3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
25 # Make certain that the script is not running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p ()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p ()
194 class_is_function_p ()
197 *f* | *F* | *m* | *M* ) true ;;
202 class_is_multiarch_p ()
210 class_is_predicate_p ()
213 *F* | *V* | *M* ) true ;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
345 # See also PREDEFAULT and POSTDEFAULT.
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
355 garbage_at_eol ) : ;;
357 # Catches stray fields.
360 echo "Bad field ${field}"
368 # See below (DOCO) for description of each field
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
473 # See gdbint.texinfo. See infcall.c.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # DEPRECATED_REGISTER_SIZE can be deleted.
476 v:=:int:deprecated_register_size
477 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
480 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
487 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
492 v:=:int:believe_pcc_promotion:::::::
494 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
495 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
496 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
499 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
500 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
502 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
503 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
505 # It has been suggested that this, well actually its predecessor,
506 # should take the type/value of the function to be called and not the
507 # return type. This is left as an exercise for the reader.
509 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
510 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
511 # (via legacy_return_value), when a small struct is involved.
513 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
515 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
516 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
517 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
520 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
521 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
522 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
523 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
524 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
526 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
527 # ABI suitable for the implementation of a robust extract
528 # struct-convention return-value address method (the sparc saves the
529 # address in the callers frame). All the other cases so far examined,
530 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
531 # erreneous - the code was incorrectly assuming that the return-value
532 # address, stored in a register, was preserved across the entire
535 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
536 # the ABIs that are still to be analyzed - perhaps this should simply
537 # be deleted. The commented out extract_returned_value_address method
538 # is provided as a starting point for the 32-bit SPARC. It, or
539 # something like it, along with changes to both infcmd.c and stack.c
540 # will be needed for that case to work. NB: It is passed the callers
541 # frame since it is only after the callee has returned that this
544 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
545 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
548 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
549 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
550 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
551 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
552 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
553 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
554 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
556 # A function can be addressed by either it's "pointer" (possibly a
557 # descriptor address) or "entry point" (first executable instruction).
558 # The method "convert_from_func_ptr_addr" converting the former to the
559 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
560 # a simplified subset of that functionality - the function's address
561 # corresponds to the "function pointer" and the function's start
562 # corresponds to the "function entry point" - and hence is redundant.
564 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
566 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
568 # Fetch the target specific address used to represent a load module.
569 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:int:frame_num_args:struct frame_info *frame:frame
578 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
579 # to frame_align and the requirement that methods such as
580 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
583 M::CORE_ADDR:frame_align:CORE_ADDR address:address
584 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
585 # stabs_argument_has_addr.
586 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
587 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
588 v:=:int:frame_red_zone_size
590 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
601 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
605 # the target needs software single step. An ISA method to implement it.
607 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
608 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
611 # single step. If not, then implement single step using breakpoints.
612 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M::int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
622 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a funtion's epilogue. in_function_epilogue_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
638 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
639 # Given a vector of command-line arguments, return a newly allocated
640 # string which, when passed to the create_inferior function, will be
641 # parsed (on Unix systems, by the shell) to yield the same vector.
642 # This function should call error() if the argument vector is not
643 # representable for this target or if this target does not support
644 # command-line arguments.
645 # ARGC is the number of elements in the vector.
646 # ARGV is an array of strings, one per argument.
647 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
648 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
649 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
650 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
651 v:=:int:cannot_step_breakpoint:::0:0::0
652 v:=:int:have_nonsteppable_watchpoint:::0:0::0
653 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
654 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
655 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
656 # Is a register in a group
657 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
658 # Fetch the pointer to the ith function argument.
659 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
661 # Return the appropriate register set for a core file section with
662 # name SECT_NAME and size SECT_SIZE.
663 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
670 exec > new-gdbarch.log
671 function_list | while do_read
674 ${class} ${returntype} ${function} ($formal)
678 eval echo \"\ \ \ \ ${r}=\${${r}}\"
680 if class_is_predicate_p && fallback_default_p
682 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
686 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
688 echo "Error: postdefault is useless when invalid_p=0" 1>&2
692 if class_is_multiarch_p
694 if class_is_predicate_p ; then :
695 elif test "x${predefault}" = "x"
697 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
706 compare_new gdbarch.log
712 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
714 /* Dynamic architecture support for GDB, the GNU debugger.
716 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
717 Software Foundation, Inc.
719 This file is part of GDB.
721 This program is free software; you can redistribute it and/or modify
722 it under the terms of the GNU General Public License as published by
723 the Free Software Foundation; either version 2 of the License, or
724 (at your option) any later version.
726 This program is distributed in the hope that it will be useful,
727 but WITHOUT ANY WARRANTY; without even the implied warranty of
728 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
729 GNU General Public License for more details.
731 You should have received a copy of the GNU General Public License
732 along with this program; if not, write to the Free Software
733 Foundation, Inc., 51 Franklin Street, Fifth Floor,
734 Boston, MA 02110-1301, USA. */
736 /* This file was created with the aid of \`\`gdbarch.sh''.
