1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
29 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
33 struct elf_link_hash_entry *h;
34 struct bfd_link_hash_entry *bh;
35 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 /* This function may be called more than once. */
39 s = bfd_get_section_by_name (abfd, ".got");
40 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 switch (bed->s->arch_size)
54 bfd_set_error (bfd_error_bad_value);
58 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
59 | SEC_LINKER_CREATED);
61 s = bfd_make_section (abfd, ".got");
63 || !bfd_set_section_flags (abfd, s, flags)
64 || !bfd_set_section_alignment (abfd, s, ptralign))
67 if (bed->want_got_plt)
69 s = bfd_make_section (abfd, ".got.plt");
71 || !bfd_set_section_flags (abfd, s, flags)
72 || !bfd_set_section_alignment (abfd, s, ptralign))
76 if (bed->want_got_sym)
78 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
79 (or .got.plt) section. We don't do this in the linker script
80 because we don't want to define the symbol if we are not creating
81 a global offset table. */
83 if (!(_bfd_generic_link_add_one_symbol
84 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
85 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
87 h = (struct elf_link_hash_entry *) bh;
88 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
91 if (! info->executable
92 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
95 elf_hash_table (info)->hgot = h;
98 /* The first bit of the global offset table is the header. */
99 s->_raw_size += bed->got_header_size + bed->got_symbol_offset;
104 /* Create some sections which will be filled in with dynamic linking
105 information. ABFD is an input file which requires dynamic sections
106 to be created. The dynamic sections take up virtual memory space
107 when the final executable is run, so we need to create them before
108 addresses are assigned to the output sections. We work out the
109 actual contents and size of these sections later. */
112 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
115 register asection *s;
116 struct elf_link_hash_entry *h;
117 struct bfd_link_hash_entry *bh;
118 const struct elf_backend_data *bed;
120 if (! is_elf_hash_table (info->hash))
123 if (elf_hash_table (info)->dynamic_sections_created)
126 /* Make sure that all dynamic sections use the same input BFD. */
127 if (elf_hash_table (info)->dynobj == NULL)
128 elf_hash_table (info)->dynobj = abfd;
130 abfd = elf_hash_table (info)->dynobj;
132 /* Note that we set the SEC_IN_MEMORY flag for all of these
134 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
135 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
137 /* A dynamically linked executable has a .interp section, but a
138 shared library does not. */
139 if (info->executable)
141 s = bfd_make_section (abfd, ".interp");
143 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
147 if (! info->traditional_format)
149 s = bfd_make_section (abfd, ".eh_frame_hdr");
151 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
152 || ! bfd_set_section_alignment (abfd, s, 2))
154 elf_hash_table (info)->eh_info.hdr_sec = s;
157 bed = get_elf_backend_data (abfd);
159 /* Create sections to hold version informations. These are removed
160 if they are not needed. */
161 s = bfd_make_section (abfd, ".gnu.version_d");
163 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
164 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 s = bfd_make_section (abfd, ".gnu.version");
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 1))
173 s = bfd_make_section (abfd, ".gnu.version_r");
175 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
176 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 s = bfd_make_section (abfd, ".dynsym");
181 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
182 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
185 s = bfd_make_section (abfd, ".dynstr");
187 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
190 /* Create a strtab to hold the dynamic symbol names. */
191 if (elf_hash_table (info)->dynstr == NULL)
193 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
194 if (elf_hash_table (info)->dynstr == NULL)
198 s = bfd_make_section (abfd, ".dynamic");
200 || ! bfd_set_section_flags (abfd, s, flags)
201 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 /* The special symbol _DYNAMIC is always set to the start of the
205 .dynamic section. This call occurs before we have processed the
206 symbols for any dynamic object, so we don't have to worry about
207 overriding a dynamic definition. We could set _DYNAMIC in a
208 linker script, but we only want to define it if we are, in fact,
209 creating a .dynamic section. We don't want to define it if there
210 is no .dynamic section, since on some ELF platforms the start up
211 code examines it to decide how to initialize the process. */
213 if (! (_bfd_generic_link_add_one_symbol
214 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
215 get_elf_backend_data (abfd)->collect, &bh)))
217 h = (struct elf_link_hash_entry *) bh;
218 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
219 h->type = STT_OBJECT;
221 if (! info->executable
222 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
225 s = bfd_make_section (abfd, ".hash");
227 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
228 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
230 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
232 /* Let the backend create the rest of the sections. This lets the
233 backend set the right flags. The backend will normally create
234 the .got and .plt sections. */
235 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
238 elf_hash_table (info)->dynamic_sections_created = TRUE;
243 /* Create dynamic sections when linking against a dynamic object. */
246 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
248 flagword flags, pltflags;
250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
253 .rel[a].bss sections. */
255 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
256 | SEC_LINKER_CREATED);
259 pltflags |= SEC_CODE;
260 if (bed->plt_not_loaded)
261 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
262 if (bed->plt_readonly)
263 pltflags |= SEC_READONLY;
265 s = bfd_make_section (abfd, ".plt");
267 || ! bfd_set_section_flags (abfd, s, pltflags)
268 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
271 if (bed->want_plt_sym)
273 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
275 struct elf_link_hash_entry *h;
276 struct bfd_link_hash_entry *bh = NULL;
278 if (! (_bfd_generic_link_add_one_symbol
279 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
280 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
282 h = (struct elf_link_hash_entry *) bh;
283 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
284 h->type = STT_OBJECT;
286 if (! info->executable
287 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
291 s = bfd_make_section (abfd,
292 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
294 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
295 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 if (! _bfd_elf_create_got_section (abfd, info))
301 if (bed->want_dynbss)
303 /* The .dynbss section is a place to put symbols which are defined
304 by dynamic objects, are referenced by regular objects, and are
305 not functions. We must allocate space for them in the process
306 image and use a R_*_COPY reloc to tell the dynamic linker to
307 initialize them at run time. The linker script puts the .dynbss
308 section into the .bss section of the final image. */
309 s = bfd_make_section (abfd, ".dynbss");
311 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
314 /* The .rel[a].bss section holds copy relocs. This section is not
315 normally needed. We need to create it here, though, so that the
316 linker will map it to an output section. We can't just create it
317 only if we need it, because we will not know whether we need it
318 until we have seen all the input files, and the first time the
319 main linker code calls BFD after examining all the input files
320 (size_dynamic_sections) the input sections have already been
321 mapped to the output sections. If the section turns out not to
322 be needed, we can discard it later. We will never need this
323 section when generating a shared object, since they do not use
327 s = bfd_make_section (abfd,
328 (bed->default_use_rela_p
329 ? ".rela.bss" : ".rel.bss"));
331 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
332 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
340 /* Record a new dynamic symbol. We record the dynamic symbols as we
341 read the input files, since we need to have a list of all of them
342 before we can determine the final sizes of the output sections.
