1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
3 Copyright 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #if defined (HAVE_STRING_H)
29 #include "gdb_assert.h"
32 #include "gdb/sim-m32c.h"
36 #include "arch-utils.h"
38 #include "frame-unwind.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2expr.h"
44 #include "reggroups.h"
45 #include "prologue-value.h"
49 /* The m32c tdep structure. */
51 static struct reggroup *m32c_dma_reggroup;
55 /* The type of a function that moves the value of REG between CACHE or
56 BUF --- in either direction. */
57 typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
58 struct regcache *cache,
63 /* The name of this register. */
69 /* The architecture this register belongs to. */
72 /* Its GDB register number. */
75 /* Its sim register number. */
78 /* Its DWARF register number, or -1 if it doesn't have one. */
81 /* Register group memberships. */
82 unsigned int general_p : 1;
83 unsigned int dma_p : 1;
84 unsigned int system_p : 1;
85 unsigned int save_restore_p : 1;
87 /* Functions to read its value from a regcache, and write its value
89 m32c_move_reg_t *read, *write;
91 /* Data for READ and WRITE functions. The exact meaning depends on
92 the specific functions selected; see the comments for those
94 struct m32c_reg *rx, *ry;
99 /* An overestimate of the number of raw and pseudoregisters we will
100 have. The exact answer depends on the variant of the architecture
101 at hand, but we can use this to declare statically allocated
102 arrays, and bump it up when needed. */
103 #define M32C_MAX_NUM_REGS (75)
105 /* The largest assigned DWARF register number. */
106 #define M32C_MAX_DWARF_REGNUM (40)
111 /* All the registers for this variant, indexed by GDB register
112 number, and the number of registers present. */
113 struct m32c_reg regs[M32C_MAX_NUM_REGS];
115 /* The number of valid registers. */
118 /* Interesting registers. These are pointers into REGS. */
119 struct m32c_reg *pc, *flg;
120 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
121 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
122 struct m32c_reg *sb, *fb, *sp;
124 /* A table indexed by DWARF register numbers, pointing into
126 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
128 /* Types for this architecture. We can't use the builtin_type_foo
129 types, because they're not initialized when building a gdbarch
131 struct type *voyd, *ptr_voyd, *func_voyd;
132 struct type *uint8, *uint16;
133 struct type *int8, *int16, *int32, *int64;
135 /* The types for data address and code address registers. */
136 struct type *data_addr_reg_type, *code_addr_reg_type;
138 /* The number of bytes a return address pushed by a 'jsr' instruction
139 occupies on the stack. */
142 /* The number of bytes an address register occupies on the stack
143 when saved by an 'enter' or 'pushm' instruction. */
151 make_types (struct gdbarch *arch)
153 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
154 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
155 int data_addr_reg_bits, code_addr_reg_bits;
159 /* This is used to clip CORE_ADDR values, so this value is
160 appropriate both on the m32c, where pointers are 32 bits long,
161 and on the m16c, where pointers are sixteen bits long, but there
162 may be code above the 64k boundary. */
163 set_gdbarch_addr_bit (arch, 24);
165 /* GCC uses 32 bits for addrs in the dwarf info, even though
166 only 16/24 bits are used. Setting addr_bit to 24 causes
167 errors in reading the dwarf addresses. */
168 set_gdbarch_addr_bit (arch, 32);
171 set_gdbarch_int_bit (arch, 16);
175 data_addr_reg_bits = 16;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 16);
178 tdep->ret_addr_bytes = 3;
179 tdep->push_addr_bytes = 2;
183 data_addr_reg_bits = 24;
184 code_addr_reg_bits = 24;
185 set_gdbarch_ptr_bit (arch, 32);
186 tdep->ret_addr_bytes = 4;
187 tdep->push_addr_bytes = 4;
191 gdb_assert_not_reached ("unexpected mach");
194 /* The builtin_type_mumble variables are sometimes uninitialized when
195 this is called, so we avoid using them. */
196 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
198 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
200 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
201 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
202 tdep->func_voyd = lookup_function_type (tdep->voyd);
204 sprintf (type_name, "%s_data_addr_t",
205 gdbarch_bfd_arch_info (arch)->printable_name);
206 tdep->data_addr_reg_type
207 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
208 xstrdup (type_name));
209 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
210 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
212 sprintf (type_name, "%s_code_addr_t",
213 gdbarch_bfd_arch_info (arch)->printable_name);
214 tdep->code_addr_reg_type
215 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
216 xstrdup (type_name));
217 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
218 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
220 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
221 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
222 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
223 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
224 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
225 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
233 m32c_register_name (struct gdbarch *gdbarch, int num)
235 return gdbarch_tdep (gdbarch)->regs[num].name;
240 m32c_register_type (struct gdbarch *arch, int reg_nr)
242 return gdbarch_tdep (arch)->regs[reg_nr].type;
247 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
249 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
254 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
258 && tdep->dwarf_regs[reg_nr])
259 return tdep->dwarf_regs[reg_nr]->num;
261 /* The DWARF CFI code expects to see -1 for invalid register
268 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
269 struct reggroup *group)
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 struct m32c_reg *reg = &tdep->regs[regnum];
274 /* The anonymous raw registers aren't in any groups. */
278 if (group == all_reggroup)
281 if (group == general_reggroup
285 if (group == m32c_dma_reggroup
289 if (group == system_reggroup
293 /* Since the m32c DWARF register numbers refer to cooked registers, not
294 raw registers, and frame_pop depends on the save and restore groups
295 containing registers the DWARF CFI will actually mention, our save
296 and restore groups are cooked registers, not raw registers. (This is
297 why we can't use the default reggroup function.) */
298 if ((group == save_reggroup
299 || group == restore_reggroup)
300 && reg->save_restore_p)
307 /* Register move functions. We declare them here using
308 m32c_move_reg_t to check the types. */
309 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
310 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
311 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
312 static m32c_move_reg_t m32c_part_read, m32c_part_write;
313 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
314 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
317 /* Copy the value of the raw register REG from CACHE to BUF. */
319 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
321 regcache_raw_read (cache, reg->num, buf);
325 /* Copy the value of the raw register REG from BUF to CACHE. */
327 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
329 regcache_raw_write (cache, reg->num, (const void *) buf);
333 /* Return the value of the 'flg' register in CACHE. */
335 m32c_read_flg (struct regcache *cache)
337 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
339 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
344 /* Evaluate the real register number of a banked register. */
345 static struct m32c_reg *
346 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
348 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
352 /* Move the value of a banked register from CACHE to BUF.
353 If the value of the 'flg' register in CACHE has any of the bits
354 masked in REG->n set, then read REG->ry. Otherwise, read
357 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
359 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
360 regcache_raw_read (cache, bank_reg->num, buf);
364 /* Move the value of a banked register from BUF to CACHE.
365 If the value of the 'flg' register in CACHE has any of the bits
366 masked in REG->n set, then write REG->ry. Otherwise, write
369 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
371 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
372 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
376 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
377 banked register; on bfd_mach_m16c, it's not. */
379 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
381 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
382 m32c_raw_read (reg->rx, cache, buf);
384 m32c_banked_read (reg, cache, buf);
388 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
389 banked register; on bfd_mach_m16c, it's not. */
391 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
393 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
394 m32c_raw_write (reg->rx, cache, buf);
396 m32c_banked_write (reg, cache, buf);
400 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
401 and *LEN_P to the offset and length, in bytes, of the part REG
402 occupies in its underlying register. The offset is from the
403 lower-addressed end, regardless of the architecture's endianness.
