1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 #include "elf32-hppa.h"
36 #include "elf32-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
111 : ldw -24(%sp),%rp ; restore the original rp
114 : be,n 0(%sr0,%rp) ; inter-space return */
116 #define PLT_ENTRY_SIZE 8
117 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
118 #define GOT_ENTRY_SIZE 4
119 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
121 static const bfd_byte plt_stub[] =
123 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
124 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
125 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
126 #define PLT_STUB_ENTRY (3*4)
127 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
128 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
129 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
130 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
133 /* Section name for stubs is the associated section name plus this
135 #define STUB_SUFFIX ".stub"
137 /* We don't need to copy certain PC- or GP-relative dynamic relocs
138 into a shared object's dynamic section. All the relocs of the
139 limited class we are interested in, are absolute. */
140 #ifndef RELATIVE_DYNRELOCS
141 #define RELATIVE_DYNRELOCS 0
142 #define IS_ABSOLUTE_RELOC(r_type) 1
145 enum elf32_hppa_stub_type {
146 hppa_stub_long_branch,
147 hppa_stub_long_branch_shared,
149 hppa_stub_import_shared,
154 struct elf32_hppa_stub_hash_entry {
156 /* Base hash table entry structure. */
157 struct bfd_hash_entry root;
159 /* The stub section. */
162 /* Offset within stub_sec of the beginning of this stub. */
165 /* Given the symbol's value and its section we can determine its final
166 value when building the stubs (so the stub knows where to jump. */
167 bfd_vma target_value;
168 asection *target_section;
170 enum elf32_hppa_stub_type stub_type;
172 /* The symbol table entry, if any, that this was derived from. */
173 struct elf32_hppa_link_hash_entry *h;
175 /* Where this stub is being called from, or, in the case of combined
176 stub sections, the first input section in the group. */
180 struct elf32_hppa_link_hash_entry {
182 struct elf_link_hash_entry elf;
184 /* A pointer to the most recently used stub hash entry against this
186 struct elf32_hppa_stub_hash_entry *stub_cache;
188 /* Used to count relocations for delayed sizing of relocation
190 struct elf32_hppa_dyn_reloc_entry {
192 /* Next relocation in the chain. */
193 struct elf32_hppa_dyn_reloc_entry *next;
195 /* The input section of the reloc. */
198 /* Number of relocs copied in this section. */
201 #if RELATIVE_DYNRELOCS
202 /* Number of relative relocs copied for the input section. */
203 bfd_size_type relative_count;
207 /* Set during a static link if we detect a function is PIC. */
208 unsigned int maybe_pic_call:1;
210 /* Set if the only reason we need a .plt entry is for a non-PIC to
211 PIC function call. */
212 unsigned int pic_call:1;
214 /* Set if this symbol is used by a plabel reloc. */
215 unsigned int plabel:1;
217 /* Set if this symbol is an init or fini function and thus should
218 use an absolute reloc. */
219 unsigned int plt_abs:1;
222 struct elf32_hppa_link_hash_table {
224 /* The main hash table. */
225 struct elf_link_hash_table elf;
227 /* The stub hash table. */
228 struct bfd_hash_table stub_hash_table;
230 /* Linker stub bfd. */
233 /* Linker call-backs. */
234 asection * (*add_stub_section) PARAMS ((const char *, asection *));
235 void (*layout_sections_again) PARAMS ((void));
237 /* Array to keep track of which stub sections have been created, and
238 information on stub grouping. */
240 /* This is the section to which stubs in the group will be
243 /* The stub section. */
247 /* Short-cuts to get to dynamic linker sections. */
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
263 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
268 /* Set if we need a .plt stub to support lazy dynamic linking. */
269 unsigned int need_plt_stub:1;
272 /* Various hash macros and functions. */
273 #define hppa_link_hash_table(p) \
274 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
276 #define hppa_stub_hash_lookup(table, string, create, copy) \
277 ((struct elf32_hppa_stub_hash_entry *) \
278 bfd_hash_lookup ((table), (string), (create), (copy)))
280 static struct bfd_hash_entry *stub_hash_newfunc
281 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
283 static struct bfd_hash_entry *hppa_link_hash_newfunc
284 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
286 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 /* Stub handling functions. */
290 static char *hppa_stub_name
291 PARAMS ((const asection *, const asection *,
292 const struct elf32_hppa_link_hash_entry *,
293 const Elf_Internal_Rela *));
295 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
296 PARAMS ((const asection *, const asection *,
297 struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *,
299 struct elf32_hppa_link_hash_table *));
301 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
302 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
304 static enum elf32_hppa_stub_type hppa_type_of_stub
305 PARAMS ((asection *, const Elf_Internal_Rela *,
306 struct elf32_hppa_link_hash_entry *, bfd_vma));
308 static boolean hppa_build_one_stub
309 PARAMS ((struct bfd_hash_entry *, PTR));
311 static boolean hppa_size_one_stub
312 PARAMS ((struct bfd_hash_entry *, PTR));
314 /* BFD and elf backend functions. */
315 static boolean elf32_hppa_object_p PARAMS ((bfd *));
317 static boolean elf32_hppa_add_symbol_hook
318 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
319 const char **, flagword *, asection **, bfd_vma *));
321 static boolean elf32_hppa_create_dynamic_sections
322 PARAMS ((bfd *, struct bfd_link_info *));
324 static void elf32_hppa_copy_indirect_symbol
325 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
327 static boolean elf32_hppa_check_relocs
328 PARAMS ((bfd *, struct bfd_link_info *,
329 asection *, const Elf_Internal_Rela *));
331 static asection *elf32_hppa_gc_mark_hook
332 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
333 struct elf_link_hash_entry *, Elf_Internal_Sym *));
335 static boolean elf32_hppa_gc_sweep_hook
336 PARAMS ((bfd *, struct bfd_link_info *,
337 asection *, const Elf_Internal_Rela *));
339 static void elf32_hppa_hide_symbol
340 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
342 static boolean elf32_hppa_adjust_dynamic_symbol
343 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
345 static boolean hppa_handle_PIC_calls
346 PARAMS ((struct elf_link_hash_entry *, PTR));
348 static boolean allocate_dynrelocs
349 PARAMS ((struct elf_link_hash_entry *, PTR));
351 static boolean readonly_dynrelocs
352 PARAMS ((struct elf_link_hash_entry *, PTR));
354 static boolean clobber_millicode_symbols
355 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
357 static boolean elf32_hppa_size_dynamic_sections
358 PARAMS ((bfd *, struct bfd_link_info *));
360 static boolean elf32_hppa_final_link
361 PARAMS ((bfd *, struct bfd_link_info *));
363 static void hppa_record_segment_addr
364 PARAMS ((bfd *, asection *, PTR));
366 static bfd_reloc_status_type final_link_relocate
367 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
368 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
369 struct elf32_hppa_link_hash_entry *));
371 static boolean elf32_hppa_relocate_section
372 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
373 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
375 static int hppa_unwind_entry_compare
376 PARAMS ((const PTR, const PTR));
378 static boolean elf32_hppa_finish_dynamic_symbol
379 PARAMS ((bfd *, struct bfd_link_info *,
380 struct elf_link_hash_entry *, Elf_Internal_Sym *));
382 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
383 PARAMS ((const Elf_Internal_Rela *));
385 static boolean elf32_hppa_finish_dynamic_sections
386 PARAMS ((bfd *, struct bfd_link_info *));
388 static void elf32_hppa_post_process_headers
389 PARAMS ((bfd *, struct bfd_link_info *));
391 static int elf32_hppa_elf_get_symbol_type
392 PARAMS ((Elf_Internal_Sym *, int));
394 /* Assorted hash table functions. */
396 /* Initialize an entry in the stub hash table. */
398 static struct bfd_hash_entry *
399 stub_hash_newfunc (entry, table, string)
400 struct bfd_hash_entry *entry;
401 struct bfd_hash_table *table;
404 /* Allocate the structure if it has not already been allocated by a
408 entry = bfd_hash_allocate (table,
409 sizeof (struct elf32_hppa_stub_hash_entry));
414 /* Call the allocation method of the superclass. */
415 entry = bfd_hash_newfunc (entry, table, string);
418 struct elf32_hppa_stub_hash_entry *eh;
420 /* Initialize the local fields. */
421 eh = (struct elf32_hppa_stub_hash_entry *) entry;
424 eh->target_value = 0;
425 eh->target_section = NULL;
426 eh->stub_type = hppa_stub_long_branch;
434 /* Initialize an entry in the link hash table. */
436 static struct bfd_hash_entry *
437 hppa_link_hash_newfunc (entry, table, string)
438 struct bfd_hash_entry *entry;
439 struct bfd_hash_table *table;
442 /* Allocate the structure if it has not already been allocated by a
446 entry = bfd_hash_allocate (table,
447 sizeof (struct elf32_hppa_link_hash_entry));
452 /* Call the allocation method of the superclass. */
453 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
456 struct elf32_hppa_link_hash_entry *eh;
458 /* Initialize the local fields. */
459 eh = (struct elf32_hppa_link_hash_entry *) entry;
460 eh->stub_cache = NULL;
461 eh->dyn_relocs = NULL;
462 eh->maybe_pic_call = 0;
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
482 ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt);
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
488 bfd_release (abfd, ret);
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
513 return &ret->elf.root;
516 /* Build a name for an entry in the stub hash table. */
519 hppa_stub_name (input_section, sym_sec, hash, rel)
520 const asection *input_section;
521 const asection *sym_sec;
522 const struct elf32_hppa_link_hash_entry *hash;
523 const Elf_Internal_Rela *rel;
530 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
531 stub_name = bfd_malloc (len);
532 if (stub_name != NULL)
534 sprintf (stub_name, "%08x_%s+%x",
535 input_section->id & 0xffffffff,
536 hash->elf.root.root.string,
537 (int) rel->r_addend & 0xffffffff);
542 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
543 stub_name = bfd_malloc (len);
544 if (stub_name != NULL)
546 sprintf (stub_name, "%08x_%x:%x+%x",
547 input_section->id & 0xffffffff,
548 sym_sec->id & 0xffffffff,
549 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
550 (int) rel->r_addend & 0xffffffff);
556 /* Look up an entry in the stub hash. Stub entries are cached because
557 creating the stub name takes a bit of time. */
559 static struct elf32_hppa_stub_hash_entry *
560 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
561 const asection *input_section;
562 const asection *sym_sec;
563 struct elf32_hppa_link_hash_entry *hash;
564 const Elf_Internal_Rela *rel;
565 struct elf32_hppa_link_hash_table *htab;
567 struct elf32_hppa_stub_hash_entry *stub_entry;
568 const asection *id_sec;
570 /* If this input section is part of a group of sections sharing one
571 stub section, then use the id of the first section in the group.
