1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
55 #include "gdb_string.h"
59 #include "cp-support.h"
61 #include "gdb_assert.h"
64 #include "macroscope.h"
68 /* Prototypes for local functions */
70 static void completion_list_add_name (char *, char *, int, char *, char *);
72 static void rbreak_command (char *, int);
74 static void types_info (char *, int);
76 static void functions_info (char *, int);
78 static void variables_info (char *, int);
80 static void sources_info (char *, int);
82 static void output_source_filename (const char *, int *);
84 static int find_line_common (struct linetable *, int, int *);
86 /* This one is used by linespec.c */
88 char *operator_chars (char *p, char **end);
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
105 const domain_enum domain);
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
111 const domain_enum domain);
113 static void print_msymbol_info (struct minimal_symbol *);
115 void _initialize_symtab (void);
119 /* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
123 const char multiple_symbols_ask[] = "ask";
124 const char multiple_symbols_all[] = "all";
125 const char multiple_symbols_cancel[] = "cancel";
126 static const char *multiple_symbols_modes[] =
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
133 static const char *multiple_symbols_mode = multiple_symbols_all;
135 /* Read-only accessor to AUTO_SELECT_MODE. */
138 multiple_symbols_select_mode (void)
140 return multiple_symbols_mode;
143 /* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
147 const struct block *block_found;
149 /* Check for a symtab of a specific name; first in symtabs, then in
150 psymtabs. *If* there is no '/' in the name, a match after a '/'
151 in the symtab filename will also work. */
154 lookup_symtab (const char *name)
157 struct symtab *s = NULL;
158 struct objfile *objfile;
159 char *real_path = NULL;
160 char *full_path = NULL;
162 /* Here we are interested in canonicalizing an absolute path, not
163 absolutizing a relative path. */
164 if (IS_ABSOLUTE_PATH (name))
166 full_path = xfullpath (name);
167 make_cleanup (xfree, full_path);
168 real_path = gdb_realpath (name);
169 make_cleanup (xfree, real_path);
174 /* First, search for an exact match. */
176 ALL_SYMTABS (objfile, s)
178 if (FILENAME_CMP (name, s->filename) == 0)
183 /* If the user gave us an absolute path, try to find the file in
184 this symtab and use its absolute path. */
186 if (full_path != NULL)
188 const char *fp = symtab_to_fullname (s);
190 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 if (real_path != NULL)
198 char *fullname = symtab_to_fullname (s);
200 if (fullname != NULL)
202 char *rp = gdb_realpath (fullname);
204 make_cleanup (xfree, rp);
205 if (FILENAME_CMP (real_path, rp) == 0)
213 /* Now, search for a matching tail (only if name doesn't have any dirs). */
215 if (lbasename (name) == name)
216 ALL_SYMTABS (objfile, s)
218 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 /* Same search rules as above apply here, but now we look thru the
226 ALL_OBJFILES (objfile)
229 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
242 /* At this point, we have located the psymtab for this file, but
243 the conversion to a symtab has failed. This usually happens
244 when we are looking up an include file. In this case,
245 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
246 been created. So, we need to run through the symtabs again in
247 order to find the file.
248 XXX - This is a crock, and should be fixed inside of the
249 symbol parsing routines. */
253 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
254 full method name, which consist of the class name (from T), the unadorned
255 method name from METHOD_ID, and the signature for the specific overload,
256 specified by SIGNATURE_ID. Note that this function is g++ specific. */
259 gdb_mangle_name (struct type *type, int method_id, int signature_id)
261 int mangled_name_len;
263 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
264 struct fn_field *method = &f[signature_id];
265 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
266 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
267 char *newname = type_name_no_tag (type);
269 /* Does the form of physname indicate that it is the full mangled name
270 of a constructor (not just the args)? */
271 int is_full_physname_constructor;
274 int is_destructor = is_destructor_name (physname);
275 /* Need a new type prefix. */
276 char *const_prefix = method->is_const ? "C" : "";
277 char *volatile_prefix = method->is_volatile ? "V" : "";
279 int len = (newname == NULL ? 0 : strlen (newname));
281 /* Nothing to do if physname already contains a fully mangled v3 abi name
282 or an operator name. */
283 if ((physname[0] == '_' && physname[1] == 'Z')
284 || is_operator_name (field_name))
285 return xstrdup (physname);
287 is_full_physname_constructor = is_constructor_name (physname);
289 is_constructor = is_full_physname_constructor
290 || (newname && strcmp (field_name, newname) == 0);
293 is_destructor = (strncmp (physname, "__dt", 4) == 0);
295 if (is_destructor || is_full_physname_constructor)
297 mangled_name = (char *) xmalloc (strlen (physname) + 1);
298 strcpy (mangled_name, physname);
304 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
306 else if (physname[0] == 't' || physname[0] == 'Q')
308 /* The physname for template and qualified methods already includes
310 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
318 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
319 + strlen (buf) + len + strlen (physname) + 1);
321 mangled_name = (char *) xmalloc (mangled_name_len);
323 mangled_name[0] = '\0';
325 strcpy (mangled_name, field_name);
327 strcat (mangled_name, buf);
328 /* If the class doesn't have a name, i.e. newname NULL, then we just
329 mangle it using 0 for the length of the class. Thus it gets mangled
330 as something starting with `::' rather than `classname::'. */
332 strcat (mangled_name, newname);
334 strcat (mangled_name, physname);
335 return (mangled_name);
338 /* Initialize the cplus_specific structure. 'cplus_specific' should
339 only be allocated for use with cplus symbols. */
342 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
343 struct objfile *objfile)
345 /* A language_specific structure should not have been previously
347 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
348 gdb_assert (objfile != NULL);
350 gsymbol->language_specific.cplus_specific =
351 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
354 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
355 correctly allocated. For C++ symbols a cplus_specific struct is
356 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
357 OBJFILE can be NULL. */
359 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
361 struct objfile *objfile)
363 if (gsymbol->language == language_cplus)
365 if (gsymbol->language_specific.cplus_specific == NULL)
366 symbol_init_cplus_specific (gsymbol, objfile);
368 gsymbol->language_specific.cplus_specific->demangled_name = name;
371 gsymbol->language_specific.mangled_lang.demangled_name = name;
374 /* Return the demangled name of GSYMBOL. */
376 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
378 if (gsymbol->language == language_cplus)
380 if (gsymbol->language_specific.cplus_specific != NULL)
381 return gsymbol->language_specific.cplus_specific->demangled_name;
386 return gsymbol->language_specific.mangled_lang.demangled_name;
390 /* Initialize the language dependent portion of a symbol
391 depending upon the language for the symbol. */
393 symbol_set_language (struct general_symbol_info *gsymbol,
394 enum language language)
396 gsymbol->language = language;
397 if (gsymbol->language == language_d
398 || gsymbol->language == language_java
399 || gsymbol->language == language_objc
400 || gsymbol->language == language_fortran)
402 symbol_set_demangled_name (gsymbol, NULL, NULL);
404 else if (gsymbol->language == language_cplus)
405 gsymbol->language_specific.cplus_specific = NULL;
408 memset (&gsymbol->language_specific, 0,
409 sizeof (gsymbol->language_specific));
413 /* Functions to initialize a symbol's mangled name. */
415 /* Objects of this type are stored in the demangled name hash table. */
416 struct demangled_name_entry
422 /* Hash function for the demangled name hash. */
424 hash_demangled_name_entry (const void *data)
426 const struct demangled_name_entry *e = data;
428 return htab_hash_string (e->mangled);
431 /* Equality function for the demangled name hash. */
433 eq_demangled_name_entry (const void *a, const void *b)
435 const struct demangled_name_entry *da = a;
436 const struct demangled_name_entry *db = b;
438 return strcmp (da->mangled, db->mangled) == 0;
441 /* Create the hash table used for demangled names. Each hash entry is
442 a pair of strings; one for the mangled name and one for the demangled
443 name. The entry is hashed via just the mangled name. */
446 create_demangled_names_hash (struct objfile *objfile)
448 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
449 The hash table code will round this up to the next prime number.
450 Choosing a much larger table size wastes memory, and saves only about
451 1% in symbol reading. */
453 objfile->demangled_names_hash = htab_create_alloc
454 (256, hash_demangled_name_entry, eq_demangled_name_entry,
455 NULL, xcalloc, xfree);
458 /* Try to determine the demangled name for a symbol, based on the
459 language of that symbol. If the language is set to language_auto,
460 it will attempt to find any demangling algorithm that works and
461 then set the language appropriately. The returned name is allocated
462 by the demangler and should be xfree'd. */
465 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
468 char *demangled = NULL;
470 if (gsymbol->language == language_unknown)
471 gsymbol->language = language_auto;
473 if (gsymbol->language == language_objc
474 || gsymbol->language == language_auto)
477 objc_demangle (mangled, 0);
478 if (demangled != NULL)
480 gsymbol->language = language_objc;
484 if (gsymbol->language == language_cplus
485 || gsymbol->language == language_auto)
488 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
489 if (demangled != NULL)
491 gsymbol->language = language_cplus;
495 if (gsymbol->language == language_java)
498 cplus_demangle (mangled,
499 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
500 if (demangled != NULL)
502 gsymbol->language = language_java;
506 if (gsymbol->language == language_d
507 || gsymbol->language == language_auto)
509 demangled = d_demangle(mangled, 0);
510 if (demangled != NULL)
512 gsymbol->language = language_d;
516 /* We could support `gsymbol->language == language_fortran' here to provide
517 module namespaces also for inferiors with only minimal symbol table (ELF
518 symbols). Just the mangling standard is not standardized across compilers
519 and there is no DW_AT_producer available for inferiors with only the ELF
520 symbols to check the mangling kind. */
524 /* Set both the mangled and demangled (if any) names for GSYMBOL based
525 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
526 objfile's obstack; but if COPY_NAME is 0 and if NAME is
527 NUL-terminated, then this function assumes that NAME is already
528 correctly saved (either permanently or with a lifetime tied to the
529 objfile), and it will not be copied.
531 The hash table corresponding to OBJFILE is used, and the memory
532 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
533 so the pointer can be discarded after calling this function. */
535 /* We have to be careful when dealing with Java names: when we run
536 into a Java minimal symbol, we don't know it's a Java symbol, so it
537 gets demangled as a C++ name. This is unfortunate, but there's not
538 much we can do about it: but when demangling partial symbols and
539 regular symbols, we'd better not reuse the wrong demangled name.
540 (See PR gdb/1039.) We solve this by putting a distinctive prefix
541 on Java names when storing them in the hash table. */
543 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
544 don't mind the Java prefix so much: different languages have
545 different demangling requirements, so it's only natural that we
546 need to keep language data around in our demangling cache. But
547 it's not good that the minimal symbol has the wrong demangled name.
548 Unfortunately, I can't think of any easy solution to that
551 #define JAVA_PREFIX "##JAVA$$"
552 #define JAVA_PREFIX_LEN 8
555 symbol_set_names (struct general_symbol_info *gsymbol,
556 const char *linkage_name, int len, int copy_name,
557 struct objfile *objfile)
559 struct demangled_name_entry **slot;
560 /* A 0-terminated copy of the linkage name. */
561 const char *linkage_name_copy;
562 /* A copy of the linkage name that might have a special Java prefix
563 added to it, for use when looking names up in the hash table. */
564 const char *lookup_name;
565 /* The length of lookup_name. */
567 struct demangled_name_entry entry;
569 if (gsymbol->language == language_ada)
571 /* In Ada, we do the symbol lookups using the mangled name, so
572 we can save some space by not storing the demangled name.
574 As a side note, we have also observed some overlap between
575 the C++ mangling and Ada mangling, similarly to what has
576 been observed with Java. Because we don't store the demangled
577 name with the symbol, we don't need to use the same trick
580 gsymbol->name = (char *) linkage_name;
583 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
584 memcpy (gsymbol->name, linkage_name, len);
585 gsymbol->name[len] = '\0';
587 symbol_set_demangled_name (gsymbol, NULL, NULL);
592 if (objfile->demangled_names_hash == NULL)
593 create_demangled_names_hash (objfile);
595 /* The stabs reader generally provides names that are not
596 NUL-terminated; most of the other readers don't do this, so we
597 can just use the given copy, unless we're in the Java case. */
598 if (gsymbol->language == language_java)
602 lookup_len = len + JAVA_PREFIX_LEN;
603 alloc_name = alloca (lookup_len + 1);
604 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
605 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
606 alloc_name[lookup_len] = '\0';
608 lookup_name = alloc_name;
609 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
611 else if (linkage_name[len] != '\0')
616 alloc_name = alloca (lookup_len + 1);
617 memcpy (alloc_name, linkage_name, len);
618 alloc_name[lookup_len] = '\0';
620 lookup_name = alloc_name;
621 linkage_name_copy = alloc_name;
626 lookup_name = linkage_name;
627 linkage_name_copy = linkage_name;
630 entry.mangled = (char *) lookup_name;
631 slot = ((struct demangled_name_entry **)
632 htab_find_slot (objfile->demangled_names_hash,
635 /* If this name is not in the hash table, add it. */
638 char *demangled_name = symbol_find_demangled_name (gsymbol,
640 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
642 /* Suppose we have demangled_name==NULL, copy_name==0, and
643 lookup_name==linkage_name. In this case, we already have the
644 mangled name saved, and we don't have a demangled name. So,
645 you might think we could save a little space by not recording
646 this in the hash table at all.