404 (The M32C family is always little-endian, but let's keep those
405 assumptions out of here.) */
407 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
409 /* The length of the containing register, of which REG is one part. */
410 int containing_len = TYPE_LENGTH (reg->rx->type);
412 /* The length of one "element" in our imaginary array. */
413 int elt_len = TYPE_LENGTH (reg->type);
415 /* The offset of REG's "element" from the least significant end of
416 the containing register. */
417 int elt_offset = reg->n * elt_len;
419 /* If we extend off the end, trim the length of the element. */
420 if (elt_offset + elt_len > containing_len)
422 elt_len = containing_len - elt_offset;
423 /* We shouldn't be declaring partial registers that go off the
424 end of their containing registers. */
425 gdb_assert (elt_len > 0);
428 /* Flip the offset around if we're big-endian. */
429 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
430 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
432 *offset_p = elt_offset;
437 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
438 to BUF. Treating the value of the register REG->rx as an array of
439 REG->type values, where higher indices refer to more significant
440 bits, read the value of the REG->n'th element. */
442 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
445 memset (buf, 0, TYPE_LENGTH (reg->type));
446 m32c_find_part (reg, &offset, &len);
447 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
451 /* Move the value of a banked register from BUF to CACHE.
452 Treating the value of the register REG->rx as an array of REG->type
453 values, where higher indices refer to more significant bits, write
454 the value of the REG->n'th element. */
456 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
459 m32c_find_part (reg, &offset, &len);
460 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
464 /* Move the value of REG from CACHE to BUF. REG's value is the
465 concatenation of the values of the registers REG->rx and REG->ry,
466 with REG->rx contributing the more significant bits. */
468 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
470 int high_bytes = TYPE_LENGTH (reg->rx->type);
471 int low_bytes = TYPE_LENGTH (reg->ry->type);
472 /* For address arithmetic. */
473 unsigned char *cbuf = buf;
475 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
477 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
479 regcache_cooked_read (cache, reg->rx->num, cbuf);
480 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
484 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
485 regcache_cooked_read (cache, reg->ry->num, cbuf);
490 /* Move the value of REG from CACHE to BUF. REG's value is the
491 concatenation of the values of the registers REG->rx and REG->ry,
492 with REG->rx contributing the more significant bits. */
494 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
496 int high_bytes = TYPE_LENGTH (reg->rx->type);
497 int low_bytes = TYPE_LENGTH (reg->ry->type);
498 /* For address arithmetic. */
499 unsigned char *cbuf = buf;
501 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
503 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
505 regcache_cooked_write (cache, reg->rx->num, cbuf);
506 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
510 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
511 regcache_cooked_write (cache, reg->ry->num, cbuf);
516 /* Copy the value of the raw register REG from CACHE to BUF. REG is
517 the concatenation (from most significant to least) of r3, r2, r1,
520 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
522 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
523 int len = TYPE_LENGTH (tdep->r0->type);
525 /* For address arithmetic. */
526 unsigned char *cbuf = buf;
528 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
530 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
531 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
532 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
533 regcache_cooked_read (cache, tdep->r3->num, cbuf);
537 regcache_cooked_read (cache, tdep->r0->num, cbuf);
538 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
539 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
540 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
545 /* Copy the value of the raw register REG from BUF to CACHE. REG is
546 the concatenation (from most significant to least) of r3, r2, r1,
549 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
551 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
552 int len = TYPE_LENGTH (tdep->r0->type);
554 /* For address arithmetic. */
555 unsigned char *cbuf = buf;
557 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
559 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
560 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
561 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
562 regcache_cooked_write (cache, tdep->r3->num, cbuf);
566 regcache_cooked_write (cache, tdep->r0->num, cbuf);
567 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
568 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
569 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
575 m32c_pseudo_register_read (struct gdbarch *arch,
576 struct regcache *cache,
580 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
581 struct m32c_reg *reg;
583 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
584 gdb_assert (arch == get_regcache_arch (cache));
585 gdb_assert (arch == tdep->regs[cookednum].arch);
586 reg = &tdep->regs[cookednum];
588 reg->read (reg, cache, buf);
593 m32c_pseudo_register_write (struct gdbarch *arch,
594 struct regcache *cache,
598 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
599 struct m32c_reg *reg;
601 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
602 gdb_assert (arch == get_regcache_arch (cache));
603 gdb_assert (arch == tdep->regs[cookednum].arch);
604 reg = &tdep->regs[cookednum];
606 reg->write (reg, cache, (void *) buf);
610 /* Add a register with the given fields to the end of ARCH's table.
611 Return a pointer to the newly added register. */
612 static struct m32c_reg *
613 add_reg (struct gdbarch *arch,
617 m32c_move_reg_t *read,
618 m32c_move_reg_t *write,
623 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
624 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
626 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
631 r->num = tdep->num_regs;
632 r->sim_num = sim_num;
637 r->save_restore_p = 0;
650 /* Record NUM as REG's DWARF register number. */
652 set_dwarf_regnum (struct m32c_reg *reg, int num)
654 gdb_assert (num < M32C_MAX_NUM_REGS);
656 /* Update the reg->DWARF mapping. Only count the first number
657 assigned to this register. */
658 if (reg->dwarf_num == -1)
659 reg->dwarf_num = num;
661 /* Update the DWARF->reg mapping. */
662 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
666 /* Mark REG as a general-purpose register, and return it. */
667 static struct m32c_reg *
668 mark_general (struct m32c_reg *reg)
675 /* Mark REG as a DMA register, and return it. */
676 static struct m32c_reg *
677 mark_dma (struct m32c_reg *reg)
684 /* Mark REG as a SYSTEM register, and return it. */
685 static struct m32c_reg *
686 mark_system (struct m32c_reg *reg)
693 /* Mark REG as a save-restore register, and return it. */
694 static struct m32c_reg *
695 mark_save_restore (struct m32c_reg *reg)
697 reg->save_restore_p = 1;
702 #define FLAGBIT_B 0x0010
703 #define FLAGBIT_U 0x0080
705 /* Handy macros for declaring registers. These all evaluate to
706 pointers to the register declared. Macros that define two
707 registers evaluate to a pointer to the first. */
709 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
710 #define R(name, type, sim_num) \
711 (add_reg (arch, (name), (type), (sim_num), \
712 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
714 /* The simulator register number for a raw register named NAME. */
715 #define SIM(name) (m32c_sim_reg_ ## name)
717 /* A raw unsigned 16-bit data register named NAME.
718 NAME should be an identifier, not a string. */
720 (R(#name, tdep->uint16, SIM (name)))
722 /* A raw data address register named NAME.
723 NAME should be an identifier, not a string. */
725 (R(#name, tdep->data_addr_reg_type, SIM (name)))
727 /* A raw code address register named NAME. NAME should
728 be an identifier, not a string. */
730 (R(#name, tdep->code_addr_reg_type, SIM (name)))
732 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
733 NAME should be an identifier, not a string. */
734 #define RP(name, type) \
735 (R(#name "0", (type), SIM (name ## 0)), \
736 R(#name "1", (type), SIM (name ## 1)) - 1)
738 /* A raw banked general-purpose data register named NAME.
739 NAME should be an identifier, not a string. */
741 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
742 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
744 /* A raw banked data address register named NAME.
745 NAME should be an identifier, not a string. */
747 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
748 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
750 /* A cooked register named NAME referring to a raw banked register
751 from the bank selected by the current value of FLG. RAW_PAIR
752 should be a pointer to the first register in the banked pair.
