1 /* Cache and manage frames for GDB, the GNU debugger.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "inferior.h" /* for inferior_ptid */
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
37 #include "observable.h"
39 #include "gdbthread.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
53 static struct frame_info *sentinel_frame;
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
58 /* Status of some values cached in the frame_info object. */
60 enum cached_copy_status
62 /* Value is unknown. */
65 /* We have a value. */
68 /* Value was not saved. */
71 /* Value is unavailable. */
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
98 /* The frame's program space. */
99 struct program_space *pspace;
101 /* The frame's address space. */
102 const address_space *aspace;
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
112 /* Cached copy of the previous frame's architecture. */
116 struct gdbarch *arch;
119 /* Cached copy of the previous frame's resume address. */
121 enum cached_copy_status status;
125 /* Cached copy of the previous frame's function address. */
132 /* This frame's ID. */
136 struct frame_id value;
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
142 const struct frame_base *base;
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
149 struct frame_info *prev; /* up, outer, older */
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
165 static htab_t frame_stash;
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
172 frame_addr_hash (const void *ap)
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
180 || f_id.special_addr_p);
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
199 frame_addr_hash_eq (const void *a, const void *b)
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
212 frame_stash_create (void)
214 frame_stash = htab_create (100,
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
225 frame_stash_add (struct frame_info *frame)
227 struct frame_info **slot;
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
254 struct frame_info dummy;
255 struct frame_info *frame;
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
267 frame_stash_invalidate (void)
269 htab_empty (frame_stash);
272 /* Flag to control debugging. */
274 unsigned int frame_debug;
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
282 /* Flag to indicate whether backtraces should stop at main et.al. */
284 static int backtrace_past_main;
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
295 static int backtrace_past_entry;
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
305 static unsigned int backtrace_limit = UINT_MAX;
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
323 fprintf_unfiltered (file, "!%s", name);
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
329 fprintf_unfiltered (file, "{");
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
349 fprintf_unfiltered (file, "}");
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
358 fprintf_unfiltered (file, "NORMAL_FRAME");
361 fprintf_unfiltered (file, "DUMMY_FRAME");
364 fprintf_unfiltered (file, "INLINE_FRAME");
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
373 fprintf_unfiltered (file, "ARCH_FRAME");
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
379 fprintf_unfiltered (file, "<unknown type>");
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
389 fprintf_unfiltered (file, "<NULL frame>");
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
420 fprint_frame_id (file, fi->this_id.value);
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
450 frame = get_prev_frame_always (frame);
459 skip_unwritable_frames (struct frame_info *frame)
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
463 frame = get_prev_frame (frame);
474 skip_tailcall_frames (struct frame_info *frame)
476 while (get_frame_type (frame) == TAILCALL_FRAME)
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
492 compute_frame_id (struct frame_info *fi)
494 gdb_assert (!fi->this_id.p);
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
516 /* Return a frame uniq ID that can be used to, later, re-find the
520 get_frame_id (struct frame_info *fi)
523 return null_frame_id;
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
537 compute_frame_id (fi);
539 /* Since this is the first frame in the chain, this should
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
545 return fi->this_id.value;
549 get_stack_frame_id (struct frame_info *next_frame)
551 return get_frame_id (skip_artificial_frames (next_frame));
555 frame_unwind_caller_id (struct frame_info *next_frame)
557 struct frame_info *this_frame;
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
568 this_frame = get_prev_frame_always (next_frame);
570 return get_frame_id (skip_artificial_frames (this_frame));
572 return null_frame_id;
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
583 struct frame_id id = null_frame_id;
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
599 struct frame_id id = null_frame_id;
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
613 struct frame_id id = null_frame_id;
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
626 struct frame_id id = null_frame_id;
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
636 frame_id_build_wild (CORE_ADDR stack_addr)
638 struct frame_id id = null_frame_id;
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
646 frame_id_p (struct frame_id l)
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
665 frame_id_artificial_p (struct frame_id l)
670 return (l.artificial_depth != 0);
674 frame_id_eq (struct frame_id l, struct frame_id r)
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
707 /* Frames are equal. */
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
732 * The stack address of NEXT must be inner-than-or-equal to the stack
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
771 gdb_assert (l.code_addr_p && r.code_addr_p);
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
803 frame_find_by_id (struct frame_id id)
805 struct frame_info *frame, *prev_frame;
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
828 for (frame = get_current_frame (); ; frame = prev_frame)
830 struct frame_id self = get_frame_id (frame);
832 if (frame_id_eq (id, self))
833 /* An exact match. */
836 prev_frame = get_prev_frame (frame);
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
855 frame_unwind_pc (struct frame_info *this_frame)
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
861 struct gdbarch *prev_gdbarch;
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
888 CATCH (ex, RETURN_MASK_ERROR)
890 if (ex.error == NOT_AVAILABLE_ERROR)
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
902 this_frame->prev_pc.status = CC_NOT_SAVED;
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
911 throw_exception (ex);
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
924 hex_string (this_frame->prev_pc.value));
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
944 frame_unwind_caller_pc (struct frame_info *this_frame)
946 this_frame = skip_artificial_frames (this_frame);
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
951 gdb_assert (this_frame != NULL);
953 return frame_unwind_pc (this_frame);
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
959 struct frame_info *next_frame = this_frame->next;
961 if (!next_frame->prev_func.p)
963 CORE_ADDR addr_in_block;
965 /* Make certain that this, and not the adjacent, function is
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
969 next_frame->prev_func.p = -1;
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
984 hex_string (next_frame->prev_func.addr));
988 if (next_frame->prev_func.p < 0)
995 *pc = next_frame->prev_func.addr;
1001 get_frame_func (struct frame_info *this_frame)
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1020 std::unique_ptr<readonly_detached_regcache>
1021 frame_save_as_regcache (struct frame_info *this_frame)
1023 std::unique_ptr<readonly_detached_regcache> regcache
1024 (new readonly_detached_regcache (get_frame_arch (this_frame),
1025 do_frame_register_read, this_frame));
1031 frame_pop (struct frame_info *this_frame)
1033 struct frame_info *prev_frame;
1035 if (get_frame_type (this_frame) == DUMMY_FRAME)
1037 /* Popping a dummy frame involves restoring more than just registers.
1038 dummy_frame_pop does all the work. */
1039 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1043 /* Ensure that we have a frame to pop to. */
1044 prev_frame = get_prev_frame_always (this_frame);
1047 error (_("Cannot pop the initial frame."));
1049 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1050 entering THISFRAME. */
1051 prev_frame = skip_tailcall_frames (prev_frame);
1053 if (prev_frame == NULL)
1054 error (_("Cannot find the caller frame."));
1056 /* Make a copy of all the register values unwound from this frame.
1057 Save them in a scratch buffer so that there isn't a race between
1058 trying to extract the old values from the current regcache while
1059 at the same time writing new values into that same cache. */
1060 std::unique_ptr<readonly_detached_regcache> scratch
1061 = frame_save_as_regcache (prev_frame);
1063 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1064 target's register cache that it is about to be hit with a burst
1065 register transfer and that the sequence of register writes should
1066 be batched. The pair target_prepare_to_store() and
1067 target_store_registers() kind of suggest this functionality.
