1 /* Target-dependent code for the IA-64 for GDB, the GNU debugger.
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
24 #include "symfile.h" /* for entry_point_address */
26 #include "floatformat.h"
29 #include "elf/common.h" /* for DT_PLTGOT value */
31 typedef enum instruction_type
33 A, /* Integer ALU ; I-unit or M-unit */
34 I, /* Non-ALU integer; I-unit */
35 M, /* Memory ; M-unit */
36 F, /* Floating-point ; F-unit */
37 B, /* Branch ; B-unit */
38 L, /* Extended (L+X) ; I-unit */
39 X, /* Extended (L+X) ; I-unit */
40 undefined /* undefined or reserved */
43 /* We represent IA-64 PC addresses as the value of the instruction
44 pointer or'd with some bit combination in the low nibble which
45 represents the slot number in the bundle addressed by the
46 instruction pointer. The problem is that the Linux kernel
47 multiplies its slot numbers (for exceptions) by one while the
48 disassembler multiplies its slot numbers by 6. In addition, I've
49 heard it said that the simulator uses 1 as the multiplier.
51 I've fixed the disassembler so that the bytes_per_line field will
52 be the slot multiplier. If bytes_per_line comes in as zero, it
53 is set to six (which is how it was set up initially). -- objdump
54 displays pretty disassembly dumps with this value. For our purposes,
55 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
56 never want to also display the raw bytes the way objdump does. */
58 #define SLOT_MULTIPLIER 1
60 /* Length in bytes of an instruction bundle */
64 extern void _initialize_ia64_tdep (void);
66 static gdbarch_init_ftype ia64_gdbarch_init;
68 static gdbarch_register_name_ftype ia64_register_name;
69 static gdbarch_register_raw_size_ftype ia64_register_raw_size;
70 static gdbarch_register_virtual_size_ftype ia64_register_virtual_size;
71 static gdbarch_register_virtual_type_ftype ia64_register_virtual_type;
72 static gdbarch_register_byte_ftype ia64_register_byte;
73 static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
74 static gdbarch_frame_chain_ftype ia64_frame_chain;
75 static gdbarch_frame_saved_pc_ftype ia64_frame_saved_pc;
76 static gdbarch_skip_prologue_ftype ia64_skip_prologue;
77 static gdbarch_frame_init_saved_regs_ftype ia64_frame_init_saved_regs;
78 static gdbarch_get_saved_register_ftype ia64_get_saved_register;
79 static gdbarch_extract_return_value_ftype ia64_extract_return_value;
80 static gdbarch_extract_struct_value_address_ftype ia64_extract_struct_value_address;
81 static gdbarch_use_struct_convention_ftype ia64_use_struct_convention;
82 static gdbarch_frameless_function_invocation_ftype ia64_frameless_function_invocation;
83 static gdbarch_init_extra_frame_info_ftype ia64_init_extra_frame_info;
84 static gdbarch_store_return_value_ftype ia64_store_return_value;
85 static gdbarch_store_struct_return_ftype ia64_store_struct_return;
86 static gdbarch_push_arguments_ftype ia64_push_arguments;
87 static gdbarch_push_return_address_ftype ia64_push_return_address;
88 static gdbarch_pop_frame_ftype ia64_pop_frame;
89 static gdbarch_saved_pc_after_call_ftype ia64_saved_pc_after_call;
90 static void ia64_pop_frame_regular (struct frame_info *frame);
91 static struct type *is_float_or_hfa_type (struct type *t);
93 static int ia64_num_regs = 590;
95 static int pc_regnum = IA64_IP_REGNUM;
96 static int sp_regnum = IA64_GR12_REGNUM;
97 static int fp_regnum = IA64_VFP_REGNUM;
98 static int lr_regnum = IA64_VRAP_REGNUM;
100 static LONGEST ia64_call_dummy_words[] = {0};
102 /* Array of register names; There should be ia64_num_regs strings in
105 static char *ia64_register_names[] =
106 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
107 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
108 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
109 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
110 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
111 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
112 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
113 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
114 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
115 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
116 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
117 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
118 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
119 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
120 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
121 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
123 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
124 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
125 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
126 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
127 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
128 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
129 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
130 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
131 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
132 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
133 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
134 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
135 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
136 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
137 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
138 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
140 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
141 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
142 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
143 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
144 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
145 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
146 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
147 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
149 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
153 "pr", "ip", "psr", "cfm",
155 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
156 "", "", "", "", "", "", "", "",
157 "rsc", "bsp", "bspstore", "rnat",
159 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
160 "ccv", "", "", "", "unat", "", "", "",
161 "fpsr", "", "", "", "itc",
162 "", "", "", "", "", "", "", "", "", "",
163 "", "", "", "", "", "", "", "", "",
165 "", "", "", "", "", "", "", "", "", "",
166 "", "", "", "", "", "", "", "", "", "",
167 "", "", "", "", "", "", "", "", "", "",
168 "", "", "", "", "", "", "", "", "", "",
169 "", "", "", "", "", "", "", "", "", "",
170 "", "", "", "", "", "", "", "", "", "",
172 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
173 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
174 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
175 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
176 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
177 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
178 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
179 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