648 It turns out that it is actually important to still save such
649 an entry in the hash table, because storing this name gives
650 us better bcache hit rates for partial symbols. */
651 if (!copy_name && lookup_name == linkage_name)
653 *slot = obstack_alloc (&objfile->objfile_obstack,
654 offsetof (struct demangled_name_entry,
656 + demangled_len + 1);
657 (*slot)->mangled = (char *) lookup_name;
661 /* If we must copy the mangled name, put it directly after
662 the demangled name so we can have a single
664 *slot = obstack_alloc (&objfile->objfile_obstack,
665 offsetof (struct demangled_name_entry,
667 + lookup_len + demangled_len + 2);
668 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
669 strcpy ((*slot)->mangled, lookup_name);
672 if (demangled_name != NULL)
674 strcpy ((*slot)->demangled, demangled_name);
675 xfree (demangled_name);
678 (*slot)->demangled[0] = '\0';
681 gsymbol->name = (*slot)->mangled + lookup_len - len;
682 if ((*slot)->demangled[0] != '\0')
683 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
685 symbol_set_demangled_name (gsymbol, NULL, objfile);
688 /* Return the source code name of a symbol. In languages where
689 demangling is necessary, this is the demangled name. */
692 symbol_natural_name (const struct general_symbol_info *gsymbol)
694 switch (gsymbol->language)
700 case language_fortran:
701 if (symbol_get_demangled_name (gsymbol) != NULL)
702 return symbol_get_demangled_name (gsymbol);
705 if (symbol_get_demangled_name (gsymbol) != NULL)
706 return symbol_get_demangled_name (gsymbol);
708 return ada_decode_symbol (gsymbol);
713 return gsymbol->name;
716 /* Return the demangled name for a symbol based on the language for
717 that symbol. If no demangled name exists, return NULL. */
719 symbol_demangled_name (const struct general_symbol_info *gsymbol)
721 switch (gsymbol->language)
727 case language_fortran:
728 if (symbol_get_demangled_name (gsymbol) != NULL)
729 return symbol_get_demangled_name (gsymbol);
732 if (symbol_get_demangled_name (gsymbol) != NULL)
733 return symbol_get_demangled_name (gsymbol);
735 return ada_decode_symbol (gsymbol);
743 /* Return the search name of a symbol---generally the demangled or
744 linkage name of the symbol, depending on how it will be searched for.
745 If there is no distinct demangled name, then returns the same value
746 (same pointer) as SYMBOL_LINKAGE_NAME. */
748 symbol_search_name (const struct general_symbol_info *gsymbol)
750 if (gsymbol->language == language_ada)
751 return gsymbol->name;
753 return symbol_natural_name (gsymbol);
756 /* Initialize the structure fields to zero values. */
758 init_sal (struct symtab_and_line *sal)
766 sal->explicit_pc = 0;
767 sal->explicit_line = 0;
771 /* Return 1 if the two sections are the same, or if they could
772 plausibly be copies of each other, one in an original object
773 file and another in a separated debug file. */
776 matching_obj_sections (struct obj_section *obj_first,
777 struct obj_section *obj_second)
779 asection *first = obj_first? obj_first->the_bfd_section : NULL;
780 asection *second = obj_second? obj_second->the_bfd_section : NULL;
783 /* If they're the same section, then they match. */
787 /* If either is NULL, give up. */
788 if (first == NULL || second == NULL)
791 /* This doesn't apply to absolute symbols. */
792 if (first->owner == NULL || second->owner == NULL)
795 /* If they're in the same object file, they must be different sections. */
796 if (first->owner == second->owner)
799 /* Check whether the two sections are potentially corresponding. They must
800 have the same size, address, and name. We can't compare section indexes,
801 which would be more reliable, because some sections may have been
803 if (bfd_get_section_size (first) != bfd_get_section_size (second))
806 /* In-memory addresses may start at a different offset, relativize them. */
807 if (bfd_get_section_vma (first->owner, first)
808 - bfd_get_start_address (first->owner)
809 != bfd_get_section_vma (second->owner, second)
810 - bfd_get_start_address (second->owner))
813 if (bfd_get_section_name (first->owner, first) == NULL
814 || bfd_get_section_name (second->owner, second) == NULL
815 || strcmp (bfd_get_section_name (first->owner, first),
816 bfd_get_section_name (second->owner, second)) != 0)
819 /* Otherwise check that they are in corresponding objfiles. */
822 if (obj->obfd == first->owner)
824 gdb_assert (obj != NULL);
826 if (obj->separate_debug_objfile != NULL
827 && obj->separate_debug_objfile->obfd == second->owner)
829 if (obj->separate_debug_objfile_backlink != NULL
830 && obj->separate_debug_objfile_backlink->obfd == second->owner)
837 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
839 struct objfile *objfile;
840 struct minimal_symbol *msymbol;
842 /* If we know that this is not a text address, return failure. This is
843 necessary because we loop based on texthigh and textlow, which do
844 not include the data ranges. */
845 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
847 && (MSYMBOL_TYPE (msymbol) == mst_data
848 || MSYMBOL_TYPE (msymbol) == mst_bss
849 || MSYMBOL_TYPE (msymbol) == mst_abs
850 || MSYMBOL_TYPE (msymbol) == mst_file_data
851 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
854 ALL_OBJFILES (objfile)
856 struct symtab *result = NULL;
859 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
868 /* Debug symbols usually don't have section information. We need to dig that
869 out of the minimal symbols and stash that in the debug symbol. */
872 fixup_section (struct general_symbol_info *ginfo,
873 CORE_ADDR addr, struct objfile *objfile)
875 struct minimal_symbol *msym;
877 /* First, check whether a minimal symbol with the same name exists
878 and points to the same address. The address check is required
879 e.g. on PowerPC64, where the minimal symbol for a function will
880 point to the function descriptor, while the debug symbol will
881 point to the actual function code. */
882 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
885 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
886 ginfo->section = SYMBOL_SECTION (msym);
890 /* Static, function-local variables do appear in the linker
891 (minimal) symbols, but are frequently given names that won't
892 be found via lookup_minimal_symbol(). E.g., it has been
893 observed in frv-uclinux (ELF) executables that a static,
894 function-local variable named "foo" might appear in the
895 linker symbols as "foo.6" or "foo.3". Thus, there is no
896 point in attempting to extend the lookup-by-name mechanism to
897 handle this case due to the fact that there can be multiple
900 So, instead, search the section table when lookup by name has
901 failed. The ``addr'' and ``endaddr'' fields may have already
902 been relocated. If so, the relocation offset (i.e. the
903 ANOFFSET value) needs to be subtracted from these values when
904 performing the comparison. We unconditionally subtract it,
905 because, when no relocation has been performed, the ANOFFSET
906 value will simply be zero.
908 The address of the symbol whose section we're fixing up HAS
909 NOT BEEN adjusted (relocated) yet. It can't have been since
910 the section isn't yet known and knowing the section is
911 necessary in order to add the correct relocation value. In
912 other words, we wouldn't even be in this function (attempting
913 to compute the section) if it were already known.
915 Note that it is possible to search the minimal symbols
916 (subtracting the relocation value if necessary) to find the
917 matching minimal symbol, but this is overkill and much less
918 efficient. It is not necessary to find the matching minimal
919 symbol, only its section.
921 Note that this technique (of doing a section table search)
922 can fail when unrelocated section addresses overlap. For
923 this reason, we still attempt a lookup by name prior to doing
924 a search of the section table. */
926 struct obj_section *s;
928 ALL_OBJFILE_OSECTIONS (objfile, s)
930 int idx = s->the_bfd_section->index;
931 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
933 if (obj_section_addr (s) - offset <= addr
934 && addr < obj_section_endaddr (s) - offset)
936 ginfo->obj_section = s;
937 ginfo->section = idx;
945 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
952 if (SYMBOL_OBJ_SECTION (sym))
955 /* We either have an OBJFILE, or we can get at it from the sym's
956 symtab. Anything else is a bug. */
957 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
960 objfile = SYMBOL_SYMTAB (sym)->objfile;
962 /* We should have an objfile by now. */
963 gdb_assert (objfile);
965 switch (SYMBOL_CLASS (sym))
969 addr = SYMBOL_VALUE_ADDRESS (sym);
972 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
976 /* Nothing else will be listed in the minsyms -- no use looking
981 fixup_section (&sym->ginfo, addr, objfile);
986 /* Find the definition for a specified symbol name NAME
987 in domain DOMAIN, visible from lexical block BLOCK.
988 Returns the struct symbol pointer, or zero if no symbol is found.
989 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
990 NAME is a field of the current implied argument `this'. If so set
991 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
992 BLOCK_FOUND is set to the block in which NAME is found (in the case of
993 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
995 /* This function has a bunch of loops in it and it would seem to be
996 attractive to put in some QUIT's (though I'm not really sure
997 whether it can run long enough to be really important). But there
998 are a few calls for which it would appear to be bad news to quit
999 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1000 that there is C++ code below which can error(), but that probably
1001 doesn't affect these calls since they are looking for a known
1002 variable and thus can probably assume it will never hit the C++
1006 lookup_symbol_in_language (const char *name, const struct block *block,
1007 const domain_enum domain, enum language lang,
1008 int *is_a_field_of_this)
1010 char *demangled_name = NULL;
1011 const char *modified_name = NULL;
1012 struct symbol *returnval;
1013 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1015 modified_name = name;
1017 /* If we are using C++, D, or Java, demangle the name before doing a
1018 lookup, so we can always binary search. */
1019 if (lang == language_cplus)
1021 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1024 modified_name = demangled_name;
1025 make_cleanup (xfree, demangled_name);
1029 /* If we were given a non-mangled name, canonicalize it
1030 according to the language (so far only for C++). */
1031 demangled_name = cp_canonicalize_string (name);
1034 modified_name = demangled_name;
1035 make_cleanup (xfree, demangled_name);
1039 else if (lang == language_java)
1041 demangled_name = cplus_demangle (name,
1042 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1045 modified_name = demangled_name;
1046 make_cleanup (xfree, demangled_name);
1049 else if (lang == language_d)
1051 demangled_name = d_demangle (name, 0);
1054 modified_name = demangled_name;
1055 make_cleanup (xfree, demangled_name);
1059 if (case_sensitivity == case_sensitive_off)
1064 len = strlen (name);
1065 copy = (char *) alloca (len + 1);
1066 for (i= 0; i < len; i++)
1067 copy[i] = tolower (name[i]);
1069 modified_name = copy;
1072 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1073 is_a_field_of_this);
1074 do_cleanups (cleanup);
1079 /* Behave like lookup_symbol_in_language, but performed with the
1080 current language. */
1083 lookup_symbol (const char *name, const struct block *block,
1084 domain_enum domain, int *is_a_field_of_this)
1086 return lookup_symbol_in_language (name, block, domain,
1087 current_language->la_language,
1088 is_a_field_of_this);
1091 /* Behave like lookup_symbol except that NAME is the natural name
1092 of the symbol that we're looking for and, if LINKAGE_NAME is
1093 non-NULL, ensure that the symbol's linkage name matches as
1096 static struct symbol *
1097 lookup_symbol_aux (const char *name, const struct block *block,
1098 const domain_enum domain, enum language language,
1099 int *is_a_field_of_this)
1102 const struct language_defn *langdef;
1104 /* Make sure we do something sensible with is_a_field_of_this, since
1105 the callers that set this parameter to some non-null value will
1106 certainly use it later and expect it to be either 0 or 1.
1107 If we don't set it, the contents of is_a_field_of_this are
1109 if (is_a_field_of_this != NULL)
1110 *is_a_field_of_this = 0;
1112 /* Search specified block and its superiors. Don't search
1113 STATIC_BLOCK or GLOBAL_BLOCK. */
1115 sym = lookup_symbol_aux_local (name, block, domain, language);
1119 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1120 check to see if NAME is a field of `this'. */
1122 langdef = language_def (language);
1124 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1127 struct symbol *sym = NULL;
1128 const struct block *function_block = block;
1130 /* 'this' is only defined in the function's block, so find the
1131 enclosing function block. */
1132 for (; function_block && !BLOCK_FUNCTION (function_block);
1133 function_block = BLOCK_SUPERBLOCK (function_block));
1135 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1136 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1140 struct type *t = sym->type;
1142 /* I'm not really sure that type of this can ever
1143 be typedefed; just be safe. */
1145 if (TYPE_CODE (t) == TYPE_CODE_PTR
1146 || TYPE_CODE (t) == TYPE_CODE_REF)
1147 t = TYPE_TARGET_TYPE (t);
1149 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1150 && TYPE_CODE (t) != TYPE_CODE_UNION)
1151 error (_("Internal error: `%s' is not an aggregate"),
1152 langdef->la_name_of_this);
1154 if (check_field (t, name))
1156 *is_a_field_of_this = 1;
1162 /* Now do whatever is appropriate for LANGUAGE to look
1163 up static and global variables. */
1165 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1169 /* Now search all static file-level symbols. Not strictly correct,
1170 but more useful than an error. */
1172 return lookup_static_symbol_aux (name, domain);
1175 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1176 first, then check the psymtabs. If a psymtab indicates the existence of the
1177 desired name as a file-level static, then do psymtab-to-symtab conversion on
1178 the fly and return the found symbol. */
1181 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1183 struct objfile *objfile;
1186 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1190 ALL_OBJFILES (objfile)
1192 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1200 /* Check to see if the symbol is defined in BLOCK or its superiors.