572 Stub names need to include a section id, as there may well be
573 more than one stub used to reach say, printf, and we need to
574 distinguish between them. */
575 id_sec = htab->stub_group[input_section->id].link_sec;
577 if (hash != NULL && hash->stub_cache != NULL
578 && hash->stub_cache->h == hash
579 && hash->stub_cache->id_sec == id_sec)
581 stub_entry = hash->stub_cache;
587 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
588 if (stub_name == NULL)
591 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
592 stub_name, false, false);
593 if (stub_entry == NULL)
595 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
596 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
597 bfd_archive_filename (input_section->owner),
599 (long) rel->r_offset,
605 hash->stub_cache = stub_entry;
614 /* Add a new stub entry to the stub hash. Not all fields of the new
615 stub entry are initialised. */
617 static struct elf32_hppa_stub_hash_entry *
618 hppa_add_stub (stub_name, section, htab)
619 const char *stub_name;
621 struct elf32_hppa_link_hash_table *htab;
625 struct elf32_hppa_stub_hash_entry *stub_entry;
627 link_sec = htab->stub_group[section->id].link_sec;
628 stub_sec = htab->stub_group[section->id].stub_sec;
629 if (stub_sec == NULL)
631 stub_sec = htab->stub_group[link_sec->id].stub_sec;
632 if (stub_sec == NULL)
637 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
638 s_name = bfd_alloc (htab->stub_bfd, len);
642 strcpy (s_name, link_sec->name);
643 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
644 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
645 if (stub_sec == NULL)
647 htab->stub_group[link_sec->id].stub_sec = stub_sec;
649 htab->stub_group[section->id].stub_sec = stub_sec;
652 /* Enter this entry into the linker stub hash table. */
653 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
655 if (stub_entry == NULL)
657 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
658 bfd_archive_filename (section->owner),
663 stub_entry->stub_sec = stub_sec;
664 stub_entry->stub_offset = 0;
665 stub_entry->id_sec = link_sec;
669 /* Determine the type of stub needed, if any, for a call. */
671 static enum elf32_hppa_stub_type
672 hppa_type_of_stub (input_sec, rel, hash, destination)
674 const Elf_Internal_Rela *rel;
675 struct elf32_hppa_link_hash_entry *hash;
679 bfd_vma branch_offset;
680 bfd_vma max_branch_offset;
684 && (((hash->elf.root.type == bfd_link_hash_defined
685 || hash->elf.root.type == bfd_link_hash_defweak)
686 && hash->elf.root.u.def.section->output_section == NULL)
687 || (hash->elf.root.type == bfd_link_hash_defweak
688 && hash->elf.dynindx != -1
689 && hash->elf.plt.offset != (bfd_vma) -1)
690 || hash->elf.root.type == bfd_link_hash_undefweak
691 || hash->elf.root.type == bfd_link_hash_undefined
692 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
694 /* If output_section is NULL, then it's a symbol defined in a
695 shared library. We will need an import stub. Decide between
696 hppa_stub_import and hppa_stub_import_shared later. For
697 shared links we need stubs for undefined or weak syms too;
698 They will presumably be resolved by the dynamic linker. */
699 return hppa_stub_import;
702 /* Determine where the call point is. */
703 location = (input_sec->output_offset
704 + input_sec->output_section->vma
707 branch_offset = destination - location - 8;
708 r_type = ELF32_R_TYPE (rel->r_info);
710 /* Determine if a long branch stub is needed. parisc branch offsets
711 are relative to the second instruction past the branch, ie. +8
712 bytes on from the branch instruction location. The offset is
713 signed and counts in units of 4 bytes. */
714 if (r_type == (unsigned int) R_PARISC_PCREL17F)
716 max_branch_offset = (1 << (17-1)) << 2;
718 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
720 max_branch_offset = (1 << (12-1)) << 2;
722 else /* R_PARISC_PCREL22F. */
724 max_branch_offset = (1 << (22-1)) << 2;
727 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
728 return hppa_stub_long_branch;
730 return hppa_stub_none;
733 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
734 IN_ARG contains the link info pointer. */
736 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
737 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
739 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
740 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
741 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
743 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
744 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
745 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
746 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
748 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
749 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
751 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
752 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
753 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
754 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
756 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
757 #define NOP 0x08000240 /* nop */
758 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
759 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
760 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
767 #define LDW_R1_DLT LDW_R1_R19
769 #define LDW_R1_DLT LDW_R1_DP
773 hppa_build_one_stub (gen_entry, in_arg)
774 struct bfd_hash_entry *gen_entry;
777 struct elf32_hppa_stub_hash_entry *stub_entry;
778 struct bfd_link_info *info;
779 struct elf32_hppa_link_hash_table *htab;
789 /* Massage our args to the form they really have. */
790 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
791 info = (struct bfd_link_info *) in_arg;
793 htab = hppa_link_hash_table (info);
794 stub_sec = stub_entry->stub_sec;
796 /* Make a note of the offset within the stubs for this entry. */
797 stub_entry->stub_offset = stub_sec->_raw_size;
798 loc = stub_sec->contents + stub_entry->stub_offset;
800 stub_bfd = stub_sec->owner;
802 switch (stub_entry->stub_type)
804 case hppa_stub_long_branch:
805 /* Create the long branch. A long branch is formed with "ldil"
806 loading the upper bits of the target address into a register,
807 then branching with "be" which adds in the lower bits.
808 The "be" has its delay slot nullified. */
809 sym_value = (stub_entry->target_value
810 + stub_entry->target_section->output_offset
811 + stub_entry->target_section->output_section->vma);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
814 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
815 bfd_put_32 (stub_bfd, insn, loc);
817 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
818 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
819 bfd_put_32 (stub_bfd, insn, loc + 4);
824 case hppa_stub_long_branch_shared:
825 /* Branches are relative. This is where we are going to. */
826 sym_value = (stub_entry->target_value
827 + stub_entry->target_section->output_offset
828 + stub_entry->target_section->output_section->vma);
830 /* And this is where we are coming from, more or less. */
831 sym_value -= (stub_entry->stub_offset
832 + stub_sec->output_offset
833 + stub_sec->output_section->vma);
835 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
836 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
837 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
838 bfd_put_32 (stub_bfd, insn, loc + 4);
840 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
841 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
842 bfd_put_32 (stub_bfd, insn, loc + 8);
846 case hppa_stub_import:
847 case hppa_stub_import_shared:
848 off = stub_entry->h->elf.plt.offset;
849 if (off >= (bfd_vma) -2)
852 off &= ~ (bfd_vma) 1;
854 + htab->splt->output_offset
855 + htab->splt->output_section->vma
856 - elf_gp (htab->splt->output_section->owner));
860 if (stub_entry->stub_type == hppa_stub_import_shared)
863 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
864 insn = hppa_rebuild_insn ((int) insn, val, 21);
865 bfd_put_32 (stub_bfd, insn, loc);
867 /* It is critical to use lrsel/rrsel here because we are using
868 two different offsets (+0 and +4) from sym_value. If we use
869 lsel/rsel then with unfortunate sym_values we will round
870 sym_value+4 up to the next 2k block leading to a mis-match
871 between the lsel and rsel value. */
872 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
873 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
874 bfd_put_32 (stub_bfd, insn, loc + 4);
876 if (htab->multi_subspace)
878 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
879 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
880 bfd_put_32 (stub_bfd, insn, loc + 8);
882 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
883 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
884 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
885 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
891 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
892 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
893 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
894 bfd_put_32 (stub_bfd, insn, loc + 12);
900 && stub_entry->h != NULL
901 && stub_entry->h->pic_call)
903 /* Build the .plt entry needed to call a PIC function from
904 statically linked code. We don't need any relocs. */
906 struct elf32_hppa_link_hash_entry *eh;
909 dynobj = htab->elf.dynobj;
910 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
912 if (eh->elf.root.type != bfd_link_hash_defined
913 && eh->elf.root.type != bfd_link_hash_defweak)
916 value = (eh->elf.root.u.def.value
917 + eh->elf.root.u.def.section->output_offset
918 + eh->elf.root.u.def.section->output_section->vma);
920 /* Fill in the entry in the procedure linkage table.
922 The format of a plt entry is
926 bfd_put_32 (htab->splt->owner, value,
927 htab->splt->contents + off);
928 value = elf_gp (htab->splt->output_section->owner);
929 bfd_put_32 (htab->splt->owner, value,
930 htab->splt->contents + off + 4);
934 case hppa_stub_export:
935 /* Branches are relative. This is where we are going to. */
936 sym_value = (stub_entry->target_value
937 + stub_entry->target_section->output_offset
938 + stub_entry->target_section->output_section->vma);
940 /* And this is where we are coming from. */
941 sym_value -= (stub_entry->stub_offset
942 + stub_sec->output_offset
943 + stub_sec->output_section->vma);
945 if (sym_value - 8 + 0x40000 >= 0x80000)
947 (*_bfd_error_handler)
948 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
949 bfd_archive_filename (stub_entry->target_section->owner),
951 (long) stub_entry->stub_offset,
952 stub_entry->root.string);
953 bfd_set_error (bfd_error_bad_value);
957 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
958 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
959 bfd_put_32 (stub_bfd, insn, loc);
961 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
962 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
963 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
964 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
965 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
967 /* Point the function symbol at the stub. */
968 stub_entry->h->elf.root.u.def.section = stub_sec;
969 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
979 stub_sec->_raw_size += size;
1005 /* As above, but don't actually build the stub. Just bump offset so
1006 we know stub section sizes. */
1009 hppa_size_one_stub (gen_entry, in_arg)
1010 struct bfd_hash_entry *gen_entry;
1013 struct elf32_hppa_stub_hash_entry *stub_entry;
1014 struct elf32_hppa_link_hash_table *htab;
1017 /* Massage our args to the form they really have. */
1018 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1019 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1021 if (stub_entry->stub_type == hppa_stub_long_branch)
1023 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1025 else if (stub_entry->stub_type == hppa_stub_export)
1027 else /* hppa_stub_import or hppa_stub_import_shared. */
1029 if (htab->multi_subspace)
1035 stub_entry->stub_sec->_raw_size += size;
1039 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1040 Additionally we set the default architecture and machine. */
1043 elf32_hppa_object_p (abfd)
1046 Elf_Internal_Ehdr * i_ehdrp;
1049 i_ehdrp = elf_elfheader (abfd);
1050 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1052 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1057 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1061 flags = i_ehdrp->e_flags;
1062 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1064 case EFA_PARISC_1_0:
1065 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1066 case EFA_PARISC_1_1:
1067 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1068 case EFA_PARISC_2_0:
1069 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1070 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1071 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1076 /* Undo the generic ELF code's subtraction of section->vma from the
1077 value of each external symbol. */
1080 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1081 bfd *abfd ATTRIBUTE_UNUSED;
1082 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1083 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1084 const char **namep ATTRIBUTE_UNUSED;
1085 flagword *flagsp ATTRIBUTE_UNUSED;
1089 *valp += (*secp)->vma;
1093 /* Create the .plt and .got sections, and set up our hash table
1094 short-cuts to various dynamic sections. */
1097 elf32_hppa_create_dynamic_sections (abfd, info)
1099 struct bfd_link_info *info;
1101 struct elf32_hppa_link_hash_table *htab;
1103 /* Don't try to create the .plt and .got twice. */
1104 htab = hppa_link_hash_table (info);
1105 if (htab->splt != NULL)
1108 /* Call the generic code to do most of the work. */
1109 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1112 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1113 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1115 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1116 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1117 if (htab->srelgot == NULL
1118 || ! bfd_set_section_flags (abfd, htab->srelgot,
1123 | SEC_LINKER_CREATED
1125 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1128 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1129 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1134 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1137 elf32_hppa_copy_indirect_symbol (dir, ind)
1138 struct elf_link_hash_entry *dir, *ind;
1140 struct elf32_hppa_link_hash_entry *edir, *eind;
1142 edir = (struct elf32_hppa_link_hash_entry *) dir;
1143 eind = (struct elf32_hppa_link_hash_entry *) ind;
1145 if (edir->dyn_relocs == NULL)
1147 edir->dyn_relocs = eind->dyn_relocs;
1148 eind->dyn_relocs = NULL;
1150 else if (eind->dyn_relocs != NULL)
1153 _bfd_elf_link_hash_copy_indirect (dir, ind);
1156 /* Look through the relocs for a section during the first phase, and
1157 calculate needed space in the global offset table, procedure linkage
1158 table, and dynamic reloc sections. At this point we haven't
1159 necessarily read all the input files. */
1162 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1164 struct bfd_link_info *info;
1166 const Elf_Internal_Rela *relocs;
1168 Elf_Internal_Shdr *symtab_hdr;
1169 struct elf_link_hash_entry **sym_hashes;
1170 const Elf_Internal_Rela *rel;
1171 const Elf_Internal_Rela *rel_end;
1172 struct elf32_hppa_link_hash_table *htab;
1174 asection *stubreloc;
1176 if (info->relocateable)
1179 htab = hppa_link_hash_table (info);
1180 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1181 sym_hashes = elf_sym_hashes (abfd);
1185 rel_end = relocs + sec->reloc_count;
1186 for (rel = relocs; rel < rel_end; rel++)
1195 unsigned int r_symndx, r_type;
1196 struct elf32_hppa_link_hash_entry *h;
1199 r_symndx = ELF32_R_SYM (rel->r_info);
1201 if (r_symndx < symtab_hdr->sh_info)
1204 h = ((struct elf32_hppa_link_hash_entry *)
1205 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1207 r_type = ELF32_R_TYPE (rel->r_info);
1211 case R_PARISC_DLTIND14F:
1212 case R_PARISC_DLTIND14R:
1213 case R_PARISC_DLTIND21L:
1214 /* This symbol requires a global offset table entry. */
1215 need_entry = NEED_GOT;
1217 /* Mark this section as containing PIC code. */
1218 sec->flags |= SEC_HAS_GOT_REF;
1221 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1222 case R_PARISC_PLABEL21L:
1223 case R_PARISC_PLABEL32:
1224 /* If the addend is non-zero, we break badly. */
1225 if (rel->r_addend != 0)
1228 /* If we are creating a shared library, then we need to
1229 create a PLT entry for all PLABELs, because PLABELs with
1230 local symbols may be passed via a pointer to another
1231 object. Additionally, output a dynamic relocation
1232 pointing to the PLT entry.
1233 For executables, the original 32-bit ABI allowed two
1234 different styles of PLABELs (function pointers): For
1235 global functions, the PLABEL word points into the .plt
1236 two bytes past a (function address, gp) pair, and for
1237 local functions the PLABEL points directly at the
1238 function. The magic +2 for the first type allows us to
1239 differentiate between the two. As you can imagine, this
1240 is a real pain when it comes to generating code to call
1241 functions indirectly or to compare function pointers.