1068 Unfortunately, they don't implement it. Their lack of a formal
1069 definition can lead to targets writing back bogus values
1070 (arguably a bug in the target code mind). */
1071 /* Now copy those saved registers into the current regcache. */
1072 get_current_regcache ()->restore (scratch.get ());
1074 /* We've made right mess of GDB's local state, just discard
1076 reinit_frame_cache ();
1080 frame_register_unwind (struct frame_info *frame, int regnum,
1081 int *optimizedp, int *unavailablep,
1082 enum lval_type *lvalp, CORE_ADDR *addrp,
1083 int *realnump, gdb_byte *bufferp)
1085 struct value *value;
1087 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1088 that the value proper does not need to be fetched. */
1089 gdb_assert (optimizedp != NULL);
1090 gdb_assert (lvalp != NULL);
1091 gdb_assert (addrp != NULL);
1092 gdb_assert (realnump != NULL);
1093 /* gdb_assert (bufferp != NULL); */
1095 value = frame_unwind_register_value (frame, regnum);
1097 gdb_assert (value != NULL);
1099 *optimizedp = value_optimized_out (value);
1100 *unavailablep = !value_entirely_available (value);
1101 *lvalp = VALUE_LVAL (value);
1102 *addrp = value_address (value);
1103 if (*lvalp == lval_register)
1104 *realnump = VALUE_REGNUM (value);
1110 if (!*optimizedp && !*unavailablep)
1111 memcpy (bufferp, value_contents_all (value),
1112 TYPE_LENGTH (value_type (value)));
1114 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1117 /* Dispose of the new value. This prevents watchpoints from
1118 trying to watch the saved frame pointer. */
1119 release_value (value);
1124 frame_register (struct frame_info *frame, int regnum,
1125 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1126 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1128 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1129 that the value proper does not need to be fetched. */
1130 gdb_assert (optimizedp != NULL);
1131 gdb_assert (lvalp != NULL);
1132 gdb_assert (addrp != NULL);
1133 gdb_assert (realnump != NULL);
1134 /* gdb_assert (bufferp != NULL); */
1136 /* Obtain the register value by unwinding the register from the next
1137 (more inner frame). */
1138 gdb_assert (frame != NULL && frame->next != NULL);
1139 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1140 lvalp, addrp, realnump, bufferp);
1144 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1150 enum lval_type lval;
1152 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1153 &lval, &addr, &realnum, buf);
1156 throw_error (OPTIMIZED_OUT_ERROR,
1157 _("Register %d was not saved"), regnum);
1159 throw_error (NOT_AVAILABLE_ERROR,
1160 _("Register %d is not available"), regnum);
1164 get_frame_register (struct frame_info *frame,
1165 int regnum, gdb_byte *buf)
1167 frame_unwind_register (frame->next, regnum, buf);
1171 frame_unwind_register_value (struct frame_info *frame, int regnum)
1173 struct gdbarch *gdbarch;
1174 struct value *value;
1176 gdb_assert (frame != NULL);
1177 gdbarch = frame_unwind_arch (frame);
1181 fprintf_unfiltered (gdb_stdlog,
1182 "{ frame_unwind_register_value "
1183 "(frame=%d,regnum=%d(%s),...) ",
1184 frame->level, regnum,
1185 user_reg_map_regnum_to_name (gdbarch, regnum));
1188 /* Find the unwinder. */
1189 if (frame->unwind == NULL)
1190 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1192 /* Ask this frame to unwind its register. */
1193 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1197 fprintf_unfiltered (gdb_stdlog, "->");
1198 if (value_optimized_out (value))
1200 fprintf_unfiltered (gdb_stdlog, " ");
1201 val_print_optimized_out (value, gdb_stdlog);
1205 if (VALUE_LVAL (value) == lval_register)
1206 fprintf_unfiltered (gdb_stdlog, " register=%d",
1207 VALUE_REGNUM (value));
1208 else if (VALUE_LVAL (value) == lval_memory)
1209 fprintf_unfiltered (gdb_stdlog, " address=%s",
1211 value_address (value)));
1213 fprintf_unfiltered (gdb_stdlog, " computed");
1215 if (value_lazy (value))
1216 fprintf_unfiltered (gdb_stdlog, " lazy");
1220 const gdb_byte *buf = value_contents (value);
1222 fprintf_unfiltered (gdb_stdlog, " bytes=");
1223 fprintf_unfiltered (gdb_stdlog, "[");
1224 for (i = 0; i < register_size (gdbarch, regnum); i++)
1225 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1226 fprintf_unfiltered (gdb_stdlog, "]");
1230 fprintf_unfiltered (gdb_stdlog, " }\n");
1237 get_frame_register_value (struct frame_info *frame, int regnum)
1239 return frame_unwind_register_value (frame->next, regnum);
1243 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1245 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1246 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1247 int size = register_size (gdbarch, regnum);
1248 struct value *value = frame_unwind_register_value (frame, regnum);
1250 gdb_assert (value != NULL);
1252 if (value_optimized_out (value))
1254 throw_error (OPTIMIZED_OUT_ERROR,
1255 _("Register %d was not saved"), regnum);
1257 if (!value_entirely_available (value))
1259 throw_error (NOT_AVAILABLE_ERROR,
1260 _("Register %d is not available"), regnum);
1263 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1266 release_value (value);
1272 get_frame_register_signed (struct frame_info *frame, int regnum)
1274 return frame_unwind_register_signed (frame->next, regnum);
1278 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1280 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1282 int size = register_size (gdbarch, regnum);
1283 struct value *value = frame_unwind_register_value (frame, regnum);
1285 gdb_assert (value != NULL);
1287 if (value_optimized_out (value))
1289 throw_error (OPTIMIZED_OUT_ERROR,
1290 _("Register %d was not saved"), regnum);
1292 if (!value_entirely_available (value))
1294 throw_error (NOT_AVAILABLE_ERROR,
1295 _("Register %d is not available"), regnum);
1298 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1301 release_value (value);
1307 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1309 return frame_unwind_register_unsigned (frame->next, regnum);
1313 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1316 struct value *regval = get_frame_register_value (frame, regnum);
1318 if (!value_optimized_out (regval)
1319 && value_entirely_available (regval))
1321 struct gdbarch *gdbarch = get_frame_arch (frame);
1322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1323 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1325 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1333 put_frame_register (struct frame_info *frame, int regnum,
1334 const gdb_byte *buf)
1336 struct gdbarch *gdbarch = get_frame_arch (frame);
1340 enum lval_type lval;
1343 frame_register (frame, regnum, &optim, &unavail,
1344 &lval, &addr, &realnum, NULL);
1346 error (_("Attempt to assign to a register that was not saved."));
1351 write_memory (addr, buf, register_size (gdbarch, regnum));
1355 regcache_cooked_write (get_current_regcache (), realnum, buf);
1358 error (_("Attempt to assign to an unmodifiable value."));
1362 /* This function is deprecated. Use get_frame_register_value instead,
1363 which provides more accurate information.