343 Note that we may actually call this function even though we are not
344 going to output any dynamic symbols; in some cases we know that a
345 symbol should be in the dynamic symbol table, but only if there is
349 _bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
350 struct elf_link_hash_entry *h)
352 if (h->dynindx == -1)
354 struct elf_strtab_hash *dynstr;
359 /* XXX: The ABI draft says the linker must turn hidden and
360 internal symbols into STB_LOCAL symbols when producing the
361 DSO. However, if ld.so honors st_other in the dynamic table,
362 this would not be necessary. */
363 switch (ELF_ST_VISIBILITY (h->other))
367 if (h->root.type != bfd_link_hash_undefined
368 && h->root.type != bfd_link_hash_undefweak)
370 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
378 h->dynindx = elf_hash_table (info)->dynsymcount;
379 ++elf_hash_table (info)->dynsymcount;
381 dynstr = elf_hash_table (info)->dynstr;
384 /* Create a strtab to hold the dynamic symbol names. */
385 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
390 /* We don't put any version information in the dynamic string
392 name = h->root.root.string;
393 p = strchr (name, ELF_VER_CHR);
395 /* We know that the p points into writable memory. In fact,
396 there are only a few symbols that have read-only names, being
397 those like _GLOBAL_OFFSET_TABLE_ that are created specially
398 by the backends. Most symbols will have names pointing into
399 an ELF string table read from a file, or to objalloc memory. */
402 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
407 if (indx == (bfd_size_type) -1)
409 h->dynstr_index = indx;
415 /* Record an assignment to a symbol made by a linker script. We need
416 this in case some dynamic object refers to this symbol. */
419 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
420 struct bfd_link_info *info,
424 struct elf_link_hash_entry *h;
426 if (!is_elf_hash_table (info->hash))
429 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
433 /* Since we're defining the symbol, don't let it seem to have not
434 been defined. record_dynamic_symbol and size_dynamic_sections
435 may depend on this. */
436 if (h->root.type == bfd_link_hash_undefweak
437 || h->root.type == bfd_link_hash_undefined)
438 h->root.type = bfd_link_hash_new;
440 if (h->root.type == bfd_link_hash_new)
441 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
443 /* If this symbol is being provided by the linker script, and it is
444 currently defined by a dynamic object, but not by a regular
445 object, then mark it as undefined so that the generic linker will
446 force the correct value. */
448 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
449 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
450 h->root.type = bfd_link_hash_undefined;
452 /* If this symbol is not being provided by the linker script, and it is
453 currently defined by a dynamic object, but not by a regular object,
454 then clear out any version information because the symbol will not be
455 associated with the dynamic object any more. */
457 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
458 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
459 h->verinfo.verdef = NULL;
461 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
463 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
464 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
468 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
471 /* If this is a weak defined symbol, and we know a corresponding
472 real symbol from the same dynamic object, make sure the real
473 symbol is also made into a dynamic symbol. */
474 if (h->weakdef != NULL
475 && h->weakdef->dynindx == -1)
477 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
485 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
486 success, and 2 on a failure caused by attempting to record a symbol
487 in a discarded section, eg. a discarded link-once section symbol. */
490 elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
495 struct elf_link_local_dynamic_entry *entry;
496 struct elf_link_hash_table *eht;
497 struct elf_strtab_hash *dynstr;
498 unsigned long dynstr_index;
500 Elf_External_Sym_Shndx eshndx;
501 char esym[sizeof (Elf64_External_Sym)];
503 if (! is_elf_hash_table (info->hash))
506 /* See if the entry exists already. */
507 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
508 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
511 amt = sizeof (*entry);
512 entry = bfd_alloc (input_bfd, amt);
516 /* Go find the symbol, so that we can find it's name. */
517 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
518 1, input_indx, &entry->isym, esym, &eshndx))
520 bfd_release (input_bfd, entry);
524 if (entry->isym.st_shndx != SHN_UNDEF
525 && (entry->isym.st_shndx < SHN_LORESERVE
526 || entry->isym.st_shndx > SHN_HIRESERVE))
530 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
531 if (s == NULL || bfd_is_abs_section (s->output_section))
533 /* We can still bfd_release here as nothing has done another
534 bfd_alloc. We can't do this later in this function. */
535 bfd_release (input_bfd, entry);
540 name = (bfd_elf_string_from_elf_section
541 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
542 entry->isym.st_name));
544 dynstr = elf_hash_table (info)->dynstr;
547 /* Create a strtab to hold the dynamic symbol names. */
548 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
553 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
554 if (dynstr_index == (unsigned long) -1)
556 entry->isym.st_name = dynstr_index;
558 eht = elf_hash_table (info);
560 entry->next = eht->dynlocal;
561 eht->dynlocal = entry;
562 entry->input_bfd = input_bfd;
563 entry->input_indx = input_indx;
566 /* Whatever binding the symbol had before, it's now local. */
568 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
570 /* The dynindx will be set at the end of size_dynamic_sections. */
575 /* Return the dynindex of a local dynamic symbol. */
578 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
582 struct elf_link_local_dynamic_entry *e;
584 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
585 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
590 /* This function is used to renumber the dynamic symbols, if some of
591 them are removed because they are marked as local. This is called
592 via elf_link_hash_traverse. */
595 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
598 size_t *count = data;
600 if (h->root.type == bfd_link_hash_warning)
601 h = (struct elf_link_hash_entry *) h->root.u.i.link;
603 if (h->dynindx != -1)
604 h->dynindx = ++(*count);
609 /* Assign dynsym indices. In a shared library we generate a section
610 symbol for each output section, which come first. Next come all of
611 the back-end allocated local dynamic syms, followed by the rest of
612 the global symbols. */
615 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
617 unsigned long dynsymcount = 0;
622 for (p = output_bfd->sections; p ; p = p->next)
623 if ((p->flags & SEC_EXCLUDE) == 0)
624 elf_section_data (p)->dynindx = ++dynsymcount;
627 if (elf_hash_table (info)->dynlocal)
629 struct elf_link_local_dynamic_entry *p;
630 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
631 p->dynindx = ++dynsymcount;
634 elf_link_hash_traverse (elf_hash_table (info),
635 elf_link_renumber_hash_table_dynsyms,
638 /* There is an unused NULL entry at the head of the table which
639 we must account for in our count. Unless there weren't any
640 symbols, which means we'll have no table at all. */
641 if (dynsymcount != 0)
644 return elf_hash_table (info)->dynsymcount = dynsymcount;
647 /* This function is called when we want to define a new symbol. It
648 handles the various cases which arise when we find a definition in
649 a dynamic object, or when there is already a definition in a
650 dynamic object. The new symbol is described by NAME, SYM, PSEC,
651 and PVALUE. We set SYM_HASH to the hash table entry. We set
652 OVERRIDE if the old symbol is overriding a new definition. We set
653 TYPE_CHANGE_OK if it is OK for the type to change. We set
654 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
655 change, we mean that we shouldn't warn if the type or size does
656 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
660 _bfd_elf_merge_symbol (bfd *abfd,
661 struct bfd_link_info *info,
663 Elf_Internal_Sym *sym,
666 struct elf_link_hash_entry **sym_hash,
668 bfd_boolean *override,
669 bfd_boolean *type_change_ok,
670 bfd_boolean *size_change_ok,
671 bfd_boolean dt_needed)
674 struct elf_link_hash_entry *h;
675 struct elf_link_hash_entry *flip;
678 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
679 bfd_boolean newweak, oldweak;
685 bind = ELF_ST_BIND (sym->st_info);
687 if (! bfd_is_und_section (sec))
688 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
690 h = ((struct elf_link_hash_entry *)
691 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
696 /* This code is for coping with dynamic objects, and is only useful
697 if we are doing an ELF link. */
698 if (info->hash->creator != abfd->xvec)
701 /* For merging, we only care about real symbols. */
703 while (h->root.type == bfd_link_hash_indirect
704 || h->root.type == bfd_link_hash_warning)
705 h = (struct elf_link_hash_entry *) h->root.u.i.link;
707 /* If we just created the symbol, mark it as being an ELF symbol.
