2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
29 struct bfd_link_info *info;
32 static boolean elf_link_add_object_symbols
33 PARAMS ((bfd *, struct bfd_link_info *));
34 static boolean elf_link_add_archive_symbols
35 PARAMS ((bfd *, struct bfd_link_info *));
36 static boolean elf_merge_symbol
37 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
38 asection **, bfd_vma *, struct elf_link_hash_entry **,
39 boolean *, boolean *, boolean *, boolean));
40 static boolean elf_export_symbol
41 PARAMS ((struct elf_link_hash_entry *, PTR));
42 static boolean elf_fix_symbol_flags
43 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
44 static boolean elf_adjust_dynamic_symbol
45 PARAMS ((struct elf_link_hash_entry *, PTR));
46 static boolean elf_link_find_version_dependencies
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_link_find_version_dependencies
49 PARAMS ((struct elf_link_hash_entry *, PTR));
50 static boolean elf_link_assign_sym_version
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_collect_hash_codes
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_link_read_relocs_from_section
55 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
56 static void elf_link_output_relocs
57 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
58 static boolean elf_link_size_reloc_section
59 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
60 static void elf_link_adjust_relocs
61 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
62 struct elf_link_hash_entry **));
64 /* Given an ELF BFD, add symbols to the global hash table as
68 elf_bfd_link_add_symbols (abfd, info)
70 struct bfd_link_info *info;
72 switch (bfd_get_format (abfd))
75 return elf_link_add_object_symbols (abfd, info);
77 return elf_link_add_archive_symbols (abfd, info);
79 bfd_set_error (bfd_error_wrong_format);
84 /* Return true iff this is a non-common, definition of a non-function symbol. */
86 is_global_data_symbol_definition (abfd, sym)
87 bfd * abfd ATTRIBUTE_UNUSED;
88 Elf_Internal_Sym * sym;
90 /* Local symbols do not count, but target specific ones might. */
91 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
92 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
95 /* Function symbols do not count. */
96 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
99 /* If the section is undefined, then so is the symbol. */
100 if (sym->st_shndx == SHN_UNDEF)
103 /* If the symbol is defined in the common section, then
104 it is a common definition and so does not count. */
105 if (sym->st_shndx == SHN_COMMON)
108 /* If the symbol is in a target specific section then we
109 must rely upon the backend to tell us what it is. */
110 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
111 /* FIXME - this function is not coded yet:
113 return _bfd_is_global_symbol_definition (abfd, sym);
115 Instead for now assume that the definition is not global,
116 Even if this is wrong, at least the linker will behave
117 in the same way that it used to do. */
123 /* Search the symbol table of the archive element of the archive ABFD
124 whoes archive map contains a mention of SYMDEF, and determine if
125 the symbol is defined in this element. */
127 elf_link_is_defined_archive_symbol (abfd, symdef)
131 Elf_Internal_Shdr * hdr;
132 Elf_External_Sym * esym;
133 Elf_External_Sym * esymend;
134 Elf_External_Sym * buf = NULL;
138 boolean result = false;
140 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
141 if (abfd == (bfd *) NULL)
144 if (! bfd_check_format (abfd, bfd_object))
147 /* If we have already included the element containing this symbol in the
148 link then we do not need to include it again. Just claim that any symbol
149 it contains is not a definition, so that our caller will not decide to
150 (re)include this element. */
151 if (abfd->archive_pass)
154 /* Select the appropriate symbol table. */
155 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
156 hdr = &elf_tdata (abfd)->symtab_hdr;
158 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
160 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
162 /* The sh_info field of the symtab header tells us where the
163 external symbols start. We don't care about the local symbols. */
164 if (elf_bad_symtab (abfd))
166 extsymcount = symcount;
171 extsymcount = symcount - hdr->sh_info;
172 extsymoff = hdr->sh_info;
175 buf = ((Elf_External_Sym *)
176 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
177 if (buf == NULL && extsymcount != 0)
180 /* Read in the symbol table.
181 FIXME: This ought to be cached somewhere. */
183 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
185 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
186 != extsymcount * sizeof (Elf_External_Sym)))
192 /* Scan the symbol table looking for SYMDEF. */
193 esymend = buf + extsymcount;
198 Elf_Internal_Sym sym;
201 elf_swap_symbol_in (abfd, esym, & sym);
203 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
204 if (name == (const char *) NULL)
207 if (strcmp (name, symdef->name) == 0)
209 result = is_global_data_symbol_definition (abfd, & sym);
219 /* Add symbols from an ELF archive file to the linker hash table. We
220 don't use _bfd_generic_link_add_archive_symbols because of a
221 problem which arises on UnixWare. The UnixWare libc.so is an
222 archive which includes an entry libc.so.1 which defines a bunch of
223 symbols. The libc.so archive also includes a number of other
224 object files, which also define symbols, some of which are the same
225 as those defined in libc.so.1. Correct linking requires that we
226 consider each object file in turn, and include it if it defines any
227 symbols we need. _bfd_generic_link_add_archive_symbols does not do
228 this; it looks through the list of undefined symbols, and includes
229 any object file which defines them. When this algorithm is used on
230 UnixWare, it winds up pulling in libc.so.1 early and defining a
231 bunch of symbols. This means that some of the other objects in the
232 archive are not included in the link, which is incorrect since they
233 precede libc.so.1 in the archive.
235 Fortunately, ELF archive handling is simpler than that done by
236 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
237 oddities. In ELF, if we find a symbol in the archive map, and the
238 symbol is currently undefined, we know that we must pull in that
241 Unfortunately, we do have to make multiple passes over the symbol
242 table until nothing further is resolved. */
245 elf_link_add_archive_symbols (abfd, info)
247 struct bfd_link_info *info;
250 boolean *defined = NULL;
251 boolean *included = NULL;
255 if (! bfd_has_map (abfd))
257 /* An empty archive is a special case. */
258 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
260 bfd_set_error (bfd_error_no_armap);
264 /* Keep track of all symbols we know to be already defined, and all
265 files we know to be already included. This is to speed up the
266 second and subsequent passes. */
267 c = bfd_ardata (abfd)->symdef_count;
270 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
271 included = (boolean *) bfd_malloc (c * sizeof (boolean));
272 if (defined == (boolean *) NULL || included == (boolean *) NULL)
274 memset (defined, 0, c * sizeof (boolean));
275 memset (included, 0, c * sizeof (boolean));
277 symdefs = bfd_ardata (abfd)->symdefs;
290 symdefend = symdef + c;
291 for (i = 0; symdef < symdefend; symdef++, i++)
293 struct elf_link_hash_entry *h;
295 struct bfd_link_hash_entry *undefs_tail;
298 if (defined[i] || included[i])
300 if (symdef->file_offset == last)
306 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
307 false, false, false);
313 /* If this is a default version (the name contains @@),
314 look up the symbol again without the version. The
315 effect is that references to the symbol without the
316 version will be matched by the default symbol in the
319 p = strchr (symdef->name, ELF_VER_CHR);
320 if (p == NULL || p[1] != ELF_VER_CHR)
323 copy = bfd_alloc (abfd, p - symdef->name + 1);
326 memcpy (copy, symdef->name, p - symdef->name);
327 copy[p - symdef->name] = '\0';
329 h = elf_link_hash_lookup (elf_hash_table (info), copy,
330 false, false, false);
332 bfd_release (abfd, copy);
338 if (h->root.type == bfd_link_hash_common)
340 /* We currently have a common symbol. The archive map contains
341 a reference to this symbol, so we may want to include it. We
342 only want to include it however, if this archive element
343 contains a definition of the symbol, not just another common
346 Unfortunately some archivers (including GNU ar) will put
347 declarations of common symbols into their archive maps, as
348 well as real definitions, so we cannot just go by the archive
349 map alone. Instead we must read in the element's symbol
350 table and check that to see what kind of symbol definition
352 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
355 else if (h->root.type != bfd_link_hash_undefined)
357 if (h->root.type != bfd_link_hash_undefweak)
362 /* We need to include this archive member. */
363 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
364 if (element == (bfd *) NULL)
367 if (! bfd_check_format (element, bfd_object))
370 /* Doublecheck that we have not included this object
371 already--it should be impossible, but there may be
372 something wrong with the archive. */
373 if (element->archive_pass != 0)
375 bfd_set_error (bfd_error_bad_value);
378 element->archive_pass = 1;
380 undefs_tail = info->hash->undefs_tail;
382 if (! (*info->callbacks->add_archive_element) (info, element,
385 if (! elf_link_add_object_symbols (element, info))
388 /* If there are any new undefined symbols, we need to make
389 another pass through the archive in order to see whether
390 they can be defined. FIXME: This isn't perfect, because
391 common symbols wind up on undefs_tail and because an
392 undefined symbol which is defined later on in this pass
393 does not require another pass. This isn't a bug, but it
394 does make the code less efficient than it could be. */
395 if (undefs_tail != info->hash->undefs_tail)
398 /* Look backward to mark all symbols from this object file
399 which we have already seen in this pass. */
403 included[mark] = true;
408 while (symdefs[mark].file_offset == symdef->file_offset);
410 /* We mark subsequent symbols from this object file as we go
411 on through the loop. */
412 last = symdef->file_offset;
423 if (defined != (boolean *) NULL)
425 if (included != (boolean *) NULL)
430 /* This function is called when we want to define a new symbol. It
431 handles the various cases which arise when we find a definition in
432 a dynamic object, or when there is already a definition in a
433 dynamic object. The new symbol is described by NAME, SYM, PSEC,
434 and PVALUE. We set SYM_HASH to the hash table entry. We set
435 OVERRIDE if the old symbol is overriding a new definition. We set
436 TYPE_CHANGE_OK if it is OK for the type to change. We set
437 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
438 change, we mean that we shouldn't warn if the type or size does
439 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
443 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
444 override, type_change_ok, size_change_ok, dt_needed)
446 struct bfd_link_info *info;
448 Elf_Internal_Sym *sym;
451 struct elf_link_hash_entry **sym_hash;
453 boolean *type_change_ok;
454 boolean *size_change_ok;
458 struct elf_link_hash_entry *h;
461 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
466 bind = ELF_ST_BIND (sym->st_info);
468 if (! bfd_is_und_section (sec))
469 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
471 h = ((struct elf_link_hash_entry *)
472 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
477 /* This code is for coping with dynamic objects, and is only useful
478 if we are doing an ELF link. */
479 if (info->hash->creator != abfd->xvec)
482 /* For merging, we only care about real symbols. */
484 while (h->root.type == bfd_link_hash_indirect
485 || h->root.type == bfd_link_hash_warning)
486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
488 /* If we just created the symbol, mark it as being an ELF symbol.
489 Other than that, there is nothing to do--there is no merge issue
490 with a newly defined symbol--so we just return. */
492 if (h->root.type == bfd_link_hash_new)
494 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
498 /* OLDBFD is a BFD associated with the existing symbol. */
500 switch (h->root.type)
506 case bfd_link_hash_undefined:
507 case bfd_link_hash_undefweak:
508 oldbfd = h->root.u.undef.abfd;
511 case bfd_link_hash_defined:
512 case bfd_link_hash_defweak:
513 oldbfd = h->root.u.def.section->owner;
516 case bfd_link_hash_common:
517 oldbfd = h->root.u.c.p->section->owner;
521 /* In cases involving weak versioned symbols, we may wind up trying
522 to merge a symbol with itself. Catch that here, to avoid the
523 confusion that results if we try to override a symbol with
524 itself. The additional tests catch cases like
525 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
526 dynamic object, which we do want to handle here. */
528 && ((abfd->flags & DYNAMIC) == 0
529 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
532 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
533 respectively, is from a dynamic object. */
535 if ((abfd->flags & DYNAMIC) != 0)
541 olddyn = (oldbfd->flags & DYNAMIC) != 0;
546 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
547 indices used by MIPS ELF. */
548 switch (h->root.type)
554 case bfd_link_hash_defined:
555 case bfd_link_hash_defweak:
556 hsec = h->root.u.def.section;
559 case bfd_link_hash_common:
560 hsec = h->root.u.c.p->section;
567 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
570 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
571 respectively, appear to be a definition rather than reference. */
573 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
578 if (h->root.type == bfd_link_hash_undefined
579 || h->root.type == bfd_link_hash_undefweak
580 || h->root.type == bfd_link_hash_common)
585 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
586 symbol, respectively, appears to be a common symbol in a dynamic
587 object. If a symbol appears in an uninitialized section, and is
588 not weak, and is not a function, then it may be a common symbol
589 which was resolved when the dynamic object was created. We want
590 to treat such symbols specially, because they raise special
591 considerations when setting the symbol size: if the symbol
592 appears as a common symbol in a regular object, and the size in
593 the regular object is larger, we must make sure that we use the
594 larger size. This problematic case can always be avoided in C,
595 but it must be handled correctly when using Fortran shared
598 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
599 likewise for OLDDYNCOMMON and OLDDEF.
601 Note that this test is just a heuristic, and that it is quite
602 possible to have an uninitialized symbol in a shared object which
603 is really a definition, rather than a common symbol. This could
604 lead to some minor confusion when the symbol really is a common
605 symbol in some regular object. However, I think it will be
610 && (sec->flags & SEC_ALLOC) != 0
611 && (sec->flags & SEC_LOAD) == 0
614 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
617 newdyncommon = false;
621 && h->root.type == bfd_link_hash_defined
622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
623 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
624 && (h->root.u.def.section->flags & SEC_LOAD) == 0
626 && h->type != STT_FUNC)
629 olddyncommon = false;
631 /* It's OK to change the type if either the existing symbol or the
632 new symbol is weak unless it comes from a DT_NEEDED entry of
633 a shared object, in which case, the DT_NEEDED entry may not be
634 required at the run time. */
636 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
637 || h->root.type == bfd_link_hash_undefweak
639 *type_change_ok = true;
641 /* It's OK to change the size if either the existing symbol or the
642 new symbol is weak, or if the old symbol is undefined. */
645 || h->root.type == bfd_link_hash_undefined)
646 *size_change_ok = true;
648 /* If both the old and the new symbols look like common symbols in a
649 dynamic object, set the size of the symbol to the larger of the
654 && sym->st_size != h->size)
656 /* Since we think we have two common symbols, issue a multiple
657 common warning if desired. Note that we only warn if the
658 size is different. If the size is the same, we simply let
659 the old symbol override the new one as normally happens with
660 symbols defined in dynamic objects. */
662 if (! ((*info->callbacks->multiple_common)
663 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
664 h->size, abfd, bfd_link_hash_common, sym->st_size)))
667 if (sym->st_size > h->size)
668 h->size = sym->st_size;
670 *size_change_ok = true;
673 /* If we are looking at a dynamic object, and we have found a
674 definition, we need to see if the symbol was already defined by
675 some other object. If so, we want to use the existing
676 definition, and we do not want to report a multiple symbol
677 definition error; we do this by clobbering *PSEC to be
680 We treat a common symbol as a definition if the symbol in the
681 shared library is a function, since common symbols always
682 represent variables; this can cause confusion in principle, but
683 any such confusion would seem to indicate an erroneous program or
684 shared library. We also permit a common symbol in a regular
685 object to override a weak symbol in a shared object.
687 We prefer a non-weak definition in a shared library to a weak
688 definition in the executable unless it comes from a DT_NEEDED
689 entry of a shared object, in which case, the DT_NEEDED entry
690 may not be required at the run time. */
695 || (h->root.type == bfd_link_hash_common
697 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
698 && (h->root.type != bfd_link_hash_defweak
700 || bind == STB_WEAK))
704 newdyncommon = false;
706 *psec = sec = bfd_und_section_ptr;
707 *size_change_ok = true;
709 /* If we get here when the old symbol is a common symbol, then
710 we are explicitly letting it override a weak symbol or
711 function in a dynamic object, and we don't want to warn about
712 a type change. If the old symbol is a defined symbol, a type
713 change warning may still be appropriate. */
715 if (h->root.type == bfd_link_hash_common)
716 *type_change_ok = true;
719 /* Handle the special case of an old common symbol merging with a
720 new symbol which looks like a common symbol in a shared object.
721 We change *PSEC and *PVALUE to make the new symbol look like a
722 common symbol, and let _bfd_generic_link_add_one_symbol will do
726 && h->root.type == bfd_link_hash_common)
730 newdyncommon = false;
731 *pvalue = sym->st_size;
732 *psec = sec = bfd_com_section_ptr;
733 *size_change_ok = true;
736 /* If the old symbol is from a dynamic object, and the new symbol is
737 a definition which is not from a dynamic object, then the new
738 symbol overrides the old symbol. Symbols from regular files
739 always take precedence over symbols from dynamic objects, even if
740 they are defined after the dynamic object in the link.
742 As above, we again permit a common symbol in a regular object to
743 override a definition in a shared object if the shared object
744 symbol is a function or is weak.
746 As above, we permit a non-weak definition in a shared object to
747 override a weak definition in a regular object. */
751 || (bfd_is_com_section (sec)
752 && (h->root.type == bfd_link_hash_defweak
753 || h->type == STT_FUNC)))
756 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
758 || h->root.type == bfd_link_hash_defweak))
760 /* Change the hash table entry to undefined, and let
761 _bfd_generic_link_add_one_symbol do the right thing with the
764 h->root.type = bfd_link_hash_undefined;
765 h->root.u.undef.abfd = h->root.u.def.section->owner;
766 *size_change_ok = true;
769 olddyncommon = false;
771 /* We again permit a type change when a common symbol may be
772 overriding a function. */
774 if (bfd_is_com_section (sec))
775 *type_change_ok = true;
777 /* This union may have been set to be non-NULL when this symbol
778 was seen in a dynamic object. We must force the union to be
779 NULL, so that it is correct for a regular symbol. */
781 h->verinfo.vertree = NULL;
783 /* In this special case, if H is the target of an indirection,
784 we want the caller to frob with H rather than with the
785 indirect symbol. That will permit the caller to redefine the
786 target of the indirection, rather than the indirect symbol
787 itself. FIXME: This will break the -y option if we store a
788 symbol with a different name. */
792 /* Handle the special case of a new common symbol merging with an
793 old symbol that looks like it might be a common symbol defined in
794 a shared object. Note that we have already handled the case in
795 which a new common symbol should simply override the definition
796 in the shared library. */
799 && bfd_is_com_section (sec)
802 /* It would be best if we could set the hash table entry to a
803 common symbol, but we don't know what to use for the section
805 if (! ((*info->callbacks->multiple_common)
806 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
807 h->size, abfd, bfd_link_hash_common, sym->st_size)))
810 /* If the predumed common symbol in the dynamic object is
811 larger, pretend that the new symbol has its size. */
813 if (h->size > *pvalue)
816 /* FIXME: We no longer know the alignment required by the symbol
817 in the dynamic object, so we just wind up using the one from
818 the regular object. */
821 olddyncommon = false;
823 h->root.type = bfd_link_hash_undefined;
824 h->root.u.undef.abfd = h->root.u.def.section->owner;
826 *size_change_ok = true;
827 *type_change_ok = true;
829 h->verinfo.vertree = NULL;
832 /* Handle the special case of a weak definition in a regular object
833 followed by a non-weak definition in a shared object. In this
834 case, we prefer the definition in the shared object unless it
835 comes from a DT_NEEDED entry of a shared object, in which case,
836 the DT_NEEDED entry may not be required at the run time. */
839 && h->root.type == bfd_link_hash_defweak
844 /* To make this work we have to frob the flags so that the rest
845 of the code does not think we are using the regular
847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
848 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
849 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
850 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
851 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
852 | ELF_LINK_HASH_DEF_DYNAMIC);
854 /* If H is the target of an indirection, we want the caller to
855 use H rather than the indirect symbol. Otherwise if we are
856 defining a new indirect symbol we will wind up attaching it
857 to the entry we are overriding. */
861 /* Handle the special case of a non-weak definition in a shared
862 object followed by a weak definition in a regular object. In
863 this case we prefer to definition in the shared object. To make
864 this work we have to tell the caller to not treat the new symbol
868 && h->root.type != bfd_link_hash_defweak
877 /* Add symbols from an ELF object file to the linker hash table. */
880 elf_link_add_object_symbols (abfd, info)
882 struct bfd_link_info *info;
884 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
885 const Elf_Internal_Sym *,
886 const char **, flagword *,
887 asection **, bfd_vma *));
888 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
889 asection *, const Elf_Internal_Rela *));
891 Elf_Internal_Shdr *hdr;
895 Elf_External_Sym *buf = NULL;
896 struct elf_link_hash_entry **sym_hash;
898 bfd_byte *dynver = NULL;
899 Elf_External_Versym *extversym = NULL;
900 Elf_External_Versym *ever;
901 Elf_External_Dyn *dynbuf = NULL;
902 struct elf_link_hash_entry *weaks;
903 Elf_External_Sym *esym;
904 Elf_External_Sym *esymend;
905 struct elf_backend_data *bed;
908 bed = get_elf_backend_data (abfd);
909 add_symbol_hook = bed->elf_add_symbol_hook;
910 collect = bed->collect;
912 if ((abfd->flags & DYNAMIC) == 0)
918 /* You can't use -r against a dynamic object. Also, there's no
919 hope of using a dynamic object which does not exactly match
920 the format of the output file. */
921 if (info->relocateable || info->hash->creator != abfd->xvec)
923 bfd_set_error (bfd_error_invalid_operation);
928 /* As a GNU extension, any input sections which are named
929 .gnu.warning.SYMBOL are treated as warning symbols for the given
930 symbol. This differs from .gnu.warning sections, which generate
931 warnings when they are included in an output file. */
936 for (s = abfd->sections; s != NULL; s = s->next)
940 name = bfd_get_section_name (abfd, s);
941 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
946 name += sizeof ".gnu.warning." - 1;
948 /* If this is a shared object, then look up the symbol
949 in the hash table. If it is there, and it is already
950 been defined, then we will not be using the entry
951 from this shared object, so we don't need to warn.
