1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
33 /* Local function prototypes. */
35 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
38 static void show_values PARAMS ((char *, int));
40 static void show_convenience PARAMS ((char *, int));
42 /* The value-history records all the values printed
43 by print commands during this session. Each chunk
44 records 60 consecutive values. The first chunk on
45 the chain records the most recent values.
46 The total number of values is in value_history_count. */
48 #define VALUE_HISTORY_CHUNK 60
50 struct value_history_chunk
52 struct value_history_chunk *next;
53 value_ptr values[VALUE_HISTORY_CHUNK];
56 /* Chain of chunks now in use. */
58 static struct value_history_chunk *value_history_chain;
60 static int value_history_count; /* Abs number of last entry stored */
62 /* List of all value objects currently allocated
63 (except for those released by calls to release_value)
64 This is so they can be freed after each command. */
66 static value_ptr all_values;
68 /* Allocate a value that has the correct length for type TYPE. */
74 register value_ptr val;
76 check_stub_type (type);
78 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
79 VALUE_NEXT (val) = all_values;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REPEATED (val) = 0;
89 VALUE_REPETITIONS (val) = 0;
90 VALUE_REGNO (val) = -1;
92 VALUE_OPTIMIZED_OUT (val) = 0;
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
101 allocate_repeat_value (type, count)
105 register value_ptr val;
108 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
109 VALUE_NEXT (val) = all_values;
111 VALUE_TYPE (val) = type;
112 VALUE_LVAL (val) = not_lval;
113 VALUE_ADDRESS (val) = 0;
114 VALUE_FRAME (val) = 0;
115 VALUE_OFFSET (val) = 0;
116 VALUE_BITPOS (val) = 0;
117 VALUE_BITSIZE (val) = 0;
118 VALUE_REPEATED (val) = 1;
119 VALUE_REPETITIONS (val) = count;
120 VALUE_REGNO (val) = -1;
121 VALUE_LAZY (val) = 0;
122 VALUE_OPTIMIZED_OUT (val) = 0;
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
138 value_free_to_mark (mark)
143 for (val = all_values; val && val != mark; val = next)
145 next = VALUE_NEXT (val);
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
157 register value_ptr val, next;
159 for (val = all_values; val; val = next)
161 next = VALUE_NEXT (val);
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
173 register value_ptr val;
175 register value_ptr v;
177 if (all_values == val)
179 all_values = val->next;
183 for (v = all_values; v; v = v->next)
193 /* Release all values up to mark */
195 value_release_to_mark (mark)
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
211 /* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
219 register value_ptr val;
220 register struct type *type = VALUE_TYPE (arg);
221 if (VALUE_REPEATED (arg))
222 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
224 val = allocate_value (type);
225 VALUE_LVAL (val) = VALUE_LVAL (arg);
226 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
227 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
228 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
229 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
230 VALUE_REGNO (val) = VALUE_REGNO (arg);
231 VALUE_LAZY (val) = VALUE_LAZY (arg);
232 val->modifiable = arg->modifiable;
233 if (!VALUE_LAZY (val))
235 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
236 TYPE_LENGTH (VALUE_TYPE (arg))
237 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
242 /* Access to the value history. */
244 /* Record a new value in the value history.
245 Returns the absolute history index of the entry.
246 Result of -1 indicates the value was not saved; otherwise it is the
247 value history index of this new item. */
250 record_latest_value (val)
255 /* Check error now if about to store an invalid float. We return -1
256 to the caller, but allow them to continue, e.g. to print it as "Nan". */
257 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
259 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
260 if (i) return -1; /* Indicate value not saved in history */
263 /* We don't want this value to have anything to do with the inferior anymore.