708 Other than that, there is nothing to do--there is no merge issue
709 with a newly defined symbol--so we just return. */
711 if (h->root.type == bfd_link_hash_new)
713 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
717 /* OLDBFD is a BFD associated with the existing symbol. */
719 switch (h->root.type)
725 case bfd_link_hash_undefined:
726 case bfd_link_hash_undefweak:
727 oldbfd = h->root.u.undef.abfd;
730 case bfd_link_hash_defined:
731 case bfd_link_hash_defweak:
732 oldbfd = h->root.u.def.section->owner;
735 case bfd_link_hash_common:
736 oldbfd = h->root.u.c.p->section->owner;
740 /* In cases involving weak versioned symbols, we may wind up trying
741 to merge a symbol with itself. Catch that here, to avoid the
742 confusion that results if we try to override a symbol with
743 itself. The additional tests catch cases like
744 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
745 dynamic object, which we do want to handle here. */
747 && ((abfd->flags & DYNAMIC) == 0
748 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
751 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
752 respectively, is from a dynamic object. */
754 if ((abfd->flags & DYNAMIC) != 0)
760 olddyn = (oldbfd->flags & DYNAMIC) != 0;
765 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
766 indices used by MIPS ELF. */
767 switch (h->root.type)
773 case bfd_link_hash_defined:
774 case bfd_link_hash_defweak:
775 hsec = h->root.u.def.section;
778 case bfd_link_hash_common:
779 hsec = h->root.u.c.p->section;
786 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
789 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
790 respectively, appear to be a definition rather than reference. */
792 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
797 if (h->root.type == bfd_link_hash_undefined
798 || h->root.type == bfd_link_hash_undefweak
799 || h->root.type == bfd_link_hash_common)
804 /* We need to remember if a symbol has a definition in a dynamic
805 object or is weak in all dynamic objects. Internal and hidden
806 visibility will make it unavailable to dynamic objects. */
807 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
809 if (!bfd_is_und_section (sec))
810 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
813 /* Check if this symbol is weak in all dynamic objects. If it
814 is the first time we see it in a dynamic object, we mark
815 if it is weak. Otherwise, we clear it. */
816 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
818 if (bind == STB_WEAK)
819 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
821 else if (bind != STB_WEAK)
822 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
826 /* If the old symbol has non-default visibility, we ignore the new
827 definition from a dynamic object. */
829 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
830 && !bfd_is_und_section (sec))
833 /* Make sure this symbol is dynamic. */
834 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
835 /* A protected symbol has external availability. Make sure it is
838 FIXME: Should we check type and size for protected symbol? */
839 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
840 return _bfd_elf_link_record_dynamic_symbol (info, h);
845 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
846 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
848 /* If the new symbol with non-default visibility comes from a
849 relocatable file and the old definition comes from a dynamic
850 object, we remove the old definition. */
851 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
854 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
855 && bfd_is_und_section (sec))
857 /* If the new symbol is undefined and the old symbol was
858 also undefined before, we need to make sure
859 _bfd_generic_link_add_one_symbol doesn't mess
860 up the linker hash table undefs list. Since the old
861 definition came from a dynamic object, it is still on the
863 h->root.type = bfd_link_hash_undefined;
864 /* FIXME: What if the new symbol is weak undefined? */
865 h->root.u.undef.abfd = abfd;
869 h->root.type = bfd_link_hash_new;
870 h->root.u.undef.abfd = NULL;
873 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
875 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
876 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
877 | ELF_LINK_DYNAMIC_DEF);
879 /* FIXME: Should we check type and size for protected symbol? */
885 /* Differentiate strong and weak symbols. */
886 newweak = bind == STB_WEAK;
887 oldweak = (h->root.type == bfd_link_hash_defweak
888 || h->root.type == bfd_link_hash_undefweak);
890 /* It's OK to change the type if either the existing symbol or the
891 new symbol is weak. A type change is also OK if the old symbol
892 is undefined and the new symbol is defined. */
897 && h->root.type == bfd_link_hash_undefined))
898 *type_change_ok = TRUE;
900 /* It's OK to change the size if either the existing symbol or the
901 new symbol is weak, or if the old symbol is undefined. */
904 || h->root.type == bfd_link_hash_undefined)
905 *size_change_ok = TRUE;
907 /* If a new weak symbol comes from a regular file and the old symbol
908 comes from a dynamic library, we treat the new one as strong.
909 Similarly, an old weak symbol from a regular file is treated as
910 strong when the new symbol comes from a dynamic library. Further,
911 an old weak symbol from a dynamic library is treated as strong if
912 the new symbol is from a DT_NEEDED dynamic library. */
913 if (!newdyn && olddyn)
915 if ((!olddyn || dt_needed) && newdyn)
918 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
919 symbol, respectively, appears to be a common symbol in a dynamic
920 object. If a symbol appears in an uninitialized section, and is
921 not weak, and is not a function, then it may be a common symbol
922 which was resolved when the dynamic object was created. We want
923 to treat such symbols specially, because they raise special
924 considerations when setting the symbol size: if the symbol
925 appears as a common symbol in a regular object, and the size in
926 the regular object is larger, we must make sure that we use the
927 larger size. This problematic case can always be avoided in C,
928 but it must be handled correctly when using Fortran shared
931 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
932 likewise for OLDDYNCOMMON and OLDDEF.
934 Note that this test is just a heuristic, and that it is quite
935 possible to have an uninitialized symbol in a shared object which
936 is really a definition, rather than a common symbol. This could
937 lead to some minor confusion when the symbol really is a common
938 symbol in some regular object. However, I think it will be
944 && (sec->flags & SEC_ALLOC) != 0
945 && (sec->flags & SEC_LOAD) == 0
947 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
950 newdyncommon = FALSE;
954 && h->root.type == bfd_link_hash_defined
955 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
956 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
957 && (h->root.u.def.section->flags & SEC_LOAD) == 0
959 && h->type != STT_FUNC)
962 olddyncommon = FALSE;
964 /* If both the old and the new symbols look like common symbols in a
965 dynamic object, set the size of the symbol to the larger of the
970 && sym->st_size != h->size)
972 /* Since we think we have two common symbols, issue a multiple
973 common warning if desired. Note that we only warn if the
974 size is different. If the size is the same, we simply let
975 the old symbol override the new one as normally happens with
976 symbols defined in dynamic objects. */
978 if (! ((*info->callbacks->multiple_common)
979 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
980 h->size, abfd, bfd_link_hash_common, sym->st_size)))
983 if (sym->st_size > h->size)
984 h->size = sym->st_size;
986 *size_change_ok = TRUE;
989 /* If we are looking at a dynamic object, and we have found a
990 definition, we need to see if the symbol was already defined by
991 some other object. If so, we want to use the existing
992 definition, and we do not want to report a multiple symbol
993 definition error; we do this by clobbering *PSEC to be
996 We treat a common symbol as a definition if the symbol in the
997 shared library is a function, since common symbols always
998 represent variables; this can cause confusion in principle, but
999 any such confusion would seem to indicate an erroneous program or
1000 shared library. We also permit a common symbol in a regular
1001 object to override a weak symbol in a shared object. */
1006 || (h->root.type == bfd_link_hash_common
1008 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
1009 && (!oldweak || newweak))
1013 newdyncommon = FALSE;
1015 *psec = sec = bfd_und_section_ptr;
1016 *size_change_ok = TRUE;
1018 /* If we get here when the old symbol is a common symbol, then
1019 we are explicitly letting it override a weak symbol or
1020 function in a dynamic object, and we don't want to warn about
1021 a type change. If the old symbol is a defined symbol, a type
1022 change warning may still be appropriate. */
1024 if (h->root.type == bfd_link_hash_common)
1025 *type_change_ok = TRUE;
1028 /* Handle the special case of an old common symbol merging with a
1029 new symbol which looks like a common symbol in a shared object.
1030 We change *PSEC and *PVALUE to make the new symbol look like a
1031 common symbol, and let _bfd_generic_link_add_one_symbol will do
1035 && h->root.type == bfd_link_hash_common)
1039 newdyncommon = FALSE;
1040 *pvalue = sym->st_size;
1041 *psec = sec = bfd_com_section_ptr;
1042 *size_change_ok = TRUE;
1045 /* If the old symbol is from a dynamic object, and the new symbol is
1046 a definition which is not from a dynamic object, then the new
1047 symbol overrides the old symbol. Symbols from regular files
1048 always take precedence over symbols from dynamic objects, even if
1049 they are defined after the dynamic object in the link.
1051 As above, we again permit a common symbol in a regular object to
1052 override a definition in a shared object if the shared object
1053 symbol is a function or is weak.