753 NAME must be an identifier, not a string. */
754 #define CB(name, raw_pair) \
755 (add_reg (arch, #name, (raw_pair)->type, 0, \
756 m32c_banked_read, m32c_banked_write, \
757 (raw_pair), (raw_pair + 1), FLAGBIT_B))
759 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
760 access the top and bottom halves of the register pointed to by
761 NAME. NAME should be an identifier. */
762 #define CHL(name, type) \
763 (add_reg (arch, #name "h", (type), 0, \
764 m32c_part_read, m32c_part_write, name, NULL, 1), \
765 add_reg (arch, #name "l", (type), 0, \
766 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
768 /* A register constructed by concatenating the two registers HIGH and
769 LOW, whose name is HIGHLOW and whose type is TYPE. */
770 #define CCAT(high, low, type) \
771 (add_reg (arch, #high #low, (type), 0, \
772 m32c_cat_read, m32c_cat_write, (high), (low), 0))
774 /* Abbreviations for marking register group membership. */
775 #define G(reg) (mark_general (reg))
776 #define S(reg) (mark_system (reg))
777 #define DMA(reg) (mark_dma (reg))
780 /* Construct the register set for ARCH. */
782 make_regs (struct gdbarch *arch)
784 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
785 int mach = gdbarch_bfd_arch_info (arch)->mach;
798 struct m32c_reg *r0hl;
799 struct m32c_reg *r1hl;
800 struct m32c_reg *r2hl;
801 struct m32c_reg *r3hl;
802 struct m32c_reg *intbhl;
803 struct m32c_reg *r2r0;
804 struct m32c_reg *r3r1;
805 struct m32c_reg *r3r1r2r0;
806 struct m32c_reg *r3r2r1r0;
807 struct m32c_reg *a1a0;
809 struct m32c_reg *raw_r0_pair = RBD (r0);
810 struct m32c_reg *raw_r1_pair = RBD (r1);
811 struct m32c_reg *raw_r2_pair = RBD (r2);
812 struct m32c_reg *raw_r3_pair = RBD (r3);
813 struct m32c_reg *raw_a0_pair = RBA (a0);
814 struct m32c_reg *raw_a1_pair = RBA (a1);
815 struct m32c_reg *raw_fb_pair = RBA (fb);
817 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
818 We always declare both raw registers, and deal with the distinction
819 in the pseudoregister. */
820 struct m32c_reg *raw_sb_pair = RBA (sb);
822 struct m32c_reg *usp = S (RA (usp));
823 struct m32c_reg *isp = S (RA (isp));
824 struct m32c_reg *intb = S (RC (intb));
825 struct m32c_reg *pc = G (RC (pc));
826 struct m32c_reg *flg = G (R16U (flg));
828 if (mach == bfd_mach_m32c)
830 struct m32c_reg *svf = S (R16U (svf));
831 struct m32c_reg *svp = S (RC (svp));
832 struct m32c_reg *vct = S (RC (vct));
834 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
835 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
836 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
837 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
838 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
839 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
842 num_raw_regs = tdep->num_regs;
844 r0 = G (CB (r0, raw_r0_pair));
845 r1 = G (CB (r1, raw_r1_pair));
846 r2 = G (CB (r2, raw_r2_pair));
847 r3 = G (CB (r3, raw_r3_pair));
848 a0 = G (CB (a0, raw_a0_pair));
849 a1 = G (CB (a1, raw_a1_pair));
850 fb = G (CB (fb, raw_fb_pair));
852 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
853 Specify custom read/write functions that do the right thing. */
854 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
855 m32c_sb_read, m32c_sb_write,
856 raw_sb_pair, raw_sb_pair + 1, 0));
858 /* The current sp is either usp or isp, depending on the value of
859 the FLG register's U bit. */
860 sp = G (add_reg (arch, "sp", usp->type, 0,
861 m32c_banked_read, m32c_banked_write,
862 isp, usp, FLAGBIT_U));
864 r0hl = CHL (r0, tdep->int8);
865 r1hl = CHL (r1, tdep->int8);
866 r2hl = CHL (r2, tdep->int8);
867 r3hl = CHL (r3, tdep->int8);
868 intbhl = CHL (intb, tdep->int16);
870 r2r0 = CCAT (r2, r0, tdep->int32);
871 r3r1 = CCAT (r3, r1, tdep->int32);
872 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
875 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
876 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
878 if (mach == bfd_mach_m16c)
879 a1a0 = CCAT (a1, a0, tdep->int32);
883 num_cooked_regs = tdep->num_regs - num_raw_regs;
892 tdep->r3r2r1r0 = r3r2r1r0;
893 tdep->r3r1r2r0 = r3r1r2r0;
900 /* Set up the DWARF register table. */
901 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
902 set_dwarf_regnum (r0hl + 1, 0x01);
903 set_dwarf_regnum (r0hl + 0, 0x02);
904 set_dwarf_regnum (r1hl + 1, 0x03);
905 set_dwarf_regnum (r1hl + 0, 0x04);
906 set_dwarf_regnum (r0, 0x05);
907 set_dwarf_regnum (r1, 0x06);
908 set_dwarf_regnum (r2, 0x07);
909 set_dwarf_regnum (r3, 0x08);
910 set_dwarf_regnum (a0, 0x09);
911 set_dwarf_regnum (a1, 0x0a);
912 set_dwarf_regnum (fb, 0x0b);
913 set_dwarf_regnum (sp, 0x0c);
914 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
915 set_dwarf_regnum (sb, 0x13);
916 set_dwarf_regnum (r2r0, 0x15);
917 set_dwarf_regnum (r3r1, 0x16);
919 set_dwarf_regnum (a1a0, 0x17);
921 /* Enumerate the save/restore register group.
923 The regcache_save and regcache_restore functions apply their read
924 function to each register in this group.
926 Since frame_pop supplies frame_unwind_register as its read
927 function, the registers meaningful to the Dwarf unwinder need to
930 On the other hand, when we make inferior calls, save_inferior_status
931 and restore_inferior_status use them to preserve the current register
932 values across the inferior call. For this, you'd kind of like to
933 preserve all the raw registers, to protect the interrupted code from
934 any sort of bank switching the callee might have done. But we handle
935 those cases so badly anyway --- for example, it matters whether we
936 restore FLG before or after we restore the general-purpose registers,
937 but there's no way to express that --- that it isn't worth worrying
940 We omit control registers like inthl: if you call a function that
941 changes those, it's probably because you wanted that change to be
942 visible to the interrupted code. */
943 mark_save_restore (r0);
944 mark_save_restore (r1);
945 mark_save_restore (r2);
946 mark_save_restore (r3);
947 mark_save_restore (a0);
948 mark_save_restore (a1);
949 mark_save_restore (sb);
950 mark_save_restore (fb);
951 mark_save_restore (sp);
952 mark_save_restore (pc);
953 mark_save_restore (flg);
955 set_gdbarch_num_regs (arch, num_raw_regs);
956 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
957 set_gdbarch_pc_regnum (arch, pc->num);
958 set_gdbarch_sp_regnum (arch, sp->num);
959 set_gdbarch_register_name (arch, m32c_register_name);
960 set_gdbarch_register_type (arch, m32c_register_type);
961 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
962 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
963 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
964 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
965 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
966 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
968 reggroup_add (arch, general_reggroup);
969 reggroup_add (arch, all_reggroup);
970 reggroup_add (arch, save_reggroup);
971 reggroup_add (arch, restore_reggroup);
972 reggroup_add (arch, system_reggroup);
973 reggroup_add (arch, m32c_dma_reggroup);
980 static const unsigned char *
981 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
983 static unsigned char break_insn[] = { 0x00 }; /* brk */
985 *len = sizeof (break_insn);
991 /* Prologue analysis. */
995 /* For consistency with the DWARF 2 .debug_frame info generated by
996 GCC, a frame's CFA is the address immediately after the saved
999 /* The architecture for which we generated this prologue info. */
1000 struct gdbarch *arch;
1003 /* This function uses a frame pointer. */
1004 prologue_with_frame_ptr,
1006 /* This function has no frame pointer. */
1007 prologue_sans_frame_ptr,
1009 /* This function sets up the stack, so its frame is the first
1010 frame on the stack. */
1011 prologue_first_frame
1015 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1016 CFA to where the frame pointer points. This is always zero or
1018 LONGEST frame_ptr_offset;
1020 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1021 the stack pointer --- always zero or negative.