1242 We avoid the mess by always pointing a PLABEL into the
1243 .plt, even for local functions. */
1244 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1247 case R_PARISC_PCREL12F:
1248 htab->has_12bit_branch = 1;
1250 case R_PARISC_PCREL17C:
1251 case R_PARISC_PCREL17F:
1252 htab->has_17bit_branch = 1;
1254 case R_PARISC_PCREL22F:
1255 /* Function calls might need to go through the .plt, and
1256 might require long branch stubs. */
1259 /* We know local syms won't need a .plt entry, and if
1260 they need a long branch stub we can't guarantee that
1261 we can reach the stub. So just flag an error later
1262 if we're doing a shared link and find we need a long
1268 /* Global symbols will need a .plt entry if they remain
1269 global, and in most cases won't need a long branch
1270 stub. Unfortunately, we have to cater for the case
1271 where a symbol is forced local by versioning, or due
1272 to symbolic linking, and we lose the .plt entry. */
1273 need_entry = NEED_PLT;
1274 if (h->elf.type == STT_PARISC_MILLI)
1279 case R_PARISC_SEGBASE: /* Used to set segment base. */
1280 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1281 case R_PARISC_PCREL14F: /* PC relative load/store. */
1282 case R_PARISC_PCREL14R:
1283 case R_PARISC_PCREL17R: /* External branches. */
1284 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1285 /* We don't need to propagate the relocation if linking a
1286 shared object since these are section relative. */
1289 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1290 case R_PARISC_DPREL14R:
1291 case R_PARISC_DPREL21L:
1294 (*_bfd_error_handler)
1295 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1296 bfd_archive_filename (abfd),
1297 elf_hppa_howto_table[r_type].name);
1298 bfd_set_error (bfd_error_bad_value);
1303 case R_PARISC_DIR17F: /* Used for external branches. */
1304 case R_PARISC_DIR17R:
1305 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1306 case R_PARISC_DIR14R:
1307 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1309 /* Help debug shared library creation. Any of the above
1310 relocs can be used in shared libs, but they may cause
1311 pages to become unshared. */
1314 (*_bfd_error_handler)
1315 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1316 bfd_archive_filename (abfd),
1317 elf_hppa_howto_table[r_type].name);
1322 case R_PARISC_DIR32: /* .word relocs. */
1323 /* We may want to output a dynamic relocation later. */
1324 need_entry = NEED_DYNREL;
1327 /* This relocation describes the C++ object vtable hierarchy.
1328 Reconstruct it for later use during GC. */
1329 case R_PARISC_GNU_VTINHERIT:
1330 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1331 &h->elf, rel->r_offset))
1335 /* This relocation describes which C++ vtable entries are actually
1336 used. Record for later use during GC. */
1337 case R_PARISC_GNU_VTENTRY:
1338 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1339 &h->elf, rel->r_addend))
1347 /* Now carry out our orders. */
1348 if (need_entry & NEED_GOT)
1350 /* Allocate space for a GOT entry, as well as a dynamic
1351 relocation for this entry. */
1352 if (htab->sgot == NULL)
1354 if (htab->elf.dynobj == NULL)
1355 htab->elf.dynobj = abfd;
1356 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1362 h->elf.got.refcount += 1;
1366 bfd_signed_vma *local_got_refcounts;
1368 /* This is a global offset table entry for a local symbol. */
1369 local_got_refcounts = elf_local_got_refcounts (abfd);
1370 if (local_got_refcounts == NULL)
1374 /* Allocate space for local got offsets and local
1375 plt offsets. Done this way to save polluting
1376 elf_obj_tdata with another target specific
1378 size = symtab_hdr->sh_info;
1379 size *= 2 * sizeof (bfd_signed_vma);
1380 local_got_refcounts = ((bfd_signed_vma *)
1381 bfd_zalloc (abfd, size));
1382 if (local_got_refcounts == NULL)
1384 elf_local_got_refcounts (abfd) = local_got_refcounts;
1386 local_got_refcounts[r_symndx] += 1;
1390 if (need_entry & NEED_PLT)
1392 /* If we are creating a shared library, and this is a reloc
1393 against a weak symbol or a global symbol in a dynamic
1394 object, then we will be creating an import stub and a
1395 .plt entry for the symbol. Similarly, on a normal link
1396 to symbols defined in a dynamic object we'll need the
1397 import stub and a .plt entry. We don't know yet whether
1398 the symbol is defined or not, so make an entry anyway and
1399 clean up later in adjust_dynamic_symbol. */
1400 if ((sec->flags & SEC_ALLOC) != 0)
1404 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1405 h->elf.plt.refcount += 1;
1407 /* If this .plt entry is for a plabel, mark it so
1408 that adjust_dynamic_symbol will keep the entry
1409 even if it appears to be local. */
1410 if (need_entry & PLT_PLABEL)
1413 else if (need_entry & PLT_PLABEL)
1415 bfd_signed_vma *local_got_refcounts;
1416 bfd_signed_vma *local_plt_refcounts;
1418 local_got_refcounts = elf_local_got_refcounts (abfd);
1419 if (local_got_refcounts == NULL)
1423 /* Allocate space for local got offsets and local
1425 size = symtab_hdr->sh_info;
1426 size *= 2 * sizeof (bfd_signed_vma);
1427 local_got_refcounts = ((bfd_signed_vma *)
1428 bfd_zalloc (abfd, size));
1429 if (local_got_refcounts == NULL)
1431 elf_local_got_refcounts (abfd) = local_got_refcounts;
1433 local_plt_refcounts = (local_got_refcounts
1434 + symtab_hdr->sh_info);
1435 local_plt_refcounts[r_symndx] += 1;
1440 if (need_entry & NEED_DYNREL)
1442 /* Flag this symbol as having a non-got, non-plt reference
1443 so that we generate copy relocs if it turns out to be
1445 if (h != NULL && !info->shared)
1446 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1448 /* If we are creating a shared library then we need to copy
1449 the reloc into the shared library. However, if we are
1450 linking with -Bsymbolic, we need only copy absolute
1451 relocs or relocs against symbols that are not defined in
1452 an object we are including in the link. PC- or DP- or
1453 DLT-relative relocs against any local sym or global sym
1454 with DEF_REGULAR set, can be discarded. At this point we
1455 have not seen all the input files, so it is possible that
1456 DEF_REGULAR is not set now but will be set later (it is
1457 never cleared). We account for that possibility below by
1458 storing information in the dyn_relocs field of the
1461 A similar situation to the -Bsymbolic case occurs when
1462 creating shared libraries and symbol visibility changes
1463 render the symbol local.
1465 As it turns out, all the relocs we will be creating here
1466 are absolute, so we cannot remove them on -Bsymbolic
1467 links or visibility changes anyway. A STUB_REL reloc
1468 is absolute too, as in that case it is the reloc in the
1469 stub we will be creating, rather than copying the PCREL
1470 reloc in the branch.
1472 If on the other hand, we are creating an executable, we
1473 may need to keep relocations for symbols satisfied by a
1474 dynamic library if we manage to avoid copy relocs for the
1477 && (sec->flags & SEC_ALLOC) != 0
1478 && (IS_ABSOLUTE_RELOC (r_type)
1481 || h->elf.root.type == bfd_link_hash_defweak
1482 || (h->elf.elf_link_hash_flags
1483 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1485 && (sec->flags & SEC_ALLOC) != 0
1487 && (h->elf.root.type == bfd_link_hash_defweak
1488 || (h->elf.elf_link_hash_flags
1489 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1491 /* Create a reloc section in dynobj and make room for
1498 name = (bfd_elf_string_from_elf_section
1500 elf_elfheader (abfd)->e_shstrndx,
1501 elf_section_data (sec)->rel_hdr.sh_name));
1504 (*_bfd_error_handler)
1505 (_("Could not find relocation section for %s"),
1507 bfd_set_error (bfd_error_bad_value);
1511 if (htab->elf.dynobj == NULL)
1512 htab->elf.dynobj = abfd;
1514 dynobj = htab->elf.dynobj;
1515 sreloc = bfd_get_section_by_name (dynobj, name);
1520 sreloc = bfd_make_section (dynobj, name);
1521 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1522 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1523 if ((sec->flags & SEC_ALLOC) != 0)
1524 flags |= SEC_ALLOC | SEC_LOAD;
1526 || !bfd_set_section_flags (dynobj, sreloc, flags)
1527 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1531 elf_section_data (sec)->sreloc = sreloc;
1534 /* If this is a global symbol, we count the number of
1535 relocations we need for this symbol. */
1538 struct elf32_hppa_dyn_reloc_entry *p;
1541 if (p == NULL || p->sec != sec)
1543 p = ((struct elf32_hppa_dyn_reloc_entry *)
1544 bfd_alloc (htab->elf.dynobj,
1545 (bfd_size_type) sizeof *p));
1548 p->next = h->dyn_relocs;
1552 #if RELATIVE_DYNRELOCS
1553 p->relative_count = 0;
1558 #if RELATIVE_DYNRELOCS
1559 if (!IS_ABSOLUTE_RELOC (rtype))
1560 p->relative_count += 1;
1565 /* Track dynamic relocs needed for local syms too. */
1566 elf_section_data (sec)->local_dynrel += 1;
1575 /* Return the section that should be marked against garbage collection
1576 for a given relocation. */
1579 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1581 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1582 Elf_Internal_Rela *rel;
1583 struct elf_link_hash_entry *h;
1584 Elf_Internal_Sym *sym;
1588 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1590 case R_PARISC_GNU_VTINHERIT:
1591 case R_PARISC_GNU_VTENTRY:
1595 switch (h->root.type)
1597 case bfd_link_hash_defined:
1598 case bfd_link_hash_defweak:
1599 return h->root.u.def.section;
1601 case bfd_link_hash_common:
1602 return h->root.u.c.p->section;
1611 if (!(elf_bad_symtab (abfd)
1612 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1613 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1614 && sym->st_shndx != SHN_COMMON))
1616 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1623 /* Update the got and plt entry reference counts for the section being
1627 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1629 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1631 const Elf_Internal_Rela *relocs;
1633 Elf_Internal_Shdr *symtab_hdr;
1634 struct elf_link_hash_entry **sym_hashes;
1635 bfd_signed_vma *local_got_refcounts;
1636 bfd_signed_vma *local_plt_refcounts;
1637 const Elf_Internal_Rela *rel, *relend;
1638 unsigned long r_symndx;
1639 struct elf_link_hash_entry *h;
1640 struct elf32_hppa_link_hash_table *htab;
1643 elf_section_data (sec)->local_dynrel = 0;
1645 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1646 sym_hashes = elf_sym_hashes (abfd);
1647 local_got_refcounts = elf_local_got_refcounts (abfd);
1648 local_plt_refcounts = local_got_refcounts;
1649 if (local_plt_refcounts != NULL)
1650 local_plt_refcounts += symtab_hdr->sh_info;
1651 htab = hppa_link_hash_table (info);
1652 dynobj = htab->elf.dynobj;
1656 relend = relocs + sec->reloc_count;
1657 for (rel = relocs; rel < relend; rel++)
1658 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1660 case R_PARISC_DLTIND14F:
1661 case R_PARISC_DLTIND14R:
1662 case R_PARISC_DLTIND21L:
1663 r_symndx = ELF32_R_SYM (rel->r_info);
1664 if (r_symndx >= symtab_hdr->sh_info)
1666 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1667 if (h->got.refcount > 0)
1668 h->got.refcount -= 1;
1670 else if (local_got_refcounts != NULL)
1672 if (local_got_refcounts[r_symndx] > 0)
1673 local_got_refcounts[r_symndx] -= 1;
1677 case R_PARISC_PCREL12F:
1678 case R_PARISC_PCREL17C:
1679 case R_PARISC_PCREL17F:
1680 case R_PARISC_PCREL22F:
1681 r_symndx = ELF32_R_SYM (rel->r_info);
1682 if (r_symndx >= symtab_hdr->sh_info)
1684 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1685 if (h->plt.refcount > 0)
1686 h->plt.refcount -= 1;
1690 case R_PARISC_PLABEL14R:
1691 case R_PARISC_PLABEL21L:
1692 case R_PARISC_PLABEL32:
1693 r_symndx = ELF32_R_SYM (rel->r_info);
1694 if (r_symndx >= symtab_hdr->sh_info)
1696 struct elf32_hppa_link_hash_entry *eh;
1697 struct elf32_hppa_dyn_reloc_entry **pp;
1698 struct elf32_hppa_dyn_reloc_entry *p;
1700 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1702 if (h->plt.refcount > 0)
1703 h->plt.refcount -= 1;
1705 eh = (struct elf32_hppa_link_hash_entry *) h;
1707 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1710 #if RELATIVE_DYNRELOCS
1711 if (!IS_ABSOLUTE_RELOC (rtype))
1712 p->relative_count -= 1;
1720 else if (local_plt_refcounts != NULL)
1722 if (local_plt_refcounts[r_symndx] > 0)
1723 local_plt_refcounts[r_symndx] -= 1;
1727 case R_PARISC_DIR32:
1728 r_symndx = ELF32_R_SYM (rel->r_info);
1729 if (r_symndx >= symtab_hdr->sh_info)
1731 struct elf32_hppa_link_hash_entry *eh;
1732 struct elf32_hppa_dyn_reloc_entry **pp;
1733 struct elf32_hppa_dyn_reloc_entry *p;
1735 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1737 eh = (struct elf32_hppa_link_hash_entry *) h;
1739 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1742 #if RELATIVE_DYNRELOCS
1743 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1744 p->relative_count -= 1;
1761 /* Our own version of hide_symbol, so that we can keep plt entries for
1765 elf32_hppa_hide_symbol (info, h)
1766 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1767 struct elf_link_hash_entry *h;
1769 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1771 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1773 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1774 h->plt.offset = (bfd_vma) -1;
1778 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1779 will be called from elflink.h. If elflink.h doesn't call our
1780 finish_dynamic_symbol routine, we'll need to do something about
1781 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1782 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1784 && ((INFO)->shared \
1785 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1786 && ((H)->dynindx != -1 \
1787 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1789 /* Adjust a symbol defined by a dynamic object and referenced by a
1790 regular object. The current definition is in some section of the
1791 dynamic object, but we're not including those sections. We have to
1792 change the definition to something the rest of the link can
1796 elf32_hppa_adjust_dynamic_symbol (info, h)
1797 struct bfd_link_info *info;
1798 struct elf_link_hash_entry *h;
1800 struct elf32_hppa_link_hash_table *htab;
1801 struct elf32_hppa_link_hash_entry *eh;
1802 struct elf32_hppa_dyn_reloc_entry *p;
1804 unsigned int power_of_two;
1806 /* If this is a function, put it in the procedure linkage table. We
1807 will fill in the contents of the procedure linkage table later,
1808 when we know the address of the .got section. */
1809 if (h->type == STT_FUNC
1810 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1813 && h->plt.refcount > 0
1814 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1815 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1817 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1820 if (h->plt.refcount <= 0
1821 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1822 && h->root.type != bfd_link_hash_defweak
1823 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1824 && (!info->shared || info->symbolic)))
1826 /* The .plt entry is not needed when:
1827 a) Garbage collection has removed all references to the
1829 b) We know for certain the symbol is defined in this
1830 object, and it's not a weak definition, nor is the symbol
1831 used by a plabel relocation. Either this object is the
1832 application or we are doing a shared symbolic link. */
1834 /* As a special sop to the hppa ABI, we keep a .plt entry
1835 for functions in sections containing PIC code. */
1836 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1837 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1840 h->plt.offset = (bfd_vma) -1;
1841 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1848 /* If this is a weak symbol, and there is a real definition, the
1849 processor independent code will have arranged for us to see the
1850 real definition first, and we can just use the same value. */
1851 if (h->weakdef != NULL)
1853 if (h->weakdef->root.type != bfd_link_hash_defined
1854 && h->weakdef->root.type != bfd_link_hash_defweak)
1856 h->root.u.def.section = h->weakdef->root.u.def.section;
1857 h->root.u.def.value = h->weakdef->root.u.def.value;
1860 /* This is a reference to a symbol defined by a dynamic object which
1861 is not a function. */
1863 /* If we are creating a shared library, we must presume that the
1864 only references to the symbol are via the global offset table.