1055 As above, we permit a non-weak definition in a shared object to
1056 override a weak definition in a regular object. */
1061 || (bfd_is_com_section (sec)
1063 || h->type == STT_FUNC)))
1066 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1067 && (!newweak || oldweak))
1069 /* Change the hash table entry to undefined, and let
1070 _bfd_generic_link_add_one_symbol do the right thing with the
1073 h->root.type = bfd_link_hash_undefined;
1074 h->root.u.undef.abfd = h->root.u.def.section->owner;
1075 *size_change_ok = TRUE;
1078 olddyncommon = FALSE;
1080 /* We again permit a type change when a common symbol may be
1081 overriding a function. */
1083 if (bfd_is_com_section (sec))
1084 *type_change_ok = TRUE;
1086 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1089 /* This union may have been set to be non-NULL when this symbol
1090 was seen in a dynamic object. We must force the union to be
1091 NULL, so that it is correct for a regular symbol. */
1092 h->verinfo.vertree = NULL;
1095 /* Handle the special case of a new common symbol merging with an
1096 old symbol that looks like it might be a common symbol defined in
1097 a shared object. Note that we have already handled the case in
1098 which a new common symbol should simply override the definition
1099 in the shared library. */
1102 && bfd_is_com_section (sec)
1105 /* It would be best if we could set the hash table entry to a
1106 common symbol, but we don't know what to use for the section
1107 or the alignment. */
1108 if (! ((*info->callbacks->multiple_common)
1109 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1110 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1113 /* If the presumed common symbol in the dynamic object is
1114 larger, pretend that the new symbol has its size. */
1116 if (h->size > *pvalue)
1119 /* FIXME: We no longer know the alignment required by the symbol
1120 in the dynamic object, so we just wind up using the one from
1121 the regular object. */
1124 olddyncommon = FALSE;
1126 h->root.type = bfd_link_hash_undefined;
1127 h->root.u.undef.abfd = h->root.u.def.section->owner;
1129 *size_change_ok = TRUE;
1130 *type_change_ok = TRUE;
1132 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1135 h->verinfo.vertree = NULL;
1140 /* Handle the case where we had a versioned symbol in a dynamic
1141 library and now find a definition in a normal object. In this
1142 case, we make the versioned symbol point to the normal one. */
1143 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1144 flip->root.type = h->root.type;
1145 h->root.type = bfd_link_hash_indirect;
1146 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1147 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1148 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1149 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1151 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1152 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1159 /* This function is called to create an indirect symbol from the
1160 default for the symbol with the default version if needed. The
1161 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1162 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
1163 indicates if it comes from a DT_NEEDED entry of a shared object. */
1166 _bfd_elf_add_default_symbol (bfd *abfd,
1167 struct bfd_link_info *info,
1168 struct elf_link_hash_entry *h,
1170 Elf_Internal_Sym *sym,
1173 bfd_boolean *dynsym,
1174 bfd_boolean override,
1175 bfd_boolean dt_needed)
1177 bfd_boolean type_change_ok;
1178 bfd_boolean size_change_ok;
1181 struct elf_link_hash_entry *hi;
1182 struct bfd_link_hash_entry *bh;
1183 const struct elf_backend_data *bed;
1184 bfd_boolean collect;
1185 bfd_boolean dynamic;
1187 size_t len, shortlen;
1190 /* If this symbol has a version, and it is the default version, we
1191 create an indirect symbol from the default name to the fully
1192 decorated name. This will cause external references which do not
1193 specify a version to be bound to this version of the symbol. */
1194 p = strchr (name, ELF_VER_CHR);
1195 if (p == NULL || p[1] != ELF_VER_CHR)
1200 /* We are overridden by an old definition. We need to check if we
1201 need to create the indirect symbol from the default name. */
1202 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1204 BFD_ASSERT (hi != NULL);
1207 while (hi->root.type == bfd_link_hash_indirect
1208 || hi->root.type == bfd_link_hash_warning)
1210 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1216 bed = get_elf_backend_data (abfd);
1217 collect = bed->collect;
1218 dynamic = (abfd->flags & DYNAMIC) != 0;
1220 shortlen = p - name;
1221 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1222 if (shortname == NULL)
1224 memcpy (shortname, name, shortlen);
1225 shortname[shortlen] = '\0';
1227 /* We are going to create a new symbol. Merge it with any existing
1228 symbol with this name. For the purposes of the merge, act as
1229 though we were defining the symbol we just defined, although we
1230 actually going to define an indirect symbol. */
1231 type_change_ok = FALSE;
1232 size_change_ok = FALSE;
1234 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1235 &hi, &skip, &override, &type_change_ok,
1236 &size_change_ok, dt_needed))
1245 if (! (_bfd_generic_link_add_one_symbol
1246 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1247 0, name, FALSE, collect, &bh)))
1249 hi = (struct elf_link_hash_entry *) bh;
1253 /* In this case the symbol named SHORTNAME is overriding the
1254 indirect symbol we want to add. We were planning on making
1255 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1256 is the name without a version. NAME is the fully versioned
1257 name, and it is the default version.
1259 Overriding means that we already saw a definition for the
1260 symbol SHORTNAME in a regular object, and it is overriding
1261 the symbol defined in the dynamic object.
1263 When this happens, we actually want to change NAME, the
1264 symbol we just added, to refer to SHORTNAME. This will cause
1265 references to NAME in the shared object to become references
1266 to SHORTNAME in the regular object. This is what we expect
1267 when we override a function in a shared object: that the
1268 references in the shared object will be mapped to the
1269 definition in the regular object. */
1271 while (hi->root.type == bfd_link_hash_indirect
1272 || hi->root.type == bfd_link_hash_warning)
1273 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1275 h->root.type = bfd_link_hash_indirect;
1276 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1277 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1279 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1280 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1281 if (hi->elf_link_hash_flags
1282 & (ELF_LINK_HASH_REF_REGULAR
1283 | ELF_LINK_HASH_DEF_REGULAR))
1285 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1290 /* Now set HI to H, so that the following code will set the
1291 other fields correctly. */
1295 /* If there is a duplicate definition somewhere, then HI may not
1296 point to an indirect symbol. We will have reported an error to
1297 the user in that case. */
1299 if (hi->root.type == bfd_link_hash_indirect)
1301 struct elf_link_hash_entry *ht;
1303 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1304 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1306 /* See if the new flags lead us to realize that the symbol must
1313 || ((hi->elf_link_hash_flags
1314 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1319 if ((hi->elf_link_hash_flags
1320 & ELF_LINK_HASH_REF_REGULAR) != 0)
1326 /* We also need to define an indirection from the nondefault version
1330 len = strlen (name);
1331 shortname = bfd_hash_allocate (&info->hash->table, len);
1332 if (shortname == NULL)
1334 memcpy (shortname, name, shortlen);
1335 memcpy (shortname + shortlen, p + 1, len - shortlen);
1337 /* Once again, merge with any existing symbol. */
1338 type_change_ok = FALSE;
1339 size_change_ok = FALSE;
1341 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1342 &hi, &skip, &override, &type_change_ok,
1343 &size_change_ok, dt_needed))
1351 /* Here SHORTNAME is a versioned name, so we don't expect to see
1352 the type of override we do in the case above unless it is
1353 overridden by a versioned definition. */
1354 if (hi->root.type != bfd_link_hash_defined
1355 && hi->root.type != bfd_link_hash_defweak)
1356 (*_bfd_error_handler)
1357 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1358 bfd_archive_filename (abfd), shortname);
1363 if (! (_bfd_generic_link_add_one_symbol
1364 (info, abfd, shortname, BSF_INDIRECT,
1365 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1367 hi = (struct elf_link_hash_entry *) bh;
1369 /* If there is a duplicate definition somewhere, then HI may not
1370 point to an indirect symbol. We will have reported an error
1371 to the user in that case. */
1373 if (hi->root.type == bfd_link_hash_indirect)
1375 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1377 /* See if the new flags lead us to realize that the symbol
1384 || ((hi->elf_link_hash_flags
1385 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1390 if ((hi->elf_link_hash_flags
1391 & ELF_LINK_HASH_REF_REGULAR) != 0)
1401 /* This routine is used to export all defined symbols into the dynamic
1402 symbol table. It is called via elf_link_hash_traverse. */
1405 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1407 struct elf_info_failed *eif = data;
1409 /* Ignore indirect symbols. These are added by the versioning code. */
1410 if (h->root.type == bfd_link_hash_indirect)
1413 if (h->root.type == bfd_link_hash_warning)
1414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1416 if (h->dynindx == -1
1417 && (h->elf_link_hash_flags
1418 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1420 struct bfd_elf_version_tree *t;
1421 struct bfd_elf_version_expr *d;
1423 for (t = eif->verdefs; t != NULL; t = t->next)
1425 if (t->globals.list != NULL)
1427 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1432 if (t->locals.list != NULL)
1434 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1443 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
1454 /* Look through the symbols which are defined in other shared
1455 libraries and referenced here. Update the list of version
1456 dependencies. This will be put into the .gnu.version_r section.