738 The Bourne shell script \`\`gdbarch.sh'' creates the files
739 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
740 against the existing \`\`gdbarch.[hc]''. Any differences found
743 If editing this file, please also run gdbarch.sh and merge any
744 changes into that script. Conversely, when making sweeping changes
745 to this file, modifying gdbarch.sh and using its output may prove
766 struct minimal_symbol;
770 struct disassemble_info;
773 struct bp_target_info;
775 extern struct gdbarch *current_gdbarch;
781 printf "/* The following are pre-initialized by GDBARCH. */\n"
782 function_list | while do_read
787 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
788 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
789 if test -n "${macro}"
791 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
792 printf "#error \"Non multi-arch definition of ${macro}\"\n"
794 printf "#if !defined (${macro})\n"
795 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
804 printf "/* The following are initialized by the target dependent code. */\n"
805 function_list | while do_read
807 if [ -n "${comment}" ]
809 echo "${comment}" | sed \
815 if class_is_predicate_p
817 if test -n "${macro}"
820 printf "#if defined (${macro})\n"
821 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
822 printf "#if !defined (${macro}_P)\n"
823 printf "#define ${macro}_P() (1)\n"
828 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
829 if test -n "${macro}"
831 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
832 printf "#error \"Non multi-arch definition of ${macro}\"\n"
834 printf "#if !defined (${macro}_P)\n"
835 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
839 if class_is_variable_p
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
844 if test -n "${macro}"
846 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
847 printf "#error \"Non multi-arch definition of ${macro}\"\n"
849 printf "#if !defined (${macro})\n"
850 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
854 if class_is_function_p
857 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
859 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
860 elif class_is_multiarch_p
862 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
866 if [ "x${formal}" = "xvoid" ]
868 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
872 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
873 if test -n "${macro}"
875 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 if [ "x${actual}" = "x" ]
880 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
881 elif [ "x${actual}" = "x-" ]
883 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
885 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
887 printf "#if !defined (${macro})\n"
888 if [ "x${actual}" = "x" ]
890 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
891 elif [ "x${actual}" = "x-" ]
893 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
895 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
905 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
908 /* Mechanism for co-ordinating the selection of a specific
911 GDB targets (*-tdep.c) can register an interest in a specific
912 architecture. Other GDB components can register a need to maintain
913 per-architecture data.
915 The mechanisms below ensures that there is only a loose connection
916 between the set-architecture command and the various GDB
917 components. Each component can independently register their need
918 to maintain architecture specific data with gdbarch.
922 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
925 The more traditional mega-struct containing architecture specific
926 data for all the various GDB components was also considered. Since
927 GDB is built from a variable number of (fairly independent)
928 components it was determined that the global aproach was not
932 /* Register a new architectural family with GDB.
934 Register support for the specified ARCHITECTURE with GDB. When
935 gdbarch determines that the specified architecture has been
936 selected, the corresponding INIT function is called.
940 The INIT function takes two parameters: INFO which contains the
941 information available to gdbarch about the (possibly new)
942 architecture; ARCHES which is a list of the previously created
943 \`\`struct gdbarch'' for this architecture.
945 The INFO parameter is, as far as possible, be pre-initialized with
946 information obtained from INFO.ABFD or the global defaults.
948 The ARCHES parameter is a linked list (sorted most recently used)
949 of all the previously created architures for this architecture
950 family. The (possibly NULL) ARCHES->gdbarch can used to access
951 values from the previously selected architecture for this
952 architecture family. The global \`\`current_gdbarch'' shall not be
955 The INIT function shall return any of: NULL - indicating that it
956 doesn't recognize the selected architecture; an existing \`\`struct
957 gdbarch'' from the ARCHES list - indicating that the new
958 architecture is just a synonym for an earlier architecture (see
959 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
960 - that describes the selected architecture (see gdbarch_alloc()).
