1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static struct elf_backend_data elf32_arm_vxworks_bed;
66 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
67 struct bfd_link_info *link_info,
71 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
72 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 static reloc_howto_type elf32_arm_howto_table_1[] =
78 HOWTO (R_ARM_NONE, /* type */
80 0, /* size (0 = byte, 1 = short, 2 = long) */
82 FALSE, /* pc_relative */
84 complain_overflow_dont,/* complain_on_overflow */
85 bfd_elf_generic_reloc, /* special_function */
86 "R_ARM_NONE", /* name */
87 FALSE, /* partial_inplace */
90 FALSE), /* pcrel_offset */
92 HOWTO (R_ARM_PC24, /* type */
94 2, /* size (0 = byte, 1 = short, 2 = long) */
96 TRUE, /* pc_relative */
98 complain_overflow_signed,/* complain_on_overflow */
99 bfd_elf_generic_reloc, /* special_function */
100 "R_ARM_PC24", /* name */
101 FALSE, /* partial_inplace */
102 0x00ffffff, /* src_mask */
103 0x00ffffff, /* dst_mask */
104 TRUE), /* pcrel_offset */
106 /* 32 bit absolute */
107 HOWTO (R_ARM_ABS32, /* type */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
111 FALSE, /* pc_relative */
113 complain_overflow_bitfield,/* complain_on_overflow */
114 bfd_elf_generic_reloc, /* special_function */
115 "R_ARM_ABS32", /* name */
116 FALSE, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE), /* pcrel_offset */
121 /* standard 32bit pc-relative reloc */
122 HOWTO (R_ARM_REL32, /* type */
124 2, /* size (0 = byte, 1 = short, 2 = long) */
126 TRUE, /* pc_relative */
128 complain_overflow_bitfield,/* complain_on_overflow */
129 bfd_elf_generic_reloc, /* special_function */
130 "R_ARM_REL32", /* name */
131 FALSE, /* partial_inplace */
132 0xffffffff, /* src_mask */
133 0xffffffff, /* dst_mask */
134 TRUE), /* pcrel_offset */
136 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
137 HOWTO (R_ARM_LDR_PC_G0, /* type */
139 0, /* size (0 = byte, 1 = short, 2 = long) */
141 TRUE, /* pc_relative */
143 complain_overflow_dont,/* complain_on_overflow */
144 bfd_elf_generic_reloc, /* special_function */
145 "R_ARM_LDR_PC_G0", /* name */
146 FALSE, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 TRUE), /* pcrel_offset */
151 /* 16 bit absolute */
152 HOWTO (R_ARM_ABS16, /* type */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
156 FALSE, /* pc_relative */
158 complain_overflow_bitfield,/* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_ARM_ABS16", /* name */
161 FALSE, /* partial_inplace */
162 0x0000ffff, /* src_mask */
163 0x0000ffff, /* dst_mask */
164 FALSE), /* pcrel_offset */
166 /* 12 bit absolute */
167 HOWTO (R_ARM_ABS12, /* type */
169 2, /* size (0 = byte, 1 = short, 2 = long) */
171 FALSE, /* pc_relative */
173 complain_overflow_bitfield,/* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_ARM_ABS12", /* name */
176 FALSE, /* partial_inplace */
177 0x00000fff, /* src_mask */
178 0x00000fff, /* dst_mask */
179 FALSE), /* pcrel_offset */
181 HOWTO (R_ARM_THM_ABS5, /* type */
183 1, /* size (0 = byte, 1 = short, 2 = long) */
185 FALSE, /* pc_relative */
187 complain_overflow_bitfield,/* complain_on_overflow */
188 bfd_elf_generic_reloc, /* special_function */
189 "R_ARM_THM_ABS5", /* name */
190 FALSE, /* partial_inplace */
191 0x000007e0, /* src_mask */
192 0x000007e0, /* dst_mask */
193 FALSE), /* pcrel_offset */
196 HOWTO (R_ARM_ABS8, /* type */
198 0, /* size (0 = byte, 1 = short, 2 = long) */
200 FALSE, /* pc_relative */
202 complain_overflow_bitfield,/* complain_on_overflow */
203 bfd_elf_generic_reloc, /* special_function */
204 "R_ARM_ABS8", /* name */
205 FALSE, /* partial_inplace */
206 0x000000ff, /* src_mask */
207 0x000000ff, /* dst_mask */
208 FALSE), /* pcrel_offset */
210 HOWTO (R_ARM_SBREL32, /* type */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
214 FALSE, /* pc_relative */
216 complain_overflow_dont,/* complain_on_overflow */
217 bfd_elf_generic_reloc, /* special_function */
218 "R_ARM_SBREL32", /* name */
219 FALSE, /* partial_inplace */
220 0xffffffff, /* src_mask */
221 0xffffffff, /* dst_mask */
222 FALSE), /* pcrel_offset */
224 HOWTO (R_ARM_THM_CALL, /* type */
226 2, /* size (0 = byte, 1 = short, 2 = long) */
228 TRUE, /* pc_relative */
230 complain_overflow_signed,/* complain_on_overflow */
231 bfd_elf_generic_reloc, /* special_function */
232 "R_ARM_THM_CALL", /* name */
233 FALSE, /* partial_inplace */
234 0x07ff07ff, /* src_mask */
235 0x07ff07ff, /* dst_mask */
236 TRUE), /* pcrel_offset */
238 HOWTO (R_ARM_THM_PC8, /* type */
240 1, /* size (0 = byte, 1 = short, 2 = long) */
242 TRUE, /* pc_relative */
244 complain_overflow_signed,/* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_ARM_THM_PC8", /* name */
247 FALSE, /* partial_inplace */
248 0x000000ff, /* src_mask */
249 0x000000ff, /* dst_mask */
250 TRUE), /* pcrel_offset */
252 HOWTO (R_ARM_BREL_ADJ, /* type */
254 1, /* size (0 = byte, 1 = short, 2 = long) */
256 FALSE, /* pc_relative */
258 complain_overflow_signed,/* complain_on_overflow */
259 bfd_elf_generic_reloc, /* special_function */
260 "R_ARM_BREL_ADJ", /* name */
261 FALSE, /* partial_inplace */
262 0xffffffff, /* src_mask */
263 0xffffffff, /* dst_mask */
264 FALSE), /* pcrel_offset */
266 HOWTO (R_ARM_SWI24, /* type */
268 0, /* size (0 = byte, 1 = short, 2 = long) */
270 FALSE, /* pc_relative */
272 complain_overflow_signed,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_ARM_SWI24", /* name */
275 FALSE, /* partial_inplace */
276 0x00000000, /* src_mask */
277 0x00000000, /* dst_mask */
278 FALSE), /* pcrel_offset */
280 HOWTO (R_ARM_THM_SWI8, /* type */
282 0, /* size (0 = byte, 1 = short, 2 = long) */
284 FALSE, /* pc_relative */
286 complain_overflow_signed,/* complain_on_overflow */
287 bfd_elf_generic_reloc, /* special_function */
288 "R_ARM_SWI8", /* name */
289 FALSE, /* partial_inplace */
290 0x00000000, /* src_mask */
291 0x00000000, /* dst_mask */
292 FALSE), /* pcrel_offset */
294 /* BLX instruction for the ARM. */
295 HOWTO (R_ARM_XPC25, /* type */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
299 TRUE, /* pc_relative */
301 complain_overflow_signed,/* complain_on_overflow */
302 bfd_elf_generic_reloc, /* special_function */
303 "R_ARM_XPC25", /* name */
304 FALSE, /* partial_inplace */
305 0x00ffffff, /* src_mask */
306 0x00ffffff, /* dst_mask */
307 TRUE), /* pcrel_offset */
309 /* BLX instruction for the Thumb. */
310 HOWTO (R_ARM_THM_XPC22, /* type */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
314 TRUE, /* pc_relative */
316 complain_overflow_signed,/* complain_on_overflow */
317 bfd_elf_generic_reloc, /* special_function */
318 "R_ARM_THM_XPC22", /* name */
319 FALSE, /* partial_inplace */
320 0x07ff07ff, /* src_mask */
321 0x07ff07ff, /* dst_mask */
322 TRUE), /* pcrel_offset */
324 /* Dynamic TLS relocations. */
326 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
330 FALSE, /* pc_relative */
332 complain_overflow_bitfield,/* complain_on_overflow */
333 bfd_elf_generic_reloc, /* special_function */
334 "R_ARM_TLS_DTPMOD32", /* name */
335 TRUE, /* partial_inplace */
336 0xffffffff, /* src_mask */
337 0xffffffff, /* dst_mask */
338 FALSE), /* pcrel_offset */
340 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
342 2, /* size (0 = byte, 1 = short, 2 = long) */
344 FALSE, /* pc_relative */
346 complain_overflow_bitfield,/* complain_on_overflow */
347 bfd_elf_generic_reloc, /* special_function */
348 "R_ARM_TLS_DTPOFF32", /* name */
349 TRUE, /* partial_inplace */
350 0xffffffff, /* src_mask */
351 0xffffffff, /* dst_mask */
352 FALSE), /* pcrel_offset */
354 HOWTO (R_ARM_TLS_TPOFF32, /* type */
356 2, /* size (0 = byte, 1 = short, 2 = long) */
358 FALSE, /* pc_relative */
360 complain_overflow_bitfield,/* complain_on_overflow */
361 bfd_elf_generic_reloc, /* special_function */
362 "R_ARM_TLS_TPOFF32", /* name */
363 TRUE, /* partial_inplace */
364 0xffffffff, /* src_mask */
365 0xffffffff, /* dst_mask */
366 FALSE), /* pcrel_offset */
368 /* Relocs used in ARM Linux */
370 HOWTO (R_ARM_COPY, /* type */
372 2, /* size (0 = byte, 1 = short, 2 = long) */
374 FALSE, /* pc_relative */
376 complain_overflow_bitfield,/* complain_on_overflow */
377 bfd_elf_generic_reloc, /* special_function */
378 "R_ARM_COPY", /* name */
379 TRUE, /* partial_inplace */
380 0xffffffff, /* src_mask */
381 0xffffffff, /* dst_mask */
382 FALSE), /* pcrel_offset */
384 HOWTO (R_ARM_GLOB_DAT, /* type */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
388 FALSE, /* pc_relative */
390 complain_overflow_bitfield,/* complain_on_overflow */
391 bfd_elf_generic_reloc, /* special_function */
392 "R_ARM_GLOB_DAT", /* name */
393 TRUE, /* partial_inplace */
394 0xffffffff, /* src_mask */
395 0xffffffff, /* dst_mask */
396 FALSE), /* pcrel_offset */
398 HOWTO (R_ARM_JUMP_SLOT, /* type */
400 2, /* size (0 = byte, 1 = short, 2 = long) */
402 FALSE, /* pc_relative */
404 complain_overflow_bitfield,/* complain_on_overflow */
405 bfd_elf_generic_reloc, /* special_function */
406 "R_ARM_JUMP_SLOT", /* name */
407 TRUE, /* partial_inplace */
408 0xffffffff, /* src_mask */
409 0xffffffff, /* dst_mask */
410 FALSE), /* pcrel_offset */
412 HOWTO (R_ARM_RELATIVE, /* type */
414 2, /* size (0 = byte, 1 = short, 2 = long) */
416 FALSE, /* pc_relative */
418 complain_overflow_bitfield,/* complain_on_overflow */
419 bfd_elf_generic_reloc, /* special_function */
420 "R_ARM_RELATIVE", /* name */
421 TRUE, /* partial_inplace */
422 0xffffffff, /* src_mask */
423 0xffffffff, /* dst_mask */
424 FALSE), /* pcrel_offset */
426 HOWTO (R_ARM_GOTOFF32, /* type */
428 2, /* size (0 = byte, 1 = short, 2 = long) */
430 FALSE, /* pc_relative */
432 complain_overflow_bitfield,/* complain_on_overflow */
433 bfd_elf_generic_reloc, /* special_function */
434 "R_ARM_GOTOFF32", /* name */
435 TRUE, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 FALSE), /* pcrel_offset */
440 HOWTO (R_ARM_GOTPC, /* type */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
444 TRUE, /* pc_relative */
446 complain_overflow_bitfield,/* complain_on_overflow */
447 bfd_elf_generic_reloc, /* special_function */
448 "R_ARM_GOTPC", /* name */
449 TRUE, /* partial_inplace */
450 0xffffffff, /* src_mask */
451 0xffffffff, /* dst_mask */
452 TRUE), /* pcrel_offset */
454 HOWTO (R_ARM_GOT32, /* type */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
458 FALSE, /* pc_relative */
460 complain_overflow_bitfield,/* complain_on_overflow */
461 bfd_elf_generic_reloc, /* special_function */
462 "R_ARM_GOT32", /* name */
463 TRUE, /* partial_inplace */
464 0xffffffff, /* src_mask */
465 0xffffffff, /* dst_mask */
466 FALSE), /* pcrel_offset */
468 HOWTO (R_ARM_PLT32, /* type */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
472 TRUE, /* pc_relative */
474 complain_overflow_bitfield,/* complain_on_overflow */
475 bfd_elf_generic_reloc, /* special_function */
476 "R_ARM_PLT32", /* name */
477 FALSE, /* partial_inplace */
478 0x00ffffff, /* src_mask */
479 0x00ffffff, /* dst_mask */
480 TRUE), /* pcrel_offset */
482 HOWTO (R_ARM_CALL, /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 TRUE, /* pc_relative */
488 complain_overflow_signed,/* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 "R_ARM_CALL", /* name */
491 FALSE, /* partial_inplace */
492 0x00ffffff, /* src_mask */
493 0x00ffffff, /* dst_mask */
494 TRUE), /* pcrel_offset */
496 HOWTO (R_ARM_JUMP24, /* type */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
500 TRUE, /* pc_relative */
502 complain_overflow_signed,/* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_ARM_JUMP24", /* name */
505 FALSE, /* partial_inplace */
506 0x00ffffff, /* src_mask */
507 0x00ffffff, /* dst_mask */
508 TRUE), /* pcrel_offset */
510 HOWTO (R_ARM_THM_JUMP24, /* type */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
514 TRUE, /* pc_relative */
516 complain_overflow_signed,/* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 "R_ARM_THM_JUMP24", /* name */
519 FALSE, /* partial_inplace */
520 0x07ff2fff, /* src_mask */
521 0x07ff2fff, /* dst_mask */
522 TRUE), /* pcrel_offset */
524 HOWTO (R_ARM_BASE_ABS, /* type */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
528 FALSE, /* pc_relative */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 "R_ARM_BASE_ABS", /* name */
533 FALSE, /* partial_inplace */
534 0xffffffff, /* src_mask */
535 0xffffffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
538 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
542 TRUE, /* pc_relative */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_ARM_ALU_PCREL_7_0", /* name */
547 FALSE, /* partial_inplace */
548 0x00000fff, /* src_mask */
549 0x00000fff, /* dst_mask */
550 TRUE), /* pcrel_offset */
552 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
556 TRUE, /* pc_relative */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
560 "R_ARM_ALU_PCREL_15_8",/* name */
561 FALSE, /* partial_inplace */
562 0x00000fff, /* src_mask */
563 0x00000fff, /* dst_mask */
564 TRUE), /* pcrel_offset */
566 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
570 TRUE, /* pc_relative */
572 complain_overflow_dont,/* complain_on_overflow */
573 bfd_elf_generic_reloc, /* special_function */
574 "R_ARM_ALU_PCREL_23_15",/* name */
575 FALSE, /* partial_inplace */
576 0x00000fff, /* src_mask */
577 0x00000fff, /* dst_mask */
578 TRUE), /* pcrel_offset */
580 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
584 FALSE, /* pc_relative */
586 complain_overflow_dont,/* complain_on_overflow */
587 bfd_elf_generic_reloc, /* special_function */
588 "R_ARM_LDR_SBREL_11_0",/* name */
589 FALSE, /* partial_inplace */
590 0x00000fff, /* src_mask */
591 0x00000fff, /* dst_mask */
592 FALSE), /* pcrel_offset */
594 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
598 FALSE, /* pc_relative */
600 complain_overflow_dont,/* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 "R_ARM_ALU_SBREL_19_12",/* name */
603 FALSE, /* partial_inplace */
604 0x000ff000, /* src_mask */
605 0x000ff000, /* dst_mask */
606 FALSE), /* pcrel_offset */
608 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
612 FALSE, /* pc_relative */
614 complain_overflow_dont,/* complain_on_overflow */
615 bfd_elf_generic_reloc, /* special_function */
616 "R_ARM_ALU_SBREL_27_20",/* name */
617 FALSE, /* partial_inplace */
618 0x0ff00000, /* src_mask */
619 0x0ff00000, /* dst_mask */
620 FALSE), /* pcrel_offset */
622 HOWTO (R_ARM_TARGET1, /* type */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
626 FALSE, /* pc_relative */
628 complain_overflow_dont,/* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
630 "R_ARM_TARGET1", /* name */
631 FALSE, /* partial_inplace */
632 0xffffffff, /* src_mask */
633 0xffffffff, /* dst_mask */
634 FALSE), /* pcrel_offset */
636 HOWTO (R_ARM_ROSEGREL32, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 FALSE, /* pc_relative */
642 complain_overflow_dont,/* complain_on_overflow */
643 bfd_elf_generic_reloc, /* special_function */
644 "R_ARM_ROSEGREL32", /* name */
645 FALSE, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
650 HOWTO (R_ARM_V4BX, /* type */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
654 FALSE, /* pc_relative */
656 complain_overflow_dont,/* complain_on_overflow */
657 bfd_elf_generic_reloc, /* special_function */
658 "R_ARM_V4BX", /* name */
659 FALSE, /* partial_inplace */
660 0xffffffff, /* src_mask */
661 0xffffffff, /* dst_mask */
662 FALSE), /* pcrel_offset */
664 HOWTO (R_ARM_TARGET2, /* type */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
668 FALSE, /* pc_relative */
670 complain_overflow_signed,/* complain_on_overflow */
671 bfd_elf_generic_reloc, /* special_function */
672 "R_ARM_TARGET2", /* name */
673 FALSE, /* partial_inplace */
674 0xffffffff, /* src_mask */
675 0xffffffff, /* dst_mask */
676 TRUE), /* pcrel_offset */
678 HOWTO (R_ARM_PREL31, /* type */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
682 TRUE, /* pc_relative */
684 complain_overflow_signed,/* complain_on_overflow */
685 bfd_elf_generic_reloc, /* special_function */
686 "R_ARM_PREL31", /* name */
687 FALSE, /* partial_inplace */
688 0x7fffffff, /* src_mask */
689 0x7fffffff, /* dst_mask */
690 TRUE), /* pcrel_offset */
692 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
696 FALSE, /* pc_relative */
698 complain_overflow_dont,/* complain_on_overflow */
699 bfd_elf_generic_reloc, /* special_function */
700 "R_ARM_MOVW_ABS_NC", /* name */
701 FALSE, /* partial_inplace */
702 0x000f0fff, /* src_mask */
703 0x000f0fff, /* dst_mask */
704 FALSE), /* pcrel_offset */
706 HOWTO (R_ARM_MOVT_ABS, /* type */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
710 FALSE, /* pc_relative */
712 complain_overflow_bitfield,/* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
714 "R_ARM_MOVT_ABS", /* name */
715 FALSE, /* partial_inplace */
716 0x000f0fff, /* src_mask */
717 0x000f0fff, /* dst_mask */
718 FALSE), /* pcrel_offset */
720 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
724 TRUE, /* pc_relative */
726 complain_overflow_dont,/* complain_on_overflow */
727 bfd_elf_generic_reloc, /* special_function */
728 "R_ARM_MOVW_PREL_NC", /* name */
729 FALSE, /* partial_inplace */
730 0x000f0fff, /* src_mask */
731 0x000f0fff, /* dst_mask */
732 TRUE), /* pcrel_offset */
734 HOWTO (R_ARM_MOVT_PREL, /* type */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
738 TRUE, /* pc_relative */
740 complain_overflow_bitfield,/* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_ARM_MOVT_PREL", /* name */
743 FALSE, /* partial_inplace */
744 0x000f0fff, /* src_mask */
745 0x000f0fff, /* dst_mask */
746 TRUE), /* pcrel_offset */
748 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
752 FALSE, /* pc_relative */
754 complain_overflow_dont,/* complain_on_overflow */
755 bfd_elf_generic_reloc, /* special_function */
756 "R_ARM_THM_MOVW_ABS_NC",/* name */
757 FALSE, /* partial_inplace */
758 0x040f70ff, /* src_mask */
759 0x040f70ff, /* dst_mask */
760 FALSE), /* pcrel_offset */
762 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
766 FALSE, /* pc_relative */
768 complain_overflow_bitfield,/* complain_on_overflow */
769 bfd_elf_generic_reloc, /* special_function */
770 "R_ARM_THM_MOVT_ABS", /* name */
771 FALSE, /* partial_inplace */
772 0x040f70ff, /* src_mask */
773 0x040f70ff, /* dst_mask */
774 FALSE), /* pcrel_offset */
776 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
780 TRUE, /* pc_relative */
782 complain_overflow_dont,/* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 "R_ARM_THM_MOVW_PREL_NC",/* name */
785 FALSE, /* partial_inplace */
786 0x040f70ff, /* src_mask */
787 0x040f70ff, /* dst_mask */
788 TRUE), /* pcrel_offset */
790 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
792 2, /* size (0 = byte, 1 = short, 2 = long) */
794 TRUE, /* pc_relative */
796 complain_overflow_bitfield,/* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
798 "R_ARM_THM_MOVT_PREL", /* name */
799 FALSE, /* partial_inplace */
800 0x040f70ff, /* src_mask */
801 0x040f70ff, /* dst_mask */
802 TRUE), /* pcrel_offset */
804 HOWTO (R_ARM_THM_JUMP19, /* type */
806 2, /* size (0 = byte, 1 = short, 2 = long) */
808 TRUE, /* pc_relative */
810 complain_overflow_signed,/* complain_on_overflow */
811 bfd_elf_generic_reloc, /* special_function */
812 "R_ARM_THM_JUMP19", /* name */
813 FALSE, /* partial_inplace */
814 0x043f2fff, /* src_mask */
815 0x043f2fff, /* dst_mask */
816 TRUE), /* pcrel_offset */
818 HOWTO (R_ARM_THM_JUMP6, /* type */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
822 TRUE, /* pc_relative */
824 complain_overflow_unsigned,/* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 "R_ARM_THM_JUMP6", /* name */
827 FALSE, /* partial_inplace */
828 0x02f8, /* src_mask */
829 0x02f8, /* dst_mask */
830 TRUE), /* pcrel_offset */
832 /* These are declared as 13-bit signed relocations because we can
833 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
837 2, /* size (0 = byte, 1 = short, 2 = long) */
839 TRUE, /* pc_relative */
841 complain_overflow_dont,/* complain_on_overflow */
842 bfd_elf_generic_reloc, /* special_function */
843 "R_ARM_THM_ALU_PREL_11_0",/* name */
844 FALSE, /* partial_inplace */
845 0xffffffff, /* src_mask */
846 0xffffffff, /* dst_mask */
847 TRUE), /* pcrel_offset */
849 HOWTO (R_ARM_THM_PC12, /* type */
851 2, /* size (0 = byte, 1 = short, 2 = long) */
853 TRUE, /* pc_relative */
855 complain_overflow_dont,/* complain_on_overflow */
856 bfd_elf_generic_reloc, /* special_function */
857 "R_ARM_THM_PC12", /* name */
858 FALSE, /* partial_inplace */
859 0xffffffff, /* src_mask */
860 0xffffffff, /* dst_mask */
861 TRUE), /* pcrel_offset */
863 HOWTO (R_ARM_ABS32_NOI, /* type */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
867 FALSE, /* pc_relative */
869 complain_overflow_dont,/* complain_on_overflow */
870 bfd_elf_generic_reloc, /* special_function */
871 "R_ARM_ABS32_NOI", /* name */
872 FALSE, /* partial_inplace */
873 0xffffffff, /* src_mask */
874 0xffffffff, /* dst_mask */
875 FALSE), /* pcrel_offset */
877 HOWTO (R_ARM_REL32_NOI, /* type */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
881 TRUE, /* pc_relative */
883 complain_overflow_dont,/* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_ARM_REL32_NOI", /* name */
886 FALSE, /* partial_inplace */
887 0xffffffff, /* src_mask */
888 0xffffffff, /* dst_mask */
889 FALSE), /* pcrel_offset */
891 /* Group relocations. */
893 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
897 TRUE, /* pc_relative */
899 complain_overflow_dont,/* complain_on_overflow */
900 bfd_elf_generic_reloc, /* special_function */
901 "R_ARM_ALU_PC_G0_NC", /* name */
902 FALSE, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 TRUE), /* pcrel_offset */
907 HOWTO (R_ARM_ALU_PC_G0, /* type */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
911 TRUE, /* pc_relative */
913 complain_overflow_dont,/* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 "R_ARM_ALU_PC_G0", /* name */
916 FALSE, /* partial_inplace */
917 0xffffffff, /* src_mask */
918 0xffffffff, /* dst_mask */
919 TRUE), /* pcrel_offset */
921 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
925 TRUE, /* pc_relative */
927 complain_overflow_dont,/* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 "R_ARM_ALU_PC_G1_NC", /* name */
930 FALSE, /* partial_inplace */
931 0xffffffff, /* src_mask */
932 0xffffffff, /* dst_mask */
933 TRUE), /* pcrel_offset */
935 HOWTO (R_ARM_ALU_PC_G1, /* type */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
939 TRUE, /* pc_relative */
941 complain_overflow_dont,/* complain_on_overflow */
942 bfd_elf_generic_reloc, /* special_function */
943 "R_ARM_ALU_PC_G1", /* name */
944 FALSE, /* partial_inplace */
945 0xffffffff, /* src_mask */
946 0xffffffff, /* dst_mask */
947 TRUE), /* pcrel_offset */
949 HOWTO (R_ARM_ALU_PC_G2, /* type */
951 2, /* size (0 = byte, 1 = short, 2 = long) */
953 TRUE, /* pc_relative */
955 complain_overflow_dont,/* complain_on_overflow */
956 bfd_elf_generic_reloc, /* special_function */
957 "R_ARM_ALU_PC_G2", /* name */
958 FALSE, /* partial_inplace */
959 0xffffffff, /* src_mask */
960 0xffffffff, /* dst_mask */
961 TRUE), /* pcrel_offset */
963 HOWTO (R_ARM_LDR_PC_G1, /* type */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
967 TRUE, /* pc_relative */
969 complain_overflow_dont,/* complain_on_overflow */
970 bfd_elf_generic_reloc, /* special_function */
971 "R_ARM_LDR_PC_G1", /* name */
972 FALSE, /* partial_inplace */
973 0xffffffff, /* src_mask */
974 0xffffffff, /* dst_mask */
975 TRUE), /* pcrel_offset */
977 HOWTO (R_ARM_LDR_PC_G2, /* type */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
981 TRUE, /* pc_relative */
983 complain_overflow_dont,/* complain_on_overflow */
984 bfd_elf_generic_reloc, /* special_function */
985 "R_ARM_LDR_PC_G2", /* name */
986 FALSE, /* partial_inplace */
987 0xffffffff, /* src_mask */
988 0xffffffff, /* dst_mask */
989 TRUE), /* pcrel_offset */
991 HOWTO (R_ARM_LDRS_PC_G0, /* type */
993 2, /* size (0 = byte, 1 = short, 2 = long) */
995 TRUE, /* pc_relative */
997 complain_overflow_dont,/* complain_on_overflow */
998 bfd_elf_generic_reloc, /* special_function */
999 "R_ARM_LDRS_PC_G0", /* name */
1000 FALSE, /* partial_inplace */
1001 0xffffffff, /* src_mask */
1002 0xffffffff, /* dst_mask */
1003 TRUE), /* pcrel_offset */
1005 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 TRUE, /* pc_relative */
1011 complain_overflow_dont,/* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
1013 "R_ARM_LDRS_PC_G1", /* name */
1014 FALSE, /* partial_inplace */
1015 0xffffffff, /* src_mask */
1016 0xffffffff, /* dst_mask */
1017 TRUE), /* pcrel_offset */
1019 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1021 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 TRUE, /* pc_relative */
1025 complain_overflow_dont,/* complain_on_overflow */
1026 bfd_elf_generic_reloc, /* special_function */