1865 For such cases we need not do anything here; the relocations will
1866 be handled correctly by relocate_section. */
1870 /* If there are no references to this symbol that do not use the
1871 GOT, we don't need to generate a copy reloc. */
1872 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1875 eh = (struct elf32_hppa_link_hash_entry *) h;
1876 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1878 s = p->sec->output_section;
1879 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1883 /* If we didn't find any dynamic relocs in read-only sections, then
1884 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1887 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1891 /* We must allocate the symbol in our .dynbss section, which will
1892 become part of the .bss section of the executable. There will be
1893 an entry for this symbol in the .dynsym section. The dynamic
1894 object will contain position independent code, so all references
1895 from the dynamic object to this symbol will go through the global
1896 offset table. The dynamic linker will use the .dynsym entry to
1897 determine the address it must put in the global offset table, so
1898 both the dynamic object and the regular object will refer to the
1899 same memory location for the variable. */
1901 htab = hppa_link_hash_table (info);
1903 /* We must generate a COPY reloc to tell the dynamic linker to
1904 copy the initial value out of the dynamic object and into the
1905 runtime process image. */
1906 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1908 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1909 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1912 /* We need to figure out the alignment required for this symbol. I
1913 have no idea how other ELF linkers handle this. */
1915 power_of_two = bfd_log2 (h->size);
1916 if (power_of_two > 3)
1919 /* Apply the required alignment. */
1921 s->_raw_size = BFD_ALIGN (s->_raw_size,
1922 (bfd_size_type) (1 << power_of_two));
1923 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1925 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1929 /* Define the symbol as being at this point in the section. */
1930 h->root.u.def.section = s;
1931 h->root.u.def.value = s->_raw_size;
1933 /* Increment the section size to make room for the symbol. */
1934 s->_raw_size += h->size;
1939 /* Called via elf_link_hash_traverse to create .plt entries for an
1940 application that uses statically linked PIC functions. Similar to
1941 the first part of elf32_hppa_adjust_dynamic_symbol. */
1944 hppa_handle_PIC_calls (h, inf)
1945 struct elf_link_hash_entry *h;
1946 PTR inf ATTRIBUTE_UNUSED;
1948 if (! (h->plt.refcount > 0
1949 && (h->root.type == bfd_link_hash_defined
1950 || h->root.type == bfd_link_hash_defweak)
1951 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1953 h->plt.offset = (bfd_vma) -1;
1954 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1958 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1959 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1960 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1965 /* Allocate space in .plt, .got and associated reloc sections for
1969 allocate_dynrelocs (h, inf)
1970 struct elf_link_hash_entry *h;
1973 struct bfd_link_info *info;
1974 struct elf32_hppa_link_hash_table *htab;
1976 struct elf32_hppa_link_hash_entry *eh;
1977 struct elf32_hppa_dyn_reloc_entry *p;
1979 if (h->root.type == bfd_link_hash_indirect
1980 || h->root.type == bfd_link_hash_warning)
1983 info = (struct bfd_link_info *) inf;
1984 htab = hppa_link_hash_table (info);
1985 if ((htab->elf.dynamic_sections_created
1986 && h->plt.refcount > 0)
1987 || ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1989 /* Make sure this symbol is output as a dynamic symbol.
1990 Undefined weak syms won't yet be marked as dynamic. */
1991 if (h->dynindx == -1
1992 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1993 && h->type != STT_PARISC_MILLI
1994 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1996 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2000 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call
2001 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2003 /* Make an entry in the .plt section. */
2005 h->plt.offset = s->_raw_size;
2006 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
2007 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
2008 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2010 /* Add some extra space for the dynamic linker to use. */
2011 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
2014 s->_raw_size += PLT_ENTRY_SIZE;
2016 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2018 /* We also need to make an entry in the .rela.plt section. */
2019 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2020 htab->need_plt_stub = 1;
2025 h->plt.offset = (bfd_vma) -1;
2026 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2031 h->plt.offset = (bfd_vma) -1;
2032 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2035 if (h->got.refcount > 0)
2039 /* Make sure this symbol is output as a dynamic symbol.
2040 Undefined weak syms won't yet be marked as dynamic. */
2041 if (h->dynindx == -1
2042 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2043 && h->type != STT_PARISC_MILLI)
2045 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2050 h->got.offset = s->_raw_size;
2051 s->_raw_size += GOT_ENTRY_SIZE;
2052 dyn = htab->elf.dynamic_sections_created;
2053 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
2054 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2057 h->got.offset = (bfd_vma) -1;
2059 eh = (struct elf32_hppa_link_hash_entry *) h;
2060 if (eh->dyn_relocs == NULL)
2063 /* If this is a -Bsymbolic shared link, then we need to discard all
2064 space allocated for dynamic pc-relative relocs against symbols
2065 defined in a regular object. For the normal shared case, discard
2066 space for relocs that have become local due to symbol visibility
2070 #if RELATIVE_DYNRELOCS
2071 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2072 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2075 struct elf32_hppa_dyn_reloc_entry **pp;
2077 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2079 p->count -= p->relative_count;
2080 p->relative_count = 0;
2091 /* For the non-shared case, discard space for relocs against
2092 symbols which turn out to need copy relocs or are not
2094 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2095 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2096 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2097 || (htab->elf.dynamic_sections_created
2098 && (h->root.type == bfd_link_hash_undefweak
2099 || h->root.type == bfd_link_hash_undefined))))
2101 /* Make sure this symbol is output as a dynamic symbol.
2102 Undefined weak syms won't yet be marked as dynamic. */
2103 if (h->dynindx == -1
2104 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2105 && h->type != STT_PARISC_MILLI)
2107 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2111 /* If that succeeded, we know we'll be keeping all the
2113 if (h->dynindx != -1)
2117 eh->dyn_relocs = NULL;
2123 /* Finally, allocate space. */
2124 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2126 asection *sreloc = elf_section_data (p->sec)->sreloc;
2127 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2133 /* This function is called via elf_link_hash_traverse to force
2134 millicode symbols local so they do not end up as globals in the
2135 dynamic symbol table. We ought to be able to do this in
2136 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2137 for all dynamic symbols. Arguably, this is a bug in
2138 elf_adjust_dynamic_symbol. */
2141 clobber_millicode_symbols (h, info)
2142 struct elf_link_hash_entry *h;
2143 struct bfd_link_info *info;
2145 /* We only want to remove these from the dynamic symbol table.
2146 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2147 if (h->type == STT_PARISC_MILLI)
2149 unsigned short oldflags = h->elf_link_hash_flags;
2150 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2151 elf32_hppa_hide_symbol (info, h);
2152 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2153 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2158 /* Find any dynamic relocs that apply to read-only sections. */
2161 readonly_dynrelocs (h, inf)
2162 struct elf_link_hash_entry *h;
2165 struct elf32_hppa_link_hash_entry *eh;
2166 struct elf32_hppa_dyn_reloc_entry *p;
2168 eh = (struct elf32_hppa_link_hash_entry *) h;
2169 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2171 asection *s = p->sec->output_section;
2173 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2175 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2177 info->flags |= DF_TEXTREL;
2179 /* Not an error, just cut short the traversal. */
2186 /* Set the sizes of the dynamic sections. */
2189 elf32_hppa_size_dynamic_sections (output_bfd, info)
2190 bfd *output_bfd ATTRIBUTE_UNUSED;
2191 struct bfd_link_info *info;
2193 struct elf32_hppa_link_hash_table *htab;
2199 htab = hppa_link_hash_table (info);
2200 dynobj = htab->elf.dynobj;
2204 if (htab->elf.dynamic_sections_created)
2206 /* Set the contents of the .interp section to the interpreter. */
2209 s = bfd_get_section_by_name (dynobj, ".interp");
2212 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2213 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2216 /* Force millicode symbols local. */
2217 elf_link_hash_traverse (&htab->elf,
2218 clobber_millicode_symbols,
2223 /* Run through the function symbols, looking for any that are
2224 PIC, and allocate space for the necessary .plt entries so
2225 that %r19 will be set up. */
2227 elf_link_hash_traverse (&htab->elf,
2228 hppa_handle_PIC_calls,
2232 /* Set up .got and .plt offsets for local syms, and space for local
2234 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2236 bfd_signed_vma *local_got;
2237 bfd_signed_vma *end_local_got;
2238 bfd_signed_vma *local_plt;
2239 bfd_signed_vma *end_local_plt;
2240 bfd_size_type locsymcount;
2241 Elf_Internal_Shdr *symtab_hdr;
2244 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2247 for (s = ibfd->sections; s != NULL; s = s->next)
2249 bfd_size_type count = elf_section_data (s)->local_dynrel;
2253 srel = elf_section_data (s)->sreloc;
2254 srel->_raw_size += count * sizeof (Elf32_External_Rela);
2258 local_got = elf_local_got_refcounts (ibfd);
2262 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2263 locsymcount = symtab_hdr->sh_info;
2264 end_local_got = local_got + locsymcount;
2266 srel = htab->srelgot;
2267 for (; local_got < end_local_got; ++local_got)
2271 *local_got = s->_raw_size;
2272 s->_raw_size += GOT_ENTRY_SIZE;
2274 srel->_raw_size += sizeof (Elf32_External_Rela);
2277 *local_got = (bfd_vma) -1;
2280 local_plt = end_local_got;
2281 end_local_plt = local_plt + locsymcount;
2282 if (! htab->elf.dynamic_sections_created)
2284 /* Won't be used, but be safe. */
2285 for (; local_plt < end_local_plt; ++local_plt)
2286 *local_plt = (bfd_vma) -1;
2291 srel = htab->srelplt;
2292 for (; local_plt < end_local_plt; ++local_plt)
2296 *local_plt = s->_raw_size;
2297 s->_raw_size += PLT_ENTRY_SIZE;
2299 srel->_raw_size += sizeof (Elf32_External_Rela);
2302 *local_plt = (bfd_vma) -1;
2307 /* Allocate global sym .plt and .got entries, and space for global
2308 sym dynamic relocs. */
2309 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2311 /* The check_relocs and adjust_dynamic_symbol entry points have
2312 determined the sizes of the various dynamic sections. Allocate
2315 for (s = dynobj->sections; s != NULL; s = s->next)
2317 if ((s->flags & SEC_LINKER_CREATED) == 0)
2320 if (s == htab->splt)
2322 if (htab->need_plt_stub)
2324 /* Make space for the plt stub at the end of the .plt
2325 section. We want this stub right at the end, up
2326 against the .got section. */
2327 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2328 int pltalign = bfd_section_alignment (dynobj, s);
2331 if (gotalign > pltalign)
2332 bfd_set_section_alignment (dynobj, s, gotalign);
2333 mask = ((bfd_size_type) 1 << gotalign) - 1;
2334 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2337 else if (s == htab->sgot)
2339 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2341 if (s->_raw_size != 0)
2343 /* Remember whether there are any reloc sections other
2345 if (s != htab->srelplt)
2348 /* We use the reloc_count field as a counter if we need
2349 to copy relocs into the output file. */
2355 /* It's not one of our sections, so don't allocate space. */
2359 if (s->_raw_size == 0)
2361 /* If we don't need this section, strip it from the
2362 output file. This is mostly to handle .rela.bss and
2363 .rela.plt. We must create both sections in
2364 create_dynamic_sections, because they must be created
2365 before the linker maps input sections to output
2366 sections. The linker does that before
2367 adjust_dynamic_symbol is called, and it is that
2368 function which decides whether anything needs to go
2369 into these sections. */
2370 _bfd_strip_section_from_output (info, s);
2374 /* Allocate memory for the section contents. Zero it, because
2375 we may not fill in all the reloc sections. */
2376 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2377 if (s->contents == NULL && s->_raw_size != 0)
2381 if (htab->elf.dynamic_sections_created)
2383 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2384 actually has nothing to do with the PLT, it is how we
2385 communicate the LTP value of a load module to the dynamic
2387 #define add_dynamic_entry(TAG, VAL) \
2388 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2390 if (!add_dynamic_entry (DT_PLTGOT, 0))
2393 /* Add some entries to the .dynamic section. We fill in the
2394 values later, in elf32_hppa_finish_dynamic_sections, but we
2395 must add the entries now so that we get the correct size for
2396 the .dynamic section. The DT_DEBUG entry is filled in by the
2397 dynamic linker and used by the debugger. */
2400 if (!add_dynamic_entry (DT_DEBUG, 0))
2404 if (htab->srelplt->_raw_size != 0)
2406 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2407 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2408 || !add_dynamic_entry (DT_JMPREL, 0))
2414 if (!add_dynamic_entry (DT_RELA, 0)
2415 || !add_dynamic_entry (DT_RELASZ, 0)
2416 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2419 /* If any dynamic relocs apply to a read-only section,
2420 then we need a DT_TEXTREL entry. */
2421 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
2423 if ((info->flags & DF_TEXTREL) != 0)
2425 if (!add_dynamic_entry (DT_TEXTREL, 0))
2430 #undef add_dynamic_entry
2435 /* External entry points for sizing and building linker stubs. */
2437 /* Determine and set the size of the stub section for a final link.