952 FIXME: If we see the definition in a regular object
953 later on, we will warn, but we shouldn't. The only
954 fix is to keep track of what warnings we are supposed
955 to emit, and then handle them all at the end of the
957 if (dynamic && abfd->xvec == info->hash->creator)
959 struct elf_link_hash_entry *h;
961 h = elf_link_hash_lookup (elf_hash_table (info), name,
964 /* FIXME: What about bfd_link_hash_common? */
966 && (h->root.type == bfd_link_hash_defined
967 || h->root.type == bfd_link_hash_defweak))
969 /* We don't want to issue this warning. Clobber
970 the section size so that the warning does not
971 get copied into the output file. */
977 sz = bfd_section_size (abfd, s);
978 msg = (char *) bfd_alloc (abfd, sz + 1);
982 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
987 if (! (_bfd_generic_link_add_one_symbol
988 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
989 false, collect, (struct bfd_link_hash_entry **) NULL)))
992 if (! info->relocateable)
994 /* Clobber the section size so that the warning does
995 not get copied into the output file. */
1002 /* If this is a dynamic object, we always link against the .dynsym
1003 symbol table, not the .symtab symbol table. The dynamic linker
1004 will only see the .dynsym symbol table, so there is no reason to
1005 look at .symtab for a dynamic object. */
1007 if (! dynamic || elf_dynsymtab (abfd) == 0)
1008 hdr = &elf_tdata (abfd)->symtab_hdr;
1010 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1014 /* Read in any version definitions. */
1016 if (! _bfd_elf_slurp_version_tables (abfd))
1019 /* Read in the symbol versions, but don't bother to convert them
1020 to internal format. */
1021 if (elf_dynversym (abfd) != 0)
1023 Elf_Internal_Shdr *versymhdr;
1025 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1026 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1027 if (extversym == NULL)
1029 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1030 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1031 != versymhdr->sh_size))
1036 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1038 /* The sh_info field of the symtab header tells us where the
1039 external symbols start. We don't care about the local symbols at
1041 if (elf_bad_symtab (abfd))
1043 extsymcount = symcount;
1048 extsymcount = symcount - hdr->sh_info;
1049 extsymoff = hdr->sh_info;
1052 buf = ((Elf_External_Sym *)
1053 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1054 if (buf == NULL && extsymcount != 0)
1057 /* We store a pointer to the hash table entry for each external
1059 sym_hash = ((struct elf_link_hash_entry **)
1061 extsymcount * sizeof (struct elf_link_hash_entry *)));
1062 if (sym_hash == NULL)
1064 elf_sym_hashes (abfd) = sym_hash;
1070 /* If we are creating a shared library, create all the dynamic
1071 sections immediately. We need to attach them to something,
1072 so we attach them to this BFD, provided it is the right
1073 format. FIXME: If there are no input BFD's of the same
1074 format as the output, we can't make a shared library. */
1076 && ! elf_hash_table (info)->dynamic_sections_created
1077 && abfd->xvec == info->hash->creator)
1079 if (! elf_link_create_dynamic_sections (abfd, info))
1088 bfd_size_type oldsize;
1089 bfd_size_type strindex;
1091 /* Find the name to use in a DT_NEEDED entry that refers to this
1092 object. If the object has a DT_SONAME entry, we use it.
1093 Otherwise, if the generic linker stuck something in
1094 elf_dt_name, we use that. Otherwise, we just use the file
1095 name. If the generic linker put a null string into
1096 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097 there is a DT_SONAME entry. */
1099 name = bfd_get_filename (abfd);
1100 if (elf_dt_name (abfd) != NULL)
1102 name = elf_dt_name (abfd);
1105 if (elf_dt_soname (abfd) != NULL)
1111 s = bfd_get_section_by_name (abfd, ".dynamic");
1114 Elf_External_Dyn *extdyn;
1115 Elf_External_Dyn *extdynend;
1121 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1125 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1126 (file_ptr) 0, s->_raw_size))
1129 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1132 link = elf_elfsections (abfd)[elfsec]->sh_link;
1135 /* The shared libraries distributed with hpux11 have a bogus
1136 sh_link field for the ".dynamic" section. This code detects
1137 when LINK refers to a section that is not a string table and
1138 tries to find the string table for the ".dynsym" section
1140 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1141 if (hdr->sh_type != SHT_STRTAB)
1143 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1144 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1147 link = elf_elfsections (abfd)[elfsec]->sh_link;
1152 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1155 for (; extdyn < extdynend; extdyn++)
1157 Elf_Internal_Dyn dyn;
1159 elf_swap_dyn_in (abfd, extdyn, &dyn);
1160 if (dyn.d_tag == DT_SONAME)
1162 name = bfd_elf_string_from_elf_section (abfd, link,
1167 if (dyn.d_tag == DT_NEEDED)
1169 struct bfd_link_needed_list *n, **pn;
1172 n = ((struct bfd_link_needed_list *)
1173 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1174 fnm = bfd_elf_string_from_elf_section (abfd, link,
1176 if (n == NULL || fnm == NULL)
1178 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1185 for (pn = &elf_hash_table (info)->needed;
1191 if (dyn.d_tag == DT_RUNPATH)
1193 struct bfd_link_needed_list *n, **pn;
1196 /* When we see DT_RPATH before DT_RUNPATH, we have
1197 to clear runpath. Do _NOT_ bfd_release, as that
1198 frees all more recently bfd_alloc'd blocks as
1200 if (rpath && elf_hash_table (info)->runpath)
1201 elf_hash_table (info)->runpath = NULL;
1203 n = ((struct bfd_link_needed_list *)
1204 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1205 fnm = bfd_elf_string_from_elf_section (abfd, link,
1207 if (n == NULL || fnm == NULL)
1209 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1216 for (pn = &elf_hash_table (info)->runpath;
1224 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1225 if (!runpath && dyn.d_tag == DT_RPATH)
1227 struct bfd_link_needed_list *n, **pn;
1230 n = ((struct bfd_link_needed_list *)
1231 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1232 fnm = bfd_elf_string_from_elf_section (abfd, link,
1234 if (n == NULL || fnm == NULL)
1236 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1243 for (pn = &elf_hash_table (info)->runpath;
1256 /* We do not want to include any of the sections in a dynamic
1257 object in the output file. We hack by simply clobbering the
1258 list of sections in the BFD. This could be handled more
1259 cleanly by, say, a new section flag; the existing
1260 SEC_NEVER_LOAD flag is not the one we want, because that one
1261 still implies that the section takes up space in the output
1263 abfd->sections = NULL;
1264 abfd->section_count = 0;
1266 /* If this is the first dynamic object found in the link, create
1267 the special sections required for dynamic linking. */
1268 if (! elf_hash_table (info)->dynamic_sections_created)
1270 if (! elf_link_create_dynamic_sections (abfd, info))
1276 /* Add a DT_NEEDED entry for this dynamic object. */
1277 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1278 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1280 if (strindex == (bfd_size_type) -1)
1283 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1286 Elf_External_Dyn *dyncon, *dynconend;
1288 /* The hash table size did not change, which means that
1289 the dynamic object name was already entered. If we
1290 have already included this dynamic object in the
1291 link, just ignore it. There is no reason to include
1292 a particular dynamic object more than once. */
1293 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1295 BFD_ASSERT (sdyn != NULL);
1297 dyncon = (Elf_External_Dyn *) sdyn->contents;
1298 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1300 for (; dyncon < dynconend; dyncon++)
1302 Elf_Internal_Dyn dyn;
1304 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1306 if (dyn.d_tag == DT_NEEDED
1307 && dyn.d_un.d_val == strindex)
1311 if (extversym != NULL)
1318 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1322 /* Save the SONAME, if there is one, because sometimes the
1323 linker emulation code will need to know it. */
1325 name = bfd_get_filename (abfd);
1326 elf_dt_name (abfd) = name;
1330 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1332 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1333 != extsymcount * sizeof (Elf_External_Sym)))
1338 ever = extversym != NULL ? extversym + extsymoff : NULL;
1339 esymend = buf + extsymcount;
1342 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1344 Elf_Internal_Sym sym;
1350 struct elf_link_hash_entry *h;
1352 boolean size_change_ok, type_change_ok;
1353 boolean new_weakdef;
1354 unsigned int old_alignment;
1356 elf_swap_symbol_in (abfd, esym, &sym);
1358 flags = BSF_NO_FLAGS;
1360 value = sym.st_value;
1363 bind = ELF_ST_BIND (sym.st_info);
1364 if (bind == STB_LOCAL)
1366 /* This should be impossible, since ELF requires that all
1367 global symbols follow all local symbols, and that sh_info
1368 point to the first global symbol. Unfortunatealy, Irix 5
1372 else if (bind == STB_GLOBAL)
1374 if (sym.st_shndx != SHN_UNDEF
1375 && sym.st_shndx != SHN_COMMON)
1378 else if (bind == STB_WEAK)
1382 /* Leave it up to the processor backend. */
1385 if (sym.st_shndx == SHN_UNDEF)
1386 sec = bfd_und_section_ptr;
1387 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1389 sec = section_from_elf_index (abfd, sym.st_shndx);
1391 sec = bfd_abs_section_ptr;
1392 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1395 else if (sym.st_shndx == SHN_ABS)
1396 sec = bfd_abs_section_ptr;
1397 else if (sym.st_shndx == SHN_COMMON)
1399 sec = bfd_com_section_ptr;
1400 /* What ELF calls the size we call the value. What ELF
1401 calls the value we call the alignment. */
1402 value = sym.st_size;
1406 /* Leave it up to the processor backend. */
1409 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1410 if (name == (const char *) NULL)
1413 if (add_symbol_hook)
1415 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1419 /* The hook function sets the name to NULL if this symbol
1420 should be skipped for some reason. */
1421 if (name == (const char *) NULL)
1425 /* Sanity check that all possibilities were handled. */
1426 if (sec == (asection *) NULL)
1428 bfd_set_error (bfd_error_bad_value);
1432 if (bfd_is_und_section (sec)
1433 || bfd_is_com_section (sec))
1438 size_change_ok = false;
1439 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1441 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1443 Elf_Internal_Versym iver;
1444 unsigned int vernum = 0;
1449 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1450 vernum = iver.vs_vers & VERSYM_VERSION;
1452 /* If this is a hidden symbol, or if it is not version
1453 1, we append the version name to the symbol name.
1454 However, we do not modify a non-hidden absolute
1455 symbol, because it might be the version symbol
1456 itself. FIXME: What if it isn't? */
1457 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1458 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1461 int namelen, newlen;
1464 if (sym.st_shndx != SHN_UNDEF)
1466 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1468 (*_bfd_error_handler)
1469 (_("%s: %s: invalid version %u (max %d)"),
1470 bfd_get_filename (abfd), name, vernum,
1471 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1472 bfd_set_error (bfd_error_bad_value);
1475 else if (vernum > 1)
1477 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1483 /* We cannot simply test for the number of
1484 entries in the VERNEED section since the
1485 numbers for the needed versions do not start
1487 Elf_Internal_Verneed *t;
1490 for (t = elf_tdata (abfd)->verref;
1494 Elf_Internal_Vernaux *a;
1496 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1498 if (a->vna_other == vernum)
1500 verstr = a->vna_nodename;
1509 (*_bfd_error_handler)
1510 (_("%s: %s: invalid needed version %d"),
1511 bfd_get_filename (abfd), name, vernum);
1512 bfd_set_error (bfd_error_bad_value);
1517 namelen = strlen (name);
1518 newlen = namelen + strlen (verstr) + 2;
1519 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1522 newname = (char *) bfd_alloc (abfd, newlen);
1523 if (newname == NULL)
1525 strcpy (newname, name);
1526 p = newname + namelen;
1528 /* If this is a defined non-hidden version symbol,
1529 we add another @ to the name. This indicates the
1530 default version of the symbol. */
1531 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1532 && sym.st_shndx != SHN_UNDEF)
1540 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1541 sym_hash, &override, &type_change_ok,
1542 &size_change_ok, dt_needed))
1549 while (h->root.type == bfd_link_hash_indirect
1550 || h->root.type == bfd_link_hash_warning)
1551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1553 /* Remember the old alignment if this is a common symbol, so
1554 that we don't reduce the alignment later on. We can't
1555 check later, because _bfd_generic_link_add_one_symbol
1556 will set a default for the alignment which we want to
1558 if (h->root.type == bfd_link_hash_common)
1559 old_alignment = h->root.u.c.p->alignment_power;
1561 if (elf_tdata (abfd)->verdef != NULL
1565 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1568 if (! (_bfd_generic_link_add_one_symbol
1569 (info, abfd, name, flags, sec, value, (const char *) NULL,
1570 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1574 while (h->root.type == bfd_link_hash_indirect
1575 || h->root.type == bfd_link_hash_warning)
1576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1579 new_weakdef = false;
1582 && (flags & BSF_WEAK) != 0
1583 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1584 && info->hash->creator->flavour == bfd_target_elf_flavour
1585 && h->weakdef == NULL)
1587 /* Keep a list of all weak defined non function symbols from
1588 a dynamic object, using the weakdef field. Later in this
1589 function we will set the weakdef field to the correct
1590 value. We only put non-function symbols from dynamic
1591 objects on this list, because that happens to be the only
1592 time we need to know the normal symbol corresponding to a
1593 weak symbol, and the information is time consuming to
1594 figure out. If the weakdef field is not already NULL,
1595 then this symbol was already defined by some previous
1596 dynamic object, and we will be using that previous
1597 definition anyhow. */
1604 /* Set the alignment of a common symbol. */
1605 if (sym.st_shndx == SHN_COMMON
1606 && h->root.type == bfd_link_hash_common)
1610 align = bfd_log2 (sym.st_value);
1611 if (align > old_alignment
1612 /* Permit an alignment power of zero if an alignment of one
1613 is specified and no other alignments have been specified. */
1614 || (sym.st_value == 1 && old_alignment == 0))
1615 h->root.u.c.p->alignment_power = align;
1618 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1624 /* Remember the symbol size and type. */
1625 if (sym.st_size != 0
1626 && (definition || h->size == 0))
1628 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1629 (*_bfd_error_handler)
1630 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1632 bfd_get_filename (abfd));
1634 h->size = sym.st_size;
1637 /* If this is a common symbol, then we always want H->SIZE
1638 to be the size of the common symbol. The code just above
1639 won't fix the size if a common symbol becomes larger. We
1640 don't warn about a size change here, because that is
1641 covered by --warn-common. */
1642 if (h->root.type == bfd_link_hash_common)
1643 h->size = h->root.u.c.size;
1645 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1646 && (definition || h->type == STT_NOTYPE))
1648 if (h->type != STT_NOTYPE
1649 && h->type != ELF_ST_TYPE (sym.st_info)
1650 && ! type_change_ok)
1651 (*_bfd_error_handler)
1652 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653 name, h->type, ELF_ST_TYPE (sym.st_info),
1654 bfd_get_filename (abfd));
1656 h->type = ELF_ST_TYPE (sym.st_info);
1659 /* If st_other has a processor-specific meaning, specific code
1660 might be needed here. */
1661 if (sym.st_other != 0)
1663 /* Combine visibilities, using the most constraining one. */
1664 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1665 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1667 if (symvis && (hvis > symvis || hvis == 0))
1668 h->other = sym.st_other;
1670 /* If neither has visibility, use the st_other of the
1671 definition. This is an arbitrary choice, since the
1672 other bits have no general meaning. */
1673 if (!symvis && !hvis
1674 && (definition || h->other == 0))
1675 h->other = sym.st_other;
1678 /* Set a flag in the hash table entry indicating the type of
1679 reference or definition we just found. Keep a count of
1680 the number of dynamic symbols we find. A dynamic symbol
1681 is one which is referenced or defined by both a regular
1682 object and a shared object. */
1683 old_flags = h->elf_link_hash_flags;
1689 new_flag = ELF_LINK_HASH_REF_REGULAR;
1690 if (bind != STB_WEAK)
1691 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1694 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1696 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1697 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1703 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1705 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1706 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1707 | ELF_LINK_HASH_REF_REGULAR)) != 0
1708 || (h->weakdef != NULL
1710 && h->weakdef->dynindx != -1))
1714 h->elf_link_hash_flags |= new_flag;
1716 /* If this symbol has a version, and it is the default
1717 version, we create an indirect symbol from the default
1718 name to the fully decorated name. This will cause
1719 external references which do not specify a version to be
1720 bound to this version of the symbol. */
1721 if (definition || h->root.type == bfd_link_hash_common)
1725 p = strchr (name, ELF_VER_CHR);
1726 if (p != NULL && p[1] == ELF_VER_CHR)
1729 struct elf_link_hash_entry *hi;
1732 shortname = bfd_hash_allocate (&info->hash->table,
1734 if (shortname == NULL)
1736 strncpy (shortname, name, p - name);
1737 shortname[p - name] = '\0';
1739 /* We are going to create a new symbol. Merge it
1740 with any existing symbol with this name. For the
1741 purposes of the merge, act as though we were
1742 defining the symbol we just defined, although we
1743 actually going to define an indirect symbol. */
1744 type_change_ok = false;
1745 size_change_ok = false;
1746 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1747 &value, &hi, &override,
1749 &size_change_ok, dt_needed))
1754 if (! (_bfd_generic_link_add_one_symbol
1755 (info, abfd, shortname, BSF_INDIRECT,
1756 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1757 collect, (struct bfd_link_hash_entry **) &hi)))
1762 /* In this case the symbol named SHORTNAME is
1763 overriding the indirect symbol we want to
1764 add. We were planning on making SHORTNAME an
1765 indirect symbol referring to NAME. SHORTNAME
1766 is the name without a version. NAME is the
1767 fully versioned name, and it is the default
1770 Overriding means that we already saw a
1771 definition for the symbol SHORTNAME in a
1772 regular object, and it is overriding the
1773 symbol defined in the dynamic object.
