493 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8494 got_address_low = got_address & 0xffff;
8496 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8497 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8498 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8499 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8500 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8501 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8502 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8503 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8505 loc = (htab->srelplt2->contents
8506 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8508 /* Emit a relocation for the .got.plt entry. */
8509 rel.r_offset = got_address;
8510 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8511 rel.r_addend = h->plt.offset;
8512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8514 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8515 loc += sizeof (Elf32_External_Rela);
8516 rel.r_offset = plt_address + 8;
8517 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8518 rel.r_addend = got_offset;
8519 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8521 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8522 loc += sizeof (Elf32_External_Rela);
8524 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8525 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8528 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8529 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8530 rel.r_offset = got_address;
8531 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8533 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8535 if (!h->def_regular)
8536 sym->st_shndx = SHN_UNDEF;
8539 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8541 sgot = mips_elf_got_section (dynobj, FALSE);
8542 BFD_ASSERT (sgot != NULL);
8543 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8544 g = mips_elf_section_data (sgot)->u.got_info;
8545 BFD_ASSERT (g != NULL);
8547 /* See if this symbol has an entry in the GOT. */
8548 if (g->global_gotsym != NULL
8549 && h->dynindx >= g->global_gotsym->dynindx)
8552 Elf_Internal_Rela outrel;
8556 /* Install the symbol value in the GOT. */
8557 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8558 R_MIPS_GOT16, info);
8559 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8561 /* Add a dynamic relocation for it. */
8562 s = mips_elf_rel_dyn_section (info, FALSE);
8563 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8564 outrel.r_offset = (sgot->output_section->vma
8565 + sgot->output_offset
8567 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8568 outrel.r_addend = 0;
8569 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8572 /* Emit a copy reloc, if needed. */
8575 Elf_Internal_Rela rel;
8577 BFD_ASSERT (h->dynindx != -1);
8579 rel.r_offset = (h->root.u.def.section->output_section->vma
8580 + h->root.u.def.section->output_offset
8581 + h->root.u.def.value);
8582 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8584 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8585 htab->srelbss->contents
8586 + (htab->srelbss->reloc_count
8587 * sizeof (Elf32_External_Rela)));
8588 ++htab->srelbss->reloc_count;
8591 /* If this is a mips16 symbol, force the value to be even. */
8592 if (sym->st_other == STO_MIPS16)
8593 sym->st_value &= ~1;
8598 /* Install the PLT header for a VxWorks executable and finalize the
8599 contents of .rela.plt.unloaded. */
8602 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8604 Elf_Internal_Rela rela;
8606 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8607 static const bfd_vma *plt_entry;
8608 struct mips_elf_link_hash_table *htab;
8610 htab = mips_elf_hash_table (info);
8611 plt_entry = mips_vxworks_exec_plt0_entry;
8613 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8614 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8615 + htab->root.hgot->root.u.def.section->output_offset
8616 + htab->root.hgot->root.u.def.value);
8618 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8619 got_value_low = got_value & 0xffff;
8621 /* Calculate the address of the PLT header. */
8622 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8624 /* Install the PLT header. */
8625 loc = htab->splt->contents;
8626 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8627 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8628 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8629 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8630 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8631 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8633 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8634 loc = htab->srelplt2->contents;
8635 rela.r_offset = plt_address;
8636 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8638 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8639 loc += sizeof (Elf32_External_Rela);
8641 /* Output the relocation for the following addiu of
8642 %lo(_GLOBAL_OFFSET_TABLE_). */
8644 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8645 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8646 loc += sizeof (Elf32_External_Rela);
8648 /* Fix up the remaining relocations. They may have the wrong
8649 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8650 in which symbols were output. */
8651 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8653 Elf_Internal_Rela rel;
8655 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8656 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8657 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8658 loc += sizeof (Elf32_External_Rela);
8660 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8661 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8662 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8663 loc += sizeof (Elf32_External_Rela);
8665 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8666 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8667 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8668 loc += sizeof (Elf32_External_Rela);
8672 /* Install the PLT header for a VxWorks shared library. */
8675 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8678 struct mips_elf_link_hash_table *htab;
8680 htab = mips_elf_hash_table (info);
8682 /* We just need to copy the entry byte-by-byte. */
8683 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8684 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8685 htab->splt->contents + i * 4);
8688 /* Finish up the dynamic sections. */
8691 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8692 struct bfd_link_info *info)
8697 struct mips_got_info *gg, *g;
8698 struct mips_elf_link_hash_table *htab;
8700 htab = mips_elf_hash_table (info);
8701 dynobj = elf_hash_table (info)->dynobj;
8703 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8705 sgot = mips_elf_got_section (dynobj, FALSE);
8710 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8711 gg = mips_elf_section_data (sgot)->u.got_info;
8712 BFD_ASSERT (gg != NULL);
8713 g = mips_elf_got_for_ibfd (gg, output_bfd);
8714 BFD_ASSERT (g != NULL);
8717 if (elf_hash_table (info)->dynamic_sections_created)
8720 int dyn_to_skip = 0, dyn_skipped = 0;
8722 BFD_ASSERT (sdyn != NULL);
8723 BFD_ASSERT (g != NULL);
8725 for (b = sdyn->contents;
8726 b < sdyn->contents + sdyn->size;
8727 b += MIPS_ELF_DYN_SIZE (dynobj))
8729 Elf_Internal_Dyn dyn;
8733 bfd_boolean swap_out_p;
8735 /* Read in the current dynamic entry. */
8736 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8738 /* Assume that we're going to modify it and write it out. */
8744 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8748 BFD_ASSERT (htab->is_vxworks);
8749 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8753 /* Rewrite DT_STRSZ. */
8755 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8760 if (htab->is_vxworks)
8762 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8763 of the ".got" section in DYNOBJ. */
8764 s = bfd_get_section_by_name (dynobj, name);
8765 BFD_ASSERT (s != NULL);
8766 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8770 s = bfd_get_section_by_name (output_bfd, name);
8771 BFD_ASSERT (s != NULL);
8772 dyn.d_un.d_ptr = s->vma;
8776 case DT_MIPS_RLD_VERSION:
8777 dyn.d_un.d_val = 1; /* XXX */
8781 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8784 case DT_MIPS_TIME_STAMP:
8792 case DT_MIPS_ICHECKSUM:
8797 case DT_MIPS_IVERSION:
8802 case DT_MIPS_BASE_ADDRESS:
8803 s = output_bfd->sections;
8804 BFD_ASSERT (s != NULL);
8805 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8808 case DT_MIPS_LOCAL_GOTNO:
8809 dyn.d_un.d_val = g->local_gotno;
8812 case DT_MIPS_UNREFEXTNO:
8813 /* The index into the dynamic symbol table which is the
8814 entry of the first external symbol that is not
8815 referenced within the same object. */
8816 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8819 case DT_MIPS_GOTSYM:
8820 if (gg->global_gotsym)
8822 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8825 /* In case if we don't have global got symbols we default
8826 to setting DT_MIPS_GOTSYM to the same value as
8827 DT_MIPS_SYMTABNO, so we just fall through. */
8829 case DT_MIPS_SYMTABNO:
8831 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8832 s = bfd_get_section_by_name (output_bfd, name);
8833 BFD_ASSERT (s != NULL);
8835 dyn.d_un.d_val = s->size / elemsize;
8838 case DT_MIPS_HIPAGENO:
8839 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8842 case DT_MIPS_RLD_MAP:
8843 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8846 case DT_MIPS_OPTIONS:
8847 s = (bfd_get_section_by_name
8848 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8849 dyn.d_un.d_ptr = s->vma;
8853 BFD_ASSERT (htab->is_vxworks);
8854 /* The count does not include the JUMP_SLOT relocations. */
8856 dyn.d_un.d_val -= htab->srelplt->size;
8860 BFD_ASSERT (htab->is_vxworks);
8861 dyn.d_un.d_val = DT_RELA;
8865 BFD_ASSERT (htab->is_vxworks);
8866 dyn.d_un.d_val = htab->srelplt->size;
8870 BFD_ASSERT (htab->is_vxworks);
8871 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8872 + htab->srelplt->output_offset);
8876 /* If we didn't need any text relocations after all, delete
8878 if (!(info->flags & DF_TEXTREL))
8880 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8886 /* If we didn't need any text relocations after all, clear
8887 DF_TEXTREL from DT_FLAGS. */
8888 if (!(info->flags & DF_TEXTREL))
8889 dyn.d_un.d_val &= ~DF_TEXTREL;
8899 if (swap_out_p || dyn_skipped)
8900 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8901 (dynobj, &dyn, b - dyn_skipped);
8905 dyn_skipped += dyn_to_skip;
8910 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8911 if (dyn_skipped > 0)
8912 memset (b - dyn_skipped, 0, dyn_skipped);
8915 if (sgot != NULL && sgot->size > 0
8916 && !bfd_is_abs_section (sgot->output_section))
8918 if (htab->is_vxworks)
8920 /* The first entry of the global offset table points to the
8921 ".dynamic" section. The second is initialized by the
8922 loader and contains the shared library identifier.