264 In particular, "set $1 = 50" should not affect the variable from which
265 the value was taken, and fast watchpoints should be able to assume that
266 a value on the value history never changes. */
267 if (VALUE_LAZY (val))
268 value_fetch_lazy (val);
269 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
270 from. This is a bit dubious, because then *&$1 does not just return $1
271 but the current contents of that location. c'est la vie... */
275 /* Here we treat value_history_count as origin-zero
276 and applying to the value being stored now. */
278 i = value_history_count % VALUE_HISTORY_CHUNK;
281 register struct value_history_chunk *new
282 = (struct value_history_chunk *)
283 xmalloc (sizeof (struct value_history_chunk));
284 memset (new->values, 0, sizeof new->values);
285 new->next = value_history_chain;
286 value_history_chain = new;
289 value_history_chain->values[i] = val;
291 /* Now we regard value_history_count as origin-one
292 and applying to the value just stored. */
294 return ++value_history_count;
297 /* Return a copy of the value in the history with sequence number NUM. */
300 access_value_history (num)
303 register struct value_history_chunk *chunk;
305 register int absnum = num;
308 absnum += value_history_count;
313 error ("The history is empty.");
315 error ("There is only one value in the history.");
317 error ("History does not go back to $$%d.", -num);
319 if (absnum > value_history_count)
320 error ("History has not yet reached $%d.", absnum);
324 /* Now absnum is always absolute and origin zero. */
326 chunk = value_history_chain;
327 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
331 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
334 /* Clear the value history entirely.
335 Must be done when new symbol tables are loaded,
336 because the type pointers become invalid. */
339 clear_value_history ()
341 register struct value_history_chunk *next;
343 register value_ptr val;
345 while (value_history_chain)
347 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
348 if ((val = value_history_chain->values[i]) != NULL)
350 next = value_history_chain->next;
351 free ((PTR)value_history_chain);
352 value_history_chain = next;
354 value_history_count = 0;
358 show_values (num_exp, from_tty)
363 register value_ptr val;
368 /* "info history +" should print from the stored position.
369 "info history <exp>" should print around value number <exp>. */
370 if (num_exp[0] != '+' || num_exp[1] != '\0')
371 num = parse_and_eval_address (num_exp) - 5;
375 /* "info history" means print the last 10 values. */
376 num = value_history_count - 9;
382 for (i = num; i < num + 10 && i <= value_history_count; i++)
384 val = access_value_history (i);
385 printf_filtered ("$%d = ", i);
386 value_print (val, gdb_stdout, 0, Val_pretty_default);
387 printf_filtered ("\n");
390 /* The next "info history +" should start after what we just printed. */
393 /* Hitting just return after this command should do the same thing as
394 "info history +". If num_exp is null, this is unnecessary, since
395 "info history +" is not useful after "info history". */
396 if (from_tty && num_exp)
403 /* Internal variables. These are variables within the debugger
404 that hold values assigned by debugger commands.
405 The user refers to them with a '$' prefix
406 that does not appear in the variable names stored internally. */
408 static struct internalvar *internalvars;
410 /* Look up an internal variable with name NAME. NAME should not
411 normally include a dollar sign.
413 If the specified internal variable does not exist,
414 one is created, with a void value. */
417 lookup_internalvar (name)
420 register struct internalvar *var;
422 for (var = internalvars; var; var = var->next)
423 if (STREQ (var->name, name))
426 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
427 var->name = concat (name, NULL);
428 var->value = allocate_value (builtin_type_void);
429 release_value (var->value);
430 var->next = internalvars;
436 value_of_internalvar (var)
437 struct internalvar *var;
439 register value_ptr val;
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 return VALUE_OF_TRAPPED_INTERNALVAR (var);
446 val = value_copy (var->value);
447 if (VALUE_LAZY (val))
448 value_fetch_lazy (val);
449 VALUE_LVAL (val) = lval_internalvar;
450 VALUE_INTERNALVAR (val) = var;
455 set_internalvar_component (var, offset, bitpos, bitsize, newval)
456 struct internalvar *var;
457 int offset, bitpos, bitsize;
460 register char *addr = VALUE_CONTENTS (var->value) + offset;
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
468 modify_field (addr, value_as_long (newval),
471 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
475 set_internalvar (var, val)
476 struct internalvar *var;
481 #ifdef IS_TRAPPED_INTERNALVAR
482 if (IS_TRAPPED_INTERNALVAR (var->name))
483 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
486 newval = value_copy (val);
488 /* Force the value to be fetched from the target now, to avoid problems
489 later when this internalvar is referenced and the target is gone or
491 if (VALUE_LAZY (newval))
492 value_fetch_lazy (newval);
494 /* Begin code which must not call error(). If var->value points to
495 something free'd, an error() obviously leaves a dangling pointer.