1775 When this happens, we actually want to change
1776 NAME, the symbol we just added, to refer to
1777 SHORTNAME. This will cause references to
1778 NAME in the shared object to become
1779 references to SHORTNAME in the regular
1780 object. This is what we expect when we
1781 override a function in a shared object: that
1782 the references in the shared object will be
1783 mapped to the definition in the regular
1786 while (hi->root.type == bfd_link_hash_indirect
1787 || hi->root.type == bfd_link_hash_warning)
1788 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1790 h->root.type = bfd_link_hash_indirect;
1791 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1792 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1794 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1795 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1796 if (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_REGULAR
1798 | ELF_LINK_HASH_DEF_REGULAR))
1800 if (! _bfd_elf_link_record_dynamic_symbol (info,
1806 /* Now set HI to H, so that the following code
1807 will set the other fields correctly. */
1811 /* If there is a duplicate definition somewhere,
1812 then HI may not point to an indirect symbol. We
1813 will have reported an error to the user in that
1816 if (hi->root.type == bfd_link_hash_indirect)
1818 struct elf_link_hash_entry *ht;
1820 /* If the symbol became indirect, then we assume
1821 that we have not seen a definition before. */
1822 BFD_ASSERT ((hi->elf_link_hash_flags
1823 & (ELF_LINK_HASH_DEF_DYNAMIC
1824 | ELF_LINK_HASH_DEF_REGULAR))
1827 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1828 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1830 /* See if the new flags lead us to realize that
1831 the symbol must be dynamic. */
1837 || ((hi->elf_link_hash_flags
1838 & ELF_LINK_HASH_REF_DYNAMIC)
1844 if ((hi->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_REGULAR) != 0)
1851 /* We also need to define an indirection from the
1852 nondefault version of the symbol. */
1854 shortname = bfd_hash_allocate (&info->hash->table,
1856 if (shortname == NULL)
1858 strncpy (shortname, name, p - name);
1859 strcpy (shortname + (p - name), p + 1);
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok = false;
1863 size_change_ok = false;
1864 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1865 &value, &hi, &override,
1867 &size_change_ok, dt_needed))
1872 /* Here SHORTNAME is a versioned name, so we
1873 don't expect to see the type of override we
1874 do in the case above. */
1875 (*_bfd_error_handler)
1876 (_("%s: warning: unexpected redefinition of `%s'"),
1877 bfd_get_filename (abfd), shortname);
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info, abfd, shortname, BSF_INDIRECT,
1883 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1884 collect, (struct bfd_link_hash_entry **) &hi)))
1887 /* If there is a duplicate definition somewhere,
1888 then HI may not point to an indirect symbol.
1889 We will have reported an error to the user in
1892 if (hi->root.type == bfd_link_hash_indirect)
1894 /* If the symbol became indirect, then we
1895 assume that we have not seen a definition
1897 BFD_ASSERT ((hi->elf_link_hash_flags
1898 & (ELF_LINK_HASH_DEF_DYNAMIC
1899 | ELF_LINK_HASH_DEF_REGULAR))
1902 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1904 /* See if the new flags lead us to realize
1905 that the symbol must be dynamic. */
1911 || ((hi->elf_link_hash_flags
1912 & ELF_LINK_HASH_REF_DYNAMIC)
1918 if ((hi->elf_link_hash_flags
1919 & ELF_LINK_HASH_REF_REGULAR) != 0)
1928 if (dynsym && h->dynindx == -1)
1930 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1932 if (h->weakdef != NULL
1934 && h->weakdef->dynindx == -1)
1936 if (! _bfd_elf_link_record_dynamic_symbol (info,
1941 else if (dynsym && h->dynindx != -1)
1942 /* If the symbol already has a dynamic index, but
1943 visibility says it should not be visible, turn it into
1945 switch (ELF_ST_VISIBILITY (h->other))
1949 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1950 (*bed->elf_backend_hide_symbol) (info, h);
1954 if (dt_needed && definition
1955 && (h->elf_link_hash_flags
1956 & ELF_LINK_HASH_REF_REGULAR) != 0)
1958 bfd_size_type oldsize;
1959 bfd_size_type strindex;
1961 /* The symbol from a DT_NEEDED object is referenced from
1962 the regular object to create a dynamic executable. We
1963 have to make sure there is a DT_NEEDED entry for it. */
1966 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1967 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1968 elf_dt_soname (abfd),
1970 if (strindex == (bfd_size_type) -1)
1974 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1977 Elf_External_Dyn *dyncon, *dynconend;
1979 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1981 BFD_ASSERT (sdyn != NULL);
1983 dyncon = (Elf_External_Dyn *) sdyn->contents;
1984 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1986 for (; dyncon < dynconend; dyncon++)
1988 Elf_Internal_Dyn dyn;
1990 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1992 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1993 dyn.d_un.d_val != strindex);
1997 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2003 /* Now set the weakdefs field correctly for all the weak defined
2004 symbols we found. The only way to do this is to search all the
2005 symbols. Since we only need the information for non functions in
2006 dynamic objects, that's the only time we actually put anything on
2007 the list WEAKS. We need this information so that if a regular
2008 object refers to a symbol defined weakly in a dynamic object, the
2009 real symbol in the dynamic object is also put in the dynamic
2010 symbols; we also must arrange for both symbols to point to the
2011 same memory location. We could handle the general case of symbol
2012 aliasing, but a general symbol alias can only be generated in
2013 assembler code, handling it correctly would be very time
2014 consuming, and other ELF linkers don't handle general aliasing
2016 while (weaks != NULL)
2018 struct elf_link_hash_entry *hlook;
2021 struct elf_link_hash_entry **hpp;
2022 struct elf_link_hash_entry **hppend;
2025 weaks = hlook->weakdef;
2026 hlook->weakdef = NULL;
2028 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2029 || hlook->root.type == bfd_link_hash_defweak
2030 || hlook->root.type == bfd_link_hash_common
2031 || hlook->root.type == bfd_link_hash_indirect);
2032 slook = hlook->root.u.def.section;
2033 vlook = hlook->root.u.def.value;
2035 hpp = elf_sym_hashes (abfd);
2036 hppend = hpp + extsymcount;
2037 for (; hpp < hppend; hpp++)
2039 struct elf_link_hash_entry *h;
2042 if (h != NULL && h != hlook
2043 && h->root.type == bfd_link_hash_defined
2044 && h->root.u.def.section == slook
2045 && h->root.u.def.value == vlook)
2049 /* If the weak definition is in the list of dynamic
2050 symbols, make sure the real definition is put there
2052 if (hlook->dynindx != -1
2053 && h->dynindx == -1)
2055 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2059 /* If the real definition is in the list of dynamic
2060 symbols, make sure the weak definition is put there
2061 as well. If we don't do this, then the dynamic
2062 loader might not merge the entries for the real
2063 definition and the weak definition. */
2064 if (h->dynindx != -1
2065 && hlook->dynindx == -1)
2067 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2082 if (extversym != NULL)
2088 /* If this object is the same format as the output object, and it is
2089 not a shared library, then let the backend look through the
2092 This is required to build global offset table entries and to
2093 arrange for dynamic relocs. It is not required for the
2094 particular common case of linking non PIC code, even when linking
2095 against shared libraries, but unfortunately there is no way of
2096 knowing whether an object file has been compiled PIC or not.
2097 Looking through the relocs is not particularly time consuming.
2098 The problem is that we must either (1) keep the relocs in memory,
2099 which causes the linker to require additional runtime memory or
2100 (2) read the relocs twice from the input file, which wastes time.
2101 This would be a good case for using mmap.
2103 I have no idea how to handle linking PIC code into a file of a
2104 different format. It probably can't be done. */
2105 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2107 && abfd->xvec == info->hash->creator
2108 && check_relocs != NULL)
2112 for (o = abfd->sections; o != NULL; o = o->next)
2114 Elf_Internal_Rela *internal_relocs;
2117 if ((o->flags & SEC_RELOC) == 0
2118 || o->reloc_count == 0
2119 || ((info->strip == strip_all || info->strip == strip_debugger)
2120 && (o->flags & SEC_DEBUGGING) != 0)
2121 || bfd_is_abs_section (o->output_section))
2124 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2125 (abfd, o, (PTR) NULL,
2126 (Elf_Internal_Rela *) NULL,
2127 info->keep_memory));
2128 if (internal_relocs == NULL)
2131 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2133 if (! info->keep_memory)
2134 free (internal_relocs);
2141 /* If this is a non-traditional, non-relocateable link, try to
2142 optimize the handling of the .stab/.stabstr sections. */
2144 && ! info->relocateable
2145 && ! info->traditional_format
2146 && info->hash->creator->flavour == bfd_target_elf_flavour
2147 && (info->strip != strip_all && info->strip != strip_debugger))
2149 asection *stab, *stabstr;
2151 stab = bfd_get_section_by_name (abfd, ".stab");
2154 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2156 if (stabstr != NULL)
2158 struct bfd_elf_section_data *secdata;
2160 secdata = elf_section_data (stab);
2161 if (! _bfd_link_section_stabs (abfd,
2162 &elf_hash_table (info)->stab_info,
2164 &secdata->stab_info))
2179 if (extversym != NULL)
2184 /* Create some sections which will be filled in with dynamic linking
2185 information. ABFD is an input file which requires dynamic sections
2186 to be created. The dynamic sections take up virtual memory space
2187 when the final executable is run, so we need to create them before
2188 addresses are assigned to the output sections. We work out the
2189 actual contents and size of these sections later. */
2192 elf_link_create_dynamic_sections (abfd, info)
2194 struct bfd_link_info *info;
2197 register asection *s;
2198 struct elf_link_hash_entry *h;
2199 struct elf_backend_data *bed;
2201 if (elf_hash_table (info)->dynamic_sections_created)
2204 /* Make sure that all dynamic sections use the same input BFD. */
2205 if (elf_hash_table (info)->dynobj == NULL)
2206 elf_hash_table (info)->dynobj = abfd;
2208 abfd = elf_hash_table (info)->dynobj;
2210 /* Note that we set the SEC_IN_MEMORY flag for all of these
2212 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2213 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2215 /* A dynamically linked executable has a .interp section, but a
2216 shared library does not. */
2219 s = bfd_make_section (abfd, ".interp");
2221 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2225 /* Create sections to hold version informations. These are removed
2226 if they are not needed. */
2227 s = bfd_make_section (abfd, ".gnu.version_d");
2229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2230 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2233 s = bfd_make_section (abfd, ".gnu.version");
2235 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2236 || ! bfd_set_section_alignment (abfd, s, 1))
2239 s = bfd_make_section (abfd, ".gnu.version_r");
2241 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2242 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2245 s = bfd_make_section (abfd, ".dynsym");
2247 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2248 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2251 s = bfd_make_section (abfd, ".dynstr");
2253 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2256 /* Create a strtab to hold the dynamic symbol names. */
2257 if (elf_hash_table (info)->dynstr == NULL)
2259 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2260 if (elf_hash_table (info)->dynstr == NULL)
2264 s = bfd_make_section (abfd, ".dynamic");
2266 || ! bfd_set_section_flags (abfd, s, flags)
2267 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2270 /* The special symbol _DYNAMIC is always set to the start of the
2271 .dynamic section. This call occurs before we have processed the
2272 symbols for any dynamic object, so we don't have to worry about
2273 overriding a dynamic definition. We could set _DYNAMIC in a
2274 linker script, but we only want to define it if we are, in fact,
2275 creating a .dynamic section. We don't want to define it if there
2276 is no .dynamic section, since on some ELF platforms the start up
2277 code examines it to decide how to initialize the process. */
2279 if (! (_bfd_generic_link_add_one_symbol
2280 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2281 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2282 (struct bfd_link_hash_entry **) &h)))
2284 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2285 h->type = STT_OBJECT;
2288 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2291 bed = get_elf_backend_data (abfd);
2293 s = bfd_make_section (abfd, ".hash");
2295 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2296 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2298 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2300 /* Let the backend create the rest of the sections. This lets the
2301 backend set the right flags. The backend will normally create
2302 the .got and .plt sections. */
2303 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2306 elf_hash_table (info)->dynamic_sections_created = true;
2311 /* Add an entry to the .dynamic table. */
2314 elf_add_dynamic_entry (info, tag, val)
2315 struct bfd_link_info *info;
2319 Elf_Internal_Dyn dyn;
2323 bfd_byte *newcontents;
2325 dynobj = elf_hash_table (info)->dynobj;
2327 s = bfd_get_section_by_name (dynobj, ".dynamic");
2328 BFD_ASSERT (s != NULL);
2330 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2331 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2332 if (newcontents == NULL)
2336 dyn.d_un.d_val = val;
2337 elf_swap_dyn_out (dynobj, &dyn,
2338 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2340 s->_raw_size = newsize;
2341 s->contents = newcontents;
2346 /* Record a new local dynamic symbol. */
2349 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2350 struct bfd_link_info *info;
2354 struct elf_link_local_dynamic_entry *entry;
2355 struct elf_link_hash_table *eht;
2356 struct bfd_strtab_hash *dynstr;
2357 Elf_External_Sym esym;
2358 unsigned long dynstr_index;
2361 /* See if the entry exists already. */
2362 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2363 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2366 entry = (struct elf_link_local_dynamic_entry *)
2367 bfd_alloc (input_bfd, sizeof (*entry));
2371 /* Go find the symbol, so that we can find it's name. */
2372 if (bfd_seek (input_bfd,
2373 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2374 + input_indx * sizeof (Elf_External_Sym)),
2376 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2377 != sizeof (Elf_External_Sym)))
2379 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2381 name = (bfd_elf_string_from_elf_section
2382 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2383 entry->isym.st_name));
2385 dynstr = elf_hash_table (info)->dynstr;
2388 /* Create a strtab to hold the dynamic symbol names. */
2389 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2394 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2395 if (dynstr_index == (unsigned long) -1)
2397 entry->isym.st_name = dynstr_index;
2399 eht = elf_hash_table (info);
2401 entry->next = eht->dynlocal;
2402 eht->dynlocal = entry;
2403 entry->input_bfd = input_bfd;
2404 entry->input_indx = input_indx;
2407 /* Whatever binding the symbol had before, it's now local. */
2409 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2411 /* The dynindx will be set at the end of size_dynamic_sections. */
2416 /* Read and swap the relocs from the section indicated by SHDR. This
2417 may be either a REL or a RELA section. The relocations are
2418 translated into RELA relocations and stored in INTERNAL_RELOCS,
2419 which should have already been allocated to contain enough space.
2420 The EXTERNAL_RELOCS are a buffer where the external form of the
2421 relocations should be stored.
2423 Returns false if something goes wrong. */
2426 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2429 Elf_Internal_Shdr *shdr;
2430 PTR external_relocs;
2431 Elf_Internal_Rela *internal_relocs;
2433 struct elf_backend_data *bed;
2435 /* If there aren't any relocations, that's OK. */
2439 /* Position ourselves at the start of the section. */
2440 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2443 /* Read the relocations. */
2444 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2448 bed = get_elf_backend_data (abfd);
2450 /* Convert the external relocations to the internal format. */
2451 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2453 Elf_External_Rel *erel;
2454 Elf_External_Rel *erelend;
2455 Elf_Internal_Rela *irela;
2456 Elf_Internal_Rel *irel;
2458 erel = (Elf_External_Rel *) external_relocs;
2459 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2460 irela = internal_relocs;
2461 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2462 * sizeof (Elf_Internal_Rel)));
2463 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2467 if (bed->s->swap_reloc_in)
2468 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2470 elf_swap_reloc_in (abfd, erel, irel);
2472 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2474 irela[i].r_offset = irel[i].r_offset;
2475 irela[i].r_info = irel[i].r_info;
2476 irela[i].r_addend = 0;
2482 Elf_External_Rela *erela;
2483 Elf_External_Rela *erelaend;
2484 Elf_Internal_Rela *irela;
2486 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2488 erela = (Elf_External_Rela *) external_relocs;
2489 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2490 irela = internal_relocs;
2491 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2493 if (bed->s->swap_reloca_in)
2494 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2496 elf_swap_reloca_in (abfd, erela, irela);
2503 /* Read and swap the relocs for a section O. They may have been
2504 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2505 not NULL, they are used as buffers to read into. They are known to
2506 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2507 the return value is allocated using either malloc or bfd_alloc,
2508 according to the KEEP_MEMORY argument. If O has two relocation
2509 sections (both REL and RELA relocations), then the REL_HDR
2510 relocations will appear first in INTERNAL_RELOCS, followed by the
2511 REL_HDR2 relocations. */
2514 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2518 PTR external_relocs;
2519 Elf_Internal_Rela *internal_relocs;
2520 boolean keep_memory;
2522 Elf_Internal_Shdr *rel_hdr;
2524 Elf_Internal_Rela *alloc2 = NULL;
2525 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2527 if (elf_section_data (o)->relocs != NULL)
2528 return elf_section_data (o)->relocs;
2530 if (o->reloc_count == 0)
2533 rel_hdr = &elf_section_data (o)->rel_hdr;
2535 if (internal_relocs == NULL)
2539 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2540 * sizeof (Elf_Internal_Rela));
2542 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2544 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2545 if (internal_relocs == NULL)
2549 if (external_relocs == NULL)
2551 size_t size = (size_t) rel_hdr->sh_size;
2553 if (elf_section_data (o)->rel_hdr2)
2554 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2555 alloc1 = (PTR) bfd_malloc (size);
2558 external_relocs = alloc1;
2561 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2565 if (!elf_link_read_relocs_from_section
2567 elf_section_data (o)->rel_hdr2,
2568 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2569 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2570 * bed->s->int_rels_per_ext_rel)))
2573 /* Cache the results for next time, if we can. */
2575 elf_section_data (o)->relocs = internal_relocs;
2580 /* Don't free alloc2, since if it was allocated we are passing it
2581 back (under the name of internal_relocs). */
2583 return internal_relocs;
2593 /* Record an assignment to a symbol made by a linker script. We need
2594 this in case some dynamic object refers to this symbol. */
2598 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2599 bfd *output_bfd ATTRIBUTE_UNUSED;
2600 struct bfd_link_info *info;
2604 struct elf_link_hash_entry *h;
2606 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2609 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2613 if (h->root.type == bfd_link_hash_new)
2614 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2616 /* If this symbol is being provided by the linker script, and it is
2617 currently defined by a dynamic object, but not by a regular
2618 object, then mark it as undefined so that the generic linker will
2619 force the correct value. */
2621 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2623 h->root.type = bfd_link_hash_undefined;
2625 /* If this symbol is not being provided by the linker script, and it is
2626 currently defined by a dynamic object, but not by a regular object,
2627 then clear out any version information because the symbol will not be
2628 associated with the dynamic object any more. */
2630 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2632 h->verinfo.verdef = NULL;
2634 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2636 /* When possible, keep the original type of the symbol */
2637 if (h->type == STT_NOTYPE)
2638 h->type = STT_OBJECT;
2640 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2641 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2643 && h->dynindx == -1)
2645 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2648 /* If this is a weak defined symbol, and we know a corresponding
2649 real symbol from the same dynamic object, make sure the real
2650 symbol is also made into a dynamic symbol. */
2651 if (h->weakdef != NULL
2652 && h->weakdef->dynindx == -1)
2654 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2662 /* This structure is used to pass information to
2663 elf_link_assign_sym_version. */
2665 struct elf_assign_sym_version_info
2669 /* General link information. */
2670 struct bfd_link_info *info;
2672 struct bfd_elf_version_tree *verdefs;
2673 /* Whether we are exporting all dynamic symbols. */
2674 boolean export_dynamic;
2675 /* Whether we had a failure. */
2679 /* This structure is used to pass information to
2680 elf_link_find_version_dependencies. */
2682 struct elf_find_verdep_info
2686 /* General link information. */
2687 struct bfd_link_info *info;
2688 /* The number of dependencies. */
2690 /* Whether we had a failure. */
2694 /* Array used to determine the number of hash table buckets to use
2695 based on the number of symbols there are. If there are fewer than
2696 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2697 fewer than 37 we use 17 buckets, and so forth. We never use more
2698 than 32771 buckets. */
2700 static const size_t elf_buckets[] =
2702 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2706 /* Compute bucket count for hashing table. We do not use a static set
2707 of possible tables sizes anymore. Instead we determine for all
2708 possible reasonable sizes of the table the outcome (i.e., the
2709 number of collisions etc) and choose the best solution. The
2710 weighting functions are not too simple to allow the table to grow
2711 without bounds. Instead one of the weighting factors is the size.