962 The DUMP_TDEP function shall print out all target specific values.
963 Care should be taken to ensure that the function works in both the
964 multi-arch and non- multi-arch cases. */
968 struct gdbarch *gdbarch;
969 struct gdbarch_list *next;
974 /* Use default: NULL (ZERO). */
975 const struct bfd_arch_info *bfd_arch_info;
977 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
980 /* Use default: NULL (ZERO). */
983 /* Use default: NULL (ZERO). */
984 struct gdbarch_tdep_info *tdep_info;
986 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
987 enum gdb_osabi osabi;
990 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
991 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
993 /* DEPRECATED - use gdbarch_register() */
994 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
996 extern void gdbarch_register (enum bfd_architecture architecture,
997 gdbarch_init_ftype *,
998 gdbarch_dump_tdep_ftype *);
1001 /* Return a freshly allocated, NULL terminated, array of the valid
1002 architecture names. Since architectures are registered during the
1003 _initialize phase this function only returns useful information
1004 once initialization has been completed. */
1006 extern const char **gdbarch_printable_names (void);
1009 /* Helper function. Search the list of ARCHES for a GDBARCH that
1010 matches the information provided by INFO. */
1012 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1015 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1016 basic initialization using values obtained from the INFO andTDEP
1017 parameters. set_gdbarch_*() functions are called to complete the
1018 initialization of the object. */
1020 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1023 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1024 It is assumed that the caller freeds the \`\`struct
1027 extern void gdbarch_free (struct gdbarch *);
1030 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1031 obstack. The memory is freed when the corresponding architecture
1034 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1035 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1036 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1039 /* Helper function. Force an update of the current architecture.
1041 The actual architecture selected is determined by INFO, \`\`(gdb) set
1042 architecture'' et.al., the existing architecture and BFD's default
1043 architecture. INFO should be initialized to zero and then selected
1044 fields should be updated.
1046 Returns non-zero if the update succeeds */
1048 extern int gdbarch_update_p (struct gdbarch_info info);
1051 /* Helper function. Find an architecture matching info.
1053 INFO should be initialized using gdbarch_info_init, relevant fields
1054 set, and then finished using gdbarch_info_fill.
1056 Returns the corresponding architecture, or NULL if no matching
1057 architecture was found. "current_gdbarch" is not updated. */
1059 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1062 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1064 FIXME: kettenis/20031124: Of the functions that follow, only
1065 gdbarch_from_bfd is supposed to survive. The others will
1066 dissappear since in the future GDB will (hopefully) be truly
1067 multi-arch. However, for now we're still stuck with the concept of
1068 a single active architecture. */
1070 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1073 /* Register per-architecture data-pointer.
1075 Reserve space for a per-architecture data-pointer. An identifier
1076 for the reserved data-pointer is returned. That identifer should
1077 be saved in a local static variable.
1079 Memory for the per-architecture data shall be allocated using
1080 gdbarch_obstack_zalloc. That memory will be deleted when the
1081 corresponding architecture object is deleted.
1083 When a previously created architecture is re-selected, the
1084 per-architecture data-pointer for that previous architecture is
1085 restored. INIT() is not re-called.
1087 Multiple registrarants for any architecture are allowed (and
1088 strongly encouraged). */
1090 struct gdbarch_data;
1092 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1093 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1094 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1095 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1096 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1097 struct gdbarch_data *data,
1100 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1104 /* Register per-architecture memory region.
1106 Provide a memory-region swap mechanism. Per-architecture memory
1107 region are created. These memory regions are swapped whenever the
1108 architecture is changed. For a new architecture, the memory region
1109 is initialized with zero (0) and the INIT function is called.
1111 Memory regions are swapped / initialized in the order that they are
1112 registered. NULL DATA and/or INIT values can be specified.
1114 New code should use gdbarch_data_register_*(). */
1116 typedef void (gdbarch_swap_ftype) (void);
1117 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1118 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1122 /* Set the dynamic target-system-dependent parameters (architecture,
1123 byte-order, ...) using information found in the BFD */
1125 extern void set_gdbarch_from_file (bfd *);
1128 /* Initialize the current architecture to the "first" one we find on
1131 extern void initialize_current_architecture (void);
1133 /* gdbarch trace variable */
1134 extern int gdbarch_debug;
1136 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1141 #../move-if-change new-gdbarch.h gdbarch.h
1142 compare_new gdbarch.h
1149 exec > new-gdbarch.c
1154 #include "arch-utils.h"
1157 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1160 #include "floatformat.h"
1162 #include "gdb_assert.h"
1163 #include "gdb_string.h"
1164 #include "gdb-events.h"
1165 #include "reggroups.h"
1167 #include "gdb_obstack.h"
1169 /* Static function declarations */
1171 static void alloc_gdbarch_data (struct gdbarch *);
1173 /* Non-zero if we want to trace architecture code. */
1175 #ifndef GDBARCH_DEBUG
1176 #define GDBARCH_DEBUG 0
1178 int gdbarch_debug = GDBARCH_DEBUG;
1180 show_gdbarch_debug (struct ui_file *file, int from_tty,
1181 struct cmd_list_element *c, const char *value)
1183 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1187 pformat (const struct floatformat *format)
1192 return format->name;
1197 # gdbarch open the gdbarch object
1199 printf "/* Maintain the struct gdbarch object */\n"
1201 printf "struct gdbarch\n"
1203 printf " /* Has this architecture been fully initialized? */\n"
1204 printf " int initialized_p;\n"
1206 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1207 printf " struct obstack *obstack;\n"
1209 printf " /* basic architectural information */\n"
1210 function_list | while do_read
1214 printf " ${returntype} ${function};\n"
1218 printf " /* target specific vector. */\n"
1219 printf " struct gdbarch_tdep *tdep;\n"
1220 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1222 printf " /* per-architecture data-pointers */\n"
1223 printf " unsigned nr_data;\n"
1224 printf " void **data;\n"
1226 printf " /* per-architecture swap-regions */\n"
1227 printf " struct gdbarch_swap *swap;\n"
1230 /* Multi-arch values.