8923 The third is also initialized by the loader and points
8924 to the lazy resolution stub. */
8925 MIPS_ELF_PUT_WORD (output_bfd,
8926 sdyn->output_offset + sdyn->output_section->vma,
8928 MIPS_ELF_PUT_WORD (output_bfd, 0,
8929 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8930 MIPS_ELF_PUT_WORD (output_bfd, 0,
8932 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8936 /* The first entry of the global offset table will be filled at
8937 runtime. The second entry will be used by some runtime loaders.
8938 This isn't the case of IRIX rld. */
8939 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8940 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8941 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8944 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8945 = MIPS_ELF_GOT_SIZE (output_bfd);
8948 /* Generate dynamic relocations for the non-primary gots. */
8949 if (gg != NULL && gg->next)
8951 Elf_Internal_Rela rel[3];
8954 memset (rel, 0, sizeof (rel));
8955 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8957 for (g = gg->next; g->next != gg; g = g->next)
8959 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8960 + g->next->tls_gotno;
8962 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8963 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8964 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8965 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8970 while (index < g->assigned_gotno)
8972 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8973 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8974 if (!(mips_elf_create_dynamic_relocation
8975 (output_bfd, info, rel, NULL,
8976 bfd_abs_section_ptr,
8979 BFD_ASSERT (addend == 0);
8984 /* The generation of dynamic relocations for the non-primary gots
8985 adds more dynamic relocations. We cannot count them until
8988 if (elf_hash_table (info)->dynamic_sections_created)
8991 bfd_boolean swap_out_p;
8993 BFD_ASSERT (sdyn != NULL);
8995 for (b = sdyn->contents;
8996 b < sdyn->contents + sdyn->size;
8997 b += MIPS_ELF_DYN_SIZE (dynobj))
8999 Elf_Internal_Dyn dyn;
9002 /* Read in the current dynamic entry. */
9003 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9005 /* Assume that we're going to modify it and write it out. */
9011 /* Reduce DT_RELSZ to account for any relocations we
9012 decided not to make. This is for the n64 irix rld,
9013 which doesn't seem to apply any relocations if there
9014 are trailing null entries. */
9015 s = mips_elf_rel_dyn_section (info, FALSE);
9016 dyn.d_un.d_val = (s->reloc_count
9017 * (ABI_64_P (output_bfd)
9018 ? sizeof (Elf64_Mips_External_Rel)
9019 : sizeof (Elf32_External_Rel)));
9020 /* Adjust the section size too. Tools like the prelinker
9021 can reasonably expect the values to the same. */
9022 elf_section_data (s->output_section)->this_hdr.sh_size
9032 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9039 Elf32_compact_rel cpt;
9041 if (SGI_COMPAT (output_bfd))
9043 /* Write .compact_rel section out. */
9044 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9048 cpt.num = s->reloc_count;
9050 cpt.offset = (s->output_section->filepos
9051 + sizeof (Elf32_External_compact_rel));
9054 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9055 ((Elf32_External_compact_rel *)
9058 /* Clean up a dummy stub function entry in .text. */
9059 s = bfd_get_section_by_name (dynobj,
9060 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9063 file_ptr dummy_offset;
9065 BFD_ASSERT (s->size >= htab->function_stub_size);
9066 dummy_offset = s->size - htab->function_stub_size;
9067 memset (s->contents + dummy_offset, 0,
9068 htab->function_stub_size);
9073 /* The psABI says that the dynamic relocations must be sorted in
9074 increasing order of r_symndx. The VxWorks EABI doesn't require
9075 this, and because the code below handles REL rather than RELA
9076 relocations, using it for VxWorks would be outright harmful. */
9077 if (!htab->is_vxworks)
9079 s = mips_elf_rel_dyn_section (info, FALSE);
9081 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9083 reldyn_sorting_bfd = output_bfd;
9085 if (ABI_64_P (output_bfd))
9086 qsort ((Elf64_External_Rel *) s->contents + 1,
9087 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9088 sort_dynamic_relocs_64);
9090 qsort ((Elf32_External_Rel *) s->contents + 1,
9091 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9092 sort_dynamic_relocs);
9097 if (htab->is_vxworks && htab->splt->size > 0)
9100 mips_vxworks_finish_shared_plt (output_bfd, info);
9102 mips_vxworks_finish_exec_plt (output_bfd, info);
9108 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9111 mips_set_isa_flags (bfd *abfd)
9115 switch (bfd_get_mach (abfd))
9118 case bfd_mach_mips3000:
9119 val = E_MIPS_ARCH_1;
9122 case bfd_mach_mips3900:
9123 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9126 case bfd_mach_mips6000:
9127 val = E_MIPS_ARCH_2;
9130 case bfd_mach_mips4000:
9131 case bfd_mach_mips4300:
9132 case bfd_mach_mips4400:
9133 case bfd_mach_mips4600:
9134 val = E_MIPS_ARCH_3;
9137 case bfd_mach_mips4010:
9138 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9141 case bfd_mach_mips4100:
9142 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9145 case bfd_mach_mips4111:
9146 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9149 case bfd_mach_mips4120:
9150 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9153 case bfd_mach_mips4650:
9154 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9157 case bfd_mach_mips5400:
9158 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9161 case bfd_mach_mips5500:
9162 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9165 case bfd_mach_mips9000:
9166 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9169 case bfd_mach_mips5000:
9170 case bfd_mach_mips7000:
9171 case bfd_mach_mips8000:
9172 case bfd_mach_mips10000:
9173 case bfd_mach_mips12000:
9174 val = E_MIPS_ARCH_4;
9177 case bfd_mach_mips5:
9178 val = E_MIPS_ARCH_5;
9181 case bfd_mach_mips_sb1:
9182 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9185 case bfd_mach_mipsisa32:
9186 val = E_MIPS_ARCH_32;
9189 case bfd_mach_mipsisa64:
9190 val = E_MIPS_ARCH_64;
9193 case bfd_mach_mipsisa32r2:
9194 val = E_MIPS_ARCH_32R2;
9197 case bfd_mach_mipsisa64r2:
9198 val = E_MIPS_ARCH_64R2;
9201 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9202 elf_elfheader (abfd)->e_flags |= val;
9207 /* The final processing done just before writing out a MIPS ELF object
9208 file. This gets the MIPS architecture right based on the machine
9209 number. This is used by both the 32-bit and the 64-bit ABI. */
9212 _bfd_mips_elf_final_write_processing (bfd *abfd,
9213 bfd_boolean linker ATTRIBUTE_UNUSED)
9216 Elf_Internal_Shdr **hdrpp;
9220 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9221 is nonzero. This is for compatibility with old objects, which used
9222 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9223 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9224 mips_set_isa_flags (abfd);
9226 /* Set the sh_info field for .gptab sections and other appropriate
9227 info for each special section. */
9228 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9229 i < elf_numsections (abfd);
9232 switch ((*hdrpp)->sh_type)
9235 case SHT_MIPS_LIBLIST:
9236 sec = bfd_get_section_by_name (abfd, ".dynstr");
9238 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9241 case SHT_MIPS_GPTAB:
9242 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9243 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9244 BFD_ASSERT (name != NULL
9245 && CONST_STRNEQ (name, ".gptab."));
9246 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9247 BFD_ASSERT (sec != NULL);
9248 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9251 case SHT_MIPS_CONTENT:
9252 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9253 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9254 BFD_ASSERT (name != NULL
9255 && CONST_STRNEQ (name, ".MIPS.content"));
9256 sec = bfd_get_section_by_name (abfd,
9257 name + sizeof ".MIPS.content" - 1);
9258 BFD_ASSERT (sec != NULL);
9259 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9262 case SHT_MIPS_SYMBOL_LIB:
9263 sec = bfd_get_section_by_name (abfd, ".dynsym");
9265 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9266 sec = bfd_get_section_by_name (abfd, ".liblist");
9268 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9271 case SHT_MIPS_EVENTS:
9272 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9273 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9274 BFD_ASSERT (name != NULL);
9275 if (CONST_STRNEQ (name, ".MIPS.events"))
9276 sec = bfd_get_section_by_name (abfd,
9277 name + sizeof ".MIPS.events" - 1);
9280 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9281 sec = bfd_get_section_by_name (abfd,
9283 + sizeof ".MIPS.post_rel" - 1));
9285 BFD_ASSERT (sec != NULL);
9286 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9293 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9297 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9298 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9303 /* See if we need a PT_MIPS_REGINFO segment. */
9304 s = bfd_get_section_by_name (abfd, ".reginfo");
9305 if (s && (s->flags & SEC_LOAD))
9308 /* See if we need a PT_MIPS_OPTIONS segment. */
9309 if (IRIX_COMPAT (abfd) == ict_irix6
9310 && bfd_get_section_by_name (abfd,
9311 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9314 /* See if we need a PT_MIPS_RTPROC segment. */
9315 if (IRIX_COMPAT (abfd) == ict_irix5
9316 && bfd_get_section_by_name (abfd, ".dynamic")
9317 && bfd_get_section_by_name (abfd, ".mdebug"))
9320 /* Allocate a PT_NULL header in dynamic objects. See
9321 _bfd_mips_elf_modify_segment_map for details. */
9322 if (!SGI_COMPAT (abfd)
9323 && bfd_get_section_by_name (abfd, ".dynamic"))
9329 /* Modify the segment map for an IRIX5 executable. */
9332 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9333 struct bfd_link_info *info)
9336 struct elf_segment_map *m, **pm;
9339 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9341 s = bfd_get_section_by_name (abfd, ".reginfo");
9342 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9344 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9345 if (m->p_type == PT_MIPS_REGINFO)
9350 m = bfd_zalloc (abfd, amt);
9354 m->p_type = PT_MIPS_REGINFO;
9358 /* We want to put it after the PHDR and INTERP segments. */
9359 pm = &elf_tdata (abfd)->segment_map;
9361 && ((*pm)->p_type == PT_PHDR
9362 || (*pm)->p_type == PT_INTERP))
9370 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9371 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9372 PT_MIPS_OPTIONS segment immediately following the program header
9375 /* On non-IRIX6 new abi, we'll have already created a segment
9376 for this section, so don't create another. I'm not sure this
9377 is not also the case for IRIX 6, but I can't test it right
9379 && IRIX_COMPAT (abfd) == ict_irix6)
9381 for (s = abfd->sections; s; s = s->next)
9382 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9387 struct elf_segment_map *options_segment;
9389 pm = &elf_tdata (abfd)->segment_map;
9391 && ((*pm)->p_type == PT_PHDR
9392 || (*pm)->p_type == PT_INTERP))
9395 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9397 amt = sizeof (struct elf_segment_map);
9398 options_segment = bfd_zalloc (abfd, amt);
9399 options_segment->next = *pm;
9400 options_segment->p_type = PT_MIPS_OPTIONS;
9401 options_segment->p_flags = PF_R;
9402 options_segment->p_flags_valid = TRUE;
9403 options_segment->count = 1;
9404 options_segment->sections[0] = s;
9405 *pm = options_segment;
9411 if (IRIX_COMPAT (abfd) == ict_irix5)
9413 /* If there are .dynamic and .mdebug sections, we make a room
9414 for the RTPROC header. FIXME: Rewrite without section names. */
9415 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9416 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9417 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9419 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9420 if (m->p_type == PT_MIPS_RTPROC)
9425 m = bfd_zalloc (abfd, amt);
9429 m->p_type = PT_MIPS_RTPROC;
9431 s = bfd_get_section_by_name (abfd, ".rtproc");
9436 m->p_flags_valid = 1;
9444 /* We want to put it after the DYNAMIC segment. */
9445 pm = &elf_tdata (abfd)->segment_map;
9446 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9456 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9457 .dynstr, .dynsym, and .hash sections, and everything in
9459 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9461 if ((*pm)->p_type == PT_DYNAMIC)
9464 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9466 /* For a normal mips executable the permissions for the PT_DYNAMIC
9467 segment are read, write and execute. We do that here since
9468 the code in elf.c sets only the read permission. This matters
9469 sometimes for the dynamic linker. */
9470 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9472 m->p_flags = PF_R | PF_W | PF_X;
9473 m->p_flags_valid = 1;
9476 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9477 glibc's dynamic linker has traditionally derived the number of
9478 tags from the p_filesz field, and sometimes allocates stack
9479 arrays of that size. An overly-big PT_DYNAMIC segment can
9480 be actively harmful in such cases. Making PT_DYNAMIC contain
9481 other sections can also make life hard for the prelinker,
9482 which might move one of the other sections to a different
9484 if (SGI_COMPAT (abfd)
9487 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9489 static const char *sec_names[] =
9491 ".dynamic", ".dynstr", ".dynsym", ".hash"
9495 struct elf_segment_map *n;
9499 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9501 s = bfd_get_section_by_name (abfd, sec_names[i]);
9502 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9509 if (high < s->vma + sz)
9515 for (s = abfd->sections; s != NULL; s = s->next)
9516 if ((s->flags & SEC_LOAD) != 0
9518 && s->vma + s->size <= high)
9521 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9522 n = bfd_zalloc (abfd, amt);
9529 for (s = abfd->sections; s != NULL; s = s->next)
9531 if ((s->flags & SEC_LOAD) != 0
9533 && s->vma + s->size <= high)
9544 /* Allocate a spare program header in dynamic objects so that tools
9545 like the prelinker can add an extra PT_LOAD entry.
9547 If the prelinker needs to make room for a new PT_LOAD entry, its
9548 standard procedure is to move the first (read-only) sections into
9549 the new (writable) segment. However, the MIPS ABI requires
9550 .dynamic to be in a read-only segment, and the section will often
9551 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9553 Although the prelinker could in principle move .dynamic to a
9554 writable segment, it seems better to allocate a spare program
9555 header instead, and avoid the need to move any sections.