2712 Therefore the result is always a good payoff between few collisions
2713 (= short chain lengths) and table size. */
2715 compute_bucket_count (info)
2716 struct bfd_link_info *info;
2718 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2719 size_t best_size = 0;
2720 unsigned long int *hashcodes;
2721 unsigned long int *hashcodesp;
2722 unsigned long int i;
2724 /* Compute the hash values for all exported symbols. At the same
2725 time store the values in an array so that we could use them for
2727 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2728 * sizeof (unsigned long int));
2729 if (hashcodes == NULL)
2731 hashcodesp = hashcodes;
2733 /* Put all hash values in HASHCODES. */
2734 elf_link_hash_traverse (elf_hash_table (info),
2735 elf_collect_hash_codes, &hashcodesp);
2737 /* We have a problem here. The following code to optimize the table
2738 size requires an integer type with more the 32 bits. If
2739 BFD_HOST_U_64_BIT is set we know about such a type. */
2740 #ifdef BFD_HOST_U_64_BIT
2741 if (info->optimize == true)
2743 unsigned long int nsyms = hashcodesp - hashcodes;
2746 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2747 unsigned long int *counts ;
2749 /* Possible optimization parameters: if we have NSYMS symbols we say
2750 that the hashing table must at least have NSYMS/4 and at most
2752 minsize = nsyms / 4;
2755 best_size = maxsize = nsyms * 2;
2757 /* Create array where we count the collisions in. We must use bfd_malloc
2758 since the size could be large. */
2759 counts = (unsigned long int *) bfd_malloc (maxsize
2760 * sizeof (unsigned long int));
2767 /* Compute the "optimal" size for the hash table. The criteria is a
2768 minimal chain length. The minor criteria is (of course) the size
2770 for (i = minsize; i < maxsize; ++i)
2772 /* Walk through the array of hashcodes and count the collisions. */
2773 BFD_HOST_U_64_BIT max;
2774 unsigned long int j;
2775 unsigned long int fact;
2777 memset (counts, '\0', i * sizeof (unsigned long int));
2779 /* Determine how often each hash bucket is used. */
2780 for (j = 0; j < nsyms; ++j)
2781 ++counts[hashcodes[j] % i];
2783 /* For the weight function we need some information about the
2784 pagesize on the target. This is information need not be 100%
2785 accurate. Since this information is not available (so far) we
2786 define it here to a reasonable default value. If it is crucial
2787 to have a better value some day simply define this value. */
2788 # ifndef BFD_TARGET_PAGESIZE
2789 # define BFD_TARGET_PAGESIZE (4096)
2792 /* We in any case need 2 + NSYMS entries for the size values and
2794 max = (2 + nsyms) * (ARCH_SIZE / 8);
2797 /* Variant 1: optimize for short chains. We add the squares
2798 of all the chain lengths (which favous many small chain
2799 over a few long chains). */
2800 for (j = 0; j < i; ++j)
2801 max += counts[j] * counts[j];
2803 /* This adds penalties for the overall size of the table. */
2804 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2807 /* Variant 2: Optimize a lot more for small table. Here we
2808 also add squares of the size but we also add penalties for
2809 empty slots (the +1 term). */
2810 for (j = 0; j < i; ++j)
2811 max += (1 + counts[j]) * (1 + counts[j]);
2813 /* The overall size of the table is considered, but not as
2814 strong as in variant 1, where it is squared. */
2815 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2819 /* Compare with current best results. */
2820 if (max < best_chlen)
2830 #endif /* defined (BFD_HOST_U_64_BIT) */
2832 /* This is the fallback solution if no 64bit type is available or if we
2833 are not supposed to spend much time on optimizations. We select the
2834 bucket count using a fixed set of numbers. */
2835 for (i = 0; elf_buckets[i] != 0; i++)
2837 best_size = elf_buckets[i];
2838 if (dynsymcount < elf_buckets[i + 1])
2843 /* Free the arrays we needed. */
2849 /* Set up the sizes and contents of the ELF dynamic sections. This is
2850 called by the ELF linker emulation before_allocation routine. We
2851 must set the sizes of the sections before the linker sets the
2852 addresses of the various sections. */
2855 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2856 export_dynamic, filter_shlib,
2857 auxiliary_filters, info, sinterpptr,
2862 boolean export_dynamic;
2863 const char *filter_shlib;
2864 const char * const *auxiliary_filters;
2865 struct bfd_link_info *info;
2866 asection **sinterpptr;
2867 struct bfd_elf_version_tree *verdefs;
2869 bfd_size_type soname_indx;
2871 struct elf_backend_data *bed;
2872 struct elf_assign_sym_version_info asvinfo;
2876 soname_indx = (bfd_size_type) -1;
2878 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2881 /* The backend may have to create some sections regardless of whether
2882 we're dynamic or not. */
2883 bed = get_elf_backend_data (output_bfd);
2884 if (bed->elf_backend_always_size_sections
2885 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2888 dynobj = elf_hash_table (info)->dynobj;
2890 /* If there were no dynamic objects in the link, there is nothing to
2895 if (elf_hash_table (info)->dynamic_sections_created)
2897 struct elf_info_failed eif;
2898 struct elf_link_hash_entry *h;
2901 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2902 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2906 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2907 soname, true, true);
2908 if (soname_indx == (bfd_size_type) -1
2909 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2915 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2917 info->flags |= DF_SYMBOLIC;
2924 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2926 if (indx == (bfd_size_type) -1
2927 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2929 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
2933 if (filter_shlib != NULL)
2937 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2938 filter_shlib, true, true);
2939 if (indx == (bfd_size_type) -1
2940 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2944 if (auxiliary_filters != NULL)
2946 const char * const *p;
2948 for (p = auxiliary_filters; *p != NULL; p++)
2952 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2954 if (indx == (bfd_size_type) -1
2955 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2960 /* If we are supposed to export all symbols into the dynamic symbol
2961 table (this is not the normal case), then do so. */
2964 struct elf_info_failed eif;
2968 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2974 /* Attach all the symbols to their version information. */
2975 asvinfo.output_bfd = output_bfd;
2976 asvinfo.info = info;
2977 asvinfo.verdefs = verdefs;
2978 asvinfo.export_dynamic = export_dynamic;
2979 asvinfo.failed = false;
2981 elf_link_hash_traverse (elf_hash_table (info),
2982 elf_link_assign_sym_version,
2987 /* Find all symbols which were defined in a dynamic object and make
2988 the backend pick a reasonable value for them. */
2991 elf_link_hash_traverse (elf_hash_table (info),
2992 elf_adjust_dynamic_symbol,
2997 /* Add some entries to the .dynamic section. We fill in some of the
2998 values later, in elf_bfd_final_link, but we must add the entries
2999 now so that we know the final size of the .dynamic section. */
3001 /* If there are initialization and/or finalization functions to
3002 call then add the corresponding DT_INIT/DT_FINI entries. */
3003 h = (info->init_function
3004 ? elf_link_hash_lookup (elf_hash_table (info),
3005 info->init_function, false,
3009 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3010 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3012 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3015 h = (info->fini_function
3016 ? elf_link_hash_lookup (elf_hash_table (info),
3017 info->fini_function, false,
3021 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3022 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3024 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3028 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3029 /* If .dynstr is excluded from the link, we don't want any of
3030 these tags. Strictly, we should be checking each section
3031 individually; This quick check covers for the case where
3032 someone does a /DISCARD/ : { *(*) }. */
3033 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3035 bfd_size_type strsize;
3037 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3038 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3039 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3040 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3041 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3042 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3043 sizeof (Elf_External_Sym)))
3048 /* The backend must work out the sizes of all the other dynamic
3050 if (bed->elf_backend_size_dynamic_sections
3051 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3054 if (elf_hash_table (info)->dynamic_sections_created)
3058 size_t bucketcount = 0;
3059 size_t hash_entry_size;
3061 /* Set up the version definition section. */
3062 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3063 BFD_ASSERT (s != NULL);
3065 /* We may have created additional version definitions if we are
3066 just linking a regular application. */
3067 verdefs = asvinfo.verdefs;
3069 if (verdefs == NULL)
3070 _bfd_strip_section_from_output (info, s);
3075 struct bfd_elf_version_tree *t;
3077 Elf_Internal_Verdef def;
3078 Elf_Internal_Verdaux defaux;
3083 /* Make space for the base version. */
3084 size += sizeof (Elf_External_Verdef);
3085 size += sizeof (Elf_External_Verdaux);
3088 for (t = verdefs; t != NULL; t = t->next)
3090 struct bfd_elf_version_deps *n;
3092 size += sizeof (Elf_External_Verdef);
3093 size += sizeof (Elf_External_Verdaux);
3096 for (n = t->deps; n != NULL; n = n->next)
3097 size += sizeof (Elf_External_Verdaux);
3100 s->_raw_size = size;
3101 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3102 if (s->contents == NULL && s->_raw_size != 0)
3105 /* Fill in the version definition section. */
3109 def.vd_version = VER_DEF_CURRENT;
3110 def.vd_flags = VER_FLG_BASE;
3113 def.vd_aux = sizeof (Elf_External_Verdef);
3114 def.vd_next = (sizeof (Elf_External_Verdef)
3115 + sizeof (Elf_External_Verdaux));
3117 if (soname_indx != (bfd_size_type) -1)
3119 def.vd_hash = bfd_elf_hash (soname);
3120 defaux.vda_name = soname_indx;
3127 name = output_bfd->filename;
3128 def.vd_hash = bfd_elf_hash (name);
3129 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3131 if (indx == (bfd_size_type) -1)
3133 defaux.vda_name = indx;
3135 defaux.vda_next = 0;
3137 _bfd_elf_swap_verdef_out (output_bfd, &def,
3138 (Elf_External_Verdef *)p);
3139 p += sizeof (Elf_External_Verdef);
3140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3141 (Elf_External_Verdaux *) p);
3142 p += sizeof (Elf_External_Verdaux);
3144 for (t = verdefs; t != NULL; t = t->next)
3147 struct bfd_elf_version_deps *n;
3148 struct elf_link_hash_entry *h;
3151 for (n = t->deps; n != NULL; n = n->next)
3154 /* Add a symbol representing this version. */
3156 if (! (_bfd_generic_link_add_one_symbol
3157 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3158 (bfd_vma) 0, (const char *) NULL, false,
3159 get_elf_backend_data (dynobj)->collect,
3160 (struct bfd_link_hash_entry **) &h)))
3162 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3163 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3164 h->type = STT_OBJECT;
3165 h->verinfo.vertree = t;
3167 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3170 def.vd_version = VER_DEF_CURRENT;
3172 if (t->globals == NULL && t->locals == NULL && ! t->used)
3173 def.vd_flags |= VER_FLG_WEAK;
3174 def.vd_ndx = t->vernum + 1;
3175 def.vd_cnt = cdeps + 1;
3176 def.vd_hash = bfd_elf_hash (t->name);
3177 def.vd_aux = sizeof (Elf_External_Verdef);
3178 if (t->next != NULL)
3179 def.vd_next = (sizeof (Elf_External_Verdef)
3180 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3184 _bfd_elf_swap_verdef_out (output_bfd, &def,
3185 (Elf_External_Verdef *) p);
3186 p += sizeof (Elf_External_Verdef);
3188 defaux.vda_name = h->dynstr_index;
3189 if (t->deps == NULL)
3190 defaux.vda_next = 0;
3192 defaux.vda_next = sizeof (Elf_External_Verdaux);
3193 t->name_indx = defaux.vda_name;
3195 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3196 (Elf_External_Verdaux *) p);
3197 p += sizeof (Elf_External_Verdaux);
3199 for (n = t->deps; n != NULL; n = n->next)
3201 if (n->version_needed == NULL)
3203 /* This can happen if there was an error in the
3205 defaux.vda_name = 0;
3208 defaux.vda_name = n->version_needed->name_indx;
3209 if (n->next == NULL)
3210 defaux.vda_next = 0;
3212 defaux.vda_next = sizeof (Elf_External_Verdaux);
3214 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3215 (Elf_External_Verdaux *) p);
3216 p += sizeof (Elf_External_Verdaux);
3220 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3221 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3224 elf_tdata (output_bfd)->cverdefs = cdefs;
3227 if (info->new_dtags && info->flags)
3229 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3236 info->flags_1 &= ~ (DF_1_INITFIRST
3239 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3243 /* Work out the size of the version reference section. */
3245 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3246 BFD_ASSERT (s != NULL);
3248 struct elf_find_verdep_info sinfo;
3250 sinfo.output_bfd = output_bfd;
3252 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3253 if (sinfo.vers == 0)
3255 sinfo.failed = false;
3257 elf_link_hash_traverse (elf_hash_table (info),
3258 elf_link_find_version_dependencies,
3261 if (elf_tdata (output_bfd)->verref == NULL)
3262 _bfd_strip_section_from_output (info, s);
3265 Elf_Internal_Verneed *t;
3270 /* Build the version definition section. */
3273 for (t = elf_tdata (output_bfd)->verref;
3277 Elf_Internal_Vernaux *a;
3279 size += sizeof (Elf_External_Verneed);
3281 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3282 size += sizeof (Elf_External_Vernaux);
3285 s->_raw_size = size;
3286 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3287 if (s->contents == NULL)
3291 for (t = elf_tdata (output_bfd)->verref;
3296 Elf_Internal_Vernaux *a;
3300 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3303 t->vn_version = VER_NEED_CURRENT;
3305 if (elf_dt_name (t->vn_bfd) != NULL)
3306 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3307 elf_dt_name (t->vn_bfd),
3310 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3311 t->vn_bfd->filename, true, false);
3312 if (indx == (bfd_size_type) -1)
3315 t->vn_aux = sizeof (Elf_External_Verneed);
3316 if (t->vn_nextref == NULL)
3319 t->vn_next = (sizeof (Elf_External_Verneed)
3320 + caux * sizeof (Elf_External_Vernaux));
3322 _bfd_elf_swap_verneed_out (output_bfd, t,
3323 (Elf_External_Verneed *) p);
3324 p += sizeof (Elf_External_Verneed);
3326 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3328 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3329 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3330 a->vna_nodename, true, false);
3331 if (indx == (bfd_size_type) -1)
3334 if (a->vna_nextptr == NULL)
3337 a->vna_next = sizeof (Elf_External_Vernaux);
3339 _bfd_elf_swap_vernaux_out (output_bfd, a,
3340 (Elf_External_Vernaux *) p);
3341 p += sizeof (Elf_External_Vernaux);
3345 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3346 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3349 elf_tdata (output_bfd)->cverrefs = crefs;
3353 /* Assign dynsym indicies. In a shared library we generate a
3354 section symbol for each output section, which come first.
3355 Next come all of the back-end allocated local dynamic syms,
3356 followed by the rest of the global symbols. */
3358 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3360 /* Work out the size of the symbol version section. */
3361 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3362 BFD_ASSERT (s != NULL);
3363 if (dynsymcount == 0
3364 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3366 _bfd_strip_section_from_output (info, s);
3367 /* The DYNSYMCOUNT might have changed if we were going to
3368 output a dynamic symbol table entry for S. */
3369 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3373 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3374 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3375 if (s->contents == NULL)
3378 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3382 /* Set the size of the .dynsym and .hash sections. We counted
3383 the number of dynamic symbols in elf_link_add_object_symbols.
3384 We will build the contents of .dynsym and .hash when we build
3385 the final symbol table, because until then we do not know the
3386 correct value to give the symbols. We built the .dynstr
3387 section as we went along in elf_link_add_object_symbols. */
3388 s = bfd_get_section_by_name (dynobj, ".dynsym");
3389 BFD_ASSERT (s != NULL);
3390 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3391 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3392 if (s->contents == NULL && s->_raw_size != 0)
3395 if (dynsymcount != 0)
3397 Elf_Internal_Sym isym;
3399 /* The first entry in .dynsym is a dummy symbol. */
3406 elf_swap_symbol_out (output_bfd, &isym,
3407 (PTR) (Elf_External_Sym *) s->contents);
3410 /* Compute the size of the hashing table. As a side effect this
3411 computes the hash values for all the names we export. */
3412 bucketcount = compute_bucket_count (info);
3414 s = bfd_get_section_by_name (dynobj, ".hash");
3415 BFD_ASSERT (s != NULL);
3416 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3417 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3418 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3419 if (s->contents == NULL)
3421 memset (s->contents, 0, (size_t) s->_raw_size);
3423 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3424 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3425 s->contents + hash_entry_size);
3427 elf_hash_table (info)->bucketcount = bucketcount;
3429 s = bfd_get_section_by_name (dynobj, ".dynstr");
3430 BFD_ASSERT (s != NULL);
3431 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3433 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3440 /* Fix up the flags for a symbol. This handles various cases which
3441 can only be fixed after all the input files are seen. This is
3442 currently called by both adjust_dynamic_symbol and
3443 assign_sym_version, which is unnecessary but perhaps more robust in
3444 the face of future changes. */
3447 elf_fix_symbol_flags (h, eif)
3448 struct elf_link_hash_entry *h;
3449 struct elf_info_failed *eif;
3451 /* If this symbol was mentioned in a non-ELF file, try to set
3452 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3453 permit a non-ELF file to correctly refer to a symbol defined in
3454 an ELF dynamic object. */
3455 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3457 while (h->root.type == bfd_link_hash_indirect)
3458 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3460 if (h->root.type != bfd_link_hash_defined
3461 && h->root.type != bfd_link_hash_defweak)
3462 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3463 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3466 if (h->root.u.def.section->owner != NULL
3467 && (bfd_get_flavour (h->root.u.def.section->owner)
3468 == bfd_target_elf_flavour))
3469 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3470 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3472 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3475 if (h->dynindx == -1
3476 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3477 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3479 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3488 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3489 was first seen in a non-ELF file. Fortunately, if the symbol
3490 was first seen in an ELF file, we're probably OK unless the
3491 symbol was defined in a non-ELF file. Catch that case here.
3492 FIXME: We're still in trouble if the symbol was first seen in
3493 a dynamic object, and then later in a non-ELF regular object. */
3494 if ((h->root.type == bfd_link_hash_defined
3495 || h->root.type == bfd_link_hash_defweak)
3496 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3497 && (h->root.u.def.section->owner != NULL
3498 ? (bfd_get_flavour (h->root.u.def.section->owner)
3499 != bfd_target_elf_flavour)
3500 : (bfd_is_abs_section (h->root.u.def.section)
3501 && (h->elf_link_hash_flags
3502 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3503 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3506 /* If this is a final link, and the symbol was defined as a common
3507 symbol in a regular object file, and there was no definition in
3508 any dynamic object, then the linker will have allocated space for
3509 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3510 flag will not have been set. */
3511 if (h->root.type == bfd_link_hash_defined
3512 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3513 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3514 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3515 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3516 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3518 /* If -Bsymbolic was used (which means to bind references to global
3519 symbols to the definition within the shared object), and this
3520 symbol was defined in a regular object, then it actually doesn't
3521 need a PLT entry. Likewise, if the symbol has any kind of
3522 visibility (internal, hidden, or protected), it doesn't need a
3524 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3525 && eif->info->shared
3526 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
3527 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3529 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3530 h->plt.offset = (bfd_vma) -1;
3533 /* If this is a weak defined symbol in a dynamic object, and we know
3534 the real definition in the dynamic object, copy interesting flags
3535 over to the real definition. */
3536 if (h->weakdef != NULL)
3538 struct elf_link_hash_entry *weakdef;
3540 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3541 || h->root.type == bfd_link_hash_defweak);
3542 weakdef = h->weakdef;
3543 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3544 || weakdef->root.type == bfd_link_hash_defweak);
3545 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3547 /* If the real definition is defined by a regular object file,
3548 don't do anything special. See the longer description in
3549 elf_adjust_dynamic_symbol, below. */
3550 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3553 weakdef->elf_link_hash_flags |=
3554 (h->elf_link_hash_flags
3555 & (ELF_LINK_HASH_REF_REGULAR
3556 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3557 | ELF_LINK_NON_GOT_REF));
3563 /* Make the backend pick a good value for a dynamic symbol. This is
3564 called via elf_link_hash_traverse, and also calls itself
3568 elf_adjust_dynamic_symbol (h, data)
3569 struct elf_link_hash_entry *h;
3572 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3574 struct elf_backend_data *bed;
3576 /* Ignore indirect symbols. These are added by the versioning code. */
3577 if (h->root.type == bfd_link_hash_indirect)
3580 /* Fix the symbol flags. */
3581 if (! elf_fix_symbol_flags (h, eif))
3584 /* If this symbol does not require a PLT entry, and it is not
3585 defined by a dynamic object, or is not referenced by a regular
3586 object, ignore it. We do have to handle a weak defined symbol,
3587 even if no regular object refers to it, if we decided to add it
3588 to the dynamic symbol table. FIXME: Do we normally need to worry
3589 about symbols which are defined by one dynamic object and
3590 referenced by another one? */
3591 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3592 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3593 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3594 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3595 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3597 h->plt.offset = (bfd_vma) -1;
3601 /* If we've already adjusted this symbol, don't do it again. This
3602 can happen via a recursive call. */
3603 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3606 /* Don't look at this symbol again. Note that we must set this
3607 after checking the above conditions, because we may look at a
3608 symbol once, decide not to do anything, and then get called
3609 recursively later after REF_REGULAR is set below. */
3610 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3612 /* If this is a weak definition, and we know a real definition, and
3613 the real symbol is not itself defined by a regular object file,
3614 then get a good value for the real definition. We handle the
3615 real symbol first, for the convenience of the backend routine.