2439 The basic idea here is to examine all the relocations looking for
2440 PC-relative calls to a target that is unreachable with a "bl"
2444 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2445 add_stub_section, layout_sections_again)
2448 struct bfd_link_info *info;
2449 boolean multi_subspace;
2450 bfd_signed_vma group_size;
2451 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2452 void (*layout_sections_again) PARAMS ((void));
2456 asection **input_list, **list;
2457 Elf_Internal_Sym *local_syms, **all_local_syms;
2458 unsigned int bfd_indx, bfd_count;
2459 int top_id, top_index;
2460 struct elf32_hppa_link_hash_table *htab;
2461 bfd_size_type stub_group_size;
2462 boolean stubs_always_before_branch;
2463 boolean stub_changed = 0;
2467 htab = hppa_link_hash_table (info);
2469 /* Stash our params away. */
2470 htab->stub_bfd = stub_bfd;
2471 htab->multi_subspace = multi_subspace;
2472 htab->add_stub_section = add_stub_section;
2473 htab->layout_sections_again = layout_sections_again;
2474 stubs_always_before_branch = group_size < 0;
2476 stub_group_size = -group_size;
2478 stub_group_size = group_size;
2479 if (stub_group_size == 1)
2481 /* Default values. */
2482 stub_group_size = 8000000;
2483 if (htab->has_17bit_branch || htab->multi_subspace)
2484 stub_group_size = 250000;
2485 if (htab->has_12bit_branch)
2486 stub_group_size = 7812;
2489 /* Count the number of input BFDs and find the top input section id. */
2490 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2492 input_bfd = input_bfd->link_next)
2495 for (section = input_bfd->sections;
2497 section = section->next)
2499 if (top_id < section->id)
2500 top_id = section->id;
2504 amt = sizeof (struct map_stub) * (top_id + 1);
2505 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2506 if (htab->stub_group == NULL)
2509 /* Make a list of input sections for each output section included in
2512 We can't use output_bfd->section_count here to find the top output
2513 section index as some sections may have been removed, and
2514 _bfd_strip_section_from_output doesn't renumber the indices. */
2515 for (section = output_bfd->sections, top_index = 0;
2517 section = section->next)
2519 if (top_index < section->index)
2520 top_index = section->index;
2523 amt = sizeof (asection *) * (top_index + 1);
2524 input_list = (asection **) bfd_malloc (amt);
2525 if (input_list == NULL)
2528 /* For sections we aren't interested in, mark their entries with a
2529 value we can check later. */
2530 list = input_list + top_index;
2532 *list = bfd_abs_section_ptr;
2533 while (list-- != input_list);
2535 for (section = output_bfd->sections;
2537 section = section->next)
2539 if ((section->flags & SEC_CODE) != 0)
2540 input_list[section->index] = NULL;
2543 /* Now actually build the lists. */
2544 for (input_bfd = info->input_bfds;
2546 input_bfd = input_bfd->link_next)
2548 for (section = input_bfd->sections;
2550 section = section->next)
2552 if (section->output_section != NULL
2553 && section->output_section->owner == output_bfd
2554 && section->output_section->index <= top_index)
2556 list = input_list + section->output_section->index;
2557 if (*list != bfd_abs_section_ptr)
2559 /* Steal the link_sec pointer for our list. */
2560 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2561 /* This happens to make the list in reverse order,
2562 which is what we want. */
2563 PREV_SEC (section) = *list;
2570 /* See whether we can group stub sections together. Grouping stub
2571 sections may result in fewer stubs. More importantly, we need to
2572 put all .init* and .fini* stubs at the beginning of the .init or
2573 .fini output sections respectively, because glibc splits the
2574 _init and _fini functions into multiple parts. Putting a stub in
2575 the middle of a function is not a good idea. */
2576 list = input_list + top_index;
2579 asection *tail = *list;
2580 if (tail == bfd_abs_section_ptr)
2582 while (tail != NULL)
2586 bfd_size_type total;
2589 if (tail->_cooked_size)
2590 total = tail->_cooked_size;
2592 total = tail->_raw_size;
2593 while ((prev = PREV_SEC (curr)) != NULL
2594 && ((total += curr->output_offset - prev->output_offset)
2598 /* OK, the size from the start of CURR to the end is less
2599 than 250000 bytes and thus can be handled by one stub
2600 section. (or the tail section is itself larger than
2601 250000 bytes, in which case we may be toast.)
2602 We should really be keeping track of the total size of
2603 stubs added here, as stubs contribute to the final output
2604 section size. That's a little tricky, and this way will
2605 only break if stubs added total more than 12144 bytes, or
2606 1518 long branch stubs. It seems unlikely for more than
2607 1518 different functions to be called, especially from
2608 code only 250000 bytes long. */
2611 prev = PREV_SEC (tail);
2612 /* Set up this stub group. */
2613 htab->stub_group[tail->id].link_sec = curr;
2615 while (tail != curr && (tail = prev) != NULL);
2617 /* But wait, there's more! Input sections up to 250000
2618 bytes before the stub section can be handled by it too. */
2619 if (!stubs_always_before_branch)
2623 && ((total += tail->output_offset - prev->output_offset)
2627 prev = PREV_SEC (tail);
2628 htab->stub_group[tail->id].link_sec = curr;
2634 while (list-- != input_list);
2638 /* We want to read in symbol extension records only once. To do this
2639 we need to read in the local symbols in parallel and save them for
2640 later use; so hold pointers to the local symbols in an array. */
2641 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2642 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2643 if (all_local_syms == NULL)
2646 /* Walk over all the input BFDs, swapping in local symbols.
2647 If we are creating a shared library, create hash entries for the
2649 for (input_bfd = info->input_bfds, bfd_indx = 0;
2651 input_bfd = input_bfd->link_next, bfd_indx++)
2653 Elf_Internal_Shdr *symtab_hdr;
2654 Elf_Internal_Sym *isym;
2655 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2656 bfd_size_type sec_size;
2658 /* We'll need the symbol table in a second. */
2659 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2660 if (symtab_hdr->sh_info == 0)
2663 /* We need an array of the local symbols attached to the input bfd.