1201 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1203 static struct symbol *
1204 lookup_symbol_aux_local (const char *name, const struct block *block,
1205 const domain_enum domain,
1206 enum language language)
1209 const struct block *static_block = block_static_block (block);
1210 const char *scope = block_scope (block);
1212 /* Check if either no block is specified or it's a global block. */
1214 if (static_block == NULL)
1217 while (block != static_block)
1219 sym = lookup_symbol_aux_block (name, block, domain);
1223 if (language == language_cplus || language == language_fortran)
1225 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1231 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1233 block = BLOCK_SUPERBLOCK (block);
1236 /* We've reached the edge of the function without finding a result. */
1241 /* Look up OBJFILE to BLOCK. */
1244 lookup_objfile_from_block (const struct block *block)
1246 struct objfile *obj;
1252 block = block_global_block (block);
1253 /* Go through SYMTABS. */
1254 ALL_SYMTABS (obj, s)
1255 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1257 if (obj->separate_debug_objfile_backlink)
1258 obj = obj->separate_debug_objfile_backlink;
1266 /* Look up a symbol in a block; if found, fixup the symbol, and set
1267 block_found appropriately. */
1270 lookup_symbol_aux_block (const char *name, const struct block *block,
1271 const domain_enum domain)
1275 sym = lookup_block_symbol (block, name, domain);
1278 block_found = block;
1279 return fixup_symbol_section (sym, NULL);
1285 /* Check all global symbols in OBJFILE in symtabs and
1289 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1291 const domain_enum domain)
1293 const struct objfile *objfile;
1295 struct blockvector *bv;
1296 const struct block *block;
1299 for (objfile = main_objfile;
1301 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1303 /* Go through symtabs. */
1304 ALL_OBJFILE_SYMTABS (objfile, s)
1306 bv = BLOCKVECTOR (s);
1307 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1308 sym = lookup_block_symbol (block, name, domain);
1311 block_found = block;
1312 return fixup_symbol_section (sym, (struct objfile *)objfile);
1316 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1325 /* Check to see if the symbol is defined in one of the symtabs.
1326 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1327 depending on whether or not we want to search global symbols or
1330 static struct symbol *
1331 lookup_symbol_aux_symtabs (int block_index, const char *name,
1332 const domain_enum domain)
1335 struct objfile *objfile;
1336 struct blockvector *bv;
1337 const struct block *block;
1340 ALL_OBJFILES (objfile)
1343 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1347 ALL_OBJFILE_SYMTABS (objfile, s)
1350 bv = BLOCKVECTOR (s);
1351 block = BLOCKVECTOR_BLOCK (bv, block_index);
1352 sym = lookup_block_symbol (block, name, domain);
1355 block_found = block;
1356 return fixup_symbol_section (sym, objfile);
1364 /* A helper function for lookup_symbol_aux that interfaces with the
1365 "quick" symbol table functions. */
1367 static struct symbol *
1368 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1369 const char *name, const domain_enum domain)
1371 struct symtab *symtab;
1372 struct blockvector *bv;
1373 const struct block *block;
1378 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1382 bv = BLOCKVECTOR (symtab);
1383 block = BLOCKVECTOR_BLOCK (bv, kind);
1384 sym = lookup_block_symbol (block, name, domain);
1387 /* This shouldn't be necessary, but as a last resort try
1388 looking in the statics even though the psymtab claimed
1389 the symbol was global, or vice-versa. It's possible
1390 that the psymtab gets it wrong in some cases. */
1392 /* FIXME: carlton/2002-09-30: Should we really do that?
1393 If that happens, isn't it likely to be a GDB error, in
1394 which case we should fix the GDB error rather than
1395 silently dealing with it here? So I'd vote for
1396 removing the check for the symbol in the other
1398 block = BLOCKVECTOR_BLOCK (bv,
1399 kind == GLOBAL_BLOCK ?
1400 STATIC_BLOCK : GLOBAL_BLOCK);
1401 sym = lookup_block_symbol (block, name, domain);
1404 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1405 %s may be an inlined function, or may be a template function\n\
1406 (if a template, try specifying an instantiation: %s<type>)."),
1407 kind == GLOBAL_BLOCK ? "global" : "static",
1408 name, symtab->filename, name, name);
1410 return fixup_symbol_section (sym, objfile);
1413 /* A default version of lookup_symbol_nonlocal for use by languages
1414 that can't think of anything better to do. This implements the C
1418 basic_lookup_symbol_nonlocal (const char *name,
1419 const struct block *block,
1420 const domain_enum domain)
1424 /* NOTE: carlton/2003-05-19: The comments below were written when
1425 this (or what turned into this) was part of lookup_symbol_aux;
1426 I'm much less worried about these questions now, since these
1427 decisions have turned out well, but I leave these comments here
1430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1431 not it would be appropriate to search the current global block
1432 here as well. (That's what this code used to do before the
1433 is_a_field_of_this check was moved up.) On the one hand, it's
1434 redundant with the lookup_symbol_aux_symtabs search that happens
1435 next. On the other hand, if decode_line_1 is passed an argument
1436 like filename:var, then the user presumably wants 'var' to be
1437 searched for in filename. On the third hand, there shouldn't be
1438 multiple global variables all of which are named 'var', and it's
1439 not like decode_line_1 has ever restricted its search to only
1440 global variables in a single filename. All in all, only
1441 searching the static block here seems best: it's correct and it's
1444 /* NOTE: carlton/2002-12-05: There's also a possible performance
1445 issue here: if you usually search for global symbols in the
1446 current file, then it would be slightly better to search the
1447 current global block before searching all the symtabs. But there
1448 are other factors that have a much greater effect on performance
1449 than that one, so I don't think we should worry about that for
1452 sym = lookup_symbol_static (name, block, domain);
1456 return lookup_symbol_global (name, block, domain);
1459 /* Lookup a symbol in the static block associated to BLOCK, if there
1460 is one; do nothing if BLOCK is NULL or a global block. */
1463 lookup_symbol_static (const char *name,
1464 const struct block *block,
1465 const domain_enum domain)
1467 const struct block *static_block = block_static_block (block);
1469 if (static_block != NULL)
1470 return lookup_symbol_aux_block (name, static_block, domain);
1475 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1479 lookup_symbol_global (const char *name,
1480 const struct block *block,
1481 const domain_enum domain)
1483 struct symbol *sym = NULL;
1484 struct objfile *objfile = NULL;
1486 /* Call library-specific lookup procedure. */
1487 objfile = lookup_objfile_from_block (block);
1488 if (objfile != NULL)
1489 sym = solib_global_lookup (objfile, name, domain);
1493 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1497 ALL_OBJFILES (objfile)
1499 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1508 symbol_matches_domain (enum language symbol_language,
1509 domain_enum symbol_domain,
1512 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1513 A Java class declaration also defines a typedef for the class.
1514 Similarly, any Ada type declaration implicitly defines a typedef. */
1515 if (symbol_language == language_cplus
1516 || symbol_language == language_d
1517 || symbol_language == language_java
1518 || symbol_language == language_ada)
1520 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1521 && symbol_domain == STRUCT_DOMAIN)
1524 /* For all other languages, strict match is required. */
1525 return (symbol_domain == domain);
1528 /* Look up a type named NAME in the struct_domain. The type returned
1529 must not be opaque -- i.e., must have at least one field
1533 lookup_transparent_type (const char *name)
1535 return current_language->la_lookup_transparent_type (name);
1538 /* A helper for basic_lookup_transparent_type that interfaces with the
1539 "quick" symbol table functions. */
1541 static struct type *
1542 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1545 struct symtab *symtab;
1546 struct blockvector *bv;
1547 struct block *block;
1552 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1556 bv = BLOCKVECTOR (symtab);
1557 block = BLOCKVECTOR_BLOCK (bv, kind);
1558 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1561 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1563 /* This shouldn't be necessary, but as a last resort
1564 * try looking in the 'other kind' even though the psymtab
1565 * claimed the symbol was one thing. It's possible that
1566 * the psymtab gets it wrong in some cases.
1568 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1569 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1571 /* FIXME; error is wrong in one case. */
1573 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1574 %s may be an inlined function, or may be a template function\n\
1575 (if a template, try specifying an instantiation: %s<type>)."),
1576 name, symtab->filename, name, name);
1578 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1579 return SYMBOL_TYPE (sym);
1584 /* The standard implementation of lookup_transparent_type. This code
1585 was modeled on lookup_symbol -- the parts not relevant to looking
1586 up types were just left out. In particular it's assumed here that
1587 types are available in struct_domain and only at file-static or
1591 basic_lookup_transparent_type (const char *name)
1594 struct symtab *s = NULL;
1595 struct blockvector *bv;
1596 struct objfile *objfile;
1597 struct block *block;
1600 /* Now search all the global symbols. Do the symtab's first, then
1601 check the psymtab's. If a psymtab indicates the existence
1602 of the desired name as a global, then do psymtab-to-symtab
1603 conversion on the fly and return the found symbol. */
1605 ALL_OBJFILES (objfile)
1608 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1610 name, STRUCT_DOMAIN);
1612 ALL_OBJFILE_SYMTABS (objfile, s)
1615 bv = BLOCKVECTOR (s);
1616 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1617 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1618 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1620 return SYMBOL_TYPE (sym);
1625 ALL_OBJFILES (objfile)
1627 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1632 /* Now search the static file-level symbols.
1633 Not strictly correct, but more useful than an error.
1634 Do the symtab's first, then
1635 check the psymtab's. If a psymtab indicates the existence
1636 of the desired name as a file-level static, then do psymtab-to-symtab
1637 conversion on the fly and return the found symbol. */
1639 ALL_OBJFILES (objfile)
1642 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1643 name, STRUCT_DOMAIN);
1645 ALL_OBJFILE_SYMTABS (objfile, s)
1647 bv = BLOCKVECTOR (s);
1648 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1649 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1650 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1652 return SYMBOL_TYPE (sym);
1657 ALL_OBJFILES (objfile)
1659 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1664 return (struct type *) 0;
1668 /* Find the name of the file containing main(). */
1669 /* FIXME: What about languages without main() or specially linked
1670 executables that have no main() ? */
1673 find_main_filename (void)
1675 struct objfile *objfile;
1676 char *name = main_name ();
1678 ALL_OBJFILES (objfile)
1684 result = objfile->sf->qf->find_symbol_file (objfile, name);
1691 /* Search BLOCK for symbol NAME in DOMAIN.
1693 Note that if NAME is the demangled form of a C++ symbol, we will fail
1694 to find a match during the binary search of the non-encoded names, but
1695 for now we don't worry about the slight inefficiency of looking for
1696 a match we'll never find, since it will go pretty quick. Once the
1697 binary search terminates, we drop through and do a straight linear
1698 search on the symbols. Each symbol which is marked as being a ObjC/C++
1699 symbol (language_cplus or language_objc set) has both the encoded and
1700 non-encoded names tested for a match. */
1703 lookup_block_symbol (const struct block *block, const char *name,
1704 const domain_enum domain)
1706 struct dict_iterator iter;
1709 if (!BLOCK_FUNCTION (block))
1711 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1713 sym = dict_iter_name_next (name, &iter))
1715 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1716 SYMBOL_DOMAIN (sym), domain))
1723 /* Note that parameter symbols do not always show up last in the
1724 list; this loop makes sure to take anything else other than
1725 parameter symbols first; it only uses parameter symbols as a
1726 last resort. Note that this only takes up extra computation
1729 struct symbol *sym_found = NULL;
1731 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1733 sym = dict_iter_name_next (name, &iter))
1735 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1736 SYMBOL_DOMAIN (sym), domain))
1739 if (!SYMBOL_IS_ARGUMENT (sym))
1745 return (sym_found); /* Will be NULL if not found. */
1749 /* Find the symtab associated with PC and SECTION. Look through the
1750 psymtabs and read in another symtab if necessary. */
1753 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1756 struct blockvector *bv;
1757 struct symtab *s = NULL;
1758 struct symtab *best_s = NULL;
1759 struct objfile *objfile;
1760 struct program_space *pspace;
1761 CORE_ADDR distance = 0;
1762 struct minimal_symbol *msymbol;
1764 pspace = current_program_space;
1766 /* If we know that this is not a text address, return failure. This is
1767 necessary because we loop based on the block's high and low code
1768 addresses, which do not include the data ranges, and because
1769 we call find_pc_sect_psymtab which has a similar restriction based
1770 on the partial_symtab's texthigh and textlow. */
1771 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1773 && (MSYMBOL_TYPE (msymbol) == mst_data
1774 || MSYMBOL_TYPE (msymbol) == mst_bss
1775 || MSYMBOL_TYPE (msymbol) == mst_abs
1776 || MSYMBOL_TYPE (msymbol) == mst_file_data
1777 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1780 /* Search all symtabs for the one whose file contains our address, and which
1781 is the smallest of all the ones containing the address. This is designed
1782 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1783 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1784 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1786 This happens for native ecoff format, where code from included files
1787 gets its own symtab. The symtab for the included file should have
1788 been read in already via the dependency mechanism.
1789 It might be swifter to create several symtabs with the same name
1790 like xcoff does (I'm not sure).