180 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
181 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
182 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
183 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
184 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
185 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
186 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
187 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
190 struct frame_extra_info
192 CORE_ADDR bsp; /* points at r32 for the current frame */
193 CORE_ADDR cfm; /* cfm value for current frame */
194 int sof; /* Size of frame (decoded from cfm value) */
195 int sol; /* Size of locals (decoded from cfm value) */
196 CORE_ADDR after_prologue;
197 /* Address of first instruction after the last
198 prologue instruction; Note that there may
199 be instructions from the function's body
200 intermingled with the prologue. */
201 int mem_stack_frame_size;
202 /* Size of the memory stack frame (may be zero),
203 or -1 if it has not been determined yet. */
204 int fp_reg; /* Register number (if any) used a frame pointer
205 for this frame. 0 if no register is being used
206 as the frame pointer. */
210 ia64_register_name (int reg)
212 return ia64_register_names[reg];
216 ia64_register_raw_size (int reg)
218 return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8;
222 ia64_register_virtual_size (int reg)
224 return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8;
227 /* Return true iff register N's virtual format is different from
230 ia64_register_convertible (int nr)
232 return (IA64_FR0_REGNUM <= nr && nr <= IA64_FR127_REGNUM);
235 const struct floatformat floatformat_ia64_ext =
237 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
238 floatformat_intbit_yes
242 ia64_register_convert_to_virtual (int regnum, struct type *type,
243 char *from, char *to)
245 if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM)
248 floatformat_to_doublest (&floatformat_ia64_ext, from, &val);
249 store_floating(to, TYPE_LENGTH(type), val);
252 error("ia64_register_convert_to_virtual called with non floating point register number");
256 ia64_register_convert_to_raw (struct type *type, int regnum,
257 char *from, char *to)
259 if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM)
261 DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
262 floatformat_from_doublest (&floatformat_ia64_ext, &val, to);
265 error("ia64_register_convert_to_raw called with non floating point register number");
269 ia64_register_virtual_type (int reg)
271 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
272 return builtin_type_long_double;
274 return builtin_type_long;
278 ia64_register_byte (int reg)
281 (reg <= IA64_FR0_REGNUM ? 0 : 8 * ((reg > IA64_FR127_REGNUM) ? 128 : reg - IA64_FR0_REGNUM));
284 /* Extract ``len'' bits from an instruction bundle starting at
288 extract_bit_field (char *bundle, int from, int len)
290 long long result = 0LL;
292 int from_byte = from / 8;
293 int to_byte = to / 8;
294 unsigned char *b = (unsigned char *) bundle;
300 if (from_byte == to_byte)
301 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
302 result = c >> (from % 8);
303 lshift = 8 - (from % 8);
305 for (i = from_byte+1; i < to_byte; i++)
307 result |= ((long long) b[i]) << lshift;
311 if (from_byte < to_byte && (to % 8 != 0))
314 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
315 result |= ((long long) c) << lshift;
321 /* Replace the specified bits in an instruction bundle */
324 replace_bit_field (char *bundle, long long val, int from, int len)
327 int from_byte = from / 8;
328 int to_byte = to / 8;
329 unsigned char *b = (unsigned char *) bundle;
332 if (from_byte == to_byte)
334 unsigned char left, right;
336 left = (c >> (to % 8)) << (to % 8);
337 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
338 c = (unsigned char) (val & 0xff);
339 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
347 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
348 c = c | (val << (from % 8));
350 val >>= 8 - from % 8;
352 for (i = from_byte+1; i < to_byte; i++)
361 unsigned char cv = (unsigned char) val;
363 c = c >> (to % 8) << (to % 8);
364 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
370 /* Return the contents of slot N (for N = 0, 1, or 2) in
371 and instruction bundle */
374 slotN_contents (unsigned char *bundle, int slotnum)
376 return extract_bit_field (bundle, 5+41*slotnum, 41);
379 /* Store an instruction in an instruction bundle */
382 replace_slotN_contents (unsigned char *bundle, long long instr, int slotnum)
384 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
387 static enum instruction_type template_encoding_table[32][3] =
389 { M, I, I }, /* 00 */
390 { M, I, I }, /* 01 */
391 { M, I, I }, /* 02 */
392 { M, I, I }, /* 03 */
393 { M, L, X }, /* 04 */
394 { M, L, X }, /* 05 */
395 { undefined, undefined, undefined }, /* 06 */
396 { undefined, undefined, undefined }, /* 07 */
397 { M, M, I }, /* 08 */
398 { M, M, I }, /* 09 */
399 { M, M, I }, /* 0A */
400 { M, M, I }, /* 0B */
401 { M, F, I }, /* 0C */
402 { M, F, I }, /* 0D */
403 { M, M, F }, /* 0E */
404 { M, M, F }, /* 0F */
405 { M, I, B }, /* 10 */
406 { M, I, B }, /* 11 */
407 { M, B, B }, /* 12 */
408 { M, B, B }, /* 13 */
409 { undefined, undefined, undefined }, /* 14 */
410 { undefined, undefined, undefined }, /* 15 */
411 { B, B, B }, /* 16 */
412 { B, B, B }, /* 17 */
413 { M, M, B }, /* 18 */
414 { M, M, B }, /* 19 */
415 { undefined, undefined, undefined }, /* 1A */
416 { undefined, undefined, undefined }, /* 1B */
417 { M, F, B }, /* 1C */
418 { M, F, B }, /* 1D */
419 { undefined, undefined, undefined }, /* 1E */
420 { undefined, undefined, undefined }, /* 1F */
423 /* Fetch and (partially) decode an instruction at ADDR and return the
424 address of the next instruction to fetch. */
427 fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
429 char bundle[BUNDLE_LEN];
430 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
435 error("Can't fetch instructions for slot numbers greater than 2.");
439 val = target_read_memory (addr, bundle, BUNDLE_LEN);
444 *instr = slotN_contents (bundle, slotnum);
445 template = extract_bit_field (bundle, 0, 5);
446 *it = template_encoding_table[(int)template][slotnum];
448 if (slotnum == 2 || (slotnum == 1 && *it == L))
451 addr += (slotnum + 1) * SLOT_MULTIPLIER;
456 /* There are 5 different break instructions (break.i, break.b,
457 break.m, break.f, and break.x), but they all have the same
458 encoding. (The five bit template in the low five bits of the
459 instruction bundle distinguishes one from another.)
461 The runtime architecture manual specifies that break instructions
462 used for debugging purposes must have the upper two bits of the 21
463 bit immediate set to a 0 and a 1 respectively. A breakpoint
464 instruction encodes the most significant bit of its 21 bit
465 immediate at bit 36 of the 41 bit instruction. The penultimate msb
466 is at bit 25 which leads to the pattern below.