2664 Unfortunately, we're going to have to read & swap them in. */
2665 sec_size = symtab_hdr->sh_info;
2666 sec_size *= sizeof (Elf_Internal_Sym);
2667 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2668 if (local_syms == NULL)
2670 goto error_ret_free_local;
2672 all_local_syms[bfd_indx] = local_syms;
2673 sec_size = symtab_hdr->sh_info;
2674 sec_size *= sizeof (Elf32_External_Sym);
2675 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2676 if (ext_syms == NULL)
2678 goto error_ret_free_local;
2681 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2682 || (bfd_bread (ext_syms, sec_size, input_bfd) != sec_size))
2685 goto error_ret_free_local;
2688 /* Swap the local symbols in. */
2691 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2692 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2694 /* Now we can free the external symbols. */
2697 if (info->shared && htab->multi_subspace)
2699 struct elf_link_hash_entry **sym_hashes;
2700 struct elf_link_hash_entry **end_hashes;
2701 unsigned int symcount;
2703 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2704 - symtab_hdr->sh_info);
2705 sym_hashes = elf_sym_hashes (input_bfd);
2706 end_hashes = sym_hashes + symcount;
2708 /* Look through the global syms for functions; We need to
2709 build export stubs for all globally visible functions. */
2710 for (; sym_hashes < end_hashes; sym_hashes++)
2712 struct elf32_hppa_link_hash_entry *hash;
2714 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2716 while (hash->elf.root.type == bfd_link_hash_indirect
2717 || hash->elf.root.type == bfd_link_hash_warning)
2718 hash = ((struct elf32_hppa_link_hash_entry *)
2719 hash->elf.root.u.i.link);
2721 /* At this point in the link, undefined syms have been
2722 resolved, so we need to check that the symbol was
2723 defined in this BFD. */
2724 if ((hash->elf.root.type == bfd_link_hash_defined
2725 || hash->elf.root.type == bfd_link_hash_defweak)
2726 && hash->elf.type == STT_FUNC
2727 && hash->elf.root.u.def.section->output_section != NULL
2728 && (hash->elf.root.u.def.section->output_section->owner
2730 && hash->elf.root.u.def.section->owner == input_bfd
2731 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2732 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2733 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2736 const char *stub_name;
2737 struct elf32_hppa_stub_hash_entry *stub_entry;
2739 sec = hash->elf.root.u.def.section;
2740 stub_name = hash->elf.root.root.string;
2741 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2744 if (stub_entry == NULL)
2746 stub_entry = hppa_add_stub (stub_name, sec, htab);
2748 goto error_ret_free_local;
2750 stub_entry->target_value = hash->elf.root.u.def.value;
2751 stub_entry->target_section = hash->elf.root.u.def.section;
2752 stub_entry->stub_type = hppa_stub_export;
2753 stub_entry->h = hash;
2758 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2759 bfd_archive_filename (input_bfd),
2771 for (input_bfd = info->input_bfds, bfd_indx = 0;
2773 input_bfd = input_bfd->link_next, bfd_indx++)
2775 Elf_Internal_Shdr *symtab_hdr;
2777 /* We'll need the symbol table in a second. */
2778 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2779 if (symtab_hdr->sh_info == 0)
2782 local_syms = all_local_syms[bfd_indx];
2784 /* Walk over each section attached to the input bfd. */
2785 for (section = input_bfd->sections;
2787 section = section->next)
2789 Elf_Internal_Shdr *input_rel_hdr;
2790 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2791 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2793 /* If there aren't any relocs, then there's nothing more
2795 if ((section->flags & SEC_RELOC) == 0
2796 || section->reloc_count == 0)
2799 /* If this section is a link-once section that will be
2800 discarded, then don't create any stubs. */
2801 if (section->output_section == NULL
2802 || section->output_section->owner != output_bfd)
2805 /* Allocate space for the external relocations. */
2806 amt = section->reloc_count;
2807 amt *= sizeof (Elf32_External_Rela);
2808 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2809 if (external_relocs == NULL)
2811 goto error_ret_free_local;
2814 /* Likewise for the internal relocations. */
2815 amt = section->reloc_count;
2816 amt *= sizeof (Elf_Internal_Rela);
2817 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2818 if (internal_relocs == NULL)
2820 free (external_relocs);
2821 goto error_ret_free_local;
2824 /* Read in the external relocs. */
2825 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2826 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2827 || bfd_bread (external_relocs,
2828 input_rel_hdr->sh_size,
2829 input_bfd) != input_rel_hdr->sh_size)
2831 free (external_relocs);
2832 error_ret_free_internal:
2833 free (internal_relocs);
2834 goto error_ret_free_local;
2837 /* Swap in the relocs. */
2838 erela = external_relocs;
2839 erelaend = erela + section->reloc_count;
2840 irela = internal_relocs;
2841 for (; erela < erelaend; erela++, irela++)
2842 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2844 /* We're done with the external relocs, free them. */
2845 free (external_relocs);
2847 /* Now examine each relocation. */
2848 irela = internal_relocs;
2849 irelaend = irela + section->reloc_count;
2850 for (; irela < irelaend; irela++)
2852 unsigned int r_type, r_indx;
2853 enum elf32_hppa_stub_type stub_type;
2854 struct elf32_hppa_stub_hash_entry *stub_entry;
2857 bfd_vma destination;
2858 struct elf32_hppa_link_hash_entry *hash;
2860 const asection *id_sec;
2862 r_type = ELF32_R_TYPE (irela->r_info);
2863 r_indx = ELF32_R_SYM (irela->r_info);
2865 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2867 bfd_set_error (bfd_error_bad_value);
2868 goto error_ret_free_internal;
2871 /* Only look for stubs on call instructions. */
2872 if (r_type != (unsigned int) R_PARISC_PCREL12F
2873 && r_type != (unsigned int) R_PARISC_PCREL17F
2874 && r_type != (unsigned int) R_PARISC_PCREL22F)
2877 /* Now determine the call target, its name, value,
2883 if (r_indx < symtab_hdr->sh_info)
2885 /* It's a local symbol. */
2886 Elf_Internal_Sym *sym;
2887 Elf_Internal_Shdr *hdr;
2889 sym = local_syms + r_indx;
2890 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2891 sym_sec = hdr->bfd_section;
2892 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2893 sym_value = sym->st_value;
2894 destination = (sym_value + irela->r_addend
2895 + sym_sec->output_offset
2896 + sym_sec->output_section->vma);
2900 /* It's an external symbol. */
2903 e_indx = r_indx - symtab_hdr->sh_info;
2904 hash = ((struct elf32_hppa_link_hash_entry *)
2905 elf_sym_hashes (input_bfd)[e_indx]);
2907 while (hash->elf.root.type == bfd_link_hash_indirect
2908 || hash->elf.root.type == bfd_link_hash_warning)
2909 hash = ((struct elf32_hppa_link_hash_entry *)
2910 hash->elf.root.u.i.link);
2912 if (hash->elf.root.type == bfd_link_hash_defined
2913 || hash->elf.root.type == bfd_link_hash_defweak)
2915 sym_sec = hash->elf.root.u.def.section;
2916 sym_value = hash->elf.root.u.def.value;
2917 if (sym_sec->output_section != NULL)
2918 destination = (sym_value + irela->r_addend
2919 + sym_sec->output_offset
2920 + sym_sec->output_section->vma);
2922 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2927 else if (hash->elf.root.type == bfd_link_hash_undefined)
2930 && !info->no_undefined
2931 && (ELF_ST_VISIBILITY (hash->elf.other)
2937 bfd_set_error (bfd_error_bad_value);
2938 goto error_ret_free_internal;
2942 /* Determine what (if any) linker stub is needed. */
2943 stub_type = hppa_type_of_stub (section, irela, hash,
2945 if (stub_type == hppa_stub_none)
2948 /* Support for grouping stub sections. */
2949 id_sec = htab->stub_group[section->id].link_sec;
2951 /* Get the name of this stub. */
2952 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2954 goto error_ret_free_internal;
2956 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2959 if (stub_entry != NULL)
2961 /* The proper stub has already been created. */
2966 stub_entry = hppa_add_stub (stub_name, section, htab);
2967 if (stub_entry == NULL)
2970 goto error_ret_free_local;
2973 stub_entry->target_value = sym_value;
2974 stub_entry->target_section = sym_sec;
2975 stub_entry->stub_type = stub_type;
2978 if (stub_type == hppa_stub_import)
2979 stub_entry->stub_type = hppa_stub_import_shared;
2980 else if (stub_type == hppa_stub_long_branch)
2981 stub_entry->stub_type = hppa_stub_long_branch_shared;
2983 stub_entry->h = hash;
2987 /* We're done with the internal relocs, free them. */
2988 free (internal_relocs);
2995 /* OK, we've added some stubs. Find out the new size of the
2997 for (stub_sec = htab->stub_bfd->sections;
2999 stub_sec = stub_sec->next)
3001 stub_sec->_raw_size = 0;
3002 stub_sec->_cooked_size = 0;
3005 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3007 /* Ask the linker to do its stuff. */
3008 (*htab->layout_sections_again) ();
3014 error_ret_free_local:
3015 while (bfd_count-- > 0)
3016 if (all_local_syms[bfd_count])
3017 free (all_local_syms[bfd_count]);
3018 free (all_local_syms);
3023 /* For a final link, this function is called after we have sized the
3024 stubs to provide a value for __gp. */
3027 elf32_hppa_set_gp (abfd, info)
3029 struct bfd_link_info *info;
3031 struct elf32_hppa_link_hash_table *htab;
3032 struct elf_link_hash_entry *h;
3036 htab = hppa_link_hash_table (info);
3037 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3040 && (h->root.type == bfd_link_hash_defined
3041 || h->root.type == bfd_link_hash_defweak))
3043 gp_val = h->root.u.def.value;
3044 sec = h->root.u.def.section;
3048 /* Choose to point our LTP at, in this order, one of .plt, .got,
3049 or .data, if these sections exist. In the case of choosing
3050 .plt try to make the LTP ideal for addressing anywhere in the
3051 .plt or .got with a 14 bit signed offset. Typically, the end
3052 of the .plt is the start of the .got, so choose .plt + 0x2000
3053 if either the .plt or .got is larger than 0x2000. If both
3054 the .plt and .got are smaller than 0x2000, choose the end of
3055 the .plt section. */
3060 gp_val = sec->_raw_size;
3062 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3073 /* We know we don't have a .plt. If .got is large,
3075 if (sec->_raw_size > 0x2000)
3080 /* No .plt or .got. Who cares what the LTP is? */
3081 sec = bfd_get_section_by_name (abfd, ".data");
3087 h->root.type = bfd_link_hash_defined;
3088 h->root.u.def.value = gp_val;
3090 h->root.u.def.section = sec;
3092 h->root.u.def.section = bfd_abs_section_ptr;
3096 if (sec != NULL && sec->output_section != NULL)
3097 gp_val += sec->output_section->vma + sec->output_offset;
3099 elf_gp (abfd) = gp_val;
3103 /* Build all the stubs associated with the current output file. The
3104 stubs are kept in a hash table attached to the main linker hash
3105 table. We also set up the .plt entries for statically linked PIC
3106 functions here. This function is called via hppaelf_finish in the
3110 elf32_hppa_build_stubs (info)
3111 struct bfd_link_info *info;
3114 struct bfd_hash_table *table;
3115 struct elf32_hppa_link_hash_table *htab;
3117 htab = hppa_link_hash_table (info);
3119 for (stub_sec = htab->stub_bfd->sections;
3121 stub_sec = stub_sec->next)
3125 /* Allocate memory to hold the linker stubs. */
3126 size = stub_sec->_raw_size;
3127 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3128 if (stub_sec->contents == NULL && size != 0)
3130 stub_sec->_raw_size = 0;
3133 /* Build the stubs as directed by the stub hash table. */
3134 table = &htab->stub_hash_table;
3135 bfd_hash_traverse (table, hppa_build_one_stub, info);
3140 /* Perform a final link. */
3143 elf32_hppa_final_link (abfd, info)
3145 struct bfd_link_info *info;
3149 /* Invoke the regular ELF linker to do all the work. */
3150 if (!bfd_elf32_bfd_final_link (abfd, info))
3153 /* If we're producing a final executable, sort the contents of the
3154 unwind section. Magic section names, but this is much safer than
3155 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3156 occurred. Consider what happens if someone inept creates a
3157 linker script that puts unwind information in .text. */
3158 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3164 size = s->_raw_size;
3165 contents = bfd_malloc (size);
3166 if (contents == NULL)
3169 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3172 qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare);
3174 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3180 /* Record the lowest address for the data and text segments. */
3183 hppa_record_segment_addr (abfd, section, data)
3184 bfd *abfd ATTRIBUTE_UNUSED;
3188 struct elf32_hppa_link_hash_table *htab;
3190 htab = (struct elf32_hppa_link_hash_table *) data;
3192 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3194 bfd_vma value = section->vma - section->filepos;
3196 if ((section->flags & SEC_READONLY) != 0)
3198 if (value < htab->text_segment_base)
3199 htab->text_segment_base = value;
3203 if (value < htab->data_segment_base)
3204 htab->data_segment_base = value;
3209 /* Perform a relocation as part of a final link. */
3211 static bfd_reloc_status_type
3212 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3213 asection *input_section;
3215 const Elf_Internal_Rela *rel;
3217 struct elf32_hppa_link_hash_table *htab;
3219 struct elf32_hppa_link_hash_entry *h;
3222 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3223 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3224 int r_format = howto->bitsize;
3225 enum hppa_reloc_field_selector_type_alt r_field;
3226 bfd *input_bfd = input_section->owner;
3227 bfd_vma offset = rel->r_offset;
3228 bfd_vma max_branch_offset = 0;
3229 bfd_byte *hit_data = contents + offset;
3230 bfd_signed_vma addend = rel->r_addend;
3232 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3235 if (r_type == R_PARISC_NONE)
3236 return bfd_reloc_ok;
3238 insn = bfd_get_32 (input_bfd, hit_data);
3240 /* Find out where we are and where we're going. */
3241 location = (offset +
3242 input_section->output_offset +
3243 input_section->output_section->vma);
3247 case R_PARISC_PCREL12F:
3248 case R_PARISC_PCREL17F:
3249 case R_PARISC_PCREL22F:
3250 /* If this is a call to a function defined in another dynamic
3251 library, or if it is a call to a PIC function in the same
3252 object, or if this is a shared link and it is a call to a
3253 weak symbol which may or may not be in the same object, then
3254 find the import stub in the stub hash. */
3256 || sym_sec->output_section == NULL
3258 && ((h->maybe_pic_call
3259 && !(input_section->flags & SEC_HAS_GOT_REF))
3260 || (h->elf.root.type == bfd_link_hash_defweak
3261 && h->elf.dynindx != -1
3262 && h->elf.plt.offset != (bfd_vma) -1))))
3264 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3266 if (stub_entry != NULL)
3268 value = (stub_entry->stub_offset
3269 + stub_entry->stub_sec->output_offset
3270 + stub_entry->stub_sec->output_section->vma);
3273 else if (sym_sec == NULL && h != NULL
3274 && h->elf.root.type == bfd_link_hash_undefweak)
3276 /* It's OK if undefined weak. Calls to undefined weak
3277 symbols behave as if the "called" function
3278 immediately returns. We can thus call to a weak
3279 function without first checking whether the function
3285 return bfd_reloc_notsupported;
3289 case R_PARISC_PCREL21L:
3290 case R_PARISC_PCREL17C:
3291 case R_PARISC_PCREL17R:
3292 case R_PARISC_PCREL14R:
3293 case R_PARISC_PCREL14F:
3294 /* Make it a pc relative offset. */
3299 case R_PARISC_DPREL21L:
3300 case R_PARISC_DPREL14R:
3301 case R_PARISC_DPREL14F:
3302 /* For all the DP relative relocations, we need to examine the symbol's
3303 section. If it's a code section, then "data pointer relative" makes
3304 no sense. In that case we don't adjust the "value", and for 21 bit
3305 addil instructions, we change the source addend register from %dp to
3306 %r0. This situation commonly arises when a variable's "constness"
3307 is declared differently from the way the variable is defined. For
3308 instance: "extern int foo" with foo defined as "const int foo". */
3309 if (sym_sec == NULL)
3311 if ((sym_sec->flags & SEC_CODE) != 0)
3313 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3314 == (((int) OP_ADDIL << 26) | (27 << 21)))
3316 insn &= ~ (0x1f << 21);
3317 #if 1 /* debug them. */
3318 (*_bfd_error_handler)
3319 (_("%s(%s+0x%lx): fixing %s"),
3320 bfd_archive_filename (input_bfd),
3321 input_section->name,
3322 (long) rel->r_offset,
3326 /* Now try to make things easy for the dynamic linker. */
3332 case R_PARISC_DLTIND21L:
3333 case R_PARISC_DLTIND14R:
3334 case R_PARISC_DLTIND14F:
3335 value -= elf_gp (input_section->output_section->owner);
3338 case R_PARISC_SEGREL32:
3339 if ((sym_sec->flags & SEC_CODE) != 0)
3340 value -= htab->text_segment_base;
3342 value -= htab->data_segment_base;
3351 case R_PARISC_DIR32:
3352 case R_PARISC_DIR14F:
3353 case R_PARISC_DIR17F:
3354 case R_PARISC_PCREL17C:
3355 case R_PARISC_PCREL14F:
3356 case R_PARISC_DPREL14F:
3357 case R_PARISC_PLABEL32:
3358 case R_PARISC_DLTIND14F:
3359 case R_PARISC_SEGBASE:
3360 case R_PARISC_SEGREL32:
3364 case R_PARISC_DIR21L:
3365 case R_PARISC_PCREL21L:
3366 case R_PARISC_DPREL21L:
3367 case R_PARISC_PLABEL21L:
3368 case R_PARISC_DLTIND21L:
3372 case R_PARISC_DIR17R:
3373 case R_PARISC_PCREL17R:
3374 case R_PARISC_DIR14R:
3375 case R_PARISC_PCREL14R:
3376 case R_PARISC_DPREL14R:
3377 case R_PARISC_PLABEL14R:
3378 case R_PARISC_DLTIND14R:
3382 case R_PARISC_PCREL12F:
3383 case R_PARISC_PCREL17F:
3384 case R_PARISC_PCREL22F:
3387 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3389 max_branch_offset = (1 << (17-1)) << 2;
3391 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3393 max_branch_offset = (1 << (12-1)) << 2;
3397 max_branch_offset = (1 << (22-1)) << 2;
3400 /* sym_sec is NULL on undefined weak syms or when shared on
3401 undefined syms. We've already checked for a stub for the
3402 shared undefined case. */
3403 if (sym_sec == NULL)
3406 /* If the branch is out of reach, then redirect the
3407 call to the local stub for this function. */
3408 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3410 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3412 if (stub_entry == NULL)
3413 return bfd_reloc_notsupported;
3415 /* Munge up the value and addend so that we call the stub
3416 rather than the procedure directly. */
3417 value = (stub_entry->stub_offset
3418 + stub_entry->stub_sec->output_offset
3419 + stub_entry->stub_sec->output_section->vma
3425 /* Something we don't know how to handle. */
3427 return bfd_reloc_notsupported;
3430 /* Make sure we can reach the stub. */
3431 if (max_branch_offset != 0
3432 && value + addend + max_branch_offset >= 2*max_branch_offset)
3434 (*_bfd_error_handler)
3435 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3436 bfd_archive_filename (input_bfd),
3437 input_section->name,
3438 (long) rel->r_offset,
3439 stub_entry->root.string);
3440 return bfd_reloc_notsupported;
3443 val = hppa_field_adjust (value, addend, r_field);
3447 case R_PARISC_PCREL12F:
3448 case R_PARISC_PCREL17C:
3449 case R_PARISC_PCREL17F:
3450 case R_PARISC_PCREL17R:
3451 case R_PARISC_PCREL22F:
3452 case R_PARISC_DIR17F:
3453 case R_PARISC_DIR17R:
3454 /* This is a branch. Divide the offset by four.