1232 When extending this structure you must:
1234 Add the field below.
1236 Declare set/get functions and define the corresponding
1239 gdbarch_alloc(): If zero/NULL is not a suitable default,
1240 initialize the new field.
1242 verify_gdbarch(): Confirm that the target updated the field
1245 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1248 \`\`startup_gdbarch()'': Append an initial value to the static
1249 variable (base values on the host's c-type system).
1251 get_gdbarch(): Implement the set/get functions (probably using
1252 the macro's as shortcuts).
1257 function_list | while do_read
1259 if class_is_variable_p
1261 printf " ${returntype} ${function};\n"
1262 elif class_is_function_p
1264 printf " gdbarch_${function}_ftype *${function};\n"
1269 # A pre-initialized vector
1273 /* The default architecture uses host values (for want of a better
1277 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1279 printf "struct gdbarch startup_gdbarch =\n"
1281 printf " 1, /* Always initialized. */\n"
1282 printf " NULL, /* The obstack. */\n"
1283 printf " /* basic architecture information */\n"
1284 function_list | while do_read
1288 printf " ${staticdefault}, /* ${function} */\n"
1292 /* target specific vector and its dump routine */
1294 /*per-architecture data-pointers and swap regions */
1296 /* Multi-arch values */
1298 function_list | while do_read
1300 if class_is_function_p || class_is_variable_p
1302 printf " ${staticdefault}, /* ${function} */\n"
1306 /* startup_gdbarch() */
1309 struct gdbarch *current_gdbarch = &startup_gdbarch;
1312 # Create a new gdbarch struct
1315 /* Create a new \`\`struct gdbarch'' based on information provided by
1316 \`\`struct gdbarch_info''. */
1321 gdbarch_alloc (const struct gdbarch_info *info,
1322 struct gdbarch_tdep *tdep)
1324 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1325 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1326 the current local architecture and not the previous global
1327 architecture. This ensures that the new architectures initial
1328 values are not influenced by the previous architecture. Once
1329 everything is parameterised with gdbarch, this will go away. */
1330 struct gdbarch *current_gdbarch;
1332 /* Create an obstack for allocating all the per-architecture memory,
1333 then use that to allocate the architecture vector. */
1334 struct obstack *obstack = XMALLOC (struct obstack);
1335 obstack_init (obstack);
1336 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1337 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1338 current_gdbarch->obstack = obstack;
1340 alloc_gdbarch_data (current_gdbarch);
1342 current_gdbarch->tdep = tdep;
1345 function_list | while do_read
1349 printf " current_gdbarch->${function} = info->${function};\n"
1353 printf " /* Force the explicit initialization of these. */\n"
1354 function_list | while do_read
1356 if class_is_function_p || class_is_variable_p
1358 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1360 printf " current_gdbarch->${function} = ${predefault};\n"
1365 /* gdbarch_alloc() */
1367 return current_gdbarch;
1371 # Free a gdbarch struct.
1375 /* Allocate extra space using the per-architecture obstack. */
1378 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1380 void *data = obstack_alloc (arch->obstack, size);
1381 memset (data, 0, size);
1386 /* Free a gdbarch struct. This should never happen in normal
1387 operation --- once you've created a gdbarch, you keep it around.