1365 Find and return the value of REGNUM for the specified stack frame.
1366 The number of bytes copied is REGISTER_SIZE (REGNUM).
1368 Returns 0 if the register value could not be found. */
1371 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1376 enum lval_type lval;
1380 frame_register (frame, regnum, &optimized, &unavailable,
1381 &lval, &addr, &realnum, myaddr);
1383 return !optimized && !unavailable;
1387 get_frame_register_bytes (struct frame_info *frame, int regnum,
1388 CORE_ADDR offset, int len, gdb_byte *myaddr,
1389 int *optimizedp, int *unavailablep)
1391 struct gdbarch *gdbarch = get_frame_arch (frame);
1396 /* Skip registers wholly inside of OFFSET. */
1397 while (offset >= register_size (gdbarch, regnum))
1399 offset -= register_size (gdbarch, regnum);
1403 /* Ensure that we will not read beyond the end of the register file.
1404 This can only ever happen if the debug information is bad. */
1406 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1407 for (i = regnum; i < numregs; i++)
1409 int thissize = register_size (gdbarch, i);
1412 break; /* This register is not available on this architecture. */
1413 maxsize += thissize;
1416 error (_("Bad debug information detected: "
1417 "Attempt to read %d bytes from registers."), len);
1419 /* Copy the data. */
1422 int curr_len = register_size (gdbarch, regnum) - offset;
1427 if (curr_len == register_size (gdbarch, regnum))
1429 enum lval_type lval;
1433 frame_register (frame, regnum, optimizedp, unavailablep,
1434 &lval, &addr, &realnum, myaddr);
1435 if (*optimizedp || *unavailablep)
1440 struct value *value = frame_unwind_register_value (frame->next,
1442 gdb_assert (value != NULL);
1443 *optimizedp = value_optimized_out (value);
1444 *unavailablep = !value_entirely_available (value);
1446 if (*optimizedp || *unavailablep)
1448 release_value (value);
1452 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1453 release_value (value);
1469 put_frame_register_bytes (struct frame_info *frame, int regnum,
1470 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1472 struct gdbarch *gdbarch = get_frame_arch (frame);
1474 /* Skip registers wholly inside of OFFSET. */
1475 while (offset >= register_size (gdbarch, regnum))
1477 offset -= register_size (gdbarch, regnum);
1481 /* Copy the data. */
1484 int curr_len = register_size (gdbarch, regnum) - offset;
1489 if (curr_len == register_size (gdbarch, regnum))
1491 put_frame_register (frame, regnum, myaddr);
1495 struct value *value = frame_unwind_register_value (frame->next,
1497 gdb_assert (value != NULL);
1499 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1501 put_frame_register (frame, regnum, value_contents_raw (value));
1502 release_value (value);
1513 /* Create a sentinel frame. */
1515 static struct frame_info *
1516 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1518 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1521 frame->pspace = pspace;
1522 frame->aspace = regcache->aspace ();
1523 /* Explicitly initialize the sentinel frame's cache. Provide it
1524 with the underlying regcache. In the future additional
1525 information, such as the frame's thread will be added. */
1526 frame->prologue_cache = sentinel_frame_cache (regcache);
1527 /* For the moment there is only one sentinel frame implementation. */
1528 frame->unwind = &sentinel_frame_unwind;
1529 /* Link this frame back to itself. The frame is self referential
1530 (the unwound PC is the same as the pc), so make it so. */
1531 frame->next = frame;
1532 /* The sentinel frame has a special ID. */
1533 frame->this_id.p = 1;
1534 frame->this_id.value = sentinel_frame_id;
1537 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1538 fprint_frame (gdb_stdlog, frame);
1539 fprintf_unfiltered (gdb_stdlog, " }\n");
1544 /* Cache for frame addresses already read by gdb. Valid only while
1545 inferior is stopped. Control variables for the frame cache should
1546 be local to this module. */
1548 static struct obstack frame_cache_obstack;
1551 frame_obstack_zalloc (unsigned long size)
1553 void *data = obstack_alloc (&frame_cache_obstack, size);
1555 memset (data, 0, size);
1559 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1562 get_current_frame (void)
1564 struct frame_info *current_frame;
1566 /* First check, and report, the lack of registers. Having GDB
1567 report "No stack!" or "No memory" when the target doesn't even
1568 have registers is very confusing. Besides, "printcmd.exp"
1569 explicitly checks that ``print $pc'' with no registers prints "No
1571 if (!target_has_registers)
1572 error (_("No registers."));
1573 if (!target_has_stack)
1574 error (_("No stack."));
1575 if (!target_has_memory)
1576 error (_("No memory."));
1577 /* Traceframes are effectively a substitute for the live inferior. */
1578 if (get_traceframe_number () < 0)
1579 validate_registers_access ();
1581 if (sentinel_frame == NULL)
1583 create_sentinel_frame (current_program_space, get_current_regcache ());
1585 /* Set the current frame before computing the frame id, to avoid
1586 recursion inside compute_frame_id, in case the frame's
1587 unwinder decides to do a symbol lookup (which depends on the
1588 selected frame's block).
1590 This call must always succeed. In particular, nothing inside
1591 get_prev_frame_always_1 should try to unwind from the
1592 sentinel frame, because that could fail/throw, and we always
1593 want to leave with the current frame created and linked in --
1594 we should never end up with the sentinel frame as outermost
1596 current_frame = get_prev_frame_always_1 (sentinel_frame);
1597 gdb_assert (current_frame != NULL);
1599 return current_frame;
1602 /* The "selected" stack frame is used by default for local and arg
1603 access. May be zero, for no selected frame. */
1605 static struct frame_info *selected_frame;
1608 has_stack_frames (void)
1610 if (!target_has_registers || !target_has_stack || !target_has_memory)
1613 /* Traceframes are effectively a substitute for the live inferior. */
1614 if (get_traceframe_number () < 0)
1616 /* No current inferior, no frame. */
1617 if (ptid_equal (inferior_ptid, null_ptid))
1620 /* Don't try to read from a dead thread. */
1621 if (is_exited (inferior_ptid))
1624 /* ... or from a spinning thread. */
1625 if (is_executing (inferior_ptid))
1632 /* Return the selected frame. Always non-NULL (unless there isn't an
1633 inferior sufficient for creating a frame) in which case an error is
1637 get_selected_frame (const char *message)
1639 if (selected_frame == NULL)
1641 if (message != NULL && !has_stack_frames ())
1642 error (("%s"), message);
1643 /* Hey! Don't trust this. It should really be re-finding the
1644 last selected frame of the currently selected thread. This,
1645 though, is better than nothing. */
1646 select_frame (get_current_frame ());
1648 /* There is always a frame. */
1649 gdb_assert (selected_frame != NULL);
1650 return selected_frame;
1653 /* If there is a selected frame, return it. Otherwise, return NULL. */
1656 get_selected_frame_if_set (void)
1658 return selected_frame;
1661 /* This is a variant of get_selected_frame() which can be called when
1662 the inferior does not have a frame; in that case it will return
1663 NULL instead of calling error(). */
1666 deprecated_safe_get_selected_frame (void)
1668 if (!has_stack_frames ())
1670 return get_selected_frame (NULL);
1673 /* Select frame FI (or NULL - to invalidate the current frame). */
1676 select_frame (struct frame_info *fi)
1678 selected_frame = fi;
1679 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1680 frame is being invalidated. */
1682 /* FIXME: kseitz/2002-08-28: It would be nice to call
1683 selected_frame_level_changed_event() right here, but due to limitations
1684 in the current interfaces, we would end up flooding UIs with events
1685 because select_frame() is used extensively internally.