1457 This function is called via elf_link_hash_traverse. */
1460 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1463 struct elf_find_verdep_info *rinfo = data;
1464 Elf_Internal_Verneed *t;
1465 Elf_Internal_Vernaux *a;
1468 if (h->root.type == bfd_link_hash_warning)
1469 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1471 /* We only care about symbols defined in shared objects with version
1473 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1474 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1476 || h->verinfo.verdef == NULL)
1479 /* See if we already know about this version. */
1480 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1482 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1485 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1486 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1492 /* This is a new version. Add it to tree we are building. */
1497 t = bfd_zalloc (rinfo->output_bfd, amt);
1500 rinfo->failed = TRUE;
1504 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1505 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1506 elf_tdata (rinfo->output_bfd)->verref = t;
1510 a = bfd_zalloc (rinfo->output_bfd, amt);
1512 /* Note that we are copying a string pointer here, and testing it
1513 above. If bfd_elf_string_from_elf_section is ever changed to
1514 discard the string data when low in memory, this will have to be
1516 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1518 a->vna_flags = h->verinfo.verdef->vd_flags;
1519 a->vna_nextptr = t->vn_auxptr;
1521 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1524 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1531 /* Figure out appropriate versions for all the symbols. We may not
1532 have the version number script until we have read all of the input
1533 files, so until that point we don't know which symbols should be
1534 local. This function is called via elf_link_hash_traverse. */
1537 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1539 struct elf_assign_sym_version_info *sinfo;
1540 struct bfd_link_info *info;
1541 const struct elf_backend_data *bed;
1542 struct elf_info_failed eif;
1549 if (h->root.type == bfd_link_hash_warning)
1550 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1552 /* Fix the symbol flags. */
1555 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1558 sinfo->failed = TRUE;
1562 /* We only need version numbers for symbols defined in regular
1564 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1567 bed = get_elf_backend_data (sinfo->output_bfd);
1568 p = strchr (h->root.root.string, ELF_VER_CHR);
1569 if (p != NULL && h->verinfo.vertree == NULL)
1571 struct bfd_elf_version_tree *t;
1576 /* There are two consecutive ELF_VER_CHR characters if this is
1577 not a hidden symbol. */
1579 if (*p == ELF_VER_CHR)
1585 /* If there is no version string, we can just return out. */
1589 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1593 /* Look for the version. If we find it, it is no longer weak. */
1594 for (t = sinfo->verdefs; t != NULL; t = t->next)
1596 if (strcmp (t->name, p) == 0)
1600 struct bfd_elf_version_expr *d;
1602 len = p - h->root.root.string;
1603 alc = bfd_malloc (len);
1606 memcpy (alc, h->root.root.string, len - 1);
1607 alc[len - 1] = '\0';
1608 if (alc[len - 2] == ELF_VER_CHR)
1609 alc[len - 2] = '\0';
1611 h->verinfo.vertree = t;
1615 if (t->globals.list != NULL)
1616 d = (*t->match) (&t->globals, NULL, alc);
1618 /* See if there is anything to force this symbol to
1620 if (d == NULL && t->locals.list != NULL)
1622 d = (*t->match) (&t->locals, NULL, alc);
1626 && ! info->export_dynamic)
1627 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1635 /* If we are building an application, we need to create a
1636 version node for this version. */
1637 if (t == NULL && info->executable)
1639 struct bfd_elf_version_tree **pp;
1642 /* If we aren't going to export this symbol, we don't need
1643 to worry about it. */
1644 if (h->dynindx == -1)
1648 t = bfd_zalloc (sinfo->output_bfd, amt);
1651 sinfo->failed = TRUE;
1656 t->name_indx = (unsigned int) -1;
1660 /* Don't count anonymous version tag. */
1661 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1663 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1665 t->vernum = version_index;
1669 h->verinfo.vertree = t;
1673 /* We could not find the version for a symbol when
1674 generating a shared archive. Return an error. */
1675 (*_bfd_error_handler)
1676 (_("%s: undefined versioned symbol name %s"),
1677 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
1678 bfd_set_error (bfd_error_bad_value);
1679 sinfo->failed = TRUE;
1684 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1687 /* If we don't have a version for this symbol, see if we can find
1689 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1691 struct bfd_elf_version_tree *t;
1692 struct bfd_elf_version_tree *local_ver;
1693 struct bfd_elf_version_expr *d;
1695 /* See if can find what version this symbol is in. If the
1696 symbol is supposed to be local, then don't actually register
1699 for (t = sinfo->verdefs; t != NULL; t = t->next)
1701 if (t->globals.list != NULL)
1703 bfd_boolean matched;
1707 while ((d = (*t->match) (&t->globals, d,
1708 h->root.root.string)) != NULL)
1713 /* There is a version without definition. Make
1714 the symbol the default definition for this
1716 h->verinfo.vertree = t;
1724 /* There is no undefined version for this symbol. Hide the
1726 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1729 if (t->locals.list != NULL)
1732 while ((d = (*t->match) (&t->locals, d,
1733 h->root.root.string)) != NULL)
1736 /* If the match is "*", keep looking for a more
1737 explicit, perhaps even global, match.
1738 XXX: Shouldn't this be !d->wildcard instead? */
1739 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1748 if (local_ver != NULL)
1750 h->verinfo.vertree = local_ver;
1751 if (h->dynindx != -1
1753 && ! info->export_dynamic)
1755 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1763 /* Read and swap the relocs from the section indicated by SHDR. This
1764 may be either a REL or a RELA section. The relocations are
1765 translated into RELA relocations and stored in INTERNAL_RELOCS,
1766 which should have already been allocated to contain enough space.
1767 The EXTERNAL_RELOCS are a buffer where the external form of the
1768 relocations should be stored.