1388 However, if an architecture's init function encounters an error
1389 building the structure, it may need to clean up a partially
1390 constructed gdbarch. */
1393 gdbarch_free (struct gdbarch *arch)
1395 struct obstack *obstack;
1396 gdb_assert (arch != NULL);
1397 gdb_assert (!arch->initialized_p);
1398 obstack = arch->obstack;
1399 obstack_free (obstack, 0); /* Includes the ARCH. */
1404 # verify a new architecture
1408 /* Ensure that all values in a GDBARCH are reasonable. */
1410 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1411 just happens to match the global variable \`\`current_gdbarch''. That
1412 way macros refering to that variable get the local and not the global
1413 version - ulgh. Once everything is parameterised with gdbarch, this
1417 verify_gdbarch (struct gdbarch *current_gdbarch)
1419 struct ui_file *log;
1420 struct cleanup *cleanups;
1423 log = mem_fileopen ();
1424 cleanups = make_cleanup_ui_file_delete (log);
1426 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1427 fprintf_unfiltered (log, "\n\tbyte-order");
1428 if (current_gdbarch->bfd_arch_info == NULL)
1429 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1430 /* Check those that need to be defined for the given multi-arch level. */
1432 function_list | while do_read
1434 if class_is_function_p || class_is_variable_p
1436 if [ "x${invalid_p}" = "x0" ]
1438 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1439 elif class_is_predicate_p
1441 printf " /* Skip verify of ${function}, has predicate */\n"
1442 # FIXME: See do_read for potential simplification
1443 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1445 printf " if (${invalid_p})\n"
1446 printf " current_gdbarch->${function} = ${postdefault};\n"
1447 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1449 printf " if (current_gdbarch->${function} == ${predefault})\n"
1450 printf " current_gdbarch->${function} = ${postdefault};\n"
1451 elif [ -n "${postdefault}" ]
1453 printf " if (current_gdbarch->${function} == 0)\n"
1454 printf " current_gdbarch->${function} = ${postdefault};\n"
1455 elif [ -n "${invalid_p}" ]
1457 printf " if (${invalid_p})\n"
1458 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1459 elif [ -n "${predefault}" ]
1461 printf " if (current_gdbarch->${function} == ${predefault})\n"
1462 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1467 buf = ui_file_xstrdup (log, &dummy);
1468 make_cleanup (xfree, buf);
1469 if (strlen (buf) > 0)
1470 internal_error (__FILE__, __LINE__,
1471 _("verify_gdbarch: the following are invalid ...%s"),
1473 do_cleanups (cleanups);
1477 # dump the structure
1481 /* Print out the details of the current architecture. */
1483 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1484 just happens to match the global variable \`\`current_gdbarch''. That
1485 way macros refering to that variable get the local and not the global
1486 version - ulgh. Once everything is parameterised with gdbarch, this
1490 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1492 const char *gdb_xm_file = "<not-defined>";
1493 const char *gdb_nm_file = "<not-defined>";
1494 const char *gdb_tm_file = "<not-defined>";
1495 #if defined (GDB_XM_FILE)
1496 gdb_xm_file = GDB_XM_FILE;
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1501 #if defined (GDB_NM_FILE)
1502 gdb_nm_file = GDB_NM_FILE;
1504 fprintf_unfiltered (file,
1505 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1507 #if defined (GDB_TM_FILE)
1508 gdb_tm_file = GDB_TM_FILE;
1510 fprintf_unfiltered (file,
1511 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1514 function_list | sort -t: -k 4 | while do_read
1516 # First the predicate
1517 if class_is_predicate_p
1519 if test -n "${macro}"
1521 printf "#ifdef ${macro}_P\n"
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1524 printf " \"${macro}_P()\",\n"
1525 printf " XSTRING (${macro}_P ()));\n"
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1530 printf " gdbarch_${function}_p (current_gdbarch));\n"
1532 # Print the macro definition.
1533 if test -n "${macro}"
1535 printf "#ifdef ${macro}\n"
1536 if class_is_function_p
1538 printf " fprintf_unfiltered (file,\n"
1539 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1540 printf " \"${macro}(${actual})\",\n"
1541 printf " XSTRING (${macro} (${actual})));\n"
1543 printf " fprintf_unfiltered (file,\n"
1544 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1545 printf " XSTRING (${macro}));\n"
1549 # Print the corresponding value.
1550 if class_is_function_p
1552 printf " fprintf_unfiltered (file,\n"
1553 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1554 printf " (long) current_gdbarch->${function});\n"
1557 case "${print}:${returntype}" in
1560 print="paddr_nz (current_gdbarch->${function})"
1564 print="paddr_d (current_gdbarch->${function})"
1570 printf " fprintf_unfiltered (file,\n"
1571 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1572 printf " ${print});\n"
1576 if (current_gdbarch->dump_tdep != NULL)
1577 current_gdbarch->dump_tdep (current_gdbarch, file);
1585 struct gdbarch_tdep *
1586 gdbarch_tdep (struct gdbarch *gdbarch)
1588 if (gdbarch_debug >= 2)
1589 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1590 return gdbarch->tdep;
1594 function_list | while do_read
1596 if class_is_predicate_p
1600 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1602 printf " gdb_assert (gdbarch != NULL);\n"
1603 printf " return ${predicate};\n"
1606 if class_is_function_p
1609 printf "${returntype}\n"
1610 if [ "x${formal}" = "xvoid" ]
1612 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1617 printf " gdb_assert (gdbarch != NULL);\n"
1618 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1619 if class_is_predicate_p && test -n "${predefault}"
1621 # Allow a call to a function with a predicate.