9556 There is a long tradition of allocating spare dynamic tags,
9557 so allocating a spare program header seems like a natural
9560 If INFO is NULL, we may be copying an already prelinked binary
9561 with objcopy or strip, so do not add this header. */
9563 && !SGI_COMPAT (abfd)
9564 && bfd_get_section_by_name (abfd, ".dynamic"))
9566 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9567 if ((*pm)->p_type == PT_NULL)
9571 m = bfd_zalloc (abfd, sizeof (*m));
9575 m->p_type = PT_NULL;
9583 /* Return the section that should be marked against GC for a given
9587 _bfd_mips_elf_gc_mark_hook (asection *sec,
9588 struct bfd_link_info *info,
9589 Elf_Internal_Rela *rel,
9590 struct elf_link_hash_entry *h,
9591 Elf_Internal_Sym *sym)
9593 /* ??? Do mips16 stub sections need to be handled special? */
9596 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9598 case R_MIPS_GNU_VTINHERIT:
9599 case R_MIPS_GNU_VTENTRY:
9603 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9606 /* Update the got entry reference counts for the section being removed. */
9609 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9610 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9611 asection *sec ATTRIBUTE_UNUSED,
9612 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9615 Elf_Internal_Shdr *symtab_hdr;
9616 struct elf_link_hash_entry **sym_hashes;
9617 bfd_signed_vma *local_got_refcounts;
9618 const Elf_Internal_Rela *rel, *relend;
9619 unsigned long r_symndx;
9620 struct elf_link_hash_entry *h;
9622 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9623 sym_hashes = elf_sym_hashes (abfd);
9624 local_got_refcounts = elf_local_got_refcounts (abfd);
9626 relend = relocs + sec->reloc_count;
9627 for (rel = relocs; rel < relend; rel++)
9628 switch (ELF_R_TYPE (abfd, rel->r_info))
9632 case R_MIPS_CALL_HI16:
9633 case R_MIPS_CALL_LO16:
9634 case R_MIPS_GOT_HI16:
9635 case R_MIPS_GOT_LO16:
9636 case R_MIPS_GOT_DISP:
9637 case R_MIPS_GOT_PAGE:
9638 case R_MIPS_GOT_OFST:
9639 /* ??? It would seem that the existing MIPS code does no sort
9640 of reference counting or whatnot on its GOT and PLT entries,
9641 so it is not possible to garbage collect them at this time. */
9652 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9653 hiding the old indirect symbol. Process additional relocation
9654 information. Also called for weakdefs, in which case we just let
9655 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9658 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9659 struct elf_link_hash_entry *dir,
9660 struct elf_link_hash_entry *ind)
9662 struct mips_elf_link_hash_entry *dirmips, *indmips;
9664 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9666 if (ind->root.type != bfd_link_hash_indirect)
9669 dirmips = (struct mips_elf_link_hash_entry *) dir;
9670 indmips = (struct mips_elf_link_hash_entry *) ind;
9671 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9672 if (indmips->readonly_reloc)
9673 dirmips->readonly_reloc = TRUE;
9674 if (indmips->no_fn_stub)
9675 dirmips->no_fn_stub = TRUE;
9677 if (dirmips->tls_type == 0)
9678 dirmips->tls_type = indmips->tls_type;
9682 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9683 struct elf_link_hash_entry *entry,
9684 bfd_boolean force_local)
9688 struct mips_got_info *g;
9689 struct mips_elf_link_hash_entry *h;
9690 struct mips_elf_link_hash_table *htab;
9692 h = (struct mips_elf_link_hash_entry *) entry;
9693 if (h->forced_local)
9695 h->forced_local = force_local;
9697 dynobj = elf_hash_table (info)->dynobj;
9698 htab = mips_elf_hash_table (info);
9699 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9700 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9701 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9705 struct mips_got_entry e;
9706 struct mips_got_info *gg = g;
9708 /* Since we're turning what used to be a global symbol into a
9709 local one, bump up the number of local entries of each GOT
9710 that had an entry for it. This will automatically decrease
9711 the number of global entries, since global_gotno is actually
9712 the upper limit of global entries. */
9718 for (g = g->next; g != gg; g = g->next)
9719 if (htab_find (g->got_entries, &e))
9721 BFD_ASSERT (g->global_gotno > 0);
9726 /* If this was a global symbol forced into the primary GOT, we
9727 no longer need an entry for it. We can't release the entry
9728 at this point, but we must at least stop counting it as one
9729 of the symbols that required a forced got entry. */
9730 if (h->root.got.offset == 2)
9732 BFD_ASSERT (gg->assigned_gotno > 0);
9733 gg->assigned_gotno--;
9736 else if (h->root.got.offset == 1)
9738 /* check_relocs didn't know that this symbol would be
9739 forced-local, so add an extra local got entry. */
9741 if (htab->computed_got_sizes)
9743 /* We'll have treated this symbol as global rather
9745 BFD_ASSERT (g->global_gotno > 0);
9749 else if (htab->is_vxworks && h->root.needs_plt)
9751 /* check_relocs didn't know that this symbol would be
9752 forced-local, so add an extra local got entry. */
9754 if (htab->computed_got_sizes)
9755 /* The symbol is only used in call relocations, so we'll
9756 have assumed it only needs a .got.plt entry. Increase
9757 the size of .got accordingly. */
9758 got->size += MIPS_ELF_GOT_SIZE (dynobj);
9762 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9768 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9769 struct bfd_link_info *info)
9772 bfd_boolean ret = FALSE;
9773 unsigned char *tdata;
9776 o = bfd_get_section_by_name (abfd, ".pdr");
9781 if (o->size % PDR_SIZE != 0)
9783 if (o->output_section != NULL
9784 && bfd_is_abs_section (o->output_section))
9787 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9791 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9799 cookie->rel = cookie->rels;
9800 cookie->relend = cookie->rels + o->reloc_count;
9802 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9804 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9813 mips_elf_section_data (o)->u.tdata = tdata;
9814 o->size -= skip * PDR_SIZE;
9820 if (! info->keep_memory)
9821 free (cookie->rels);
9827 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9829 if (strcmp (sec->name, ".pdr") == 0)
9835 _bfd_mips_elf_write_section (bfd *output_bfd,
9836 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9837 asection *sec, bfd_byte *contents)
9839 bfd_byte *to, *from, *end;
9842 if (strcmp (sec->name, ".pdr") != 0)
9845 if (mips_elf_section_data (sec)->u.tdata == NULL)
9849 end = contents + sec->size;
9850 for (from = contents, i = 0;
9852 from += PDR_SIZE, i++)
9854 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9857 memcpy (to, from, PDR_SIZE);
9860 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9861 sec->output_offset, sec->size);
9865 /* MIPS ELF uses a special find_nearest_line routine in order the
9866 handle the ECOFF debugging information. */
9868 struct mips_elf_find_line
9870 struct ecoff_debug_info d;
9871 struct ecoff_find_line i;
9875 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9876 asymbol **symbols, bfd_vma offset,
9877 const char **filename_ptr,
9878 const char **functionname_ptr,
9879 unsigned int *line_ptr)
9883 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9884 filename_ptr, functionname_ptr,
9888 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9889 filename_ptr, functionname_ptr,
9890 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9891 &elf_tdata (abfd)->dwarf2_find_line_info))
9894 msec = bfd_get_section_by_name (abfd, ".mdebug");
9898 struct mips_elf_find_line *fi;
9899 const struct ecoff_debug_swap * const swap =
9900 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9902 /* If we are called during a link, mips_elf_final_link may have
9903 cleared the SEC_HAS_CONTENTS field. We force it back on here
9904 if appropriate (which it normally will be). */
9905 origflags = msec->flags;
9906 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9907 msec->flags |= SEC_HAS_CONTENTS;
9909 fi = elf_tdata (abfd)->find_line_info;
9912 bfd_size_type external_fdr_size;
9915 struct fdr *fdr_ptr;
9916 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9918 fi = bfd_zalloc (abfd, amt);
9921 msec->flags = origflags;
9925 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9927 msec->flags = origflags;
9931 /* Swap in the FDR information. */
9932 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9933 fi->d.fdr = bfd_alloc (abfd, amt);
9934 if (fi->d.fdr == NULL)
9936 msec->flags = origflags;
9939 external_fdr_size = swap->external_fdr_size;
9940 fdr_ptr = fi->d.fdr;
9941 fraw_src = (char *) fi->d.external_fdr;
9942 fraw_end = (fraw_src
9943 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9944 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9945 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9947 elf_tdata (abfd)->find_line_info = fi;
9949 /* Note that we don't bother to ever free this information.