496 But we also get a danling pointer if var->value points to
497 something in the value chain (i.e., before release_value is
498 called), because after the error free_all_values will get called before
500 free ((PTR)var->value);
502 release_value (newval);
503 /* End code which must not call error(). */
507 internalvar_name (var)
508 struct internalvar *var;
513 /* Free all internalvars. Done when new symtabs are loaded,
514 because that makes the values invalid. */
517 clear_internalvars ()
519 register struct internalvar *var;
524 internalvars = var->next;
525 free ((PTR)var->name);
526 free ((PTR)var->value);
532 show_convenience (ignore, from_tty)
536 register struct internalvar *var;
539 for (var = internalvars; var; var = var->next)
541 #ifdef IS_TRAPPED_INTERNALVAR
542 if (IS_TRAPPED_INTERNALVAR (var->name))
549 printf_filtered ("$%s = ", var->name);
550 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
551 printf_filtered ("\n");
554 printf_unfiltered ("No debugger convenience variables now defined.\n\
555 Convenience variables have names starting with \"$\";\n\
556 use \"set\" as in \"set $foo = 5\" to define them.\n");
559 /* Extract a value as a C number (either long or double).
560 Knows how to convert fixed values to double, or
561 floating values to long.
562 Does not deallocate the value. */
566 register value_ptr val;
568 /* This coerces arrays and functions, which is necessary (e.g.
569 in disassemble_command). It also dereferences references, which
570 I suspect is the most logical thing to do. */
571 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
573 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
577 value_as_double (val)
578 register value_ptr val;
583 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
585 error ("Invalid floating value found in program.");
588 /* Extract a value as a C pointer.
589 Does not deallocate the value. */
591 value_as_pointer (val)
594 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
595 whether we want this to be true eventually. */
597 /* ADDR_BITS_REMOVE is wrong if we are being called for a
598 non-address (e.g. argument to "signal", "info break", etc.), or
599 for pointers to char, in which the low bits *are* significant. */
600 return ADDR_BITS_REMOVE(value_as_long (val));
602 return value_as_long (val);
606 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
607 as a long, or as a double, assuming the raw data is described
608 by type TYPE. Knows how to convert different sizes of values
609 and can convert between fixed and floating point. We don't assume
610 any alignment for the raw data. Return value is in host byte order.
612 If you want functions and arrays to be coerced to pointers, and
613 references to be dereferenced, call value_as_long() instead.
615 C++: It is assumed that the front-end has taken care of
616 all matters concerning pointers to members. A pointer
617 to member which reaches here is considered to be equivalent
618 to an INT (or some size). After all, it is only an offset. */
621 unpack_long (type, valaddr)
625 register enum type_code code = TYPE_CODE (type);
626 register int len = TYPE_LENGTH (type);
627 register int nosign = TYPE_UNSIGNED (type);
635 case TYPE_CODE_RANGE:
637 return extract_unsigned_integer (valaddr, len);
639 return extract_signed_integer (valaddr, len);
642 return extract_floating (valaddr, len);
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
648 return extract_address (valaddr, len);
650 case TYPE_CODE_MEMBER:
651 error ("not implemented: member types in unpack_long");
654 error ("Value can't be converted to integer.");
656 return 0; /* Placate lint. */
659 /* Return a double value from the specified type and address.