1027 "R_ARM_LDRS_PC_G2", /* name */
1028 FALSE, /* partial_inplace */
1029 0xffffffff, /* src_mask */
1030 0xffffffff, /* dst_mask */
1031 TRUE), /* pcrel_offset */
1033 HOWTO (R_ARM_LDC_PC_G0, /* type */
1035 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 TRUE, /* pc_relative */
1039 complain_overflow_dont,/* complain_on_overflow */
1040 bfd_elf_generic_reloc, /* special_function */
1041 "R_ARM_LDC_PC_G0", /* name */
1042 FALSE, /* partial_inplace */
1043 0xffffffff, /* src_mask */
1044 0xffffffff, /* dst_mask */
1045 TRUE), /* pcrel_offset */
1047 HOWTO (R_ARM_LDC_PC_G1, /* type */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 TRUE, /* pc_relative */
1053 complain_overflow_dont,/* complain_on_overflow */
1054 bfd_elf_generic_reloc, /* special_function */
1055 "R_ARM_LDC_PC_G1", /* name */
1056 FALSE, /* partial_inplace */
1057 0xffffffff, /* src_mask */
1058 0xffffffff, /* dst_mask */
1059 TRUE), /* pcrel_offset */
1061 HOWTO (R_ARM_LDC_PC_G2, /* type */
1063 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 TRUE, /* pc_relative */
1067 complain_overflow_dont,/* complain_on_overflow */
1068 bfd_elf_generic_reloc, /* special_function */
1069 "R_ARM_LDC_PC_G2", /* name */
1070 FALSE, /* partial_inplace */
1071 0xffffffff, /* src_mask */
1072 0xffffffff, /* dst_mask */
1073 TRUE), /* pcrel_offset */
1075 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 TRUE, /* pc_relative */
1081 complain_overflow_dont,/* complain_on_overflow */
1082 bfd_elf_generic_reloc, /* special_function */
1083 "R_ARM_ALU_SB_G0_NC", /* name */
1084 FALSE, /* partial_inplace */
1085 0xffffffff, /* src_mask */
1086 0xffffffff, /* dst_mask */
1087 TRUE), /* pcrel_offset */
1089 HOWTO (R_ARM_ALU_SB_G0, /* type */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 TRUE, /* pc_relative */
1095 complain_overflow_dont,/* complain_on_overflow */
1096 bfd_elf_generic_reloc, /* special_function */
1097 "R_ARM_ALU_SB_G0", /* name */
1098 FALSE, /* partial_inplace */
1099 0xffffffff, /* src_mask */
1100 0xffffffff, /* dst_mask */
1101 TRUE), /* pcrel_offset */
1103 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 TRUE, /* pc_relative */
1109 complain_overflow_dont,/* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 "R_ARM_ALU_SB_G1_NC", /* name */
1112 FALSE, /* partial_inplace */
1113 0xffffffff, /* src_mask */
1114 0xffffffff, /* dst_mask */
1115 TRUE), /* pcrel_offset */
1117 HOWTO (R_ARM_ALU_SB_G1, /* type */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 TRUE, /* pc_relative */
1123 complain_overflow_dont,/* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 "R_ARM_ALU_SB_G1", /* name */
1126 FALSE, /* partial_inplace */
1127 0xffffffff, /* src_mask */
1128 0xffffffff, /* dst_mask */
1129 TRUE), /* pcrel_offset */
1131 HOWTO (R_ARM_ALU_SB_G2, /* type */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 TRUE, /* pc_relative */
1137 complain_overflow_dont,/* complain_on_overflow */
1138 bfd_elf_generic_reloc, /* special_function */
1139 "R_ARM_ALU_SB_G2", /* name */
1140 FALSE, /* partial_inplace */
1141 0xffffffff, /* src_mask */
1142 0xffffffff, /* dst_mask */
1143 TRUE), /* pcrel_offset */
1145 HOWTO (R_ARM_LDR_SB_G0, /* type */
1147 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 TRUE, /* pc_relative */
1151 complain_overflow_dont,/* complain_on_overflow */
1152 bfd_elf_generic_reloc, /* special_function */
1153 "R_ARM_LDR_SB_G0", /* name */
1154 FALSE, /* partial_inplace */
1155 0xffffffff, /* src_mask */
1156 0xffffffff, /* dst_mask */
1157 TRUE), /* pcrel_offset */
1159 HOWTO (R_ARM_LDR_SB_G1, /* type */
1161 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 TRUE, /* pc_relative */
1165 complain_overflow_dont,/* complain_on_overflow */
1166 bfd_elf_generic_reloc, /* special_function */
1167 "R_ARM_LDR_SB_G1", /* name */
1168 FALSE, /* partial_inplace */
1169 0xffffffff, /* src_mask */
1170 0xffffffff, /* dst_mask */
1171 TRUE), /* pcrel_offset */
1173 HOWTO (R_ARM_LDR_SB_G2, /* type */
1175 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 TRUE, /* pc_relative */
1179 complain_overflow_dont,/* complain_on_overflow */
1180 bfd_elf_generic_reloc, /* special_function */
1181 "R_ARM_LDR_SB_G2", /* name */
1182 FALSE, /* partial_inplace */
1183 0xffffffff, /* src_mask */
1184 0xffffffff, /* dst_mask */
1185 TRUE), /* pcrel_offset */
1187 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1189 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 TRUE, /* pc_relative */
1193 complain_overflow_dont,/* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 "R_ARM_LDRS_SB_G0", /* name */
1196 FALSE, /* partial_inplace */
1197 0xffffffff, /* src_mask */
1198 0xffffffff, /* dst_mask */
1199 TRUE), /* pcrel_offset */
1201 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1203 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 TRUE, /* pc_relative */
1207 complain_overflow_dont,/* complain_on_overflow */
1208 bfd_elf_generic_reloc, /* special_function */
1209 "R_ARM_LDRS_SB_G1", /* name */
1210 FALSE, /* partial_inplace */
1211 0xffffffff, /* src_mask */
1212 0xffffffff, /* dst_mask */
1213 TRUE), /* pcrel_offset */
1215 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1217 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 TRUE, /* pc_relative */
1221 complain_overflow_dont,/* complain_on_overflow */
1222 bfd_elf_generic_reloc, /* special_function */
1223 "R_ARM_LDRS_SB_G2", /* name */
1224 FALSE, /* partial_inplace */
1225 0xffffffff, /* src_mask */
1226 0xffffffff, /* dst_mask */
1227 TRUE), /* pcrel_offset */
1229 HOWTO (R_ARM_LDC_SB_G0, /* type */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 TRUE, /* pc_relative */
1235 complain_overflow_dont,/* complain_on_overflow */
1236 bfd_elf_generic_reloc, /* special_function */
1237 "R_ARM_LDC_SB_G0", /* name */
1238 FALSE, /* partial_inplace */
1239 0xffffffff, /* src_mask */
1240 0xffffffff, /* dst_mask */
1241 TRUE), /* pcrel_offset */
1243 HOWTO (R_ARM_LDC_SB_G1, /* type */
1245 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 TRUE, /* pc_relative */
1249 complain_overflow_dont,/* complain_on_overflow */
1250 bfd_elf_generic_reloc, /* special_function */
1251 "R_ARM_LDC_SB_G1", /* name */
1252 FALSE, /* partial_inplace */
1253 0xffffffff, /* src_mask */
1254 0xffffffff, /* dst_mask */
1255 TRUE), /* pcrel_offset */
1257 HOWTO (R_ARM_LDC_SB_G2, /* type */
1259 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 TRUE, /* pc_relative */
1263 complain_overflow_dont,/* complain_on_overflow */
1264 bfd_elf_generic_reloc, /* special_function */
1265 "R_ARM_LDC_SB_G2", /* name */
1266 FALSE, /* partial_inplace */
1267 0xffffffff, /* src_mask */
1268 0xffffffff, /* dst_mask */
1269 TRUE), /* pcrel_offset */
1271 /* End of group relocations. */
1273 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1275 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 FALSE, /* pc_relative */
1279 complain_overflow_dont,/* complain_on_overflow */
1280 bfd_elf_generic_reloc, /* special_function */
1281 "R_ARM_MOVW_BREL_NC", /* name */
1282 FALSE, /* partial_inplace */
1283 0x0000ffff, /* src_mask */
1284 0x0000ffff, /* dst_mask */
1285 FALSE), /* pcrel_offset */
1287 HOWTO (R_ARM_MOVT_BREL, /* type */
1289 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 FALSE, /* pc_relative */
1293 complain_overflow_bitfield,/* complain_on_overflow */
1294 bfd_elf_generic_reloc, /* special_function */
1295 "R_ARM_MOVT_BREL", /* name */
1296 FALSE, /* partial_inplace */
1297 0x0000ffff, /* src_mask */
1298 0x0000ffff, /* dst_mask */
1299 FALSE), /* pcrel_offset */
1301 HOWTO (R_ARM_MOVW_BREL, /* type */
1303 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 FALSE, /* pc_relative */
1307 complain_overflow_dont,/* complain_on_overflow */
1308 bfd_elf_generic_reloc, /* special_function */
1309 "R_ARM_MOVW_BREL", /* name */
1310 FALSE, /* partial_inplace */
1311 0x0000ffff, /* src_mask */
1312 0x0000ffff, /* dst_mask */
1313 FALSE), /* pcrel_offset */
1315 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1317 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 FALSE, /* pc_relative */
1321 complain_overflow_dont,/* complain_on_overflow */
1322 bfd_elf_generic_reloc, /* special_function */
1323 "R_ARM_THM_MOVW_BREL_NC",/* name */
1324 FALSE, /* partial_inplace */
1325 0x040f70ff, /* src_mask */
1326 0x040f70ff, /* dst_mask */
1327 FALSE), /* pcrel_offset */
1329 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 FALSE, /* pc_relative */
1335 complain_overflow_bitfield,/* complain_on_overflow */
1336 bfd_elf_generic_reloc, /* special_function */
1337 "R_ARM_THM_MOVT_BREL", /* name */
1338 FALSE, /* partial_inplace */
1339 0x040f70ff, /* src_mask */
1340 0x040f70ff, /* dst_mask */
1341 FALSE), /* pcrel_offset */
1343 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1345 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 FALSE, /* pc_relative */
1349 complain_overflow_dont,/* complain_on_overflow */
1350 bfd_elf_generic_reloc, /* special_function */
1351 "R_ARM_THM_MOVW_BREL", /* name */
1352 FALSE, /* partial_inplace */
1353 0x040f70ff, /* src_mask */
1354 0x040f70ff, /* dst_mask */
1355 FALSE), /* pcrel_offset */
1357 EMPTY_HOWTO (90), /* Unallocated. */
1362 HOWTO (R_ARM_PLT32_ABS, /* type */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1366 FALSE, /* pc_relative */
1368 complain_overflow_dont,/* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 "R_ARM_PLT32_ABS", /* name */
1371 FALSE, /* partial_inplace */
1372 0xffffffff, /* src_mask */
1373 0xffffffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1376 HOWTO (R_ARM_GOT_ABS, /* type */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1380 FALSE, /* pc_relative */
1382 complain_overflow_dont,/* complain_on_overflow */
1383 bfd_elf_generic_reloc, /* special_function */
1384 "R_ARM_GOT_ABS", /* name */
1385 FALSE, /* partial_inplace */
1386 0xffffffff, /* src_mask */
1387 0xffffffff, /* dst_mask */
1388 FALSE), /* pcrel_offset */
1390 HOWTO (R_ARM_GOT_PREL, /* type */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1394 TRUE, /* pc_relative */
1396 complain_overflow_dont, /* complain_on_overflow */
1397 bfd_elf_generic_reloc, /* special_function */
1398 "R_ARM_GOT_PREL", /* name */
1399 FALSE, /* partial_inplace */
1400 0xffffffff, /* src_mask */
1401 0xffffffff, /* dst_mask */
1402 TRUE), /* pcrel_offset */
1404 HOWTO (R_ARM_GOT_BREL12, /* type */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1408 FALSE, /* pc_relative */
1410 complain_overflow_bitfield,/* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 "R_ARM_GOT_BREL12", /* name */
1413 FALSE, /* partial_inplace */
1414 0x00000fff, /* src_mask */
1415 0x00000fff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1418 HOWTO (R_ARM_GOTOFF12, /* type */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1422 FALSE, /* pc_relative */
1424 complain_overflow_bitfield,/* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 "R_ARM_GOTOFF12", /* name */
1427 FALSE, /* partial_inplace */
1428 0x00000fff, /* src_mask */
1429 0x00000fff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1432 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1434 /* GNU extension to record C++ vtable member usage */
1435 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1437 2, /* size (0 = byte, 1 = short, 2 = long) */
1439 FALSE, /* pc_relative */
1441 complain_overflow_dont, /* complain_on_overflow */
1442 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1443 "R_ARM_GNU_VTENTRY", /* name */
1444 FALSE, /* partial_inplace */
1447 FALSE), /* pcrel_offset */
1449 /* GNU extension to record C++ vtable hierarchy */
1450 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1452 2, /* size (0 = byte, 1 = short, 2 = long) */
1454 FALSE, /* pc_relative */
1456 complain_overflow_dont, /* complain_on_overflow */
1457 NULL, /* special_function */
1458 "R_ARM_GNU_VTINHERIT", /* name */
1459 FALSE, /* partial_inplace */
1462 FALSE), /* pcrel_offset */
1464 HOWTO (R_ARM_THM_JUMP11, /* type */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1468 TRUE, /* pc_relative */
1470 complain_overflow_signed, /* complain_on_overflow */
1471 bfd_elf_generic_reloc, /* special_function */
1472 "R_ARM_THM_JUMP11", /* name */
1473 FALSE, /* partial_inplace */
1474 0x000007ff, /* src_mask */
1475 0x000007ff, /* dst_mask */
1476 TRUE), /* pcrel_offset */
1478 HOWTO (R_ARM_THM_JUMP8, /* type */
1480 1, /* size (0 = byte, 1 = short, 2 = long) */
1482 TRUE, /* pc_relative */
1484 complain_overflow_signed, /* complain_on_overflow */
1485 bfd_elf_generic_reloc, /* special_function */
1486 "R_ARM_THM_JUMP8", /* name */
1487 FALSE, /* partial_inplace */
1488 0x000000ff, /* src_mask */
1489 0x000000ff, /* dst_mask */
1490 TRUE), /* pcrel_offset */
1492 /* TLS relocations */
1493 HOWTO (R_ARM_TLS_GD32, /* type */
1495 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 FALSE, /* pc_relative */
1499 complain_overflow_bitfield,/* complain_on_overflow */
1500 NULL, /* special_function */
1501 "R_ARM_TLS_GD32", /* name */
1502 TRUE, /* partial_inplace */
1503 0xffffffff, /* src_mask */
1504 0xffffffff, /* dst_mask */
1505 FALSE), /* pcrel_offset */
1507 HOWTO (R_ARM_TLS_LDM32, /* type */
1509 2, /* size (0 = byte, 1 = short, 2 = long) */
1511 FALSE, /* pc_relative */
1513 complain_overflow_bitfield,/* complain_on_overflow */
1514 bfd_elf_generic_reloc, /* special_function */
1515 "R_ARM_TLS_LDM32", /* name */
1516 TRUE, /* partial_inplace */
1517 0xffffffff, /* src_mask */
1518 0xffffffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1521 HOWTO (R_ARM_TLS_LDO32, /* type */
1523 2, /* size (0 = byte, 1 = short, 2 = long) */
1525 FALSE, /* pc_relative */
1527 complain_overflow_bitfield,/* complain_on_overflow */
1528 bfd_elf_generic_reloc, /* special_function */
1529 "R_ARM_TLS_LDO32", /* name */
1530 TRUE, /* partial_inplace */
1531 0xffffffff, /* src_mask */
1532 0xffffffff, /* dst_mask */
1533 FALSE), /* pcrel_offset */
1535 HOWTO (R_ARM_TLS_IE32, /* type */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1539 FALSE, /* pc_relative */
1541 complain_overflow_bitfield,/* complain_on_overflow */
1542 NULL, /* special_function */
1543 "R_ARM_TLS_IE32", /* name */
1544 TRUE, /* partial_inplace */
1545 0xffffffff, /* src_mask */
1546 0xffffffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1549 HOWTO (R_ARM_TLS_LE32, /* type */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1553 FALSE, /* pc_relative */
1555 complain_overflow_bitfield,/* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 "R_ARM_TLS_LE32", /* name */
1558 TRUE, /* partial_inplace */
1559 0xffffffff, /* src_mask */
1560 0xffffffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1563 HOWTO (R_ARM_TLS_LDO12, /* type */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 FALSE, /* pc_relative */
1569 complain_overflow_bitfield,/* complain_on_overflow */
1570 bfd_elf_generic_reloc, /* special_function */
1571 "R_ARM_TLS_LDO12", /* name */
1572 FALSE, /* partial_inplace */
1573 0x00000fff, /* src_mask */
1574 0x00000fff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
1577 HOWTO (R_ARM_TLS_LE12, /* type */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1581 FALSE, /* pc_relative */
1583 complain_overflow_bitfield,/* complain_on_overflow */
1584 bfd_elf_generic_reloc, /* special_function */
1585 "R_ARM_TLS_LE12", /* name */
1586 FALSE, /* partial_inplace */
1587 0x00000fff, /* src_mask */
1588 0x00000fff, /* dst_mask */
1589 FALSE), /* pcrel_offset */
1591 HOWTO (R_ARM_TLS_IE12GP, /* type */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
1595 FALSE, /* pc_relative */
1597 complain_overflow_bitfield,/* complain_on_overflow */
1598 bfd_elf_generic_reloc, /* special_function */
1599 "R_ARM_TLS_IE12GP", /* name */
1600 FALSE, /* partial_inplace */
1601 0x00000fff, /* src_mask */
1602 0x00000fff, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1606 /* 112-127 private relocations
1607 128 R_ARM_ME_TOO, obsolete
1608 129-255 unallocated in AAELF.
1610 249-255 extended, currently unused, relocations: */
1612 static reloc_howto_type elf32_arm_howto_table_2[4] =
1614 HOWTO (R_ARM_RREL32, /* type */
1616 0, /* size (0 = byte, 1 = short, 2 = long) */
1618 FALSE, /* pc_relative */
1620 complain_overflow_dont,/* complain_on_overflow */
1621 bfd_elf_generic_reloc, /* special_function */
1622 "R_ARM_RREL32", /* name */
1623 FALSE, /* partial_inplace */
1626 FALSE), /* pcrel_offset */
1628 HOWTO (R_ARM_RABS32, /* type */
1630 0, /* size (0 = byte, 1 = short, 2 = long) */
1632 FALSE, /* pc_relative */
1634 complain_overflow_dont,/* complain_on_overflow */
1635 bfd_elf_generic_reloc, /* special_function */
1636 "R_ARM_RABS32", /* name */
1637 FALSE, /* partial_inplace */
1640 FALSE), /* pcrel_offset */
1642 HOWTO (R_ARM_RPC24, /* type */
1644 0, /* size (0 = byte, 1 = short, 2 = long) */
1646 FALSE, /* pc_relative */
1648 complain_overflow_dont,/* complain_on_overflow */
1649 bfd_elf_generic_reloc, /* special_function */
1650 "R_ARM_RPC24", /* name */
1651 FALSE, /* partial_inplace */
1654 FALSE), /* pcrel_offset */
1656 HOWTO (R_ARM_RBASE, /* type */
1658 0, /* size (0 = byte, 1 = short, 2 = long) */
1660 FALSE, /* pc_relative */
1662 complain_overflow_dont,/* complain_on_overflow */
1663 bfd_elf_generic_reloc, /* special_function */
1664 "R_ARM_RBASE", /* name */
1665 FALSE, /* partial_inplace */
1668 FALSE) /* pcrel_offset */
1671 static reloc_howto_type *
1672 elf32_arm_howto_from_type (unsigned int r_type)
1674 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1675 return &elf32_arm_howto_table_1[r_type];
1677 if (r_type >= R_ARM_RREL32
1678 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1679 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1685 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1686 Elf_Internal_Rela * elf_reloc)
1688 unsigned int r_type;
1690 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1691 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1694 struct elf32_arm_reloc_map
1696 bfd_reloc_code_real_type bfd_reloc_val;
1697 unsigned char elf_reloc_val;
1700 /* All entries in this list must also be present in elf32_arm_howto_table. */
1701 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1703 {BFD_RELOC_NONE, R_ARM_NONE},
1704 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1705 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1706 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1707 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1708 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1709 {BFD_RELOC_32, R_ARM_ABS32},
1710 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1711 {BFD_RELOC_8, R_ARM_ABS8},
1712 {BFD_RELOC_16, R_ARM_ABS16},
1713 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1714 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1719 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1720 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1721 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1722 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1723 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1724 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1725 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1726 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1727 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1728 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1729 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1730 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1731 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1732 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1733 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1734 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1735 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1736 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1737 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1738 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1739 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1740 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1741 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1742 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1743 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1744 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1745 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1746 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1747 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1748 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1749 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1750 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1751 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1752 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1753 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1754 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1755 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1756 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1757 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1758 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1759 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1760 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1761 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1762 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1763 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1764 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1765 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1766 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1767 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1768 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1769 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1770 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1771 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1772 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1773 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1774 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1775 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1776 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1777 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1778 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1779 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1780 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1783 static reloc_howto_type *
1784 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1785 bfd_reloc_code_real_type code)
1789 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1790 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1791 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1796 static reloc_howto_type *
1797 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1802 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1803 if (elf32_arm_howto_table_1[i].name != NULL
1804 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1805 return &elf32_arm_howto_table_1[i];
1807 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1808 if (elf32_arm_howto_table_2[i].name != NULL
1809 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1810 return &elf32_arm_howto_table_2[i];
1815 /* Support for core dump NOTE sections. */
1818 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1823 switch (note->descsz)
1828 case 148: /* Linux/ARM 32-bit. */
1830 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1833 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1842 /* Make a ".reg/999" section. */
1843 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1844 size, note->descpos + offset);
1848 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1850 switch (note->descsz)
1855 case 124: /* Linux/ARM elf_prpsinfo. */
1856 elf_tdata (abfd)->core_program
1857 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1858 elf_tdata (abfd)->core_command
1859 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1862 /* Note that for some reason, a spurious space is tacked
1863 onto the end of the args in some (at least one anyway)
1864 implementations, so strip it off if it exists. */
1866 char *command = elf_tdata (abfd)->core_command;
1867 int n = strlen (command);
1869 if (0 < n && command[n - 1] == ' ')
1870 command[n - 1] = '\0';
1876 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877 #define TARGET_LITTLE_NAME "elf32-littlearm"
1878 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879 #define TARGET_BIG_NAME "elf32-bigarm"
1881 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1884 typedef unsigned long int insn32;
1885 typedef unsigned short int insn16;
1887 /* In lieu of proper flags, assume all EABIv4 or later objects are
1889 #define INTERWORK_FLAG(abfd) \
1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1892 || ((abfd)->flags & BFD_LINKER_CREATED))
1894 /* The linker script knows the section names for placement.