468 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
469 it turns out that 0x80000 was used as the syscall break in the early
470 simulators. So I changed the pattern slightly to do "break.i 0x080001"
471 instead. But that didn't work either (I later found out that this
472 pattern was used by the simulator that I was using.) So I ended up
473 using the pattern seen below. */
476 #define BREAKPOINT 0x00002000040LL
478 #define BREAKPOINT 0x00003333300LL
481 ia64_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
483 char bundle[BUNDLE_LEN];
484 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
489 error("Can't insert breakpoint for slot numbers greater than 2.");
493 val = target_read_memory (addr, bundle, BUNDLE_LEN);
494 instr = slotN_contents (bundle, slotnum);
495 memcpy(contents_cache, &instr, sizeof(instr));
496 replace_slotN_contents (bundle, BREAKPOINT, slotnum);
498 target_write_memory (addr, bundle, BUNDLE_LEN);
504 ia64_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
506 char bundle[BUNDLE_LEN];
507 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
513 val = target_read_memory (addr, bundle, BUNDLE_LEN);
514 memcpy (&instr, contents_cache, sizeof instr);
515 replace_slotN_contents (bundle, instr, slotnum);
517 target_write_memory (addr, bundle, BUNDLE_LEN);
522 /* We don't really want to use this, but remote.c needs to call it in order
523 to figure out if Z-packets are supported or not. Oh, well. */
525 ia64_breakpoint_from_pc (pcptr, lenptr)
529 static unsigned char breakpoint[] =
530 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
531 *lenptr = sizeof (breakpoint);
539 ia64_read_pc (int pid)
541 CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, pid);
542 CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, pid);
543 int slot_num = (psr_value >> 41) & 3;
545 return pc_value | (slot_num * SLOT_MULTIPLIER);
549 ia64_write_pc (CORE_ADDR new_pc, int pid)
551 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
552 CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, pid);
553 psr_value &= ~(3LL << 41);
554 psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41;
558 write_register_pid (IA64_PSR_REGNUM, psr_value, pid);
559 write_register_pid (IA64_IP_REGNUM, new_pc, pid);
562 #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
564 /* Returns the address of the slot that's NSLOTS slots away from
565 the address ADDR. NSLOTS may be positive or negative. */
567 rse_address_add(CORE_ADDR addr, int nslots)
570 int mandatory_nat_slots = nslots / 63;
571 int direction = nslots < 0 ? -1 : 1;
573 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
575 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
576 new_addr += 8 * direction;
578 if (IS_NaT_COLLECTION_ADDR(new_addr))
579 new_addr += 8 * direction;
584 /* The IA-64 frame chain is a bit odd. We won't always have a frame
585 pointer, so we use the SP value as the FP for the purpose of
586 creating a frame. There is sometimes a register (not fixed) which
587 is used as a frame pointer. When this register exists, it is not
588 especially hard to determine which one is being used. It isn't
589 even really hard to compute the frame chain, but it can be
590 computationally expensive. So, instead of making life difficult
591 (and slow), we pick a more convenient representation of the frame
592 chain, knowing that we'll have to make some small adjustments
593 in other places. (E.g, note that read_fp() and write_fp() are
594 actually read_sp() and write_sp() below in ia64_gdbarch_init()
597 Okay, so what is the frame chain exactly? It'll be the SP value
598 at the time that the function in question was entered.
600 Note that this *should* actually the frame pointer for the current
601 function! But as I note above, if we were to attempt to find the
602 address of the beginning of the previous frame, we'd waste a lot
603 of cycles for no good reason. So instead, we simply choose to
604 represent the frame chain as the end of the previous frame instead
608 ia64_frame_chain (struct frame_info *frame)
610 FRAME_INIT_SAVED_REGS (frame);
612 if (frame->saved_regs[IA64_VFP_REGNUM])
613 return read_memory_integer (frame->saved_regs[IA64_VFP_REGNUM], 8);
615 return frame->frame + frame->extra_info->mem_stack_frame_size;
619 ia64_frame_saved_pc (struct frame_info *frame)
621 FRAME_INIT_SAVED_REGS (frame);
623 if (frame->saved_regs[IA64_VRAP_REGNUM])
624 return read_memory_integer (frame->saved_regs[IA64_VRAP_REGNUM], 8);
625 else /* either frameless, or not far enough along in the prologue... */
626 return ia64_saved_pc_after_call (frame);
629 #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
630 || (8 <= (_regnum_) && (_regnum_) <= 11) \
631 || (14 <= (_regnum_) && (_regnum_) <= 31))
632 #define imm9(_instr_) \
633 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
634 | (((_instr_) & 0x00008000000LL) >> 20) \
635 | (((_instr_) & 0x00000001fc0LL) >> 6))
638 examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *frame)
641 CORE_ADDR last_prologue_pc = pc;
644 int do_fsr_stuff = 0;
649 int unat_save_reg = 0;
651 int mem_stack_frame_size = 0;
653 CORE_ADDR spill_addr = 0;
655 if (frame && !frame->saved_regs)
657 frame_saved_regs_zalloc (frame);
663 && frame->extra_info->after_prologue != 0
664 && frame->extra_info->after_prologue <= lim_pc)
665 return frame->extra_info->after_prologue;
667 /* Must start with an alloc instruction */
668 next_pc = fetch_instruction (pc, &it, &instr);
669 if (pc < lim_pc && next_pc
670 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
673 int sor = (int) ((instr & 0x00078000000LL) >> 27);
674 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
675 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
676 /* Okay, so sor, sol, and sof aren't used right now; but perhaps
677 we could compare against the size given to us via the cfm as
678 either a sanity check or possibly to see if the frame has been
679 changed by a later alloc instruction... */
680 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
682 last_prologue_pc = next_pc;
686 pc = lim_pc; /* We're done early */
688 /* Loop, looking for prologue instructions, keeping track of
689 where preserved registers were spilled. */
692 next_pc = fetch_instruction (pc, &it, &instr);
696 if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
699 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
700 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
701 int qp = (int) (instr & 0x0000000003f);
703 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
706 last_prologue_pc = next_pc;
709 else if ((it == I || it == M)
710 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
712 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
713 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
714 | ((instr & 0x001f8000000LL) >> 20)
715 | ((instr & 0x000000fe000LL) >> 13));
716 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
717 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
718 int qp = (int) (instr & 0x0000000003fLL);
720 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
724 last_prologue_pc = next_pc;
726 else if (qp == 0 && rN == 12 && rM == 12)
728 /* adds r12, -mem_stack_frame_size, r12 */
729 mem_stack_frame_size -= imm;
730 last_prologue_pc = next_pc;