1687 Once we have frame-parameterized frame (and frame-related) commands,
1688 the event notification can be moved here, since this function will only
1689 be called when the user's selected frame is being changed. */
1691 /* Ensure that symbols for this frame are read in. Also, determine the
1692 source language of this frame, and switch to it if desired. */
1697 /* We retrieve the frame's symtab by using the frame PC.
1698 However we cannot use the frame PC as-is, because it usually
1699 points to the instruction following the "call", which is
1700 sometimes the first instruction of another function. So we
1701 rely on get_frame_address_in_block() which provides us with a
1702 PC which is guaranteed to be inside the frame's code
1704 if (get_frame_address_in_block_if_available (fi, &pc))
1706 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1709 && compunit_language (cust) != current_language->la_language
1710 && compunit_language (cust) != language_unknown
1711 && language_mode == language_mode_auto)
1712 set_language (compunit_language (cust));
1717 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1718 Always returns a non-NULL value. */
1721 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1723 struct frame_info *fi;
1727 fprintf_unfiltered (gdb_stdlog,
1728 "{ create_new_frame (addr=%s, pc=%s) ",
1729 hex_string (addr), hex_string (pc));
1732 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1734 fi->next = create_sentinel_frame (current_program_space,
1735 get_current_regcache ());
1737 /* Set/update this frame's cached PC value, found in the next frame.
1738 Do this before looking for this frame's unwinder. A sniffer is
1739 very likely to read this, and the corresponding unwinder is
1740 entitled to rely that the PC doesn't magically change. */
1741 fi->next->prev_pc.value = pc;
1742 fi->next->prev_pc.status = CC_VALUE;
1744 /* We currently assume that frame chain's can't cross spaces. */
1745 fi->pspace = fi->next->pspace;
1746 fi->aspace = fi->next->aspace;
1748 /* Select/initialize both the unwind function and the frame's type
1750 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1753 fi->this_id.value = frame_id_build (addr, pc);
1757 fprintf_unfiltered (gdb_stdlog, "-> ");
1758 fprint_frame (gdb_stdlog, fi);
1759 fprintf_unfiltered (gdb_stdlog, " }\n");
1765 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1766 innermost frame). Be careful to not fall off the bottom of the
1767 frame chain and onto the sentinel frame. */
1770 get_next_frame (struct frame_info *this_frame)
1772 if (this_frame->level > 0)
1773 return this_frame->next;
1778 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1779 innermost (i.e. current) frame, return the sentinel frame. Thus,
1780 unlike get_next_frame(), NULL will never be returned. */
1783 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1785 gdb_assert (this_frame != NULL);
1787 /* Note that, due to the manner in which the sentinel frame is
1788 constructed, this_frame->next still works even when this_frame
1789 is the sentinel frame. But we disallow it here anyway because
1790 calling get_next_frame_sentinel_okay() on the sentinel frame
1791 is likely a coding error. */
1792 gdb_assert (this_frame != sentinel_frame);
1794 return this_frame->next;
1797 /* Observer for the target_changed event. */
1800 frame_observer_target_changed (struct target_ops *target)
1802 reinit_frame_cache ();
1805 /* Flush the entire frame cache. */
1808 reinit_frame_cache (void)
1810 struct frame_info *fi;
1812 /* Tear down all frame caches. */
1813 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1815 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1816 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1817 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1818 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1821 /* Since we can't really be sure what the first object allocated was. */
1822 obstack_free (&frame_cache_obstack, 0);
1823 obstack_init (&frame_cache_obstack);
1825 if (sentinel_frame != NULL)
1826 annotate_frames_invalid ();
1828 sentinel_frame = NULL; /* Invalidate cache */
1829 select_frame (NULL);
1830 frame_stash_invalidate ();
1832 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1835 /* Find where a register is saved (in memory or another register).
1836 The result of frame_register_unwind is just where it is saved
1837 relative to this particular frame. */
1840 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1841 int *optimizedp, enum lval_type *lvalp,
1842 CORE_ADDR *addrp, int *realnump)
1844 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1846 while (this_frame != NULL)
1850 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1851 lvalp, addrp, realnump, NULL);
1856 if (*lvalp != lval_register)
1860 this_frame = get_next_frame (this_frame);
1864 /* Called during frame unwinding to remove a previous frame pointer from a
1865 frame passed in ARG. */
1868 remove_prev_frame (void *arg)
1870 struct frame_info *this_frame, *prev_frame;
1872 this_frame = (struct frame_info *) arg;
1873 prev_frame = this_frame->prev;
1874 gdb_assert (prev_frame != NULL);
1876 prev_frame->next = NULL;
1877 this_frame->prev = NULL;
1880 /* Get the previous raw frame, and check that it is not identical to
1881 same other frame frame already in the chain. If it is, there is
1882 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1883 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1884 validity tests, that compare THIS_FRAME and the next frame, we do
1885 this right after creating the previous frame, to avoid ever ending
1886 up with two frames with the same id in the frame chain. */
1888 static struct frame_info *
1889 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1891 struct frame_info *prev_frame;
1892 struct cleanup *prev_frame_cleanup;
1894 prev_frame = get_prev_frame_raw (this_frame);
1896 /* Don't compute the frame id of the current frame yet. Unwinding
1897 the sentinel frame can fail (e.g., if the thread is gone and we
1898 can't thus read its registers). If we let the cycle detection
1899 code below try to compute a frame ID, then an error thrown from
1900 within the frame ID computation would result in the sentinel
1901 frame as outermost frame, which is bogus. Instead, we'll compute
1902 the current frame's ID lazily in get_frame_id. Note that there's
1903 no point in doing cycle detection when there's only one frame, so
1904 nothing is lost here. */
1905 if (prev_frame->level == 0)
1908 /* The cleanup will remove the previous frame that get_prev_frame_raw
1909 linked onto THIS_FRAME. */
1910 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1912 compute_frame_id (prev_frame);
1913 if (!frame_stash_add (prev_frame))
1915 /* Another frame with the same id was already in the stash. We just
1916 detected a cycle. */
1919 fprintf_unfiltered (gdb_stdlog, "-> ");
1920 fprint_frame (gdb_stdlog, NULL);
1921 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1923 this_frame->stop_reason = UNWIND_SAME_ID;
1925 prev_frame->next = NULL;
1926 this_frame->prev = NULL;
1930 discard_cleanups (prev_frame_cleanup);
1934 /* Helper function for get_prev_frame_always, this is called inside a
1935 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1936 there is no such frame. This may throw an exception. */
1938 static struct frame_info *
1939 get_prev_frame_always_1 (struct frame_info *this_frame)
1941 struct gdbarch *gdbarch;
1943 gdb_assert (this_frame != NULL);
1944 gdbarch = get_frame_arch (this_frame);
1948 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1949 if (this_frame != NULL)
1950 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1952 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1953 fprintf_unfiltered (gdb_stdlog, ") ");
1956 /* Only try to do the unwind once. */
1957 if (this_frame->prev_p)
1961 fprintf_unfiltered (gdb_stdlog, "-> ");
1962 fprint_frame (gdb_stdlog, this_frame->prev);
1963 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1965 return this_frame->prev;
1968 /* If the frame unwinder hasn't been selected yet, we must do so
1969 before setting prev_p; otherwise the check for misbehaved
1970 sniffers will think that this frame's sniffer tried to unwind
1971 further (see frame_cleanup_after_sniffer). */
1972 if (this_frame->unwind == NULL)
1973 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1975 this_frame->prev_p = 1;
1976 this_frame->stop_reason = UNWIND_NO_REASON;
1978 /* If we are unwinding from an inline frame, all of the below tests
1979 were already performed when we unwound from the next non-inline
1980 frame. We must skip them, since we can not get THIS_FRAME's ID
1981 until we have unwound all the way down to the previous non-inline
1983 if (get_frame_type (this_frame) == INLINE_FRAME)
1984 return get_prev_frame_if_no_cycle (this_frame);
1986 /* Check that this frame is unwindable. If it isn't, don't try to
1987 unwind to the prev frame. */
1988 this_frame->stop_reason
1989 = this_frame->unwind->stop_reason (this_frame,
1990 &this_frame->prologue_cache);
1992 if (this_frame->stop_reason != UNWIND_NO_REASON)
1996 enum unwind_stop_reason reason = this_frame->stop_reason;
1998 fprintf_unfiltered (gdb_stdlog, "-> ");
1999 fprint_frame (gdb_stdlog, NULL);
2000 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2001 frame_stop_reason_symbol_string (reason));
2006 /* Check that this frame's ID isn't inner to (younger, below, next)
2007 the next frame. This happens when a frame unwind goes backwards.