1895 The entry_names are used to do simple name mangling on the stubs.
1896 Given a function name, and its type, the stub can be found. The
1897 name can be changed. The only requirement is the %s be present. */
1898 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1901 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1904 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1907 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1908 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1910 #define STUB_ENTRY_NAME "__%s_veneer"
1912 /* The name of the dynamic interpreter. This is put in the .interp
1914 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1916 #ifdef FOUR_WORD_PLT
1918 /* The first entry in a procedure linkage table looks like
1919 this. It is set up so that any shared library function that is
1920 called before the relocation has been set up calls the dynamic
1922 static const bfd_vma elf32_arm_plt0_entry [] =
1924 0xe52de004, /* str lr, [sp, #-4]! */
1925 0xe59fe010, /* ldr lr, [pc, #16] */
1926 0xe08fe00e, /* add lr, pc, lr */
1927 0xe5bef008, /* ldr pc, [lr, #8]! */
1930 /* Subsequent entries in a procedure linkage table look like
1932 static const bfd_vma elf32_arm_plt_entry [] =
1934 0xe28fc600, /* add ip, pc, #NN */
1935 0xe28cca00, /* add ip, ip, #NN */
1936 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1937 0x00000000, /* unused */
1942 /* The first entry in a procedure linkage table looks like
1943 this. It is set up so that any shared library function that is
1944 called before the relocation has been set up calls the dynamic
1946 static const bfd_vma elf32_arm_plt0_entry [] =
1948 0xe52de004, /* str lr, [sp, #-4]! */
1949 0xe59fe004, /* ldr lr, [pc, #4] */
1950 0xe08fe00e, /* add lr, pc, lr */
1951 0xe5bef008, /* ldr pc, [lr, #8]! */
1952 0x00000000, /* &GOT[0] - . */
1955 /* Subsequent entries in a procedure linkage table look like
1957 static const bfd_vma elf32_arm_plt_entry [] =
1959 0xe28fc600, /* add ip, pc, #0xNN00000 */
1960 0xe28cca00, /* add ip, ip, #0xNN000 */
1961 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1966 /* The format of the first entry in the procedure linkage table
1967 for a VxWorks executable. */
1968 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1970 0xe52dc008, /* str ip,[sp,#-8]! */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf008, /* ldr pc,[ip,#8] */
1973 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1976 /* The format of subsequent entries in a VxWorks executable. */
1977 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe59cf000, /* ldr pc,[ip] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xea000000, /* b _PLT */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1987 /* The format of entries in a VxWorks shared library. */
1988 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1990 0xe59fc000, /* ldr ip,[pc] */
1991 0xe79cf009, /* ldr pc,[ip,r9] */
1992 0x00000000, /* .long @got */
1993 0xe59fc000, /* ldr ip,[pc] */
1994 0xe599f008, /* ldr pc,[r9,#8] */
1995 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1998 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1999 #define PLT_THUMB_STUB_SIZE 4
2000 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2006 /* The entries in a PLT when using a DLL-based target with multiple
2008 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2010 0xe51ff004, /* ldr pc, [pc, #-4] */
2011 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2014 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2015 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2016 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2017 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2018 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2019 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2029 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2030 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2031 is inserted in arm_build_one_stub(). */
2032 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2033 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2034 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2035 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2036 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2037 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2042 enum stub_insn_type type;
2043 unsigned int r_type;
2047 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2048 to reach the stub if necessary. */
2049 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2051 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2052 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2055 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2057 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2059 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2060 ARM_INSN(0xe12fff1c), /* bx ip */
2061 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2064 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2065 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2067 THUMB16_INSN(0xb401), /* push {r0} */
2068 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2069 THUMB16_INSN(0x4684), /* mov ip, r0 */
2070 THUMB16_INSN(0xbc01), /* pop {r0} */
2071 THUMB16_INSN(0x4760), /* bx ip */
2072 THUMB16_INSN(0xbf00), /* nop */
2073 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2076 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2078 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2083 ARM_INSN(0xe12fff1c), /* bx ip */
2084 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2087 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2089 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2091 THUMB16_INSN(0x4778), /* bx pc */
2092 THUMB16_INSN(0x46c0), /* nop */
2093 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2094 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2097 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2098 one, when the destination is close enough. */
2099 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2101 THUMB16_INSN(0x4778), /* bx pc */
2102 THUMB16_INSN(0x46c0), /* nop */
2103 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2106 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2107 blx to reach the stub if necessary. */
2108 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2110 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2111 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2112 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2115 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2116 blx to reach the stub if necessary. We can not add into pc;
2117 it is not guaranteed to mode switch (different in ARMv6 and
2119 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2121 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2122 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2123 ARM_INSN(0xe12fff1c), /* bx ip */
2124 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2127 /* V4T ARM -> ARM long branch stub, PIC. */
2128 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2130 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2131 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2132 ARM_INSN(0xe12fff1c), /* bx ip */
2133 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2136 /* V4T Thumb -> ARM long branch stub, PIC. */
2137 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2139 THUMB16_INSN(0x4778), /* bx pc */
2140 THUMB16_INSN(0x46c0), /* nop */
2141 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2142 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2143 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2146 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2148 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2150 THUMB16_INSN(0xb401), /* push {r0} */
2151 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2152 THUMB16_INSN(0x46fc), /* mov ip, pc */
2153 THUMB16_INSN(0x4484), /* add ip, r0 */
2154 THUMB16_INSN(0xbc01), /* pop {r0} */
2155 THUMB16_INSN(0x4760), /* bx ip */
2156 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2159 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2161 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2163 THUMB16_INSN(0x4778), /* bx pc */
2164 THUMB16_INSN(0x46c0), /* nop */
2165 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2166 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2167 ARM_INSN(0xe12fff1c), /* bx ip */
2168 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2171 /* Cortex-A8 erratum-workaround stubs. */
2173 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2174 can't use a conditional branch to reach this stub). */
2176 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2178 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2179 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2180 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2183 /* Stub used for b.w and bl.w instructions. */
2185 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2187 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2190 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2192 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2195 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2196 instruction (which switches to ARM mode) to point to this stub. Jump to the
2197 real destination using an ARM-mode branch. */
2199 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2201 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2204 /* Section name for stubs is the associated section name plus this
2206 #define STUB_SUFFIX ".stub"
2208 /* One entry per long/short branch stub defined above. */
2210 DEF_STUB(long_branch_any_any) \
2211 DEF_STUB(long_branch_v4t_arm_thumb) \
2212 DEF_STUB(long_branch_thumb_only) \
2213 DEF_STUB(long_branch_v4t_thumb_thumb) \
2214 DEF_STUB(long_branch_v4t_thumb_arm) \
2215 DEF_STUB(short_branch_v4t_thumb_arm) \
2216 DEF_STUB(long_branch_any_arm_pic) \
2217 DEF_STUB(long_branch_any_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2220 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2221 DEF_STUB(long_branch_thumb_only_pic) \
2222 DEF_STUB(a8_veneer_b_cond) \
2223 DEF_STUB(a8_veneer_b) \
2224 DEF_STUB(a8_veneer_bl) \
2225 DEF_STUB(a8_veneer_blx)
2227 #define DEF_STUB(x) arm_stub_##x,
2228 enum elf32_arm_stub_type {
2231 /* Note the first a8_veneer type */
2232 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2238 const insn_sequence* template;
2242 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2243 static const stub_def stub_definitions[] = {
2248 struct elf32_arm_stub_hash_entry
2250 /* Base hash table entry structure. */
2251 struct bfd_hash_entry root;
2253 /* The stub section. */
2256 /* Offset within stub_sec of the beginning of this stub. */
2257 bfd_vma stub_offset;
2259 /* Given the symbol's value and its section we can determine its final
2260 value when building the stubs (so the stub knows where to jump). */
2261 bfd_vma target_value;
2262 asection *target_section;
2264 /* Offset to apply to relocation referencing target_value. */
2265 bfd_vma target_addend;
2267 /* The instruction which caused this stub to be generated (only valid for
2268 Cortex-A8 erratum workaround stubs at present). */
2269 unsigned long orig_insn;
2271 /* The stub type. */
2272 enum elf32_arm_stub_type stub_type;
2273 /* Its encoding size in bytes. */
2276 const insn_sequence *stub_template;
2277 /* The size of the template (number of entries). */
2278 int stub_template_size;
2280 /* The symbol table entry, if any, that this was derived from. */
2281 struct elf32_arm_link_hash_entry *h;
2283 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2284 unsigned char st_type;
2286 /* Where this stub is being called from, or, in the case of combined
2287 stub sections, the first input section in the group. */
2290 /* The name for the local symbol at the start of this stub. The
2291 stub name in the hash table has to be unique; this does not, so
2292 it can be friendlier. */
2296 /* Used to build a map of a section. This is required for mixed-endian
2299 typedef struct elf32_elf_section_map
2304 elf32_arm_section_map;
2306 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2310 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2311 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2312 VFP11_ERRATUM_ARM_VENEER,
2313 VFP11_ERRATUM_THUMB_VENEER
2315 elf32_vfp11_erratum_type;
2317 typedef struct elf32_vfp11_erratum_list
2319 struct elf32_vfp11_erratum_list *next;
2325 struct elf32_vfp11_erratum_list *veneer;
2326 unsigned int vfp_insn;
2330 struct elf32_vfp11_erratum_list *branch;
2334 elf32_vfp11_erratum_type type;
2336 elf32_vfp11_erratum_list;
2341 INSERT_EXIDX_CANTUNWIND_AT_END
2343 arm_unwind_edit_type;
2345 /* A (sorted) list of edits to apply to an unwind table. */
2346 typedef struct arm_unwind_table_edit
2348 arm_unwind_edit_type type;
2349 /* Note: we sometimes want to insert an unwind entry corresponding to a
2350 section different from the one we're currently writing out, so record the
2351 (text) section this edit relates to here. */
2352 asection *linked_section;
2354 struct arm_unwind_table_edit *next;
2356 arm_unwind_table_edit;
2358 typedef struct _arm_elf_section_data
2360 /* Information about mapping symbols. */
2361 struct bfd_elf_section_data elf;
2362 unsigned int mapcount;
2363 unsigned int mapsize;
2364 elf32_arm_section_map *map;
2365 /* Information about CPU errata. */
2366 unsigned int erratumcount;
2367 elf32_vfp11_erratum_list *erratumlist;
2368 /* Information about unwind tables. */
2371 /* Unwind info attached to a text section. */
2374 asection *arm_exidx_sec;
2377 /* Unwind info attached to an .ARM.exidx section. */
2380 arm_unwind_table_edit *unwind_edit_list;
2381 arm_unwind_table_edit *unwind_edit_tail;
2385 _arm_elf_section_data;
2387 #define elf32_arm_section_data(sec) \
2388 ((_arm_elf_section_data *) elf_section_data (sec))
2390 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2391 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2392 so may be created multiple times: we use an array of these entries whilst
2393 relaxing which we can refresh easily, then create stubs for each potentially
2394 erratum-triggering instruction once we've settled on a solution. */
2396 struct a8_erratum_fix {
2401 unsigned long orig_insn;
2403 enum elf32_arm_stub_type stub_type;
2406 /* A table of relocs applied to branches which might trigger Cortex-A8
2409 struct a8_erratum_reloc {
2411 bfd_vma destination;
2412 unsigned int r_type;
2413 unsigned char st_type;
2414 const char *sym_name;
2415 bfd_boolean non_a8_stub;
2418 /* The size of the thread control block. */
2421 struct elf_arm_obj_tdata
2423 struct elf_obj_tdata root;
2425 /* tls_type for each local got entry. */
2426 char *local_got_tls_type;
2428 /* Zero to warn when linking objects with incompatible enum sizes. */
2429 int no_enum_size_warning;
2431 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2432 int no_wchar_size_warning;
2435 #define elf_arm_tdata(bfd) \
2436 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2438 #define elf32_arm_local_got_tls_type(bfd) \
2439 (elf_arm_tdata (bfd)->local_got_tls_type)
2441 #define is_arm_elf(bfd) \
2442 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2443 && elf_tdata (bfd) != NULL \
2444 && elf_object_id (bfd) == ARM_ELF_TDATA)
2447 elf32_arm_mkobject (bfd *abfd)
2449 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2453 /* The ARM linker needs to keep track of the number of relocs that it
2454 decides to copy in check_relocs for each symbol. This is so that
2455 it can discard PC relative relocs if it doesn't need them when
2456 linking with -Bsymbolic. We store the information in a field
2457 extending the regular ELF linker hash table. */
2459 /* This structure keeps track of the number of relocs we have copied
2460 for a given symbol. */
2461 struct elf32_arm_relocs_copied
2464 struct elf32_arm_relocs_copied * next;
2465 /* A section in dynobj. */
2467 /* Number of relocs copied in this section. */
2468 bfd_size_type count;
2469 /* Number of PC-relative relocs copied in this section. */
2470 bfd_size_type pc_count;
2473 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2475 /* Arm ELF linker hash entry. */
2476 struct elf32_arm_link_hash_entry
2478 struct elf_link_hash_entry root;
2480 /* Number of PC relative relocs copied for this symbol. */
2481 struct elf32_arm_relocs_copied * relocs_copied;
2483 /* We reference count Thumb references to a PLT entry separately,
2484 so that we can emit the Thumb trampoline only if needed. */
2485 bfd_signed_vma plt_thumb_refcount;
2487 /* Some references from Thumb code may be eliminated by BL->BLX
2488 conversion, so record them separately. */
2489 bfd_signed_vma plt_maybe_thumb_refcount;
2491 /* Since PLT entries have variable size if the Thumb prologue is
2492 used, we need to record the index into .got.plt instead of
2493 recomputing it from the PLT offset. */
2494 bfd_signed_vma plt_got_offset;
2496 #define GOT_UNKNOWN 0
2497 #define GOT_NORMAL 1
2498 #define GOT_TLS_GD 2
2499 #define GOT_TLS_IE 4
2500 unsigned char tls_type;
2502 /* The symbol marking the real symbol location for exported thumb
2503 symbols with Arm stubs. */
2504 struct elf_link_hash_entry *export_glue;
2506 /* A pointer to the most recently used stub hash entry against this
2508 struct elf32_arm_stub_hash_entry *stub_cache;
2511 /* Traverse an arm ELF linker hash table. */
2512 #define elf32_arm_link_hash_traverse(table, func, info) \
2513 (elf_link_hash_traverse \
2515 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2518 /* Get the ARM elf linker hash table from a link_info structure. */
2519 #define elf32_arm_hash_table(info) \
2520 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2522 #define arm_stub_hash_lookup(table, string, create, copy) \
2523 ((struct elf32_arm_stub_hash_entry *) \
2524 bfd_hash_lookup ((table), (string), (create), (copy)))
2526 /* ARM ELF linker hash table. */
2527 struct elf32_arm_link_hash_table
2529 /* The main hash table. */
2530 struct elf_link_hash_table root;
2532 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2533 bfd_size_type thumb_glue_size;
2535 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2536 bfd_size_type arm_glue_size;
2538 /* The size in bytes of section containing the ARMv4 BX veneers. */
2539 bfd_size_type bx_glue_size;
2541 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2542 veneer has been populated. */
2543 bfd_vma bx_glue_offset[15];
2545 /* The size in bytes of the section containing glue for VFP11 erratum
2547 bfd_size_type vfp11_erratum_glue_size;
2549 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2550 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2551 elf32_arm_write_section(). */
2552 struct a8_erratum_fix *a8_erratum_fixes;
2553 unsigned int num_a8_erratum_fixes;
2555 /* An arbitrary input BFD chosen to hold the glue sections. */
2556 bfd * bfd_of_glue_owner;
2558 /* Nonzero to output a BE8 image. */
2561 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2562 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2565 /* The relocation to use for R_ARM_TARGET2 relocations. */
2568 /* 0 = Ignore R_ARM_V4BX.
2569 1 = Convert BX to MOV PC.
2570 2 = Generate v4 interworing stubs. */
2573 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2576 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2579 /* What sort of code sequences we should look for which may trigger the
2580 VFP11 denorm erratum. */
2581 bfd_arm_vfp11_fix vfp11_fix;
2583 /* Global counter for the number of fixes we have emitted. */
2584 int num_vfp11_fixes;
2586 /* Nonzero to force PIC branch veneers. */
2589 /* The number of bytes in the initial entry in the PLT. */
2590 bfd_size_type plt_header_size;
2592 /* The number of bytes in the subsequent PLT etries. */
2593 bfd_size_type plt_entry_size;
2595 /* True if the target system is VxWorks. */
2598 /* True if the target system is Symbian OS. */
2601 /* True if the target uses REL relocations. */
2604 /* Short-cuts to get to dynamic linker sections. */
2613 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2616 /* Data for R_ARM_TLS_LDM32 relocations. */
2619 bfd_signed_vma refcount;
2623 /* Small local sym cache. */
2624 struct sym_cache sym_cache;
2626 /* For convenience in allocate_dynrelocs. */
2629 /* The stub hash table. */
2630 struct bfd_hash_table stub_hash_table;
2632 /* Linker stub bfd. */
2635 /* Linker call-backs. */
2636 asection * (*add_stub_section) (const char *, asection *);
2637 void (*layout_sections_again) (void);
2639 /* Array to keep track of which stub sections have been created, and
2640 information on stub grouping. */
2643 /* This is the section to which stubs in the group will be
2646 /* The stub section. */
2650 /* Assorted information used by elf32_arm_size_stubs. */
2651 unsigned int bfd_count;
2653 asection **input_list;
2656 /* Create an entry in an ARM ELF linker hash table. */
2658 static struct bfd_hash_entry *
2659 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2660 struct bfd_hash_table * table,
2661 const char * string)
2663 struct elf32_arm_link_hash_entry * ret =
2664 (struct elf32_arm_link_hash_entry *) entry;
2666 /* Allocate the structure if it has not already been allocated by a
2669 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2671 return (struct bfd_hash_entry *) ret;
2673 /* Call the allocation method of the superclass. */
2674 ret = ((struct elf32_arm_link_hash_entry *)
2675 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2679 ret->relocs_copied = NULL;
2680 ret->tls_type = GOT_UNKNOWN;
2681 ret->plt_thumb_refcount = 0;
2682 ret->plt_maybe_thumb_refcount = 0;
2683 ret->plt_got_offset = -1;
2684 ret->export_glue = NULL;
2686 ret->stub_cache = NULL;
2689 return (struct bfd_hash_entry *) ret;
2692 /* Initialize an entry in the stub hash table. */
2694 static struct bfd_hash_entry *
2695 stub_hash_newfunc (struct bfd_hash_entry *entry,
2696 struct bfd_hash_table *table,
2699 /* Allocate the structure if it has not already been allocated by a
2703 entry = bfd_hash_allocate (table,
2704 sizeof (struct elf32_arm_stub_hash_entry));
2709 /* Call the allocation method of the superclass. */
2710 entry = bfd_hash_newfunc (entry, table, string);
2713 struct elf32_arm_stub_hash_entry *eh;
2715 /* Initialize the local fields. */
2716 eh = (struct elf32_arm_stub_hash_entry *) entry;
2717 eh->stub_sec = NULL;
2718 eh->stub_offset = 0;
2719 eh->target_value = 0;
2720 eh->target_section = NULL;
2721 eh->target_addend = 0;
2723 eh->stub_type = arm_stub_none;
2725 eh->stub_template = NULL;
2726 eh->stub_template_size = 0;
2729 eh->output_name = NULL;
2735 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2736 shortcuts to them in our hash table. */
2739 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2741 struct elf32_arm_link_hash_table *htab;
2743 htab = elf32_arm_hash_table (info);
2744 /* BPABI objects never have a GOT, or associated sections. */
2745 if (htab->symbian_p)
2748 if (! _bfd_elf_create_got_section (dynobj, info))
2751 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2752 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2753 if (!htab->sgot || !htab->sgotplt)
2756 htab->srelgot = bfd_get_section_by_name (dynobj,
2757 RELOC_SECTION (htab, ".got"));
2758 if (htab->srelgot == NULL)
2763 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2764 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2768 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2770 struct elf32_arm_link_hash_table *htab;
2772 htab = elf32_arm_hash_table (info);
2773 if (!htab->sgot && !create_got_section (dynobj, info))
2776 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2779 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2780 htab->srelplt = bfd_get_section_by_name (dynobj,
2781 RELOC_SECTION (htab, ".plt"));
2782 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2784 htab->srelbss = bfd_get_section_by_name (dynobj,
2785 RELOC_SECTION (htab, ".bss"));
2787 if (htab->vxworks_p)
2789 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2794 htab->plt_header_size = 0;
2795 htab->plt_entry_size
2796 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2800 htab->plt_header_size
2801 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2802 htab->plt_entry_size
2803 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2810 || (!info->shared && !htab->srelbss))
2816 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2819 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2820 struct elf_link_hash_entry *dir,
2821 struct elf_link_hash_entry *ind)
2823 struct elf32_arm_link_hash_entry *edir, *eind;
2825 edir = (struct elf32_arm_link_hash_entry *) dir;
2826 eind = (struct elf32_arm_link_hash_entry *) ind;
2828 if (eind->relocs_copied != NULL)
2830 if (edir->relocs_copied != NULL)
2832 struct elf32_arm_relocs_copied **pp;
2833 struct elf32_arm_relocs_copied *p;
2835 /* Add reloc counts against the indirect sym to the direct sym
2836 list. Merge any entries against the same section. */
2837 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2839 struct elf32_arm_relocs_copied *q;
2841 for (q = edir->relocs_copied; q != NULL; q = q->next)
2842 if (q->section == p->section)
2844 q->pc_count += p->pc_count;
2845 q->count += p->count;
2852 *pp = edir->relocs_copied;
2855 edir->relocs_copied = eind->relocs_copied;
2856 eind->relocs_copied = NULL;
2859 if (ind->root.type == bfd_link_hash_indirect)
2861 /* Copy over PLT info. */
2862 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2863 eind->plt_thumb_refcount = 0;
2864 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2865 eind->plt_maybe_thumb_refcount = 0;
2867 if (dir->got.refcount <= 0)
2869 edir->tls_type = eind->tls_type;
2870 eind->tls_type = GOT_UNKNOWN;
2874 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2877 /* Create an ARM elf linker hash table. */
2879 static struct bfd_link_hash_table *
2880 elf32_arm_link_hash_table_create (bfd *abfd)
2882 struct elf32_arm_link_hash_table *ret;
2883 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2885 ret = bfd_malloc (amt);
2889 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2890 elf32_arm_link_hash_newfunc,
2891 sizeof (struct elf32_arm_link_hash_entry)))
2898 ret->sgotplt = NULL;
2899 ret->srelgot = NULL;
2901 ret->srelplt = NULL;
2902 ret->sdynbss = NULL;
2903 ret->srelbss = NULL;
2904 ret->srelplt2 = NULL;
2905 ret->thumb_glue_size = 0;
2906 ret->arm_glue_size = 0;
2907 ret->bx_glue_size = 0;
2908 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2909 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2910 ret->vfp11_erratum_glue_size = 0;
2911 ret->num_vfp11_fixes = 0;
2912 ret->fix_cortex_a8 = 0;
2913 ret->bfd_of_glue_owner = NULL;
2914 ret->byteswap_code = 0;
2915 ret->target1_is_rel = 0;
2916 ret->target2_reloc = R_ARM_NONE;
2917 #ifdef FOUR_WORD_PLT
2918 ret->plt_header_size = 16;
2919 ret->plt_entry_size = 16;
2921 ret->plt_header_size = 20;
2922 ret->plt_entry_size = 12;
2929 ret->sym_cache.abfd = NULL;
2931 ret->tls_ldm_got.refcount = 0;
2932 ret->stub_bfd = NULL;
2933 ret->add_stub_section = NULL;
2934 ret->layout_sections_again = NULL;
2935 ret->stub_group = NULL;
2938 ret->input_list = NULL;
2940 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2941 sizeof (struct elf32_arm_stub_hash_entry)))
2947 return &ret->root.root;
2950 /* Free the derived linker hash table. */
2953 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2955 struct elf32_arm_link_hash_table *ret
2956 = (struct elf32_arm_link_hash_table *) hash;
2958 bfd_hash_table_free (&ret->stub_hash_table);
2959 _bfd_generic_link_hash_table_free (hash);
2962 /* Determine if we're dealing with a Thumb only architecture. */
2965 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2967 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2971 if (arch != TAG_CPU_ARCH_V7)
2974 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2975 Tag_CPU_arch_profile);
2977 return profile == 'M';
2980 /* Determine if we're dealing with a Thumb-2 object. */
2983 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2985 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2987 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2990 /* Determine what kind of NOPs are available. */
2993 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
2995 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2997 return arch == TAG_CPU_ARCH_V6T2
2998 || arch == TAG_CPU_ARCH_V6K
2999 || arch == TAG_CPU_ARCH_V7;
3003 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3005 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3007 return arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7;
3011 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3015 case arm_stub_long_branch_thumb_only:
3016 case arm_stub_long_branch_v4t_thumb_arm:
3017 case arm_stub_short_branch_v4t_thumb_arm:
3018 case arm_stub_long_branch_v4t_thumb_arm_pic:
3019 case arm_stub_long_branch_thumb_only_pic:
3030 /* Determine the type of stub needed, if any, for a call. */
3032 static enum elf32_arm_stub_type
3033 arm_type_of_stub (struct bfd_link_info *info,
3034 asection *input_sec,
3035 const Elf_Internal_Rela *rel,
3036 unsigned char st_type,
3037 struct elf32_arm_link_hash_entry *hash,
3038 bfd_vma destination,
3044 bfd_signed_vma branch_offset;
3045 unsigned int r_type;
3046 struct elf32_arm_link_hash_table * globals;
3049 enum elf32_arm_stub_type stub_type = arm_stub_none;
3052 /* We don't know the actual type of destination in case it is of
3053 type STT_SECTION: give up. */
3054 if (st_type == STT_SECTION)
3057 globals = elf32_arm_hash_table (info);
3059 thumb_only = using_thumb_only (globals);
3061 thumb2 = using_thumb2 (globals);
3063 /* Determine where the call point is. */
3064 location = (input_sec->output_offset
3065 + input_sec->output_section->vma
3068 branch_offset = (bfd_signed_vma)(destination - location);
3070 r_type = ELF32_R_TYPE (rel->r_info);
3072 /* Keep a simpler condition, for the sake of clarity. */
3073 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
3076 /* Note when dealing with PLT entries: the main PLT stub is in
3077 ARM mode, so if the branch is in Thumb mode, another
3078 Thumb->ARM stub will be inserted later just before the ARM
3079 PLT stub. We don't take this extra distance into account
3080 here, because if a long branch stub is needed, we'll add a
3081 Thumb->Arm one and branch directly to the ARM PLT entry
3082 because it avoids spreading offset corrections in several
3086 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3088 /* Handle cases where:
3089 - this call goes too far (different Thumb/Thumb2 max
3091 - it's a Thumb->Arm call and blx is not available, or it's a
3092 Thumb->Arm branch (not bl). A stub is needed in this case,
3093 but only if this call is not through a PLT entry. Indeed,
3094 PLT stubs handle mode switching already.
3097 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3098 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3100 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3101 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3102 || ((st_type != STT_ARM_TFUNC)
3103 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3104 || (r_type == R_ARM_THM_JUMP24))
3107 if (st_type == STT_ARM_TFUNC)
3109 /* Thumb to thumb. */
3112 stub_type = (info->shared | globals->pic_veneer)
3114 ? ((globals->use_blx
3115 && (r_type ==R_ARM_THM_CALL))
3116 /* V5T and above. Stub starts with ARM code, so
3117 we must be able to switch mode before
3118 reaching it, which is only possible for 'bl'
3119 (ie R_ARM_THM_CALL relocation). */
3120 ? arm_stub_long_branch_any_thumb_pic
3121 /* On V4T, use Thumb code only. */
3122 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3124 /* non-PIC stubs. */
3125 : ((globals->use_blx
3126 && (r_type ==R_ARM_THM_CALL))
3127 /* V5T and above. */
3128 ? arm_stub_long_branch_any_any
3130 : arm_stub_long_branch_v4t_thumb_thumb);
3134 stub_type = (info->shared | globals->pic_veneer)
3136 ? arm_stub_long_branch_thumb_only_pic
3138 : arm_stub_long_branch_thumb_only;
3145 && sym_sec->owner != NULL
3146 && !INTERWORK_FLAG (sym_sec->owner))
3148 (*_bfd_error_handler)
3149 (_("%B(%s): warning: interworking not enabled.\n"
3150 " first occurrence: %B: Thumb call to ARM"),
3151 sym_sec->owner, input_bfd, name);
3154 stub_type = (info->shared | globals->pic_veneer)
3156 ? ((globals->use_blx
3157 && (r_type ==R_ARM_THM_CALL))
3158 /* V5T and above. */
3159 ? arm_stub_long_branch_any_arm_pic
3161 : arm_stub_long_branch_v4t_thumb_arm_pic)
3163 /* non-PIC stubs. */
3164 : ((globals->use_blx
3165 && (r_type ==R_ARM_THM_CALL))
3166 /* V5T and above. */
3167 ? arm_stub_long_branch_any_any
3169 : arm_stub_long_branch_v4t_thumb_arm);
3171 /* Handle v4t short branches. */
3172 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3173 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3174 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3175 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3179 else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32)
3181 if (st_type == STT_ARM_TFUNC)
3186 && sym_sec->owner != NULL
3187 && !INTERWORK_FLAG (sym_sec->owner))
3189 (*_bfd_error_handler)
3190 (_("%B(%s): warning: interworking not enabled.\n"
3191 " first occurrence: %B: ARM call to Thumb"),
3192 sym_sec->owner, input_bfd, name);
3195 /* We have an extra 2-bytes reach because of
3196 the mode change (bit 24 (H) of BLX encoding). */
3197 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3198 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3199 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3200 || (r_type == R_ARM_JUMP24)
3201 || (r_type == R_ARM_PLT32))
3203 stub_type = (info->shared | globals->pic_veneer)
3205 ? ((globals->use_blx)
3206 /* V5T and above. */
3207 ? arm_stub_long_branch_any_thumb_pic
3209 : arm_stub_long_branch_v4t_arm_thumb_pic)
3211 /* non-PIC stubs. */
3212 : ((globals->use_blx)
3213 /* V5T and above. */
3214 ? arm_stub_long_branch_any_any
3216 : arm_stub_long_branch_v4t_arm_thumb);
3222 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3223 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3225 stub_type = (info->shared | globals->pic_veneer)
3227 ? arm_stub_long_branch_any_arm_pic
3228 /* non-PIC stubs. */
3229 : arm_stub_long_branch_any_any;
3237 /* Build a name for an entry in the stub hash table. */
3240 elf32_arm_stub_name (const asection *input_section,
3241 const asection *sym_sec,
3242 const struct elf32_arm_link_hash_entry *hash,
3243 const Elf_Internal_Rela *rel)
3250 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3251 stub_name = bfd_malloc (len);
3252 if (stub_name != NULL)
3253 sprintf (stub_name, "%08x_%s+%x",
3254 input_section->id & 0xffffffff,
3255 hash->root.root.root.string,
3256 (int) rel->r_addend & 0xffffffff);
3260 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3261 stub_name = bfd_malloc (len);
3262 if (stub_name != NULL)
3263 sprintf (stub_name, "%08x_%x:%x+%x",
3264 input_section->id & 0xffffffff,
3265 sym_sec->id & 0xffffffff,
3266 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3267 (int) rel->r_addend & 0xffffffff);
3273 /* Look up an entry in the stub hash. Stub entries are cached because
3274 creating the stub name takes a bit of time. */
3276 static struct elf32_arm_stub_hash_entry *
3277 elf32_arm_get_stub_entry (const asection *input_section,
3278 const asection *sym_sec,
3279 struct elf_link_hash_entry *hash,
3280 const Elf_Internal_Rela *rel,
3281 struct elf32_arm_link_hash_table *htab)
3283 struct elf32_arm_stub_hash_entry *stub_entry;
3284 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3285 const asection *id_sec;
3287 if ((input_section->flags & SEC_CODE) == 0)
3290 /* If this input section is part of a group of sections sharing one
3291 stub section, then use the id of the first section in the group.
3292 Stub names need to include a section id, as there may well be
3293 more than one stub used to reach say, printf, and we need to
3294 distinguish between them. */
3295 id_sec = htab->stub_group[input_section->id].link_sec;
3297 if (h != NULL && h->stub_cache != NULL
3298 && h->stub_cache->h == h
3299 && h->stub_cache->id_sec == id_sec)
3301 stub_entry = h->stub_cache;
3307 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3308 if (stub_name == NULL)
3311 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3312 stub_name, FALSE, FALSE);
3314 h->stub_cache = stub_entry;
3322 /* Find or create a stub section. Returns a pointer to the stub section, and
3323 the section to which the stub section will be attached (in *LINK_SEC_P).
3324 LINK_SEC_P may be NULL. */
3327 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3328 struct elf32_arm_link_hash_table *htab)
3333 link_sec = htab->stub_group[section->id].link_sec;
3334 stub_sec = htab->stub_group[section->id].stub_sec;
3335 if (stub_sec == NULL)
3337 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3338 if (stub_sec == NULL)
3344 namelen = strlen (link_sec->name);
3345 len = namelen + sizeof (STUB_SUFFIX);
3346 s_name = bfd_alloc (htab->stub_bfd, len);
3350 memcpy (s_name, link_sec->name, namelen);
3351 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3352 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3353 if (stub_sec == NULL)
3355 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3357 htab->stub_group[section->id].stub_sec = stub_sec;
3361 *link_sec_p = link_sec;
3366 /* Add a new stub entry to the stub hash. Not all fields of the new
3367 stub entry are initialised. */
3369 static struct elf32_arm_stub_hash_entry *
3370 elf32_arm_add_stub (const char *stub_name,
3372 struct elf32_arm_link_hash_table *htab)
3376 struct elf32_arm_stub_hash_entry *stub_entry;
3378 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3379 if (stub_sec == NULL)
3382 /* Enter this entry into the linker stub hash table. */
3383 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3385 if (stub_entry == NULL)
3387 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3393 stub_entry->stub_sec = stub_sec;
3394 stub_entry->stub_offset = 0;
3395 stub_entry->id_sec = link_sec;
3400 /* Store an Arm insn into an output section not processed by
3401 elf32_arm_write_section. */
3404 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3405 bfd * output_bfd, bfd_vma val, void * ptr)
3407 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3408 bfd_putl32 (val, ptr);
3410 bfd_putb32 (val, ptr);
3413 /* Store a 16-bit Thumb insn into an output section not processed by
3414 elf32_arm_write_section. */
3417 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3418 bfd * output_bfd, bfd_vma val, void * ptr)
3420 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3421 bfd_putl16 (val, ptr);
3423 bfd_putb16 (val, ptr);
3426 static bfd_reloc_status_type elf32_arm_final_link_relocate
3427 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3428 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3429 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3432 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3436 struct elf32_arm_stub_hash_entry *stub_entry;
3437 struct bfd_link_info *info;
3438 struct elf32_arm_link_hash_table *htab;
3446 const insn_sequence *template;
3448 struct elf32_arm_link_hash_table * globals;
3449 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3450 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3453 /* Massage our args to the form they really have. */
3454 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3455 info = (struct bfd_link_info *) in_arg;
3457 globals = elf32_arm_hash_table (info);
3459 htab = elf32_arm_hash_table (info);
3460 stub_sec = stub_entry->stub_sec;
3462 if ((htab->fix_cortex_a8 < 0)
3463 != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3464 /* We have to do the a8 fixes last, as they are less aligned than
3465 the other veneers. */
3468 /* Make a note of the offset within the stubs for this entry. */
3469 stub_entry->stub_offset = stub_sec->size;
3470 loc = stub_sec->contents + stub_entry->stub_offset;
3472 stub_bfd = stub_sec->owner;
3474 /* This is the address of the start of the stub. */
3475 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3476 + stub_entry->stub_offset;
3478 /* This is the address of the stub destination. */
3479 sym_value = (stub_entry->target_value
3480 + stub_entry->target_section->output_offset
3481 + stub_entry->target_section->output_section->vma);
3483 template = stub_entry->stub_template;
3484 template_size = stub_entry->stub_template_size;
3487 for (i = 0; i < template_size; i++)
3489 switch (template[i].type)
3493 bfd_vma data = template[i].data;
3494 if (template[i].reloc_addend != 0)
3496 /* We've borrowed the reloc_addend field to mean we should
3497 insert a condition code into this (Thumb-1 branch)
3498 instruction. See THUMB16_BCOND_INSN. */
3499 BFD_ASSERT ((data & 0xff00) == 0xd000);
3500 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3502 put_thumb_insn (globals, stub_bfd, data, loc + size);
3508 put_thumb_insn (globals, stub_bfd, (template[i].data >> 16) & 0xffff,
3510 put_thumb_insn (globals, stub_bfd, template[i].data & 0xffff,
3512 if (template[i].r_type != R_ARM_NONE)
3514 stub_reloc_idx[nrelocs] = i;
3515 stub_reloc_offset[nrelocs++] = size;
3521 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3522 /* Handle cases where the target is encoded within the
3524 if (template[i].r_type == R_ARM_JUMP24)
3526 stub_reloc_idx[nrelocs] = i;
3527 stub_reloc_offset[nrelocs++] = size;
3533 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3534 stub_reloc_idx[nrelocs] = i;
3535 stub_reloc_offset[nrelocs++] = size;
3545 stub_sec->size += size;
3547 /* Stub size has already been computed in arm_size_one_stub. Check
3549 BFD_ASSERT (size == stub_entry->stub_size);
3551 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3552 if (stub_entry->st_type == STT_ARM_TFUNC)
3555 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3557 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
3559 for (i = 0; i < nrelocs; i++)
3560 if (template[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3561 || template[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3562 || template[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3563 || template[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
3565 Elf_Internal_Rela rel;
3566 bfd_boolean unresolved_reloc;
3567 char *error_message;
3569 = (template[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
3570 ? STT_ARM_TFUNC : 0;
3571 bfd_vma points_to = sym_value + stub_entry->target_addend;
3573 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3574 rel.r_info = ELF32_R_INFO (0, template[stub_reloc_idx[i]].r_type);
3575 rel.r_addend = template[stub_reloc_idx[i]].reloc_addend;
3577 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3578 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3579 template should refer back to the instruction after the original
3581 points_to = sym_value;
3583 /* There may be unintended consequences if this is not true. */
3584 BFD_ASSERT (stub_entry->h == NULL);
3586 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3587 properly. We should probably use this function unconditionally,
3588 rather than only for certain relocations listed in the enclosing
3589 conditional, for the sake of consistency. */
3590 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3591 (template[stub_reloc_idx[i]].r_type),
3592 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3593 points_to, info, stub_entry->target_section, "", sym_flags,
3594 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3599 _bfd_final_link_relocate (elf32_arm_howto_from_type
3600 (template[stub_reloc_idx[i]].r_type), stub_bfd, stub_sec,
3601 stub_sec->contents, stub_entry->stub_offset + stub_reloc_offset[i],
3602 sym_value + stub_entry->target_addend,
3603 template[stub_reloc_idx[i]].reloc_addend);
3610 /* Calculate the template, template size and instruction size for a stub.
3611 Return value is the instruction size. */
3614 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3615 const insn_sequence **stub_template,
3616 int *stub_template_size)
3618 const insn_sequence *template = NULL;
3619 int template_size = 0, i;
3622 template = stub_definitions[stub_type].template;
3623 template_size = stub_definitions[stub_type].template_size;
3626 for (i = 0; i < template_size; i++)
3628 switch (template[i].type)
3647 *stub_template = template;
3649 if (stub_template_size)
3650 *stub_template_size = template_size;
3655 /* As above, but don't actually build the stub. Just bump offset so
3656 we know stub section sizes. */
3659 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3662 struct elf32_arm_stub_hash_entry *stub_entry;
3663 struct elf32_arm_link_hash_table *htab;
3664 const insn_sequence *template;
3665 int template_size, size;
3667 /* Massage our args to the form they really have. */
3668 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3669 htab = (struct elf32_arm_link_hash_table *) in_arg;
3671 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3672 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3674 size = find_stub_size_and_template (stub_entry->stub_type, &template,
3677 stub_entry->stub_size = size;
3678 stub_entry->stub_template = template;
3679 stub_entry->stub_template_size = template_size;
3681 size = (size + 7) & ~7;
3682 stub_entry->stub_sec->size += size;
3687 /* External entry points for sizing and building linker stubs. */
3689 /* Set up various things so that we can make a list of input sections
3690 for each output section included in the link. Returns -1 on error,
3691 0 when no stubs will be needed, and 1 on success. */
3694 elf32_arm_setup_section_lists (bfd *output_bfd,
3695 struct bfd_link_info *info)
3698 unsigned int bfd_count;
3699 int top_id, top_index;
3701 asection **input_list, **list;
3703 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3705 if (! is_elf_hash_table (htab))
3708 /* Count the number of input BFDs and find the top input section id. */
3709 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3711 input_bfd = input_bfd->link_next)
3714 for (section = input_bfd->sections;
3716 section = section->next)
3718 if (top_id < section->id)
3719 top_id = section->id;
3722 htab->bfd_count = bfd_count;
3724 amt = sizeof (struct map_stub) * (top_id + 1);
3725 htab->stub_group = bfd_zmalloc (amt);
3726 if (htab->stub_group == NULL)
3729 /* We can't use output_bfd->section_count here to find the top output
3730 section index as some sections may have been removed, and
3731 _bfd_strip_section_from_output doesn't renumber the indices. */
3732 for (section = output_bfd->sections, top_index = 0;
3734 section = section->next)
3736 if (top_index < section->index)
3737 top_index = section->index;
3740 htab->top_index = top_index;
3741 amt = sizeof (asection *) * (top_index + 1);
3742 input_list = bfd_malloc (amt);
3743 htab->input_list = input_list;
3744 if (input_list == NULL)
3747 /* For sections we aren't interested in, mark their entries with a
3748 value we can check later. */
3749 list = input_list + top_index;
3751 *list = bfd_abs_section_ptr;
3752 while (list-- != input_list);
3754 for (section = output_bfd->sections;
3756 section = section->next)
3758 if ((section->flags & SEC_CODE) != 0)
3759 input_list[section->index] = NULL;
3765 /* The linker repeatedly calls this function for each input section,
3766 in the order that input sections are linked into output sections.
3767 Build lists of input sections to determine groupings between which
3768 we may insert linker stubs. */
3771 elf32_arm_next_input_section (struct bfd_link_info *info,
3774 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3776 if (isec->output_section->index <= htab->top_index)
3778 asection **list = htab->input_list + isec->output_section->index;
3780 if (*list != bfd_abs_section_ptr)
3782 /* Steal the link_sec pointer for our list. */
3783 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3784 /* This happens to make the list in reverse order,
3785 which we reverse later. */
3786 PREV_SEC (isec) = *list;
3792 /* See whether we can group stub sections together. Grouping stub
3793 sections may result in fewer stubs. More importantly, we need to
3794 put all .init* and .fini* stubs at the end of the .init or
3795 .fini output sections respectively, because glibc splits the
3796 _init and _fini functions into multiple parts. Putting a stub in
3797 the middle of a function is not a good idea. */
3800 group_sections (struct elf32_arm_link_hash_table *htab,
3801 bfd_size_type stub_group_size,
3802 bfd_boolean stubs_always_after_branch)
3804 asection **list = htab->input_list;
3808 asection *tail = *list;
3811 if (tail == bfd_abs_section_ptr)
3814 /* Reverse the list: we must avoid placing stubs at the
3815 beginning of the section because the beginning of the text
3816 section may be required for an interrupt vector in bare metal
3818 #define NEXT_SEC PREV_SEC
3820 while (tail != NULL)
3822 /* Pop from tail. */
3823 asection *item = tail;
3824 tail = PREV_SEC (item);
3827 NEXT_SEC (item) = head;
3831 while (head != NULL)
3835 bfd_vma stub_group_start = head->output_offset;
3836 bfd_vma end_of_next;
3839 while (NEXT_SEC (curr) != NULL)
3841 next = NEXT_SEC (curr);
3842 end_of_next = next->output_offset + next->size;
3843 if (end_of_next - stub_group_start >= stub_group_size)
3844 /* End of NEXT is too far from start, so stop. */
3846 /* Add NEXT to the group. */
3850 /* OK, the size from the start to the start of CURR is less
3851 than stub_group_size and thus can be handled by one stub
3852 section. (Or the head section is itself larger than
3853 stub_group_size, in which case we may be toast.)
3854 We should really be keeping track of the total size of
3855 stubs added here, as stubs contribute to the final output
3859 next = NEXT_SEC (head);
3860 /* Set up this stub group. */
3861 htab->stub_group[head->id].link_sec = curr;
3863 while (head != curr && (head = next) != NULL);
3865 /* But wait, there's more! Input sections up to stub_group_size
3866 bytes after the stub section can be handled by it too. */
3867 if (!stubs_always_after_branch)
3869 stub_group_start = curr->output_offset + curr->size;
3871 while (next != NULL)
3873 end_of_next = next->output_offset + next->size;
3874 if (end_of_next - stub_group_start >= stub_group_size)
3875 /* End of NEXT is too far from stubs, so stop. */
3877 /* Add NEXT to the stub group. */
3879 next = NEXT_SEC (head);
3880 htab->stub_group[head->id].link_sec = curr;
3886 while (list++ != htab->input_list + htab->top_index);
3888 free (htab->input_list);
3893 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3897 a8_reloc_compare (const void *a, const void *b)
3899 const struct a8_erratum_reloc *ra = a, *rb = b;
3901 if (ra->from < rb->from)
3903 else if (ra->from > rb->from)
3909 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3910 const char *, char **);
3912 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3913 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3914 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
3918 cortex_a8_erratum_scan (bfd *input_bfd,
3919 struct bfd_link_info *info,
3920 struct a8_erratum_fix **a8_fixes_p,
3921 unsigned int *num_a8_fixes_p,
3922 unsigned int *a8_fix_table_size_p,
3923 struct a8_erratum_reloc *a8_relocs,
3924 unsigned int num_a8_relocs,
3925 unsigned prev_num_a8_fixes,
3926 bfd_boolean *stub_changed_p)
3929 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3930 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3931 unsigned int num_a8_fixes = *num_a8_fixes_p;
3932 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
3934 for (section = input_bfd->sections;
3936 section = section->next)
3938 bfd_byte *contents = NULL;
3939 struct _arm_elf_section_data *sec_data;
3943 if (elf_section_type (section) != SHT_PROGBITS
3944 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3945 || (section->flags & SEC_EXCLUDE) != 0
3946 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3947 || (section->output_section == bfd_abs_section_ptr))
3950 base_vma = section->output_section->vma + section->output_offset;
3952 if (elf_section_data (section)->this_hdr.contents != NULL)
3953 contents = elf_section_data (section)->this_hdr.contents;
3954 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3957 sec_data = elf32_arm_section_data (section);
3959 for (span = 0; span < sec_data->mapcount; span++)
3961 unsigned int span_start = sec_data->map[span].vma;
3962 unsigned int span_end = (span == sec_data->mapcount - 1)
3963 ? section->size : sec_data->map[span + 1].vma;
3965 char span_type = sec_data->map[span].type;
3966 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
3968 if (span_type != 't')
3971 /* Span is entirely within a single 4KB region: skip scanning. */
3972 if (((base_vma + span_start) & ~0xfff)
3973 == ((base_vma + span_end) & ~0xfff))
3976 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3978 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3979 * The branch target is in the same 4KB region as the
3980 first half of the branch.