660 INVP points to an int which is set to 0 for valid value,
661 1 for invalid value (bad float format). In either case,
662 the returned double is OK to use. Argument is in target
663 format, result is in host format. */
666 unpack_double (type, valaddr, invp)
671 register enum type_code code = TYPE_CODE (type);
672 register int len = TYPE_LENGTH (type);
673 register int nosign = TYPE_UNSIGNED (type);
675 *invp = 0; /* Assume valid. */
676 if (code == TYPE_CODE_FLT)
679 if (INVALID_FLOAT (valaddr, len))
682 return 1.234567891011121314;
685 return extract_floating (valaddr, len);
689 /* Unsigned -- be sure we compensate for signed LONGEST. */
690 return (unsigned LONGEST) unpack_long (type, valaddr);
694 /* Signed -- we are OK with unpack_long. */
695 return unpack_long (type, valaddr);
699 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
700 as a CORE_ADDR, assuming the raw data is described by type TYPE.
701 We don't assume any alignment for the raw data. Return value is in
704 If you want functions and arrays to be coerced to pointers, and
705 references to be dereferenced, call value_as_pointer() instead.
707 C++: It is assumed that the front-end has taken care of
708 all matters concerning pointers to members. A pointer
709 to member which reaches here is considered to be equivalent
710 to an INT (or some size). After all, it is only an offset. */
713 unpack_pointer (type, valaddr)
717 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
718 whether we want this to be true eventually. */
719 return unpack_long (type, valaddr);
722 /* Given a value ARG1 (offset by OFFSET bytes)
723 of a struct or union type ARG_TYPE,
724 extract and return the value of one of its fields.
725 FIELDNO says which field.
727 For C++, must also be able to return values from static fields */
730 value_primitive_field (arg1, offset, fieldno, arg_type)
731 register value_ptr arg1;
733 register int fieldno;
734 register struct type *arg_type;
736 register value_ptr v;
737 register struct type *type;
739 check_stub_type (arg_type);
740 type = TYPE_FIELD_TYPE (arg_type, fieldno);
742 /* Handle packed fields */
744 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
745 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
747 v = value_from_longest (type,
748 unpack_field_as_long (arg_type,
749 VALUE_CONTENTS (arg1),
751 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
752 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
756 v = allocate_value (type);
757 if (VALUE_LAZY (arg1))
760 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
763 VALUE_LVAL (v) = VALUE_LVAL (arg1);
764 if (VALUE_LVAL (arg1) == lval_internalvar)
765 VALUE_LVAL (v) = lval_internalvar_component;
766 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
767 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
771 /* Given a value ARG1 of a struct or union type,
772 extract and return the value of one of its fields.
773 FIELDNO says which field.
775 For C++, must also be able to return values from static fields */
778 value_field (arg1, fieldno)
779 register value_ptr arg1;
780 register int fieldno;
782 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
785 /* Return a non-virtual function as a value.
786 F is the list of member functions which contains the desired method.
787 J is an index into F which provides the desired method. */
790 value_fn_field (arg1p, f, j, type, offset)
797 register value_ptr v;
798 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
801 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
802 0, VAR_NAMESPACE, 0, NULL);
806 error ("Internal error: could not find physical method named %s",
807 TYPE_FN_FIELD_PHYSNAME (f, j));
810 v = allocate_value (ftype);
811 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
812 VALUE_TYPE (v) = ftype;
816 if (type != VALUE_TYPE (*arg1p))
817 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
818 value_addr (*arg1p)));
820 /* Move the `this' pointer according to the offset.
821 VALUE_OFFSET (*arg1p) += offset;
828 /* Return a virtual function as a value.
829 ARG1 is the object which provides the virtual function
830 table pointer. *ARG1P is side-effected in calling this function.