1023 Calling this a "size" is a bit misleading, but given that the
1024 stack grows downwards, using offsets for everything keeps one
1025 from going completely sign-crazy: you never change anything's
1026 sign for an ADD instruction; always change the second operand's
1027 sign for a SUB instruction; and everything takes care of
1030 Functions that use alloca don't have a constant frame size. But
1031 they always have frame pointers, so we must use that to find the
1032 CFA (and perhaps to unwind the stack pointer). */
1035 /* The address of the first instruction at which the frame has been
1036 set up and the arguments are where the debug info says they are
1037 --- as best as we can tell. */
1038 CORE_ADDR prologue_end;
1040 /* reg_offset[R] is the offset from the CFA at which register R is
1041 saved, or 1 if register R has not been saved. (Real values are
1042 always zero or negative.) */
1043 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1047 /* The longest I've seen, anyway. */
1048 #define M32C_MAX_INSN_LEN (9)
1050 /* Processor state, for the prologue analyzer. */
1051 struct m32c_pv_state
1053 struct gdbarch *arch;
1054 pv_t r0, r1, r2, r3;
1058 struct pv_area *stack;
1060 /* Bytes from the current PC, the address they were read from,
1061 and the address of the next unconsumed byte. */
1062 gdb_byte insn[M32C_MAX_INSN_LEN];
1063 CORE_ADDR scan_pc, next_addr;
1067 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1068 all went well, or non-zero if simulating the action would trash our
1071 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1073 if (pv_area_store_would_trash (state->stack, state->sp))
1076 state->sp = pv_add_constant (state->sp, -size);
1077 pv_area_store (state->stack, state->sp, size, value);
1083 /* A source or destination location for an m16c or m32c
1087 /* If srcdest_reg, the location is a register pointed to by REG.
1088 If srcdest_partial_reg, the location is part of a register pointed
1089 to by REG. We don't try to handle this too well.
1090 If srcdest_mem, the location is memory whose address is ADDR. */
1091 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1096 /* Return the SIZE-byte value at LOC in STATE. */
1098 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1100 if (loc.kind == srcdest_mem)
1101 return pv_area_fetch (state->stack, loc.addr, size);
1102 else if (loc.kind == srcdest_partial_reg)
1103 return pv_unknown ();
1109 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1110 all went well, or non-zero if simulating the store would trash our
1113 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1114 pv_t value, int size)
1116 if (loc.kind == srcdest_mem)
1118 if (pv_area_store_would_trash (state->stack, loc.addr))
1120 pv_area_store (state->stack, loc.addr, size, value);
1122 else if (loc.kind == srcdest_partial_reg)
1123 *loc.reg = pv_unknown ();
1132 m32c_sign_ext (int v, int bits)
1134 int mask = 1 << (bits - 1);
1135 return (v ^ mask) - mask;
1139 m32c_next_byte (struct m32c_pv_state *st)
1141 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1142 return st->insn[st->next_addr++ - st->scan_pc];
1146 m32c_udisp8 (struct m32c_pv_state *st)
1148 return m32c_next_byte (st);
1153 m32c_sdisp8 (struct m32c_pv_state *st)
1155 return m32c_sign_ext (m32c_next_byte (st), 8);
1160 m32c_udisp16 (struct m32c_pv_state *st)
1162 int low = m32c_next_byte (st);
1163 int high = m32c_next_byte (st);
1165 return low + (high << 8);
1170 m32c_sdisp16 (struct m32c_pv_state *st)
1172 int low = m32c_next_byte (st);
1173 int high = m32c_next_byte (st);
1175 return m32c_sign_ext (low + (high << 8), 16);
1180 m32c_udisp24 (struct m32c_pv_state *st)
1182 int low = m32c_next_byte (st);
1183 int mid = m32c_next_byte (st);
1184 int high = m32c_next_byte (st);
1186 return low + (mid << 8) + (high << 16);
1190 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1192 m32c_get_src23 (unsigned char *i)
1194 return (((i[0] & 0x70) >> 2)
1195 | ((i[1] & 0x30) >> 4));
1199 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1201 m32c_get_dest23 (unsigned char *i)
1203 return (((i[0] & 0x0e) << 1)
1204 | ((i[1] & 0xc0) >> 6));
1208 static struct srcdest
1209 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1215 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1217 sd.kind = srcdest_mem;
1219 sd.addr = pv_unknown ();
1224 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1225 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1226 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1227 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1229 case 0x4: sd.reg = &st->a0; break;
1230 case 0x5: sd.reg = &st->a1; break;
1232 case 0x6: sd.addr = st->a0; break;
1233 case 0x7: sd.addr = st->a1; break;
1235 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1236 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1237 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1238 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1240 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1241 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1242 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1243 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1246 gdb_assert_not_reached ("unexpected srcdest4");
1253 static struct srcdest
1254 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1258 sd.addr = pv_unknown ();
1267 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1272 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1276 sd.kind = srcdest_mem;
1283 case 0x12: sd.reg = &st->r0; break;
1284 case 0x13: sd.reg = &st->r1; break;
1285 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1286 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1287 case 0x02: sd.reg = &st->a0; break;
1288 case 0x03: sd.reg = &st->a1; break;
1290 case 0x00: sd.addr = st->a0; break;
1291 case 0x01: sd.addr = st->a1; break;
1292 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1293 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1294 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1295 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1296 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1297 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1298 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1299 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1300 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1301 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1302 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1303 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1305 gdb_assert_not_reached ("unexpected sd23");
1310 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1311 sd.kind = srcdest_mem;
1318 /* The r16c and r32c machines have instructions with similar
1319 semantics, but completely different machine language encodings. So
1320 we break out the semantics into their own functions, and leave
1321 machine-specific decoding in m32c_analyze_prologue.
1323 The following functions all expect their arguments already decoded,
1324 and they all return zero if analysis should continue past this
1325 instruction, or non-zero if analysis should stop. */
1328 /* Simulate an 'enter SIZE' instruction in STATE. */
1330 m32c_pv_enter (struct m32c_pv_state *state, int size)
1332 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1334 /* If simulating this store would require us to forget
1335 everything we know about the stack frame in the name of
1336 accuracy, it would be better to just quit now. */
1337 if (pv_area_store_would_trash (state->stack, state->sp))
1340 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1342 state->fb = state->sp;
1343 state->sp = pv_add_constant (state->sp, -size);
1350 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1351 int bit, int src, int size)
1355 if (m32c_pv_push (state, reg, size))
1363 /* Simulate a 'pushm SRC' instruction in STATE. */
1365 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1367 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1369 /* The bits in SRC indicating which registers to save are:
1370 r0 r1 r2 r3 a0 a1 sb fb */
1372 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1373 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1374 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1375 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1376 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1377 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1378 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1379 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1382 /* Return non-zero if VALUE is the first incoming argument register. */
1385 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1387 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1388 return (value.kind == pvk_register
1389 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1390 ? (value.reg == tdep->r1->num)
1391 : (value.reg == tdep->r0->num))
1395 /* Return non-zero if VALUE is an incoming argument register. */
1398 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1400 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1401 return (value.kind == pvk_register
1402 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1403 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1404 : (value.reg == tdep->r0->num))
1408 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1409 argument register to its stack slot in STATE. Such instructions
1410 should be included in the prologue, if possible.