3981 * The instruction before the branch is a 32-bit
3982 length non-branch instruction. */
3983 for (i = span_start; i < span_end;)
3985 unsigned int insn = bfd_getl16 (&contents[i]);
3986 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
3987 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
3989 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
3994 /* Load the rest of the insn (in manual-friendly order). */
3995 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
3997 /* Encoding T4: B<c>.W. */
3998 is_b = (insn & 0xf800d000) == 0xf0009000;
3999 /* Encoding T1: BL<c>.W. */
4000 is_bl = (insn & 0xf800d000) == 0xf000d000;
4001 /* Encoding T2: BLX<c>.W. */
4002 is_blx = (insn & 0xf800d000) == 0xf000c000;
4003 /* Encoding T3: B<c>.W (not permitted in IT block). */
4004 is_bcc = (insn & 0xf800d000) == 0xf0008000
4005 && (insn & 0x07f00000) != 0x03800000;
4008 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4010 if (((base_vma + i) & 0xfff) == 0xffe
4014 && ! last_was_branch)
4016 bfd_signed_vma offset;
4017 bfd_boolean force_target_arm = FALSE;
4018 bfd_boolean force_target_thumb = FALSE;
4020 enum elf32_arm_stub_type stub_type = arm_stub_none;
4021 struct a8_erratum_reloc key, *found;
4023 key.from = base_vma + i;
4024 found = bsearch (&key, a8_relocs, num_a8_relocs,
4025 sizeof (struct a8_erratum_reloc),
4030 char *error_message = NULL;
4031 struct elf_link_hash_entry *entry;
4033 /* We don't care about the error returned from this
4034 function, only if there is glue or not. */
4035 entry = find_thumb_glue (info, found->sym_name,
4039 found->non_a8_stub = TRUE;
4041 if (found->r_type == R_ARM_THM_CALL
4042 && found->st_type != STT_ARM_TFUNC)
4043 force_target_arm = TRUE;
4044 else if (found->r_type == R_ARM_THM_CALL
4045 && found->st_type == STT_ARM_TFUNC)
4046 force_target_thumb = TRUE;
4049 /* Check if we have an offending branch instruction. */
4051 if (found && found->non_a8_stub)
4052 /* We've already made a stub for this instruction, e.g.
4053 it's a long branch or a Thumb->ARM stub. Assume that
4054 stub will suffice to work around the A8 erratum (see
4055 setting of always_after_branch above). */
4059 offset = (insn & 0x7ff) << 1;
4060 offset |= (insn & 0x3f0000) >> 4;
4061 offset |= (insn & 0x2000) ? 0x40000 : 0;
4062 offset |= (insn & 0x800) ? 0x80000 : 0;
4063 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4064 if (offset & 0x100000)
4065 offset |= ~ ((bfd_signed_vma) 0xfffff);
4066 stub_type = arm_stub_a8_veneer_b_cond;
4068 else if (is_b || is_bl || is_blx)
4070 int s = (insn & 0x4000000) != 0;
4071 int j1 = (insn & 0x2000) != 0;
4072 int j2 = (insn & 0x800) != 0;
4076 offset = (insn & 0x7ff) << 1;
4077 offset |= (insn & 0x3ff0000) >> 4;
4081 if (offset & 0x1000000)
4082 offset |= ~ ((bfd_signed_vma) 0xffffff);
4085 offset &= ~ ((bfd_signed_vma) 3);
4087 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4088 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4091 if (stub_type != arm_stub_none)
4093 bfd_vma pc_for_insn = base_vma + i + 4;
4095 /* The original instruction is a BL, but the target is
4096 an ARM instruction. If we were not making a stub,
4097 the BL would have been converted to a BLX. Use the
4098 BLX stub instead in that case. */
4099 if (htab->use_blx && force_target_arm
4100 && stub_type == arm_stub_a8_veneer_bl)
4102 stub_type = arm_stub_a8_veneer_blx;
4106 /* Conversely, if the original instruction was
4107 BLX but the target is Thumb mode, use the BL
4109 else if (force_target_thumb
4110 && stub_type == arm_stub_a8_veneer_blx)
4112 stub_type = arm_stub_a8_veneer_bl;
4118 pc_for_insn &= ~ ((bfd_vma) 3);
4120 /* If we found a relocation, use the proper destination,
4121 not the offset in the (unrelocated) instruction.
4122 Note this is always done if we switched the stub type
4126 (bfd_signed_vma) (found->destination - pc_for_insn);
4128 target = pc_for_insn + offset;
4130 /* The BLX stub is ARM-mode code. Adjust the offset to
4131 take the different PC value (+8 instead of +4) into
4133 if (stub_type == arm_stub_a8_veneer_blx)
4136 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4138 char *stub_name = NULL;
4140 if (num_a8_fixes == a8_fix_table_size)
4142 a8_fix_table_size *= 2;
4143 a8_fixes = bfd_realloc (a8_fixes,
4144 sizeof (struct a8_erratum_fix)
4145 * a8_fix_table_size);
4148 if (num_a8_fixes < prev_num_a8_fixes)
4150 /* If we're doing a subsequent scan,
4151 check if we've found the same fix as
4152 before, and try and reuse the stub
4154 stub_name = a8_fixes[num_a8_fixes].stub_name;
4155 if ((a8_fixes[num_a8_fixes].section != section)
4156 || (a8_fixes[num_a8_fixes].offset != i))
4160 *stub_changed_p = TRUE;
4166 stub_name = bfd_malloc (8 + 1 + 8 + 1);
4167 if (stub_name != NULL)
4168 sprintf (stub_name, "%x:%x", section->id, i);
4171 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4172 a8_fixes[num_a8_fixes].section = section;
4173 a8_fixes[num_a8_fixes].offset = i;
4174 a8_fixes[num_a8_fixes].addend = offset;
4175 a8_fixes[num_a8_fixes].orig_insn = insn;
4176 a8_fixes[num_a8_fixes].stub_name = stub_name;
4177 a8_fixes[num_a8_fixes].stub_type = stub_type;
4184 i += insn_32bit ? 4 : 2;
4185 last_was_32bit = insn_32bit;
4186 last_was_branch = is_32bit_branch;
4190 if (elf_section_data (section)->this_hdr.contents == NULL)
4194 *a8_fixes_p = a8_fixes;
4195 *num_a8_fixes_p = num_a8_fixes;
4196 *a8_fix_table_size_p = a8_fix_table_size;
4201 /* Determine and set the size of the stub section for a final link.
4203 The basic idea here is to examine all the relocations looking for
4204 PC-relative calls to a target that is unreachable with a "bl"
4208 elf32_arm_size_stubs (bfd *output_bfd,
4210 struct bfd_link_info *info,
4211 bfd_signed_vma group_size,
4212 asection * (*add_stub_section) (const char *, asection *),
4213 void (*layout_sections_again) (void))
4215 bfd_size_type stub_group_size;
4216 bfd_boolean stubs_always_after_branch;
4217 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4218 struct a8_erratum_fix *a8_fixes = NULL;
4219 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4220 struct a8_erratum_reloc *a8_relocs = NULL;
4221 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4223 if (htab->fix_cortex_a8)
4225 a8_fixes = bfd_zmalloc (sizeof (struct a8_erratum_fix)
4226 * a8_fix_table_size);
4227 a8_relocs = bfd_zmalloc (sizeof (struct a8_erratum_reloc)
4228 * a8_reloc_table_size);
4231 /* Propagate mach to stub bfd, because it may not have been
4232 finalized when we created stub_bfd. */
4233 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4234 bfd_get_mach (output_bfd));
4236 /* Stash our params away. */
4237 htab->stub_bfd = stub_bfd;
4238 htab->add_stub_section = add_stub_section;
4239 htab->layout_sections_again = layout_sections_again;
4240 stubs_always_after_branch = group_size < 0;
4242 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4243 as the first half of a 32-bit branch straddling two 4K pages. This is a
4244 crude way of enforcing that. */
4245 if (htab->fix_cortex_a8)
4246 stubs_always_after_branch = 1;
4249 stub_group_size = -group_size;
4251 stub_group_size = group_size;
4253 if (stub_group_size == 1)
4255 /* Default values. */
4256 /* Thumb branch range is +-4MB has to be used as the default
4257 maximum size (a given section can contain both ARM and Thumb
4258 code, so the worst case has to be taken into account).
4260 This value is 24K less than that, which allows for 2025
4261 12-byte stubs. If we exceed that, then we will fail to link.
4262 The user will have to relink with an explicit group size
4264 stub_group_size = 4170000;
4267 group_sections (htab, stub_group_size, stubs_always_after_branch);
4269 /* If we're applying the cortex A8 fix, we need to determine the
4270 program header size now, because we cannot change it later --
4271 that could alter section placements. Notice the A8 erratum fix
4272 ends up requiring the section addresses to remain unchanged
4273 modulo the page size. That's something we cannot represent
4274 inside BFD, and we don't want to force the section alignment to
4275 be the page size. */
4276 if (htab->fix_cortex_a8)
4277 (*htab->layout_sections_again) ();
4282 unsigned int bfd_indx;
4284 bfd_boolean stub_changed = FALSE;
4285 unsigned prev_num_a8_fixes = num_a8_fixes;
4288 for (input_bfd = info->input_bfds, bfd_indx = 0;
4290 input_bfd = input_bfd->link_next, bfd_indx++)
4292 Elf_Internal_Shdr *symtab_hdr;
4294 Elf_Internal_Sym *local_syms = NULL;
4298 /* We'll need the symbol table in a second. */
4299 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4300 if (symtab_hdr->sh_info == 0)
4303 /* Walk over each section attached to the input bfd. */
4304 for (section = input_bfd->sections;
4306 section = section->next)
4308 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4310 /* If there aren't any relocs, then there's nothing more
4312 if ((section->flags & SEC_RELOC) == 0
4313 || section->reloc_count == 0
4314 || (section->flags & SEC_CODE) == 0)
4317 /* If this section is a link-once section that will be
4318 discarded, then don't create any stubs. */
4319 if (section->output_section == NULL
4320 || section->output_section->owner != output_bfd)
4323 /* Get the relocs. */
4325 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4326 NULL, info->keep_memory);
4327 if (internal_relocs == NULL)
4328 goto error_ret_free_local;
4330 /* Now examine each relocation. */
4331 irela = internal_relocs;
4332 irelaend = irela + section->reloc_count;
4333 for (; irela < irelaend; irela++)
4335 unsigned int r_type, r_indx;
4336 enum elf32_arm_stub_type stub_type;
4337 struct elf32_arm_stub_hash_entry *stub_entry;
4340 bfd_vma destination;
4341 struct elf32_arm_link_hash_entry *hash;
4342 const char *sym_name;
4344 const asection *id_sec;
4345 unsigned char st_type;
4346 bfd_boolean created_stub = FALSE;
4348 r_type = ELF32_R_TYPE (irela->r_info);
4349 r_indx = ELF32_R_SYM (irela->r_info);
4351 if (r_type >= (unsigned int) R_ARM_max)
4353 bfd_set_error (bfd_error_bad_value);
4354 error_ret_free_internal:
4355 if (elf_section_data (section)->relocs == NULL)
4356 free (internal_relocs);
4357 goto error_ret_free_local;
4360 /* Only look for stubs on branch instructions. */
4361 if ((r_type != (unsigned int) R_ARM_CALL)
4362 && (r_type != (unsigned int) R_ARM_THM_CALL)
4363 && (r_type != (unsigned int) R_ARM_JUMP24)
4364 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4365 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4366 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4367 && (r_type != (unsigned int) R_ARM_PLT32))
4370 /* Now determine the call target, its name, value,
4377 if (r_indx < symtab_hdr->sh_info)
4379 /* It's a local symbol. */
4380 Elf_Internal_Sym *sym;
4381 Elf_Internal_Shdr *hdr;
4383 if (local_syms == NULL)
4386 = (Elf_Internal_Sym *) symtab_hdr->contents;
4387 if (local_syms == NULL)
4389 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4390 symtab_hdr->sh_info, 0,
4392 if (local_syms == NULL)
4393 goto error_ret_free_internal;
4396 sym = local_syms + r_indx;
4397 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4398 sym_sec = hdr->bfd_section;
4400 /* This is an undefined symbol. It can never
4404 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4405 sym_value = sym->st_value;
4406 destination = (sym_value + irela->r_addend
4407 + sym_sec->output_offset
4408 + sym_sec->output_section->vma);
4409 st_type = ELF_ST_TYPE (sym->st_info);
4411 = bfd_elf_string_from_elf_section (input_bfd,
4412 symtab_hdr->sh_link,
4417 /* It's an external symbol. */
4420 e_indx = r_indx - symtab_hdr->sh_info;
4421 hash = ((struct elf32_arm_link_hash_entry *)
4422 elf_sym_hashes (input_bfd)[e_indx]);
4424 while (hash->root.root.type == bfd_link_hash_indirect
4425 || hash->root.root.type == bfd_link_hash_warning)
4426 hash = ((struct elf32_arm_link_hash_entry *)
4427 hash->root.root.u.i.link);
4429 if (hash->root.root.type == bfd_link_hash_defined
4430 || hash->root.root.type == bfd_link_hash_defweak)
4432 sym_sec = hash->root.root.u.def.section;
4433 sym_value = hash->root.root.u.def.value;
4435 struct elf32_arm_link_hash_table *globals =
4436 elf32_arm_hash_table (info);
4438 /* For a destination in a shared library,
4439 use the PLT stub as target address to
4440 decide whether a branch stub is
4442 if (globals->splt != NULL && hash != NULL
4443 && hash->root.plt.offset != (bfd_vma) -1)
4445 sym_sec = globals->splt;
4446 sym_value = hash->root.plt.offset;
4447 if (sym_sec->output_section != NULL)
4448 destination = (sym_value
4449 + sym_sec->output_offset
4450 + sym_sec->output_section->vma);
4452 else if (sym_sec->output_section != NULL)
4453 destination = (sym_value + irela->r_addend
4454 + sym_sec->output_offset
4455 + sym_sec->output_section->vma);
4457 else if ((hash->root.root.type == bfd_link_hash_undefined)
4458 || (hash->root.root.type == bfd_link_hash_undefweak))
4460 /* For a shared library, use the PLT stub as
4461 target address to decide whether a long
4462 branch stub is needed.
4463 For absolute code, they cannot be handled. */
4464 struct elf32_arm_link_hash_table *globals =
4465 elf32_arm_hash_table (info);
4467 if (globals->splt != NULL && hash != NULL
4468 && hash->root.plt.offset != (bfd_vma) -1)
4470 sym_sec = globals->splt;
4471 sym_value = hash->root.plt.offset;
4472 if (sym_sec->output_section != NULL)
4473 destination = (sym_value
4474 + sym_sec->output_offset
4475 + sym_sec->output_section->vma);
4482 bfd_set_error (bfd_error_bad_value);
4483 goto error_ret_free_internal;
4485 st_type = ELF_ST_TYPE (hash->root.type);
4486 sym_name = hash->root.root.root.string;
4491 /* Determine what (if any) linker stub is needed. */
4492 stub_type = arm_type_of_stub (info, section, irela,
4494 destination, sym_sec,
4495 input_bfd, sym_name);
4496 if (stub_type == arm_stub_none)
4499 /* Support for grouping stub sections. */
4500 id_sec = htab->stub_group[section->id].link_sec;
4502 /* Get the name of this stub. */
4503 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4506 goto error_ret_free_internal;
4508 /* We've either created a stub for this reloc already,
4509 or we are about to. */
4510 created_stub = TRUE;
4512 stub_entry = arm_stub_hash_lookup
4513 (&htab->stub_hash_table, stub_name,
4515 if (stub_entry != NULL)
4517 /* The proper stub has already been created. */
4519 stub_entry->target_value = sym_value;
4523 stub_entry = elf32_arm_add_stub (stub_name, section,
4525 if (stub_entry == NULL)
4528 goto error_ret_free_internal;
4531 stub_entry->target_value = sym_value;
4532 stub_entry->target_section = sym_sec;
4533 stub_entry->stub_type = stub_type;
4534 stub_entry->h = hash;
4535 stub_entry->st_type = st_type;
4537 if (sym_name == NULL)
4538 sym_name = "unnamed";
4539 stub_entry->output_name
4540 = bfd_alloc (htab->stub_bfd,
4541 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4542 + strlen (sym_name));
4543 if (stub_entry->output_name == NULL)
4546 goto error_ret_free_internal;
4549 /* For historical reasons, use the existing names for
4550 ARM-to-Thumb and Thumb-to-ARM stubs. */
4551 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4552 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4553 && st_type != STT_ARM_TFUNC)
4554 sprintf (stub_entry->output_name,
4555 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4556 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4557 || (r_type == (unsigned int) R_ARM_JUMP24))
4558 && st_type == STT_ARM_TFUNC)
4559 sprintf (stub_entry->output_name,
4560 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4562 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4565 stub_changed = TRUE;
4569 /* Look for relocations which might trigger Cortex-A8
4571 if (htab->fix_cortex_a8
4572 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4573 || r_type == (unsigned int) R_ARM_THM_JUMP19
4574 || r_type == (unsigned int) R_ARM_THM_CALL
4575 || r_type == (unsigned int) R_ARM_THM_XPC22))
4577 bfd_vma from = section->output_section->vma
4578 + section->output_offset
4581 if ((from & 0xfff) == 0xffe)
4583 /* Found a candidate. Note we haven't checked the
4584 destination is within 4K here: if we do so (and
4585 don't create an entry in a8_relocs) we can't tell
4586 that a branch should have been relocated when
4588 if (num_a8_relocs == a8_reloc_table_size)
4590 a8_reloc_table_size *= 2;
4591 a8_relocs = bfd_realloc (a8_relocs,
4592 sizeof (struct a8_erratum_reloc)
4593 * a8_reloc_table_size);
4596 a8_relocs[num_a8_relocs].from = from;
4597 a8_relocs[num_a8_relocs].destination = destination;
4598 a8_relocs[num_a8_relocs].r_type = r_type;
4599 a8_relocs[num_a8_relocs].st_type = st_type;
4600 a8_relocs[num_a8_relocs].sym_name = sym_name;
4601 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4608 /* We're done with the internal relocs, free them. */
4609 if (elf_section_data (section)->relocs == NULL)
4610 free (internal_relocs);
4613 if (htab->fix_cortex_a8)
4615 /* Sort relocs which might apply to Cortex-A8 erratum. */
4616 qsort (a8_relocs, num_a8_relocs,
4617 sizeof (struct a8_erratum_reloc),
4620 /* Scan for branches which might trigger Cortex-A8 erratum. */
4621 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4622 &num_a8_fixes, &a8_fix_table_size,
4623 a8_relocs, num_a8_relocs,
4624 prev_num_a8_fixes, &stub_changed)
4626 goto error_ret_free_local;
4630 if (prev_num_a8_fixes != num_a8_fixes)
4631 stub_changed = TRUE;
4636 /* OK, we've added some stubs. Find out the new size of the
4638 for (stub_sec = htab->stub_bfd->sections;
4640 stub_sec = stub_sec->next)
4642 /* Ignore non-stub sections. */
4643 if (!strstr (stub_sec->name, STUB_SUFFIX))
4649 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4651 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4652 if (htab->fix_cortex_a8)
4653 for (i = 0; i < num_a8_fixes; i++)
4655 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4656 a8_fixes[i].section, htab);
4658 if (stub_sec == NULL)
4659 goto error_ret_free_local;
4662 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4667 /* Ask the linker to do its stuff. */
4668 (*htab->layout_sections_again) ();
4671 /* Add stubs for Cortex-A8 erratum fixes now. */
4672 if (htab->fix_cortex_a8)
4674 for (i = 0; i < num_a8_fixes; i++)
4676 struct elf32_arm_stub_hash_entry *stub_entry;
4677 char *stub_name = a8_fixes[i].stub_name;
4678 asection *section = a8_fixes[i].section;
4679 unsigned int section_id = a8_fixes[i].section->id;
4680 asection *link_sec = htab->stub_group[section_id].link_sec;
4681 asection *stub_sec = htab->stub_group[section_id].stub_sec;
4682 const insn_sequence *template;
4683 int template_size, size = 0;
4685 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4687 if (stub_entry == NULL)
4689 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4695 stub_entry->stub_sec = stub_sec;
4696 stub_entry->stub_offset = 0;
4697 stub_entry->id_sec = link_sec;
4698 stub_entry->stub_type = a8_fixes[i].stub_type;
4699 stub_entry->target_section = a8_fixes[i].section;
4700 stub_entry->target_value = a8_fixes[i].offset;
4701 stub_entry->target_addend = a8_fixes[i].addend;
4702 stub_entry->orig_insn = a8_fixes[i].orig_insn;
4703 stub_entry->st_type = STT_ARM_TFUNC;
4705 size = find_stub_size_and_template (a8_fixes[i].stub_type, &template,
4708 stub_entry->stub_size = size;
4709 stub_entry->stub_template = template;
4710 stub_entry->stub_template_size = template_size;
4713 /* Stash the Cortex-A8 erratum fix array for use later in
4714 elf32_arm_write_section(). */
4715 htab->a8_erratum_fixes = a8_fixes;
4716 htab->num_a8_erratum_fixes = num_a8_fixes;
4720 htab->a8_erratum_fixes = NULL;
4721 htab->num_a8_erratum_fixes = 0;
4725 error_ret_free_local:
4729 /* Build all the stubs associated with the current output file. The
4730 stubs are kept in a hash table attached to the main linker hash
4731 table. We also set up the .plt entries for statically linked PIC
4732 functions here. This function is called via arm_elf_finish in the
4736 elf32_arm_build_stubs (struct bfd_link_info *info)
4739 struct bfd_hash_table *table;
4740 struct elf32_arm_link_hash_table *htab;
4742 htab = elf32_arm_hash_table (info);
4744 for (stub_sec = htab->stub_bfd->sections;
4746 stub_sec = stub_sec->next)
4750 /* Ignore non-stub sections. */
4751 if (!strstr (stub_sec->name, STUB_SUFFIX))
4754 /* Allocate memory to hold the linker stubs. */
4755 size = stub_sec->size;
4756 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4757 if (stub_sec->contents == NULL && size != 0)
4762 /* Build the stubs as directed by the stub hash table. */
4763 table = &htab->stub_hash_table;
4764 bfd_hash_traverse (table, arm_build_one_stub, info);
4765 if (htab->fix_cortex_a8)
4767 /* Place the cortex a8 stubs last. */
4768 htab->fix_cortex_a8 = -1;
4769 bfd_hash_traverse (table, arm_build_one_stub, info);
4775 /* Locate the Thumb encoded calling stub for NAME. */
4777 static struct elf_link_hash_entry *
4778 find_thumb_glue (struct bfd_link_info *link_info,
4780 char **error_message)
4783 struct elf_link_hash_entry *hash;
4784 struct elf32_arm_link_hash_table *hash_table;
4786 /* We need a pointer to the armelf specific hash table. */
4787 hash_table = elf32_arm_hash_table (link_info);
4789 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4790 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4792 BFD_ASSERT (tmp_name);
4794 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4796 hash = elf_link_hash_lookup
4797 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4800 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4801 tmp_name, name) == -1)
4802 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4809 /* Locate the ARM encoded calling stub for NAME. */
4811 static struct elf_link_hash_entry *
4812 find_arm_glue (struct bfd_link_info *link_info,
4814 char **error_message)
4817 struct elf_link_hash_entry *myh;
4818 struct elf32_arm_link_hash_table *hash_table;
4820 /* We need a pointer to the elfarm specific hash table. */
4821 hash_table = elf32_arm_hash_table (link_info);
4823 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4824 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4826 BFD_ASSERT (tmp_name);
4828 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4830 myh = elf_link_hash_lookup
4831 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4834 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4835 tmp_name, name) == -1)
4836 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4843 /* ARM->Thumb glue (static images):
4847 ldr r12, __func_addr
4850 .word func @ behave as if you saw a ARM_32 reloc.
4857 .word func @ behave as if you saw a ARM_32 reloc.