1792 It also happens for objfiles that have their functions reordered.
1793 For these, the symtab we are looking for is not necessarily read in. */
1795 ALL_PRIMARY_SYMTABS (objfile, s)
1797 bv = BLOCKVECTOR (s);
1798 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1800 if (BLOCK_START (b) <= pc
1801 && BLOCK_END (b) > pc
1803 || BLOCK_END (b) - BLOCK_START (b) < distance))
1805 /* For an objfile that has its functions reordered,
1806 find_pc_psymtab will find the proper partial symbol table
1807 and we simply return its corresponding symtab. */
1808 /* In order to better support objfiles that contain both
1809 stabs and coff debugging info, we continue on if a psymtab
1811 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1813 struct symtab *result;
1816 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1825 struct dict_iterator iter;
1826 struct symbol *sym = NULL;
1828 ALL_BLOCK_SYMBOLS (b, iter, sym)
1830 fixup_symbol_section (sym, objfile);
1831 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1835 continue; /* No symbol in this symtab matches
1838 distance = BLOCK_END (b) - BLOCK_START (b);
1846 ALL_OBJFILES (objfile)
1848 struct symtab *result;
1852 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1863 /* Find the symtab associated with PC. Look through the psymtabs and read
1864 in another symtab if necessary. Backward compatibility, no section. */
1867 find_pc_symtab (CORE_ADDR pc)
1869 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1873 /* Find the source file and line number for a given PC value and SECTION.
1874 Return a structure containing a symtab pointer, a line number,
1875 and a pc range for the entire source line.
1876 The value's .pc field is NOT the specified pc.
1877 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1878 use the line that ends there. Otherwise, in that case, the line
1879 that begins there is used. */
1881 /* The big complication here is that a line may start in one file, and end just
1882 before the start of another file. This usually occurs when you #include
1883 code in the middle of a subroutine. To properly find the end of a line's PC
1884 range, we must search all symtabs associated with this compilation unit, and
1885 find the one whose first PC is closer than that of the next line in this
1888 /* If it's worth the effort, we could be using a binary search. */
1890 struct symtab_and_line
1891 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1894 struct linetable *l;
1897 struct linetable_entry *item;
1898 struct symtab_and_line val;
1899 struct blockvector *bv;
1900 struct minimal_symbol *msymbol;
1901 struct minimal_symbol *mfunsym;
1902 struct objfile *objfile;
1904 /* Info on best line seen so far, and where it starts, and its file. */
1906 struct linetable_entry *best = NULL;
1907 CORE_ADDR best_end = 0;
1908 struct symtab *best_symtab = 0;
1910 /* Store here the first line number
1911 of a file which contains the line at the smallest pc after PC.
1912 If we don't find a line whose range contains PC,
1913 we will use a line one less than this,
1914 with a range from the start of that file to the first line's pc. */
1915 struct linetable_entry *alt = NULL;
1916 struct symtab *alt_symtab = 0;
1918 /* Info on best line seen in this file. */
1920 struct linetable_entry *prev;
1922 /* If this pc is not from the current frame,
1923 it is the address of the end of a call instruction.
1924 Quite likely that is the start of the following statement.
1925 But what we want is the statement containing the instruction.
1926 Fudge the pc to make sure we get that. */
1928 init_sal (&val); /* initialize to zeroes */
1930 val.pspace = current_program_space;
1932 /* It's tempting to assume that, if we can't find debugging info for
1933 any function enclosing PC, that we shouldn't search for line
1934 number info, either. However, GAS can emit line number info for
1935 assembly files --- very helpful when debugging hand-written
1936 assembly code. In such a case, we'd have no debug info for the
1937 function, but we would have line info. */
1942 /* elz: added this because this function returned the wrong
1943 information if the pc belongs to a stub (import/export)
1944 to call a shlib function. This stub would be anywhere between
1945 two functions in the target, and the line info was erroneously
1946 taken to be the one of the line before the pc. */
1948 /* RT: Further explanation:
1950 * We have stubs (trampolines) inserted between procedures.
1952 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1953 * exists in the main image.
1955 * In the minimal symbol table, we have a bunch of symbols
1956 * sorted by start address. The stubs are marked as "trampoline",
1957 * the others appear as text. E.g.:
1959 * Minimal symbol table for main image
1960 * main: code for main (text symbol)
1961 * shr1: stub (trampoline symbol)
1962 * foo: code for foo (text symbol)
1964 * Minimal symbol table for "shr1" image:
1966 * shr1: code for shr1 (text symbol)
1969 * So the code below is trying to detect if we are in the stub
1970 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1971 * and if found, do the symbolization from the real-code address
1972 * rather than the stub address.
1974 * Assumptions being made about the minimal symbol table:
1975 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1976 * if we're really in the trampoline.s If we're beyond it (say
1977 * we're in "foo" in the above example), it'll have a closer
1978 * symbol (the "foo" text symbol for example) and will not
1979 * return the trampoline.
1980 * 2. lookup_minimal_symbol_text() will find a real text symbol
1981 * corresponding to the trampoline, and whose address will
1982 * be different than the trampoline address. I put in a sanity
1983 * check for the address being the same, to avoid an
1984 * infinite recursion.
1986 msymbol = lookup_minimal_symbol_by_pc (pc);
1987 if (msymbol != NULL)
1988 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1990 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1992 if (mfunsym == NULL)
1993 /* I eliminated this warning since it is coming out
1994 * in the following situation:
1995 * gdb shmain // test program with shared libraries
1996 * (gdb) break shr1 // function in shared lib
1997 * Warning: In stub for ...
1998 * In the above situation, the shared lib is not loaded yet,
1999 * so of course we can't find the real func/line info,
2000 * but the "break" still works, and the warning is annoying.
2001 * So I commented out the warning. RT */
2002 /* warning ("In stub for %s; unable to find real function/line info",
2003 SYMBOL_LINKAGE_NAME (msymbol)); */
2006 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2007 == SYMBOL_VALUE_ADDRESS (msymbol))
2008 /* Avoid infinite recursion */
2009 /* See above comment about why warning is commented out. */
2010 /* warning ("In stub for %s; unable to find real function/line info",
2011 SYMBOL_LINKAGE_NAME (msymbol)); */
2015 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2019 s = find_pc_sect_symtab (pc, section);
2022 /* If no symbol information, return previous pc. */
2029 bv = BLOCKVECTOR (s);
2030 objfile = s->objfile;
2032 /* Look at all the symtabs that share this blockvector.
2033 They all have the same apriori range, that we found was right;
2034 but they have different line tables. */
2036 ALL_OBJFILE_SYMTABS (objfile, s)
2038 if (BLOCKVECTOR (s) != bv)
2041 /* Find the best line in this symtab. */
2048 /* I think len can be zero if the symtab lacks line numbers
2049 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2050 I'm not sure which, and maybe it depends on the symbol
2056 item = l->item; /* Get first line info. */
2058 /* Is this file's first line closer than the first lines of other files?
2059 If so, record this file, and its first line, as best alternate. */
2060 if (item->pc > pc && (!alt || item->pc < alt->pc))
2066 for (i = 0; i < len; i++, item++)
2068 /* Leave prev pointing to the linetable entry for the last line
2069 that started at or before PC. */
2076 /* At this point, prev points at the line whose start addr is <= pc, and
2077 item points at the next line. If we ran off the end of the linetable
2078 (pc >= start of the last line), then prev == item. If pc < start of
2079 the first line, prev will not be set. */
2081 /* Is this file's best line closer than the best in the other files?
2082 If so, record this file, and its best line, as best so far. Don't
2083 save prev if it represents the end of a function (i.e. line number
2084 0) instead of a real line. */
2086 if (prev && prev->line && (!best || prev->pc > best->pc))
2091 /* Discard BEST_END if it's before the PC of the current BEST. */
2092 if (best_end <= best->pc)
2096 /* If another line (denoted by ITEM) is in the linetable and its
2097 PC is after BEST's PC, but before the current BEST_END, then
2098 use ITEM's PC as the new best_end. */
2099 if (best && i < len && item->pc > best->pc
2100 && (best_end == 0 || best_end > item->pc))
2101 best_end = item->pc;
2106 /* If we didn't find any line number info, just return zeros.
2107 We used to return alt->line - 1 here, but that could be
2108 anywhere; if we don't have line number info for this PC,
2109 don't make some up. */
2112 else if (best->line == 0)
2114 /* If our best fit is in a range of PC's for which no line
2115 number info is available (line number is zero) then we didn't
2116 find any valid line information. */
2121 val.symtab = best_symtab;
2122 val.line = best->line;
2124 if (best_end && (!alt || best_end < alt->pc))
2129 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2131 val.section = section;
2135 /* Backward compatibility (no section). */
2137 struct symtab_and_line
2138 find_pc_line (CORE_ADDR pc, int notcurrent)
2140 struct obj_section *section;
2142 section = find_pc_overlay (pc);
2143 if (pc_in_unmapped_range (pc, section))
2144 pc = overlay_mapped_address (pc, section);
2145 return find_pc_sect_line (pc, section, notcurrent);
2148 /* Find line number LINE in any symtab whose name is the same as
2151 If found, return the symtab that contains the linetable in which it was
2152 found, set *INDEX to the index in the linetable of the best entry
2153 found, and set *EXACT_MATCH nonzero if the value returned is an
2156 If not found, return NULL. */
2159 find_line_symtab (struct symtab *symtab, int line,
2160 int *index, int *exact_match)
2162 int exact = 0; /* Initialized here to avoid a compiler warning. */
2164 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2168 struct linetable *best_linetable;
2169 struct symtab *best_symtab;
2171 /* First try looking it up in the given symtab. */
2172 best_linetable = LINETABLE (symtab);
2173 best_symtab = symtab;
2174 best_index = find_line_common (best_linetable, line, &exact);
2175 if (best_index < 0 || !exact)
2177 /* Didn't find an exact match. So we better keep looking for
2178 another symtab with the same name. In the case of xcoff,
2179 multiple csects for one source file (produced by IBM's FORTRAN
2180 compiler) produce multiple symtabs (this is unavoidable
2181 assuming csects can be at arbitrary places in memory and that
2182 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2184 /* BEST is the smallest linenumber > LINE so far seen,
2185 or 0 if none has been seen so far.
2186 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2189 struct objfile *objfile;
2192 if (best_index >= 0)
2193 best = best_linetable->item[best_index].line;
2197 ALL_OBJFILES (objfile)
2200 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2204 /* Get symbol full file name if possible. */
2205 symtab_to_fullname (symtab);
2207 ALL_SYMTABS (objfile, s)
2209 struct linetable *l;
2212 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2214 if (symtab->fullname != NULL
2215 && symtab_to_fullname (s) != NULL
2216 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2219 ind = find_line_common (l, line, &exact);
2229 if (best == 0 || l->item[ind].line < best)
2231 best = l->item[ind].line;
2244 *index = best_index;
2246 *exact_match = exact;
2251 /* Set the PC value for a given source file and line number and return true.
2252 Returns zero for invalid line number (and sets the PC to 0).
2253 The source file is specified with a struct symtab. */
2256 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2258 struct linetable *l;
2265 symtab = find_line_symtab (symtab, line, &ind, NULL);
2268 l = LINETABLE (symtab);
2269 *pc = l->item[ind].pc;
2276 /* Find the range of pc values in a line.
2277 Store the starting pc of the line into *STARTPTR
2278 and the ending pc (start of next line) into *ENDPTR.
2279 Returns 1 to indicate success.
2280 Returns 0 if could not find the specified line. */
2283 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2286 CORE_ADDR startaddr;
2287 struct symtab_and_line found_sal;
2290 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2293 /* This whole function is based on address. For example, if line 10 has
2294 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2295 "info line *0x123" should say the line goes from 0x100 to 0x200
2296 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2297 This also insures that we never give a range like "starts at 0x134
2298 and ends at 0x12c". */
2300 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2301 if (found_sal.line != sal.line)
2303 /* The specified line (sal) has zero bytes. */
2304 *startptr = found_sal.pc;
2305 *endptr = found_sal.pc;
2309 *startptr = found_sal.pc;
2310 *endptr = found_sal.end;
2315 /* Given a line table and a line number, return the index into the line
2316 table for the pc of the nearest line whose number is >= the specified one.
2317 Return -1 if none is found. The value is >= 0 if it is an index.
2319 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2322 find_line_common (struct linetable *l, int lineno,
2328 /* BEST is the smallest linenumber > LINENO so far seen,
2329 or 0 if none has been seen so far.
2330 BEST_INDEX identifies the item for it. */
2332 int best_index = -1;
2343 for (i = 0; i < len; i++)
2345 struct linetable_entry *item = &(l->item[i]);
2347 if (item->line == lineno)
2349 /* Return the first (lowest address) entry which matches. */
2354 if (item->line > lineno && (best == 0 || item->line < best))
2361 /* If we got here, we didn't get an exact match. */
2366 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2368 struct symtab_and_line sal;
2370 sal = find_pc_line (pc, 0);
2373 return sal.symtab != 0;
2376 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2377 address for that function that has an entry in SYMTAB's line info
2378 table. If such an entry cannot be found, return FUNC_ADDR
2381 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2383 CORE_ADDR func_start, func_end;
2384 struct linetable *l;
2387 /* Give up if this symbol has no lineinfo table. */
2388 l = LINETABLE (symtab);
2392 /* Get the range for the function's PC values, or give up if we
2393 cannot, for some reason. */
2394 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2397 /* Linetable entries are ordered by PC values, see the commentary in
2398 symtab.h where `struct linetable' is defined. Thus, the first
2399 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2400 address we are looking for. */
2401 for (i = 0; i < l->nitems; i++)
2403 struct linetable_entry *item = &(l->item[i]);
2405 /* Don't use line numbers of zero, they mark special entries in
2406 the table. See the commentary on symtab.h before the
2407 definition of struct linetable. */
2408 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2415 /* Given a function symbol SYM, find the symtab and line for the start
2417 If the argument FUNFIRSTLINE is nonzero, we want the first line
2418 of real code inside the function. */
2420 struct symtab_and_line
2421 find_function_start_sal (struct symbol *sym, int funfirstline)
2423 struct symtab_and_line sal;
2425 fixup_symbol_section (sym, NULL);
2426 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2427 SYMBOL_OBJ_SECTION (sym), 0);
2429 /* We always should have a line for the function start address.