1412 The store is a spill if:
1413 - the value being stored is the original value of an argument register;
1414 - the value has not already been stored somewhere in STACK; and
1415 - LOC is a stack slot (e.g., a memory location whose address is
1416 relative to the original value of the SP). */
1419 m32c_is_arg_spill (struct m32c_pv_state *st,
1423 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1425 return (m32c_is_arg_reg (st, value)
1426 && loc.kind == srcdest_mem
1427 && pv_is_register (loc.addr, tdep->sp->num)
1428 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1431 /* Return non-zero if a store of VALUE to LOC is probably
1432 copying the struct return address into an address register
1433 for immediate use. This is basically a "spill" into the
1434 address register, instead of onto the stack.
1436 The prerequisites are:
1437 - value being stored is original value of the FIRST arg register;
1438 - value has not already been stored on stack; and
1439 - LOC is an address register (a0 or a1). */
1442 m32c_is_struct_return (struct m32c_pv_state *st,
1446 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1448 return (m32c_is_1st_arg_reg (st, value)
1449 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1450 && loc.kind == srcdest_reg
1451 && (pv_is_register (*loc.reg, tdep->a0->num)
1452 || pv_is_register (*loc.reg, tdep->a1->num)));
1455 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1456 was a register save:
1457 - all the named registers should have their original values, and
1458 - the stack pointer should be at a constant offset from the
1459 original stack pointer. */
1461 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1463 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1464 /* The bits in SRC indicating which registers to save are:
1465 r0 r1 r2 r3 a0 a1 sb fb */
1467 (pv_is_register (st->sp, tdep->sp->num)
1468 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1469 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1470 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1471 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1472 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1473 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1474 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1475 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1479 /* Function for finding saved registers in a 'struct pv_area'; we pass
1480 this to pv_area_scan.
1482 If VALUE is a saved register, ADDR says it was saved at a constant
1483 offset from the frame base, and SIZE indicates that the whole
1484 register was saved, record its offset in RESULT_UNTYPED. */
1486 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1488 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1489 struct gdbarch *arch = prologue->arch;
1490 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1492 /* Is this the unchanged value of some register being saved on the
1494 if (value.kind == pvk_register
1496 && pv_is_register (addr, tdep->sp->num))
1498 /* Some registers require special handling: they're saved as a
1499 larger value than the register itself. */
1500 CORE_ADDR saved_size = register_size (arch, value.reg);
1502 if (value.reg == tdep->pc->num)
1503 saved_size = tdep->ret_addr_bytes;
1504 else if (register_type (arch, value.reg)
1505 == tdep->data_addr_reg_type)
1506 saved_size = tdep->push_addr_bytes;
1508 if (size == saved_size)
1510 /* Find which end of the saved value corresponds to our
1512 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1513 prologue->reg_offset[value.reg]
1514 = (addr.k + saved_size - register_size (arch, value.reg));
1516 prologue->reg_offset[value.reg] = addr.k;
1522 /* Analyze the function prologue for ARCH at START, going no further
1523 than LIMIT, and place a description of what we found in
1526 m32c_analyze_prologue (struct gdbarch *arch,
1527 CORE_ADDR start, CORE_ADDR limit,
1528 struct m32c_prologue *prologue)
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1531 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1532 CORE_ADDR after_last_frame_related_insn;
1533 struct cleanup *back_to;
1534 struct m32c_pv_state st;
1537 st.r0 = pv_register (tdep->r0->num, 0);
1538 st.r1 = pv_register (tdep->r1->num, 0);
1539 st.r2 = pv_register (tdep->r2->num, 0);
1540 st.r3 = pv_register (tdep->r3->num, 0);
1541 st.a0 = pv_register (tdep->a0->num, 0);
1542 st.a1 = pv_register (tdep->a1->num, 0);
1543 st.sb = pv_register (tdep->sb->num, 0);
1544 st.fb = pv_register (tdep->fb->num, 0);
1545 st.sp = pv_register (tdep->sp->num, 0);
1546 st.pc = pv_register (tdep->pc->num, 0);
1547 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1548 back_to = make_cleanup_free_pv_area (st.stack);
1550 /* Record that the call instruction has saved the return address on
1552 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1554 memset (prologue, 0, sizeof (*prologue));
1555 prologue->arch = arch;
1558 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1559 prologue->reg_offset[i] = 1;
1562 st.scan_pc = after_last_frame_related_insn = start;
1564 while (st.scan_pc < limit)
1566 pv_t pre_insn_fb = st.fb;
1567 pv_t pre_insn_sp = st.sp;
1569 /* In theory we could get in trouble by trying to read ahead
1570 here, when we only know we're expecting one byte. In
1571 practice I doubt anyone will care, and it makes the rest of
1573 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1574 /* If we can't fetch the instruction from memory, stop here
1575 and hope for the best. */
1577 st.next_addr = st.scan_pc;
1579 /* The assembly instructions are written as they appear in the
1580 section of the processor manuals that describe the
1581 instruction encodings.
1583 When a single assembly language instruction has several
1584 different machine-language encodings, the manual
1585 distinguishes them by a number in parens, before the
1586 mnemonic. Those numbers are included, as well.
1588 The srcdest decoding instructions have the same names as the
1589 analogous functions in the simulator. */
1590 if (mach == bfd_mach_m16c)
1592 /* (1) ENTER #imm8 */
1593 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1595 if (m32c_pv_enter (&st, st.insn[2]))
1600 else if (st.insn[0] == 0xec)
1602 int src = st.insn[1];
1603 if (m32c_pv_pushm (&st, src))
1607 if (m32c_pushm_is_reg_save (&st, src))
1608 after_last_frame_related_insn = st.next_addr;
1611 /* (6) MOV.size:G src, dest */
1612 else if ((st.insn[0] & 0xfe) == 0x72)
1614 int size = (st.insn[0] & 0x01) ? 2 : 1;
1616 struct srcdest dest;
1621 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1623 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1624 src_value = m32c_srcdest_fetch (&st, src, size);
1626 if (m32c_is_arg_spill (&st, dest, src_value))
1627 after_last_frame_related_insn = st.next_addr;
1628 else if (m32c_is_struct_return (&st, dest, src_value))
1629 after_last_frame_related_insn = st.next_addr;
1631 if (m32c_srcdest_store (&st, dest, src_value, size))
1635 /* (1) LDC #IMM16, sp */
1636 else if (st.insn[0] == 0xeb
1637 && st.insn[1] == 0x50)
1640 st.sp = pv_constant (m32c_udisp16 (&st));
1644 /* We've hit some instruction we don't know how to simulate.
1645 Strictly speaking, we should set every value we're
1646 tracking to "unknown". But we'll be optimistic, assume
1647 that we have enough information already, and stop
1653 int src_indirect = 0;
1654 int dest_indirect = 0;
1657 gdb_assert (mach == bfd_mach_m32c);
1659 /* Check for prefix bytes indicating indirect addressing. */
1660 if (st.insn[0] == 0x41)
1665 else if (st.insn[0] == 0x09)
1670 else if (st.insn[0] == 0x49)
1672 src_indirect = dest_indirect = 1;
1676 /* (1) ENTER #imm8 */
1677 if (st.insn[i] == 0xec)
1679 if (m32c_pv_enter (&st, st.insn[i + 1]))
1685 else if (st.insn[i] == 0x8f)
1687 int src = st.insn[i + 1];
1688 if (m32c_pv_pushm (&st, src))
1692 if (m32c_pushm_is_reg_save (&st, src))
1693 after_last_frame_related_insn = st.next_addr;
1696 /* (7) MOV.size:G src, dest */
1697 else if ((st.insn[i] & 0x80) == 0x80
1698 && (st.insn[i + 1] & 0x0f) == 0x0b
1699 && m32c_get_src23 (&st.insn[i]) < 20
1700 && m32c_get_dest23 (&st.insn[i]) < 20)
1703 struct srcdest dest;
1705 int bw = st.insn[i] & 0x01;
1706 int size = bw ? 2 : 1;
1710 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1711 size, src_indirect);
1713 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1714 size, dest_indirect);
1715 src_value = m32c_srcdest_fetch (&st, src, size);
1717 if (m32c_is_arg_spill (&st, dest, src_value))
1718 after_last_frame_related_insn = st.next_addr;
1720 if (m32c_srcdest_store (&st, dest, src_value, size))
1723 /* (2) LDC #IMM24, sp */
1724 else if (st.insn[i] == 0xd5
1725 && st.insn[i + 1] == 0x29)
1728 st.sp = pv_constant (m32c_udisp24 (&st));
1731 /* We've hit some instruction we don't know how to simulate.