3617 Note that there is a confusing case here. If the real definition
3618 is defined by a regular object file, we don't get the real symbol
3619 from the dynamic object, but we do get the weak symbol. If the
3620 processor backend uses a COPY reloc, then if some routine in the
3621 dynamic object changes the real symbol, we will not see that
3622 change in the corresponding weak symbol. This is the way other
3623 ELF linkers work as well, and seems to be a result of the shared
3626 I will clarify this issue. Most SVR4 shared libraries define the
3627 variable _timezone and define timezone as a weak synonym. The
3628 tzset call changes _timezone. If you write
3629 extern int timezone;
3631 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3632 you might expect that, since timezone is a synonym for _timezone,
3633 the same number will print both times. However, if the processor
3634 backend uses a COPY reloc, then actually timezone will be copied
3635 into your process image, and, since you define _timezone
3636 yourself, _timezone will not. Thus timezone and _timezone will
3637 wind up at different memory locations. The tzset call will set
3638 _timezone, leaving timezone unchanged. */
3640 if (h->weakdef != NULL)
3642 /* If we get to this point, we know there is an implicit
3643 reference by a regular object file via the weak symbol H.
3644 FIXME: Is this really true? What if the traversal finds
3645 H->WEAKDEF before it finds H? */
3646 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3648 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3652 /* If a symbol has no type and no size and does not require a PLT
3653 entry, then we are probably about to do the wrong thing here: we
3654 are probably going to create a COPY reloc for an empty object.
3655 This case can arise when a shared object is built with assembly
3656 code, and the assembly code fails to set the symbol type. */
3658 && h->type == STT_NOTYPE
3659 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3660 (*_bfd_error_handler)
3661 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3662 h->root.root.string);
3664 dynobj = elf_hash_table (eif->info)->dynobj;
3665 bed = get_elf_backend_data (dynobj);
3666 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3675 /* This routine is used to export all defined symbols into the dynamic
3676 symbol table. It is called via elf_link_hash_traverse. */
3679 elf_export_symbol (h, data)
3680 struct elf_link_hash_entry *h;
3683 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3685 /* Ignore indirect symbols. These are added by the versioning code. */
3686 if (h->root.type == bfd_link_hash_indirect)
3689 if (h->dynindx == -1
3690 && (h->elf_link_hash_flags
3691 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3693 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3703 /* Look through the symbols which are defined in other shared
3704 libraries and referenced here. Update the list of version
3705 dependencies. This will be put into the .gnu.version_r section.
3706 This function is called via elf_link_hash_traverse. */
3709 elf_link_find_version_dependencies (h, data)
3710 struct elf_link_hash_entry *h;
3713 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3714 Elf_Internal_Verneed *t;
3715 Elf_Internal_Vernaux *a;
3717 /* We only care about symbols defined in shared objects with version
3719 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3720 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3722 || h->verinfo.verdef == NULL)
3725 /* See if we already know about this version. */
3726 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3728 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3731 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3732 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3738 /* This is a new version. Add it to tree we are building. */
3742 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3745 rinfo->failed = true;
3749 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3750 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3751 elf_tdata (rinfo->output_bfd)->verref = t;
3754 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3756 /* Note that we are copying a string pointer here, and testing it
3757 above. If bfd_elf_string_from_elf_section is ever changed to
3758 discard the string data when low in memory, this will have to be
3760 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3762 a->vna_flags = h->verinfo.verdef->vd_flags;
3763 a->vna_nextptr = t->vn_auxptr;
3765 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3768 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3775 /* Figure out appropriate versions for all the symbols. We may not
3776 have the version number script until we have read all of the input
3777 files, so until that point we don't know which symbols should be
3778 local. This function is called via elf_link_hash_traverse. */
3781 elf_link_assign_sym_version (h, data)
3782 struct elf_link_hash_entry *h;
3785 struct elf_assign_sym_version_info *sinfo =
3786 (struct elf_assign_sym_version_info *) data;
3787 struct bfd_link_info *info = sinfo->info;
3788 struct elf_backend_data *bed;
3789 struct elf_info_failed eif;
3792 /* Fix the symbol flags. */
3795 if (! elf_fix_symbol_flags (h, &eif))
3798 sinfo->failed = true;
3802 /* We only need version numbers for symbols defined in regular
3804 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3807 bed = get_elf_backend_data (sinfo->output_bfd);
3808 p = strchr (h->root.root.string, ELF_VER_CHR);
3809 if (p != NULL && h->verinfo.vertree == NULL)
3811 struct bfd_elf_version_tree *t;
3816 /* There are two consecutive ELF_VER_CHR characters if this is
3817 not a hidden symbol. */
3819 if (*p == ELF_VER_CHR)
3825 /* If there is no version string, we can just return out. */
3829 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3833 /* Look for the version. If we find it, it is no longer weak. */
3834 for (t = sinfo->verdefs; t != NULL; t = t->next)
3836 if (strcmp (t->name, p) == 0)
3840 struct bfd_elf_version_expr *d;
3842 len = p - h->root.root.string;
3843 alc = bfd_alloc (sinfo->output_bfd, len);
3846 strncpy (alc, h->root.root.string, len - 1);
3847 alc[len - 1] = '\0';
3848 if (alc[len - 2] == ELF_VER_CHR)
3849 alc[len - 2] = '\0';
3851 h->verinfo.vertree = t;
3855 if (t->globals != NULL)
3857 for (d = t->globals; d != NULL; d = d->next)
3858 if ((*d->match) (d, alc))
3862 /* See if there is anything to force this symbol to
3864 if (d == NULL && t->locals != NULL)
3866 for (d = t->locals; d != NULL; d = d->next)
3868 if ((*d->match) (d, alc))
3870 if (h->dynindx != -1
3872 && ! sinfo->export_dynamic)
3874 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3875 (*bed->elf_backend_hide_symbol) (info, h);
3876 /* FIXME: The name of the symbol has
3877 already been recorded in the dynamic
3878 string table section. */
3886 bfd_release (sinfo->output_bfd, alc);
3891 /* If we are building an application, we need to create a
3892 version node for this version. */
3893 if (t == NULL && ! info->shared)
3895 struct bfd_elf_version_tree **pp;
3898 /* If we aren't going to export this symbol, we don't need
3899 to worry about it. */
3900 if (h->dynindx == -1)
3903 t = ((struct bfd_elf_version_tree *)
3904 bfd_alloc (sinfo->output_bfd, sizeof *t));
3907 sinfo->failed = true;
3916 t->name_indx = (unsigned int) -1;
3920 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3922 t->vernum = version_index;
3926 h->verinfo.vertree = t;
3930 /* We could not find the version for a symbol when
3931 generating a shared archive. Return an error. */
3932 (*_bfd_error_handler)
3933 (_("%s: undefined versioned symbol name %s"),
3934 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3935 bfd_set_error (bfd_error_bad_value);
3936 sinfo->failed = true;
3941 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3944 /* If we don't have a version for this symbol, see if we can find
3946 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3948 struct bfd_elf_version_tree *t;
3949 struct bfd_elf_version_tree *deflt;
3950 struct bfd_elf_version_expr *d;
3952 /* See if can find what version this symbol is in. If the
3953 symbol is supposed to be local, then don't actually register
3956 for (t = sinfo->verdefs; t != NULL; t = t->next)
3958 if (t->globals != NULL)
3960 for (d = t->globals; d != NULL; d = d->next)
3962 if ((*d->match) (d, h->root.root.string))
3964 h->verinfo.vertree = t;
3973 if (t->locals != NULL)
3975 for (d = t->locals; d != NULL; d = d->next)
3977 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3979 else if ((*d->match) (d, h->root.root.string))
3981 h->verinfo.vertree = t;
3982 if (h->dynindx != -1
3984 && ! sinfo->export_dynamic)
3986 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3987 (*bed->elf_backend_hide_symbol) (info, h);
3988 /* FIXME: The name of the symbol has already
3989 been recorded in the dynamic string table
4001 if (deflt != NULL && h->verinfo.vertree == NULL)
4003 h->verinfo.vertree = deflt;
4004 if (h->dynindx != -1
4006 && ! sinfo->export_dynamic)
4008 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4009 (*bed->elf_backend_hide_symbol) (info, h);
4010 /* FIXME: The name of the symbol has already been
4011 recorded in the dynamic string table section. */
4019 /* Final phase of ELF linker. */
4021 /* A structure we use to avoid passing large numbers of arguments. */
4023 struct elf_final_link_info
4025 /* General link information. */
4026 struct bfd_link_info *info;
4029 /* Symbol string table. */
4030 struct bfd_strtab_hash *symstrtab;
4031 /* .dynsym section. */
4032 asection *dynsym_sec;
4033 /* .hash section. */
4035 /* symbol version section (.gnu.version). */
4036 asection *symver_sec;
4037 /* Buffer large enough to hold contents of any section. */
4039 /* Buffer large enough to hold external relocs of any section. */
4040 PTR external_relocs;
4041 /* Buffer large enough to hold internal relocs of any section. */
4042 Elf_Internal_Rela *internal_relocs;
4043 /* Buffer large enough to hold external local symbols of any input
4045 Elf_External_Sym *external_syms;
4046 /* Buffer large enough to hold internal local symbols of any input
4048 Elf_Internal_Sym *internal_syms;
4049 /* Array large enough to hold a symbol index for each local symbol
4050 of any input BFD. */
4052 /* Array large enough to hold a section pointer for each local
4053 symbol of any input BFD. */
4054 asection **sections;
4055 /* Buffer to hold swapped out symbols. */
4056 Elf_External_Sym *symbuf;
4057 /* Number of swapped out symbols in buffer. */
4058 size_t symbuf_count;
4059 /* Number of symbols which fit in symbuf. */
4063 static boolean elf_link_output_sym
4064 PARAMS ((struct elf_final_link_info *, const char *,
4065 Elf_Internal_Sym *, asection *));
4066 static boolean elf_link_flush_output_syms
4067 PARAMS ((struct elf_final_link_info *));
4068 static boolean elf_link_output_extsym
4069 PARAMS ((struct elf_link_hash_entry *, PTR));
4070 static boolean elf_link_input_bfd
4071 PARAMS ((struct elf_final_link_info *, bfd *));
4072 static boolean elf_reloc_link_order
4073 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4074 struct bfd_link_order *));
4076 /* This struct is used to pass information to elf_link_output_extsym. */
4078 struct elf_outext_info
4082 struct elf_final_link_info *finfo;
4085 /* Compute the size of, and allocate space for, REL_HDR which is the
4086 section header for a section containing relocations for O. */
4089 elf_link_size_reloc_section (abfd, rel_hdr, o)
4091 Elf_Internal_Shdr *rel_hdr;
4094 register struct elf_link_hash_entry **p, **pend;
4095 unsigned reloc_count;
4097 /* Figure out how many relocations there will be. */
4098 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4099 reloc_count = elf_section_data (o)->rel_count;
4101 reloc_count = elf_section_data (o)->rel_count2;
4103 /* That allows us to calculate the size of the section. */
4104 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4106 /* The contents field must last into write_object_contents, so we
4107 allocate it with bfd_alloc rather than malloc. Also since we
4108 cannot be sure that the contents will actually be filled in,
4109 we zero the allocated space. */
4110 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4111 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4114 /* We only allocate one set of hash entries, so we only do it the
4115 first time we are called. */
4116 if (elf_section_data (o)->rel_hashes == NULL)
4118 p = ((struct elf_link_hash_entry **)
4119 bfd_malloc (o->reloc_count
4120 * sizeof (struct elf_link_hash_entry *)));
4121 if (p == NULL && o->reloc_count != 0)
4124 elf_section_data (o)->rel_hashes = p;
4125 pend = p + o->reloc_count;
4126 for (; p < pend; p++)
4133 /* When performing a relocateable link, the input relocations are
4134 preserved. But, if they reference global symbols, the indices
4135 referenced must be updated. Update all the relocations in
4136 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4139 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4141 Elf_Internal_Shdr *rel_hdr;
4143 struct elf_link_hash_entry **rel_hash;
4146 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4148 for (i = 0; i < count; i++, rel_hash++)
4150 if (*rel_hash == NULL)
4153 BFD_ASSERT ((*rel_hash)->indx >= 0);
4155 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4157 Elf_External_Rel *erel;
4158 Elf_Internal_Rel irel;
4160 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4161 if (bed->s->swap_reloc_in)
4162 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4164 elf_swap_reloc_in (abfd, erel, &irel);
4165 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4166 ELF_R_TYPE (irel.r_info));
4167 if (bed->s->swap_reloc_out)
4168 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4170 elf_swap_reloc_out (abfd, &irel, erel);
4174 Elf_External_Rela *erela;
4175 Elf_Internal_Rela irela;
4177 BFD_ASSERT (rel_hdr->sh_entsize
4178 == sizeof (Elf_External_Rela));
4180 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4181 if (bed->s->swap_reloca_in)
4182 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4184 elf_swap_reloca_in (abfd, erela, &irela);
4185 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4186 ELF_R_TYPE (irela.r_info));
4187 if (bed->s->swap_reloca_out)
4188 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4190 elf_swap_reloca_out (abfd, &irela, erela);
4195 /* Do the final step of an ELF link. */
4198 elf_bfd_final_link (abfd, info)
4200 struct bfd_link_info *info;
4204 struct elf_final_link_info finfo;
4205 register asection *o;
4206 register struct bfd_link_order *p;
4208 size_t max_contents_size;
4209 size_t max_external_reloc_size;
4210 size_t max_internal_reloc_count;
4211 size_t max_sym_count;
4213 Elf_Internal_Sym elfsym;
4215 Elf_Internal_Shdr *symtab_hdr;
4216 Elf_Internal_Shdr *symstrtab_hdr;
4217 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4218 struct elf_outext_info eoinfo;
4221 abfd->flags |= DYNAMIC;
4223 dynamic = elf_hash_table (info)->dynamic_sections_created;
4224 dynobj = elf_hash_table (info)->dynobj;
4227 finfo.output_bfd = abfd;
4228 finfo.symstrtab = elf_stringtab_init ();
4229 if (finfo.symstrtab == NULL)
4234 finfo.dynsym_sec = NULL;
4235 finfo.hash_sec = NULL;
4236 finfo.symver_sec = NULL;
4240 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4241 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4242 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4243 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4244 /* Note that it is OK if symver_sec is NULL. */
4247 finfo.contents = NULL;
4248 finfo.external_relocs = NULL;
4249 finfo.internal_relocs = NULL;
4250 finfo.external_syms = NULL;
4251 finfo.internal_syms = NULL;
4252 finfo.indices = NULL;
4253 finfo.sections = NULL;
4254 finfo.symbuf = NULL;
4255 finfo.symbuf_count = 0;
4257 /* Count up the number of relocations we will output for each output
4258 section, so that we know the sizes of the reloc sections. We
4259 also figure out some maximum sizes. */
4260 max_contents_size = 0;
4261 max_external_reloc_size = 0;
4262 max_internal_reloc_count = 0;
4264 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4268 for (p = o->link_order_head; p != NULL; p = p->next)
4270 if (p->type == bfd_section_reloc_link_order
4271 || p->type == bfd_symbol_reloc_link_order)
4273 else if (p->type == bfd_indirect_link_order)
4277 sec = p->u.indirect.section;
4279 /* Mark all sections which are to be included in the
4280 link. This will normally be every section. We need
4281 to do this so that we can identify any sections which
4282 the linker has decided to not include. */
4283 sec->linker_mark = true;
4285 if (info->relocateable || info->emitrelocations)
4286 o->reloc_count += sec->reloc_count;
4288 if (sec->_raw_size > max_contents_size)
4289 max_contents_size = sec->_raw_size;
4290 if (sec->_cooked_size > max_contents_size)
4291 max_contents_size = sec->_cooked_size;
4293 /* We are interested in just local symbols, not all
4295 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4296 && (sec->owner->flags & DYNAMIC) == 0)
4300 if (elf_bad_symtab (sec->owner))
4301 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4302 / sizeof (Elf_External_Sym));
4304 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4306 if (sym_count > max_sym_count)
4307 max_sym_count = sym_count;
4309 if ((sec->flags & SEC_RELOC) != 0)
4313 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4314 if (ext_size > max_external_reloc_size)
4315 max_external_reloc_size = ext_size;
4316 if (sec->reloc_count > max_internal_reloc_count)
4317 max_internal_reloc_count = sec->reloc_count;
4323 if (o->reloc_count > 0)
4324 o->flags |= SEC_RELOC;
4327 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4328 set it (this is probably a bug) and if it is set
4329 assign_section_numbers will create a reloc section. */
4330 o->flags &=~ SEC_RELOC;
4333 /* If the SEC_ALLOC flag is not set, force the section VMA to
4334 zero. This is done in elf_fake_sections as well, but forcing
4335 the VMA to 0 here will ensure that relocs against these
4336 sections are handled correctly. */
4337 if ((o->flags & SEC_ALLOC) == 0
4338 && ! o->user_set_vma)
4342 /* Figure out the file positions for everything but the symbol table
4343 and the relocs. We set symcount to force assign_section_numbers
4344 to create a symbol table. */
4345 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4346 BFD_ASSERT (! abfd->output_has_begun);
4347 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4350 /* Figure out how many relocations we will have in each section.