732 else if (qp == 0 && rN == 2
733 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
735 /* adds r2, spilloffset, rFramePointer
737 adds r2, spilloffset, r12
739 Get ready for stf.spill or st8.spill instructions.
740 The address to start spilling at is loaded into r2.
741 FIXME: Why r2? That's what gcc currently uses; it
742 could well be different for other compilers. */
744 /* Hmm... whether or not this will work will depend on
745 where the pc is. If it's still early in the prologue
746 this'll be wrong. FIXME */
747 spill_addr = (frame ? frame->frame : 0)
748 + (rM == 12 ? 0 : mem_stack_frame_size)
751 last_prologue_pc = next_pc;
755 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
756 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
758 /* stf.spill [rN] = fM, imm9
760 stf.spill [rN] = fM */
762 int imm = imm9(instr);
763 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
764 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
765 int qp = (int) (instr & 0x0000000003fLL);
766 if (qp == 0 && rN == spill_reg && spill_addr != 0
767 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
770 frame->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
772 if ((instr & 0x1efc0000000) == 0x0eec0000000)
775 spill_addr = 0; /* last one; must be done */
776 last_prologue_pc = next_pc;
779 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
780 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
786 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
787 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
788 int qp = (int) (instr & 0x0000000003fLL);
789 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
791 /* We have something like "mov.m r3 = ar.unat". Remember the
792 r3 (or whatever) and watch for a store of this register... */
794 last_prologue_pc = next_pc;
797 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
800 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
801 int qp = (int) (instr & 0x0000000003fLL);
802 if (qp == 0 && isScratch (rN))
805 last_prologue_pc = next_pc;
809 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
810 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
814 st8 [rN] = rM, imm9 */
815 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
816 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
817 int qp = (int) (instr & 0x0000000003fLL);
818 if (qp == 0 && rN == spill_reg && spill_addr != 0
819 && (rM == unat_save_reg || rM == pr_save_reg))
821 /* We've found a spill of either the UNAT register or the PR
822 register. (Well, not exactly; what we've actually found is
823 a spill of the register that UNAT or PR was moved to).
824 Record that fact and move on... */
825 if (rM == unat_save_reg)
827 /* Track UNAT register */
829 frame->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
834 /* Track PR register */
836 frame->saved_regs[IA64_PR_REGNUM] = spill_addr;
839 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
840 /* st8 [rN] = rM, imm9 */
841 spill_addr += imm9(instr);
843 spill_addr = 0; /* must be done spilling */
844 last_prologue_pc = next_pc;
848 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
849 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
851 /* st8.spill [rN] = rM
853 st8.spill [rN] = rM, imm9 */
854 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
855 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
856 int qp = (int) (instr & 0x0000000003fLL);
857 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
859 /* We've found a spill of one of the preserved general purpose
860 regs. Record the spill address and advance the spill
861 register if appropriate. */
863 frame->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
864 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
865 /* st8.spill [rN] = rM, imm9 */
866 spill_addr += imm9(instr);
868 spill_addr = 0; /* Done spilling */
869 last_prologue_pc = next_pc;
872 else if (it == B || ((instr & 0x3fLL) != 0LL))
882 for (i = 0, addr = frame->extra_info->bsp;
883 i < frame->extra_info->sof;
886 if (IS_NaT_COLLECTION_ADDR (addr))
890 frame->saved_regs[IA64_GR32_REGNUM + i] = addr;
893 frame->saved_regs[IA64_CFM_REGNUM] = addr;
895 frame->saved_regs[IA64_VRAP_REGNUM] = addr;
897 frame->saved_regs[IA64_VFP_REGNUM] = addr;
901 if (frame && frame->extra_info) {
902 frame->extra_info->after_prologue = last_prologue_pc;
903 frame->extra_info->mem_stack_frame_size = mem_stack_frame_size;
904 frame->extra_info->fp_reg = fp_reg;
907 return last_prologue_pc;
911 ia64_skip_prologue (CORE_ADDR pc)
913 return examine_prologue (pc, pc+1024, 0);
917 ia64_frame_init_saved_regs (struct frame_info *frame)
919 CORE_ADDR func_start;
921 if (frame->saved_regs)
924 func_start = get_pc_function_start (frame->pc);
925 examine_prologue (func_start, frame->pc, frame);
929 ia64_find_saved_register (frame, regnum)
930 struct frame_info *frame;
933 register CORE_ADDR addr = 0;
935 if ((IA64_GR32_REGNUM <= regnum && regnum <= IA64_GR127_REGNUM)
936 || regnum == IA64_VFP_REGNUM