2430 If we don't, something is odd. Create a plain SAL refering
2431 just the PC and hope that skip_prologue_sal (if requested)
2432 can find a line number for after the prologue. */
2433 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2436 sal.pspace = current_program_space;
2437 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2438 sal.section = SYMBOL_OBJ_SECTION (sym);
2442 skip_prologue_sal (&sal);
2447 /* Adjust SAL to the first instruction past the function prologue.
2448 If the PC was explicitly specified, the SAL is not changed.
2449 If the line number was explicitly specified, at most the SAL's PC
2450 is updated. If SAL is already past the prologue, then do nothing. */
2452 skip_prologue_sal (struct symtab_and_line *sal)
2455 struct symtab_and_line start_sal;
2456 struct cleanup *old_chain;
2458 struct obj_section *section;
2460 struct objfile *objfile;
2461 struct gdbarch *gdbarch;
2462 struct block *b, *function_block;
2464 /* Do not change the SAL is PC was specified explicitly. */
2465 if (sal->explicit_pc)
2468 old_chain = save_current_space_and_thread ();
2469 switch_to_program_space_and_thread (sal->pspace);
2471 sym = find_pc_sect_function (sal->pc, sal->section);
2474 fixup_symbol_section (sym, NULL);
2476 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2477 section = SYMBOL_OBJ_SECTION (sym);
2478 name = SYMBOL_LINKAGE_NAME (sym);
2479 objfile = SYMBOL_SYMTAB (sym)->objfile;
2483 struct minimal_symbol *msymbol
2484 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2486 if (msymbol == NULL)
2488 do_cleanups (old_chain);
2492 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2493 section = SYMBOL_OBJ_SECTION (msymbol);
2494 name = SYMBOL_LINKAGE_NAME (msymbol);
2495 objfile = msymbol_objfile (msymbol);
2498 gdbarch = get_objfile_arch (objfile);
2500 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2501 so that gdbarch_skip_prologue has something unique to work on. */
2502 if (section_is_overlay (section) && !section_is_mapped (section))
2503 pc = overlay_unmapped_address (pc, section);
2505 /* Skip "first line" of function (which is actually its prologue). */
2506 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2507 pc = gdbarch_skip_prologue (gdbarch, pc);
2509 /* For overlays, map pc back into its mapped VMA range. */
2510 pc = overlay_mapped_address (pc, section);
2512 /* Calculate line number. */
2513 start_sal = find_pc_sect_line (pc, section, 0);
2515 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2516 line is still part of the same function. */
2517 if (start_sal.pc != pc
2518 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2519 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2520 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2521 == lookup_minimal_symbol_by_pc_section (pc, section))))
2523 /* First pc of next line */
2525 /* Recalculate the line number (might not be N+1). */
2526 start_sal = find_pc_sect_line (pc, section, 0);
2529 /* On targets with executable formats that don't have a concept of
2530 constructors (ELF with .init has, PE doesn't), gcc emits a call
2531 to `__main' in `main' between the prologue and before user
2533 if (gdbarch_skip_main_prologue_p (gdbarch)
2534 && name && strcmp (name, "main") == 0)
2536 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2537 /* Recalculate the line number (might not be N+1). */
2538 start_sal = find_pc_sect_line (pc, section, 0);
2541 /* If we still don't have a valid source line, try to find the first
2542 PC in the lineinfo table that belongs to the same function. This
2543 happens with COFF debug info, which does not seem to have an
2544 entry in lineinfo table for the code after the prologue which has
2545 no direct relation to source. For example, this was found to be
2546 the case with the DJGPP target using "gcc -gcoff" when the
2547 compiler inserted code after the prologue to make sure the stack
2549 if (sym && start_sal.symtab == NULL)
2551 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2552 /* Recalculate the line number. */
2553 start_sal = find_pc_sect_line (pc, section, 0);
2556 do_cleanups (old_chain);
2558 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2559 forward SAL to the end of the prologue. */
2564 sal->section = section;
2566 /* Unless the explicit_line flag was set, update the SAL line
2567 and symtab to correspond to the modified PC location. */
2568 if (sal->explicit_line)
2571 sal->symtab = start_sal.symtab;
2572 sal->line = start_sal.line;
2573 sal->end = start_sal.end;
2575 /* Check if we are now inside an inlined function. If we can,
2576 use the call site of the function instead. */
2577 b = block_for_pc_sect (sal->pc, sal->section);
2578 function_block = NULL;
2581 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2583 else if (BLOCK_FUNCTION (b) != NULL)
2585 b = BLOCK_SUPERBLOCK (b);
2587 if (function_block != NULL
2588 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2590 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2591 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2595 /* If P is of the form "operator[ \t]+..." where `...' is
2596 some legitimate operator text, return a pointer to the
2597 beginning of the substring of the operator text.
2598 Otherwise, return "". */
2600 operator_chars (char *p, char **end)
2603 if (strncmp (p, "operator", 8))
2607 /* Don't get faked out by `operator' being part of a longer
2609 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2612 /* Allow some whitespace between `operator' and the operator symbol. */
2613 while (*p == ' ' || *p == '\t')
2616 /* Recognize 'operator TYPENAME'. */
2618 if (isalpha (*p) || *p == '_' || *p == '$')
2622 while (isalnum (*q) || *q == '_' || *q == '$')
2631 case '\\': /* regexp quoting */
2634 if (p[2] == '=') /* 'operator\*=' */
2636 else /* 'operator\*' */
2640 else if (p[1] == '[')
2643 error (_("mismatched quoting on brackets, "
2644 "try 'operator\\[\\]'"));
2645 else if (p[2] == '\\' && p[3] == ']')
2647 *end = p + 4; /* 'operator\[\]' */
2651 error (_("nothing is allowed between '[' and ']'"));
2655 /* Gratuitous qoute: skip it and move on. */
2677 if (p[0] == '-' && p[1] == '>')
2679 /* Struct pointer member operator 'operator->'. */
2682 *end = p + 3; /* 'operator->*' */
2685 else if (p[2] == '\\')
2687 *end = p + 4; /* Hopefully 'operator->\*' */
2692 *end = p + 2; /* 'operator->' */
2696 if (p[1] == '=' || p[1] == p[0])
2707 error (_("`operator ()' must be specified "
2708 "without whitespace in `()'"));
2713 error (_("`operator ?:' must be specified "
2714 "without whitespace in `?:'"));
2719 error (_("`operator []' must be specified "
2720 "without whitespace in `[]'"));
2724 error (_("`operator %s' not supported"), p);
2733 /* If FILE is not already in the table of files, return zero;
2734 otherwise return non-zero. Optionally add FILE to the table if ADD
2735 is non-zero. If *FIRST is non-zero, forget the old table
2738 filename_seen (const char *file, int add, int *first)
2740 /* Table of files seen so far. */
2741 static const char **tab = NULL;
2742 /* Allocated size of tab in elements.
2743 Start with one 256-byte block (when using GNU malloc.c).
2744 24 is the malloc overhead when range checking is in effect. */
2745 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2746 /* Current size of tab in elements. */
2747 static int tab_cur_size;
2753 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2757 /* Is FILE in tab? */
2758 for (p = tab; p < tab + tab_cur_size; p++)
2759 if (filename_cmp (*p, file) == 0)
2762 /* No; maybe add it to tab. */
2765 if (tab_cur_size == tab_alloc_size)
2767 tab_alloc_size *= 2;
2768 tab = (const char **) xrealloc ((char *) tab,
2769 tab_alloc_size * sizeof (*tab));
2771 tab[tab_cur_size++] = file;
2777 /* Slave routine for sources_info. Force line breaks at ,'s.
2778 NAME is the name to print and *FIRST is nonzero if this is the first
2779 name printed. Set *FIRST to zero. */
2781 output_source_filename (const char *name, int *first)
2783 /* Since a single source file can result in several partial symbol
2784 tables, we need to avoid printing it more than once. Note: if
2785 some of the psymtabs are read in and some are not, it gets
2786 printed both under "Source files for which symbols have been
2787 read" and "Source files for which symbols will be read in on
2788 demand". I consider this a reasonable way to deal with the
2789 situation. I'm not sure whether this can also happen for
2790 symtabs; it doesn't hurt to check. */
2792 /* Was NAME already seen? */
2793 if (filename_seen (name, 1, first))
2795 /* Yes; don't print it again. */
2798 /* No; print it and reset *FIRST. */
2805 printf_filtered (", ");
2809 fputs_filtered (name, gdb_stdout);
2812 /* A callback for map_partial_symbol_filenames. */
2814 output_partial_symbol_filename (const char *fullname, const char *filename,
2817 output_source_filename (fullname ? fullname : filename, data);
2821 sources_info (char *ignore, int from_tty)
2824 struct objfile *objfile;
2827 if (!have_full_symbols () && !have_partial_symbols ())
2829 error (_("No symbol table is loaded. Use the \"file\" command."));
2832 printf_filtered ("Source files for which symbols have been read in:\n\n");
2835 ALL_SYMTABS (objfile, s)
2837 const char *fullname = symtab_to_fullname (s);
2839 output_source_filename (fullname ? fullname : s->filename, &first);
2841 printf_filtered ("\n\n");
2843 printf_filtered ("Source files for which symbols "
2844 "will be read in on demand:\n\n");
2847 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2848 printf_filtered ("\n");
2852 file_matches (const char *file, char *files[], int nfiles)
2856 if (file != NULL && nfiles != 0)
2858 for (i = 0; i < nfiles; i++)
2860 if (filename_cmp (files[i], lbasename (file)) == 0)
2864 else if (nfiles == 0)
2869 /* Free any memory associated with a search. */
2871 free_search_symbols (struct symbol_search *symbols)
2873 struct symbol_search *p;
2874 struct symbol_search *next;
2876 for (p = symbols; p != NULL; p = next)
2884 do_free_search_symbols_cleanup (void *symbols)
2886 free_search_symbols (symbols);
2890 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2892 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2895 /* Helper function for sort_search_symbols and qsort. Can only
2896 sort symbols, not minimal symbols. */
2898 compare_search_syms (const void *sa, const void *sb)
2900 struct symbol_search **sym_a = (struct symbol_search **) sa;
2901 struct symbol_search **sym_b = (struct symbol_search **) sb;
2903 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2904 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2907 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2908 prevtail where it is, but update its next pointer to point to
2909 the first of the sorted symbols. */
2910 static struct symbol_search *
2911 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2913 struct symbol_search **symbols, *symp, *old_next;
2916 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2918 symp = prevtail->next;
2919 for (i = 0; i < nfound; i++)
2924 /* Generally NULL. */
2927 qsort (symbols, nfound, sizeof (struct symbol_search *),
2928 compare_search_syms);
2931 for (i = 0; i < nfound; i++)
2933 symp->next = symbols[i];
2936 symp->next = old_next;
2942 /* An object of this type is passed as the user_data to the
2943 expand_symtabs_matching method. */
2944 struct search_symbols_data
2951 /* A callback for expand_symtabs_matching. */
2953 search_symbols_file_matches (const char *filename, void *user_data)
2955 struct search_symbols_data *data = user_data;
2957 return file_matches (filename, data->files, data->nfiles);
2960 /* A callback for expand_symtabs_matching. */
2962 search_symbols_name_matches (const char *symname, void *user_data)
2964 struct search_symbols_data *data = user_data;
2966 return data->regexp == NULL || re_exec (symname);
2969 /* Search the symbol table for matches to the regular expression REGEXP,
2970 returning the results in *MATCHES.
2972 Only symbols of KIND are searched:
2973 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2974 and constants (enums)
2975 FUNCTIONS_DOMAIN - search all functions
2976 TYPES_DOMAIN - search all type names
2978 free_search_symbols should be called when *MATCHES is no longer needed.
2980 The results are sorted locally; each symtab's global and static blocks are
2981 separately alphabetized. */
2984 search_symbols (char *regexp, enum search_domain kind,
2985 int nfiles, char *files[],
2986 struct symbol_search **matches)
2989 struct blockvector *bv;
2992 struct dict_iterator iter;
2994 struct objfile *objfile;
2995 struct minimal_symbol *msymbol;
2998 static const enum minimal_symbol_type types[]
2999 = {mst_data, mst_text, mst_abs};
3000 static const enum minimal_symbol_type types2[]
3001 = {mst_bss, mst_file_text, mst_abs};
3002 static const enum minimal_symbol_type types3[]
3003 = {mst_file_data, mst_solib_trampoline, mst_abs};
3004 static const enum minimal_symbol_type types4[]
3005 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3006 enum minimal_symbol_type ourtype;
3007 enum minimal_symbol_type ourtype2;
3008 enum minimal_symbol_type ourtype3;
3009 enum minimal_symbol_type ourtype4;
3010 struct symbol_search *sr;
3011 struct symbol_search *psr;
3012 struct symbol_search *tail;
3013 struct cleanup *old_chain = NULL;
3014 struct search_symbols_data datum;
3016 gdb_assert (kind <= TYPES_DOMAIN);
3018 ourtype = types[kind];
3019 ourtype2 = types2[kind];
3020 ourtype3 = types3[kind];
3021 ourtype4 = types4[kind];
3023 sr = *matches = NULL;
3028 /* Make sure spacing is right for C++ operators.