3455 Note that we need to decide whether it's a branch or
3456 otherwise by inspecting the reloc. Inspecting insn won't
3457 work as insn might be from a .word directive. */
3465 insn = hppa_rebuild_insn (insn, val, r_format);
3467 /* Update the instruction word. */
3468 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3469 return bfd_reloc_ok;
3472 /* Relocate an HPPA ELF section. */
3475 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3476 contents, relocs, local_syms, local_sections)
3478 struct bfd_link_info *info;
3480 asection *input_section;
3482 Elf_Internal_Rela *relocs;
3483 Elf_Internal_Sym *local_syms;
3484 asection **local_sections;
3486 bfd_vma *local_got_offsets;
3487 struct elf32_hppa_link_hash_table *htab;
3488 Elf_Internal_Shdr *symtab_hdr;
3489 Elf_Internal_Rela *rel;
3490 Elf_Internal_Rela *relend;
3492 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3494 htab = hppa_link_hash_table (info);
3495 local_got_offsets = elf_local_got_offsets (input_bfd);
3498 relend = relocs + input_section->reloc_count;
3499 for (; rel < relend; rel++)
3501 unsigned int r_type;
3502 reloc_howto_type *howto;
3503 unsigned int r_symndx;
3504 struct elf32_hppa_link_hash_entry *h;
3505 Elf_Internal_Sym *sym;
3508 bfd_reloc_status_type r;
3509 const char *sym_name;
3513 r_type = ELF32_R_TYPE (rel->r_info);
3514 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3516 bfd_set_error (bfd_error_bad_value);
3519 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3520 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3523 r_symndx = ELF32_R_SYM (rel->r_info);
3525 if (info->relocateable)
3527 /* This is a relocatable link. We don't have to change
3528 anything, unless the reloc is against a section symbol,
3529 in which case we have to adjust according to where the
3530 section symbol winds up in the output section. */
3531 if (r_symndx < symtab_hdr->sh_info)
3533 sym = local_syms + r_symndx;
3534 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3536 sym_sec = local_sections[r_symndx];
3537 rel->r_addend += sym_sec->output_offset;
3543 /* This is a final link. */
3547 if (r_symndx < symtab_hdr->sh_info)
3549 /* This is a local symbol, h defaults to NULL. */
3550 sym = local_syms + r_symndx;
3551 sym_sec = local_sections[r_symndx];
3552 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3553 ? 0 : sym->st_value)
3554 + sym_sec->output_offset
3555 + sym_sec->output_section->vma);
3561 /* It's a global; Find its entry in the link hash. */
3562 indx = r_symndx - symtab_hdr->sh_info;
3563 h = ((struct elf32_hppa_link_hash_entry *)
3564 elf_sym_hashes (input_bfd)[indx]);
3565 while (h->elf.root.type == bfd_link_hash_indirect
3566 || h->elf.root.type == bfd_link_hash_warning)
3567 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3570 if (h->elf.root.type == bfd_link_hash_defined
3571 || h->elf.root.type == bfd_link_hash_defweak)
3573 sym_sec = h->elf.root.u.def.section;
3574 /* If sym_sec->output_section is NULL, then it's a
3575 symbol defined in a shared library. */
3576 if (sym_sec->output_section != NULL)
3577 relocation = (h->elf.root.u.def.value
3578 + sym_sec->output_offset
3579 + sym_sec->output_section->vma);
3581 else if (h->elf.root.type == bfd_link_hash_undefweak)
3583 else if (info->shared && !info->no_undefined
3584 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3585 && h->elf.type != STT_PARISC_MILLI)
3587 if (info->symbolic && !info->allow_shlib_undefined)
3588 if (!((*info->callbacks->undefined_symbol)
3589 (info, h->elf.root.root.string, input_bfd,
3590 input_section, rel->r_offset, false)))
3595 if (!((*info->callbacks->undefined_symbol)
3596 (info, h->elf.root.root.string, input_bfd,
3597 input_section, rel->r_offset, true)))
3602 /* Do any required modifications to the relocation value, and
3603 determine what types of dynamic info we need to output, if
3608 case R_PARISC_DLTIND14F:
3609 case R_PARISC_DLTIND14R:
3610 case R_PARISC_DLTIND21L:
3611 /* Relocation is to the entry for this symbol in the global
3617 off = h->elf.got.offset;
3618 dyn = htab->elf.dynamic_sections_created;
3619 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3621 /* This is actually a static link, or it is a
3622 -Bsymbolic link and the symbol is defined
3623 locally, or the symbol was forced to be local
3624 because of a version file. We must initialize
3625 this entry in the global offset table. Since the
3626 offset must always be a multiple of 4, we use the
3627 least significant bit to record whether we have
3628 initialized it already.
3630 When doing a dynamic link, we create a .rela.got
3631 relocation entry to initialize the value. This
3632 is done in the finish_dynamic_symbol routine. */
3637 bfd_put_32 (output_bfd, relocation,
3638 htab->sgot->contents + off);
3639 h->elf.got.offset |= 1;
3645 /* Local symbol case. */
3646 if (local_got_offsets == NULL)
3649 off = local_got_offsets[r_symndx];
3651 /* The offset must always be a multiple of 4. We use
3652 the least significant bit to record whether we have
3653 already generated the necessary reloc. */
3658 bfd_put_32 (output_bfd, relocation,
3659 htab->sgot->contents + off);
3663 /* Output a dynamic relocation for this GOT
3664 entry. In this case it is relative to the
3665 base of the object because the symbol index
3667 Elf_Internal_Rela outrel;
3668 asection *srelgot = htab->srelgot;
3669 Elf32_External_Rela *loc;
3671 outrel.r_offset = (off
3672 + htab->sgot->output_offset
3673 + htab->sgot->output_section->vma);
3674 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3675 outrel.r_addend = relocation;
3676 loc = (Elf32_External_Rela *) srelgot->contents;
3677 loc += srelgot->reloc_count++;
3678 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3681 local_got_offsets[r_symndx] |= 1;
3685 if (off >= (bfd_vma) -2)
3688 /* Add the base of the GOT to the relocation value. */
3690 + htab->sgot->output_offset
3691 + htab->sgot->output_section->vma);
3694 case R_PARISC_SEGREL32:
3695 /* If this is the first SEGREL relocation, then initialize
3696 the segment base values. */
3697 if (htab->text_segment_base == (bfd_vma) -1)
3698 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3701 case R_PARISC_PLABEL14R:
3702 case R_PARISC_PLABEL21L:
3703 case R_PARISC_PLABEL32:
3704 if (htab->elf.dynamic_sections_created)
3706 /* If we have a global symbol with a PLT slot, then
3707 redirect this relocation to it. */
3710 off = h->elf.plt.offset;
3711 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3713 /* In a non-shared link, adjust_dynamic_symbols
3714 isn't called for symbols forced local. We
3715 need to write out the plt entry here. */
3720 bfd_put_32 (output_bfd,
3722 htab->splt->contents + off);
3723 bfd_put_32 (output_bfd,
3724 elf_gp (htab->splt->output_section->owner),
3725 htab->splt->contents + off + 4);
3726 h->elf.plt.offset |= 1;
3732 bfd_vma *local_plt_offsets;
3734 if (local_got_offsets == NULL)
3737 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3738 off = local_plt_offsets[r_symndx];
3740 /* As for the local .got entry case, we use the last
3741 bit to record whether we've already initialised
3742 this local .plt entry. */
3747 bfd_put_32 (output_bfd,
3749 htab->splt->contents + off);
3750 bfd_put_32 (output_bfd,
3751 elf_gp (htab->splt->output_section->owner),
3752 htab->splt->contents + off + 4);
3756 /* Output a dynamic IPLT relocation for this
3758 Elf_Internal_Rela outrel;
3759 asection *srelplt = htab->srelplt;
3760 Elf32_External_Rela *loc;
3762 outrel.r_offset = (off
3763 + htab->splt->output_offset
3764 + htab->splt->output_section->vma);
3765 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3766 outrel.r_addend = relocation;
3767 loc = (Elf32_External_Rela *) srelplt->contents;
3768 loc += srelplt->reloc_count++;
3769 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3772 local_plt_offsets[r_symndx] |= 1;
3776 if (off >= (bfd_vma) -2)
3779 /* PLABELs contain function pointers. Relocation is to
3780 the entry for the function in the .plt. The magic +2
3781 offset signals to $$dyncall that the function pointer
3782 is in the .plt and thus has a gp pointer too.
3783 Exception: Undefined PLABELs should have a value of
3786 || (h->elf.root.type != bfd_link_hash_undefweak
3787 && h->elf.root.type != bfd_link_hash_undefined))
3790 + htab->splt->output_offset
3791 + htab->splt->output_section->vma
3796 /* Fall through and possibly emit a dynamic relocation. */
3798 case R_PARISC_DIR17F:
3799 case R_PARISC_DIR17R:
3800 case R_PARISC_DIR14F:
3801 case R_PARISC_DIR14R:
3802 case R_PARISC_DIR21L:
3803 case R_PARISC_DPREL14F:
3804 case R_PARISC_DPREL14R:
3805 case R_PARISC_DPREL21L:
3806 case R_PARISC_DIR32:
3807 /* The reloc types handled here and this conditional
3808 expression must match the code in ..check_relocs and
3809 ..discard_relocs. ie. We need exactly the same condition
3810 as in ..check_relocs, with some extra conditions (dynindx
3811 test in this case) to cater for relocs removed by
3812 ..discard_relocs. If you squint, the non-shared test
3813 here does indeed match the one in ..check_relocs, the
3814 difference being that here we test DEF_DYNAMIC as well as
3815 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3816 which is why we can't use just that test here.