4859 (relocatable images)
4862 ldr r12, __func_offset
4868 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4869 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4870 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4871 static const insn32 a2t3_func_addr_insn = 0x00000001;
4873 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4874 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4875 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4877 #define ARM2THUMB_PIC_GLUE_SIZE 16
4878 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4879 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4880 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4882 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4886 __func_from_thumb: __func_from_thumb:
4888 nop ldr r6, __func_addr
4898 #define THUMB2ARM_GLUE_SIZE 8
4899 static const insn16 t2a1_bx_pc_insn = 0x4778;
4900 static const insn16 t2a2_noop_insn = 0x46c0;
4901 static const insn32 t2a3_b_insn = 0xea000000;
4903 #define VFP11_ERRATUM_VENEER_SIZE 8
4905 #define ARM_BX_VENEER_SIZE 12
4906 static const insn32 armbx1_tst_insn = 0xe3100001;
4907 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4908 static const insn32 armbx3_bx_insn = 0xe12fff10;
4910 #ifndef ELFARM_NABI_C_INCLUDED
4912 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4915 bfd_byte * contents;
4919 /* Do not include empty glue sections in the output. */
4922 s = bfd_get_section_by_name (abfd, name);
4924 s->flags |= SEC_EXCLUDE;
4929 BFD_ASSERT (abfd != NULL);
4931 s = bfd_get_section_by_name (abfd, name);
4932 BFD_ASSERT (s != NULL);
4934 contents = bfd_alloc (abfd, size);
4936 BFD_ASSERT (s->size == size);
4937 s->contents = contents;
4941 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4943 struct elf32_arm_link_hash_table * globals;
4945 globals = elf32_arm_hash_table (info);
4946 BFD_ASSERT (globals != NULL);
4948 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4949 globals->arm_glue_size,
4950 ARM2THUMB_GLUE_SECTION_NAME);
4952 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4953 globals->thumb_glue_size,
4954 THUMB2ARM_GLUE_SECTION_NAME);
4956 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4957 globals->vfp11_erratum_glue_size,
4958 VFP11_ERRATUM_VENEER_SECTION_NAME);
4960 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4961 globals->bx_glue_size,
4962 ARM_BX_GLUE_SECTION_NAME);
4967 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4968 returns the symbol identifying the stub. */
4970 static struct elf_link_hash_entry *
4971 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4972 struct elf_link_hash_entry * h)
4974 const char * name = h->root.root.string;
4977 struct elf_link_hash_entry * myh;
4978 struct bfd_link_hash_entry * bh;
4979 struct elf32_arm_link_hash_table * globals;
4983 globals = elf32_arm_hash_table (link_info);
4985 BFD_ASSERT (globals != NULL);
4986 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4988 s = bfd_get_section_by_name
4989 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4991 BFD_ASSERT (s != NULL);
4993 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4995 BFD_ASSERT (tmp_name);
4997 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4999 myh = elf_link_hash_lookup
5000 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5004 /* We've already seen this guy. */
5009 /* The only trick here is using hash_table->arm_glue_size as the value.
5010 Even though the section isn't allocated yet, this is where we will be
5011 putting it. The +1 on the value marks that the stub has not been
5012 output yet - not that it is a Thumb function. */
5014 val = globals->arm_glue_size + 1;
5015 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5016 tmp_name, BSF_GLOBAL, s, val,
5017 NULL, TRUE, FALSE, &bh);
5019 myh = (struct elf_link_hash_entry *) bh;
5020 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5021 myh->forced_local = 1;
5025 if (link_info->shared || globals->root.is_relocatable_executable
5026 || globals->pic_veneer)
5027 size = ARM2THUMB_PIC_GLUE_SIZE;
5028 else if (globals->use_blx)
5029 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5031 size = ARM2THUMB_STATIC_GLUE_SIZE;
5034 globals->arm_glue_size += size;
5039 /* Allocate space for ARMv4 BX veneers. */
5042 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5045 struct elf32_arm_link_hash_table *globals;
5047 struct elf_link_hash_entry *myh;
5048 struct bfd_link_hash_entry *bh;
5051 /* BX PC does not need a veneer. */
5055 globals = elf32_arm_hash_table (link_info);
5057 BFD_ASSERT (globals != NULL);
5058 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5060 /* Check if this veneer has already been allocated. */
5061 if (globals->bx_glue_offset[reg])
5064 s = bfd_get_section_by_name
5065 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5067 BFD_ASSERT (s != NULL);
5069 /* Add symbol for veneer. */
5070 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5072 BFD_ASSERT (tmp_name);
5074 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5076 myh = elf_link_hash_lookup
5077 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5079 BFD_ASSERT (myh == NULL);
5082 val = globals->bx_glue_size;
5083 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5084 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5085 NULL, TRUE, FALSE, &bh);
5087 myh = (struct elf_link_hash_entry *) bh;
5088 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5089 myh->forced_local = 1;
5091 s->size += ARM_BX_VENEER_SIZE;
5092 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5093 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5097 /* Add an entry to the code/data map for section SEC. */
5100 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5102 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5103 unsigned int newidx;
5105 if (sec_data->map == NULL)
5107 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
5108 sec_data->mapcount = 0;
5109 sec_data->mapsize = 1;
5112 newidx = sec_data->mapcount++;
5114 if (sec_data->mapcount > sec_data->mapsize)
5116 sec_data->mapsize *= 2;
5117 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5118 * sizeof (elf32_arm_section_map));
5123 sec_data->map[newidx].vma = vma;
5124 sec_data->map[newidx].type = type;
5129 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5130 veneers are handled for now. */
5133 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5134 elf32_vfp11_erratum_list *branch,
5136 asection *branch_sec,
5137 unsigned int offset)
5140 struct elf32_arm_link_hash_table *hash_table;
5142 struct elf_link_hash_entry *myh;
5143 struct bfd_link_hash_entry *bh;
5145 struct _arm_elf_section_data *sec_data;
5147 elf32_vfp11_erratum_list *newerr;
5149 hash_table = elf32_arm_hash_table (link_info);
5151 BFD_ASSERT (hash_table != NULL);
5152 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5154 s = bfd_get_section_by_name
5155 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5157 sec_data = elf32_arm_section_data (s);
5159 BFD_ASSERT (s != NULL);
5161 tmp_name = bfd_malloc ((bfd_size_type) strlen
5162 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5164 BFD_ASSERT (tmp_name);
5166 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5167 hash_table->num_vfp11_fixes);
5169 myh = elf_link_hash_lookup
5170 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5172 BFD_ASSERT (myh == NULL);
5175 val = hash_table->vfp11_erratum_glue_size;
5176 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5177 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5178 NULL, TRUE, FALSE, &bh);
5180 myh = (struct elf_link_hash_entry *) bh;
5181 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5182 myh->forced_local = 1;
5184 /* Link veneer back to calling location. */
5185 errcount = ++(sec_data->erratumcount);
5186 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5188 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5190 newerr->u.v.branch = branch;
5191 newerr->u.v.id = hash_table->num_vfp11_fixes;
5192 branch->u.b.veneer = newerr;
5194 newerr->next = sec_data->erratumlist;
5195 sec_data->erratumlist = newerr;
5197 /* A symbol for the return from the veneer. */
5198 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5199 hash_table->num_vfp11_fixes);
5201 myh = elf_link_hash_lookup
5202 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5209 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5210 branch_sec, val, NULL, TRUE, FALSE, &bh);
5212 myh = (struct elf_link_hash_entry *) bh;
5213 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5214 myh->forced_local = 1;
5218 /* Generate a mapping symbol for the veneer section, and explicitly add an
5219 entry for that symbol to the code/data map for the section. */
5220 if (hash_table->vfp11_erratum_glue_size == 0)
5223 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5224 ever requires this erratum fix. */
5225 _bfd_generic_link_add_one_symbol (link_info,
5226 hash_table->bfd_of_glue_owner, "$a",
5227 BSF_LOCAL, s, 0, NULL,
5230 myh = (struct elf_link_hash_entry *) bh;
5231 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5232 myh->forced_local = 1;
5234 /* The elf32_arm_init_maps function only cares about symbols from input
5235 BFDs. We must make a note of this generated mapping symbol
5236 ourselves so that code byteswapping works properly in
5237 elf32_arm_write_section. */
5238 elf32_arm_section_map_add (s, 'a', 0);
5241 s->size += VFP11_ERRATUM_VENEER_SIZE;
5242 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5243 hash_table->num_vfp11_fixes++;
5245 /* The offset of the veneer. */
5249 #define ARM_GLUE_SECTION_FLAGS \
5250 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5251 | SEC_READONLY | SEC_LINKER_CREATED)
5253 /* Create a fake section for use by the ARM backend of the linker. */
5256 arm_make_glue_section (bfd * abfd, const char * name)
5260 sec = bfd_get_section_by_name (abfd, name);
5265 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5268 || !bfd_set_section_alignment (abfd, sec, 2))
5271 /* Set the gc mark to prevent the section from being removed by garbage
5272 collection, despite the fact that no relocs refer to this section. */
5278 /* Add the glue sections to ABFD. This function is called from the
5279 linker scripts in ld/emultempl/{armelf}.em. */
5282 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5283 struct bfd_link_info *info)
5285 /* If we are only performing a partial
5286 link do not bother adding the glue. */
5287 if (info->relocatable)
5290 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5291 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5292 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5293 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5296 /* Select a BFD to be used to hold the sections used by the glue code.
5297 This function is called from the linker scripts in ld/emultempl/
5301 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5303 struct elf32_arm_link_hash_table *globals;
5305 /* If we are only performing a partial link
5306 do not bother getting a bfd to hold the glue. */
5307 if (info->relocatable)
5310 /* Make sure we don't attach the glue sections to a dynamic object. */
5311 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5313 globals = elf32_arm_hash_table (info);
5315 BFD_ASSERT (globals != NULL);
5317 if (globals->bfd_of_glue_owner != NULL)
5320 /* Save the bfd for later use. */
5321 globals->bfd_of_glue_owner = abfd;
5327 check_use_blx (struct elf32_arm_link_hash_table *globals)
5329 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5331 globals->use_blx = 1;
5335 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5336 struct bfd_link_info *link_info)
5338 Elf_Internal_Shdr *symtab_hdr;
5339 Elf_Internal_Rela *internal_relocs = NULL;
5340 Elf_Internal_Rela *irel, *irelend;
5341 bfd_byte *contents = NULL;
5344 struct elf32_arm_link_hash_table *globals;
5346 /* If we are only performing a partial link do not bother
5347 to construct any glue. */
5348 if (link_info->relocatable)
5351 /* Here we have a bfd that is to be included on the link. We have a
5352 hook to do reloc rummaging, before section sizes are nailed down. */
5353 globals = elf32_arm_hash_table (link_info);
5355 BFD_ASSERT (globals != NULL);
5357 check_use_blx (globals);
5359 if (globals->byteswap_code && !bfd_big_endian (abfd))
5361 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5366 /* PR 5398: If we have not decided to include any loadable sections in
5367 the output then we will not have a glue owner bfd. This is OK, it
5368 just means that there is nothing else for us to do here. */
5369 if (globals->bfd_of_glue_owner == NULL)
5372 /* Rummage around all the relocs and map the glue vectors. */
5373 sec = abfd->sections;
5378 for (; sec != NULL; sec = sec->next)
5380 if (sec->reloc_count == 0)
5383 if ((sec->flags & SEC_EXCLUDE) != 0)
5386 symtab_hdr = & elf_symtab_hdr (abfd);
5388 /* Load the relocs. */
5390 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5392 if (internal_relocs == NULL)
5395 irelend = internal_relocs + sec->reloc_count;
5396 for (irel = internal_relocs; irel < irelend; irel++)
5399 unsigned long r_index;
5401 struct elf_link_hash_entry *h;
5403 r_type = ELF32_R_TYPE (irel->r_info);
5404 r_index = ELF32_R_SYM (irel->r_info);
5406 /* These are the only relocation types we care about. */
5407 if ( r_type != R_ARM_PC24
5408 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
5411 /* Get the section contents if we haven't done so already. */
5412 if (contents == NULL)
5414 /* Get cached copy if it exists. */
5415 if (elf_section_data (sec)->this_hdr.contents != NULL)
5416 contents = elf_section_data (sec)->this_hdr.contents;
5419 /* Go get them off disk. */
5420 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5425 if (r_type == R_ARM_V4BX)
5429 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5430 record_arm_bx_glue (link_info, reg);
5434 /* If the relocation is not against a symbol it cannot concern us. */
5437 /* We don't care about local symbols. */
5438 if (r_index < symtab_hdr->sh_info)
5441 /* This is an external symbol. */
5442 r_index -= symtab_hdr->sh_info;
5443 h = (struct elf_link_hash_entry *)
5444 elf_sym_hashes (abfd)[r_index];
5446 /* If the relocation is against a static symbol it must be within
5447 the current section and so cannot be a cross ARM/Thumb relocation. */
5451 /* If the call will go through a PLT entry then we do not need
5453 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
5459 /* This one is a call from arm code. We need to look up
5460 the target of the call. If it is a thumb target, we
5462 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
5463 record_arm_to_thumb_glue (link_info, h);
5471 if (contents != NULL
5472 && elf_section_data (sec)->this_hdr.contents != contents)
5476 if (internal_relocs != NULL
5477 && elf_section_data (sec)->relocs != internal_relocs)
5478 free (internal_relocs);
5479 internal_relocs = NULL;
5485 if (contents != NULL
5486 && elf_section_data (sec)->this_hdr.contents != contents)
5488 if (internal_relocs != NULL
5489 && elf_section_data (sec)->relocs != internal_relocs)
5490 free (internal_relocs);
5497 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5500 bfd_elf32_arm_init_maps (bfd *abfd)
5502 Elf_Internal_Sym *isymbuf;
5503 Elf_Internal_Shdr *hdr;
5504 unsigned int i, localsyms;
5506 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5507 if (! is_arm_elf (abfd))
5510 if ((abfd->flags & DYNAMIC) != 0)
5513 hdr = & elf_symtab_hdr (abfd);
5514 localsyms = hdr->sh_info;
5516 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5517 should contain the number of local symbols, which should come before any
5518 global symbols. Mapping symbols are always local. */
5519 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5522 /* No internal symbols read? Skip this BFD. */
5523 if (isymbuf == NULL)
5526 for (i = 0; i < localsyms; i++)
5528 Elf_Internal_Sym *isym = &isymbuf[i];
5529 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5533 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5535 name = bfd_elf_string_from_elf_section (abfd,
5536 hdr->sh_link, isym->st_name);
5538 if (bfd_is_arm_special_symbol_name (name,
5539 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5540 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5546 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5547 say what they wanted. */
5550 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5552 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5553 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5555 if (globals->fix_cortex_a8 == -1)
5557 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5558 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5559 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5560 || out_attr[Tag_CPU_arch_profile].i == 0))
5561 globals->fix_cortex_a8 = 1;
5563 globals->fix_cortex_a8 = 0;
5569 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5571 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5572 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5574 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5575 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5577 switch (globals->vfp11_fix)
5579 case BFD_ARM_VFP11_FIX_DEFAULT:
5580 case BFD_ARM_VFP11_FIX_NONE:
5581 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5585 /* Give a warning, but do as the user requests anyway. */
5586 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5587 "workaround is not necessary for target architecture"), obfd);
5590 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5591 /* For earlier architectures, we might need the workaround, but do not
5592 enable it by default. If users is running with broken hardware, they
5593 must enable the erratum fix explicitly. */
5594 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5598 enum bfd_arm_vfp11_pipe
5606 /* Return a VFP register number. This is encoded as RX:X for single-precision
5607 registers, or X:RX for double-precision registers, where RX is the group of
5608 four bits in the instruction encoding and X is the single extension bit.
5609 RX and X fields are specified using their lowest (starting) bit. The return
5612 0...31: single-precision registers s0...s31
5613 32...63: double-precision registers d0...d31.
5615 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5616 encounter VFP3 instructions, so we allow the full range for DP registers. */
5619 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5623 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5625 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5628 /* Set bits in *WMASK according to a register number REG as encoded by
5629 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5632 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5637 *wmask |= 3 << ((reg - 32) * 2);
5640 /* Return TRUE if WMASK overwrites anything in REGS. */
5643 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5647 for (i = 0; i < numregs; i++)
5649 unsigned int reg = regs[i];
5651 if (reg < 32 && (wmask & (1 << reg)) != 0)
5659 if ((wmask & (3 << (reg * 2))) != 0)
5666 /* In this function, we're interested in two things: finding input registers
5667 for VFP data-processing instructions, and finding the set of registers which
5668 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5669 hold the written set, so FLDM etc. are easy to deal with (we're only
5670 interested in 32 SP registers or 16 dp registers, due to the VFP version
5671 implemented by the chip in question). DP registers are marked by setting
5672 both SP registers in the write mask). */
5674 static enum bfd_arm_vfp11_pipe
5675 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5678 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
5679 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5681 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5684 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5685 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5687 pqrs = ((insn & 0x00800000) >> 20)
5688 | ((insn & 0x00300000) >> 19)
5689 | ((insn & 0x00000040) >> 6);
5693 case 0: /* fmac[sd]. */
5694 case 1: /* fnmac[sd]. */
5695 case 2: /* fmsc[sd]. */
5696 case 3: /* fnmsc[sd]. */
5698 bfd_arm_vfp11_write_mask (destmask, fd);
5700 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5705 case 4: /* fmul[sd]. */
5706 case 5: /* fnmul[sd]. */
5707 case 6: /* fadd[sd]. */
5708 case 7: /* fsub[sd]. */
5712 case 8: /* fdiv[sd]. */
5715 bfd_arm_vfp11_write_mask (destmask, fd);
5716 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5721 case 15: /* extended opcode. */
5723 unsigned int extn = ((insn >> 15) & 0x1e)
5724 | ((insn >> 7) & 1);
5728 case 0: /* fcpy[sd]. */
5729 case 1: /* fabs[sd]. */
5730 case 2: /* fneg[sd]. */
5731 case 8: /* fcmp[sd]. */
5732 case 9: /* fcmpe[sd]. */
5733 case 10: /* fcmpz[sd]. */
5734 case 11: /* fcmpez[sd]. */
5735 case 16: /* fuito[sd]. */
5736 case 17: /* fsito[sd]. */
5737 case 24: /* ftoui[sd]. */
5738 case 25: /* ftouiz[sd]. */
5739 case 26: /* ftosi[sd]. */
5740 case 27: /* ftosiz[sd]. */
5741 /* These instructions will not bounce due to underflow. */
5746 case 3: /* fsqrt[sd]. */
5747 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5748 registers to cause the erratum in previous instructions. */
5749 bfd_arm_vfp11_write_mask (destmask, fd);
5753 case 15: /* fcvt{ds,sd}. */
5757 bfd_arm_vfp11_write_mask (destmask, fd);
5759 /* Only FCVTSD can underflow. */
5760 if ((insn & 0x100) != 0)
5779 /* Two-register transfer. */
5780 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5782 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5784 if ((insn & 0x100000) == 0)
5787 bfd_arm_vfp11_write_mask (destmask, fm);
5790 bfd_arm_vfp11_write_mask (destmask, fm);
5791 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5797 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5799 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5800 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5804 case 0: /* Two-reg transfer. We should catch these above. */
5807 case 2: /* fldm[sdx]. */
5811 unsigned int i, offset = insn & 0xff;
5816 for (i = fd; i < fd + offset; i++)
5817 bfd_arm_vfp11_write_mask (destmask, i);
5821 case 4: /* fld[sd]. */
5823 bfd_arm_vfp11_write_mask (destmask, fd);
5832 /* Single-register transfer. Note L==0. */
5833 else if ((insn & 0x0f100e10) == 0x0e000a10)
5835 unsigned int opcode = (insn >> 21) & 7;
5836 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5840 case 0: /* fmsr/fmdlr. */
5841 case 1: /* fmdhr. */
5842 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5843 destination register. I don't know if this is exactly right,
5844 but it is the conservative choice. */
5845 bfd_arm_vfp11_write_mask (destmask, fn);
5859 static int elf32_arm_compare_mapping (const void * a, const void * b);
5862 /* Look for potentially-troublesome code sequences which might trigger the
5863 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5864 (available from ARM) for details of the erratum. A short version is
5865 described in ld.texinfo. */
5868 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5871 bfd_byte *contents = NULL;
5873 int regs[3], numregs = 0;
5874 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5875 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5877 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5878 The states transition as follows:
5880 0 -> 1 (vector) or 0 -> 2 (scalar)
5881 A VFP FMAC-pipeline instruction has been seen. Fill
5882 regs[0]..regs[numregs-1] with its input operands. Remember this
5883 instruction in 'first_fmac'.
5886 Any instruction, except for a VFP instruction which overwrites
5891 A VFP instruction has been seen which overwrites any of regs[*].
5892 We must make a veneer! Reset state to 0 before examining next
5896 If we fail to match anything in state 2, reset to state 0 and reset
5897 the instruction pointer to the instruction after 'first_fmac'.