2008 This check is valid only if this frame and the next frame are NORMAL.
2009 See the comment at frame_id_inner for details. */
2010 if (get_frame_type (this_frame) == NORMAL_FRAME
2011 && this_frame->next->unwind->type == NORMAL_FRAME
2012 && frame_id_inner (get_frame_arch (this_frame->next),
2013 get_frame_id (this_frame),
2014 get_frame_id (this_frame->next)))
2016 CORE_ADDR this_pc_in_block;
2017 struct minimal_symbol *morestack_msym;
2018 const char *morestack_name = NULL;
2020 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2021 this_pc_in_block = get_frame_address_in_block (this_frame);
2022 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2024 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2025 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2029 fprintf_unfiltered (gdb_stdlog, "-> ");
2030 fprint_frame (gdb_stdlog, NULL);
2031 fprintf_unfiltered (gdb_stdlog,
2032 " // this frame ID is inner }\n");
2034 this_frame->stop_reason = UNWIND_INNER_ID;
2039 /* Check that this and the next frame do not unwind the PC register
2040 to the same memory location. If they do, then even though they
2041 have different frame IDs, the new frame will be bogus; two
2042 functions can't share a register save slot for the PC. This can
2043 happen when the prologue analyzer finds a stack adjustment, but
2046 This check does assume that the "PC register" is roughly a
2047 traditional PC, even if the gdbarch_unwind_pc method adjusts
2048 it (we do not rely on the value, only on the unwound PC being
2049 dependent on this value). A potential improvement would be
2050 to have the frame prev_pc method and the gdbarch unwind_pc
2051 method set the same lval and location information as
2052 frame_register_unwind. */
2053 if (this_frame->level > 0
2054 && gdbarch_pc_regnum (gdbarch) >= 0
2055 && get_frame_type (this_frame) == NORMAL_FRAME
2056 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2057 || get_frame_type (this_frame->next) == INLINE_FRAME))
2059 int optimized, realnum, nrealnum;
2060 enum lval_type lval, nlval;
2061 CORE_ADDR addr, naddr;
2063 frame_register_unwind_location (this_frame,
2064 gdbarch_pc_regnum (gdbarch),
2065 &optimized, &lval, &addr, &realnum);
2066 frame_register_unwind_location (get_next_frame (this_frame),
2067 gdbarch_pc_regnum (gdbarch),
2068 &optimized, &nlval, &naddr, &nrealnum);
2070 if ((lval == lval_memory && lval == nlval && addr == naddr)
2071 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2075 fprintf_unfiltered (gdb_stdlog, "-> ");
2076 fprint_frame (gdb_stdlog, NULL);
2077 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2080 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2081 this_frame->prev = NULL;
2086 return get_prev_frame_if_no_cycle (this_frame);
2089 /* Return a "struct frame_info" corresponding to the frame that called
2090 THIS_FRAME. Returns NULL if there is no such frame.
2092 Unlike get_prev_frame, this function always tries to unwind the
2096 get_prev_frame_always (struct frame_info *this_frame)
2098 struct frame_info *prev_frame = NULL;
2102 prev_frame = get_prev_frame_always_1 (this_frame);
2104 CATCH (ex, RETURN_MASK_ERROR)
2106 if (ex.error == MEMORY_ERROR)
2108 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2109 if (ex.message != NULL)
2114 /* The error needs to live as long as the frame does.
2115 Allocate using stack local STOP_STRING then assign the
2116 pointer to the frame, this allows the STOP_STRING on the
2117 frame to be of type 'const char *'. */
2118 size = strlen (ex.message) + 1;
2119 stop_string = (char *) frame_obstack_zalloc (size);
2120 memcpy (stop_string, ex.message, size);
2121 this_frame->stop_string = stop_string;
2126 throw_exception (ex);
2133 /* Construct a new "struct frame_info" and link it previous to
2136 static struct frame_info *
2137 get_prev_frame_raw (struct frame_info *this_frame)
2139 struct frame_info *prev_frame;
2141 /* Allocate the new frame but do not wire it in to the frame chain.
2142 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2143 frame->next to pull some fancy tricks (of course such code is, by
2144 definition, recursive). Try to prevent it.
2146 There is no reason to worry about memory leaks, should the
2147 remainder of the function fail. The allocated memory will be
2148 quickly reclaimed when the frame cache is flushed, and the `we've
2149 been here before' check above will stop repeated memory
2150 allocation calls. */
2151 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2152 prev_frame->level = this_frame->level + 1;
2154 /* For now, assume we don't have frame chains crossing address
2156 prev_frame->pspace = this_frame->pspace;
2157 prev_frame->aspace = this_frame->aspace;
2159 /* Don't yet compute ->unwind (and hence ->type). It is computed
2160 on-demand in get_frame_type, frame_register_unwind, and
2163 /* Don't yet compute the frame's ID. It is computed on-demand by
2166 /* The unwound frame ID is validate at the start of this function,
2167 as part of the logic to decide if that frame should be further
2168 unwound, and not here while the prev frame is being created.
2169 Doing this makes it possible for the user to examine a frame that
2170 has an invalid frame ID.