3029 This is just a courtesy to make the matching less sensitive
3030 to how many spaces the user leaves between 'operator'
3031 and <TYPENAME> or <OPERATOR>. */
3033 char *opname = operator_chars (regexp, &opend);
3037 int fix = -1; /* -1 means ok; otherwise number of
3040 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3042 /* There should 1 space between 'operator' and 'TYPENAME'. */
3043 if (opname[-1] != ' ' || opname[-2] == ' ')
3048 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3049 if (opname[-1] == ' ')
3052 /* If wrong number of spaces, fix it. */
3055 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3057 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3062 if (0 != (val = re_comp (regexp)))
3063 error (_("Invalid regexp (%s): %s"), val, regexp);
3066 /* Search through the partial symtabs *first* for all symbols
3067 matching the regexp. That way we don't have to reproduce all of
3068 the machinery below. */
3070 datum.nfiles = nfiles;
3071 datum.files = files;
3072 datum.regexp = regexp;
3073 ALL_OBJFILES (objfile)
3076 objfile->sf->qf->expand_symtabs_matching (objfile,
3077 search_symbols_file_matches,
3078 search_symbols_name_matches,
3083 /* Here, we search through the minimal symbol tables for functions
3084 and variables that match, and force their symbols to be read.
3085 This is in particular necessary for demangled variable names,
3086 which are no longer put into the partial symbol tables.
3087 The symbol will then be found during the scan of symtabs below.
3089 For functions, find_pc_symtab should succeed if we have debug info
3090 for the function, for variables we have to call lookup_symbol
3091 to determine if the variable has debug info.
3092 If the lookup fails, set found_misc so that we will rescan to print
3093 any matching symbols without debug info. */
3095 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3097 ALL_MSYMBOLS (objfile, msymbol)
3101 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3102 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3103 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3104 MSYMBOL_TYPE (msymbol) == ourtype4)
3107 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3109 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3111 /* FIXME: carlton/2003-02-04: Given that the
3112 semantics of lookup_symbol keeps on changing
3113 slightly, it would be a nice idea if we had a
3114 function lookup_symbol_minsym that found the
3115 symbol associated to a given minimal symbol (if
3117 if (kind == FUNCTIONS_DOMAIN
3118 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3119 (struct block *) NULL,
3129 ALL_PRIMARY_SYMTABS (objfile, s)
3131 bv = BLOCKVECTOR (s);
3132 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3134 struct symbol_search *prevtail = tail;
3137 b = BLOCKVECTOR_BLOCK (bv, i);
3138 ALL_BLOCK_SYMBOLS (b, iter, sym)
3140 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3144 if (file_matches (real_symtab->filename, files, nfiles)
3146 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3147 && ((kind == VARIABLES_DOMAIN
3148 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3149 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3150 && SYMBOL_CLASS (sym) != LOC_BLOCK
3151 /* LOC_CONST can be used for more than just enums,
3152 e.g., c++ static const members.
3153 We only want to skip enums here. */
3154 && !(SYMBOL_CLASS (sym) == LOC_CONST
3155 && TYPE_CODE (SYMBOL_TYPE (sym))
3157 || (kind == FUNCTIONS_DOMAIN
3158 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3159 || (kind == TYPES_DOMAIN
3160 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3163 psr = (struct symbol_search *)
3164 xmalloc (sizeof (struct symbol_search));
3166 psr->symtab = real_symtab;
3168 psr->msymbol = NULL;
3180 if (prevtail == NULL)
3182 struct symbol_search dummy;
3185 tail = sort_search_symbols (&dummy, nfound);
3188 old_chain = make_cleanup_free_search_symbols (sr);
3191 tail = sort_search_symbols (prevtail, nfound);
3196 /* If there are no eyes, avoid all contact. I mean, if there are
3197 no debug symbols, then print directly from the msymbol_vector. */
3199 if (found_misc || kind != FUNCTIONS_DOMAIN)
3201 ALL_MSYMBOLS (objfile, msymbol)
3205 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3206 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3207 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3208 MSYMBOL_TYPE (msymbol) == ourtype4)
3211 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3213 /* Functions: Look up by address. */
3214 if (kind != FUNCTIONS_DOMAIN ||
3215 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3217 /* Variables/Absolutes: Look up by name. */
3218 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3219 (struct block *) NULL, VAR_DOMAIN, 0)
3223 psr = (struct symbol_search *)
3224 xmalloc (sizeof (struct symbol_search));
3226 psr->msymbol = msymbol;
3233 old_chain = make_cleanup_free_search_symbols (sr);
3247 discard_cleanups (old_chain);
3250 /* Helper function for symtab_symbol_info, this function uses
3251 the data returned from search_symbols() to print information
3252 regarding the match to gdb_stdout. */
3255 print_symbol_info (enum search_domain kind,
3256 struct symtab *s, struct symbol *sym,
3257 int block, char *last)
3259 if (last == NULL || filename_cmp (last, s->filename) != 0)
3261 fputs_filtered ("\nFile ", gdb_stdout);
3262 fputs_filtered (s->filename, gdb_stdout);
3263 fputs_filtered (":\n", gdb_stdout);
3266 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3267 printf_filtered ("static ");
3269 /* Typedef that is not a C++ class. */
3270 if (kind == TYPES_DOMAIN
3271 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3272 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3273 /* variable, func, or typedef-that-is-c++-class. */
3274 else if (kind < TYPES_DOMAIN ||
3275 (kind == TYPES_DOMAIN &&
3276 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3278 type_print (SYMBOL_TYPE (sym),
3279 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3280 ? "" : SYMBOL_PRINT_NAME (sym)),
3283 printf_filtered (";\n");
3287 /* This help function for symtab_symbol_info() prints information
3288 for non-debugging symbols to gdb_stdout. */
3291 print_msymbol_info (struct minimal_symbol *msymbol)
3293 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3296 if (gdbarch_addr_bit (gdbarch) <= 32)
3297 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3298 & (CORE_ADDR) 0xffffffff,
3301 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3303 printf_filtered ("%s %s\n",
3304 tmp, SYMBOL_PRINT_NAME (msymbol));
3307 /* This is the guts of the commands "info functions", "info types", and
3308 "info variables". It calls search_symbols to find all matches and then
3309 print_[m]symbol_info to print out some useful information about the
3313 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3315 static const char * const classnames[] =
3316 {"variable", "function", "type"};
3317 struct symbol_search *symbols;
3318 struct symbol_search *p;
3319 struct cleanup *old_chain;
3320 char *last_filename = NULL;
3323 gdb_assert (kind <= TYPES_DOMAIN);
3325 /* Must make sure that if we're interrupted, symbols gets freed. */
3326 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3327 old_chain = make_cleanup_free_search_symbols (symbols);
3329 printf_filtered (regexp
3330 ? "All %ss matching regular expression \"%s\":\n"
3331 : "All defined %ss:\n",
3332 classnames[kind], regexp);
3334 for (p = symbols; p != NULL; p = p->next)
3338 if (p->msymbol != NULL)
3342 printf_filtered ("\nNon-debugging symbols:\n");
3345 print_msymbol_info (p->msymbol);
3349 print_symbol_info (kind,
3354 last_filename = p->symtab->filename;
3358 do_cleanups (old_chain);
3362 variables_info (char *regexp, int from_tty)
3364 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3368 functions_info (char *regexp, int from_tty)
3370 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3375 types_info (char *regexp, int from_tty)
3377 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3380 /* Breakpoint all functions matching regular expression. */
3383 rbreak_command_wrapper (char *regexp, int from_tty)
3385 rbreak_command (regexp, from_tty);
3388 /* A cleanup function that calls end_rbreak_breakpoints. */
3391 do_end_rbreak_breakpoints (void *ignore)
3393 end_rbreak_breakpoints ();
3397 rbreak_command (char *regexp, int from_tty)
3399 struct symbol_search *ss;
3400 struct symbol_search *p;
3401 struct cleanup *old_chain;
3402 char *string = NULL;
3404 char **files = NULL, *file_name;
3409 char *colon = strchr (regexp, ':');
3411 if (colon && *(colon + 1) != ':')
3415 colon_index = colon - regexp;
3416 file_name = alloca (colon_index + 1);
3417 memcpy (file_name, regexp, colon_index);
3418 file_name[colon_index--] = 0;
3419 while (isspace (file_name[colon_index]))
3420 file_name[colon_index--] = 0;
3424 while (isspace (*regexp)) regexp++;
3428 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3429 old_chain = make_cleanup_free_search_symbols (ss);
3430 make_cleanup (free_current_contents, &string);
3432 start_rbreak_breakpoints ();
3433 make_cleanup (do_end_rbreak_breakpoints, NULL);
3434 for (p = ss; p != NULL; p = p->next)
3436 if (p->msymbol == NULL)
3438 int newlen = (strlen (p->symtab->filename)
3439 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3444 string = xrealloc (string, newlen);
3447 strcpy (string, p->symtab->filename);
3448 strcat (string, ":'");
3449 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3450 strcat (string, "'");
3451 break_command (string, from_tty);
3452 print_symbol_info (FUNCTIONS_DOMAIN,
3456 p->symtab->filename);
3460 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3464 string = xrealloc (string, newlen);
3467 strcpy (string, "'");
3468 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3469 strcat (string, "'");
3471 break_command (string, from_tty);
3472 printf_filtered ("<function, no debug info> %s;\n",
3473 SYMBOL_PRINT_NAME (p->msymbol));
3477 do_cleanups (old_chain);
3481 /* Helper routine for make_symbol_completion_list. */
3483 static int return_val_size;
3484 static int return_val_index;
3485 static char **return_val;
3487 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3488 completion_list_add_name \
3489 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3491 /* Test to see if the symbol specified by SYMNAME (which is already
3492 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3493 characters. If so, add it to the current completion list. */
3496 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3497 char *text, char *word)
3501 /* Clip symbols that cannot match. */
3503 if (strncmp (symname, sym_text, sym_text_len) != 0)
3508 /* We have a match for a completion, so add SYMNAME to the current list
3509 of matches. Note that the name is moved to freshly malloc'd space. */
3514 if (word == sym_text)
3516 new = xmalloc (strlen (symname) + 5);
3517 strcpy (new, symname);
3519 else if (word > sym_text)
3521 /* Return some portion of symname. */
3522 new = xmalloc (strlen (symname) + 5);
3523 strcpy (new, symname + (word - sym_text));
3527 /* Return some of SYM_TEXT plus symname. */
3528 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3529 strncpy (new, word, sym_text - word);
3530 new[sym_text - word] = '\0';
3531 strcat (new, symname);
3534 if (return_val_index + 3 > return_val_size)
3536 newsize = (return_val_size *= 2) * sizeof (char *);
3537 return_val = (char **) xrealloc ((char *) return_val, newsize);
3539 return_val[return_val_index++] = new;
3540 return_val[return_val_index] = NULL;
3544 /* ObjC: In case we are completing on a selector, look as the msymbol
3545 again and feed all the selectors into the mill. */
3548 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3549 int sym_text_len, char *text, char *word)
3551 static char *tmp = NULL;
3552 static unsigned int tmplen = 0;
3554 char *method, *category, *selector;
3557 method = SYMBOL_NATURAL_NAME (msymbol);
3559 /* Is it a method? */
3560 if ((method[0] != '-') && (method[0] != '+'))
3563 if (sym_text[0] == '[')
3564 /* Complete on shortened method method. */
3565 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3567 while ((strlen (method) + 1) >= tmplen)
3573 tmp = xrealloc (tmp, tmplen);
3575 selector = strchr (method, ' ');
3576 if (selector != NULL)
3579 category = strchr (method, '(');
3581 if ((category != NULL) && (selector != NULL))
3583 memcpy (tmp, method, (category - method));
3584 tmp[category - method] = ' ';
3585 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3586 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3587 if (sym_text[0] == '[')
3588 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3591 if (selector != NULL)
3593 /* Complete on selector only. */
3594 strcpy (tmp, selector);
3595 tmp2 = strchr (tmp, ']');
3599 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3603 /* Break the non-quoted text based on the characters which are in
3604 symbols. FIXME: This should probably be language-specific. */
3607 language_search_unquoted_string (char *text, char *p)
3609 for (; p > text; --p)
3611 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3615 if ((current_language->la_language == language_objc))
3617 if (p[-1] == ':') /* Might be part of a method name. */
3619 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3620 p -= 2; /* Beginning of a method name. */
3621 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3622 { /* Might be part of a method name. */
3625 /* Seeing a ' ' or a '(' is not conclusive evidence
3626 that we are in the middle of a method name. However,
3627 finding "-[" or "+[" should be pretty un-ambiguous.