1732 Strictly speaking, we should set every value we're
1733 tracking to "unknown". But we'll be optimistic, assume
1734 that we have enough information already, and stop
1739 /* If this instruction changed the FB or decreased the SP (i.e.,
1740 allocated more stack space), then this may be a good place to
1741 declare the prologue finished. However, there are some
1744 - If the instruction just changed the FB back to its original
1745 value, then that's probably a restore instruction. The
1746 prologue should definitely end before that.
1748 - If the instruction increased the value of the SP (that is,
1749 shrunk the frame), then it's probably part of a frame
1750 teardown sequence, and the prologue should end before
1753 if (! pv_is_identical (st.fb, pre_insn_fb))
1755 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1756 after_last_frame_related_insn = st.next_addr;
1758 else if (! pv_is_identical (st.sp, pre_insn_sp))
1760 /* The comparison of the constants looks odd, there, because
1761 .k is unsigned. All it really means is that the SP is
1762 lower than it was before the instruction. */
1763 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1764 && pv_is_register (st.sp, tdep->sp->num)
1765 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1766 after_last_frame_related_insn = st.next_addr;
1769 st.scan_pc = st.next_addr;
1772 /* Did we load a constant value into the stack pointer? */
1773 if (pv_is_constant (st.sp))
1774 prologue->kind = prologue_first_frame;
1776 /* Alternatively, did we initialize the frame pointer? Remember
1777 that the CFA is the address after the return address. */
1778 if (pv_is_register (st.fb, tdep->sp->num))
1780 prologue->kind = prologue_with_frame_ptr;
1781 prologue->frame_ptr_offset = st.fb.k;
1784 /* Is the frame size a known constant? Remember that frame_size is
1785 actually the offset from the CFA to the SP (i.e., a negative
1787 else if (pv_is_register (st.sp, tdep->sp->num))
1789 prologue->kind = prologue_sans_frame_ptr;
1790 prologue->frame_size = st.sp.k;
1793 /* We haven't been able to make sense of this function's frame. Treat
1794 it as the first frame. */
1796 prologue->kind = prologue_first_frame;
1798 /* Record where all the registers were saved. */
1799 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1801 prologue->prologue_end = after_last_frame_related_insn;
1803 do_cleanups (back_to);
1808 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1811 CORE_ADDR func_addr, func_end, sal_end;
1812 struct m32c_prologue p;
1814 /* Try to find the extent of the function that contains IP. */
1815 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1818 /* Find end by prologue analysis. */
1819 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1820 /* Find end by line info. */
1821 sal_end = skip_prologue_using_sal (gdbarch, ip);
1822 /* Return whichever is lower. */
1823 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1826 return p.prologue_end;
1831 /* Stack unwinding. */
1833 static struct m32c_prologue *
1834 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1835 void **this_prologue_cache)
1837 if (! *this_prologue_cache)
1839 CORE_ADDR func_start = get_frame_func (this_frame);
1840 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1842 /* If we couldn't find any function containing the PC, then
1843 just initialize the prologue cache, but don't do anything. */
1845 stop_addr = func_start;
1847 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1848 m32c_analyze_prologue (get_frame_arch (this_frame),
1849 func_start, stop_addr, *this_prologue_cache);
1852 return *this_prologue_cache;
1857 m32c_frame_base (struct frame_info *this_frame,
1858 void **this_prologue_cache)
1860 struct m32c_prologue *p
1861 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1862 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1864 /* In functions that use alloca, the distance between the stack
1865 pointer and the frame base varies dynamically, so we can't use
1866 the SP plus static information like prologue analysis to find the
1867 frame base. However, such functions must have a frame pointer,
1868 to be able to restore the SP on exit. So whenever we do have a
1869 frame pointer, use that to find the base. */
1872 case prologue_with_frame_ptr:
1875 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1876 return fb - p->frame_ptr_offset;
1879 case prologue_sans_frame_ptr:
1882 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1883 return sp - p->frame_size;
1886 case prologue_first_frame:
1890 gdb_assert_not_reached ("unexpected prologue kind");
1896 m32c_this_id (struct frame_info *this_frame,
1897 void **this_prologue_cache,
1898 struct frame_id *this_id)
1900 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1903 *this_id = frame_id_build (base, get_frame_func (this_frame));
1904 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1908 static struct value *
1909 m32c_prev_register (struct frame_info *this_frame,
1910 void **this_prologue_cache, int regnum)
1912 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1913 struct m32c_prologue *p
1914 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1915 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1916 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1918 if (regnum == tdep->sp->num)
1919 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1921 /* If prologue analysis says we saved this register somewhere,
1922 return a description of the stack slot holding it. */
1923 if (p->reg_offset[regnum] != 1)
1924 return frame_unwind_got_memory (this_frame, regnum,
1925 frame_base + p->reg_offset[regnum]);
1927 /* Otherwise, presume we haven't changed the value of this
1928 register, and get it from the next frame. */
1929 return frame_unwind_got_register (this_frame, regnum, regnum);
1933 static const struct frame_unwind m32c_unwind = {
1938 default_frame_sniffer
1943 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1945 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1946 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1951 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1953 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1954 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1958 /* Inferior calls. */
1960 /* The calling conventions, according to GCC:
1964 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1965 HImode), (2) is named, and (3) is an integer or pointer type (no
1966 structs, floats, etc). Otherwise, it's passed on the stack.
1968 Second arg may be passed in r2, same restrictions (but not QImode),
1969 even if the first arg is passed on the stack.
1971 Third and further args are passed on the stack. No padding is
1972 used, stack "alignment" is 8 bits.