5899 If the VFP11 vector mode is in use, there must be at least two unrelated
5900 instructions between anti-dependent VFP11 instructions to properly avoid
5901 triggering the erratum, hence the use of the extra state 1. */
5903 /* If we are only performing a partial link do not bother
5904 to construct any glue. */
5905 if (link_info->relocatable)
5908 /* Skip if this bfd does not correspond to an ELF image. */
5909 if (! is_arm_elf (abfd))
5912 /* We should have chosen a fix type by the time we get here. */
5913 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5915 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5918 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5919 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5922 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5924 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5925 struct _arm_elf_section_data *sec_data;
5927 /* If we don't have executable progbits, we're not interested in this
5928 section. Also skip if section is to be excluded. */
5929 if (elf_section_type (sec) != SHT_PROGBITS
5930 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5931 || (sec->flags & SEC_EXCLUDE) != 0
5932 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5933 || sec->output_section == bfd_abs_section_ptr
5934 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5937 sec_data = elf32_arm_section_data (sec);
5939 if (sec_data->mapcount == 0)
5942 if (elf_section_data (sec)->this_hdr.contents != NULL)
5943 contents = elf_section_data (sec)->this_hdr.contents;
5944 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5947 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5948 elf32_arm_compare_mapping);
5950 for (span = 0; span < sec_data->mapcount; span++)
5952 unsigned int span_start = sec_data->map[span].vma;
5953 unsigned int span_end = (span == sec_data->mapcount - 1)
5954 ? sec->size : sec_data->map[span + 1].vma;
5955 char span_type = sec_data->map[span].type;
5957 /* FIXME: Only ARM mode is supported at present. We may need to
5958 support Thumb-2 mode also at some point. */
5959 if (span_type != 'a')
5962 for (i = span_start; i < span_end;)
5964 unsigned int next_i = i + 4;
5965 unsigned int insn = bfd_big_endian (abfd)
5966 ? (contents[i] << 24)
5967 | (contents[i + 1] << 16)
5968 | (contents[i + 2] << 8)
5970 : (contents[i + 3] << 24)
5971 | (contents[i + 2] << 16)
5972 | (contents[i + 1] << 8)
5974 unsigned int writemask = 0;
5975 enum bfd_arm_vfp11_pipe pipe;
5980 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5982 /* I'm assuming the VFP11 erratum can trigger with denorm
5983 operands on either the FMAC or the DS pipeline. This might
5984 lead to slightly overenthusiastic veneer insertion. */
5985 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5987 state = use_vector ? 1 : 2;
5989 veneer_of_insn = insn;
5995 int other_regs[3], other_numregs;
5996 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5999 if (pipe != VFP11_BAD
6000 && bfd_arm_vfp11_antidependency (writemask, regs,
6010 int other_regs[3], other_numregs;
6011 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6014 if (pipe != VFP11_BAD
6015 && bfd_arm_vfp11_antidependency (writemask, regs,
6021 next_i = first_fmac + 4;
6027 abort (); /* Should be unreachable. */
6032 elf32_vfp11_erratum_list *newerr
6033 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6036 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
6038 newerr->u.b.vfp_insn = veneer_of_insn;
6043 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6050 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6055 newerr->next = sec_data->erratumlist;
6056 sec_data->erratumlist = newerr;
6065 if (contents != NULL
6066 && elf_section_data (sec)->this_hdr.contents != contents)
6074 if (contents != NULL
6075 && elf_section_data (sec)->this_hdr.contents != contents)
6081 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6082 after sections have been laid out, using specially-named symbols. */
6085 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6086 struct bfd_link_info *link_info)
6089 struct elf32_arm_link_hash_table *globals;
6092 if (link_info->relocatable)
6095 /* Skip if this bfd does not correspond to an ELF image. */
6096 if (! is_arm_elf (abfd))
6099 globals = elf32_arm_hash_table (link_info);
6101 tmp_name = bfd_malloc ((bfd_size_type) strlen
6102 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6104 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6106 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6107 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6109 for (; errnode != NULL; errnode = errnode->next)
6111 struct elf_link_hash_entry *myh;
6114 switch (errnode->type)
6116 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6117 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6118 /* Find veneer symbol. */
6119 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6120 errnode->u.b.veneer->u.v.id);
6122 myh = elf_link_hash_lookup
6123 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6126 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6127 "`%s'"), abfd, tmp_name);
6129 vma = myh->root.u.def.section->output_section->vma
6130 + myh->root.u.def.section->output_offset
6131 + myh->root.u.def.value;
6133 errnode->u.b.veneer->vma = vma;
6136 case VFP11_ERRATUM_ARM_VENEER:
6137 case VFP11_ERRATUM_THUMB_VENEER:
6138 /* Find return location. */
6139 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6142 myh = elf_link_hash_lookup
6143 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6146 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6147 "`%s'"), abfd, tmp_name);
6149 vma = myh->root.u.def.section->output_section->vma
6150 + myh->root.u.def.section->output_offset
6151 + myh->root.u.def.value;
6153 errnode->u.v.branch->vma = vma;
6166 /* Set target relocation values needed during linking. */
6169 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6170 struct bfd_link_info *link_info,
6172 char * target2_type,
6175 bfd_arm_vfp11_fix vfp11_fix,
6176 int no_enum_warn, int no_wchar_warn,
6177 int pic_veneer, int fix_cortex_a8)
6179 struct elf32_arm_link_hash_table *globals;
6181 globals = elf32_arm_hash_table (link_info);
6183 globals->target1_is_rel = target1_is_rel;
6184 if (strcmp (target2_type, "rel") == 0)
6185 globals->target2_reloc = R_ARM_REL32;
6186 else if (strcmp (target2_type, "abs") == 0)
6187 globals->target2_reloc = R_ARM_ABS32;
6188 else if (strcmp (target2_type, "got-rel") == 0)
6189 globals->target2_reloc = R_ARM_GOT_PREL;
6192 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6195 globals->fix_v4bx = fix_v4bx;
6196 globals->use_blx |= use_blx;
6197 globals->vfp11_fix = vfp11_fix;
6198 globals->pic_veneer = pic_veneer;
6199 globals->fix_cortex_a8 = fix_cortex_a8;
6201 BFD_ASSERT (is_arm_elf (output_bfd));
6202 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6203 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6206 /* Replace the target offset of a Thumb bl or b.w instruction. */
6209 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6215 BFD_ASSERT ((offset & 1) == 0);
6217 upper = bfd_get_16 (abfd, insn);
6218 lower = bfd_get_16 (abfd, insn + 2);
6219 reloc_sign = (offset < 0) ? 1 : 0;
6220 upper = (upper & ~(bfd_vma) 0x7ff)
6221 | ((offset >> 12) & 0x3ff)
6222 | (reloc_sign << 10);
6223 lower = (lower & ~(bfd_vma) 0x2fff)
6224 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6225 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6226 | ((offset >> 1) & 0x7ff);
6227 bfd_put_16 (abfd, upper, insn);
6228 bfd_put_16 (abfd, lower, insn + 2);
6231 /* Thumb code calling an ARM function. */
6234 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6238 asection * input_section,
6239 bfd_byte * hit_data,
6242 bfd_signed_vma addend,
6244 char **error_message)
6248 long int ret_offset;
6249 struct elf_link_hash_entry * myh;
6250 struct elf32_arm_link_hash_table * globals;
6252 myh = find_thumb_glue (info, name, error_message);
6256 globals = elf32_arm_hash_table (info);
6258 BFD_ASSERT (globals != NULL);
6259 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6261 my_offset = myh->root.u.def.value;
6263 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6264 THUMB2ARM_GLUE_SECTION_NAME);
6266 BFD_ASSERT (s != NULL);
6267 BFD_ASSERT (s->contents != NULL);
6268 BFD_ASSERT (s->output_section != NULL);
6270 if ((my_offset & 0x01) == 0x01)
6273 && sym_sec->owner != NULL
6274 && !INTERWORK_FLAG (sym_sec->owner))
6276 (*_bfd_error_handler)
6277 (_("%B(%s): warning: interworking not enabled.\n"
6278 " first occurrence: %B: thumb call to arm"),
6279 sym_sec->owner, input_bfd, name);
6285 myh->root.u.def.value = my_offset;
6287 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6288 s->contents + my_offset);
6290 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6291 s->contents + my_offset + 2);
6294 /* Address of destination of the stub. */
6295 ((bfd_signed_vma) val)
6297 /* Offset from the start of the current section
6298 to the start of the stubs. */
6300 /* Offset of the start of this stub from the start of the stubs. */
6302 /* Address of the start of the current section. */
6303 + s->output_section->vma)
6304 /* The branch instruction is 4 bytes into the stub. */
6306 /* ARM branches work from the pc of the instruction + 8. */
6309 put_arm_insn (globals, output_bfd,
6310 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6311 s->contents + my_offset + 4);
6314 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6316 /* Now go back and fix up the original BL insn to point to here. */
6318 /* Address of where the stub is located. */
6319 (s->output_section->vma + s->output_offset + my_offset)
6320 /* Address of where the BL is located. */
6321 - (input_section->output_section->vma + input_section->output_offset
6323 /* Addend in the relocation. */
6325 /* Biassing for PC-relative addressing. */
6328 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6333 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6335 static struct elf_link_hash_entry *
6336 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6343 char ** error_message)
6346 long int ret_offset;
6347 struct elf_link_hash_entry * myh;
6348 struct elf32_arm_link_hash_table * globals;
6350 myh = find_arm_glue (info, name, error_message);
6354 globals = elf32_arm_hash_table (info);
6356 BFD_ASSERT (globals != NULL);
6357 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6359 my_offset = myh->root.u.def.value;
6361 if ((my_offset & 0x01) == 0x01)
6364 && sym_sec->owner != NULL
6365 && !INTERWORK_FLAG (sym_sec->owner))
6367 (*_bfd_error_handler)
6368 (_("%B(%s): warning: interworking not enabled.\n"
6369 " first occurrence: %B: arm call to thumb"),
6370 sym_sec->owner, input_bfd, name);
6374 myh->root.u.def.value = my_offset;
6376 if (info->shared || globals->root.is_relocatable_executable
6377 || globals->pic_veneer)
6379 /* For relocatable objects we can't use absolute addresses,
6380 so construct the address from a relative offset. */
6381 /* TODO: If the offset is small it's probably worth
6382 constructing the address with adds. */
6383 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6384 s->contents + my_offset);
6385 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6386 s->contents + my_offset + 4);
6387 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6388 s->contents + my_offset + 8);
6389 /* Adjust the offset by 4 for the position of the add,
6390 and 8 for the pipeline offset. */
6391 ret_offset = (val - (s->output_offset
6392 + s->output_section->vma
6395 bfd_put_32 (output_bfd, ret_offset,
6396 s->contents + my_offset + 12);
6398 else if (globals->use_blx)
6400 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6401 s->contents + my_offset);
6403 /* It's a thumb address. Add the low order bit. */
6404 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6405 s->contents + my_offset + 4);
6409 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6410 s->contents + my_offset);
6412 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6413 s->contents + my_offset + 4);
6415 /* It's a thumb address. Add the low order bit. */
6416 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6417 s->contents + my_offset + 8);
6423 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6428 /* Arm code calling a Thumb function. */
6431 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6435 asection * input_section,
6436 bfd_byte * hit_data,
6439 bfd_signed_vma addend,
6441 char **error_message)
6443 unsigned long int tmp;
6446 long int ret_offset;
6447 struct elf_link_hash_entry * myh;
6448 struct elf32_arm_link_hash_table * globals;
6450 globals = elf32_arm_hash_table (info);
6452 BFD_ASSERT (globals != NULL);
6453 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6455 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6456 ARM2THUMB_GLUE_SECTION_NAME);
6457 BFD_ASSERT (s != NULL);
6458 BFD_ASSERT (s->contents != NULL);
6459 BFD_ASSERT (s->output_section != NULL);
6461 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
6462 sym_sec, val, s, error_message);
6466 my_offset = myh->root.u.def.value;
6467 tmp = bfd_get_32 (input_bfd, hit_data);
6468 tmp = tmp & 0xFF000000;
6470 /* Somehow these are both 4 too far, so subtract 8. */
6471 ret_offset = (s->output_offset
6473 + s->output_section->vma
6474 - (input_section->output_offset
6475 + input_section->output_section->vma
6479 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6481 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
6486 /* Populate Arm stub for an exported Thumb function. */
6489 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6491 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6493 struct elf_link_hash_entry * myh;
6494 struct elf32_arm_link_hash_entry *eh;
6495 struct elf32_arm_link_hash_table * globals;
6498 char *error_message;
6500 eh = elf32_arm_hash_entry (h);
6501 /* Allocate stubs for exported Thumb functions on v4t. */
6502 if (eh->export_glue == NULL)
6505 globals = elf32_arm_hash_table (info);
6507 BFD_ASSERT (globals != NULL);
6508 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6510 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6511 ARM2THUMB_GLUE_SECTION_NAME);
6512 BFD_ASSERT (s != NULL);
6513 BFD_ASSERT (s->contents != NULL);
6514 BFD_ASSERT (s->output_section != NULL);
6516 sec = eh->export_glue->root.u.def.section;
6518 BFD_ASSERT (sec->output_section != NULL);
6520 val = eh->export_glue->root.u.def.value + sec->output_offset
6521 + sec->output_section->vma;
6523 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6524 h->root.u.def.section->owner,
6525 globals->obfd, sec, val, s,
6531 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6534 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6539 struct elf32_arm_link_hash_table *globals;
6541 globals = elf32_arm_hash_table (info);
6543 BFD_ASSERT (globals != NULL);
6544 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6546 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6547 ARM_BX_GLUE_SECTION_NAME);
6548 BFD_ASSERT (s != NULL);
6549 BFD_ASSERT (s->contents != NULL);
6550 BFD_ASSERT (s->output_section != NULL);
6552 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6554 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6556 if ((globals->bx_glue_offset[reg] & 1) == 0)
6558 p = s->contents + glue_addr;
6559 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6560 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6561 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6562 globals->bx_glue_offset[reg] |= 1;
6565 return glue_addr + s->output_section->vma + s->output_offset;
6568 /* Generate Arm stubs for exported Thumb symbols. */
6570 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
6571 struct bfd_link_info *link_info)
6573 struct elf32_arm_link_hash_table * globals;
6575 if (link_info == NULL)
6576 /* Ignore this if we are not called by the ELF backend linker. */
6579 globals = elf32_arm_hash_table (link_info);
6580 /* If blx is available then exported Thumb symbols are OK and there is
6582 if (globals->use_blx)
6585 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6589 /* Some relocations map to different relocations depending on the
6590 target. Return the real relocation. */
6593 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6599 if (globals->target1_is_rel)
6605 return globals->target2_reloc;
6612 /* Return the base VMA address which should be subtracted from real addresses
6613 when resolving @dtpoff relocation.
6614 This is PT_TLS segment p_vaddr. */
6617 dtpoff_base (struct bfd_link_info *info)
6619 /* If tls_sec is NULL, we should have signalled an error already. */
6620 if (elf_hash_table (info)->tls_sec == NULL)
6622 return elf_hash_table (info)->tls_sec->vma;
6625 /* Return the relocation value for @tpoff relocation
6626 if STT_TLS virtual address is ADDRESS. */
6629 tpoff (struct bfd_link_info *info, bfd_vma address)
6631 struct elf_link_hash_table *htab = elf_hash_table (info);
6634 /* If tls_sec is NULL, we should have signalled an error already. */
6635 if (htab->tls_sec == NULL)
6637 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6638 return address - htab->tls_sec->vma + base;
6641 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6642 VALUE is the relocation value. */
6644 static bfd_reloc_status_type
6645 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6648 return bfd_reloc_overflow;
6650 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6651 bfd_put_32 (abfd, value, data);
6652 return bfd_reloc_ok;
6655 /* For a given value of n, calculate the value of G_n as required to
6656 deal with group relocations. We return it in the form of an
6657 encoded constant-and-rotation, together with the final residual. If n is
6658 specified as less than zero, then final_residual is filled with the
6659 input value and no further action is performed. */
6662 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6666 bfd_vma encoded_g_n = 0;
6667 bfd_vma residual = value; /* Also known as Y_n. */
6669 for (current_n = 0; current_n <= n; current_n++)
6673 /* Calculate which part of the value to mask. */
6680 /* Determine the most significant bit in the residual and
6681 align the resulting value to a 2-bit boundary. */
6682 for (msb = 30; msb >= 0; msb -= 2)
6683 if (residual & (3 << msb))
6686 /* The desired shift is now (msb - 6), or zero, whichever
6693 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6694 g_n = residual & (0xff << shift);
6695 encoded_g_n = (g_n >> shift)
6696 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6698 /* Calculate the residual for the next time around. */
6702 *final_residual = residual;
6707 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6708 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6711 identify_add_or_sub (bfd_vma insn)
6713 int opcode = insn & 0x1e00000;
6715 if (opcode == 1 << 23) /* ADD */
6718 if (opcode == 1 << 22) /* SUB */
6724 /* Perform a relocation as part of a final link. */
6726 static bfd_reloc_status_type
6727 elf32_arm_final_link_relocate (reloc_howto_type * howto,
6730 asection * input_section,
6731 bfd_byte * contents,
6732 Elf_Internal_Rela * rel,
6734 struct bfd_link_info * info,
6736 const char * sym_name,
6738 struct elf_link_hash_entry * h,
6739 bfd_boolean * unresolved_reloc_p,
6740 char ** error_message)
6742 unsigned long r_type = howto->type;
6743 unsigned long r_symndx;
6744 bfd_byte * hit_data = contents + rel->r_offset;
6745 bfd * dynobj = NULL;
6746 Elf_Internal_Shdr * symtab_hdr;
6747 struct elf_link_hash_entry ** sym_hashes;
6748 bfd_vma * local_got_offsets;
6749 asection * sgot = NULL;
6750 asection * splt = NULL;
6751 asection * sreloc = NULL;
6753 bfd_signed_vma signed_addend;
6754 struct elf32_arm_link_hash_table * globals;
6756 globals = elf32_arm_hash_table (info);
6758 BFD_ASSERT (is_arm_elf (input_bfd));
6760 /* Some relocation types map to different relocations depending on the
6761 target. We pick the right one here. */
6762 r_type = arm_real_reloc_type (globals, r_type);
6763 if (r_type != howto->type)
6764 howto = elf32_arm_howto_from_type (r_type);
6766 /* If the start address has been set, then set the EF_ARM_HASENTRY
6767 flag. Setting this more than once is redundant, but the cost is
6768 not too high, and it keeps the code simple.
6770 The test is done here, rather than somewhere else, because the
6771 start address is only set just before the final link commences.
6773 Note - if the user deliberately sets a start address of 0, the
6774 flag will not be set. */
6775 if (bfd_get_start_address (output_bfd) != 0)
6776 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6778 dynobj = elf_hash_table (info)->dynobj;
6781 sgot = bfd_get_section_by_name (dynobj, ".got");
6782 splt = bfd_get_section_by_name (dynobj, ".plt");
6784 symtab_hdr = & elf_symtab_hdr (input_bfd);
6785 sym_hashes = elf_sym_hashes (input_bfd);
6786 local_got_offsets = elf_local_got_offsets (input_bfd);
6787 r_symndx = ELF32_R_SYM (rel->r_info);
6789 if (globals->use_rel)
6791 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6793 if (addend & ((howto->src_mask + 1) >> 1))
6796 signed_addend &= ~ howto->src_mask;
6797 signed_addend |= addend;
6800 signed_addend = addend;
6803 addend = signed_addend = rel->r_addend;
6808 /* We don't need to find a value for this symbol. It's just a
6810 *unresolved_reloc_p = FALSE;
6811 return bfd_reloc_ok;
6814 if (!globals->vxworks_p)
6815 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6819 case R_ARM_ABS32_NOI:
6821 case R_ARM_REL32_NOI:
6827 /* Handle relocations which should use the PLT entry. ABS32/REL32
6828 will use the symbol's value, which may point to a PLT entry, but we
6829 don't need to handle that here. If we created a PLT entry, all
6830 branches in this object should go to it, except if the PLT is too
6831 far away, in which case a long branch stub should be inserted. */
6832 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6833 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6834 && r_type != R_ARM_CALL
6835 && r_type != R_ARM_JUMP24
6836 && r_type != R_ARM_PLT32)
6839 && h->plt.offset != (bfd_vma) -1)
6841 /* If we've created a .plt section, and assigned a PLT entry to
6842 this function, it should not be known to bind locally. If
6843 it were, we would have cleared the PLT entry. */
6844 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6846 value = (splt->output_section->vma
6847 + splt->output_offset
6849 *unresolved_reloc_p = FALSE;
6850 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6851 contents, rel->r_offset, value,
6855 /* When generating a shared object or relocatable executable, these
6856 relocations are copied into the output file to be resolved at
6858 if ((info->shared || globals->root.is_relocatable_executable)
6859 && (input_section->flags & SEC_ALLOC)
6860 && !(elf32_arm_hash_table (info)->vxworks_p
6861 && strcmp (input_section->output_section->name,
6863 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6864 || !SYMBOL_CALLS_LOCAL (info, h))
6866 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6867 || h->root.type != bfd_link_hash_undefweak)
6868 && r_type != R_ARM_PC24
6869 && r_type != R_ARM_CALL
6870 && r_type != R_ARM_JUMP24
6871 && r_type != R_ARM_PREL31
6872 && r_type != R_ARM_PLT32)
6874 Elf_Internal_Rela outrel;
6876 bfd_boolean skip, relocate;
6878 *unresolved_reloc_p = FALSE;
6882 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6883 ! globals->use_rel);
6886 return bfd_reloc_notsupported;
6892 outrel.r_addend = addend;
6894 _bfd_elf_section_offset (output_bfd, info, input_section,
6896 if (outrel.r_offset == (bfd_vma) -1)
6898 else if (outrel.r_offset == (bfd_vma) -2)
6899 skip = TRUE, relocate = TRUE;
6900 outrel.r_offset += (input_section->output_section->vma
6901 + input_section->output_offset);
6904 memset (&outrel, 0, sizeof outrel);
6909 || !h->def_regular))
6910 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6915 /* This symbol is local, or marked to become local. */
6916 if (sym_flags == STT_ARM_TFUNC)
6918 if (globals->symbian_p)
6922 /* On Symbian OS, the data segment and text segement
6923 can be relocated independently. Therefore, we
6924 must indicate the segment to which this
6925 relocation is relative. The BPABI allows us to
6926 use any symbol in the right segment; we just use
6927 the section symbol as it is convenient. (We
6928 cannot use the symbol given by "h" directly as it
6929 will not appear in the dynamic symbol table.)
6931 Note that the dynamic linker ignores the section
6932 symbol value, so we don't subtract osec->vma
6933 from the emitted reloc addend. */
6935 osec = sym_sec->output_section;
6937 osec = input_section->output_section;
6938 symbol = elf_section_data (osec)->dynindx;
6941 struct elf_link_hash_table *htab = elf_hash_table (info);
6943 if ((osec->flags & SEC_READONLY) == 0
6944 && htab->data_index_section != NULL)
6945 osec = htab->data_index_section;
6947 osec = htab->text_index_section;
6948 symbol = elf_section_data (osec)->dynindx;
6950 BFD_ASSERT (symbol != 0);
6953 /* On SVR4-ish systems, the dynamic loader cannot
6954 relocate the text and data segments independently,
6955 so the symbol does not matter. */
6957 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6958 if (globals->use_rel)
6961 outrel.r_addend += value;
6964 loc = sreloc->contents;
6965 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6966 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6968 /* If this reloc is against an external symbol, we do not want to
6969 fiddle with the addend. Otherwise, we need to include the symbol
6970 value so that it becomes an addend for the dynamic reloc. */
6972 return bfd_reloc_ok;
6974 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6975 contents, rel->r_offset, value,
6978 else switch (r_type)
6981 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6983 case R_ARM_XPC25: /* Arm BLX instruction. */
6986 case R_ARM_PC24: /* Arm B/BL instruction. */
6989 bfd_signed_vma branch_offset;
6990 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6992 if (r_type == R_ARM_XPC25)
6994 /* Check for Arm calling Arm function. */
6995 /* FIXME: Should we translate the instruction into a BL
6996 instruction instead ? */
6997 if (sym_flags != STT_ARM_TFUNC)
6998 (*_bfd_error_handler)
6999 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7001 h ? h->root.root.string : "(local)");
7003 else if (r_type == R_ARM_PC24)
7005 /* Check for Arm calling Thumb function. */
7006 if (sym_flags == STT_ARM_TFUNC)
7008 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7009 output_bfd, input_section,
7010 hit_data, sym_sec, rel->r_offset,
7011 signed_addend, value,
7013 return bfd_reloc_ok;
7015 return bfd_reloc_dangerous;
7019 /* Check if a stub has to be inserted because the
7020 destination is too far or we are changing mode. */
7021 if ( r_type == R_ARM_CALL
7022 || r_type == R_ARM_JUMP24
7023 || r_type == R_ARM_PLT32)
7027 /* If the call goes through a PLT entry, make sure to
7028 check distance to the right destination address. */
7029 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7031 value = (splt->output_section->vma
7032 + splt->output_offset
7034 *unresolved_reloc_p = FALSE;
7037 from = (input_section->output_section->vma
7038 + input_section->output_offset
7040 branch_offset = (bfd_signed_vma)(value - from);
7042 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
7043 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
7044 || ((sym_flags == STT_ARM_TFUNC)
7045 && (((r_type == R_ARM_CALL) && !globals->use_blx)
7046 || (r_type == R_ARM_JUMP24)
7047 || (r_type == R_ARM_PLT32) ))
7050 /* The target is out of reach, so redirect the
7051 branch to the local stub for this function. */
7053 stub_entry = elf32_arm_get_stub_entry (input_section,
7056 if (stub_entry != NULL)
7057 value = (stub_entry->stub_offset
7058 + stub_entry->stub_sec->output_offset
7059 + stub_entry->stub_sec->output_section->vma);
7063 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7065 S is the address of the symbol in the relocation.
7066 P is address of the instruction being relocated.
7067 A is the addend (extracted from the instruction) in bytes.
7069 S is held in 'value'.
7070 P is the base address of the section containing the
7071 instruction plus the offset of the reloc into that
7073 (input_section->output_section->vma +
7074 input_section->output_offset +
7076 A is the addend, converted into bytes, ie:
7079 Note: None of these operations have knowledge of the pipeline
7080 size of the processor, thus it is up to the assembler to
7081 encode this information into the addend. */
7082 value -= (input_section->output_section->vma
7083 + input_section->output_offset);
7084 value -= rel->r_offset;
7085 if (globals->use_rel)
7086 value += (signed_addend << howto->size);
7088 /* RELA addends do not have to be adjusted by howto->size. */
7089 value += signed_addend;
7091 signed_addend = value;
7092 signed_addend >>= howto->rightshift;
7094 /* A branch to an undefined weak symbol is turned into a jump to
7095 the next instruction unless a PLT entry will be created.