3628 Unfortunately we have to find it now to decide. */
3631 if (isalnum (t[-1]) || t[-1] == '_' ||
3632 t[-1] == ' ' || t[-1] == ':' ||
3633 t[-1] == '(' || t[-1] == ')')
3638 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3639 p = t - 2; /* Method name detected. */
3640 /* Else we leave with p unchanged. */
3650 completion_list_add_fields (struct symbol *sym, char *sym_text,
3651 int sym_text_len, char *text, char *word)
3653 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3655 struct type *t = SYMBOL_TYPE (sym);
3656 enum type_code c = TYPE_CODE (t);
3659 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3660 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3661 if (TYPE_FIELD_NAME (t, j))
3662 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3663 sym_text, sym_text_len, text, word);
3667 /* Type of the user_data argument passed to add_macro_name or
3668 add_partial_symbol_name. The contents are simply whatever is
3669 needed by completion_list_add_name. */
3670 struct add_name_data
3678 /* A callback used with macro_for_each and macro_for_each_in_scope.
3679 This adds a macro's name to the current completion list. */
3681 add_macro_name (const char *name, const struct macro_definition *ignore,
3684 struct add_name_data *datum = (struct add_name_data *) user_data;
3686 completion_list_add_name ((char *) name,
3687 datum->sym_text, datum->sym_text_len,
3688 datum->text, datum->word);
3691 /* A callback for map_partial_symbol_names. */
3693 add_partial_symbol_name (const char *name, void *user_data)
3695 struct add_name_data *datum = (struct add_name_data *) user_data;
3697 completion_list_add_name ((char *) name,
3698 datum->sym_text, datum->sym_text_len,
3699 datum->text, datum->word);
3703 default_make_symbol_completion_list_break_on (char *text, char *word,
3704 const char *break_on)
3706 /* Problem: All of the symbols have to be copied because readline
3707 frees them. I'm not going to worry about this; hopefully there
3708 won't be that many. */
3712 struct minimal_symbol *msymbol;
3713 struct objfile *objfile;
3715 const struct block *surrounding_static_block, *surrounding_global_block;
3716 struct dict_iterator iter;
3717 /* The symbol we are completing on. Points in same buffer as text. */
3719 /* Length of sym_text. */
3721 struct add_name_data datum;
3723 /* Now look for the symbol we are supposed to complete on. */
3727 char *quote_pos = NULL;
3729 /* First see if this is a quoted string. */
3731 for (p = text; *p != '\0'; ++p)
3733 if (quote_found != '\0')
3735 if (*p == quote_found)
3736 /* Found close quote. */
3738 else if (*p == '\\' && p[1] == quote_found)
3739 /* A backslash followed by the quote character
3740 doesn't end the string. */
3743 else if (*p == '\'' || *p == '"')
3749 if (quote_found == '\'')
3750 /* A string within single quotes can be a symbol, so complete on it. */
3751 sym_text = quote_pos + 1;
3752 else if (quote_found == '"')
3753 /* A double-quoted string is never a symbol, nor does it make sense
3754 to complete it any other way. */
3756 return_val = (char **) xmalloc (sizeof (char *));
3757 return_val[0] = NULL;
3762 /* It is not a quoted string. Break it based on the characters
3763 which are in symbols. */
3766 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3767 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3776 sym_text_len = strlen (sym_text);
3778 return_val_size = 100;
3779 return_val_index = 0;
3780 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3781 return_val[0] = NULL;
3783 datum.sym_text = sym_text;
3784 datum.sym_text_len = sym_text_len;
3788 /* Look through the partial symtabs for all symbols which begin
3789 by matching SYM_TEXT. Add each one that you find to the list. */
3790 map_partial_symbol_names (add_partial_symbol_name, &datum);
3792 /* At this point scan through the misc symbol vectors and add each
3793 symbol you find to the list. Eventually we want to ignore
3794 anything that isn't a text symbol (everything else will be
3795 handled by the psymtab code above). */
3797 ALL_MSYMBOLS (objfile, msymbol)
3800 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3802 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3805 /* Search upwards from currently selected frame (so that we can
3806 complete on local vars). Also catch fields of types defined in
3807 this places which match our text string. Only complete on types
3808 visible from current context. */
3810 b = get_selected_block (0);
3811 surrounding_static_block = block_static_block (b);
3812 surrounding_global_block = block_global_block (b);
3813 if (surrounding_static_block != NULL)
3814 while (b != surrounding_static_block)
3818 ALL_BLOCK_SYMBOLS (b, iter, sym)
3820 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3822 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3826 /* Stop when we encounter an enclosing function. Do not stop for
3827 non-inlined functions - the locals of the enclosing function
3828 are in scope for a nested function. */
3829 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3831 b = BLOCK_SUPERBLOCK (b);
3834 /* Add fields from the file's types; symbols will be added below. */
3836 if (surrounding_static_block != NULL)
3837 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3838 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3840 if (surrounding_global_block != NULL)
3841 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3842 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3844 /* Go through the symtabs and check the externs and statics for
3845 symbols which match. */
3847 ALL_PRIMARY_SYMTABS (objfile, s)
3850 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3851 ALL_BLOCK_SYMBOLS (b, iter, sym)
3853 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3857 ALL_PRIMARY_SYMTABS (objfile, s)
3860 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3861 ALL_BLOCK_SYMBOLS (b, iter, sym)
3863 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3867 if (current_language->la_macro_expansion == macro_expansion_c)
3869 struct macro_scope *scope;
3871 /* Add any macros visible in the default scope. Note that this
3872 may yield the occasional wrong result, because an expression
3873 might be evaluated in a scope other than the default. For
3874 example, if the user types "break file:line if <TAB>", the
3875 resulting expression will be evaluated at "file:line" -- but
3876 at there does not seem to be a way to detect this at
3878 scope = default_macro_scope ();
3881 macro_for_each_in_scope (scope->file, scope->line,
3882 add_macro_name, &datum);
3886 /* User-defined macros are always visible. */
3887 macro_for_each (macro_user_macros, add_macro_name, &datum);
3890 return (return_val);
3894 default_make_symbol_completion_list (char *text, char *word)
3896 return default_make_symbol_completion_list_break_on (text, word, "");
3899 /* Return a NULL terminated array of all symbols (regardless of class)
3900 which begin by matching TEXT. If the answer is no symbols, then
3901 the return value is an array which contains only a NULL pointer. */
3904 make_symbol_completion_list (char *text, char *word)
3906 return current_language->la_make_symbol_completion_list (text, word);
3909 /* Like make_symbol_completion_list, but suitable for use as a
3910 completion function. */
3913 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3914 char *text, char *word)
3916 return make_symbol_completion_list (text, word);
3919 /* Like make_symbol_completion_list, but returns a list of symbols
3920 defined in a source file FILE. */
3923 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3928 struct dict_iterator iter;
3929 /* The symbol we are completing on. Points in same buffer as text. */
3931 /* Length of sym_text. */
3934 /* Now look for the symbol we are supposed to complete on.
3935 FIXME: This should be language-specific. */
3939 char *quote_pos = NULL;
3941 /* First see if this is a quoted string. */
3943 for (p = text; *p != '\0'; ++p)
3945 if (quote_found != '\0')
3947 if (*p == quote_found)
3948 /* Found close quote. */
3950 else if (*p == '\\' && p[1] == quote_found)
3951 /* A backslash followed by the quote character
3952 doesn't end the string. */
3955 else if (*p == '\'' || *p == '"')
3961 if (quote_found == '\'')
3962 /* A string within single quotes can be a symbol, so complete on it. */
3963 sym_text = quote_pos + 1;
3964 else if (quote_found == '"')
3965 /* A double-quoted string is never a symbol, nor does it make sense
3966 to complete it any other way. */
3968 return_val = (char **) xmalloc (sizeof (char *));
3969 return_val[0] = NULL;
3974 /* Not a quoted string. */
3975 sym_text = language_search_unquoted_string (text, p);
3979 sym_text_len = strlen (sym_text);
3981 return_val_size = 10;
3982 return_val_index = 0;
3983 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3984 return_val[0] = NULL;
3986 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3988 s = lookup_symtab (srcfile);
3991 /* Maybe they typed the file with leading directories, while the
3992 symbol tables record only its basename. */
3993 const char *tail = lbasename (srcfile);
3996 s = lookup_symtab (tail);
3999 /* If we have no symtab for that file, return an empty list. */
4001 return (return_val);
4003 /* Go through this symtab and check the externs and statics for
4004 symbols which match. */
4006 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4007 ALL_BLOCK_SYMBOLS (b, iter, sym)
4009 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4012 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4013 ALL_BLOCK_SYMBOLS (b, iter, sym)
4015 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4018 return (return_val);
4021 /* A helper function for make_source_files_completion_list. It adds
4022 another file name to a list of possible completions, growing the
4023 list as necessary. */
4026 add_filename_to_list (const char *fname, char *text, char *word,
4027 char ***list, int *list_used, int *list_alloced)
4030 size_t fnlen = strlen (fname);
4032 if (*list_used + 1 >= *list_alloced)
4035 *list = (char **) xrealloc ((char *) *list,
4036 *list_alloced * sizeof (char *));
4041 /* Return exactly fname. */
4042 new = xmalloc (fnlen + 5);
4043 strcpy (new, fname);
4045 else if (word > text)
4047 /* Return some portion of fname. */
4048 new = xmalloc (fnlen + 5);
4049 strcpy (new, fname + (word - text));
4053 /* Return some of TEXT plus fname. */
4054 new = xmalloc (fnlen + (text - word) + 5);
4055 strncpy (new, word, text - word);
4056 new[text - word] = '\0';
4057 strcat (new, fname);
4059 (*list)[*list_used] = new;
4060 (*list)[++*list_used] = NULL;
4064 not_interesting_fname (const char *fname)
4066 static const char *illegal_aliens[] = {
4067 "_globals_", /* inserted by coff_symtab_read */
4072 for (i = 0; illegal_aliens[i]; i++)
4074 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4080 /* An object of this type is passed as the user_data argument to
4081 map_partial_symbol_filenames. */
4082 struct add_partial_filename_data
4093 /* A callback for map_partial_symbol_filenames. */
4095 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4098 struct add_partial_filename_data *data = user_data;
4100 if (not_interesting_fname (filename))
4102 if (!filename_seen (filename, 1, data->first)
4103 && filename_ncmp (filename, data->text, data->text_len) == 0)
4105 /* This file matches for a completion; add it to the
4106 current list of matches. */
4107 add_filename_to_list (filename, data->text, data->word,
4108 data->list, data->list_used, data->list_alloced);
4112 const char *base_name = lbasename (filename);
4114 if (base_name != filename
4115 && !filename_seen (base_name, 1, data->first)
4116 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4117 add_filename_to_list (base_name, data->text, data->word,
4118 data->list, data->list_used, data->list_alloced);
4122 /* Return a NULL terminated array of all source files whose names
4123 begin with matching TEXT. The file names are looked up in the
4124 symbol tables of this program. If the answer is no matchess, then
4125 the return value is an array which contains only a NULL pointer. */
4128 make_source_files_completion_list (char *text, char *word)
4131 struct objfile *objfile;
4133 int list_alloced = 1;
4135 size_t text_len = strlen (text);
4136 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4137 const char *base_name;
4138 struct add_partial_filename_data datum;
4142 if (!have_full_symbols () && !have_partial_symbols ())
4145 ALL_SYMTABS (objfile, s)
4147 if (not_interesting_fname (s->filename))
4149 if (!filename_seen (s->filename, 1, &first)
4150 && filename_ncmp (s->filename, text, text_len) == 0)
4152 /* This file matches for a completion; add it to the current
4154 add_filename_to_list (s->filename, text, word,
4155 &list, &list_used, &list_alloced);
4159 /* NOTE: We allow the user to type a base name when the
4160 debug info records leading directories, but not the other
4161 way around. This is what subroutines of breakpoint
4162 command do when they parse file names. */
4163 base_name = lbasename (s->filename);
4164 if (base_name != s->filename
4165 && !filename_seen (base_name, 1, &first)
4166 && filename_ncmp (base_name, text, text_len) == 0)
4167 add_filename_to_list (base_name, text, word,
4168 &list, &list_used, &list_alloced);
4172 datum.first = &first;
4175 datum.text_len = text_len;
4177 datum.list_used = &list_used;
4178 datum.list_alloced = &list_alloced;
4179 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4184 /* Determine if PC is in the prologue of a function. The prologue is the area
4185 between the first instruction of a function, and the first executable line.
4186 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4188 If non-zero, func_start is where we think the prologue starts, possibly
4189 by previous examination of symbol table information. */
4192 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4194 struct symtab_and_line sal;
4195 CORE_ADDR func_addr, func_end;
4197 /* We have several sources of information we can consult to figure
4199 - Compilers usually emit line number info that marks the prologue
4200 as its own "source line". So the ending address of that "line"
4201 is the end of the prologue. If available, this is the most
4203 - The minimal symbols and partial symbols, which can usually tell
4204 us the starting and ending addresses of a function.
4205 - If we know the function's start address, we can call the
4206 architecture-defined gdbarch_skip_prologue function to analyze the
4207 instruction stream and guess where the prologue ends.
4208 - Our `func_start' argument; if non-zero, this is the caller's
4209 best guess as to the function's entry point. At the time of
4210 this writing, handle_inferior_event doesn't get this right, so
4211 it should be our last resort. */
4213 /* Consult the partial symbol table, to find which function
4215 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4217 CORE_ADDR prologue_end;
4219 /* We don't even have minsym information, so fall back to using
4220 func_start, if given. */
4222 return 1; /* We *might* be in a prologue. */
4224 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4226 return func_start <= pc && pc < prologue_end;
4229 /* If we have line number information for the function, that's
4230 usually pretty reliable. */
4231 sal = find_pc_line (func_addr, 0);
4233 /* Now sal describes the source line at the function's entry point,
4234 which (by convention) is the prologue. The end of that "line",
4235 sal.end, is the end of the prologue.