1770 Returns FALSE if something goes wrong. */
1773 elf_link_read_relocs_from_section (bfd *abfd,
1775 Elf_Internal_Shdr *shdr,
1776 void *external_relocs,
1777 Elf_Internal_Rela *internal_relocs)
1779 const struct elf_backend_data *bed;
1780 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1781 const bfd_byte *erela;
1782 const bfd_byte *erelaend;
1783 Elf_Internal_Rela *irela;
1784 Elf_Internal_Shdr *symtab_hdr;
1787 /* Position ourselves at the start of the section. */
1788 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1791 /* Read the relocations. */
1792 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1795 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1796 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1798 bed = get_elf_backend_data (abfd);
1800 /* Convert the external relocations to the internal format. */
1801 if (shdr->sh_entsize == bed->s->sizeof_rel)
1802 swap_in = bed->s->swap_reloc_in;
1803 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1804 swap_in = bed->s->swap_reloca_in;
1807 bfd_set_error (bfd_error_wrong_format);
1811 erela = external_relocs;
1812 erelaend = erela + shdr->sh_size;
1813 irela = internal_relocs;
1814 while (erela < erelaend)
1818 (*swap_in) (abfd, erela, irela);
1819 r_symndx = ELF32_R_SYM (irela->r_info);
1820 if (bed->s->arch_size == 64)
1822 if ((size_t) r_symndx >= nsyms)
1824 (*_bfd_error_handler)
1825 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"),
1826 bfd_archive_filename (abfd), (unsigned long) r_symndx,
1827 (unsigned long) nsyms, irela->r_offset, sec->name);
1828 bfd_set_error (bfd_error_bad_value);
1831 irela += bed->s->int_rels_per_ext_rel;
1832 erela += shdr->sh_entsize;
1838 /* Read and swap the relocs for a section O. They may have been
1839 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1840 not NULL, they are used as buffers to read into. They are known to
1841 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1842 the return value is allocated using either malloc or bfd_alloc,
1843 according to the KEEP_MEMORY argument. If O has two relocation
1844 sections (both REL and RELA relocations), then the REL_HDR
1845 relocations will appear first in INTERNAL_RELOCS, followed by the
1846 REL_HDR2 relocations. */
1849 _bfd_elf_link_read_relocs (bfd *abfd,
1851 void *external_relocs,
1852 Elf_Internal_Rela *internal_relocs,
1853 bfd_boolean keep_memory)
1855 Elf_Internal_Shdr *rel_hdr;
1856 void *alloc1 = NULL;
1857 Elf_Internal_Rela *alloc2 = NULL;
1858 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1860 if (elf_section_data (o)->relocs != NULL)
1861 return elf_section_data (o)->relocs;
1863 if (o->reloc_count == 0)
1866 rel_hdr = &elf_section_data (o)->rel_hdr;
1868 if (internal_relocs == NULL)
1872 size = o->reloc_count;
1873 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1875 internal_relocs = bfd_alloc (abfd, size);
1877 internal_relocs = alloc2 = bfd_malloc (size);
1878 if (internal_relocs == NULL)
1882 if (external_relocs == NULL)
1884 bfd_size_type size = rel_hdr->sh_size;
1886 if (elf_section_data (o)->rel_hdr2)
1887 size += elf_section_data (o)->rel_hdr2->sh_size;
1888 alloc1 = bfd_malloc (size);
1891 external_relocs = alloc1;
1894 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
1898 if (elf_section_data (o)->rel_hdr2
1899 && (!elf_link_read_relocs_from_section
1901 elf_section_data (o)->rel_hdr2,
1902 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1903 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1904 * bed->s->int_rels_per_ext_rel))))
1907 /* Cache the results for next time, if we can. */
1909 elf_section_data (o)->relocs = internal_relocs;
1914 /* Don't free alloc2, since if it was allocated we are passing it
1915 back (under the name of internal_relocs). */
1917 return internal_relocs;
1927 /* Compute the size of, and allocate space for, REL_HDR which is the
1928 section header for a section containing relocations for O. */
1931 _bfd_elf_link_size_reloc_section (bfd *abfd,
1932 Elf_Internal_Shdr *rel_hdr,
1935 bfd_size_type reloc_count;
1936 bfd_size_type num_rel_hashes;
1938 /* Figure out how many relocations there will be. */
1939 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1940 reloc_count = elf_section_data (o)->rel_count;
1942 reloc_count = elf_section_data (o)->rel_count2;
1944 num_rel_hashes = o->reloc_count;
1945 if (num_rel_hashes < reloc_count)
1946 num_rel_hashes = reloc_count;
1948 /* That allows us to calculate the size of the section. */
1949 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1951 /* The contents field must last into write_object_contents, so we
1952 allocate it with bfd_alloc rather than malloc. Also since we
1953 cannot be sure that the contents will actually be filled in,
1954 we zero the allocated space. */
1955 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
1956 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1959 /* We only allocate one set of hash entries, so we only do it the
1960 first time we are called. */
1961 if (elf_section_data (o)->rel_hashes == NULL
1964 struct elf_link_hash_entry **p;
1966 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
1970 elf_section_data (o)->rel_hashes = p;
1976 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
1977 originated from the section given by INPUT_REL_HDR) to the
1981 _bfd_elf_link_output_relocs (bfd *output_bfd,
1982 asection *input_section,
1983 Elf_Internal_Shdr *input_rel_hdr,
1984 Elf_Internal_Rela *internal_relocs)
1986 Elf_Internal_Rela *irela;
1987 Elf_Internal_Rela *irelaend;
1989 Elf_Internal_Shdr *output_rel_hdr;
1990 asection *output_section;
1991 unsigned int *rel_countp = NULL;
1992 const struct elf_backend_data *bed;
1993 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
1995 output_section = input_section->output_section;
1996 output_rel_hdr = NULL;
1998 if (elf_section_data (output_section)->rel_hdr.sh_entsize
1999 == input_rel_hdr->sh_entsize)
2001 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2002 rel_countp = &elf_section_data (output_section)->rel_count;
2004 else if (elf_section_data (output_section)->rel_hdr2
2005 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2006 == input_rel_hdr->sh_entsize))
2008 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2009 rel_countp = &elf_section_data (output_section)->rel_count2;
2013 (*_bfd_error_handler)
2014 (_("%s: relocation size mismatch in %s section %s"),
2015 bfd_get_filename (output_bfd),
2016 bfd_archive_filename (input_section->owner),
2017 input_section->name);
2018 bfd_set_error (bfd_error_wrong_object_format);
2022 bed = get_elf_backend_data (output_bfd);
2023 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2024 swap_out = bed->s->swap_reloc_out;
2025 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2026 swap_out = bed->s->swap_reloca_out;
2030 erel = output_rel_hdr->contents;
2031 erel += *rel_countp * input_rel_hdr->sh_entsize;
2032 irela = internal_relocs;
2033 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2034 * bed->s->int_rels_per_ext_rel);
2035 while (irela < irelaend)
2037 (*swap_out) (output_bfd, irela, erel);
2038 irela += bed->s->int_rels_per_ext_rel;
2039 erel += input_rel_hdr->sh_entsize;
2042 /* Bump the counter, so that we know where to add the next set of
2044 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2049 /* Fix up the flags for a symbol. This handles various cases which
2050 can only be fixed after all the input files are seen. This is
2051 currently called by both adjust_dynamic_symbol and
2052 assign_sym_version, which is unnecessary but perhaps more robust in
2053 the face of future changes. */
2056 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2057 struct elf_info_failed *eif)
2059 /* If this symbol was mentioned in a non-ELF file, try to set
2060 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2061 permit a non-ELF file to correctly refer to a symbol defined in
2062 an ELF dynamic object. */
2063 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2065 while (h->root.type == bfd_link_hash_indirect)
2066 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2068 if (h->root.type != bfd_link_hash_defined
2069 && h->root.type != bfd_link_hash_defweak)
2070 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2071 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2074 if (h->root.u.def.section->owner != NULL
2075 && (bfd_get_flavour (h->root.u.def.section->owner)
2076 == bfd_target_elf_flavour))
2077 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2078 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2080 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2083 if (h->dynindx == -1
2084 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2085 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2087 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
2096 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2097 was first seen in a non-ELF file. Fortunately, if the symbol
2098 was first seen in an ELF file, we're probably OK unless the
2099 symbol was defined in a non-ELF file. Catch that case here.