937 || regnum == IA64_VRAP_REGNUM)
939 FRAME_INIT_SAVED_REGS (frame);
940 return frame->saved_regs[regnum];
942 else if (regnum == IA64_IP_REGNUM && frame->next)
944 FRAME_INIT_SAVED_REGS (frame->next);
945 return frame->next->saved_regs[IA64_VRAP_REGNUM];
949 struct frame_info *frame1 = NULL;
953 frame1 = get_prev_frame (frame1);
954 if (frame1 == 0 || frame1 == frame)
956 FRAME_INIT_SAVED_REGS (frame1);
957 if (frame1->saved_regs[regnum])
958 addr = frame1->saved_regs[regnum];
966 ia64_get_saved_register (char *raw_buffer,
969 struct frame_info *frame,
971 enum lval_type *lval)
975 if (!target_has_registers)
976 error ("No registers.");
978 if (optimized != NULL)
980 addr = ia64_find_saved_register (frame, regnum);
985 if (regnum == SP_REGNUM)
987 if (raw_buffer != NULL)
989 /* Put it back in target format. */
990 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST) addr);
996 if (raw_buffer != NULL)
997 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
999 else if (IA64_GR32_REGNUM <= regnum && regnum <= IA64_GR127_REGNUM)
1001 /* r32 - r127 must be fetchable via memory. If they aren't,
1002 then the register is unavailable */
1006 memset (raw_buffer, 0, REGISTER_RAW_SIZE (regnum));
1008 else if (regnum == IA64_IP_REGNUM)
1013 /* This case will normally be handled above, except when it's
1014 frameless or we haven't advanced far enough into the prologue
1015 of the top frame to save the register. */
1016 addr = REGISTER_BYTE (regnum);
1018 *lval = lval_register;
1019 pc = ia64_saved_pc_after_call (frame);
1028 store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_IP_REGNUM), pc);
1030 else if (regnum == SP_REGNUM && frame->next)
1032 /* Handle SP values for all frames but the topmost. */
1036 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
1038 else if (regnum == IA64_BSP_REGNUM)
1043 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1044 frame->extra_info->bsp);
1046 else if (regnum == IA64_VFP_REGNUM)
1048 /* If the function in question uses an automatic register (r32-r127)
1049 for the frame pointer, it'll be found by ia64_find_saved_register()
1050 above. If the function lacks one of these frame pointers, we can
1051 still provide a value since we know the size of the frame */
1052 CORE_ADDR vfp = frame->frame + frame->extra_info->mem_stack_frame_size;
1056 store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_VFP_REGNUM), vfp);
1058 else if (IA64_PR0_REGNUM <= regnum && regnum <= IA64_PR63_REGNUM)
1060 char pr_raw_buffer[MAX_REGISTER_RAW_SIZE];
1062 enum lval_type pr_lval;
1065 ia64_get_saved_register (pr_raw_buffer, &pr_optim, &pr_addr,
1066 frame, IA64_PR_REGNUM, &pr_lval);
1067 prN_val = extract_bit_field ((unsigned char *) pr_raw_buffer,
1068 regnum - IA64_PR0_REGNUM, 1);
1069 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), prN_val);
1074 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1076 char unat_raw_buffer[MAX_REGISTER_RAW_SIZE];
1078 enum lval_type unat_lval;
1079 CORE_ADDR unat_addr;
1081 ia64_get_saved_register (unat_raw_buffer, &unat_optim, &unat_addr,
1082 frame, IA64_UNAT_REGNUM, &unat_lval);
1083 unatN_val = extract_bit_field ((unsigned char *) unat_raw_buffer,
1084 regnum - IA64_NAT0_REGNUM, 1);
1085 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum),
1091 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1094 /* Find address of general register corresponding to nat bit we're
1097 ia64_find_saved_register (frame,
1098 regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM);
1101 /* Compute address of nat collection bits */
1102 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1103 CORE_ADDR bsp = read_register (IA64_BSP_REGNUM);
1104 CORE_ADDR nat_collection;
1106 /* If our nat collection address is bigger than bsp, we have to get
1107 the nat collection from rnat. Otherwise, we fetch the nat
1108 collection from the computed address. */
1109 if (nat_addr >= bsp)
1110 nat_collection = read_register (IA64_RNAT_REGNUM);
1112 nat_collection = read_memory_integer (nat_addr, 8);
1113 nat_bit = (gr_addr >> 3) & 0x3f;
1114 natval = (nat_collection >> nat_bit) & 1;
1116 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), natval);
1124 *lval = lval_register;
1125 addr = REGISTER_BYTE (regnum);
1126 if (raw_buffer != NULL)
1127 read_register_gen (regnum, raw_buffer);
1133 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1134 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1135 and TYPE is the type (which is known to be struct, union or array). */
1137 ia64_use_struct_convention (int gcc_p, struct type *type)
1139 struct type *float_elt_type;
1141 /* HFAs are structures (or arrays) consisting entirely of floating
1142 point values of the same length. Up to 8 of these are returned
1143 in registers. Don't use the struct convention when this is the
1145 float_elt_type = is_float_or_hfa_type (type);
1146 if (float_elt_type != NULL
1147 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
1150 /* Other structs of length 32 or less are returned in r8-r11.