831 F is the list of member functions which contains the desired virtual
833 J is an index into F which provides the desired virtual function.
835 TYPE is the type in which F is located. */
837 value_virtual_fn_field (arg1p, f, j, type, offset)
844 value_ptr arg1 = *arg1p;
845 /* First, get the virtual function table pointer. That comes
846 with a strange type, so cast it to type `pointer to long' (which
847 should serve just fine as a function type). Then, index into
848 the table, and convert final value to appropriate function type. */
849 value_ptr entry, vfn, vtbl;
850 value_ptr vi = value_from_longest (builtin_type_int,
851 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
852 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
853 struct type *context;
854 if (fcontext == NULL)
855 /* We don't have an fcontext (e.g. the program was compiled with
856 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
857 This won't work right for multiple inheritance, but at least we
858 should do as well as GDB 3.x did. */
859 fcontext = TYPE_VPTR_BASETYPE (type);
860 context = lookup_pointer_type (fcontext);
861 /* Now context is a pointer to the basetype containing the vtbl. */
862 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
863 arg1 = value_ind (value_cast (context, value_addr (arg1)));
865 context = VALUE_TYPE (arg1);
866 /* Now context is the basetype containing the vtbl. */
868 /* This type may have been defined before its virtual function table
869 was. If so, fill in the virtual function table entry for the
871 if (TYPE_VPTR_FIELDNO (context) < 0)
872 fill_in_vptr_fieldno (context);
874 /* The virtual function table is now an array of structures
875 which have the form { int16 offset, delta; void *pfn; }. */
876 vtbl = value_ind (value_primitive_field (arg1, 0,
877 TYPE_VPTR_FIELDNO (context),
878 TYPE_VPTR_BASETYPE (context)));
880 /* Index into the virtual function table. This is hard-coded because
881 looking up a field is not cheap, and it may be important to save
882 time, e.g. if the user has set a conditional breakpoint calling
883 a virtual function. */
884 entry = value_subscript (vtbl, vi);
886 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
888 /* Move the `this' pointer according to the virtual function table. */
889 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
891 if (! VALUE_LAZY (arg1))
893 VALUE_LAZY (arg1) = 1;
894 value_fetch_lazy (arg1);
897 vfn = value_field (entry, 2);
899 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
902 error ("I'm confused: virtual function table has bad type");
903 /* Reinstantiate the function pointer with the correct type. */
904 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
910 /* ARG is a pointer to an object we know to be at least
911 a DTYPE. BTYPE is the most derived basetype that has
912 already been searched (and need not be searched again).
913 After looking at the vtables between BTYPE and DTYPE,
914 return the most derived type we find. The caller must
915 be satisfied when the return value == DTYPE.
917 FIXME-tiemann: should work with dossier entries as well. */
920 value_headof (in_arg, btype, dtype)
922 struct type *btype, *dtype;
924 /* First collect the vtables we must look at for this object. */
925 /* FIXME-tiemann: right now, just look at top-most vtable. */
926 value_ptr arg, vtbl, entry, best_entry = 0;
928 int offset, best_offset = 0;
930 CORE_ADDR pc_for_sym;
931 char *demangled_name;
932 struct minimal_symbol *msymbol;
934 btype = TYPE_VPTR_BASETYPE (dtype);
935 check_stub_type (btype);
938 arg = value_cast (lookup_pointer_type (btype), arg);
939 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
941 /* Check that VTBL looks like it points to a virtual function table. */
942 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
944 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
945 || !VTBL_PREFIX_P (demangled_name))
947 /* If we expected to find a vtable, but did not, let the user
948 know that we aren't happy, but don't throw an error.
949 FIXME: there has to be a better way to do this. */
950 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
951 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
952 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
953 VALUE_TYPE (in_arg) = error_type;
957 /* Now search through the virtual function table. */
958 entry = value_ind (vtbl);
959 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
960 for (i = 1; i <= nelems; i++)
962 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
964 /* This won't work if we're using thunks. */
965 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
967 offset = longest_to_int (value_as_long (value_field (entry, 0)));
968 /* If we use '<=' we can handle single inheritance
969 * where all offsets are zero - just use the first entry found. */
970 if (offset <= best_offset)
972 best_offset = offset;
976 /* Move the pointer according to BEST_ENTRY's offset, and figure
977 out what type we should return as the new pointer. */
980 /* An alternative method (which should no longer be necessary).