2100 FIXME: We're still in trouble if the symbol was first seen in
2101 a dynamic object, and then later in a non-ELF regular object. */
2102 if ((h->root.type == bfd_link_hash_defined
2103 || h->root.type == bfd_link_hash_defweak)
2104 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2105 && (h->root.u.def.section->owner != NULL
2106 ? (bfd_get_flavour (h->root.u.def.section->owner)
2107 != bfd_target_elf_flavour)
2108 : (bfd_is_abs_section (h->root.u.def.section)
2109 && (h->elf_link_hash_flags
2110 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2111 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2114 /* If this is a final link, and the symbol was defined as a common
2115 symbol in a regular object file, and there was no definition in
2116 any dynamic object, then the linker will have allocated space for
2117 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2118 flag will not have been set. */
2119 if (h->root.type == bfd_link_hash_defined
2120 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2121 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2122 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2123 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2124 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2126 /* If -Bsymbolic was used (which means to bind references to global
2127 symbols to the definition within the shared object), and this
2128 symbol was defined in a regular object, then it actually doesn't
2129 need a PLT entry. Likewise, if the symbol has non-default
2130 visibility. If the symbol has hidden or internal visibility, we
2131 will force it local. */
2132 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2133 && eif->info->shared
2134 && is_elf_hash_table (eif->info->hash)
2135 && (eif->info->symbolic
2136 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2137 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2139 const struct elf_backend_data *bed;
2140 bfd_boolean force_local;
2142 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2144 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2145 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2146 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2149 /* If a weak undefined symbol has non-default visibility, we also
2150 hide it from the dynamic linker. */
2151 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2152 && h->root.type == bfd_link_hash_undefweak)
2154 const struct elf_backend_data *bed;
2155 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2156 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2159 /* If this is a weak defined symbol in a dynamic object, and we know
2160 the real definition in the dynamic object, copy interesting flags
2161 over to the real definition. */
2162 if (h->weakdef != NULL)
2164 struct elf_link_hash_entry *weakdef;
2166 weakdef = h->weakdef;
2167 if (h->root.type == bfd_link_hash_indirect)
2168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2170 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2171 || h->root.type == bfd_link_hash_defweak);
2172 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2173 || weakdef->root.type == bfd_link_hash_defweak);
2174 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2176 /* If the real definition is defined by a regular object file,
2177 don't do anything special. See the longer description in
2178 _bfd_elf_adjust_dynamic_symbol, below. */
2179 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2183 const struct elf_backend_data *bed;
2185 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2186 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2193 /* Make the backend pick a good value for a dynamic symbol. This is
2194 called via elf_link_hash_traverse, and also calls itself
2198 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2200 struct elf_info_failed *eif = data;
2202 const struct elf_backend_data *bed;
2204 if (! is_elf_hash_table (eif->info->hash))
2207 if (h->root.type == bfd_link_hash_warning)
2209 h->plt = elf_hash_table (eif->info)->init_offset;
2210 h->got = elf_hash_table (eif->info)->init_offset;
2212 /* When warning symbols are created, they **replace** the "real"
2213 entry in the hash table, thus we never get to see the real
2214 symbol in a hash traversal. So look at it now. */
2215 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2218 /* Ignore indirect symbols. These are added by the versioning code. */
2219 if (h->root.type == bfd_link_hash_indirect)
2222 /* Fix the symbol flags. */
2223 if (! _bfd_elf_fix_symbol_flags (h, eif))
2226 /* If this symbol does not require a PLT entry, and it is not
2227 defined by a dynamic object, or is not referenced by a regular
2228 object, ignore it. We do have to handle a weak defined symbol,
2229 even if no regular object refers to it, if we decided to add it
2230 to the dynamic symbol table. FIXME: Do we normally need to worry
2231 about symbols which are defined by one dynamic object and
2232 referenced by another one? */
2233 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2234 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2235 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2236 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2237 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2239 h->plt = elf_hash_table (eif->info)->init_offset;
2243 /* If we've already adjusted this symbol, don't do it again. This
2244 can happen via a recursive call. */
2245 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2248 /* Don't look at this symbol again. Note that we must set this
2249 after checking the above conditions, because we may look at a
2250 symbol once, decide not to do anything, and then get called
2251 recursively later after REF_REGULAR is set below. */
2252 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2254 /* If this is a weak definition, and we know a real definition, and
2255 the real symbol is not itself defined by a regular object file,
2256 then get a good value for the real definition. We handle the
2257 real symbol first, for the convenience of the backend routine.
2259 Note that there is a confusing case here. If the real definition
2260 is defined by a regular object file, we don't get the real symbol
2261 from the dynamic object, but we do get the weak symbol. If the
2262 processor backend uses a COPY reloc, then if some routine in the
2263 dynamic object changes the real symbol, we will not see that
2264 change in the corresponding weak symbol. This is the way other
2265 ELF linkers work as well, and seems to be a result of the shared
2268 I will clarify this issue. Most SVR4 shared libraries define the
2269 variable _timezone and define timezone as a weak synonym. The
2270 tzset call changes _timezone. If you write
2271 extern int timezone;
2273 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2274 you might expect that, since timezone is a synonym for _timezone,
2275 the same number will print both times. However, if the processor
2276 backend uses a COPY reloc, then actually timezone will be copied
2277 into your process image, and, since you define _timezone
2278 yourself, _timezone will not. Thus timezone and _timezone will
2279 wind up at different memory locations. The tzset call will set
2280 _timezone, leaving timezone unchanged. */
2282 if (h->weakdef != NULL)
2284 /* If we get to this point, we know there is an implicit
2285 reference by a regular object file via the weak symbol H.
2286 FIXME: Is this really true? What if the traversal finds
2287 H->WEAKDEF before it finds H? */
2288 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2290 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
2294 /* If a symbol has no type and no size and does not require a PLT
2295 entry, then we are probably about to do the wrong thing here: we
2296 are probably going to create a COPY reloc for an empty object.
2297 This case can arise when a shared object is built with assembly
2298 code, and the assembly code fails to set the symbol type. */
2300 && h->type == STT_NOTYPE
2301 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2302 (*_bfd_error_handler)
2303 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2304 h->root.root.string);
2306 dynobj = elf_hash_table (eif->info)->dynobj;
2307 bed = get_elf_backend_data (dynobj);
2308 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2317 /* Adjust all external symbols pointing into SEC_MERGE sections
2318 to reflect the object merging within the sections. */
2321 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2325 if (h->root.type == bfd_link_hash_warning)
2326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2328 if ((h->root.type == bfd_link_hash_defined
2329 || h->root.type == bfd_link_hash_defweak)
2330 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2331 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2333 bfd *output_bfd = data;
2335 h->root.u.def.value =
2336 _bfd_merged_section_offset (output_bfd,
2337 &h->root.u.def.section,
2338 elf_section_data (sec)->sec_info,
2339 h->root.u.def.value, 0);
2345 /* Returns false if the symbol referred to by H should be considered
2346 to resolve local to the current module, and true if it should be
2347 considered to bind dynamically. */
2350 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2351 struct bfd_link_info *info,
2352 bfd_boolean ignore_protected)
2354 bfd_boolean binding_stays_local_p;
2359 while (h->root.type == bfd_link_hash_indirect
2360 || h->root.type == bfd_link_hash_warning)
2361 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2363 /* If it was forced local, then clearly it's not dynamic. */
2364 if (h->dynindx == -1)
2366 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2369 /* Identify the cases where name binding rules say that a
2370 visible symbol resolves locally. */
2371 binding_stays_local_p = info->executable || info->symbolic;
2373 switch (ELF_ST_VISIBILITY (h->other))
2380 /* Proper resolution for function pointer equality may require
2381 that these symbols perhaps be resolved dynamically, even though
2382 we should be resolving them to the current module. */
2383 if (!ignore_protected)
2384 binding_stays_local_p = TRUE;
2391 /* If it isn't defined locally, then clearly it's dynamic. */
2392 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2395 /* Otherwise, the symbol is dynamic if binding rules don't tell
2396 us that it remains local. */
2397 return !binding_stays_local_p;
2400 /* Return true if the symbol referred to by H should be considered
2401 to resolve local to the current module, and false otherwise. Differs
2402 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2403 undefined symbols and weak symbols. */