1151 Don't use the struct convention for those either. */
1152 return TYPE_LENGTH (type) > 32;
1156 ia64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1158 struct type *float_elt_type;
1160 float_elt_type = is_float_or_hfa_type (type);
1161 if (float_elt_type != NULL)
1164 int regnum = IA64_FR8_REGNUM;
1165 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
1169 ia64_register_convert_to_virtual (regnum, float_elt_type,
1170 ®buf[REGISTER_BYTE (regnum)], valbuf + offset);
1171 offset += TYPE_LENGTH (float_elt_type);
1176 memcpy (valbuf, ®buf[REGISTER_BYTE (IA64_GR8_REGNUM)],
1177 TYPE_LENGTH (type));
1180 /* FIXME: Turn this into a stack of some sort. Unfortunately, something
1181 like this is necessary though since the IA-64 calling conventions specify
1182 that r8 is not preserved. */
1183 static CORE_ADDR struct_return_address;
1186 ia64_extract_struct_value_address (char *regbuf)
1188 /* FIXME: See above. */
1189 return struct_return_address;
1193 ia64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1195 /* FIXME: See above. */
1196 /* Note that most of the work was done in ia64_push_arguments() */
1197 struct_return_address = addr;
1201 ia64_frameless_function_invocation (struct frame_info *frame)
1203 /* FIXME: Implement */
1208 ia64_saved_pc_after_call (struct frame_info *frame)
1210 return read_register (IA64_BR0_REGNUM);
1214 ia64_frame_args_address (struct frame_info *frame)
1216 /* frame->frame points at the SP for this frame; But we want the start
1217 of the frame, not the end. Calling frame chain will get his for us. */
1218 return ia64_frame_chain (frame);
1222 ia64_frame_locals_address (struct frame_info *frame)
1224 /* frame->frame points at the SP for this frame; But we want the start
1225 of the frame, not the end. Calling frame chain will get his for us. */
1226 return ia64_frame_chain (frame);
1230 ia64_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1234 frame->extra_info = (struct frame_extra_info *)
1235 frame_obstack_alloc (sizeof (struct frame_extra_info));
1237 if (frame->next == 0)
1239 bsp = read_register (IA64_BSP_REGNUM);
1240 cfm = read_register (IA64_CFM_REGNUM);
1245 struct frame_info *frn = frame->next;
1247 FRAME_INIT_SAVED_REGS (frn);
1249 if (frn->saved_regs[IA64_CFM_REGNUM] != 0)
1250 cfm = read_memory_integer (frn->saved_regs[IA64_CFM_REGNUM], 8);
1252 cfm = read_register (IA64_PFS_REGNUM);
1254 bsp = frn->extra_info->bsp;
1256 frame->extra_info->cfm = cfm;
1257 frame->extra_info->sof = cfm & 0x7f;
1258 frame->extra_info->sol = (cfm >> 7) & 0x7f;
1259 if (frame->next == 0)
1260 frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sof);
1262 frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sol);
1264 frame->extra_info->after_prologue = 0;
1265 frame->extra_info->mem_stack_frame_size = -1; /* Not yet determined */
1266 frame->extra_info->fp_reg = 0;
1270 is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
1272 switch (TYPE_CODE (t))
1276 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
1283 case TYPE_CODE_ARRAY:
1284 return is_float_or_hfa_type_recurse (TYPE_TARGET_TYPE (t), etp);
1286 case TYPE_CODE_STRUCT:
1290 for (i = 0; i < TYPE_NFIELDS (t); i++)
1291 if (!is_float_or_hfa_type_recurse (TYPE_FIELD_TYPE (t, i), etp))
1302 /* Determine if the given type is one of the floating point types or
1303 and HFA (which is a struct, array, or combination thereof whose
1304 bottom-most elements are all of the same floating point type.) */
1306 static struct type *
1307 is_float_or_hfa_type (struct type *t)
1309 struct type *et = 0;
1311 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
1315 /* Attempt to find (and return) the global pointer for the given
1318 This is a rather nasty bit of code searchs for the .dynamic section
1319 in the objfile corresponding to the pc of the function we're trying
1320 to call. Once it finds the addresses at which the .dynamic section
1321 lives in the child process, it scans the Elf64_Dyn entries for a
1322 DT_PLTGOT tag. If it finds one of these, the corresponding
1323 d_un.d_ptr value is the global pointer. */
1326 find_global_pointer (CORE_ADDR faddr)
1328 struct obj_section *faddr_sect;
1330 faddr_sect = find_pc_section (faddr);
1331 if (faddr_sect != NULL)
1333 struct obj_section *osect;
1335 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
1337 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
1341 if (osect < faddr_sect->objfile->sections_end)
1346 while (addr < osect->endaddr)
1352 status = target_read_memory (addr, buf, sizeof (buf));
1355 tag = extract_signed_integer (buf, sizeof (buf));
1357 if (tag == DT_PLTGOT)
1359 CORE_ADDR global_pointer;
1361 status = target_read_memory (addr + 8, buf, sizeof (buf));
1364 global_pointer = extract_address (buf, sizeof (buf));
1367 return global_pointer;
1380 /* Given a function's address, attempt to find (and return) the
1381 corresponding (canonical) function descriptor. Return 0 if
1384 find_extant_func_descr (CORE_ADDR faddr)
1386 struct obj_section *faddr_sect;
1388 /* Return early if faddr is already a function descriptor */
1389 faddr_sect = find_pc_section (faddr);
1390 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
1393 if (faddr_sect != NULL)
1395 struct obj_section *osect;
1396 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
1398 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
1402 if (osect < faddr_sect->objfile->sections_end)
1407 while (addr < osect->endaddr)
1413 status = target_read_memory (addr, buf, sizeof (buf));
1416 faddr2 = extract_signed_integer (buf, sizeof (buf));
1418 if (faddr == faddr2)
1428 /* Attempt to find a function descriptor corresponding to the
1429 given address. If none is found, construct one on the
1430 stack using the address at fdaptr */
1433 find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr)
1437 fdesc = find_extant_func_descr (faddr);
1441 CORE_ADDR global_pointer;
1447 global_pointer = find_global_pointer (faddr);
1449 if (global_pointer == 0)
1450 global_pointer = read_register (IA64_GR1_REGNUM);
1452 store_address (buf, 8, faddr);
1453 store_address (buf + 8, 8, global_pointer);
1455 write_memory (fdesc, buf, 16);
1462 ia64_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1463 int struct_return, CORE_ADDR struct_addr)
1469 int nslots, rseslots, memslots, slotnum, nfuncargs;
1471 CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr;
1475 /* Count the number of slots needed for the arguments */
1476 for (argno = 0; argno < nargs; argno++)
1479 type = check_typedef (VALUE_TYPE (arg));
1480 len = TYPE_LENGTH (type);
1482 /* FIXME: This is crude and it is wrong (IMO), but it matches
1483 what gcc does, I think. */
1484 if (len > 8 && (nslots & 1))
1487 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1490 nslots += (len + 7) / 8;
1493 /* Divvy up the slots between the RSE and the memory stack */
1494 rseslots = (nslots > 8) ? 8 : nslots;
1495 memslots = nslots - rseslots;
1497 /* Allocate a new RSE frame */
1498 cfm = read_register (IA64_CFM_REGNUM);
1500 bsp = read_register (IA64_BSP_REGNUM);
1501 bsp = rse_address_add (bsp, cfm & 0x7f);
1502 new_bsp = rse_address_add (bsp, rseslots);
1503 write_register (IA64_BSP_REGNUM, new_bsp);
1505 pfs = read_register (IA64_PFS_REGNUM);
1506 pfs &= 0xc000000000000000LL;
1507 pfs |= (cfm & 0xffffffffffffLL);
1508 write_register (IA64_PFS_REGNUM, pfs);
1510 cfm &= 0xc000000000000000LL;
1512 write_register (IA64_CFM_REGNUM, cfm);
1514 /* We will attempt to find function descriptors in the .opd segment,
1515 but if we can't we'll construct them ourselves. That being the
1516 case, we'll need to reserve space on the stack for them. */
1517 funcdescaddr = sp - nfuncargs * 16;
1518 funcdescaddr &= ~0xfLL;
1520 /* Adjust the stack pointer to it's new value. The calling conventions
1521 require us to have 16 bytes of scratch, plus whatever space is
1522 necessary for the memory slots and our function descriptors */
1523 sp = sp - 16 - (memslots + nfuncargs) * 8;
1524 sp &= ~0xfLL; /* Maintain 16 byte alignment */
1526 /* Place the arguments where they belong. The arguments will be
1527 either placed in the RSE backing store or on the memory stack.