4351 Just using RELOC_COUNT isn't good enough since that doesn't
4352 maintain a separate value for REL vs. RELA relocations. */
4353 if (info->relocateable || info->emitrelocations)
4354 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4355 for (o = sub->sections; o != NULL; o = o->next)
4357 asection *output_section;
4359 if (! o->linker_mark)
4361 /* This section was omitted from the link. */
4365 output_section = o->output_section;
4367 if (output_section != NULL
4368 && (o->flags & SEC_RELOC) != 0)
4370 struct bfd_elf_section_data *esdi
4371 = elf_section_data (o);
4372 struct bfd_elf_section_data *esdo
4373 = elf_section_data (output_section);
4374 unsigned int *rel_count;
4375 unsigned int *rel_count2;
4377 /* We must be careful to add the relocation froms the
4378 input section to the right output count. */
4379 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4381 rel_count = &esdo->rel_count;
4382 rel_count2 = &esdo->rel_count2;
4386 rel_count = &esdo->rel_count2;
4387 rel_count2 = &esdo->rel_count;
4390 *rel_count += (esdi->rel_hdr.sh_size
4391 / esdi->rel_hdr.sh_entsize);
4393 *rel_count2 += (esdi->rel_hdr2->sh_size
4394 / esdi->rel_hdr2->sh_entsize);
4398 /* That created the reloc sections. Set their sizes, and assign
4399 them file positions, and allocate some buffers. */
4400 for (o = abfd->sections; o != NULL; o = o->next)
4402 if ((o->flags & SEC_RELOC) != 0)
4404 if (!elf_link_size_reloc_section (abfd,
4405 &elf_section_data (o)->rel_hdr,
4409 if (elf_section_data (o)->rel_hdr2
4410 && !elf_link_size_reloc_section (abfd,
4411 elf_section_data (o)->rel_hdr2,
4416 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4417 to count upwards while actually outputting the relocations. */
4418 elf_section_data (o)->rel_count = 0;
4419 elf_section_data (o)->rel_count2 = 0;
4422 _bfd_elf_assign_file_positions_for_relocs (abfd);
4424 /* We have now assigned file positions for all the sections except
4425 .symtab and .strtab. We start the .symtab section at the current
4426 file position, and write directly to it. We build the .strtab
4427 section in memory. */
4428 bfd_get_symcount (abfd) = 0;
4429 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4430 /* sh_name is set in prep_headers. */
4431 symtab_hdr->sh_type = SHT_SYMTAB;
4432 symtab_hdr->sh_flags = 0;
4433 symtab_hdr->sh_addr = 0;
4434 symtab_hdr->sh_size = 0;
4435 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4436 /* sh_link is set in assign_section_numbers. */
4437 /* sh_info is set below. */
4438 /* sh_offset is set just below. */
4439 symtab_hdr->sh_addralign = bed->s->file_align;
4441 off = elf_tdata (abfd)->next_file_pos;
4442 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4444 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4445 incorrect. We do not yet know the size of the .symtab section.
4446 We correct next_file_pos below, after we do know the size. */
4448 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4449 continuously seeking to the right position in the file. */
4450 if (! info->keep_memory || max_sym_count < 20)
4451 finfo.symbuf_size = 20;
4453 finfo.symbuf_size = max_sym_count;
4454 finfo.symbuf = ((Elf_External_Sym *)
4455 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4456 if (finfo.symbuf == NULL)
4459 /* Start writing out the symbol table. The first symbol is always a
4461 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4463 elfsym.st_value = 0;
4466 elfsym.st_other = 0;
4467 elfsym.st_shndx = SHN_UNDEF;
4468 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4469 &elfsym, bfd_und_section_ptr))
4474 /* Some standard ELF linkers do this, but we don't because it causes
4475 bootstrap comparison failures. */
4476 /* Output a file symbol for the output file as the second symbol.
4477 We output this even if we are discarding local symbols, although
4478 I'm not sure if this is correct. */
4479 elfsym.st_value = 0;
4481 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4482 elfsym.st_other = 0;
4483 elfsym.st_shndx = SHN_ABS;
4484 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4485 &elfsym, bfd_abs_section_ptr))
4489 /* Output a symbol for each section. We output these even if we are
4490 discarding local symbols, since they are used for relocs. These
4491 symbols have no names. We store the index of each one in the
4492 index field of the section, so that we can find it again when
4493 outputting relocs. */
4494 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4497 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4498 elfsym.st_other = 0;
4499 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4501 o = section_from_elf_index (abfd, i);
4503 o->target_index = bfd_get_symcount (abfd);
4504 elfsym.st_shndx = i;
4505 if (info->relocateable || o == NULL)
4506 elfsym.st_value = 0;
4508 elfsym.st_value = o->vma;
4509 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4515 /* Allocate some memory to hold information read in from the input
4517 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4518 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4519 finfo.internal_relocs = ((Elf_Internal_Rela *)
4520 bfd_malloc (max_internal_reloc_count
4521 * sizeof (Elf_Internal_Rela)
4522 * bed->s->int_rels_per_ext_rel));
4523 finfo.external_syms = ((Elf_External_Sym *)
4524 bfd_malloc (max_sym_count
4525 * sizeof (Elf_External_Sym)));
4526 finfo.internal_syms = ((Elf_Internal_Sym *)
4527 bfd_malloc (max_sym_count
4528 * sizeof (Elf_Internal_Sym)));
4529 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4530 finfo.sections = ((asection **)
4531 bfd_malloc (max_sym_count * sizeof (asection *)));
4532 if ((finfo.contents == NULL && max_contents_size != 0)
4533 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4534 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4535 || (finfo.external_syms == NULL && max_sym_count != 0)
4536 || (finfo.internal_syms == NULL && max_sym_count != 0)
4537 || (finfo.indices == NULL && max_sym_count != 0)
4538 || (finfo.sections == NULL && max_sym_count != 0))
4541 /* Since ELF permits relocations to be against local symbols, we
4542 must have the local symbols available when we do the relocations.
4543 Since we would rather only read the local symbols once, and we
4544 would rather not keep them in memory, we handle all the
4545 relocations for a single input file at the same time.
4547 Unfortunately, there is no way to know the total number of local
4548 symbols until we have seen all of them, and the local symbol
4549 indices precede the global symbol indices. This means that when
4550 we are generating relocateable output, and we see a reloc against
4551 a global symbol, we can not know the symbol index until we have
4552 finished examining all the local symbols to see which ones we are
4553 going to output. To deal with this, we keep the relocations in
4554 memory, and don't output them until the end of the link. This is
4555 an unfortunate waste of memory, but I don't see a good way around
4556 it. Fortunately, it only happens when performing a relocateable
4557 link, which is not the common case. FIXME: If keep_memory is set
4558 we could write the relocs out and then read them again; I don't
4559 know how bad the memory loss will be. */
4561 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4562 sub->output_has_begun = false;
4563 for (o = abfd->sections; o != NULL; o = o->next)
4565 for (p = o->link_order_head; p != NULL; p = p->next)
4567 if (p->type == bfd_indirect_link_order
4568 && (bfd_get_flavour (p->u.indirect.section->owner)
4569 == bfd_target_elf_flavour))
4571 sub = p->u.indirect.section->owner;
4572 if (! sub->output_has_begun)
4574 if (! elf_link_input_bfd (&finfo, sub))
4576 sub->output_has_begun = true;
4579 else if (p->type == bfd_section_reloc_link_order
4580 || p->type == bfd_symbol_reloc_link_order)
4582 if (! elf_reloc_link_order (abfd, info, o, p))
4587 if (! _bfd_default_link_order (abfd, info, o, p))
4593 /* That wrote out all the local symbols. Finish up the symbol table
4594 with the global symbols. Even if we want to strip everything we
4595 can, we still need to deal with those global symbols that got
4596 converted to local in a version script. */
4600 /* Output any global symbols that got converted to local in a
4601 version script. We do this in a separate step since ELF
4602 requires all local symbols to appear prior to any global
4603 symbols. FIXME: We should only do this if some global
4604 symbols were, in fact, converted to become local. FIXME:
4605 Will this work correctly with the Irix 5 linker? */
4606 eoinfo.failed = false;
4607 eoinfo.finfo = &finfo;
4608 eoinfo.localsyms = true;
4609 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4615 /* The sh_info field records the index of the first non local symbol. */
4616 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4619 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
4621 Elf_Internal_Sym sym;
4622 Elf_External_Sym *dynsym =
4623 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4624 long last_local = 0;
4626 /* Write out the section symbols for the output sections. */
4633 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4636 for (s = abfd->sections; s != NULL; s = s->next)
4639 indx = elf_section_data (s)->this_idx;
4640 BFD_ASSERT (indx > 0);
4641 sym.st_shndx = indx;
4642 sym.st_value = s->vma;
4644 elf_swap_symbol_out (abfd, &sym,
4645 dynsym + elf_section_data (s)->dynindx);
4648 last_local = bfd_count_sections (abfd);
4651 /* Write out the local dynsyms. */
4652 if (elf_hash_table (info)->dynlocal)
4654 struct elf_link_local_dynamic_entry *e;
4655 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4659 sym.st_size = e->isym.st_size;
4660 sym.st_other = e->isym.st_other;
4662 /* Copy the internal symbol as is.
4663 Note that we saved a word of storage and overwrote
4664 the original st_name with the dynstr_index. */
4667 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4669 s = bfd_section_from_elf_index (e->input_bfd,
4673 elf_section_data (s->output_section)->this_idx;
4674 sym.st_value = (s->output_section->vma
4676 + e->isym.st_value);
4679 if (last_local < e->dynindx)
4680 last_local = e->dynindx;
4682 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4686 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4690 /* We get the global symbols from the hash table. */
4691 eoinfo.failed = false;
4692 eoinfo.localsyms = false;
4693 eoinfo.finfo = &finfo;
4694 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4699 /* If backend needs to output some symbols not present in the hash
4700 table, do it now. */
4701 if (bed->elf_backend_output_arch_syms)
4703 if (! (*bed->elf_backend_output_arch_syms)
4704 (abfd, info, (PTR) &finfo,
4705 (boolean (*) PARAMS ((PTR, const char *,
4706 Elf_Internal_Sym *, asection *)))
4707 elf_link_output_sym))
4711 /* Flush all symbols to the file. */
4712 if (! elf_link_flush_output_syms (&finfo))
4715 /* Now we know the size of the symtab section. */
4716 off += symtab_hdr->sh_size;
4718 /* Finish up and write out the symbol string table (.strtab)
4720 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4721 /* sh_name was set in prep_headers. */
4722 symstrtab_hdr->sh_type = SHT_STRTAB;
4723 symstrtab_hdr->sh_flags = 0;
4724 symstrtab_hdr->sh_addr = 0;
4725 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4726 symstrtab_hdr->sh_entsize = 0;
4727 symstrtab_hdr->sh_link = 0;
4728 symstrtab_hdr->sh_info = 0;
4729 /* sh_offset is set just below. */
4730 symstrtab_hdr->sh_addralign = 1;
4732 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4733 elf_tdata (abfd)->next_file_pos = off;
4735 if (bfd_get_symcount (abfd) > 0)
4737 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4738 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4742 /* Adjust the relocs to have the correct symbol indices. */
4743 for (o = abfd->sections; o != NULL; o = o->next)
4745 if ((o->flags & SEC_RELOC) == 0)
4748 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4749 elf_section_data (o)->rel_count,
4750 elf_section_data (o)->rel_hashes);
4751 if (elf_section_data (o)->rel_hdr2 != NULL)
4752 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4753 elf_section_data (o)->rel_count2,
4754 (elf_section_data (o)->rel_hashes
4755 + elf_section_data (o)->rel_count));
4757 /* Set the reloc_count field to 0 to prevent write_relocs from
4758 trying to swap the relocs out itself. */
4762 /* If we are linking against a dynamic object, or generating a
4763 shared library, finish up the dynamic linking information. */
4766 Elf_External_Dyn *dyncon, *dynconend;
4768 /* Fix up .dynamic entries. */
4769 o = bfd_get_section_by_name (dynobj, ".dynamic");
4770 BFD_ASSERT (o != NULL);
4772 dyncon = (Elf_External_Dyn *) o->contents;
4773 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4774 for (; dyncon < dynconend; dyncon++)
4776 Elf_Internal_Dyn dyn;
4780 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4787 name = info->init_function;
4790 name = info->fini_function;
4793 struct elf_link_hash_entry *h;
4795 h = elf_link_hash_lookup (elf_hash_table (info), name,
4796 false, false, true);
4798 && (h->root.type == bfd_link_hash_defined
4799 || h->root.type == bfd_link_hash_defweak))
4801 dyn.d_un.d_val = h->root.u.def.value;
4802 o = h->root.u.def.section;
4803 if (o->output_section != NULL)
4804 dyn.d_un.d_val += (o->output_section->vma
4805 + o->output_offset);
4808 /* The symbol is imported from another shared
4809 library and does not apply to this one. */
4813 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4828 name = ".gnu.version_d";
4831 name = ".gnu.version_r";
4834 name = ".gnu.version";
4836 o = bfd_get_section_by_name (abfd, name);
4837 BFD_ASSERT (o != NULL);
4838 dyn.d_un.d_ptr = o->vma;
4839 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4846 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4851 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4853 Elf_Internal_Shdr *hdr;
4855 hdr = elf_elfsections (abfd)[i];
4856 if (hdr->sh_type == type
4857 && (hdr->sh_flags & SHF_ALLOC) != 0)
4859 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4860 dyn.d_un.d_val += hdr->sh_size;
4863 if (dyn.d_un.d_val == 0
4864 || hdr->sh_addr < dyn.d_un.d_val)
4865 dyn.d_un.d_val = hdr->sh_addr;
4869 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4875 /* If we have created any dynamic sections, then output them. */
4878 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4881 for (o = dynobj->sections; o != NULL; o = o->next)
4883 if ((o->flags & SEC_HAS_CONTENTS) == 0
4884 || o->_raw_size == 0
4885 || o->output_section == bfd_abs_section_ptr)
4887 if ((o->flags & SEC_LINKER_CREATED) == 0)
4889 /* At this point, we are only interested in sections
4890 created by elf_link_create_dynamic_sections. */
4893 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4895 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4897 if (! bfd_set_section_contents (abfd, o->output_section,
4898 o->contents, o->output_offset,
4906 /* The contents of the .dynstr section are actually in a
4908 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4909 if (bfd_seek (abfd, off, SEEK_SET) != 0
4910 || ! _bfd_stringtab_emit (abfd,
4911 elf_hash_table (info)->dynstr))
4917 /* If we have optimized stabs strings, output them. */
4918 if (elf_hash_table (info)->stab_info != NULL)
4920 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4924 if (finfo.symstrtab != NULL)
4925 _bfd_stringtab_free (finfo.symstrtab);
4926 if (finfo.contents != NULL)
4927 free (finfo.contents);
4928 if (finfo.external_relocs != NULL)
4929 free (finfo.external_relocs);
4930 if (finfo.internal_relocs != NULL)
4931 free (finfo.internal_relocs);
4932 if (finfo.external_syms != NULL)
4933 free (finfo.external_syms);
4934 if (finfo.internal_syms != NULL)
4935 free (finfo.internal_syms);
4936 if (finfo.indices != NULL)
4937 free (finfo.indices);
4938 if (finfo.sections != NULL)
4939 free (finfo.sections);
4940 if (finfo.symbuf != NULL)
4941 free (finfo.symbuf);
4942 for (o = abfd->sections; o != NULL; o = o->next)
4944 if ((o->flags & SEC_RELOC) != 0
4945 && elf_section_data (o)->rel_hashes != NULL)
4946 free (elf_section_data (o)->rel_hashes);
4949 elf_tdata (abfd)->linker = true;
4954 if (finfo.symstrtab != NULL)
4955 _bfd_stringtab_free (finfo.symstrtab);
4956 if (finfo.contents != NULL)
4957 free (finfo.contents);
4958 if (finfo.external_relocs != NULL)
4959 free (finfo.external_relocs);
4960 if (finfo.internal_relocs != NULL)
4961 free (finfo.internal_relocs);
4962 if (finfo.external_syms != NULL)
4963 free (finfo.external_syms);
4964 if (finfo.internal_syms != NULL)
4965 free (finfo.internal_syms);
4966 if (finfo.indices != NULL)
4967 free (finfo.indices);
4968 if (finfo.sections != NULL)
4969 free (finfo.sections);
4970 if (finfo.symbuf != NULL)
4971 free (finfo.symbuf);
4972 for (o = abfd->sections; o != NULL; o = o->next)
4974 if ((o->flags & SEC_RELOC) != 0
4975 && elf_section_data (o)->rel_hashes != NULL)
4976 free (elf_section_data (o)->rel_hashes);
4982 /* Add a symbol to the output symbol table. */
4985 elf_link_output_sym (finfo, name, elfsym, input_sec)
4986 struct elf_final_link_info *finfo;
4988 Elf_Internal_Sym *elfsym;
4989 asection *input_sec;
4991 boolean (*output_symbol_hook) PARAMS ((bfd *,
4992 struct bfd_link_info *info,
4997 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4998 elf_backend_link_output_symbol_hook;
4999 if (output_symbol_hook != NULL)
5001 if (! ((*output_symbol_hook)
5002 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5006 if (name == (const char *) NULL || *name == '\0')
5007 elfsym->st_name = 0;
5008 else if (input_sec->flags & SEC_EXCLUDE)
5009 elfsym->st_name = 0;
5012 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5015 if (elfsym->st_name == (unsigned long) -1)
5019 if (finfo->symbuf_count >= finfo->symbuf_size)
5021 if (! elf_link_flush_output_syms (finfo))
5025 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5026 (PTR) (finfo->symbuf + finfo->symbuf_count));
5027 ++finfo->symbuf_count;
5029 ++ bfd_get_symcount (finfo->output_bfd);
5034 /* Flush the output symbols to the file. */
5037 elf_link_flush_output_syms (finfo)
5038 struct elf_final_link_info *finfo;
5040 if (finfo->symbuf_count > 0)
5042 Elf_Internal_Shdr *symtab;
5044 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5046 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5048 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5049 sizeof (Elf_External_Sym), finfo->output_bfd)
5050 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5053 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5055 finfo->symbuf_count = 0;
5061 /* Add an external symbol to the symbol table. This is called from
5062 the hash table traversal routine. When generating a shared object,
5063 we go through the symbol table twice. The first time we output
5064 anything that might have been forced to local scope in a version
5065 script. The second time we output the symbols that are still
5069 elf_link_output_extsym (h, data)
5070 struct elf_link_hash_entry *h;
5073 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5074 struct elf_final_link_info *finfo = eoinfo->finfo;
5076 Elf_Internal_Sym sym;
5077 asection *input_sec;
5079 /* Decide whether to output this symbol in this pass. */
5080 if (eoinfo->localsyms)
5082 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5087 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5091 /* If we are not creating a shared library, and this symbol is
5092 referenced by a shared library but is not defined anywhere, then
5093 warn that it is undefined. If we do not do this, the runtime
5094 linker will complain that the symbol is undefined when the
5095 program is run. We don't have to worry about symbols that are
5096 referenced by regular files, because we will already have issued
5097 warnings for them. */
5098 if (! finfo->info->relocateable
5099 && ! finfo->info->allow_shlib_undefined
5100 && ! (finfo->info->shared
5101 && !finfo->info->no_undefined)
5102 && h->root.type == bfd_link_hash_undefined
5103 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5104 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5106 if (! ((*finfo->info->callbacks->undefined_symbol)
5107 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5108 (asection *) NULL, 0, true)))
5110 eoinfo->failed = true;
5115 /* We don't want to output symbols that have never been mentioned by
5116 a regular file, or that we have been told to strip. However, if
5117 h->indx is set to -2, the symbol is used by a reloc and we must
5121 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5122 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5123 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5124 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5126 else if (finfo->info->strip == strip_all
5127 || (finfo->info->strip == strip_some
5128 && bfd_hash_lookup (finfo->info->keep_hash,
5129 h->root.root.string,
5130 false, false) == NULL))
5135 /* If we're stripping it, and it's not a dynamic symbol, there's
5136 nothing else to do unless it is a forced local symbol. */
5139 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5143 sym.st_size = h->size;
5144 sym.st_other = h->other;
5145 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5146 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5147 else if (h->root.type == bfd_link_hash_undefweak
5148 || h->root.type == bfd_link_hash_defweak)
5149 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5151 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5153 switch (h->root.type)
5156 case bfd_link_hash_new:
5160 case bfd_link_hash_undefined:
5161 input_sec = bfd_und_section_ptr;
5162 sym.st_shndx = SHN_UNDEF;
5165 case bfd_link_hash_undefweak:
5166 input_sec = bfd_und_section_ptr;
5167 sym.st_shndx = SHN_UNDEF;
5170 case bfd_link_hash_defined:
5171 case bfd_link_hash_defweak:
5173 input_sec = h->root.u.def.section;