2172 Some very old VAX code noted: [...] For the sake of argument,
2173 suppose that the stack is somewhat trashed (which is one reason
2174 that "info frame" exists). So, return 0 (indicating we don't
2175 know the address of the arglist) if we don't know what frame this
2179 this_frame->prev = prev_frame;
2180 prev_frame->next = this_frame;
2184 fprintf_unfiltered (gdb_stdlog, "-> ");
2185 fprint_frame (gdb_stdlog, prev_frame);
2186 fprintf_unfiltered (gdb_stdlog, " }\n");
2192 /* Debug routine to print a NULL frame being returned. */
2195 frame_debug_got_null_frame (struct frame_info *this_frame,
2200 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2201 if (this_frame != NULL)
2202 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2204 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2205 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2209 /* Is this (non-sentinel) frame in the "main"() function? */
2212 inside_main_func (struct frame_info *this_frame)
2214 struct bound_minimal_symbol msymbol;
2217 if (symfile_objfile == 0)
2219 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2220 if (msymbol.minsym == NULL)
2222 /* Make certain that the code, and not descriptor, address is
2224 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2225 BMSYMBOL_VALUE_ADDRESS (msymbol),
2227 return maddr == get_frame_func (this_frame);
2230 /* Test whether THIS_FRAME is inside the process entry point function. */
2233 inside_entry_func (struct frame_info *this_frame)
2235 CORE_ADDR entry_point;
2237 if (!entry_point_address_query (&entry_point))
2240 return get_frame_func (this_frame) == entry_point;
2243 /* Return a structure containing various interesting information about
2244 the frame that called THIS_FRAME. Returns NULL if there is entier
2245 no such frame or the frame fails any of a set of target-independent
2246 condition that should terminate the frame chain (e.g., as unwinding
2249 This function should not contain target-dependent tests, such as
2250 checking whether the program-counter is zero. */
2253 get_prev_frame (struct frame_info *this_frame)
2258 /* There is always a frame. If this assertion fails, suspect that
2259 something should be calling get_selected_frame() or
2260 get_current_frame(). */
2261 gdb_assert (this_frame != NULL);
2263 /* If this_frame is the current frame, then compute and stash
2264 its frame id prior to fetching and computing the frame id of the
2265 previous frame. Otherwise, the cycle detection code in
2266 get_prev_frame_if_no_cycle() will not work correctly. When
2267 get_frame_id() is called later on, an assertion error will
2268 be triggered in the event of a cycle between the current
2269 frame and its previous frame. */
2270 if (this_frame->level == 0)
2271 get_frame_id (this_frame);
2273 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2275 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2276 sense to stop unwinding at a dummy frame. One place where a dummy
2277 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2278 pcsqh register (space register for the instruction at the head of the
2279 instruction queue) cannot be written directly; the only way to set it
2280 is to branch to code that is in the target space. In order to implement
2281 frame dummies on HPUX, the called function is made to jump back to where
2282 the inferior was when the user function was called. If gdb was inside
2283 the main function when we created the dummy frame, the dummy frame will
2284 point inside the main function. */
2285 if (this_frame->level >= 0
2286 && get_frame_type (this_frame) == NORMAL_FRAME
2287 && !backtrace_past_main
2289 && inside_main_func (this_frame))
2290 /* Don't unwind past main(). Note, this is done _before_ the
2291 frame has been marked as previously unwound. That way if the
2292 user later decides to enable unwinds past main(), that will
2293 automatically happen. */
2295 frame_debug_got_null_frame (this_frame, "inside main func");
2299 /* If the user's backtrace limit has been exceeded, stop. We must
2300 add two to the current level; one of those accounts for backtrace_limit
2301 being 1-based and the level being 0-based, and the other accounts for
2302 the level of the new frame instead of the level of the current
2304 if (this_frame->level + 2 > backtrace_limit)
2306 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2310 /* If we're already inside the entry function for the main objfile,
2311 then it isn't valid. Don't apply this test to a dummy frame -
2312 dummy frame PCs typically land in the entry func. Don't apply
2313 this test to the sentinel frame. Sentinel frames should always
2314 be allowed to unwind. */
2315 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2316 wasn't checking for "main" in the minimal symbols. With that
2317 fixed asm-source tests now stop in "main" instead of halting the
2318 backtrace in weird and wonderful ways somewhere inside the entry
2319 file. Suspect that tests for inside the entry file/func were
2320 added to work around that (now fixed) case. */
2321 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2322 suggested having the inside_entry_func test use the
2323 inside_main_func() msymbol trick (along with entry_point_address()
2324 I guess) to determine the address range of the start function.
2325 That should provide a far better stopper than the current
2327 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2328 applied tail-call optimizations to main so that a function called
2329 from main returns directly to the caller of main. Since we don't
2330 stop at main, we should at least stop at the entry point of the
2332 if (this_frame->level >= 0
2333 && get_frame_type (this_frame) == NORMAL_FRAME
2334 && !backtrace_past_entry
2336 && inside_entry_func (this_frame))
2338 frame_debug_got_null_frame (this_frame, "inside entry func");
2342 /* Assume that the only way to get a zero PC is through something
2343 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2344 will never unwind a zero PC. */
2345 if (this_frame->level > 0
2346 && (get_frame_type (this_frame) == NORMAL_FRAME
2347 || get_frame_type (this_frame) == INLINE_FRAME)
2348 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2349 && frame_pc_p && frame_pc == 0)
2351 frame_debug_got_null_frame (this_frame, "zero PC");
2355 return get_prev_frame_always (this_frame);
2359 get_prev_frame_id_by_id (struct frame_id id)
2361 struct frame_id prev_id;
2362 struct frame_info *frame;
2364 frame = frame_find_by_id (id);
2367 prev_id = get_frame_id (get_prev_frame (frame));
2369 prev_id = null_frame_id;
2375 get_frame_pc (struct frame_info *frame)
2377 gdb_assert (frame->next != NULL);
2378 return frame_unwind_pc (frame->next);
2382 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2385 gdb_assert (frame->next != NULL);
2389 *pc = frame_unwind_pc (frame->next);
2391 CATCH (ex, RETURN_MASK_ERROR)
2393 if (ex.error == NOT_AVAILABLE_ERROR)
2396 throw_exception (ex);
2403 /* Return an address that falls within THIS_FRAME's code block. */
2406 get_frame_address_in_block (struct frame_info *this_frame)
2408 /* A draft address. */
2409 CORE_ADDR pc = get_frame_pc (this_frame);
2411 struct frame_info *next_frame = this_frame->next;
2413 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2414 Normally the resume address is inside the body of the function
2415 associated with THIS_FRAME, but there is a special case: when
2416 calling a function which the compiler knows will never return
2417 (for instance abort), the call may be the very last instruction
2418 in the calling function. The resume address will point after the
2419 call and may be at the beginning of a different function
2422 If THIS_FRAME is a signal frame or dummy frame, then we should
2423 not adjust the unwound PC. For a dummy frame, GDB pushed the
2424 resume address manually onto the stack. For a signal frame, the
2425 OS may have pushed the resume address manually and invoked the
2426 handler (e.g. GNU/Linux), or invoked the trampoline which called
2427 the signal handler - but in either case the signal handler is
2428 expected to return to the trampoline. So in both of these
2429 cases we know that the resume address is executable and
2430 related. So we only need to adjust the PC if THIS_FRAME
2431 is a normal function.