1977 First arg may be passed in r0l or r0, same restrictions as above.
1979 Second and further args are passed on the stack. Padding is used
1980 after QImode parameters (i.e. lower-addressed byte is the value,
1981 higher-addressed byte is the padding), stack "alignment" is 16
1985 /* Return true if TYPE is a type that can be passed in registers. (We
1986 ignore the size, and pay attention only to the type code;
1987 acceptable sizes depends on which register is being considered to
1990 m32c_reg_arg_type (struct type *type)
1992 enum type_code code = TYPE_CODE (type);
1994 return (code == TYPE_CODE_INT
1995 || code == TYPE_CODE_ENUM
1996 || code == TYPE_CODE_PTR
1997 || code == TYPE_CODE_REF
1998 || code == TYPE_CODE_BOOL
1999 || code == TYPE_CODE_CHAR);
2004 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2005 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2006 struct value **args, CORE_ADDR sp, int struct_return,
2007 CORE_ADDR struct_addr)
2009 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2011 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2015 /* The number of arguments given in this function's prototype, or
2016 zero if it has a non-prototyped function type. The m32c ABI
2017 passes arguments mentioned in the prototype differently from
2018 those in the ellipsis of a varargs function, or from those passed
2019 to a non-prototyped function. */
2020 int num_prototyped_args = 0;
2023 struct type *func_type = value_type (function);
2025 /* Dereference function pointer types. */
2026 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2027 func_type = TYPE_TARGET_TYPE (func_type);
2029 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2030 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2033 /* The ABI description in gcc/config/m32c/m32c.abi says that
2034 we need to handle prototyped and non-prototyped functions
2035 separately, but the code in GCC doesn't actually do so. */
2036 if (TYPE_PROTOTYPED (func_type))
2038 num_prototyped_args = TYPE_NFIELDS (func_type);
2041 /* First, if the function returns an aggregate by value, push a
2042 pointer to a buffer for it. This doesn't affect the way
2043 subsequent arguments are allocated to registers. */
2046 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2048 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2051 /* Push the arguments. */
2052 for (i = nargs - 1; i >= 0; i--)
2054 struct value *arg = args[i];
2055 const gdb_byte *arg_bits = value_contents (arg);
2056 struct type *arg_type = value_type (arg);
2057 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2059 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2062 && i < num_prototyped_args
2063 && m32c_reg_arg_type (arg_type))
2065 /* Extract and re-store as an integer as a terse way to make
2066 sure it ends up in the least significant end of r1. (GDB
2067 should avoid assuming endianness, even on uni-endian
2069 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2071 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2072 regcache_cooked_write_unsigned (regcache, reg->num, u);
2075 /* Can it go in r2? */
2076 else if (mach == bfd_mach_m16c
2079 && i < num_prototyped_args
2080 && m32c_reg_arg_type (arg_type))
2081 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2083 /* Everything else goes on the stack. */
2088 /* Align the stack. */
2089 if (mach == bfd_mach_m32c)
2092 write_memory (sp, arg_bits, arg_size);
2096 /* This is the CFA we use to identify the dummy frame. */
2099 /* Push the return address. */
2100 sp -= tdep->ret_addr_bytes;
2101 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2104 /* Update the stack pointer. */
2105 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2107 /* We need to borrow an odd trick from the i386 target here.
2109 The value we return from this function gets used as the stack
2110 address (the CFA) for the dummy frame's ID. The obvious thing is
2111 to return the new TOS. However, that points at the return
2112 address, saved on the stack, which is inconsistent with the CFA's
2113 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2114 .debug_frame info uses the address immediately after the saved
2115 return address. So you end up with a dummy frame whose CFA
2116 points at the return address, but the frame for the function
2117 being called has a CFA pointing after the return address: the
2118 younger CFA is *greater than* the older CFA. The sanity checks
2119 in frame.c don't like that.
2121 So we try to be consistent with the CFA's used by DWARF 2.
2122 Having a dummy frame and a real frame with the *same* CFA is
2128 static struct frame_id
2129 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2131 /* This needs to return a frame ID whose PC is the return address
2132 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2133 m32c_push_dummy_call returned.
2135 m32c_unwind_sp gives us the CFA, which is the value the SP had
2136 before the return address was pushed. */
2137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2138 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2139 return frame_id_build (sp, get_frame_pc (this_frame));
2144 /* Return values. */
2146 /* Return value conventions, according to GCC:
2157 Aggregate values (regardless of size) are returned by pushing a
2158 pointer to a temporary area on the stack after the args are pushed.
2159 The function fills in this area with the value. Note that this
2160 pointer on the stack does not affect how register arguments, if any,
2167 /* Return non-zero if values of type TYPE are returned by storing them
2168 in a buffer whose address is passed on the stack, ahead of the
2171 m32c_return_by_passed_buf (struct type *type)
2173 enum type_code code = TYPE_CODE (type);
2175 return (code == TYPE_CODE_STRUCT
2176 || code == TYPE_CODE_UNION);
2179 static enum return_value_convention
2180 m32c_return_value (struct gdbarch *gdbarch,
2181 struct type *func_type,
2182 struct type *valtype,
2183 struct regcache *regcache,
2185 const gdb_byte *writebuf)
2187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2189 enum return_value_convention conv;
2190 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2192 if (m32c_return_by_passed_buf (valtype))
2193 conv = RETURN_VALUE_STRUCT_CONVENTION;
2195 conv = RETURN_VALUE_REGISTER_CONVENTION;
2199 /* We should never be called to find values being returned by
2200 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2201 unless we made the call ourselves. */
2202 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2204 gdb_assert (valtype_len <= 8);
2206 /* Anything that fits in r0 is returned there. */
2207 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2210 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2211 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2215 /* Everything else is passed in mem0, using as many bytes as
2216 needed. This is not what the Renesas tools do, but it's
2217 what GCC does at the moment. */
2218 struct minimal_symbol *mem0
2219 = lookup_minimal_symbol ("mem0", NULL, NULL);
2222 error ("The return value is stored in memory at 'mem0', "
2223 "but GDB cannot find\n"
2225 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2231 /* We should never be called to store values to be returned
2232 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2233 finding the buffer, unless we made the call ourselves. */
2234 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2236 gdb_assert (valtype_len <= 8);
2238 /* Anything that fits in r0 is returned there. */
2239 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2241 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2243 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2247 /* Everything else is passed in mem0, using as many bytes as
2248 needed. This is not what the Renesas tools do, but it's
2249 what GCC does at the moment. */
2250 struct minimal_symbol *mem0
2251 = lookup_minimal_symbol ("mem0", NULL, NULL);
2254 error ("The return value is stored in memory at 'mem0', "
2255 "but GDB cannot find\n"
2257 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2258 (char *) writebuf, valtype_len);
2269 /* The m16c and m32c use a trampoline function for indirect function
2270 calls. An indirect call looks like this:
2272 ... push arguments ...
2273 ... push target function address ...
2276 The code for m32c_jsri16 looks like this:
2280 # Save return address.
2282 pop.b m32c_jsri_ret+2
2284 # Store target function address.
2285 pop.w m32c_jsri_addr
2287 # Re-push return address.
2288 push.b m32c_jsri_ret+2
2289 push.w m32c_jsri_ret
2291 # Call the target function.
2292 jmpi.a m32c_jsri_addr
2294 Without further information, GDB will treat calls to m32c_jsri16
2295 like calls to any other function. Since m32c_jsri16 doesn't have
2296 debugging information, that normally means that GDB sets a step-
2297 resume breakpoint and lets the program continue --- which is not
2298 what the user wanted. (Giving the trampoline debugging info
2299 doesn't help: the user expects the program to stop in the function
2300 their program is calling, not in some trampoline code they've never
2303 The gdbarch_skip_trampoline_code method tells GDB how to step
2304 through such trampoline functions transparently to the user. When
2305 given the address of a trampoline function's first instruction,
2306 gdbarch_skip_trampoline_code should return the address of the first
2307 instruction of the function really being called. If GDB decides it
2308 wants to step into that function, it will set a breakpoint there
2309 and silently continue to it.
2311 We recognize the trampoline by name, and extract the target address
2312 directly from the stack. This isn't great, but recognizing by its
2313 code sequence seems more fragile. */
2316 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2318 struct gdbarch *gdbarch = get_frame_arch (frame);
2319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2322 /* It would be nicer to simply look up the addresses of known
2323 trampolines once, and then compare stop_pc with them. However,
2324 we'd need to ensure that that cached address got invalidated when
2325 someone loaded a new executable, and I'm not quite sure of the
2326 best way to do that. find_pc_partial_function does do some
2327 caching, so we'll see how this goes. */
2329 CORE_ADDR start, end;
2331 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2333 /* Are we stopped at the beginning of the trampoline function? */
2334 if (strcmp (name, "m32c_jsri16") == 0
2335 && stop_pc == start)
2337 /* Get the stack pointer. The return address is at the top,
2338 and the target function's address is just below that. We
2339 know it's a two-byte address, since the trampoline is
2341 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2343 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2346 /* What we have now is the address of a jump instruction.