981 * But we leave it in for future use, when we will hopefully
982 * have optimizes the vtable to use thunks instead of offsets. */
983 /* Use the name of vtable itself to extract a base type. */
984 demangled_name += 4; /* Skip _vt$ prefix. */
988 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
989 sym = find_pc_function (pc_for_sym);
990 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
991 *(strchr (demangled_name, ':')) = '\0';
993 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
995 error ("could not find type declaration for `%s'", demangled_name);
998 free (demangled_name);
999 arg = value_add (value_cast (builtin_type_int, arg),
1000 value_field (best_entry, 0));
1003 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1007 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1008 function tables, probe ARG's tables (including the vtables
1009 of its baseclasses) to figure out the most derived type that ARG
1010 could actually be a pointer to. */
1013 value_from_vtable_info (arg, type)
1017 /* Take care of preliminaries. */
1018 if (TYPE_VPTR_FIELDNO (type) < 0)
1019 fill_in_vptr_fieldno (type);
1020 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1023 return value_headof (arg, 0, type);
1026 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1027 pointer which is for the base class whose type is BASECLASS. */
1030 vb_match (type, index, basetype)
1033 struct type *basetype;
1035 struct type *fieldtype;
1036 char *name = TYPE_FIELD_NAME (type, index);
1037 char *field_class_name = NULL;
1041 /* gcc 2.4 uses _vb$. */
1042 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1043 field_class_name = name + 4;
1044 /* gcc 2.5 will use __vb_. */
1045 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1046 field_class_name = name + 5;
1048 if (field_class_name == NULL)
1049 /* This field is not a virtual base class pointer. */
1052 /* It's a virtual baseclass pointer, now we just need to find out whether
1053 it is for this baseclass. */
1054 fieldtype = TYPE_FIELD_TYPE (type, index);
1055 if (fieldtype == NULL
1056 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1057 /* "Can't happen". */
1060 /* What we check for is that either the types are equal (needed for
1061 nameless types) or have the same name. This is ugly, and a more
1062 elegant solution should be devised (which would probably just push
1063 the ugliness into symbol reading unless we change the stabs format). */
1064 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1067 if (TYPE_NAME (basetype) != NULL
1068 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1069 && STREQ (TYPE_NAME (basetype),
1070 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1075 /* Compute the offset of the baseclass which is
1076 the INDEXth baseclass of class TYPE, for a value ARG,
1077 wih extra offset of OFFSET.
1078 The result is the offste of the baseclass value relative
1079 to (the address of)(ARG) + OFFSET.
1081 -1 is returned on error. */
1084 baseclass_offset (type, index, arg, offset)
1090 struct type *basetype = TYPE_BASECLASS (type, index);
1092 if (BASETYPE_VIA_VIRTUAL (type, index))
1094 /* Must hunt for the pointer to this virtual baseclass. */
1095 register int i, len = TYPE_NFIELDS (type);
1096 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1098 /* First look for the virtual baseclass pointer
1100 for (i = n_baseclasses; i < len; i++)
1102 if (vb_match (type, i, basetype))
1105 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1106 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1108 + (TYPE_FIELD_BITPOS (type, i) / 8));
1110 if (VALUE_LVAL (arg) != lval_memory)
1114 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1117 /* Not in the fields, so try looking through the baseclasses. */
1118 for (i = index+1; i < n_baseclasses; i++)
1121 baseclass_offset (type, i, arg, offset);
1129 /* Baseclass is easily computed. */
1130 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1133 /* Compute the address of the baseclass which is
1134 the INDEXth baseclass of class TYPE. The TYPE base
1135 of the object is at VALADDR.