2433 If the program has been interrupted while THIS_FRAME is current,
2434 then clearly the resume address is inside the associated
2435 function. There are three kinds of interruption: debugger stop
2436 (next frame will be SENTINEL_FRAME), operating system
2437 signal or exception (next frame will be SIGTRAMP_FRAME),
2438 or debugger-induced function call (next frame will be
2439 DUMMY_FRAME). So we only need to adjust the PC if
2440 NEXT_FRAME is a normal function.
2442 We check the type of NEXT_FRAME first, since it is already
2443 known; frame type is determined by the unwinder, and since
2444 we have THIS_FRAME we've already selected an unwinder for
2447 If the next frame is inlined, we need to keep going until we find
2448 the real function - for instance, if a signal handler is invoked
2449 while in an inlined function, then the code address of the
2450 "calling" normal function should not be adjusted either. */
2452 while (get_frame_type (next_frame) == INLINE_FRAME)
2453 next_frame = next_frame->next;
2455 if ((get_frame_type (next_frame) == NORMAL_FRAME
2456 || get_frame_type (next_frame) == TAILCALL_FRAME)
2457 && (get_frame_type (this_frame) == NORMAL_FRAME
2458 || get_frame_type (this_frame) == TAILCALL_FRAME
2459 || get_frame_type (this_frame) == INLINE_FRAME))
2466 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2472 *pc = get_frame_address_in_block (this_frame);
2474 CATCH (ex, RETURN_MASK_ERROR)
2476 if (ex.error == NOT_AVAILABLE_ERROR)
2478 throw_exception (ex);
2486 find_frame_sal (frame_info *frame)
2488 struct frame_info *next_frame;
2492 /* If the next frame represents an inlined function call, this frame's
2493 sal is the "call site" of that inlined function, which can not
2494 be inferred from get_frame_pc. */
2495 next_frame = get_next_frame (frame);
2496 if (frame_inlined_callees (frame) > 0)
2501 sym = get_frame_function (next_frame);
2503 sym = inline_skipped_symbol (inferior_ptid);
2505 /* If frame is inline, it certainly has symbols. */
2508 symtab_and_line sal;
2509 if (SYMBOL_LINE (sym) != 0)
2511 sal.symtab = symbol_symtab (sym);
2512 sal.line = SYMBOL_LINE (sym);
2515 /* If the symbol does not have a location, we don't know where
2516 the call site is. Do not pretend to. This is jarring, but
2517 we can't do much better. */
2518 sal.pc = get_frame_pc (frame);
2520 sal.pspace = get_frame_program_space (frame);
2524 /* If FRAME is not the innermost frame, that normally means that
2525 FRAME->pc points at the return instruction (which is *after* the
2526 call instruction), and we want to get the line containing the
2527 call (because the call is where the user thinks the program is).
2528 However, if the next frame is either a SIGTRAMP_FRAME or a
2529 DUMMY_FRAME, then the next frame will contain a saved interrupt
2530 PC and such a PC indicates the current (rather than next)
2531 instruction/line, consequently, for such cases, want to get the
2532 line containing fi->pc. */
2533 if (!get_frame_pc_if_available (frame, &pc))
2536 notcurrent = (pc != get_frame_address_in_block (frame));
2537 return find_pc_line (pc, notcurrent);
2540 /* Per "frame.h", return the ``address'' of the frame. Code should
2541 really be using get_frame_id(). */
2543 get_frame_base (struct frame_info *fi)
2545 return get_frame_id (fi).stack_addr;
2548 /* High-level offsets into the frame. Used by the debug info. */
2551 get_frame_base_address (struct frame_info *fi)
2553 if (get_frame_type (fi) != NORMAL_FRAME)
2555 if (fi->base == NULL)
2556 fi->base = frame_base_find_by_frame (fi);
2557 /* Sneaky: If the low-level unwind and high-level base code share a
2558 common unwinder, let them share the prologue cache. */
2559 if (fi->base->unwind == fi->unwind)
2560 return fi->base->this_base (fi, &fi->prologue_cache);
2561 return fi->base->this_base (fi, &fi->base_cache);
2565 get_frame_locals_address (struct frame_info *fi)
2567 if (get_frame_type (fi) != NORMAL_FRAME)
2569 /* If there isn't a frame address method, find it. */
2570 if (fi->base == NULL)
2571 fi->base = frame_base_find_by_frame (fi);
2572 /* Sneaky: If the low-level unwind and high-level base code share a
2573 common unwinder, let them share the prologue cache. */
2574 if (fi->base->unwind == fi->unwind)
2575 return fi->base->this_locals (fi, &fi->prologue_cache);
2576 return fi->base->this_locals (fi, &fi->base_cache);
2580 get_frame_args_address (struct frame_info *fi)
2582 if (get_frame_type (fi) != NORMAL_FRAME)
2584 /* If there isn't a frame address method, find it. */
2585 if (fi->base == NULL)
2586 fi->base = frame_base_find_by_frame (fi);
2587 /* Sneaky: If the low-level unwind and high-level base code share a
2588 common unwinder, let them share the prologue cache. */
2589 if (fi->base->unwind == fi->unwind)
2590 return fi->base->this_args (fi, &fi->prologue_cache);
2591 return fi->base->this_args (fi, &fi->base_cache);
2594 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2598 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2600 if (fi->unwind == NULL)
2601 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2602 return fi->unwind == unwinder;
2605 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2606 or -1 for a NULL frame. */
2609 frame_relative_level (struct frame_info *fi)
2618 get_frame_type (struct frame_info *frame)
2620 if (frame->unwind == NULL)
2621 /* Initialize the frame's unwinder because that's what
2622 provides the frame's type. */
2623 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2624 return frame->unwind->type;
2627 struct program_space *
2628 get_frame_program_space (struct frame_info *frame)
2630 return frame->pspace;
2633 struct program_space *
2634 frame_unwind_program_space (struct frame_info *this_frame)
2636 gdb_assert (this_frame);
2638 /* This is really a placeholder to keep the API consistent --- we
2639 assume for now that we don't have frame chains crossing
2641 return this_frame->pspace;
2644 const address_space *
2645 get_frame_address_space (struct frame_info *frame)
2647 return frame->aspace;
2650 /* Memory access methods. */
2653 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2654 gdb_byte *buf, int len)
2656 read_memory (addr, buf, len);
2660 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2663 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2666 return read_memory_integer (addr, len, byte_order);
2670 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2673 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2676 return read_memory_unsigned_integer (addr, len, byte_order);
2680 safe_frame_unwind_memory (struct frame_info *this_frame,
2681 CORE_ADDR addr, gdb_byte *buf, int len)
2683 /* NOTE: target_read_memory returns zero on success! */
2684 return !target_read_memory (addr, buf, len);
2687 /* Architecture methods. */
2690 get_frame_arch (struct frame_info *this_frame)
2692 return frame_unwind_arch (this_frame->next);
2696 frame_unwind_arch (struct frame_info *next_frame)
2698 if (!next_frame->prev_arch.p)
2700 struct gdbarch *arch;
2702 if (next_frame->unwind == NULL)
2703 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2705 if (next_frame->unwind->prev_arch != NULL)
2706 arch = next_frame->unwind->prev_arch (next_frame,
2707 &next_frame->prologue_cache);
2709 arch = get_frame_arch (next_frame);
2711 next_frame->prev_arch.arch = arch;