1622 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1624 printf " if (gdbarch_debug >= 2)\n"
1625 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1626 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1628 if class_is_multiarch_p
1635 if class_is_multiarch_p
1637 params="gdbarch, ${actual}"
1642 if [ "x${returntype}" = "xvoid" ]
1644 printf " gdbarch->${function} (${params});\n"
1646 printf " return gdbarch->${function} (${params});\n"
1651 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1652 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1654 printf " gdbarch->${function} = ${function};\n"
1656 elif class_is_variable_p
1659 printf "${returntype}\n"
1660 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1662 printf " gdb_assert (gdbarch != NULL);\n"
1663 if [ "x${invalid_p}" = "x0" ]
1665 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1666 elif [ -n "${invalid_p}" ]
1668 printf " /* Check variable is valid. */\n"
1669 printf " gdb_assert (!(${invalid_p}));\n"
1670 elif [ -n "${predefault}" ]
1672 printf " /* Check variable changed from pre-default. */\n"
1673 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1675 printf " if (gdbarch_debug >= 2)\n"
1676 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1677 printf " return gdbarch->${function};\n"
1681 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1682 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1684 printf " gdbarch->${function} = ${function};\n"
1686 elif class_is_info_p
1689 printf "${returntype}\n"
1690 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf " gdb_assert (gdbarch != NULL);\n"
1693 printf " if (gdbarch_debug >= 2)\n"
1694 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1695 printf " return gdbarch->${function};\n"
1700 # All the trailing guff
1704 /* Keep a registry of per-architecture data-pointers required by GDB
1711 gdbarch_data_pre_init_ftype *pre_init;
1712 gdbarch_data_post_init_ftype *post_init;
1715 struct gdbarch_data_registration
1717 struct gdbarch_data *data;
1718 struct gdbarch_data_registration *next;
1721 struct gdbarch_data_registry
1724 struct gdbarch_data_registration *registrations;
1727 struct gdbarch_data_registry gdbarch_data_registry =
1732 static struct gdbarch_data *
1733 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1734 gdbarch_data_post_init_ftype *post_init)
1736 struct gdbarch_data_registration **curr;
1737 /* Append the new registraration. */
1738 for (curr = &gdbarch_data_registry.registrations;
1740 curr = &(*curr)->next);
1741 (*curr) = XMALLOC (struct gdbarch_data_registration);
1742 (*curr)->next = NULL;
1743 (*curr)->data = XMALLOC (struct gdbarch_data);
1744 (*curr)->data->index = gdbarch_data_registry.nr++;
1745 (*curr)->data->pre_init = pre_init;
1746 (*curr)->data->post_init = post_init;
1747 (*curr)->data->init_p = 1;
1748 return (*curr)->data;
1751 struct gdbarch_data *
1752 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1754 return gdbarch_data_register (pre_init, NULL);
1757 struct gdbarch_data *
1758 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1760 return gdbarch_data_register (NULL, post_init);
1763 /* Create/delete the gdbarch data vector. */
1766 alloc_gdbarch_data (struct gdbarch *gdbarch)
1768 gdb_assert (gdbarch->data == NULL);
1769 gdbarch->nr_data = gdbarch_data_registry.nr;
1770 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1773 /* Initialize the current value of the specified per-architecture
1777 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1778 struct gdbarch_data *data,
1781 gdb_assert (data->index < gdbarch->nr_data);
1782 gdb_assert (gdbarch->data[data->index] == NULL);
1783 gdb_assert (data->pre_init == NULL);
1784 gdbarch->data[data->index] = pointer;
1787 /* Return the current value of the specified per-architecture
1791 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1793 gdb_assert (data->index < gdbarch->nr_data);
1794 if (gdbarch->data[data->index] == NULL)
1796 /* The data-pointer isn't initialized, call init() to get a
1798 if (data->pre_init != NULL)
1799 /* Mid architecture creation: pass just the obstack, and not
1800 the entire architecture, as that way it isn't possible for
1801 pre-init code to refer to undefined architecture
1803 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1804 else if (gdbarch->initialized_p
1805 && data->post_init != NULL)
1806 /* Post architecture creation: pass the entire architecture
1807 (as all fields are valid), but be careful to also detect
1808 recursive references. */
1810 gdb_assert (data->init_p);
1812 gdbarch->data[data->index] = data->post_init (gdbarch);
1816 /* The architecture initialization hasn't completed - punt -
1817 hope that the caller knows what they are doing. Once
1818 deprecated_set_gdbarch_data has been initialized, this can be
1819 changed to an internal error. */
1821 gdb_assert (gdbarch->data[data->index] != NULL);
1823 return gdbarch->data[data->index];
1828 /* Keep a registry of swapped data required by GDB modules. */
1833 struct gdbarch_swap_registration *source;