5174 if (input_sec->output_section != NULL)
5177 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5178 input_sec->output_section);
5179 if (sym.st_shndx == (unsigned short) -1)
5181 (*_bfd_error_handler)
5182 (_("%s: could not find output section %s for input section %s"),
5183 bfd_get_filename (finfo->output_bfd),
5184 input_sec->output_section->name,
5186 eoinfo->failed = true;
5190 /* ELF symbols in relocateable files are section relative,
5191 but in nonrelocateable files they are virtual
5193 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5194 if (! finfo->info->relocateable)
5195 sym.st_value += input_sec->output_section->vma;
5199 BFD_ASSERT (input_sec->owner == NULL
5200 || (input_sec->owner->flags & DYNAMIC) != 0);
5201 sym.st_shndx = SHN_UNDEF;
5202 input_sec = bfd_und_section_ptr;
5207 case bfd_link_hash_common:
5208 input_sec = h->root.u.c.p->section;
5209 sym.st_shndx = SHN_COMMON;
5210 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5213 case bfd_link_hash_indirect:
5214 /* These symbols are created by symbol versioning. They point
5215 to the decorated version of the name. For example, if the
5216 symbol foo@@GNU_1.2 is the default, which should be used when
5217 foo is used with no version, then we add an indirect symbol
5218 foo which points to foo@@GNU_1.2. We ignore these symbols,
5219 since the indirected symbol is already in the hash table. */
5222 case bfd_link_hash_warning:
5223 /* We can't represent these symbols in ELF, although a warning
5224 symbol may have come from a .gnu.warning.SYMBOL section. We
5225 just put the target symbol in the hash table. If the target
5226 symbol does not really exist, don't do anything. */
5227 if (h->root.u.i.link->type == bfd_link_hash_new)
5229 return (elf_link_output_extsym
5230 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5233 /* Give the processor backend a chance to tweak the symbol value,
5234 and also to finish up anything that needs to be done for this
5236 if ((h->dynindx != -1
5237 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5238 && elf_hash_table (finfo->info)->dynamic_sections_created)
5240 struct elf_backend_data *bed;
5242 bed = get_elf_backend_data (finfo->output_bfd);
5243 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5244 (finfo->output_bfd, finfo->info, h, &sym)))
5246 eoinfo->failed = true;
5251 /* If we are marking the symbol as undefined, and there are no
5252 non-weak references to this symbol from a regular object, then
5253 mark the symbol as weak undefined; if there are non-weak
5254 references, mark the symbol as strong. We can't do this earlier,
5255 because it might not be marked as undefined until the
5256 finish_dynamic_symbol routine gets through with it. */
5257 if (sym.st_shndx == SHN_UNDEF
5258 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5259 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5260 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5264 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5265 bindtype = STB_GLOBAL;
5267 bindtype = STB_WEAK;
5268 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5271 /* If a symbol is not defined locally, we clear the visibility
5273 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5274 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5276 /* If this symbol should be put in the .dynsym section, then put it
5277 there now. We have already know the symbol index. We also fill
5278 in the entry in the .hash section. */
5279 if (h->dynindx != -1
5280 && elf_hash_table (finfo->info)->dynamic_sections_created)
5284 size_t hash_entry_size;
5285 bfd_byte *bucketpos;
5288 sym.st_name = h->dynstr_index;
5290 elf_swap_symbol_out (finfo->output_bfd, &sym,
5291 (PTR) (((Elf_External_Sym *)
5292 finfo->dynsym_sec->contents)
5295 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5296 bucket = h->elf_hash_value % bucketcount;
5298 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5299 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5300 + (bucket + 2) * hash_entry_size);
5301 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5302 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5303 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5304 ((bfd_byte *) finfo->hash_sec->contents
5305 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5307 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5309 Elf_Internal_Versym iversym;
5311 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5313 if (h->verinfo.verdef == NULL)
5314 iversym.vs_vers = 0;
5316 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5320 if (h->verinfo.vertree == NULL)
5321 iversym.vs_vers = 1;
5323 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5326 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5327 iversym.vs_vers |= VERSYM_HIDDEN;
5329 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5330 (((Elf_External_Versym *)
5331 finfo->symver_sec->contents)
5336 /* If we're stripping it, then it was just a dynamic symbol, and
5337 there's nothing else to do. */
5341 h->indx = bfd_get_symcount (finfo->output_bfd);
5343 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5345 eoinfo->failed = true;
5352 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5353 originated from the section given by INPUT_REL_HDR) to the
5357 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5360 asection *input_section;
5361 Elf_Internal_Shdr *input_rel_hdr;
5362 Elf_Internal_Rela *internal_relocs;
5364 Elf_Internal_Rela *irela;
5365 Elf_Internal_Rela *irelaend;
5366 Elf_Internal_Shdr *output_rel_hdr;
5367 asection *output_section;
5368 unsigned int *rel_countp = NULL;
5369 struct elf_backend_data *bed;
5371 output_section = input_section->output_section;
5372 output_rel_hdr = NULL;
5374 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5375 == input_rel_hdr->sh_entsize)
5377 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5378 rel_countp = &elf_section_data (output_section)->rel_count;
5380 else if (elf_section_data (output_section)->rel_hdr2
5381 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5382 == input_rel_hdr->sh_entsize))
5384 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5385 rel_countp = &elf_section_data (output_section)->rel_count2;
5388 BFD_ASSERT (output_rel_hdr != NULL);
5390 bed = get_elf_backend_data (output_bfd);
5391 irela = internal_relocs;
5392 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5393 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5395 Elf_External_Rel *erel;
5397 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5398 for (; irela < irelaend; irela++, erel++)
5400 Elf_Internal_Rel irel;
5402 irel.r_offset = irela->r_offset;
5403 irel.r_info = irela->r_info;
5404 BFD_ASSERT (irela->r_addend == 0);
5405 if (bed->s->swap_reloc_out)
5406 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5408 elf_swap_reloc_out (output_bfd, &irel, erel);
5413 Elf_External_Rela *erela;
5415 BFD_ASSERT (input_rel_hdr->sh_entsize
5416 == sizeof (Elf_External_Rela));
5417 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5418 for (; irela < irelaend; irela++, erela++)
5419 if (bed->s->swap_reloca_out)
5420 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5422 elf_swap_reloca_out (output_bfd, irela, erela);
5425 /* Bump the counter, so that we know where to add the next set of
5427 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5430 /* Link an input file into the linker output file. This function
5431 handles all the sections and relocations of the input file at once.
5432 This is so that we only have to read the local symbols once, and
5433 don't have to keep them in memory. */
5436 elf_link_input_bfd (finfo, input_bfd)
5437 struct elf_final_link_info *finfo;
5440 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5441 bfd *, asection *, bfd_byte *,
5442 Elf_Internal_Rela *,
5443 Elf_Internal_Sym *, asection **));
5445 Elf_Internal_Shdr *symtab_hdr;
5448 Elf_External_Sym *external_syms;
5449 Elf_External_Sym *esym;
5450 Elf_External_Sym *esymend;
5451 Elf_Internal_Sym *isym;
5453 asection **ppsection;
5455 struct elf_backend_data *bed;
5457 output_bfd = finfo->output_bfd;
5458 bed = get_elf_backend_data (output_bfd);
5459 relocate_section = bed->elf_backend_relocate_section;
5461 /* If this is a dynamic object, we don't want to do anything here:
5462 we don't want the local symbols, and we don't want the section
5464 if ((input_bfd->flags & DYNAMIC) != 0)
5467 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5468 if (elf_bad_symtab (input_bfd))
5470 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5475 locsymcount = symtab_hdr->sh_info;
5476 extsymoff = symtab_hdr->sh_info;
5479 /* Read the local symbols. */
5480 if (symtab_hdr->contents != NULL)
5481 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5482 else if (locsymcount == 0)
5483 external_syms = NULL;
5486 external_syms = finfo->external_syms;
5487 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5488 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5489 locsymcount, input_bfd)
5490 != locsymcount * sizeof (Elf_External_Sym)))
5494 /* Swap in the local symbols and write out the ones which we know
5495 are going into the output file. */
5496 esym = external_syms;
5497 esymend = esym + locsymcount;
5498 isym = finfo->internal_syms;
5499 pindex = finfo->indices;
5500 ppsection = finfo->sections;
5501 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5505 Elf_Internal_Sym osym;
5507 elf_swap_symbol_in (input_bfd, esym, isym);
5510 if (elf_bad_symtab (input_bfd))
5512 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5520 if (isym->st_shndx == SHN_UNDEF)
5522 isec = bfd_und_section_ptr;
5525 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5526 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5527 else if (isym->st_shndx == SHN_ABS)
5529 isec = bfd_abs_section_ptr;
5532 else if (isym->st_shndx == SHN_COMMON)
5534 isec = bfd_com_section_ptr;
5545 /* Don't output the first, undefined, symbol. */
5546 if (esym == external_syms)
5549 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5553 /* Save away all section symbol values. */
5558 if (isec->symbol->value != isym->st_value)
5559 (*_bfd_error_handler)
5560 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5561 bfd_get_filename (input_bfd), isym->st_shndx,
5565 isec->symbol->value = isym->st_value;
5568 /* If this is a discarded link-once section symbol, update
5569 it's value to that of the kept section symbol. The
5570 linker will keep the first of any matching link-once
5571 sections, so we should have already seen it's section
5572 symbol. I trust no-one will have the bright idea of
5573 re-ordering the bfd list... */
5575 && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5576 && (ksec = isec->kept_section) != NULL)
5578 isym->st_value = ksec->symbol->value;
5580 /* That put the value right, but the section info is all
5581 wrong. I hope this works. */
5582 isec->output_offset = ksec->output_offset;
5583 isec->output_section = ksec->output_section;
5586 /* We never output section symbols. Instead, we use the
5587 section symbol of the corresponding section in the output
5592 /* If we are stripping all symbols, we don't want to output this
5594 if (finfo->info->strip == strip_all)
5597 /* If we are discarding all local symbols, we don't want to
5598 output this one. If we are generating a relocateable output
5599 file, then some of the local symbols may be required by
5600 relocs; we output them below as we discover that they are
5602 if (finfo->info->discard == discard_all)
5605 /* If this symbol is defined in a section which we are
5606 discarding, we don't need to keep it, but note that
5607 linker_mark is only reliable for sections that have contents.
5608 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5609 as well as linker_mark. */
5610 if (isym->st_shndx > 0
5611 && isym->st_shndx < SHN_LORESERVE
5613 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5614 || (! finfo->info->relocateable
5615 && (isec->flags & SEC_EXCLUDE) != 0)))
5618 /* Get the name of the symbol. */
5619 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5624 /* See if we are discarding symbols with this name. */
5625 if ((finfo->info->strip == strip_some
5626 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5628 || (finfo->info->discard == discard_l
5629 && bfd_is_local_label_name (input_bfd, name)))
5632 /* If we get here, we are going to output this symbol. */
5636 /* Adjust the section index for the output file. */
5637 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5638 isec->output_section);
5639 if (osym.st_shndx == (unsigned short) -1)
5642 *pindex = bfd_get_symcount (output_bfd);
5644 /* ELF symbols in relocateable files are section relative, but
5645 in executable files they are virtual addresses. Note that
5646 this code assumes that all ELF sections have an associated
5647 BFD section with a reasonable value for output_offset; below
5648 we assume that they also have a reasonable value for
5649 output_section. Any special sections must be set up to meet
5650 these requirements. */
5651 osym.st_value += isec->output_offset;
5652 if (! finfo->info->relocateable)
5653 osym.st_value += isec->output_section->vma;
5655 if (! elf_link_output_sym (finfo, name, &osym, isec))
5659 /* Relocate the contents of each section. */
5660 for (o = input_bfd->sections; o != NULL; o = o->next)
5664 if (! o->linker_mark)
5666 /* This section was omitted from the link. */
5670 if ((o->flags & SEC_HAS_CONTENTS) == 0
5671 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5674 if ((o->flags & SEC_LINKER_CREATED) != 0)
5676 /* Section was created by elf_link_create_dynamic_sections
5681 /* Get the contents of the section. They have been cached by a
5682 relaxation routine. Note that o is a section in an input
5683 file, so the contents field will not have been set by any of
5684 the routines which work on output files. */
5685 if (elf_section_data (o)->this_hdr.contents != NULL)
5686 contents = elf_section_data (o)->this_hdr.contents;
5689 contents = finfo->contents;
5690 if (! bfd_get_section_contents (input_bfd, o, contents,
5691 (file_ptr) 0, o->_raw_size))
5695 if ((o->flags & SEC_RELOC) != 0)
5697 Elf_Internal_Rela *internal_relocs;
5699 /* Get the swapped relocs. */
5700 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5701 (input_bfd, o, finfo->external_relocs,
5702 finfo->internal_relocs, false));
5703 if (internal_relocs == NULL
5704 && o->reloc_count > 0)
5707 /* Relocate the section by invoking a back end routine.
5709 The back end routine is responsible for adjusting the
5710 section contents as necessary, and (if using Rela relocs
5711 and generating a relocateable output file) adjusting the
5712 reloc addend as necessary.
5714 The back end routine does not have to worry about setting
5715 the reloc address or the reloc symbol index.
5717 The back end routine is given a pointer to the swapped in
5718 internal symbols, and can access the hash table entries
5719 for the external symbols via elf_sym_hashes (input_bfd).
5721 When generating relocateable output, the back end routine
5722 must handle STB_LOCAL/STT_SECTION symbols specially. The
5723 output symbol is going to be a section symbol
5724 corresponding to the output section, which will require
5725 the addend to be adjusted. */
5727 if (! (*relocate_section) (output_bfd, finfo->info,
5728 input_bfd, o, contents,
5730 finfo->internal_syms,
5734 if (finfo->info->relocateable || finfo->info->emitrelocations)
5736 Elf_Internal_Rela *irela;
5737 Elf_Internal_Rela *irelaend;
5738 struct elf_link_hash_entry **rel_hash;
5739 Elf_Internal_Shdr *input_rel_hdr;
5741 /* Adjust the reloc addresses and symbol indices. */
5743 irela = internal_relocs;
5745 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5746 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5747 + elf_section_data (o->output_section)->rel_count
5748 + elf_section_data (o->output_section)->rel_count2);
5749 for (; irela < irelaend; irela++, rel_hash++)
5751 unsigned long r_symndx;
5752 Elf_Internal_Sym *isym;
5755 irela->r_offset += o->output_offset;
5757 /* Relocs in an executable have to be virtual addresses. */
5758 if (finfo->info->emitrelocations)
5759 irela->r_offset += o->output_section->vma;
5761 r_symndx = ELF_R_SYM (irela->r_info);
5766 if (r_symndx >= locsymcount
5767 || (elf_bad_symtab (input_bfd)
5768 && finfo->sections[r_symndx] == NULL))
5770 struct elf_link_hash_entry *rh;
5773 /* This is a reloc against a global symbol. We
5774 have not yet output all the local symbols, so
5775 we do not know the symbol index of any global
5776 symbol. We set the rel_hash entry for this
5777 reloc to point to the global hash table entry
5778 for this symbol. The symbol index is then
5779 set at the end of elf_bfd_final_link. */
5780 indx = r_symndx - extsymoff;
5781 rh = elf_sym_hashes (input_bfd)[indx];
5782 while (rh->root.type == bfd_link_hash_indirect
5783 || rh->root.type == bfd_link_hash_warning)
5784 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5786 /* Setting the index to -2 tells
5787 elf_link_output_extsym that this symbol is
5789 BFD_ASSERT (rh->indx < 0);
5797 /* This is a reloc against a local symbol. */
5800 isym = finfo->internal_syms + r_symndx;
5801 sec = finfo->sections[r_symndx];
5802 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5804 /* I suppose the backend ought to fill in the
5805 section of any STT_SECTION symbol against a
5806 processor specific section. If we have
5807 discarded a section, the output_section will
5808 be the absolute section. */
5810 && (bfd_is_abs_section (sec)
5811 || (sec->output_section != NULL
5812 && bfd_is_abs_section (sec->output_section))))
5814 else if (sec == NULL || sec->owner == NULL)
5816 bfd_set_error (bfd_error_bad_value);
5821 r_symndx = sec->output_section->target_index;
5822 BFD_ASSERT (r_symndx != 0);
5827 if (finfo->indices[r_symndx] == -1)
5833 if (finfo->info->strip == strip_all)
5835 /* You can't do ld -r -s. */
5836 bfd_set_error (bfd_error_invalid_operation);
5840 /* This symbol was skipped earlier, but
5841 since it is needed by a reloc, we
5842 must output it now. */
5843 link = symtab_hdr->sh_link;
5844 name = bfd_elf_string_from_elf_section (input_bfd,
5850 osec = sec->output_section;
5852 _bfd_elf_section_from_bfd_section (output_bfd,
5854 if (isym->st_shndx == (unsigned short) -1)
5857 isym->st_value += sec->output_offset;
5858 if (! finfo->info->relocateable)
5859 isym->st_value += osec->vma;
5861 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5863 if (! elf_link_output_sym (finfo, name, isym, sec))
5867 r_symndx = finfo->indices[r_symndx];
5870 irela->r_info = ELF_R_INFO (r_symndx,
5871 ELF_R_TYPE (irela->r_info));
5874 /* Swap out the relocs. */
5875 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5876 elf_link_output_relocs (output_bfd, o,
5880 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5881 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5883 elf_link_output_relocs (output_bfd, o,
5889 /* Write out the modified section contents. */
5890 if (elf_section_data (o)->stab_info == NULL)
5892 if (! (o->flags & SEC_EXCLUDE) &&
5893 ! bfd_set_section_contents (output_bfd, o->output_section,
5894 contents, o->output_offset,
5895 (o->_cooked_size != 0
5902 if (! (_bfd_write_section_stabs
5903 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5904 o, &elf_section_data (o)->stab_info, contents)))
5912 /* Generate a reloc when linking an ELF file. This is a reloc
5913 requested by the linker, and does come from any input file. This
5914 is used to build constructor and destructor tables when linking
5918 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5920 struct bfd_link_info *info;
5921 asection *output_section;
5922 struct bfd_link_order *link_order;
5924 reloc_howto_type *howto;
5928 struct elf_link_hash_entry **rel_hash_ptr;
5929 Elf_Internal_Shdr *rel_hdr;
5930 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
5932 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5935 bfd_set_error (bfd_error_bad_value);
5939 addend = link_order->u.reloc.p->addend;
5941 /* Figure out the symbol index. */
5942 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5943 + elf_section_data (output_section)->rel_count
5944 + elf_section_data (output_section)->rel_count2);
5945 if (link_order->type == bfd_section_reloc_link_order)
5947 indx = link_order->u.reloc.p->u.section->target_index;
5948 BFD_ASSERT (indx != 0);
5949 *rel_hash_ptr = NULL;
5953 struct elf_link_hash_entry *h;
5955 /* Treat a reloc against a defined symbol as though it were
5956 actually against the section. */
5957 h = ((struct elf_link_hash_entry *)
5958 bfd_wrapped_link_hash_lookup (output_bfd, info,
5959 link_order->u.reloc.p->u.name,
5960 false, false, true));
5962 && (h->root.type == bfd_link_hash_defined
5963 || h->root.type == bfd_link_hash_defweak))
5967 section = h->root.u.def.section;
5968 indx = section->output_section->target_index;
5969 *rel_hash_ptr = NULL;
5970 /* It seems that we ought to add the symbol value to the
5971 addend here, but in practice it has already been added
5972 because it was passed to constructor_callback. */
5973 addend += section->output_section->vma + section->output_offset;
5977 /* Setting the index to -2 tells elf_link_output_extsym that
5978 this symbol is used by a reloc. */
5985 if (! ((*info->callbacks->unattached_reloc)
5986 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5987 (asection *) NULL, (bfd_vma) 0)))
5993 /* If this is an inplace reloc, we must write the addend into the
5995 if (howto->partial_inplace && addend != 0)
5998 bfd_reloc_status_type rstat;
6002 size = bfd_get_reloc_size (howto);
6003 buf = (bfd_byte *) bfd_zmalloc (size);
6004 if (buf == (bfd_byte *) NULL)
6006 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6012 case bfd_reloc_outofrange:
6014 case bfd_reloc_overflow:
6015 if (! ((*info->callbacks->reloc_overflow)