9950 find_nearest_line is either called all the time, as in
9951 objdump -l, so the information should be saved, or it is
9952 rarely called, as in ld error messages, so the memory
9953 wasted is unimportant. Still, it would probably be a
9954 good idea for free_cached_info to throw it away. */
9957 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9958 &fi->i, filename_ptr, functionname_ptr,
9961 msec->flags = origflags;
9965 msec->flags = origflags;
9968 /* Fall back on the generic ELF find_nearest_line routine. */
9970 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9971 filename_ptr, functionname_ptr,
9976 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9977 const char **filename_ptr,
9978 const char **functionname_ptr,
9979 unsigned int *line_ptr)
9982 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9983 functionname_ptr, line_ptr,
9984 & elf_tdata (abfd)->dwarf2_find_line_info);
9989 /* When are writing out the .options or .MIPS.options section,
9990 remember the bytes we are writing out, so that we can install the
9991 GP value in the section_processing routine. */
9994 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9995 const void *location,
9996 file_ptr offset, bfd_size_type count)
9998 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
10002 if (elf_section_data (section) == NULL)
10004 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10005 section->used_by_bfd = bfd_zalloc (abfd, amt);
10006 if (elf_section_data (section) == NULL)
10009 c = mips_elf_section_data (section)->u.tdata;
10012 c = bfd_zalloc (abfd, section->size);
10015 mips_elf_section_data (section)->u.tdata = c;
10018 memcpy (c + offset, location, count);
10021 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10025 /* This is almost identical to bfd_generic_get_... except that some
10026 MIPS relocations need to be handled specially. Sigh. */
10029 _bfd_elf_mips_get_relocated_section_contents
10031 struct bfd_link_info *link_info,
10032 struct bfd_link_order *link_order,
10034 bfd_boolean relocatable,
10037 /* Get enough memory to hold the stuff */
10038 bfd *input_bfd = link_order->u.indirect.section->owner;
10039 asection *input_section = link_order->u.indirect.section;
10042 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10043 arelent **reloc_vector = NULL;
10046 if (reloc_size < 0)
10049 reloc_vector = bfd_malloc (reloc_size);
10050 if (reloc_vector == NULL && reloc_size != 0)
10053 /* read in the section */
10054 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10055 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10058 reloc_count = bfd_canonicalize_reloc (input_bfd,
10062 if (reloc_count < 0)
10065 if (reloc_count > 0)
10070 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10073 struct bfd_hash_entry *h;
10074 struct bfd_link_hash_entry *lh;
10075 /* Skip all this stuff if we aren't mixing formats. */
10076 if (abfd && input_bfd
10077 && abfd->xvec == input_bfd->xvec)
10081 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10082 lh = (struct bfd_link_hash_entry *) h;
10089 case bfd_link_hash_undefined:
10090 case bfd_link_hash_undefweak:
10091 case bfd_link_hash_common:
10094 case bfd_link_hash_defined:
10095 case bfd_link_hash_defweak:
10097 gp = lh->u.def.value;
10099 case bfd_link_hash_indirect:
10100 case bfd_link_hash_warning:
10102 /* @@FIXME ignoring warning for now */
10104 case bfd_link_hash_new:
10113 for (parent = reloc_vector; *parent != NULL; parent++)
10115 char *error_message = NULL;
10116 bfd_reloc_status_type r;
10118 /* Specific to MIPS: Deal with relocation types that require
10119 knowing the gp of the output bfd. */
10120 asymbol *sym = *(*parent)->sym_ptr_ptr;
10122 /* If we've managed to find the gp and have a special
10123 function for the relocation then go ahead, else default
10124 to the generic handling. */
10126 && (*parent)->howto->special_function
10127 == _bfd_mips_elf32_gprel16_reloc)
10128 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10129 input_section, relocatable,
10132 r = bfd_perform_relocation (input_bfd, *parent, data,
10134 relocatable ? abfd : NULL,
10139 asection *os = input_section->output_section;
10141 /* A partial link, so keep the relocs */
10142 os->orelocation[os->reloc_count] = *parent;
10146 if (r != bfd_reloc_ok)
10150 case bfd_reloc_undefined:
10151 if (!((*link_info->callbacks->undefined_symbol)
10152 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10153 input_bfd, input_section, (*parent)->address, TRUE)))
10156 case bfd_reloc_dangerous:
10157 BFD_ASSERT (error_message != NULL);
10158 if (!((*link_info->callbacks->reloc_dangerous)
10159 (link_info, error_message, input_bfd, input_section,
10160 (*parent)->address)))
10163 case bfd_reloc_overflow:
10164 if (!((*link_info->callbacks->reloc_overflow)
10166 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10167 (*parent)->howto->name, (*parent)->addend,
10168 input_bfd, input_section, (*parent)->address)))
10171 case bfd_reloc_outofrange:
10180 if (reloc_vector != NULL)
10181 free (reloc_vector);
10185 if (reloc_vector != NULL)
10186 free (reloc_vector);
10190 /* Create a MIPS ELF linker hash table. */
10192 struct bfd_link_hash_table *
10193 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10195 struct mips_elf_link_hash_table *ret;
10196 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10198 ret = bfd_malloc (amt);
10202 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10203 mips_elf_link_hash_newfunc,
10204 sizeof (struct mips_elf_link_hash_entry)))
10211 /* We no longer use this. */
10212 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10213 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10215 ret->procedure_count = 0;
10216 ret->compact_rel_size = 0;
10217 ret->use_rld_obj_head = FALSE;
10218 ret->rld_value = 0;
10219 ret->mips16_stubs_seen = FALSE;
10220 ret->computed_got_sizes = FALSE;
10221 ret->is_vxworks = FALSE;
10222 ret->small_data_overflow_reported = FALSE;
10223 ret->srelbss = NULL;
10224 ret->sdynbss = NULL;
10225 ret->srelplt = NULL;
10226 ret->srelplt2 = NULL;
10227 ret->sgotplt = NULL;
10229 ret->plt_header_size = 0;
10230 ret->plt_entry_size = 0;
10231 ret->function_stub_size = 0;
10233 return &ret->root.root;
10236 /* Likewise, but indicate that the target is VxWorks. */
10238 struct bfd_link_hash_table *
10239 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10241 struct bfd_link_hash_table *ret;
10243 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10246 struct mips_elf_link_hash_table *htab;
10248 htab = (struct mips_elf_link_hash_table *) ret;
10249 htab->is_vxworks = 1;
10254 /* We need to use a special link routine to handle the .reginfo and
10255 the .mdebug sections. We need to merge all instances of these
10256 sections together, not write them all out sequentially. */
10259 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10262 struct bfd_link_order *p;
10263 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10264 asection *rtproc_sec;
10265 Elf32_RegInfo reginfo;
10266 struct ecoff_debug_info debug;
10267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10268 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10269 HDRR *symhdr = &debug.symbolic_header;
10270 void *mdebug_handle = NULL;
10275 struct mips_elf_link_hash_table *htab;
10277 static const char * const secname[] =
10279 ".text", ".init", ".fini", ".data",
10280 ".rodata", ".sdata", ".sbss", ".bss"
10282 static const int sc[] =
10284 scText, scInit, scFini, scData,
10285 scRData, scSData, scSBss, scBss
10288 /* We'd carefully arranged the dynamic symbol indices, and then the
10289 generic size_dynamic_sections renumbered them out from under us.
10290 Rather than trying somehow to prevent the renumbering, just do
10292 htab = mips_elf_hash_table (info);
10293 if (elf_hash_table (info)->dynamic_sections_created)
10297 struct mips_got_info *g;
10298 bfd_size_type dynsecsymcount;
10300 /* When we resort, we must tell mips_elf_sort_hash_table what
10301 the lowest index it may use is. That's the number of section
10302 symbols we're going to add. The generic ELF linker only
10303 adds these symbols when building a shared object. Note that
10304 we count the sections after (possibly) removing the .options
10307 dynsecsymcount = count_section_dynsyms (abfd, info);
10308 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10311 /* Make sure we didn't grow the global .got region. */
10312 dynobj = elf_hash_table (info)->dynobj;
10313 got = mips_elf_got_section (dynobj, FALSE);
10314 g = mips_elf_section_data (got)->u.got_info;
10316 if (g->global_gotsym != NULL)
10317 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10318 - g->global_gotsym->dynindx)
10319 <= g->global_gotno);
10322 /* Get a value for the GP register. */
10323 if (elf_gp (abfd) == 0)
10325 struct bfd_link_hash_entry *h;
10327 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10328 if (h != NULL && h->type == bfd_link_hash_defined)
10329 elf_gp (abfd) = (h->u.def.value
10330 + h->u.def.section->output_section->vma
10331 + h->u.def.section->output_offset);
10332 else if (htab->is_vxworks
10333 && (h = bfd_link_hash_lookup (info->hash,
10334 "_GLOBAL_OFFSET_TABLE_",
10335 FALSE, FALSE, TRUE))
10336 && h->type == bfd_link_hash_defined)
10337 elf_gp (abfd) = (h->u.def.section->output_section->vma
10338 + h->u.def.section->output_offset
10340 else if (info->relocatable)
10342 bfd_vma lo = MINUS_ONE;
10344 /* Find the GP-relative section with the lowest offset. */
10345 for (o = abfd->sections; o != NULL; o = o->next)
10347 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10350 /* And calculate GP relative to that. */
10351 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10355 /* If the relocate_section function needs to do a reloc
10356 involving the GP value, it should make a reloc_dangerous
10357 callback to warn that GP is not defined. */
10361 /* Go through the sections and collect the .reginfo and .mdebug
10363 reginfo_sec = NULL;
10365 gptab_data_sec = NULL;
10366 gptab_bss_sec = NULL;
10367 for (o = abfd->sections; o != NULL; o = o->next)
10369 if (strcmp (o->name, ".reginfo") == 0)
10371 memset (®info, 0, sizeof reginfo);
10373 /* We have found the .reginfo section in the output file.