2406 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2407 struct bfd_link_info *info,
2408 bfd_boolean local_protected)
2410 /* If it's a local sym, of course we resolve locally. */
2414 /* If we don't have a definition in a regular file, then we can't
2415 resolve locally. The sym is either undefined or dynamic. */
2416 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2419 /* Forced local symbols resolve locally. */
2420 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2423 /* As do non-dynamic symbols. */
2424 if (h->dynindx == -1)
2427 /* At this point, we know the symbol is defined and dynamic. In an
2428 executable it must resolve locally, likewise when building symbolic
2429 shared libraries. */
2430 if (info->executable || info->symbolic)
2433 /* Now deal with defined dynamic symbols in shared libraries. Ones
2434 with default visibility might not resolve locally. */
2435 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2438 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2439 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2442 /* Function pointer equality tests may require that STV_PROTECTED
2443 symbols be treated as dynamic symbols, even when we know that the
2444 dynamic linker will resolve them locally. */
2445 return local_protected;
2448 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2449 aligned. Returns the first TLS output section. */
2451 struct bfd_section *
2452 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2454 struct bfd_section *sec, *tls;
2455 unsigned int align = 0;
2457 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2458 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2462 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2463 if (sec->alignment_power > align)
2464 align = sec->alignment_power;
2466 elf_hash_table (info)->tls_sec = tls;
2468 /* Ensure the alignment of the first section is the largest alignment,
2469 so that the tls segment starts aligned. */
2471 tls->alignment_power = align;
2476 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2478 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2479 Elf_Internal_Sym *sym)
2481 /* Local symbols do not count, but target specific ones might. */
2482 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2483 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2486 /* Function symbols do not count. */
2487 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2490 /* If the section is undefined, then so is the symbol. */
2491 if (sym->st_shndx == SHN_UNDEF)
2494 /* If the symbol is defined in the common section, then
2495 it is a common definition and so does not count. */
2496 if (sym->st_shndx == SHN_COMMON)
2499 /* If the symbol is in a target specific section then we
2500 must rely upon the backend to tell us what it is. */
2501 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2502 /* FIXME - this function is not coded yet:
2504 return _bfd_is_global_symbol_definition (abfd, sym);
2506 Instead for now assume that the definition is not global,
2507 Even if this is wrong, at least the linker will behave
2508 in the same way that it used to do. */
2514 /* Search the symbol table of the archive element of the archive ABFD
2515 whose archive map contains a mention of SYMDEF, and determine if
2516 the symbol is defined in this element. */
2518 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2520 Elf_Internal_Shdr * hdr;
2521 bfd_size_type symcount;
2522 bfd_size_type extsymcount;
2523 bfd_size_type extsymoff;
2524 Elf_Internal_Sym *isymbuf;
2525 Elf_Internal_Sym *isym;
2526 Elf_Internal_Sym *isymend;
2529 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2533 if (! bfd_check_format (abfd, bfd_object))
2536 /* If we have already included the element containing this symbol in the
2537 link then we do not need to include it again. Just claim that any symbol
2538 it contains is not a definition, so that our caller will not decide to
2539 (re)include this element. */
2540 if (abfd->archive_pass)
2543 /* Select the appropriate symbol table. */
2544 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2545 hdr = &elf_tdata (abfd)->symtab_hdr;
2547 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2549 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2551 /* The sh_info field of the symtab header tells us where the
2552 external symbols start. We don't care about the local symbols. */
2553 if (elf_bad_symtab (abfd))
2555 extsymcount = symcount;
2560 extsymcount = symcount - hdr->sh_info;
2561 extsymoff = hdr->sh_info;
2564 if (extsymcount == 0)
2567 /* Read in the symbol table. */
2568 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2570 if (isymbuf == NULL)
2573 /* Scan the symbol table looking for SYMDEF. */
2575 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2579 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2584 if (strcmp (name, symdef->name) == 0)
2586 result = is_global_data_symbol_definition (abfd, isym);
2596 /* Add symbols from an ELF archive file to the linker hash table. We
2597 don't use _bfd_generic_link_add_archive_symbols because of a
2598 problem which arises on UnixWare. The UnixWare libc.so is an
2599 archive which includes an entry libc.so.1 which defines a bunch of
2600 symbols. The libc.so archive also includes a number of other
2601 object files, which also define symbols, some of which are the same
2602 as those defined in libc.so.1. Correct linking requires that we
2603 consider each object file in turn, and include it if it defines any
2604 symbols we need. _bfd_generic_link_add_archive_symbols does not do
2605 this; it looks through the list of undefined symbols, and includes
2606 any object file which defines them. When this algorithm is used on
2607 UnixWare, it winds up pulling in libc.so.1 early and defining a
2608 bunch of symbols. This means that some of the other objects in the
2609 archive are not included in the link, which is incorrect since they
2610 precede libc.so.1 in the archive.
2612 Fortunately, ELF archive handling is simpler than that done by
2613 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
2614 oddities. In ELF, if we find a symbol in the archive map, and the
2615 symbol is currently undefined, we know that we must pull in that
2618 Unfortunately, we do have to make multiple passes over the symbol
2619 table until nothing further is resolved. */
2622 _bfd_elf_link_add_archive_symbols (bfd *abfd,
2623 struct bfd_link_info *info)
2626 bfd_boolean *defined = NULL;
2627 bfd_boolean *included = NULL;
2632 if (! bfd_has_map (abfd))
2634 /* An empty archive is a special case. */
2635 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
2637 bfd_set_error (bfd_error_no_armap);
2641 /* Keep track of all symbols we know to be already defined, and all
2642 files we know to be already included. This is to speed up the
2643 second and subsequent passes. */
2644 c = bfd_ardata (abfd)->symdef_count;
2648 amt *= sizeof (bfd_boolean);
2649 defined = bfd_zmalloc (amt);
2650 included = bfd_zmalloc (amt);
2651 if (defined == NULL || included == NULL)
2654 symdefs = bfd_ardata (abfd)->symdefs;
2667 symdefend = symdef + c;
2668 for (i = 0; symdef < symdefend; symdef++, i++)
2670 struct elf_link_hash_entry *h;
2672 struct bfd_link_hash_entry *undefs_tail;
2675 if (defined[i] || included[i])
2677 if (symdef->file_offset == last)
2683 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
2684 FALSE, FALSE, FALSE);
2691 /* If this is a default version (the name contains @@),
2692 look up the symbol again with only one `@' as well
2693 as without the version. The effect is that references
2694 to the symbol with and without the version will be
2695 matched by the default symbol in the archive. */
2697 p = strchr (symdef->name, ELF_VER_CHR);
2698 if (p == NULL || p[1] != ELF_VER_CHR)
2701 /* First check with only one `@'. */
2702 len = strlen (symdef->name);
2703 copy = bfd_alloc (abfd, len);
2706 first = p - symdef->name + 1;
2707 memcpy (copy, symdef->name, first);
2708 memcpy (copy + first, symdef->name + first + 1, len - first);
2710 h = elf_link_hash_lookup (elf_hash_table (info), copy,
2711 FALSE, FALSE, FALSE);
2715 /* We also need to check references to the symbol
2716 without the version. */
2718 copy[first - 1] = '\0';
2719 h = elf_link_hash_lookup (elf_hash_table (info),
2720 copy, FALSE, FALSE, FALSE);
2723 bfd_release (abfd, copy);
2729 if (h->root.type == bfd_link_hash_common)
2731 /* We currently have a common symbol. The archive map contains
2732 a reference to this symbol, so we may want to include it. We
2733 only want to include it however, if this archive element
2734 contains a definition of the symbol, not just another common
2737 Unfortunately some archivers (including GNU ar) will put
2738 declarations of common symbols into their archive maps, as
2739 well as real definitions, so we cannot just go by the archive
2740 map alone. Instead we must read in the element's symbol
2741 table and check that to see what kind of symbol definition
2743 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
2746 else if (h->root.type != bfd_link_hash_undefined)
2748 if (h->root.type != bfd_link_hash_undefweak)
2753 /* We need to include this archive member. */
2754 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2755 if (element == NULL)
2758 if (! bfd_check_format (element, bfd_object))
2761 /* Doublecheck that we have not included this object
2762 already--it should be impossible, but there may be
2763 something wrong with the archive. */
2764 if (element->archive_pass != 0)
2766 bfd_set_error (bfd_error_bad_value);
2769 element->archive_pass = 1;
2771 undefs_tail = info->hash->undefs_tail;
2773 if (! (*info->callbacks->add_archive_element) (info, element,
2776 if (! bfd_link_add_symbols (element, info))
2779 /* If there are any new undefined symbols, we need to make
2780 another pass through the archive in order to see whether
2781 they can be defined. FIXME: This isn't perfect, because
2782 common symbols wind up on undefs_tail and because an
2783 undefined symbol which is defined later on in this pass
2784 does not require another pass. This isn't a bug, but it
2785 does make the code less efficient than it could be. */
2786 if (undefs_tail != info->hash->undefs_tail)
2789 /* Look backward to mark all symbols from this object file
2790 which we have already seen in this pass. */
2794 included[mark] = TRUE;
2799 while (symdefs[mark].file_offset == symdef->file_offset);
2801 /* We mark subsequent symbols from this object file as we go
2802 on through the loop. */
2803 last = symdef->file_offset;
2814 if (defined != NULL)
2816 if (included != NULL)