2712 next_frame->prev_arch.p = 1;
2714 fprintf_unfiltered (gdb_stdlog,
2715 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2717 gdbarch_bfd_arch_info (arch)->printable_name);
2720 return next_frame->prev_arch.arch;
2724 frame_unwind_caller_arch (struct frame_info *next_frame)
2726 next_frame = skip_artificial_frames (next_frame);
2728 /* We must have a non-artificial frame. The caller is supposed to check
2729 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2731 gdb_assert (next_frame != NULL);
2733 return frame_unwind_arch (next_frame);
2736 /* Gets the language of FRAME. */
2739 get_frame_language (struct frame_info *frame)
2744 gdb_assert (frame!= NULL);
2746 /* We determine the current frame language by looking up its
2747 associated symtab. To retrieve this symtab, we use the frame
2748 PC. However we cannot use the frame PC as is, because it
2749 usually points to the instruction following the "call", which
2750 is sometimes the first instruction of another function. So
2751 we rely on get_frame_address_in_block(), it provides us with
2752 a PC that is guaranteed to be inside the frame's code
2757 pc = get_frame_address_in_block (frame);
2760 CATCH (ex, RETURN_MASK_ERROR)
2762 if (ex.error != NOT_AVAILABLE_ERROR)
2763 throw_exception (ex);
2769 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2772 return compunit_language (cust);
2775 return language_unknown;
2778 /* Stack pointer methods. */
2781 get_frame_sp (struct frame_info *this_frame)
2783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2785 /* Normality - an architecture that provides a way of obtaining any
2786 frame inner-most address. */
2787 if (gdbarch_unwind_sp_p (gdbarch))
2788 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2789 operate on THIS_FRAME now. */
2790 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2791 /* Now things are really are grim. Hope that the value returned by
2792 the gdbarch_sp_regnum register is meaningful. */
2793 if (gdbarch_sp_regnum (gdbarch) >= 0)
2794 return get_frame_register_unsigned (this_frame,
2795 gdbarch_sp_regnum (gdbarch));
2796 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2799 /* Return the reason why we can't unwind past FRAME. */
2801 enum unwind_stop_reason
2802 get_frame_unwind_stop_reason (struct frame_info *frame)
2804 /* Fill-in STOP_REASON. */
2805 get_prev_frame_always (frame);
2806 gdb_assert (frame->prev_p);
2808 return frame->stop_reason;
2811 /* Return a string explaining REASON. */
2814 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2818 #define SET(name, description) \
2819 case name: return _(description);
2820 #include "unwind_stop_reasons.def"
2824 internal_error (__FILE__, __LINE__,
2825 "Invalid frame stop reason");
2830 frame_stop_reason_string (struct frame_info *fi)
2832 gdb_assert (fi->prev_p);
2833 gdb_assert (fi->prev == NULL);
2835 /* Return the specific string if we have one. */
2836 if (fi->stop_string != NULL)
2837 return fi->stop_string;
2839 /* Return the generic string if we have nothing better. */
2840 return unwind_stop_reason_to_string (fi->stop_reason);
2843 /* Return the enum symbol name of REASON as a string, to use in debug
2847 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2851 #define SET(name, description) \
2852 case name: return #name;
2853 #include "unwind_stop_reasons.def"
2857 internal_error (__FILE__, __LINE__,
2858 "Invalid frame stop reason");
2862 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2866 frame_cleanup_after_sniffer (struct frame_info *frame)
2868 /* The sniffer should not allocate a prologue cache if it did not
2869 match this frame. */
2870 gdb_assert (frame->prologue_cache == NULL);
2872 /* No sniffer should extend the frame chain; sniff based on what is
2874 gdb_assert (!frame->prev_p);
2876 /* The sniffer should not check the frame's ID; that's circular. */
2877 gdb_assert (!frame->this_id.p);
2879 /* Clear cached fields dependent on the unwinder.
2881 The previous PC is independent of the unwinder, but the previous
2882 function is not (see get_frame_address_in_block). */
2883 frame->prev_func.p = 0;
2884 frame->prev_func.addr = 0;
2886 /* Discard the unwinder last, so that we can easily find it if an assertion
2887 in this function triggers. */
2888 frame->unwind = NULL;
2891 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2892 If sniffing fails, the caller should be sure to call
2893 frame_cleanup_after_sniffer. */
2896 frame_prepare_for_sniffer (struct frame_info *frame,
2897 const struct frame_unwind *unwind)
2899 gdb_assert (frame->unwind == NULL);
2900 frame->unwind = unwind;
2903 static struct cmd_list_element *set_backtrace_cmdlist;
2904 static struct cmd_list_element *show_backtrace_cmdlist;
2907 set_backtrace_cmd (const char *args, int from_tty)
2909 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2914 show_backtrace_cmd (const char *args, int from_tty)
2916 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2920 _initialize_frame (void)
2922 obstack_init (&frame_cache_obstack);
2924 frame_stash_create ();
2926 gdb::observers::target_changed.attach (frame_observer_target_changed);
2928 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2929 Set backtrace specific variables.\n\
2930 Configure backtrace variables such as the backtrace limit"),
2931 &set_backtrace_cmdlist, "set backtrace ",
2932 0/*allow-unknown*/, &setlist);
2933 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2934 Show backtrace specific variables\n\
2935 Show backtrace variables such as the backtrace limit"),
2936 &show_backtrace_cmdlist, "show backtrace ",
2937 0/*allow-unknown*/, &showlist);
2939 add_setshow_boolean_cmd ("past-main", class_obscure,
2940 &backtrace_past_main, _("\
2941 Set whether backtraces should continue past \"main\"."), _("\
2942 Show whether backtraces should continue past \"main\"."), _("\
2943 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2944 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2945 of the stack trace."),
2947 show_backtrace_past_main,
2948 &set_backtrace_cmdlist,
2949 &show_backtrace_cmdlist);
2951 add_setshow_boolean_cmd ("past-entry", class_obscure,
2952 &backtrace_past_entry, _("\
2953 Set whether backtraces should continue past the entry point of a program."),
2955 Show whether backtraces should continue past the entry point of a program."),
2957 Normally there are no callers beyond the entry point of a program, so GDB\n\
2958 will terminate the backtrace there. Set this variable if you need to see\n\
2959 the rest of the stack trace."),
2961 show_backtrace_past_entry,
2962 &set_backtrace_cmdlist,
2963 &show_backtrace_cmdlist);
2965 add_setshow_uinteger_cmd ("limit", class_obscure,
2966 &backtrace_limit, _("\
2967 Set an upper bound on the number of backtrace levels."), _("\
2968 Show the upper bound on the number of backtrace levels."), _("\
2969 No more than the specified number of frames can be displayed or examined.\n\
2970 Literal \"unlimited\" or zero means no limit."),
2972 show_backtrace_limit,
2973 &set_backtrace_cmdlist,
2974 &show_backtrace_cmdlist);
2976 /* Debug this files internals. */
2977 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2978 Set frame debugging."), _("\
2979 Show frame debugging."), _("\
2980 When non-zero, frame specific internal debugging is enabled."),
2983 &setdebuglist, &showdebuglist);