10374 Look through all the link_orders comprising it and merge
10375 the information together. */
10376 for (p = o->map_head.link_order; p != NULL; p = p->next)
10378 asection *input_section;
10380 Elf32_External_RegInfo ext;
10383 if (p->type != bfd_indirect_link_order)
10385 if (p->type == bfd_data_link_order)
10390 input_section = p->u.indirect.section;
10391 input_bfd = input_section->owner;
10393 if (! bfd_get_section_contents (input_bfd, input_section,
10394 &ext, 0, sizeof ext))
10397 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10399 reginfo.ri_gprmask |= sub.ri_gprmask;
10400 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10401 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10402 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10403 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10405 /* ri_gp_value is set by the function
10406 mips_elf32_section_processing when the section is
10407 finally written out. */
10409 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10410 elf_link_input_bfd ignores this section. */
10411 input_section->flags &= ~SEC_HAS_CONTENTS;
10414 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10415 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10417 /* Skip this section later on (I don't think this currently
10418 matters, but someday it might). */
10419 o->map_head.link_order = NULL;
10424 if (strcmp (o->name, ".mdebug") == 0)
10426 struct extsym_info einfo;
10429 /* We have found the .mdebug section in the output file.
10430 Look through all the link_orders comprising it and merge
10431 the information together. */
10432 symhdr->magic = swap->sym_magic;
10433 /* FIXME: What should the version stamp be? */
10434 symhdr->vstamp = 0;
10435 symhdr->ilineMax = 0;
10436 symhdr->cbLine = 0;
10437 symhdr->idnMax = 0;
10438 symhdr->ipdMax = 0;
10439 symhdr->isymMax = 0;
10440 symhdr->ioptMax = 0;
10441 symhdr->iauxMax = 0;
10442 symhdr->issMax = 0;
10443 symhdr->issExtMax = 0;
10444 symhdr->ifdMax = 0;
10446 symhdr->iextMax = 0;
10448 /* We accumulate the debugging information itself in the
10449 debug_info structure. */
10451 debug.external_dnr = NULL;
10452 debug.external_pdr = NULL;
10453 debug.external_sym = NULL;
10454 debug.external_opt = NULL;
10455 debug.external_aux = NULL;
10457 debug.ssext = debug.ssext_end = NULL;
10458 debug.external_fdr = NULL;
10459 debug.external_rfd = NULL;
10460 debug.external_ext = debug.external_ext_end = NULL;
10462 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10463 if (mdebug_handle == NULL)
10467 esym.cobol_main = 0;
10471 esym.asym.iss = issNil;
10472 esym.asym.st = stLocal;
10473 esym.asym.reserved = 0;
10474 esym.asym.index = indexNil;
10476 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10478 esym.asym.sc = sc[i];
10479 s = bfd_get_section_by_name (abfd, secname[i]);
10482 esym.asym.value = s->vma;
10483 last = s->vma + s->size;
10486 esym.asym.value = last;
10487 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10488 secname[i], &esym))
10492 for (p = o->map_head.link_order; p != NULL; p = p->next)
10494 asection *input_section;
10496 const struct ecoff_debug_swap *input_swap;
10497 struct ecoff_debug_info input_debug;
10501 if (p->type != bfd_indirect_link_order)
10503 if (p->type == bfd_data_link_order)
10508 input_section = p->u.indirect.section;
10509 input_bfd = input_section->owner;
10511 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10512 || (get_elf_backend_data (input_bfd)
10513 ->elf_backend_ecoff_debug_swap) == NULL)
10515 /* I don't know what a non MIPS ELF bfd would be
10516 doing with a .mdebug section, but I don't really
10517 want to deal with it. */
10521 input_swap = (get_elf_backend_data (input_bfd)
10522 ->elf_backend_ecoff_debug_swap);
10524 BFD_ASSERT (p->size == input_section->size);
10526 /* The ECOFF linking code expects that we have already
10527 read in the debugging information and set up an
10528 ecoff_debug_info structure, so we do that now. */
10529 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10533 if (! (bfd_ecoff_debug_accumulate
10534 (mdebug_handle, abfd, &debug, swap, input_bfd,
10535 &input_debug, input_swap, info)))
10538 /* Loop through the external symbols. For each one with
10539 interesting information, try to find the symbol in
10540 the linker global hash table and save the information
10541 for the output external symbols. */
10542 eraw_src = input_debug.external_ext;
10543 eraw_end = (eraw_src
10544 + (input_debug.symbolic_header.iextMax
10545 * input_swap->external_ext_size));
10547 eraw_src < eraw_end;
10548 eraw_src += input_swap->external_ext_size)
10552 struct mips_elf_link_hash_entry *h;
10554 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10555 if (ext.asym.sc == scNil
10556 || ext.asym.sc == scUndefined
10557 || ext.asym.sc == scSUndefined)
10560 name = input_debug.ssext + ext.asym.iss;
10561 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10562 name, FALSE, FALSE, TRUE);
10563 if (h == NULL || h->esym.ifd != -2)
10568 BFD_ASSERT (ext.ifd
10569 < input_debug.symbolic_header.ifdMax);
10570 ext.ifd = input_debug.ifdmap[ext.ifd];
10576 /* Free up the information we just read. */
10577 free (input_debug.line);
10578 free (input_debug.external_dnr);
10579 free (input_debug.external_pdr);
10580 free (input_debug.external_sym);
10581 free (input_debug.external_opt);
10582 free (input_debug.external_aux);
10583 free (input_debug.ss);
10584 free (input_debug.ssext);
10585 free (input_debug.external_fdr);
10586 free (input_debug.external_rfd);
10587 free (input_debug.external_ext);
10589 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10590 elf_link_input_bfd ignores this section. */
10591 input_section->flags &= ~SEC_HAS_CONTENTS;
10594 if (SGI_COMPAT (abfd) && info->shared)
10596 /* Create .rtproc section. */
10597 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10598 if (rtproc_sec == NULL)
10600 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10601 | SEC_LINKER_CREATED | SEC_READONLY);
10603 rtproc_sec = bfd_make_section_with_flags (abfd,
10606 if (rtproc_sec == NULL
10607 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10611 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10617 /* Build the external symbol information. */
10620 einfo.debug = &debug;
10622 einfo.failed = FALSE;
10623 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10624 mips_elf_output_extsym, &einfo);
10628 /* Set the size of the .mdebug section. */
10629 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10631 /* Skip this section later on (I don't think this currently
10632 matters, but someday it might). */
10633 o->map_head.link_order = NULL;
10638 if (CONST_STRNEQ (o->name, ".gptab."))