6017 (link_order->type == bfd_section_reloc_link_order
6018 ? bfd_section_name (output_bfd,
6019 link_order->u.reloc.p->u.section)
6020 : link_order->u.reloc.p->u.name),
6021 howto->name, addend, (bfd *) NULL, (asection *) NULL,
6029 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6030 (file_ptr) link_order->offset, size);
6036 /* The address of a reloc is relative to the section in a
6037 relocateable file, and is a virtual address in an executable
6039 offset = link_order->offset;
6040 if (! info->relocateable)
6041 offset += output_section->vma;
6043 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6045 if (rel_hdr->sh_type == SHT_REL)
6047 Elf_Internal_Rel irel;
6048 Elf_External_Rel *erel;
6050 irel.r_offset = offset;
6051 irel.r_info = ELF_R_INFO (indx, howto->type);
6052 erel = ((Elf_External_Rel *) rel_hdr->contents
6053 + elf_section_data (output_section)->rel_count);
6054 if (bed->s->swap_reloc_out)
6055 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
6057 elf_swap_reloc_out (output_bfd, &irel, erel);
6061 Elf_Internal_Rela irela;
6062 Elf_External_Rela *erela;
6064 irela.r_offset = offset;
6065 irela.r_info = ELF_R_INFO (indx, howto->type);
6066 irela.r_addend = addend;
6067 erela = ((Elf_External_Rela *) rel_hdr->contents
6068 + elf_section_data (output_section)->rel_count);
6069 if (bed->s->swap_reloca_out)
6070 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
6072 elf_swap_reloca_out (output_bfd, &irela, erela);
6075 ++elf_section_data (output_section)->rel_count;
6080 /* Allocate a pointer to live in a linker created section. */
6083 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6085 struct bfd_link_info *info;
6086 elf_linker_section_t *lsect;
6087 struct elf_link_hash_entry *h;
6088 const Elf_Internal_Rela *rel;
6090 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6091 elf_linker_section_pointers_t *linker_section_ptr;
6092 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6094 BFD_ASSERT (lsect != NULL);
6096 /* Is this a global symbol? */
6099 /* Has this symbol already been allocated, if so, our work is done */
6100 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6105 ptr_linker_section_ptr = &h->linker_section_pointer;
6106 /* Make sure this symbol is output as a dynamic symbol. */
6107 if (h->dynindx == -1)
6109 if (! elf_link_record_dynamic_symbol (info, h))
6113 if (lsect->rel_section)
6114 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6117 else /* Allocation of a pointer to a local symbol */
6119 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6121 /* Allocate a table to hold the local symbols if first time */
6124 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6125 register unsigned int i;
6127 ptr = (elf_linker_section_pointers_t **)
6128 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6133 elf_local_ptr_offsets (abfd) = ptr;
6134 for (i = 0; i < num_symbols; i++)
6135 ptr[i] = (elf_linker_section_pointers_t *)0;
6138 /* Has this symbol already been allocated, if so, our work is done */
6139 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6144 ptr_linker_section_ptr = &ptr[r_symndx];
6148 /* If we are generating a shared object, we need to
6149 output a R_<xxx>_RELATIVE reloc so that the
6150 dynamic linker can adjust this GOT entry. */
6151 BFD_ASSERT (lsect->rel_section != NULL);
6152 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6156 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6157 from internal memory. */
6158 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6159 linker_section_ptr = (elf_linker_section_pointers_t *)
6160 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6162 if (!linker_section_ptr)
6165 linker_section_ptr->next = *ptr_linker_section_ptr;
6166 linker_section_ptr->addend = rel->r_addend;
6167 linker_section_ptr->which = lsect->which;
6168 linker_section_ptr->written_address_p = false;
6169 *ptr_linker_section_ptr = linker_section_ptr;
6172 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6174 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6175 lsect->hole_offset += ARCH_SIZE / 8;
6176 lsect->sym_offset += ARCH_SIZE / 8;
6177 if (lsect->sym_hash) /* Bump up symbol value if needed */
6179 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6181 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6182 lsect->sym_hash->root.root.string,
6183 (long)ARCH_SIZE / 8,
6184 (long)lsect->sym_hash->root.u.def.value);
6190 linker_section_ptr->offset = lsect->section->_raw_size;
6192 lsect->section->_raw_size += ARCH_SIZE / 8;
6195 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6196 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6203 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6206 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6209 /* Fill in the address for a pointer generated in alinker section. */
6212 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6215 struct bfd_link_info *info;
6216 elf_linker_section_t *lsect;
6217 struct elf_link_hash_entry *h;
6219 const Elf_Internal_Rela *rel;
6222 elf_linker_section_pointers_t *linker_section_ptr;
6224 BFD_ASSERT (lsect != NULL);
6226 if (h != NULL) /* global symbol */
6228 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6232 BFD_ASSERT (linker_section_ptr != NULL);
6234 if (! elf_hash_table (info)->dynamic_sections_created
6237 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6239 /* This is actually a static link, or it is a
6240 -Bsymbolic link and the symbol is defined
6241 locally. We must initialize this entry in the
6244 When doing a dynamic link, we create a .rela.<xxx>
6245 relocation entry to initialize the value. This
6246 is done in the finish_dynamic_symbol routine. */
6247 if (!linker_section_ptr->written_address_p)
6249 linker_section_ptr->written_address_p = true;
6250 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6251 lsect->section->contents + linker_section_ptr->offset);
6255 else /* local symbol */
6257 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6258 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6259 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6260 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6264 BFD_ASSERT (linker_section_ptr != NULL);
6266 /* Write out pointer if it hasn't been rewritten out before */
6267 if (!linker_section_ptr->written_address_p)
6269 linker_section_ptr->written_address_p = true;
6270 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6271 lsect->section->contents + linker_section_ptr->offset);
6275 asection *srel = lsect->rel_section;
6276 Elf_Internal_Rela outrel;
6278 /* We need to generate a relative reloc for the dynamic linker. */
6280 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6283 BFD_ASSERT (srel != NULL);
6285 outrel.r_offset = (lsect->section->output_section->vma
6286 + lsect->section->output_offset
6287 + linker_section_ptr->offset);
6288 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6289 outrel.r_addend = 0;
6290 elf_swap_reloca_out (output_bfd, &outrel,
6291 (((Elf_External_Rela *)
6292 lsect->section->contents)
6293 + elf_section_data (lsect->section)->rel_count));
6294 ++elf_section_data (lsect->section)->rel_count;
6299 relocation = (lsect->section->output_offset
6300 + linker_section_ptr->offset
6301 - lsect->hole_offset
6302 - lsect->sym_offset);
6305 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6306 lsect->name, (long)relocation, (long)relocation);
6309 /* Subtract out the addend, because it will get added back in by the normal
6311 return relocation - linker_section_ptr->addend;
6314 /* Garbage collect unused sections. */
6316 static boolean elf_gc_mark
6317 PARAMS ((struct bfd_link_info *info, asection *sec,
6318 asection * (*gc_mark_hook)
6319 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6320 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6322 static boolean elf_gc_sweep
6323 PARAMS ((struct bfd_link_info *info,
6324 boolean (*gc_sweep_hook)
6325 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6326 const Elf_Internal_Rela *relocs))));
6328 static boolean elf_gc_sweep_symbol
6329 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6331 static boolean elf_gc_allocate_got_offsets
6332 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6334 static boolean elf_gc_propagate_vtable_entries_used
6335 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6337 static boolean elf_gc_smash_unused_vtentry_relocs
6338 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6340 /* The mark phase of garbage collection. For a given section, mark
6341 it, and all the sections which define symbols to which it refers. */
6344 elf_gc_mark (info, sec, gc_mark_hook)
6345 struct bfd_link_info *info;
6347 asection * (*gc_mark_hook)
6348 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6349 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6355 /* Look through the section relocs. */
6357 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6359 Elf_Internal_Rela *relstart, *rel, *relend;
6360 Elf_Internal_Shdr *symtab_hdr;
6361 struct elf_link_hash_entry **sym_hashes;
6364 Elf_External_Sym *locsyms, *freesyms = NULL;
6365 bfd *input_bfd = sec->owner;
6366 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6368 /* GCFIXME: how to arrange so that relocs and symbols are not
6369 reread continually? */
6371 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6372 sym_hashes = elf_sym_hashes (input_bfd);
6374 /* Read the local symbols. */
6375 if (elf_bad_symtab (input_bfd))
6377 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6381 extsymoff = nlocsyms = symtab_hdr->sh_info;
6382 if (symtab_hdr->contents)
6383 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6384 else if (nlocsyms == 0)
6388 locsyms = freesyms =
6389 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6390 if (freesyms == NULL
6391 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6392 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6393 nlocsyms, input_bfd)
6394 != nlocsyms * sizeof (Elf_External_Sym)))
6401 /* Read the relocations. */
6402 relstart = (NAME(_bfd_elf,link_read_relocs)
6403 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6404 info->keep_memory));
6405 if (relstart == NULL)
6410 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6412 for (rel = relstart; rel < relend; rel++)
6414 unsigned long r_symndx;
6416 struct elf_link_hash_entry *h;
6419 r_symndx = ELF_R_SYM (rel->r_info);
6423 if (elf_bad_symtab (sec->owner))
6425 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6426 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6427 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6430 h = sym_hashes[r_symndx - extsymoff];
6431 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6434 else if (r_symndx >= nlocsyms)
6436 h = sym_hashes[r_symndx - extsymoff];
6437 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6441 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6442 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6445 if (rsec && !rsec->gc_mark)
6446 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6454 if (!info->keep_memory)
6464 /* The sweep phase of garbage collection. Remove all garbage sections. */
6467 elf_gc_sweep (info, gc_sweep_hook)
6468 struct bfd_link_info *info;
6469 boolean (*gc_sweep_hook)
6470 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6471 const Elf_Internal_Rela *relocs));
6475 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6479 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6482 for (o = sub->sections; o != NULL; o = o->next)
6484 /* Keep special sections. Keep .debug sections. */
6485 if ((o->flags & SEC_LINKER_CREATED)
6486 || (o->flags & SEC_DEBUGGING))
6492 /* Skip sweeping sections already excluded. */
6493 if (o->flags & SEC_EXCLUDE)
6496 /* Since this is early in the link process, it is simple
6497 to remove a section from the output. */
6498 o->flags |= SEC_EXCLUDE;
6500 /* But we also have to update some of the relocation
6501 info we collected before. */
6503 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6505 Elf_Internal_Rela *internal_relocs;
6508 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6509 (o->owner, o, NULL, NULL, info->keep_memory));
6510 if (internal_relocs == NULL)
6513 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
6515 if (!info->keep_memory)
6516 free (internal_relocs);
6524 /* Remove the symbols that were in the swept sections from the dynamic
6525 symbol table. GCFIXME: Anyone know how to get them out of the
6526 static symbol table as well? */
6530 elf_link_hash_traverse (elf_hash_table (info),
6531 elf_gc_sweep_symbol,
6534 elf_hash_table (info)->dynsymcount = i;
6540 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6543 elf_gc_sweep_symbol (h, idxptr)
6544 struct elf_link_hash_entry *h;
6547 int *idx = (int *) idxptr;
6549 if (h->dynindx != -1
6550 && ((h->root.type != bfd_link_hash_defined
6551 && h->root.type != bfd_link_hash_defweak)
6552 || h->root.u.def.section->gc_mark))
6553 h->dynindx = (*idx)++;
6558 /* Propogate collected vtable information. This is called through
6559 elf_link_hash_traverse. */
6562 elf_gc_propagate_vtable_entries_used (h, okp)
6563 struct elf_link_hash_entry *h;
6566 /* Those that are not vtables. */
6567 if (h->vtable_parent == NULL)
6570 /* Those vtables that do not have parents, we cannot merge. */
6571 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6574 /* If we've already been done, exit. */
6575 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6578 /* Make sure the parent's table is up to date. */
6579 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6581 if (h->vtable_entries_used == NULL)
6583 /* None of this table's entries were referenced. Re-use the
6585 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6586 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6593 /* Or the parent's entries into ours. */
6594 cu = h->vtable_entries_used;
6596 pu = h->vtable_parent->vtable_entries_used;
6599 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6602 if (*pu) *cu = true;
6612 elf_gc_smash_unused_vtentry_relocs (h, okp)
6613 struct elf_link_hash_entry *h;
6617 bfd_vma hstart, hend;
6618 Elf_Internal_Rela *relstart, *relend, *rel;
6619 struct elf_backend_data *bed;
6621 /* Take care of both those symbols that do not describe vtables as
6622 well as those that are not loaded. */
6623 if (h->vtable_parent == NULL)
6626 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6627 || h->root.type == bfd_link_hash_defweak);
6629 sec = h->root.u.def.section;
6630 hstart = h->root.u.def.value;
6631 hend = hstart + h->size;
6633 relstart = (NAME(_bfd_elf,link_read_relocs)
6634 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6636 return *(boolean *)okp = false;
6637 bed = get_elf_backend_data (sec->owner);
6638 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6640 for (rel = relstart; rel < relend; ++rel)
6641 if (rel->r_offset >= hstart && rel->r_offset < hend)
6643 /* If the entry is in use, do nothing. */
6644 if (h->vtable_entries_used
6645 && (rel->r_offset - hstart) < h->vtable_entries_size)
6647 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6648 if (h->vtable_entries_used[entry])
6651 /* Otherwise, kill it. */
6652 rel->r_offset = rel->r_info = rel->r_addend = 0;
6658 /* Do mark and sweep of unused sections. */
6661 elf_gc_sections (abfd, info)
6663 struct bfd_link_info *info;
6667 asection * (*gc_mark_hook)
6668 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6669 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6671 if (!get_elf_backend_data (abfd)->can_gc_sections
6672 || info->relocateable || info->emitrelocations
6673 || elf_hash_table (info)->dynamic_sections_created)
6676 /* Apply transitive closure to the vtable entry usage info. */
6677 elf_link_hash_traverse (elf_hash_table (info),
6678 elf_gc_propagate_vtable_entries_used,
6683 /* Kill the vtable relocations that were not used. */
6684 elf_link_hash_traverse (elf_hash_table (info),
6685 elf_gc_smash_unused_vtentry_relocs,
6690 /* Grovel through relocs to find out who stays ... */
6692 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6693 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6697 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6700 for (o = sub->sections; o != NULL; o = o->next)
6702 if (o->flags & SEC_KEEP)
6703 if (!elf_gc_mark (info, o, gc_mark_hook))
6708 /* ... and mark SEC_EXCLUDE for those that go. */
6709 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6715 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6718 elf_gc_record_vtinherit (abfd, sec, h, offset)
6721 struct elf_link_hash_entry *h;
6724 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6725 struct elf_link_hash_entry **search, *child;
6726 bfd_size_type extsymcount;
6728 /* The sh_info field of the symtab header tells us where the
6729 external symbols start. We don't care about the local symbols at
6731 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6732 if (!elf_bad_symtab (abfd))
6733 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6735 sym_hashes = elf_sym_hashes (abfd);
6736 sym_hashes_end = sym_hashes + extsymcount;
6738 /* Hunt down the child symbol, which is in this section at the same
6739 offset as the relocation. */
6740 for (search = sym_hashes; search != sym_hashes_end; ++search)
6742 if ((child = *search) != NULL
6743 && (child->root.type == bfd_link_hash_defined
6744 || child->root.type == bfd_link_hash_defweak)
6745 && child->root.u.def.section == sec
6746 && child->root.u.def.value == offset)
6750 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6751 bfd_get_filename (abfd), sec->name,
6752 (unsigned long)offset);
6753 bfd_set_error (bfd_error_invalid_operation);
6759 /* This *should* only be the absolute section. It could potentially
6760 be that someone has defined a non-global vtable though, which
6761 would be bad. It isn't worth paging in the local symbols to be
6762 sure though; that case should simply be handled by the assembler. */
6764 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6767 child->vtable_parent = h;
6772 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6775 elf_gc_record_vtentry (abfd, sec, h, addend)
6776 bfd *abfd ATTRIBUTE_UNUSED;
6777 asection *sec ATTRIBUTE_UNUSED;
6778 struct elf_link_hash_entry *h;
6781 if (addend >= h->vtable_entries_size)
6784 boolean *ptr = h->vtable_entries_used;
6786 /* While the symbol is undefined, we have to be prepared to handle
6788 if (h->root.type == bfd_link_hash_undefined)
6795 /* Oops! We've got a reference past the defined end of
6796 the table. This is probably a bug -- shall we warn? */
6801 /* Allocate one extra entry for use as a "done" flag for the
6802 consolidation pass. */
6803 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6807 ptr = bfd_realloc (ptr - 1, bytes);
6813 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6814 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6818 ptr = bfd_zmalloc (bytes);
6823 /* And arrange for that done flag to be at index -1. */
6824 h->vtable_entries_used = ptr + 1;
6825 h->vtable_entries_size = size;
6828 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6833 /* And an accompanying bit to work out final got entry offsets once
6834 we're done. Should be called from final_link. */
6837 elf_gc_common_finalize_got_offsets (abfd, info)
6839 struct bfd_link_info *info;
6842 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6845 /* The GOT offset is relative to the .got section, but the GOT header is
6846 put into the .got.plt section, if the backend uses it. */
6847 if (bed->want_got_plt)
6850 gotoff = bed->got_header_size;
6852 /* Do the local .got entries first. */
6853 for (i = info->input_bfds; i; i = i->link_next)
6855 bfd_signed_vma *local_got;
6856 bfd_size_type j, locsymcount;
6857 Elf_Internal_Shdr *symtab_hdr;
6859 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6862 local_got = elf_local_got_refcounts (i);
6866 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6867 if (elf_bad_symtab (i))
6868 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6870 locsymcount = symtab_hdr->sh_info;
6872 for (j = 0; j < locsymcount; ++j)
6874 if (local_got[j] > 0)
6876 local_got[j] = gotoff;
6877 gotoff += ARCH_SIZE / 8;
6880 local_got[j] = (bfd_vma) -1;
6884 /* Then the global .got entries. .plt refcounts are handled by
6885 adjust_dynamic_symbol */
6886 elf_link_hash_traverse (elf_hash_table (info),
6887 elf_gc_allocate_got_offsets,
6892 /* We need a special top-level link routine to convert got reference counts
6893 to real got offsets. */
6896 elf_gc_allocate_got_offsets (h, offarg)
6897 struct elf_link_hash_entry *h;
6900 bfd_vma *off = (bfd_vma *) offarg;
6902 if (h->got.refcount > 0)
6904 h->got.offset = off[0];
6905 off[0] += ARCH_SIZE / 8;
6908 h->got.offset = (bfd_vma) -1;
6913 /* Many folk need no more in the way of final link than this, once
6914 got entry reference counting is enabled. */
6917 elf_gc_common_final_link (abfd, info)
6919 struct bfd_link_info *info;
6921 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6924 /* Invoke the regular ELF backend linker to do all the work. */
6925 return elf_bfd_final_link (abfd, info);
6928 /* This function will be called though elf_link_hash_traverse to store
6929 all hash value of the exported symbols in an array. */
6932 elf_collect_hash_codes (h, data)
6933 struct elf_link_hash_entry *h;
6936 unsigned long **valuep = (unsigned long **) data;
6942 /* Ignore indirect symbols. These are added by the versioning code. */
6943 if (h->dynindx == -1)
6946 name = h->root.root.string;
6947 p = strchr (name, ELF_VER_CHR);
6950 alc = bfd_malloc (p - name + 1);
6951 memcpy (alc, name, p - name);
6952 alc[p - name] = '\0';
6956 /* Compute the hash value. */
6957 ha = bfd_elf_hash (name);
6959 /* Store the found hash value in the array given as the argument. */
6962 /* And store it in the struct so that we can put it in the hash table
6964 h->elf_hash_value = ha;