3817 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3818 there all files have not been loaded. */
3820 && (input_section->flags & SEC_ALLOC) != 0
3821 && (IS_ABSOLUTE_RELOC (r_type)
3823 && h->elf.dynindx != -1
3825 || (h->elf.elf_link_hash_flags
3826 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3828 && (input_section->flags & SEC_ALLOC) != 0
3830 && h->elf.dynindx != -1
3831 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3832 && (((h->elf.elf_link_hash_flags
3833 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3834 && (h->elf.elf_link_hash_flags
3835 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3836 || h->elf.root.type == bfd_link_hash_undefweak
3837 || h->elf.root.type == bfd_link_hash_undefined)))
3839 Elf_Internal_Rela outrel;
3842 Elf32_External_Rela *loc;
3844 /* When generating a shared object, these relocations
3845 are copied into the output file to be resolved at run
3848 outrel.r_offset = rel->r_offset;
3849 outrel.r_addend = rel->r_addend;
3851 if (elf_section_data (input_section)->stab_info != NULL)
3853 off = (_bfd_stab_section_offset
3854 (output_bfd, &htab->elf.stab_info,
3856 &elf_section_data (input_section)->stab_info,
3858 if (off == (bfd_vma) -1)
3860 outrel.r_offset = off;
3863 outrel.r_offset += (input_section->output_offset
3864 + input_section->output_section->vma);
3868 memset (&outrel, 0, sizeof (outrel));
3871 && h->elf.dynindx != -1
3873 || !IS_ABSOLUTE_RELOC (r_type)
3876 || (h->elf.elf_link_hash_flags
3877 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3879 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3881 else /* It's a local symbol, or one marked to become local. */
3885 /* Add the absolute offset of the symbol. */
3886 outrel.r_addend += relocation;
3888 /* Global plabels need to be processed by the
3889 dynamic linker so that functions have at most one
3890 fptr. For this reason, we need to differentiate
3891 between global and local plabels, which we do by
3892 providing the function symbol for a global plabel
3893 reloc, and no symbol for local plabels. */
3896 && sym_sec->output_section != NULL
3897 && ! bfd_is_abs_section (sym_sec))
3899 indx = elf_section_data (sym_sec->output_section)->dynindx;
3900 /* We are turning this relocation into one
3901 against a section symbol, so subtract out the
3902 output section's address but not the offset
3903 of the input section in the output section. */
3904 outrel.r_addend -= sym_sec->output_section->vma;
3907 outrel.r_info = ELF32_R_INFO (indx, r_type);
3910 /* EH info can cause unaligned DIR32 relocs.
3911 Tweak the reloc type for the dynamic linker. */
3912 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3913 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3916 sreloc = elf_section_data (input_section)->sreloc;
3920 loc = (Elf32_External_Rela *) sreloc->contents;
3921 loc += sreloc->reloc_count++;
3922 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3930 r = final_link_relocate (input_section, contents, rel, relocation,
3933 if (r == bfd_reloc_ok)
3937 sym_name = h->elf.root.root.string;
3940 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3941 symtab_hdr->sh_link,
3943 if (sym_name == NULL)
3945 if (*sym_name == '\0')
3946 sym_name = bfd_section_name (input_bfd, sym_sec);
3949 howto = elf_hppa_howto_table + r_type;
3951 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3953 (*_bfd_error_handler)
3954 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3955 bfd_archive_filename (input_bfd),
3956 input_section->name,
3957 (long) rel->r_offset,
3960 bfd_set_error (bfd_error_bad_value);
3965 if (!((*info->callbacks->reloc_overflow)
3966 (info, sym_name, howto->name, (bfd_vma) 0,
3967 input_bfd, input_section, rel->r_offset)))
3975 /* Comparison function for qsort to sort unwind section during a
3979 hppa_unwind_entry_compare (a, b)
3983 const bfd_byte *ap, *bp;
3984 unsigned long av, bv;
3986 ap = (const bfd_byte *) a;
3987 av = (unsigned long) ap[0] << 24;
3988 av |= (unsigned long) ap[1] << 16;
3989 av |= (unsigned long) ap[2] << 8;
3990 av |= (unsigned long) ap[3];
3992 bp = (const bfd_byte *) b;
3993 bv = (unsigned long) bp[0] << 24;
3994 bv |= (unsigned long) bp[1] << 16;
3995 bv |= (unsigned long) bp[2] << 8;
3996 bv |= (unsigned long) bp[3];
3998 return av < bv ? -1 : av > bv ? 1 : 0;
4001 /* Finish up dynamic symbol handling. We set the contents of various
4002 dynamic sections here. */
4005 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4007 struct bfd_link_info *info;
4008 struct elf_link_hash_entry *h;
4009 Elf_Internal_Sym *sym;
4011 struct elf32_hppa_link_hash_table *htab;
4013 htab = hppa_link_hash_table (info);
4015 if (h->plt.offset != (bfd_vma) -1)
4019 if (h->plt.offset & 1)
4022 /* This symbol has an entry in the procedure linkage table. Set
4025 The format of a plt entry is
4030 if (h->root.type == bfd_link_hash_defined
4031 || h->root.type == bfd_link_hash_defweak)
4033 value = h->root.u.def.value;
4034 if (h->root.u.def.section->output_section != NULL)
4035 value += (h->root.u.def.section->output_offset
4036 + h->root.u.def.section->output_section->vma);
4039 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4041 Elf_Internal_Rela rel;
4042 Elf32_External_Rela *loc;
4044 /* Create a dynamic IPLT relocation for this entry. */
4045 rel.r_offset = (h->plt.offset
4046 + htab->splt->output_offset
4047 + htab->splt->output_section->vma);
4048 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
4049 && h->dynindx != -1)
4051 /* To support lazy linking, the function pointer is
4052 initialised to point to a special stub stored at the
4053 end of the .plt. This is not done for plt entries
4054 with a base-relative dynamic relocation. */
4055 value = (htab->splt->output_offset
4056 + htab->splt->output_section->vma
4057 + htab->splt->_raw_size
4060 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4065 /* This symbol has been marked to become local, and is
4066 used by a plabel so must be kept in the .plt. */
4067 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4068 rel.r_addend = value;
4071 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4072 loc += htab->srelplt->reloc_count++;
4073 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4077 bfd_put_32 (htab->splt->owner,
4079 htab->splt->contents + h->plt.offset);
4080 bfd_put_32 (htab->splt->owner,
4081 elf_gp (htab->splt->output_section->owner),
4082 htab->splt->contents + h->plt.offset + 4);
4083 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
4084 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
4085 && h->dynindx != -1)
4087 memset (htab->splt->contents + h->plt.offset + 8,
4088 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
4091 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4093 /* Mark the symbol as undefined, rather than as defined in
4094 the .plt section. Leave the value alone. */
4095 sym->st_shndx = SHN_UNDEF;
4099 if (h->got.offset != (bfd_vma) -1)
4101 Elf_Internal_Rela rel;
4102 Elf32_External_Rela *loc;
4104 /* This symbol has an entry in the global offset table. Set it
4107 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4108 + htab->sgot->output_offset
4109 + htab->sgot->output_section->vma);
4111 /* If this is a -Bsymbolic link and the symbol is defined
4112 locally or was forced to be local because of a version file,
4113 we just want to emit a RELATIVE reloc. The entry in the
4114 global offset table will already have been initialized in the
4115 relocate_section function. */
4117 && (info->symbolic || h->dynindx == -1)
4118 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4120 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4121 rel.r_addend = (h->root.u.def.value
4122 + h->root.u.def.section->output_offset
4123 + h->root.u.def.section->output_section->vma);
4127 if ((h->got.offset & 1) != 0)
4129 bfd_put_32 (output_bfd, (bfd_vma) 0,
4130 htab->sgot->contents + h->got.offset);
4131 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4135 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4136 loc += htab->srelgot->reloc_count++;
4137 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4140 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4143 Elf_Internal_Rela rel;
4144 Elf32_External_Rela *loc;
4146 /* This symbol needs a copy reloc. Set it up. */
4148 if (! (h->dynindx != -1
4149 && (h->root.type == bfd_link_hash_defined
4150 || h->root.type == bfd_link_hash_defweak)))
4155 rel.r_offset = (h->root.u.def.value
4156 + h->root.u.def.section->output_offset
4157 + h->root.u.def.section->output_section->vma);
4159 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4160 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4161 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4164 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4165 if (h->root.root.string[0] == '_'
4166 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4167 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4169 sym->st_shndx = SHN_ABS;
4175 /* Used to decide how to sort relocs in an optimal manner for the
4176 dynamic linker, before writing them out. */
4178 static enum elf_reloc_type_class
4179 elf32_hppa_reloc_type_class (rela)
4180 const Elf_Internal_Rela *rela;
4182 if (ELF32_R_SYM (rela->r_info) == 0)
4183 return reloc_class_relative;
4185 switch ((int) ELF32_R_TYPE (rela->r_info))
4188 return reloc_class_plt;
4190 return reloc_class_copy;
4192 return reloc_class_normal;
4196 /* Finish up the dynamic sections. */
4199 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4201 struct bfd_link_info *info;
4204 struct elf32_hppa_link_hash_table *htab;
4207 htab = hppa_link_hash_table (info);
4208 dynobj = htab->elf.dynobj;
4210 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4212 if (htab->elf.dynamic_sections_created)
4214 Elf32_External_Dyn *dyncon, *dynconend;
4219 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4220 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4221 for (; dyncon < dynconend; dyncon++)
4223 Elf_Internal_Dyn dyn;
4226 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4234 /* Use PLTGOT to set the GOT register. */
4235 dyn.d_un.d_ptr = elf_gp (output_bfd);
4240 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4245 if (s->_cooked_size != 0)
4246 dyn.d_un.d_val = s->_cooked_size;
4248 dyn.d_un.d_val = s->_raw_size;
4252 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4256 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4258 /* Fill in the first entry in the global offset table.
4259 We use it to point to our dynamic section, if we have one. */
4260 bfd_put_32 (output_bfd,
4262 ? sdyn->output_section->vma + sdyn->output_offset
4264 htab->sgot->contents);
4266 /* The second entry is reserved for use by the dynamic linker. */
4267 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4269 /* Set .got entry size. */
4270 elf_section_data (htab->sgot->output_section)
4271 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4274 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4276 /* Set plt entry size. */
4277 elf_section_data (htab->splt->output_section)
4278 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4280 if (htab->need_plt_stub)
4282 /* Set up the .plt stub. */
4283 memcpy (htab->splt->contents
4284 + htab->splt->_raw_size - sizeof (plt_stub),
4285 plt_stub, sizeof (plt_stub));
4287 if ((htab->splt->output_offset
4288 + htab->splt->output_section->vma
4289 + htab->splt->_raw_size)
4290 != (htab->sgot->output_offset
4291 + htab->sgot->output_section->vma))
4293 (*_bfd_error_handler)
4294 (_(".got section not immediately after .plt section"));
4303 /* Tweak the OSABI field of the elf header. */
4306 elf32_hppa_post_process_headers (abfd, link_info)
4308 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4310 Elf_Internal_Ehdr * i_ehdrp;
4312 i_ehdrp = elf_elfheader (abfd);
4314 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4316 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4320 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4324 /* Called when writing out an object file to decide the type of a
4327 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4328 Elf_Internal_Sym *elf_sym;
4331 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4332 return STT_PARISC_MILLI;
4337 /* Misc BFD support code. */
4338 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4339 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4340 #define elf_info_to_howto elf_hppa_info_to_howto
4341 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4343 /* Stuff for the BFD linker. */
4344 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4345 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4346 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4347 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4348 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4349 #define elf_backend_check_relocs elf32_hppa_check_relocs
4350 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4351 #define elf_backend_fake_sections elf_hppa_fake_sections
4352 #define elf_backend_relocate_section elf32_hppa_relocate_section
4353 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4354 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4355 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4356 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4357 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4358 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4359 #define elf_backend_object_p elf32_hppa_object_p
4360 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4361 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4362 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4363 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4365 #define elf_backend_can_gc_sections 1
4366 #define elf_backend_can_refcount 1
4367 #define elf_backend_plt_alignment 2
4368 #define elf_backend_want_got_plt 0
4369 #define elf_backend_plt_readonly 0
4370 #define elf_backend_want_plt_sym 0
4371 #define elf_backend_got_header_size 8
4373 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4374 #define TARGET_BIG_NAME "elf32-hppa"
4375 #define ELF_ARCH bfd_arch_hppa
4376 #define ELF_MACHINE_CODE EM_PARISC
4377 #define ELF_MAXPAGESIZE 0x1000
4379 #include "elf32-target.h"
4381 #undef TARGET_BIG_SYM
4382 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4383 #undef TARGET_BIG_NAME
4384 #define TARGET_BIG_NAME "elf32-hppa-linux"
4386 #define INCLUDED_TARGET_FILE 1
4387 #include "elf32-target.h"