4237 Note that, for functions whose source code is all on a single
4238 line, the line number information doesn't always end up this way.
4239 So we must verify that our purported end-of-prologue address is
4240 *within* the function, not at its start or end. */
4242 || sal.end <= func_addr
4243 || func_end <= sal.end)
4245 /* We don't have any good line number info, so use the minsym
4246 information, together with the architecture-specific prologue
4248 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4250 return func_addr <= pc && pc < prologue_end;
4253 /* We have line number info, and it looks good. */
4254 return func_addr <= pc && pc < sal.end;
4257 /* Given PC at the function's start address, attempt to find the
4258 prologue end using SAL information. Return zero if the skip fails.
4260 A non-optimized prologue traditionally has one SAL for the function
4261 and a second for the function body. A single line function has
4262 them both pointing at the same line.
4264 An optimized prologue is similar but the prologue may contain
4265 instructions (SALs) from the instruction body. Need to skip those
4266 while not getting into the function body.
4268 The functions end point and an increasing SAL line are used as
4269 indicators of the prologue's endpoint.
4271 This code is based on the function refine_prologue_limit (versions
4272 found in both ia64 and ppc). */
4275 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4277 struct symtab_and_line prologue_sal;
4282 /* Get an initial range for the function. */
4283 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4284 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4286 prologue_sal = find_pc_line (start_pc, 0);
4287 if (prologue_sal.line != 0)
4289 /* For langauges other than assembly, treat two consecutive line
4290 entries at the same address as a zero-instruction prologue.
4291 The GNU assembler emits separate line notes for each instruction
4292 in a multi-instruction macro, but compilers generally will not
4294 if (prologue_sal.symtab->language != language_asm)
4296 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4299 /* Skip any earlier lines, and any end-of-sequence marker
4300 from a previous function. */
4301 while (linetable->item[idx].pc != prologue_sal.pc
4302 || linetable->item[idx].line == 0)
4305 if (idx+1 < linetable->nitems
4306 && linetable->item[idx+1].line != 0
4307 && linetable->item[idx+1].pc == start_pc)
4311 /* If there is only one sal that covers the entire function,
4312 then it is probably a single line function, like
4314 if (prologue_sal.end >= end_pc)
4317 while (prologue_sal.end < end_pc)
4319 struct symtab_and_line sal;
4321 sal = find_pc_line (prologue_sal.end, 0);
4324 /* Assume that a consecutive SAL for the same (or larger)
4325 line mark the prologue -> body transition. */
4326 if (sal.line >= prologue_sal.line)
4329 /* The line number is smaller. Check that it's from the
4330 same function, not something inlined. If it's inlined,
4331 then there is no point comparing the line numbers. */
4332 bl = block_for_pc (prologue_sal.end);
4335 if (block_inlined_p (bl))
4337 if (BLOCK_FUNCTION (bl))
4342 bl = BLOCK_SUPERBLOCK (bl);
4347 /* The case in which compiler's optimizer/scheduler has
4348 moved instructions into the prologue. We look ahead in
4349 the function looking for address ranges whose
4350 corresponding line number is less the first one that we
4351 found for the function. This is more conservative then
4352 refine_prologue_limit which scans a large number of SALs
4353 looking for any in the prologue. */
4358 if (prologue_sal.end < end_pc)
4359 /* Return the end of this line, or zero if we could not find a
4361 return prologue_sal.end;
4363 /* Don't return END_PC, which is past the end of the function. */
4364 return prologue_sal.pc;
4367 struct symtabs_and_lines
4368 decode_line_spec (char *string, int funfirstline)
4370 struct symtabs_and_lines sals;
4371 struct symtab_and_line cursal;
4374 error (_("Empty line specification."));
4376 /* We use whatever is set as the current source line. We do not try
4377 and get a default or it will recursively call us! */
4378 cursal = get_current_source_symtab_and_line ();
4380 sals = decode_line_1 (&string, funfirstline,
4381 cursal.symtab, cursal.line,
4385 error (_("Junk at end of line specification: %s"), string);
4390 static char *name_of_main;
4391 enum language language_of_main = language_unknown;
4394 set_main_name (const char *name)
4396 if (name_of_main != NULL)
4398 xfree (name_of_main);
4399 name_of_main = NULL;
4400 language_of_main = language_unknown;
4404 name_of_main = xstrdup (name);
4405 language_of_main = language_unknown;
4409 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4413 find_main_name (void)
4415 const char *new_main_name;
4417 /* Try to see if the main procedure is in Ada. */
4418 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4419 be to add a new method in the language vector, and call this
4420 method for each language until one of them returns a non-empty
4421 name. This would allow us to remove this hard-coded call to
4422 an Ada function. It is not clear that this is a better approach
4423 at this point, because all methods need to be written in a way
4424 such that false positives never be returned. For instance, it is
4425 important that a method does not return a wrong name for the main
4426 procedure if the main procedure is actually written in a different
4427 language. It is easy to guaranty this with Ada, since we use a
4428 special symbol generated only when the main in Ada to find the name
4429 of the main procedure. It is difficult however to see how this can
4430 be guarantied for languages such as C, for instance. This suggests
4431 that order of call for these methods becomes important, which means
4432 a more complicated approach. */
4433 new_main_name = ada_main_name ();
4434 if (new_main_name != NULL)
4436 set_main_name (new_main_name);
4440 new_main_name = pascal_main_name ();
4441 if (new_main_name != NULL)
4443 set_main_name (new_main_name);
4447 /* The languages above didn't identify the name of the main procedure.
4448 Fallback to "main". */
4449 set_main_name ("main");
4455 if (name_of_main == NULL)
4458 return name_of_main;
4461 /* Handle ``executable_changed'' events for the symtab module. */
4464 symtab_observer_executable_changed (void)
4466 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4467 set_main_name (NULL);
4470 /* Helper to expand_line_sal below. Appends new sal to SAL,
4471 initializing it from SYMTAB, LINENO and PC. */
4473 append_expanded_sal (struct symtabs_and_lines *sal,
4474 struct program_space *pspace,
4475 struct symtab *symtab,
4476 int lineno, CORE_ADDR pc)
4478 sal->sals = xrealloc (sal->sals,
4479 sizeof (sal->sals[0])
4480 * (sal->nelts + 1));
4481 init_sal (sal->sals + sal->nelts);
4482 sal->sals[sal->nelts].pspace = pspace;
4483 sal->sals[sal->nelts].symtab = symtab;
4484 sal->sals[sal->nelts].section = NULL;
4485 sal->sals[sal->nelts].end = 0;
4486 sal->sals[sal->nelts].line = lineno;
4487 sal->sals[sal->nelts].pc = pc;
4491 /* Helper to expand_line_sal below. Search in the symtabs for any
4492 linetable entry that exactly matches FULLNAME and LINENO and append
4493 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4494 use FILENAME and LINENO instead. If there is at least one match,
4495 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4499 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4500 struct symtabs_and_lines *ret,
4501 struct linetable_entry **best_item,
4502 struct symtab **best_symtab)
4504 struct program_space *pspace;
4505 struct objfile *objfile;
4506 struct symtab *symtab;
4512 ALL_PSPACES (pspace)
4513 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4515 if (FILENAME_CMP (filename, symtab->filename) == 0)
4517 struct linetable *l;
4520 if (fullname != NULL
4521 && symtab_to_fullname (symtab) != NULL
4522 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4524 l = LINETABLE (symtab);
4529 for (j = 0; j < len; j++)
4531 struct linetable_entry *item = &(l->item[j]);
4533 if (item->line == lineno)
4536 append_expanded_sal (ret, objfile->pspace,
4537 symtab, lineno, item->pc);
4539 else if (!exact && item->line > lineno
4540 && (*best_item == NULL
4541 || item->line < (*best_item)->line))
4544 *best_symtab = symtab;
4552 /* Compute a set of all sals in all program spaces that correspond to
4553 same file and line as SAL and return those. If there are several
4554 sals that belong to the same block, only one sal for the block is
4555 included in results. */
4557 struct symtabs_and_lines
4558 expand_line_sal (struct symtab_and_line sal)
4560 struct symtabs_and_lines ret;
4562 struct objfile *objfile;
4565 struct block **blocks = NULL;
4567 struct cleanup *old_chain;
4572 /* Only expand sals that represent file.c:line. */
4573 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4575 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4582 struct program_space *pspace;
4583 struct linetable_entry *best_item = 0;
4584 struct symtab *best_symtab = 0;
4586 char *match_filename;
4589 match_filename = sal.symtab->filename;
4591 /* We need to find all symtabs for a file which name
4592 is described by sal. We cannot just directly
4593 iterate over symtabs, since a symtab might not be
4594 yet created. We also cannot iterate over psymtabs,
4595 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4596 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4597 corresponding to an included file. Therefore, we do
4598 first pass over psymtabs, reading in those with
4599 the right name. Then, we iterate over symtabs, knowing
4600 that all symtabs we're interested in are loaded. */
4602 old_chain = save_current_program_space ();
4603 ALL_PSPACES (pspace)
4605 set_current_program_space (pspace);
4606 ALL_PSPACE_OBJFILES (pspace, objfile)
4609 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4610 sal.symtab->filename);
4613 do_cleanups (old_chain);
4615 /* Now search the symtab for exact matches and append them. If
4616 none is found, append the best_item and all its exact
4618 symtab_to_fullname (sal.symtab);
4619 exact = append_exact_match_to_sals (sal.symtab->filename,
4620 sal.symtab->fullname, lineno,
4621 &ret, &best_item, &best_symtab);
4622 if (!exact && best_item)
4623 append_exact_match_to_sals (best_symtab->filename,
4624 best_symtab->fullname, best_item->line,
4625 &ret, &best_item, &best_symtab);
4628 /* For optimized code, compiler can scatter one source line accross
4629 disjoint ranges of PC values, even when no duplicate functions
4630 or inline functions are involved. For example, 'for (;;)' inside
4631 non-template non-inline non-ctor-or-dtor function can result
4632 in two PC ranges. In this case, we don't want to set breakpoint
4633 on first PC of each range. To filter such cases, we use containing
4634 blocks -- for each PC found above we see if there are other PCs
4635 that are in the same block. If yes, the other PCs are filtered out. */
4637 old_chain = save_current_program_space ();
4638 filter = alloca (ret.nelts * sizeof (int));
4639 blocks = alloca (ret.nelts * sizeof (struct block *));
4640 for (i = 0; i < ret.nelts; ++i)
4642 set_current_program_space (ret.sals[i].pspace);
4645 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4648 do_cleanups (old_chain);
4650 for (i = 0; i < ret.nelts; ++i)
4651 if (blocks[i] != NULL)
4652 for (j = i+1; j < ret.nelts; ++j)
4653 if (blocks[j] == blocks[i])
4661 struct symtab_and_line *final =
4662 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4664 for (i = 0, j = 0; i < ret.nelts; ++i)
4666 final[j++] = ret.sals[i];
4668 ret.nelts -= deleted;
4676 /* Return 1 if the supplied producer string matches the ARM RealView
4677 compiler (armcc). */
4680 producer_is_realview (const char *producer)
4682 static const char *const arm_idents[] = {
4683 "ARM C Compiler, ADS",
4684 "Thumb C Compiler, ADS",
4685 "ARM C++ Compiler, ADS",
4686 "Thumb C++ Compiler, ADS",
4687 "ARM/Thumb C/C++ Compiler, RVCT",
4688 "ARM C/C++ Compiler, RVCT"
4692 if (producer == NULL)
4695 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4696 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4703 _initialize_symtab (void)
4705 add_info ("variables", variables_info, _("\
4706 All global and static variable names, or those matching REGEXP."));
4708 add_com ("whereis", class_info, variables_info, _("\
4709 All global and static variable names, or those matching REGEXP."));
4711 add_info ("functions", functions_info,
4712 _("All function names, or those matching REGEXP."));
4714 /* FIXME: This command has at least the following problems:
4715 1. It prints builtin types (in a very strange and confusing fashion).
4716 2. It doesn't print right, e.g. with
4717 typedef struct foo *FOO
4718 type_print prints "FOO" when we want to make it (in this situation)
4719 print "struct foo *".
4720 I also think "ptype" or "whatis" is more likely to be useful (but if
4721 there is much disagreement "info types" can be fixed). */
4722 add_info ("types", types_info,
4723 _("All type names, or those matching REGEXP."));
4725 add_info ("sources", sources_info,
4726 _("Source files in the program."));
4728 add_com ("rbreak", class_breakpoint, rbreak_command,
4729 _("Set a breakpoint for all functions matching REGEXP."));
4733 add_com ("lf", class_info, sources_info,
4734 _("Source files in the program"));
4735 add_com ("lg", class_info, variables_info, _("\
4736 All global and static variable names, or those matching REGEXP."));
4739 add_setshow_enum_cmd ("multiple-symbols", no_class,
4740 multiple_symbols_modes, &multiple_symbols_mode,
4742 Set the debugger behavior when more than one symbol are possible matches\n\
4743 in an expression."), _("\
4744 Show how the debugger handles ambiguities in expressions."), _("\
4745 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4746 NULL, NULL, &setlist, &showlist);
4748 observer_attach_executable_changed (symtab_observer_executable_changed);