2347 What we need is the destination of that jump.
2348 The opcode is 1 byte, and the destination is the next 3 bytes.
2350 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2359 /* Address/pointer conversions. */
2361 /* On the m16c, there is a 24-bit address space, but only a very few
2362 instructions can generate addresses larger than 0xffff: jumps,
2363 jumps to subroutines, and the lde/std (load/store extended)
2366 Since GCC can only support one size of pointer, we can't have
2367 distinct 'near' and 'far' pointer types; we have to pick one size
2368 for everything. If we wanted to use 24-bit pointers, then GCC
2369 would have to use lde and ste for all memory references, which
2370 would be terrible for performance and code size. So the GNU
2371 toolchain uses 16-bit pointers for everything, and gives up the
2372 ability to have pointers point outside the first 64k of memory.
2374 However, as a special hack, we let the linker place functions at
2375 addresses above 0xffff, as long as it also places a trampoline in
2376 the low 64k for every function whose address is taken. Each
2377 trampoline consists of a single jmp.a instruction that jumps to the
2378 function's real entry point. Pointers to functions can be 16 bits
2379 long, even though the functions themselves are at higher addresses:
2380 the pointers refer to the trampolines, not the functions.
2382 This complicates things for GDB, however: given the address of a
2383 function (from debug info or linker symbols, say) which could be
2384 anywhere in the 24-bit address space, how can we find an
2385 appropriate 16-bit value to use as a pointer to it?
2387 If the linker has not generated a trampoline for the function,
2388 we're out of luck. Well, I guess we could malloc some space and
2389 write a jmp.a instruction to it, but I'm not going to get into that
2392 If the linker has generated a trampoline for the function, then it
2393 also emitted a symbol for the trampoline: if the function's linker
2394 symbol is named NAME, then the function's trampoline's linker
2395 symbol is named NAME.plt.
2397 So, given a code address:
2398 - We try to find a linker symbol at that address.
2399 - If we find such a symbol named NAME, we look for a linker symbol
2401 - If we find such a symbol, we assume it is a trampoline, and use
2402 its address as the pointer value.
2404 And, given a function pointer:
2405 - We try to find a linker symbol at that address named NAME.plt.
2406 - If we find such a symbol, we look for a linker symbol named NAME.
2407 - If we find that, we provide that as the function's address.
2408 - If any of the above steps fail, we return the original address
2409 unchanged; it might really be a function in the low 64k.
2411 See? You *knew* there was a reason you wanted to be a computer
2415 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2416 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2419 enum type_code target_code;
2420 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2421 TYPE_CODE (type) == TYPE_CODE_REF);
2423 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2425 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2429 struct minimal_symbol *tramp_msym;
2431 /* Try to find a linker symbol at this address. */
2432 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2435 error (_("Cannot convert code address %s to function pointer:\n"
2436 "couldn't find a symbol at that address, to find trampoline."),
2437 paddress (gdbarch, addr));
2439 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2440 tramp_name = xmalloc (strlen (func_name) + 5);
2441 strcpy (tramp_name, func_name);
2442 strcat (tramp_name, ".plt");
2444 /* Try to find a linker symbol for the trampoline. */
2445 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2447 /* We've either got another copy of the name now, or don't need
2448 the name any more. */
2455 /* No PLT entry found. Mask off the upper bits of the address
2456 to make a pointer. As noted in the warning to the user
2457 below, this value might be useful if converted back into
2458 an address by GDB, but will otherwise, almost certainly,
2461 Using this masked result does seem to be useful
2462 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2463 PASSes. These results appear to be correct as well.
2465 We print a warning here so that the user can make a
2466 determination about whether the result is useful or not. */
2467 ptrval = addr & 0xffff;
2469 warning (_("Cannot convert code address %s to function pointer:\n"
2470 "couldn't find trampoline named '%s.plt'.\n"
2471 "Returning pointer value %s instead; this may produce\n"
2472 "a useful result if converted back into an address by GDB,\n"
2473 "but will most likely not be useful otherwise.\n"),
2474 paddress (gdbarch, addr), func_name,
2475 paddress (gdbarch, ptrval));
2482 /* The trampoline's address is our pointer. */
2483 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2487 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2492 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2493 struct type *type, const gdb_byte *buf)
2495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2497 enum type_code target_code;
2499 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2500 TYPE_CODE (type) == TYPE_CODE_REF);
2502 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2504 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2506 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2508 /* See if there is a minimal symbol at that address whose name is
2510 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2514 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2515 int len = strlen (ptr_msym_name);
2518 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2520 struct minimal_symbol *func_msym;
2521 /* We have a .plt symbol; try to find the symbol for the
2522 corresponding function.
2524 Since the trampoline contains a jump instruction, we
2525 could also just extract the jump's target address. I
2526 don't see much advantage one way or the other. */
2527 char *func_name = xmalloc (len - 4 + 1);
2528 memcpy (func_name, ptr_msym_name, len - 4);
2529 func_name[len - 4] = '\0';
2531 = lookup_minimal_symbol (func_name, NULL, NULL);
2533 /* If we do have such a symbol, return its value as the
2534 function's true address. */
2536 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2543 for (aspace = 1; aspace <= 15; aspace++)
2545 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2548 ptr |= aspace << 16;
2557 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2559 LONGEST *frame_offset)
2562 CORE_ADDR func_addr, func_end, sal_end;
2563 struct m32c_prologue p;
2565 struct regcache *regcache = get_current_regcache ();
2566 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2568 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2569 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2571 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2574 case prologue_with_frame_ptr:
2575 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2576 *frame_offset = p.frame_ptr_offset;
2578 case prologue_sans_frame_ptr:
2579 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2580 *frame_offset = p.frame_size;
2583 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2588 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2589 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2593 /* Initialization. */
2595 static struct gdbarch *
2596 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2598 struct gdbarch *arch;
2599 struct gdbarch_tdep *tdep;
2600 unsigned long mach = info.bfd_arch_info->mach;
2602 /* Find a candidate among the list of architectures we've created
2604 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2606 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2607 return arches->gdbarch;
2609 tdep = xcalloc (1, sizeof (*tdep));
2610 arch = gdbarch_alloc (&info, tdep);
2612 /* Essential types. */
2615 /* Address/pointer conversions. */
2616 if (mach == bfd_mach_m16c)
2618 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2619 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2626 set_gdbarch_print_insn (arch, print_insn_m32c);
2629 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2631 /* Prologue analysis and unwinding. */
2632 set_gdbarch_inner_than (arch, core_addr_lessthan);
2633 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2634 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2635 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2637 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2638 They may be in the dwarf2 cfi code in GDB, or they may be in
2639 the debug info emitted by the upstream toolchain. I don't
2640 know which, but I do know that the prologue analyzer works better.
2643 dwarf2_append_sniffers (arch);
2645 frame_unwind_append_unwinder (arch, &m32c_unwind);
2647 /* Inferior calls. */
2648 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2649 set_gdbarch_return_value (arch, m32c_return_value);
2650 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2653 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2655 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2657 /* m32c function boundary addresses are not necessarily even.
2658 Therefore, the `vbit', which indicates a pointer to a virtual
2659 member function, is stored in the delta field, rather than as
2660 the low bit of a function pointer address.
2662 In order to verify this, see the definition of
2663 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2664 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2665 set_gdbarch_vbit_in_delta (arch, 1);
2670 /* Provide a prototype to silence -Wmissing-prototypes. */
2671 extern initialize_file_ftype _initialize_m32c_tdep;
2674 _initialize_m32c_tdep (void)
2676 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2678 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);