10640 const char *subname;
10643 Elf32_External_gptab *ext_tab;
10646 /* The .gptab.sdata and .gptab.sbss sections hold
10647 information describing how the small data area would
10648 change depending upon the -G switch. These sections
10649 not used in executables files. */
10650 if (! info->relocatable)
10652 for (p = o->map_head.link_order; p != NULL; p = p->next)
10654 asection *input_section;
10656 if (p->type != bfd_indirect_link_order)
10658 if (p->type == bfd_data_link_order)
10663 input_section = p->u.indirect.section;
10665 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10666 elf_link_input_bfd ignores this section. */
10667 input_section->flags &= ~SEC_HAS_CONTENTS;
10670 /* Skip this section later on (I don't think this
10671 currently matters, but someday it might). */
10672 o->map_head.link_order = NULL;
10674 /* Really remove the section. */
10675 bfd_section_list_remove (abfd, o);
10676 --abfd->section_count;
10681 /* There is one gptab for initialized data, and one for
10682 uninitialized data. */
10683 if (strcmp (o->name, ".gptab.sdata") == 0)
10684 gptab_data_sec = o;
10685 else if (strcmp (o->name, ".gptab.sbss") == 0)
10689 (*_bfd_error_handler)
10690 (_("%s: illegal section name `%s'"),
10691 bfd_get_filename (abfd), o->name);
10692 bfd_set_error (bfd_error_nonrepresentable_section);
10696 /* The linker script always combines .gptab.data and
10697 .gptab.sdata into .gptab.sdata, and likewise for
10698 .gptab.bss and .gptab.sbss. It is possible that there is
10699 no .sdata or .sbss section in the output file, in which
10700 case we must change the name of the output section. */
10701 subname = o->name + sizeof ".gptab" - 1;
10702 if (bfd_get_section_by_name (abfd, subname) == NULL)
10704 if (o == gptab_data_sec)
10705 o->name = ".gptab.data";
10707 o->name = ".gptab.bss";
10708 subname = o->name + sizeof ".gptab" - 1;
10709 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10712 /* Set up the first entry. */
10714 amt = c * sizeof (Elf32_gptab);
10715 tab = bfd_malloc (amt);
10718 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10719 tab[0].gt_header.gt_unused = 0;
10721 /* Combine the input sections. */
10722 for (p = o->map_head.link_order; p != NULL; p = p->next)
10724 asection *input_section;
10726 bfd_size_type size;
10727 unsigned long last;
10728 bfd_size_type gpentry;
10730 if (p->type != bfd_indirect_link_order)
10732 if (p->type == bfd_data_link_order)
10737 input_section = p->u.indirect.section;
10738 input_bfd = input_section->owner;
10740 /* Combine the gptab entries for this input section one
10741 by one. We know that the input gptab entries are
10742 sorted by ascending -G value. */
10743 size = input_section->size;
10745 for (gpentry = sizeof (Elf32_External_gptab);
10747 gpentry += sizeof (Elf32_External_gptab))
10749 Elf32_External_gptab ext_gptab;
10750 Elf32_gptab int_gptab;
10756 if (! (bfd_get_section_contents
10757 (input_bfd, input_section, &ext_gptab, gpentry,
10758 sizeof (Elf32_External_gptab))))
10764 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10766 val = int_gptab.gt_entry.gt_g_value;
10767 add = int_gptab.gt_entry.gt_bytes - last;
10770 for (look = 1; look < c; look++)
10772 if (tab[look].gt_entry.gt_g_value >= val)
10773 tab[look].gt_entry.gt_bytes += add;
10775 if (tab[look].gt_entry.gt_g_value == val)
10781 Elf32_gptab *new_tab;
10784 /* We need a new table entry. */
10785 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10786 new_tab = bfd_realloc (tab, amt);
10787 if (new_tab == NULL)
10793 tab[c].gt_entry.gt_g_value = val;
10794 tab[c].gt_entry.gt_bytes = add;
10796 /* Merge in the size for the next smallest -G
10797 value, since that will be implied by this new
10800 for (look = 1; look < c; look++)
10802 if (tab[look].gt_entry.gt_g_value < val
10804 || (tab[look].gt_entry.gt_g_value
10805 > tab[max].gt_entry.gt_g_value)))
10809 tab[c].gt_entry.gt_bytes +=
10810 tab[max].gt_entry.gt_bytes;
10815 last = int_gptab.gt_entry.gt_bytes;
10818 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10819 elf_link_input_bfd ignores this section. */
10820 input_section->flags &= ~SEC_HAS_CONTENTS;
10823 /* The table must be sorted by -G value. */
10825 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10827 /* Swap out the table. */
10828 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10829 ext_tab = bfd_alloc (abfd, amt);
10830 if (ext_tab == NULL)
10836 for (j = 0; j < c; j++)
10837 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10840 o->size = c * sizeof (Elf32_External_gptab);
10841 o->contents = (bfd_byte *) ext_tab;
10843 /* Skip this section later on (I don't think this currently
10844 matters, but someday it might). */
10845 o->map_head.link_order = NULL;
10849 /* Invoke the regular ELF backend linker to do all the work. */
10850 if (!bfd_elf_final_link (abfd, info))
10853 /* Now write out the computed sections. */
10855 if (reginfo_sec != NULL)
10857 Elf32_External_RegInfo ext;
10859 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
10860 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10864 if (mdebug_sec != NULL)
10866 BFD_ASSERT (abfd->output_has_begun);
10867 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10869 mdebug_sec->filepos))
10872 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10875 if (gptab_data_sec != NULL)
10877 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10878 gptab_data_sec->contents,
10879 0, gptab_data_sec->size))
10883 if (gptab_bss_sec != NULL)
10885 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10886 gptab_bss_sec->contents,
10887 0, gptab_bss_sec->size))
10891 if (SGI_COMPAT (abfd))
10893 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10894 if (rtproc_sec != NULL)
10896 if (! bfd_set_section_contents (abfd, rtproc_sec,
10897 rtproc_sec->contents,
10898 0, rtproc_sec->size))
10906 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10908 struct mips_mach_extension {
10909 unsigned long extension, base;
10913 /* An array describing how BFD machines relate to one another. The entries
10914 are ordered topologically with MIPS I extensions listed last. */
10916 static const struct mips_mach_extension mips_mach_extensions[] = {
10917 /* MIPS64 extensions. */
10918 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10919 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10921 /* MIPS V extensions. */
10922 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10924 /* R10000 extensions. */
10925 { bfd_mach_mips12000, bfd_mach_mips10000 },
10927 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10928 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10929 better to allow vr5400 and vr5500 code to be merged anyway, since
10930 many libraries will just use the core ISA. Perhaps we could add
10931 some sort of ASE flag if this ever proves a problem. */
10932 { bfd_mach_mips5500, bfd_mach_mips5400 },
10933 { bfd_mach_mips5400, bfd_mach_mips5000 },
10935 /* MIPS IV extensions. */
10936 { bfd_mach_mips5, bfd_mach_mips8000 },
10937 { bfd_mach_mips10000, bfd_mach_mips8000 },
10938 { bfd_mach_mips5000, bfd_mach_mips8000 },
10939 { bfd_mach_mips7000, bfd_mach_mips8000 },
10940 { bfd_mach_mips9000, bfd_mach_mips8000 },
10942 /* VR4100 extensions. */
10943 { bfd_mach_mips4120, bfd_mach_mips4100 },
10944 { bfd_mach_mips4111, bfd_mach_mips4100 },
10946 /* MIPS III extensions. */
10947 { bfd_mach_mips8000, bfd_mach_mips4000 },
10948 { bfd_mach_mips4650, bfd_mach_mips4000 },
10949 { bfd_mach_mips4600, bfd_mach_mips4000 },
10950 { bfd_mach_mips4400, bfd_mach_mips4000 },
10951 { bfd_mach_mips4300, bfd_mach_mips4000 },
10952 { bfd_mach_mips4100, bfd_mach_mips4000 },
10953 { bfd_mach_mips4010, bfd_mach_mips4000 },
10955 /* MIPS32 extensions. */
10956 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10958 /* MIPS II extensions. */
10959 { bfd_mach_mips4000, bfd_mach_mips6000 },
10960 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10962 /* MIPS I extensions. */
10963 { bfd_mach_mips6000, bfd_mach_mips3000 },
10964 { bfd_mach_mips3900, bfd_mach_mips3000 }
10968 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10971 mips_mach_extends_p (unsigned long base, unsigned long extension)
10975 if (extension == base)
10978 if (base == bfd_mach_mipsisa32
10979 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10982 if (base == bfd_mach_mipsisa32r2
10983 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10986 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10987 if (extension == mips_mach_extensions[i].extension)
10989 extension = mips_mach_extensions[i].base;
10990 if (extension == base)
10998 /* Return true if the given ELF header flags describe a 32-bit binary. */
11001 mips_32bit_flags_p (flagword flags)
11003 return ((flags & EF_MIPS_32BITMODE) != 0
11004 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11005 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11006 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11007 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11008 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11009 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11013 /* Merge object attributes from IBFD into OBFD. Raise an error if
11014 there are conflicting attributes. */
11016 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11018 obj_attribute *in_attr;
11019 obj_attribute *out_attr;
11021 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11023 /* This is the first object. Copy the attributes. */
11024 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11026 /* Use the Tag_null value to indicate the attributes have been
11028 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11033 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11034 non-conflicting ones. */
11035 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11036 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11037 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11039 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11040 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11041 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11042 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11044 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11046 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11047 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11048 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11050 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11051 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11053 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11056 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11060 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11065 (_("Warning: %B uses hard float, %B uses soft float"),
11075 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11079 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11084 (_("Warning: %B uses hard float, %B uses soft float"),
11094 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11099 (_("Warning: %B uses hard float, %B uses soft float"),
11113 /* Merge Tag_compatibility attributes and any common GNU ones. */
11114 _bfd_elf_merge_object_attributes (ibfd, obfd);
11119 /* Merge backend specific data from an object file to the output
11120 object file when linking. */
11123 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11125 flagword old_flags;
11126 flagword new_flags;
11128 bfd_boolean null_input_bfd = TRUE;
11131 /* Check if we have the same endianess */
11132 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11134 (*_bfd_error_handler)
11135 (_("%B: endianness incompatible with that of the selected emulation"),
11140 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11141 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11144 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11146 (*_bfd_error_handler)
11147 (_("%B: ABI is incompatible with that of the selected emulation"),
11152 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11155 new_flags = elf_elfheader (ibfd)->e_flags;
11156 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11157 old_flags = elf_elfheader (obfd)->e_flags;
11159 if (! elf_flags_init (obfd))
11161 elf_flags_init (obfd) = TRUE;
11162 elf_elfheader (obfd)->e_flags = new_flags;
11163 elf_elfheader (obfd)->e_ident[EI_CLASS]
11164 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11166 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11167 && (bfd_get_arch_info (obfd)->the_default
11168 || mips_mach_extends_p (bfd_get_mach (obfd),
11169 bfd_get_mach (ibfd))))
11171 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11172 bfd_get_mach (ibfd)))
11179 /* Check flag compatibility. */
11181 new_flags &= ~EF_MIPS_NOREORDER;
11182 old_flags &= ~EF_MIPS_NOREORDER;
11184 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11185 doesn't seem to matter. */
11186 new_flags &= ~EF_MIPS_XGOT;
11187 old_flags &= ~EF_MIPS_XGOT;
11189 /* MIPSpro generates ucode info in n64 objects. Again, we should
11190 just be able to ignore this. */
11191 new_flags &= ~EF_MIPS_UCODE;
11192 old_flags &= ~EF_MIPS_UCODE;
11194 /* Don't care about the PIC flags from dynamic objects; they are
11196 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11197 && (ibfd->flags & DYNAMIC) != 0)
11198 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11200 if (new_flags == old_flags)
11203 /* Check to see if the input BFD actually contains any sections.