1834 struct gdbarch_swap *next;
1837 struct gdbarch_swap_registration
1840 unsigned long sizeof_data;
1841 gdbarch_swap_ftype *init;
1842 struct gdbarch_swap_registration *next;
1845 struct gdbarch_swap_registry
1848 struct gdbarch_swap_registration *registrations;
1851 struct gdbarch_swap_registry gdbarch_swap_registry =
1857 deprecated_register_gdbarch_swap (void *data,
1858 unsigned long sizeof_data,
1859 gdbarch_swap_ftype *init)
1861 struct gdbarch_swap_registration **rego;
1862 for (rego = &gdbarch_swap_registry.registrations;
1864 rego = &(*rego)->next);
1865 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1866 (*rego)->next = NULL;
1867 (*rego)->init = init;
1868 (*rego)->data = data;
1869 (*rego)->sizeof_data = sizeof_data;
1873 current_gdbarch_swap_init_hack (void)
1875 struct gdbarch_swap_registration *rego;
1876 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1877 for (rego = gdbarch_swap_registry.registrations;
1881 if (rego->data != NULL)
1883 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1884 struct gdbarch_swap);
1885 (*curr)->source = rego;
1886 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1888 (*curr)->next = NULL;
1889 curr = &(*curr)->next;
1891 if (rego->init != NULL)
1896 static struct gdbarch *
1897 current_gdbarch_swap_out_hack (void)
1899 struct gdbarch *old_gdbarch = current_gdbarch;
1900 struct gdbarch_swap *curr;
1902 gdb_assert (old_gdbarch != NULL);
1903 for (curr = old_gdbarch->swap;
1907 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1908 memset (curr->source->data, 0, curr->source->sizeof_data);
1910 current_gdbarch = NULL;
1915 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1917 struct gdbarch_swap *curr;
1919 gdb_assert (current_gdbarch == NULL);
1920 for (curr = new_gdbarch->swap;
1923 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1924 current_gdbarch = new_gdbarch;
1928 /* Keep a registry of the architectures known by GDB. */
1930 struct gdbarch_registration
1932 enum bfd_architecture bfd_architecture;
1933 gdbarch_init_ftype *init;
1934 gdbarch_dump_tdep_ftype *dump_tdep;
1935 struct gdbarch_list *arches;
1936 struct gdbarch_registration *next;
1939 static struct gdbarch_registration *gdbarch_registry = NULL;
1942 append_name (const char ***buf, int *nr, const char *name)
1944 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1950 gdbarch_printable_names (void)
1952 /* Accumulate a list of names based on the registed list of
1954 enum bfd_architecture a;
1956 const char **arches = NULL;
1957 struct gdbarch_registration *rego;
1958 for (rego = gdbarch_registry;
1962 const struct bfd_arch_info *ap;
1963 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1965 internal_error (__FILE__, __LINE__,
1966 _("gdbarch_architecture_names: multi-arch unknown"));
1969 append_name (&arches, &nr_arches, ap->printable_name);
1974 append_name (&arches, &nr_arches, NULL);
1980 gdbarch_register (enum bfd_architecture bfd_architecture,
1981 gdbarch_init_ftype *init,
1982 gdbarch_dump_tdep_ftype *dump_tdep)
1984 struct gdbarch_registration **curr;
1985 const struct bfd_arch_info *bfd_arch_info;
1986 /* Check that BFD recognizes this architecture */
1987 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1988 if (bfd_arch_info == NULL)
1990 internal_error (__FILE__, __LINE__,
1991 _("gdbarch: Attempt to register unknown architecture (%d)"),
1994 /* Check that we haven't seen this architecture before */
1995 for (curr = &gdbarch_registry;
1997 curr = &(*curr)->next)
1999 if (bfd_architecture == (*curr)->bfd_architecture)
2000 internal_error (__FILE__, __LINE__,
2001 _("gdbarch: Duplicate registraration of architecture (%s)"),
2002 bfd_arch_info->printable_name);
2006 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2007 bfd_arch_info->printable_name,
2010 (*curr) = XMALLOC (struct gdbarch_registration);
2011 (*curr)->bfd_architecture = bfd_architecture;
2012 (*curr)->init = init;
2013 (*curr)->dump_tdep = dump_tdep;
2014 (*curr)->arches = NULL;
2015 (*curr)->next = NULL;
2019 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2020 gdbarch_init_ftype *init)
2022 gdbarch_register (bfd_architecture, init, NULL);
2026 /* Look for an architecture using gdbarch_info. Base search on only
2027 BFD_ARCH_INFO and BYTE_ORDER. */
2029 struct gdbarch_list *
2030 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2031 const struct gdbarch_info *info)
2033 for (; arches != NULL; arches = arches->next)
2035 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2037 if (info->byte_order != arches->gdbarch->byte_order)
2039 if (info->osabi != arches->gdbarch->osabi)
2047 /* Find an architecture that matches the specified INFO. Create a new
2048 architecture if needed. Return that new architecture. Assumes
2049 that there is no current architecture. */
2051 static struct gdbarch *
2052 find_arch_by_info (struct gdbarch_info info)
2054 struct gdbarch *new_gdbarch;
2055 struct gdbarch_registration *rego;
2057 /* The existing architecture has been swapped out - all this code
2058 works from a clean slate. */