1528 In addition, floating point arguments or HFAs are placed in
1529 floating point registers. */
1531 floatreg = IA64_FR8_REGNUM;
1532 for (argno = 0; argno < nargs; argno++)
1534 struct type *float_elt_type;
1537 type = check_typedef (VALUE_TYPE (arg));
1538 len = TYPE_LENGTH (type);
1540 /* Special handling for function parameters */
1542 && TYPE_CODE (type) == TYPE_CODE_PTR
1543 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1547 store_address (val_buf, 8,
1548 find_func_descr (extract_address (VALUE_CONTENTS (arg), 8),
1550 if (slotnum < rseslots)
1551 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
1553 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
1559 if (len > 8 && (slotnum & 1))
1566 memset (val_buf, 0, 8);
1567 memcpy (val_buf, VALUE_CONTENTS (arg) + argoffset, (len > 8) ? 8 : len);
1569 if (slotnum < rseslots)
1570 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
1572 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
1579 /* Handle floating point types (including HFAs) */
1580 float_elt_type = is_float_or_hfa_type (type);
1581 if (float_elt_type != NULL)
1584 len = TYPE_LENGTH (type);
1585 while (len > 0 && floatreg < IA64_FR16_REGNUM)
1587 ia64_register_convert_to_raw (
1590 VALUE_CONTENTS (arg) + argoffset,
1591 ®isters[REGISTER_BYTE (floatreg)]);
1593 argoffset += TYPE_LENGTH (float_elt_type);
1594 len -= TYPE_LENGTH (float_elt_type);
1599 /* Store the struct return value in r8 if necessary. */
1602 store_address (®isters[REGISTER_BYTE (IA64_GR8_REGNUM)],
1603 REGISTER_RAW_SIZE (IA64_GR8_REGNUM),
1607 /* Sync gdb's idea of what the registers are with the target. */
1608 target_store_registers (-1);
1610 /* FIXME: This doesn't belong here! Instead, SAVE_DUMMY_FRAME_TOS needs
1611 to be defined to call generic_save_dummy_frame_tos(). But at the
1612 time of this writing, SAVE_DUMMY_FRAME_TOS wasn't gdbarch'd, so
1613 I chose to put this call here instead of using the old mechanisms.
1614 Once SAVE_DUMMY_FRAME_TOS is gdbarch'd, all we need to do is add the
1617 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1619 to ia64_gdbarch_init() and remove the line below. */
1620 generic_save_dummy_frame_tos (sp);
1626 ia64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1628 CORE_ADDR global_pointer = find_global_pointer (pc);
1630 if (global_pointer != 0)
1631 write_register (IA64_GR1_REGNUM, global_pointer);
1633 write_register (IA64_BR0_REGNUM, CALL_DUMMY_ADDRESS ());
1638 ia64_store_return_value (struct type *type, char *valbuf)
1640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1642 ia64_register_convert_to_raw (type, IA64_FR8_REGNUM, valbuf,
1643 ®isters[REGISTER_BYTE (IA64_FR8_REGNUM)]);
1644 target_store_registers (IA64_FR8_REGNUM);
1647 write_register_bytes (REGISTER_BYTE (IA64_GR8_REGNUM),
1648 valbuf, TYPE_LENGTH (type));
1652 ia64_pop_frame (void)
1654 generic_pop_current_frame (ia64_pop_frame_regular);
1658 ia64_pop_frame_regular (struct frame_info *frame)
1661 CORE_ADDR bsp, cfm, pfs;
1663 FRAME_INIT_SAVED_REGS (frame);
1665 for (regno = 0; regno < ia64_num_regs; regno++)
1667 if (frame->saved_regs[regno]
1668 && (!(IA64_GR32_REGNUM <= regno && regno <= IA64_GR127_REGNUM))
1669 && regno != pc_regnum
1670 && regno != sp_regnum
1671 && regno != IA64_PFS_REGNUM
1672 && regno != IA64_CFM_REGNUM
1673 && regno != IA64_BSP_REGNUM
1674 && regno != IA64_BSPSTORE_REGNUM)
1676 write_register (regno,
1677 read_memory_integer (frame->saved_regs[regno],
1678 REGISTER_RAW_SIZE (regno)));
1682 write_register (sp_regnum, FRAME_CHAIN (frame));
1683 write_pc (FRAME_SAVED_PC (frame));
1685 cfm = read_register (IA64_CFM_REGNUM);
1687 if (frame->saved_regs[IA64_PFS_REGNUM])
1689 pfs = read_memory_integer (frame->saved_regs[IA64_PFS_REGNUM],
1690 REGISTER_RAW_SIZE (IA64_PFS_REGNUM));
1693 pfs = read_register (IA64_PFS_REGNUM);
1695 /* Compute the new bsp by *adding* the difference between the
1696 size of the frame and the size of the locals (both wrt the
1697 frame that we're going back to). This seems kind of strange,
1698 especially since it seems like we ought to be subtracting the
1699 size of the locals... and we should; but the linux kernel
1700 wants bsp to be set at the end of all used registers. It's
1701 likely that this code will need to be revised to accomodate
1702 other operating systems. */
1703 bsp = rse_address_add (frame->extra_info->bsp,
1704 (pfs & 0x7f) - ((pfs >> 7) & 0x7f));
1705 write_register (IA64_BSP_REGNUM, bsp);
1707 /* FIXME: What becomes of the epilog count in the PFS? */
1708 cfm = (cfm & ~0xffffffffffffLL) | (pfs & 0xffffffffffffLL);
1709 write_register (IA64_CFM_REGNUM, cfm);
1711 flush_cached_frames ();
1715 ia64_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1716 CORE_ADDR *targ_addr, int *targ_len)
1718 *targ_addr = memaddr;
1719 *targ_len = nr_bytes;
1722 static struct gdbarch *
1723 ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1725 struct gdbarch *gdbarch;
1727 arches = gdbarch_list_lookup_by_info (arches, &info);
1729 return arches->gdbarch;