1137 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1138 or 0 if no error. In that case the return value is not the address
1139 of the baseclasss, but the address which could not be read
1142 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1145 baseclass_addr (type, index, valaddr, valuep, errp)
1152 struct type *basetype = TYPE_BASECLASS (type, index);
1157 if (BASETYPE_VIA_VIRTUAL (type, index))
1159 /* Must hunt for the pointer to this virtual baseclass. */
1160 register int i, len = TYPE_NFIELDS (type);
1161 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1163 /* First look for the virtual baseclass pointer
1165 for (i = n_baseclasses; i < len; i++)
1167 if (vb_match (type, i, basetype))
1169 value_ptr val = allocate_value (basetype);
1174 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1175 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1177 status = target_read_memory (addr,
1178 VALUE_CONTENTS_RAW (val),
1179 TYPE_LENGTH (basetype));
1180 VALUE_LVAL (val) = lval_memory;
1181 VALUE_ADDRESS (val) = addr;
1187 release_value (val);
1191 return (char *)addr;
1197 return (char *) VALUE_CONTENTS (val);
1201 /* Not in the fields, so try looking through the baseclasses. */
1202 for (i = index+1; i < n_baseclasses; i++)
1206 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1216 /* Baseclass is easily computed. */
1219 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1222 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1225 Extracting bits depends on endianness of the machine. Compute the
1226 number of least significant bits to discard. For big endian machines,
1227 we compute the total number of bits in the anonymous object, subtract
1228 off the bit count from the MSB of the object to the MSB of the
1229 bitfield, then the size of the bitfield, which leaves the LSB discard
1230 count. For little endian machines, the discard count is simply the
1231 number of bits from the LSB of the anonymous object to the LSB of the
1234 If the field is signed, we also do sign extension. */
1237 unpack_field_as_long (type, valaddr, fieldno)
1242 unsigned LONGEST val;
1243 unsigned LONGEST valmask;
1244 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1245 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1248 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1250 /* Extract bits. See comment above. */
1252 if (BITS_BIG_ENDIAN)
1253 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1255 lsbcount = (bitpos % 8);
1258 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1259 If the field is signed, and is negative, then sign extend. */
1261 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1263 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1265 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1267 if (val & (valmask ^ (valmask >> 1)))
1276 /* Modify the value of a bitfield. ADDR points to a block of memory in
1277 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1278 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1279 indicate which bits (in target bit order) comprise the bitfield. */
1282 modify_field (addr, fieldval, bitpos, bitsize)
1285 int bitpos, bitsize;
1289 /* Reject values too big to fit in the field in question,
1290 otherwise adjoining fields may be corrupted. */
1291 if (bitsize < (8 * sizeof (fieldval))
1292 && 0 != (fieldval & ~((1<<bitsize)-1)))
1294 /* FIXME: would like to include fieldval in the message, but
1295 we don't have a sprintf_longest. */
1296 error ("Value does not fit in %d bits.", bitsize);
1299 oword = extract_signed_integer (addr, sizeof oword);
1301 /* Shifting for bit field depends on endianness of the target machine. */
1302 if (BITS_BIG_ENDIAN)
1303 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1305 /* Mask out old value, while avoiding shifts >= size of oword */
1306 if (bitsize < 8 * sizeof (oword))
1307 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1309 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1310 oword |= fieldval << bitpos;
1312 store_signed_integer (addr, sizeof oword, oword);
1315 /* Convert C numbers into newly allocated values */
1318 value_from_longest (type, num)
1320 register LONGEST num;
1322 register value_ptr val = allocate_value (type);
1323 register enum type_code code = TYPE_CODE (type);
1324 register int len = TYPE_LENGTH (type);
1329 case TYPE_CODE_CHAR:
1330 case TYPE_CODE_ENUM:
1331 case TYPE_CODE_BOOL:
1332 case TYPE_CODE_RANGE:
1333 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1338 /* This assumes that all pointers of a given length
1339 have the same form. */
1340 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1344 error ("Unexpected type encountered for integer constant.");
1350 value_from_double (type, num)
1354 register value_ptr val = allocate_value (type);
1355 register enum type_code code = TYPE_CODE (type);
1356 register int len = TYPE_LENGTH (type);
1358 if (code == TYPE_CODE_FLT)
1360 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1363 error ("Unexpected type encountered for floating constant.");
1368 /* Deal with the value that is "about to be returned". */
1370 /* Return the value that a function returning now
1371 would be returning to its caller, assuming its type is VALTYPE.