2059 gdb_assert (current_gdbarch == NULL);
2061 /* Fill in missing parts of the INFO struct using a number of
2062 sources: "set ..."; INFOabfd supplied; and the global
2064 gdbarch_info_fill (&info);
2066 /* Must have found some sort of architecture. */
2067 gdb_assert (info.bfd_arch_info != NULL);
2071 fprintf_unfiltered (gdb_stdlog,
2072 "find_arch_by_info: info.bfd_arch_info %s\n",
2073 (info.bfd_arch_info != NULL
2074 ? info.bfd_arch_info->printable_name
2076 fprintf_unfiltered (gdb_stdlog,
2077 "find_arch_by_info: info.byte_order %d (%s)\n",
2079 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2080 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2082 fprintf_unfiltered (gdb_stdlog,
2083 "find_arch_by_info: info.osabi %d (%s)\n",
2084 info.osabi, gdbarch_osabi_name (info.osabi));
2085 fprintf_unfiltered (gdb_stdlog,
2086 "find_arch_by_info: info.abfd 0x%lx\n",
2088 fprintf_unfiltered (gdb_stdlog,
2089 "find_arch_by_info: info.tdep_info 0x%lx\n",
2090 (long) info.tdep_info);
2093 /* Find the tdep code that knows about this architecture. */
2094 for (rego = gdbarch_registry;
2097 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2102 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2103 "No matching architecture\n");
2107 /* Ask the tdep code for an architecture that matches "info". */
2108 new_gdbarch = rego->init (info, rego->arches);
2110 /* Did the tdep code like it? No. Reject the change and revert to
2111 the old architecture. */
2112 if (new_gdbarch == NULL)
2115 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2116 "Target rejected architecture\n");
2120 /* Is this a pre-existing architecture (as determined by already
2121 being initialized)? Move it to the front of the architecture
2122 list (keeping the list sorted Most Recently Used). */
2123 if (new_gdbarch->initialized_p)
2125 struct gdbarch_list **list;
2126 struct gdbarch_list *this;
2128 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2129 "Previous architecture 0x%08lx (%s) selected\n",
2131 new_gdbarch->bfd_arch_info->printable_name);
2132 /* Find the existing arch in the list. */
2133 for (list = ®o->arches;
2134 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2135 list = &(*list)->next);
2136 /* It had better be in the list of architectures. */
2137 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2140 (*list) = this->next;
2141 /* Insert THIS at the front. */
2142 this->next = rego->arches;
2143 rego->arches = this;
2148 /* It's a new architecture. */
2150 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151 "New architecture 0x%08lx (%s) selected\n",
2153 new_gdbarch->bfd_arch_info->printable_name);
2155 /* Insert the new architecture into the front of the architecture
2156 list (keep the list sorted Most Recently Used). */
2158 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2159 this->next = rego->arches;
2160 this->gdbarch = new_gdbarch;
2161 rego->arches = this;
2164 /* Check that the newly installed architecture is valid. Plug in
2165 any post init values. */
2166 new_gdbarch->dump_tdep = rego->dump_tdep;
2167 verify_gdbarch (new_gdbarch);
2168 new_gdbarch->initialized_p = 1;
2170 /* Initialize any per-architecture swap areas. This phase requires
2171 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2172 swap the entire architecture out. */
2173 current_gdbarch = new_gdbarch;
2174 current_gdbarch_swap_init_hack ();
2175 current_gdbarch_swap_out_hack ();
2178 gdbarch_dump (new_gdbarch, gdb_stdlog);
2184 gdbarch_find_by_info (struct gdbarch_info info)
2186 /* Save the previously selected architecture, setting the global to
2187 NULL. This stops things like gdbarch->init() trying to use the
2188 previous architecture's configuration. The previous architecture
2189 may not even be of the same architecture family. The most recent
2190 architecture of the same family is found at the head of the
2191 rego->arches list. */
2192 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2194 /* Find the specified architecture. */
2195 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2197 /* Restore the existing architecture. */
2198 gdb_assert (current_gdbarch == NULL);
2199 current_gdbarch_swap_in_hack (old_gdbarch);
2204 /* Make the specified architecture current, swapping the existing one
2208 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2210 gdb_assert (new_gdbarch != NULL);
2211 gdb_assert (current_gdbarch != NULL);
2212 gdb_assert (new_gdbarch->initialized_p);
2213 current_gdbarch_swap_out_hack ();
2214 current_gdbarch_swap_in_hack (new_gdbarch);
2215 architecture_changed_event ();
2216 flush_cached_frames ();
2219 extern void _initialize_gdbarch (void);
2222 _initialize_gdbarch (void)
2224 struct cmd_list_element *c;
2226 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2227 Set architecture debugging."), _("\\
2228 Show architecture debugging."), _("\\
2229 When non-zero, architecture debugging is enabled."),
2232 &setdebuglist, &showdebuglist);
2238 #../move-if-change new-gdbarch.c gdbarch.c
2239 compare_new gdbarch.c