11204 If not, its flags may not have been initialised either, but it cannot
11205 actually cause any incompatibility. */
11206 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11208 /* Ignore synthetic sections and empty .text, .data and .bss sections
11209 which are automatically generated by gas. */
11210 if (strcmp (sec->name, ".reginfo")
11211 && strcmp (sec->name, ".mdebug")
11213 || (strcmp (sec->name, ".text")
11214 && strcmp (sec->name, ".data")
11215 && strcmp (sec->name, ".bss"))))
11217 null_input_bfd = FALSE;
11221 if (null_input_bfd)
11226 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11227 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11229 (*_bfd_error_handler)
11230 (_("%B: warning: linking PIC files with non-PIC files"),
11235 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11236 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11237 if (! (new_flags & EF_MIPS_PIC))
11238 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11240 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11241 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11243 /* Compare the ISAs. */
11244 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11246 (*_bfd_error_handler)
11247 (_("%B: linking 32-bit code with 64-bit code"),
11251 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11253 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11254 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11256 /* Copy the architecture info from IBFD to OBFD. Also copy
11257 the 32-bit flag (if set) so that we continue to recognise
11258 OBFD as a 32-bit binary. */
11259 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11260 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11261 elf_elfheader (obfd)->e_flags
11262 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11264 /* Copy across the ABI flags if OBFD doesn't use them
11265 and if that was what caused us to treat IBFD as 32-bit. */
11266 if ((old_flags & EF_MIPS_ABI) == 0
11267 && mips_32bit_flags_p (new_flags)
11268 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11269 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11273 /* The ISAs aren't compatible. */
11274 (*_bfd_error_handler)
11275 (_("%B: linking %s module with previous %s modules"),
11277 bfd_printable_name (ibfd),
11278 bfd_printable_name (obfd));
11283 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11284 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11286 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11287 does set EI_CLASS differently from any 32-bit ABI. */
11288 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11289 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11290 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11292 /* Only error if both are set (to different values). */
11293 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11294 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11295 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11297 (*_bfd_error_handler)
11298 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11300 elf_mips_abi_name (ibfd),
11301 elf_mips_abi_name (obfd));
11304 new_flags &= ~EF_MIPS_ABI;
11305 old_flags &= ~EF_MIPS_ABI;
11308 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11309 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11311 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11313 new_flags &= ~ EF_MIPS_ARCH_ASE;
11314 old_flags &= ~ EF_MIPS_ARCH_ASE;
11317 /* Warn about any other mismatches */
11318 if (new_flags != old_flags)
11320 (*_bfd_error_handler)
11321 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11322 ibfd, (unsigned long) new_flags,
11323 (unsigned long) old_flags);
11329 bfd_set_error (bfd_error_bad_value);
11336 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11339 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11341 BFD_ASSERT (!elf_flags_init (abfd)
11342 || elf_elfheader (abfd)->e_flags == flags);
11344 elf_elfheader (abfd)->e_flags = flags;
11345 elf_flags_init (abfd) = TRUE;
11350 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11354 BFD_ASSERT (abfd != NULL && ptr != NULL);
11356 /* Print normal ELF private data. */
11357 _bfd_elf_print_private_bfd_data (abfd, ptr);
11359 /* xgettext:c-format */
11360 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11362 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11363 fprintf (file, _(" [abi=O32]"));
11364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11365 fprintf (file, _(" [abi=O64]"));
11366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11367 fprintf (file, _(" [abi=EABI32]"));
11368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11369 fprintf (file, _(" [abi=EABI64]"));
11370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11371 fprintf (file, _(" [abi unknown]"));
11372 else if (ABI_N32_P (abfd))
11373 fprintf (file, _(" [abi=N32]"));
11374 else if (ABI_64_P (abfd))
11375 fprintf (file, _(" [abi=64]"));
11377 fprintf (file, _(" [no abi set]"));
11379 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11380 fprintf (file, " [mips1]");
11381 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11382 fprintf (file, " [mips2]");
11383 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11384 fprintf (file, " [mips3]");
11385 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11386 fprintf (file, " [mips4]");
11387 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11388 fprintf (file, " [mips5]");
11389 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11390 fprintf (file, " [mips32]");
11391 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11392 fprintf (file, " [mips64]");
11393 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11394 fprintf (file, " [mips32r2]");
11395 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11396 fprintf (file, " [mips64r2]");
11398 fprintf (file, _(" [unknown ISA]"));
11400 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11401 fprintf (file, " [mdmx]");
11403 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11404 fprintf (file, " [mips16]");
11406 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11407 fprintf (file, " [32bitmode]");
11409 fprintf (file, _(" [not 32bitmode]"));
11411 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11412 fprintf (file, " [noreorder]");
11414 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11415 fprintf (file, " [PIC]");
11417 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11418 fprintf (file, " [CPIC]");
11420 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11421 fprintf (file, " [XGOT]");
11423 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11424 fprintf (file, " [UCODE]");
11426 fputc ('\n', file);
11431 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11433 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11434 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11435 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11436 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11437 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11438 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11439 { NULL, 0, 0, 0, 0 }
11442 /* Merge non visibility st_other attributes. Ensure that the
11443 STO_OPTIONAL flag is copied into h->other, even if this is not a
11444 definiton of the symbol. */
11446 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11447 const Elf_Internal_Sym *isym,
11448 bfd_boolean definition,
11449 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11451 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11453 unsigned char other;
11455 other = (definition ? isym->st_other : h->other);
11456 other &= ~ELF_ST_VISIBILITY (-1);
11457 h->other = other | ELF_ST_VISIBILITY (h->other);
11461 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11462 h->other |= STO_OPTIONAL;
11465 /* Decide whether an undefined symbol is special and can be ignored.
11466 This is the case for OPTIONAL symbols on IRIX. */
11468 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11470 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11474 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11476 return (sym->st_shndx == SHN_COMMON
11477 || sym->st_shndx == SHN_MIPS_ACOMMON
11478 || sym->st_shndx == SHN_MIPS_SCOMMON);