1372 RETBUF is where we look for what ought to be the contents
1373 of the registers (in raw form). This is because it is often
1374 desirable to restore old values to those registers
1375 after saving the contents of interest, and then call
1376 this function using the saved values.
1377 struct_return is non-zero when the function in question is
1378 using the structure return conventions on the machine in question;
1379 0 when it is using the value returning conventions (this often
1380 means returning pointer to where structure is vs. returning value). */
1383 value_being_returned (valtype, retbuf, struct_return)
1384 register struct type *valtype;
1385 char retbuf[REGISTER_BYTES];
1389 register value_ptr val;
1392 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1393 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1394 if (struct_return) {
1395 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1397 error ("Function return value unknown");
1398 return value_at (valtype, addr);
1402 val = allocate_value (valtype);
1403 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1408 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1409 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1410 and TYPE is the type (which is known to be struct, union or array).
1412 On most machines, the struct convention is used unless we are
1413 using gcc and the type is of a special size. */
1414 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1415 native compiler. GCC 2.3.3 was the last release that did it the
1416 old way. Since gcc2_compiled was not changed, we have no
1417 way to correctly win in all cases, so we just do the right thing
1418 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1419 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1420 would cause more chaos than dealing with some struct returns being
1422 #if !defined (USE_STRUCT_CONVENTION)
1423 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1424 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1425 || TYPE_LENGTH (value_type) == 2 \
1426 || TYPE_LENGTH (value_type) == 4 \
1427 || TYPE_LENGTH (value_type) == 8 \
1432 /* Return true if the function specified is using the structure returning
1433 convention on this machine to return arguments, or 0 if it is using
1434 the value returning convention. FUNCTION is the value representing
1435 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1436 is the type returned by the function. GCC_P is nonzero if compiled
1440 using_struct_return (function, funcaddr, value_type, gcc_p)
1443 struct type *value_type;
1447 register enum type_code code = TYPE_CODE (value_type);
1449 if (code == TYPE_CODE_ERROR)
1450 error ("Function return type unknown.");
1452 if (code == TYPE_CODE_STRUCT ||
1453 code == TYPE_CODE_UNION ||
1454 code == TYPE_CODE_ARRAY)
1455 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1460 /* Store VAL so it will be returned if a function returns now.
1461 Does not verify that VAL's type matches what the current
1462 function wants to return. */
1465 set_return_value (val)
1468 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1472 if (code == TYPE_CODE_ERROR)
1473 error ("Function return type unknown.");
1475 if ( code == TYPE_CODE_STRUCT
1476 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1477 error ("GDB does not support specifying a struct or union return value.");
1479 /* FIXME, this is bogus. We don't know what the return conventions
1480 are, or how values should be promoted.... */
1481 if (code == TYPE_CODE_FLT)
1483 dbuf = value_as_double (val);
1485 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1489 lbuf = value_as_long (val);
1490 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1495 _initialize_values ()
1497 add_cmd ("convenience", no_class, show_convenience,
1498 "Debugger convenience (\"$foo\") variables.\n\
1499 These variables are created when you assign them values;\n\
1500 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1501 A few convenience variables are given values automatically:\n\
1502 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1503 \"$__\" holds the contents of the last address examined with \"x\".",
1506 add_cmd ("values", no_class, show_values,
1507 "Elements of value history around item number IDX (or last ten).",