1731 gdbarch = gdbarch_alloc (&info, NULL);
1733 set_gdbarch_short_bit (gdbarch, 16);
1734 set_gdbarch_int_bit (gdbarch, 32);
1735 set_gdbarch_long_bit (gdbarch, 64);
1736 set_gdbarch_long_long_bit (gdbarch, 64);
1737 set_gdbarch_float_bit (gdbarch, 32);
1738 set_gdbarch_double_bit (gdbarch, 64);
1739 set_gdbarch_long_double_bit (gdbarch, 64);
1740 set_gdbarch_ptr_bit (gdbarch, 64);
1742 set_gdbarch_num_regs (gdbarch, ia64_num_regs);
1743 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1744 set_gdbarch_fp_regnum (gdbarch, fp_regnum);
1745 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1747 set_gdbarch_register_name (gdbarch, ia64_register_name);
1748 set_gdbarch_register_size (gdbarch, 8);
1749 set_gdbarch_register_bytes (gdbarch, ia64_num_regs * 8 + 128*8);
1750 set_gdbarch_register_byte (gdbarch, ia64_register_byte);
1751 set_gdbarch_register_raw_size (gdbarch, ia64_register_raw_size);
1752 set_gdbarch_max_register_raw_size (gdbarch, 16);
1753 set_gdbarch_register_virtual_size (gdbarch, ia64_register_virtual_size);
1754 set_gdbarch_max_register_virtual_size (gdbarch, 16);
1755 set_gdbarch_register_virtual_type (gdbarch, ia64_register_virtual_type);
1757 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
1759 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1760 set_gdbarch_frameless_function_invocation (gdbarch, ia64_frameless_function_invocation);
1762 set_gdbarch_saved_pc_after_call (gdbarch, ia64_saved_pc_after_call);
1764 set_gdbarch_frame_chain (gdbarch, ia64_frame_chain);
1765 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1766 set_gdbarch_frame_saved_pc (gdbarch, ia64_frame_saved_pc);
1768 set_gdbarch_frame_init_saved_regs (gdbarch, ia64_frame_init_saved_regs);
1769 set_gdbarch_get_saved_register (gdbarch, ia64_get_saved_register);
1771 set_gdbarch_register_convertible (gdbarch, ia64_register_convertible);
1772 set_gdbarch_register_convert_to_virtual (gdbarch, ia64_register_convert_to_virtual);
1773 set_gdbarch_register_convert_to_raw (gdbarch, ia64_register_convert_to_raw);
1775 set_gdbarch_use_struct_convention (gdbarch, ia64_use_struct_convention);
1776 set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value);
1778 set_gdbarch_store_struct_return (gdbarch, ia64_store_struct_return);
1779 set_gdbarch_store_return_value (gdbarch, ia64_store_return_value);
1780 set_gdbarch_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address);
1782 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
1783 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
1784 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
1785 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
1786 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
1788 /* Settings for calling functions in the inferior. */
1789 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1790 set_gdbarch_call_dummy_length (gdbarch, 0);
1791 set_gdbarch_push_arguments (gdbarch, ia64_push_arguments);
1792 set_gdbarch_push_return_address (gdbarch, ia64_push_return_address);
1793 set_gdbarch_pop_frame (gdbarch, ia64_pop_frame);
1795 set_gdbarch_call_dummy_p (gdbarch, 1);
1796 set_gdbarch_call_dummy_words (gdbarch, ia64_call_dummy_words);
1797 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (ia64_call_dummy_words));
1798 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1799 set_gdbarch_init_extra_frame_info (gdbarch, ia64_init_extra_frame_info);
1800 set_gdbarch_frame_args_address (gdbarch, ia64_frame_args_address);
1801 set_gdbarch_frame_locals_address (gdbarch, ia64_frame_locals_address);
1803 /* We won't necessarily have a frame pointer and even if we do,
1804 it winds up being extraordinarly messy when attempting to find
1805 the frame chain. So for the purposes of creating frames (which
1806 is all read_fp() is used for), simply use the stack pointer value
1808 set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
1809 set_gdbarch_write_fp (gdbarch, generic_target_write_sp);
1811 /* Settings that should be unnecessary. */
1812 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1814 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1815 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1817 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1818 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1819 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1820 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1821 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1822 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1823 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1824 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1826 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1827 set_gdbarch_function_start_offset (gdbarch, 0);
1829 set_gdbarch_remote_translate_xfer_address (
1830 gdbarch, ia64_remote_translate_xfer_address);
1836 _initialize_ia64_tdep (void)
1838 register_gdbarch_init (bfd_arch_ia64, ia64_gdbarch_init);
1840 tm_print_insn = print_insn_ia64;
1841 tm_print_insn_info.bytes_per_line = SLOT_MULTIPLIER;