7096 Do the same for local undefined symbols.
7097 The jump to the next instruction is optimized as a NOP depending
7098 on the architecture. */
7099 if (h ? (h->root.type == bfd_link_hash_undefweak
7100 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7101 : bfd_is_und_section (sym_sec))
7103 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7105 if (arch_has_arm_nop (globals))
7106 value |= 0x0320f000;
7108 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
7112 /* Perform a signed range check. */
7113 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
7114 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7115 return bfd_reloc_overflow;
7117 addend = (value & 2);
7119 value = (signed_addend & howto->dst_mask)
7120 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
7122 if (r_type == R_ARM_CALL)
7124 /* Set the H bit in the BLX instruction. */
7125 if (sym_flags == STT_ARM_TFUNC)
7130 value &= ~(bfd_vma)(1 << 24);
7133 /* Select the correct instruction (BL or BLX). */
7134 /* Only if we are not handling a BL to a stub. In this
7135 case, mode switching is performed by the stub. */
7136 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
7140 value &= ~(bfd_vma)(1 << 28);
7150 if (sym_flags == STT_ARM_TFUNC)
7154 case R_ARM_ABS32_NOI:
7160 if (sym_flags == STT_ARM_TFUNC)
7162 value -= (input_section->output_section->vma
7163 + input_section->output_offset + rel->r_offset);
7166 case R_ARM_REL32_NOI:
7168 value -= (input_section->output_section->vma
7169 + input_section->output_offset + rel->r_offset);
7173 value -= (input_section->output_section->vma
7174 + input_section->output_offset + rel->r_offset);
7175 value += signed_addend;
7176 if (! h || h->root.type != bfd_link_hash_undefweak)
7178 /* Check for overflow. */
7179 if ((value ^ (value >> 1)) & (1 << 30))
7180 return bfd_reloc_overflow;
7182 value &= 0x7fffffff;
7183 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7184 if (sym_flags == STT_ARM_TFUNC)
7189 bfd_put_32 (input_bfd, value, hit_data);
7190 return bfd_reloc_ok;
7194 if ((long) value > 0x7f || (long) value < -0x80)
7195 return bfd_reloc_overflow;
7197 bfd_put_8 (input_bfd, value, hit_data);
7198 return bfd_reloc_ok;
7203 if ((long) value > 0x7fff || (long) value < -0x8000)
7204 return bfd_reloc_overflow;
7206 bfd_put_16 (input_bfd, value, hit_data);
7207 return bfd_reloc_ok;
7209 case R_ARM_THM_ABS5:
7210 /* Support ldr and str instructions for the thumb. */
7211 if (globals->use_rel)
7213 /* Need to refetch addend. */
7214 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7215 /* ??? Need to determine shift amount from operand size. */
7216 addend >>= howto->rightshift;
7220 /* ??? Isn't value unsigned? */
7221 if ((long) value > 0x1f || (long) value < -0x10)
7222 return bfd_reloc_overflow;
7224 /* ??? Value needs to be properly shifted into place first. */
7225 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7226 bfd_put_16 (input_bfd, value, hit_data);
7227 return bfd_reloc_ok;
7229 case R_ARM_THM_ALU_PREL_11_0:
7230 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7233 bfd_signed_vma relocation;
7235 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7236 | bfd_get_16 (input_bfd, hit_data + 2);
7238 if (globals->use_rel)
7240 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7241 | ((insn & (1 << 26)) >> 15);
7242 if (insn & 0xf00000)
7243 signed_addend = -signed_addend;
7246 relocation = value + signed_addend;
7247 relocation -= (input_section->output_section->vma
7248 + input_section->output_offset
7251 value = abs (relocation);
7253 if (value >= 0x1000)
7254 return bfd_reloc_overflow;
7256 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7257 | ((value & 0x700) << 4)
7258 | ((value & 0x800) << 15);
7262 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7263 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7265 return bfd_reloc_ok;
7269 /* PR 10073: This reloc is not generated by the GNU toolchain,
7270 but it is supported for compatibility with third party libraries
7271 generated by other compilers, specifically the ARM/IAR. */
7274 bfd_signed_vma relocation;
7276 insn = bfd_get_16 (input_bfd, hit_data);
7278 if (globals->use_rel)
7279 addend = (insn & 0x00ff) << 2;
7281 relocation = value + addend;
7282 relocation -= (input_section->output_section->vma
7283 + input_section->output_offset
7286 value = abs (relocation);
7288 /* We do not check for overflow of this reloc. Although strictly
7289 speaking this is incorrect, it appears to be necessary in order
7290 to work with IAR generated relocs. Since GCC and GAS do not
7291 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7292 a problem for them. */
7295 insn = (insn & 0xff00) | (value >> 2);
7297 bfd_put_16 (input_bfd, insn, hit_data);
7299 return bfd_reloc_ok;
7302 case R_ARM_THM_PC12:
7303 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7306 bfd_signed_vma relocation;
7308 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7309 | bfd_get_16 (input_bfd, hit_data + 2);
7311 if (globals->use_rel)
7313 signed_addend = insn & 0xfff;
7314 if (!(insn & (1 << 23)))
7315 signed_addend = -signed_addend;
7318 relocation = value + signed_addend;
7319 relocation -= (input_section->output_section->vma
7320 + input_section->output_offset
7323 value = abs (relocation);
7325 if (value >= 0x1000)
7326 return bfd_reloc_overflow;
7328 insn = (insn & 0xff7ff000) | value;
7329 if (relocation >= 0)
7332 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7333 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7335 return bfd_reloc_ok;
7338 case R_ARM_THM_XPC22:
7339 case R_ARM_THM_CALL:
7340 case R_ARM_THM_JUMP24:
7341 /* Thumb BL (branch long instruction). */
7345 bfd_boolean overflow = FALSE;
7346 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7347 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7348 bfd_signed_vma reloc_signed_max;
7349 bfd_signed_vma reloc_signed_min;
7351 bfd_signed_vma signed_check;
7353 const int thumb2 = using_thumb2 (globals);
7355 /* A branch to an undefined weak symbol is turned into a jump to
7356 the next instruction unless a PLT entry will be created.
7357 The jump to the next instruction is optimized as a NOP.W for
7358 Thumb-2 enabled architectures. */
7359 if (h && h->root.type == bfd_link_hash_undefweak
7360 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7362 if (arch_has_thumb2_nop (globals))
7364 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7365 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7369 bfd_put_16 (input_bfd, 0xe000, hit_data);
7370 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7372 return bfd_reloc_ok;
7375 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7376 with Thumb-1) involving the J1 and J2 bits. */
7377 if (globals->use_rel)
7379 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7380 bfd_vma upper = upper_insn & 0x3ff;
7381 bfd_vma lower = lower_insn & 0x7ff;
7382 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7383 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7384 bfd_vma i1 = j1 ^ s ? 0 : 1;
7385 bfd_vma i2 = j2 ^ s ? 0 : 1;
7387 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7389 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7391 signed_addend = addend;
7394 if (r_type == R_ARM_THM_XPC22)
7396 /* Check for Thumb to Thumb call. */
7397 /* FIXME: Should we translate the instruction into a BL
7398 instruction instead ? */
7399 if (sym_flags == STT_ARM_TFUNC)
7400 (*_bfd_error_handler)
7401 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7403 h ? h->root.root.string : "(local)");
7407 /* If it is not a call to Thumb, assume call to Arm.
7408 If it is a call relative to a section name, then it is not a
7409 function call at all, but rather a long jump. Calls through
7410 the PLT do not require stubs. */
7411 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7412 && (h == NULL || splt == NULL
7413 || h->plt.offset == (bfd_vma) -1))
7415 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7417 /* Convert BL to BLX. */
7418 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7420 else if (( r_type != R_ARM_THM_CALL)
7421 && (r_type != R_ARM_THM_JUMP24))
7423 if (elf32_thumb_to_arm_stub
7424 (info, sym_name, input_bfd, output_bfd, input_section,
7425 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7427 return bfd_reloc_ok;
7429 return bfd_reloc_dangerous;
7432 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7433 && r_type == R_ARM_THM_CALL)
7435 /* Make sure this is a BL. */
7436 lower_insn |= 0x1800;
7440 /* Handle calls via the PLT. */
7441 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7443 value = (splt->output_section->vma
7444 + splt->output_offset
7446 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7448 /* If the Thumb BLX instruction is available, convert the
7449 BL to a BLX instruction to call the ARM-mode PLT entry. */
7450 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7453 /* Target the Thumb stub before the ARM PLT entry. */
7454 value -= PLT_THUMB_STUB_SIZE;
7455 *unresolved_reloc_p = FALSE;
7458 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
7460 /* Check if a stub has to be inserted because the destination
7463 bfd_signed_vma branch_offset;
7464 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7466 from = (input_section->output_section->vma
7467 + input_section->output_offset
7469 branch_offset = (bfd_signed_vma)(value - from);
7472 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
7473 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
7476 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
7477 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
7478 || ((sym_flags != STT_ARM_TFUNC)
7479 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
7480 || r_type == R_ARM_THM_JUMP24)))
7482 /* The target is out of reach or we are changing modes, so
7483 redirect the branch to the local stub for this
7485 stub_entry = elf32_arm_get_stub_entry (input_section,
7488 if (stub_entry != NULL)
7489 value = (stub_entry->stub_offset
7490 + stub_entry->stub_sec->output_offset
7491 + stub_entry->stub_sec->output_section->vma);
7493 /* If this call becomes a call to Arm, force BLX. */
7494 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
7497 && !arm_stub_is_thumb (stub_entry->stub_type))
7498 || (sym_flags != STT_ARM_TFUNC))
7499 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7504 relocation = value + signed_addend;
7506 relocation -= (input_section->output_section->vma
7507 + input_section->output_offset
7510 check = relocation >> howto->rightshift;
7512 /* If this is a signed value, the rightshift just dropped
7513 leading 1 bits (assuming twos complement). */
7514 if ((bfd_signed_vma) relocation >= 0)
7515 signed_check = check;
7517 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7519 /* Calculate the permissable maximum and minimum values for
7520 this relocation according to whether we're relocating for
7522 bitsize = howto->bitsize;
7525 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
7526 reloc_signed_min = ~reloc_signed_max;
7528 /* Assumes two's complement. */
7529 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7532 if ((lower_insn & 0x5000) == 0x4000)
7533 /* For a BLX instruction, make sure that the relocation is rounded up
7534 to a word boundary. This follows the semantics of the instruction
7535 which specifies that bit 1 of the target address will come from bit
7536 1 of the base address. */
7537 relocation = (relocation + 2) & ~ 3;
7539 /* Put RELOCATION back into the insn. Assumes two's complement.
7540 We use the Thumb-2 encoding, which is safe even if dealing with
7541 a Thumb-1 instruction by virtue of our overflow check above. */
7542 reloc_sign = (signed_check < 0) ? 1 : 0;
7543 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7544 | ((relocation >> 12) & 0x3ff)
7545 | (reloc_sign << 10);
7546 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
7547 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7548 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7549 | ((relocation >> 1) & 0x7ff);
7551 /* Put the relocated value back in the object file: */
7552 bfd_put_16 (input_bfd, upper_insn, hit_data);
7553 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7555 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7559 case R_ARM_THM_JUMP19:
7560 /* Thumb32 conditional branch instruction. */
7563 bfd_boolean overflow = FALSE;
7564 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7565 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7566 bfd_signed_vma reloc_signed_max = 0xffffe;
7567 bfd_signed_vma reloc_signed_min = -0x100000;
7568 bfd_signed_vma signed_check;
7570 /* Need to refetch the addend, reconstruct the top three bits,
7571 and squish the two 11 bit pieces together. */
7572 if (globals->use_rel)
7574 bfd_vma S = (upper_insn & 0x0400) >> 10;
7575 bfd_vma upper = (upper_insn & 0x003f);
7576 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
7577 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
7578 bfd_vma lower = (lower_insn & 0x07ff);
7583 upper -= 0x0100; /* Sign extend. */
7585 addend = (upper << 12) | (lower << 1);
7586 signed_addend = addend;
7589 /* Handle calls via the PLT. */
7590 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7592 value = (splt->output_section->vma
7593 + splt->output_offset
7595 /* Target the Thumb stub before the ARM PLT entry. */
7596 value -= PLT_THUMB_STUB_SIZE;
7597 *unresolved_reloc_p = FALSE;
7600 /* ??? Should handle interworking? GCC might someday try to
7601 use this for tail calls. */
7603 relocation = value + signed_addend;
7604 relocation -= (input_section->output_section->vma
7605 + input_section->output_offset
7607 signed_check = (bfd_signed_vma) relocation;
7609 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7612 /* Put RELOCATION back into the insn. */
7614 bfd_vma S = (relocation & 0x00100000) >> 20;
7615 bfd_vma J2 = (relocation & 0x00080000) >> 19;
7616 bfd_vma J1 = (relocation & 0x00040000) >> 18;
7617 bfd_vma hi = (relocation & 0x0003f000) >> 12;
7618 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
7620 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
7621 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7624 /* Put the relocated value back in the object file: */
7625 bfd_put_16 (input_bfd, upper_insn, hit_data);
7626 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7628 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7631 case R_ARM_THM_JUMP11:
7632 case R_ARM_THM_JUMP8:
7633 case R_ARM_THM_JUMP6:
7634 /* Thumb B (branch) instruction). */
7636 bfd_signed_vma relocation;
7637 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7638 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
7639 bfd_signed_vma signed_check;
7641 /* CZB cannot jump backward. */
7642 if (r_type == R_ARM_THM_JUMP6)
7643 reloc_signed_min = 0;
7645 if (globals->use_rel)
7647 /* Need to refetch addend. */
7648 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7649 if (addend & ((howto->src_mask + 1) >> 1))
7652 signed_addend &= ~ howto->src_mask;
7653 signed_addend |= addend;
7656 signed_addend = addend;
7657 /* The value in the insn has been right shifted. We need to
7658 undo this, so that we can perform the address calculation
7659 in terms of bytes. */
7660 signed_addend <<= howto->rightshift;
7662 relocation = value + signed_addend;
7664 relocation -= (input_section->output_section->vma
7665 + input_section->output_offset
7668 relocation >>= howto->rightshift;
7669 signed_check = relocation;
7671 if (r_type == R_ARM_THM_JUMP6)
7672 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7674 relocation &= howto->dst_mask;
7675 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
7677 bfd_put_16 (input_bfd, relocation, hit_data);
7679 /* Assumes two's complement. */
7680 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7681 return bfd_reloc_overflow;
7683 return bfd_reloc_ok;
7686 case R_ARM_ALU_PCREL7_0:
7687 case R_ARM_ALU_PCREL15_8:
7688 case R_ARM_ALU_PCREL23_15:
7693 insn = bfd_get_32 (input_bfd, hit_data);
7694 if (globals->use_rel)
7696 /* Extract the addend. */
7697 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7698 signed_addend = addend;
7700 relocation = value + signed_addend;
7702 relocation -= (input_section->output_section->vma
7703 + input_section->output_offset
7705 insn = (insn & ~0xfff)
7706 | ((howto->bitpos << 7) & 0xf00)
7707 | ((relocation >> howto->bitpos) & 0xff);
7708 bfd_put_32 (input_bfd, value, hit_data);
7710 return bfd_reloc_ok;
7712 case R_ARM_GNU_VTINHERIT:
7713 case R_ARM_GNU_VTENTRY:
7714 return bfd_reloc_ok;
7716 case R_ARM_GOTOFF32:
7717 /* Relocation is relative to the start of the
7718 global offset table. */
7720 BFD_ASSERT (sgot != NULL);
7722 return bfd_reloc_notsupported;
7724 /* If we are addressing a Thumb function, we need to adjust the
7725 address by one, so that attempts to call the function pointer will
7726 correctly interpret it as Thumb code. */
7727 if (sym_flags == STT_ARM_TFUNC)
7730 /* Note that sgot->output_offset is not involved in this
7731 calculation. We always want the start of .got. If we
7732 define _GLOBAL_OFFSET_TABLE in a different way, as is
7733 permitted by the ABI, we might have to change this
7735 value -= sgot->output_section->vma;
7736 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7737 contents, rel->r_offset, value,
7741 /* Use global offset table as symbol value. */
7742 BFD_ASSERT (sgot != NULL);
7745 return bfd_reloc_notsupported;
7747 *unresolved_reloc_p = FALSE;
7748 value = sgot->output_section->vma;
7749 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7750 contents, rel->r_offset, value,
7754 case R_ARM_GOT_PREL:
7755 /* Relocation is to the entry for this symbol in the
7756 global offset table. */
7758 return bfd_reloc_notsupported;
7765 off = h->got.offset;
7766 BFD_ASSERT (off != (bfd_vma) -1);
7767 dyn = globals->root.dynamic_sections_created;
7769 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7771 && SYMBOL_REFERENCES_LOCAL (info, h))
7772 || (ELF_ST_VISIBILITY (h->other)
7773 && h->root.type == bfd_link_hash_undefweak))
7775 /* This is actually a static link, or it is a -Bsymbolic link
7776 and the symbol is defined locally. We must initialize this
7777 entry in the global offset table. Since the offset must
7778 always be a multiple of 4, we use the least significant bit
7779 to record whether we have initialized it already.
7781 When doing a dynamic link, we create a .rel(a).got relocation
7782 entry to initialize the value. This is done in the
7783 finish_dynamic_symbol routine. */
7788 /* If we are addressing a Thumb function, we need to
7789 adjust the address by one, so that attempts to
7790 call the function pointer will correctly
7791 interpret it as Thumb code. */
7792 if (sym_flags == STT_ARM_TFUNC)
7795 bfd_put_32 (output_bfd, value, sgot->contents + off);
7800 *unresolved_reloc_p = FALSE;
7802 value = sgot->output_offset + off;
7808 BFD_ASSERT (local_got_offsets != NULL &&
7809 local_got_offsets[r_symndx] != (bfd_vma) -1);
7811 off = local_got_offsets[r_symndx];
7813 /* The offset must always be a multiple of 4. We use the
7814 least significant bit to record whether we have already
7815 generated the necessary reloc. */
7820 /* If we are addressing a Thumb function, we need to
7821 adjust the address by one, so that attempts to
7822 call the function pointer will correctly
7823 interpret it as Thumb code. */
7824 if (sym_flags == STT_ARM_TFUNC)
7827 if (globals->use_rel)
7828 bfd_put_32 (output_bfd, value, sgot->contents + off);
7833 Elf_Internal_Rela outrel;
7836 srelgot = (bfd_get_section_by_name
7837 (dynobj, RELOC_SECTION (globals, ".got")));
7838 BFD_ASSERT (srelgot != NULL);
7840 outrel.r_addend = addend + value;
7841 outrel.r_offset = (sgot->output_section->vma
7842 + sgot->output_offset
7844 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7845 loc = srelgot->contents;
7846 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7847 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7850 local_got_offsets[r_symndx] |= 1;
7853 value = sgot->output_offset + off;
7855 if (r_type != R_ARM_GOT32)
7856 value += sgot->output_section->vma;
7858 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7859 contents, rel->r_offset, value,
7862 case R_ARM_TLS_LDO32:
7863 value = value - dtpoff_base (info);
7865 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7866 contents, rel->r_offset, value,
7869 case R_ARM_TLS_LDM32:
7873 if (globals->sgot == NULL)
7876 off = globals->tls_ldm_got.offset;
7882 /* If we don't know the module number, create a relocation
7886 Elf_Internal_Rela outrel;
7889 if (globals->srelgot == NULL)
7892 outrel.r_addend = 0;
7893 outrel.r_offset = (globals->sgot->output_section->vma
7894 + globals->sgot->output_offset + off);
7895 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7897 if (globals->use_rel)
7898 bfd_put_32 (output_bfd, outrel.r_addend,
7899 globals->sgot->contents + off);
7901 loc = globals->srelgot->contents;
7902 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7903 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7906 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7908 globals->tls_ldm_got.offset |= 1;
7911 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7912 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7914 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7915 contents, rel->r_offset, value,
7919 case R_ARM_TLS_GD32:
7920 case R_ARM_TLS_IE32:
7926 if (globals->sgot == NULL)
7933 dyn = globals->root.dynamic_sections_created;
7934 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7936 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7938 *unresolved_reloc_p = FALSE;
7941 off = h->got.offset;
7942 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7946 if (local_got_offsets == NULL)
7948 off = local_got_offsets[r_symndx];
7949 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7952 if (tls_type == GOT_UNKNOWN)
7959 bfd_boolean need_relocs = FALSE;
7960 Elf_Internal_Rela outrel;
7961 bfd_byte *loc = NULL;
7964 /* The GOT entries have not been initialized yet. Do it
7965 now, and emit any relocations. If both an IE GOT and a
7966 GD GOT are necessary, we emit the GD first. */
7968 if ((info->shared || indx != 0)
7970 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7971 || h->root.type != bfd_link_hash_undefweak))
7974 if (globals->srelgot == NULL)
7976 loc = globals->srelgot->contents;
7977 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
7980 if (tls_type & GOT_TLS_GD)
7984 outrel.r_addend = 0;
7985 outrel.r_offset = (globals->sgot->output_section->vma
7986 + globals->sgot->output_offset
7988 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7990 if (globals->use_rel)
7991 bfd_put_32 (output_bfd, outrel.r_addend,
7992 globals->sgot->contents + cur_off);
7994 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7995 globals->srelgot->reloc_count++;
7996 loc += RELOC_SIZE (globals);
7999 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8000 globals->sgot->contents + cur_off + 4);
8003 outrel.r_addend = 0;
8004 outrel.r_info = ELF32_R_INFO (indx,
8005 R_ARM_TLS_DTPOFF32);
8006 outrel.r_offset += 4;
8008 if (globals->use_rel)
8009 bfd_put_32 (output_bfd, outrel.r_addend,
8010 globals->sgot->contents + cur_off + 4);
8013 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8014 globals->srelgot->reloc_count++;
8015 loc += RELOC_SIZE (globals);
8020 /* If we are not emitting relocations for a
8021 general dynamic reference, then we must be in a
8022 static link or an executable link with the
8023 symbol binding locally. Mark it as belonging
8024 to module 1, the executable. */
8025 bfd_put_32 (output_bfd, 1,
8026 globals->sgot->contents + cur_off);
8027 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8028 globals->sgot->contents + cur_off + 4);
8034 if (tls_type & GOT_TLS_IE)
8039 outrel.r_addend = value - dtpoff_base (info);
8041 outrel.r_addend = 0;
8042 outrel.r_offset = (globals->sgot->output_section->vma
8043 + globals->sgot->output_offset
8045 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8047 if (globals->use_rel)
8048 bfd_put_32 (output_bfd, outrel.r_addend,
8049 globals->sgot->contents + cur_off);
8051 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8052 globals->srelgot->reloc_count++;
8053 loc += RELOC_SIZE (globals);
8056 bfd_put_32 (output_bfd, tpoff (info, value),
8057 globals->sgot->contents + cur_off);
8064 local_got_offsets[r_symndx] |= 1;
8067 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8069 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8070 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8072 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8073 contents, rel->r_offset, value,
8077 case R_ARM_TLS_LE32:
8080 (*_bfd_error_handler)
8081 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8082 input_bfd, input_section,
8083 (long) rel->r_offset, howto->name);
8087 value = tpoff (info, value);
8089 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8090 contents, rel->r_offset, value,
8094 if (globals->fix_v4bx)
8096 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8098 /* Ensure that we have a BX instruction. */
8099 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
8101 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8103 /* Branch to veneer. */
8105 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8106 glue_addr -= input_section->output_section->vma
8107 + input_section->output_offset
8108 + rel->r_offset + 8;
8109 insn = (insn & 0xf0000000) | 0x0a000000
8110 | ((glue_addr >> 2) & 0x00ffffff);
8114 /* Preserve Rm (lowest four bits) and the condition code
8115 (highest four bits). Other bits encode MOV PC,Rm. */
8116 insn = (insn & 0xf000000f) | 0x01a0f000;
8119 bfd_put_32 (input_bfd, insn, hit_data);
8121 return bfd_reloc_ok;
8123 case R_ARM_MOVW_ABS_NC:
8124 case R_ARM_MOVT_ABS:
8125 case R_ARM_MOVW_PREL_NC:
8126 case R_ARM_MOVT_PREL:
8127 /* Until we properly support segment-base-relative addressing then
8128 we assume the segment base to be zero, as for the group relocations.
8129 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8130 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8131 case R_ARM_MOVW_BREL_NC:
8132 case R_ARM_MOVW_BREL:
8133 case R_ARM_MOVT_BREL:
8135 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8137 if (globals->use_rel)
8139 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
8140 signed_addend = (addend ^ 0x8000) - 0x8000;
8143 value += signed_addend;
8145 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8146 value -= (input_section->output_section->vma
8147 + input_section->output_offset + rel->r_offset);
8149 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8150 return bfd_reloc_overflow;
8152 if (sym_flags == STT_ARM_TFUNC)
8155 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8156 || r_type == R_ARM_MOVT_BREL)
8160 insn |= value & 0xfff;
8161 insn |= (value & 0xf000) << 4;
8162 bfd_put_32 (input_bfd, insn, hit_data);
8164 return bfd_reloc_ok;
8166 case R_ARM_THM_MOVW_ABS_NC:
8167 case R_ARM_THM_MOVT_ABS:
8168 case R_ARM_THM_MOVW_PREL_NC:
8169 case R_ARM_THM_MOVT_PREL:
8170 /* Until we properly support segment-base-relative addressing then
8171 we assume the segment base to be zero, as for the above relocations.
8172 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8173 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8174 as R_ARM_THM_MOVT_ABS. */
8175 case R_ARM_THM_MOVW_BREL_NC:
8176 case R_ARM_THM_MOVW_BREL:
8177 case R_ARM_THM_MOVT_BREL:
8181 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8182 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8184 if (globals->use_rel)
8186 addend = ((insn >> 4) & 0xf000)
8187 | ((insn >> 15) & 0x0800)
8188 | ((insn >> 4) & 0x0700)
8190 signed_addend = (addend ^ 0x8000) - 0x8000;
8193 value += signed_addend;
8195 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8196 value -= (input_section->output_section->vma
8197 + input_section->output_offset + rel->r_offset);
8199 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8200 return bfd_reloc_overflow;
8202 if (sym_flags == STT_ARM_TFUNC)
8205 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8206 || r_type == R_ARM_THM_MOVT_BREL)
8210 insn |= (value & 0xf000) << 4;
8211 insn |= (value & 0x0800) << 15;
8212 insn |= (value & 0x0700) << 4;
8213 insn |= (value & 0x00ff);
8215 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8216 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8218 return bfd_reloc_ok;
8220 case R_ARM_ALU_PC_G0_NC:
8221 case R_ARM_ALU_PC_G1_NC:
8222 case R_ARM_ALU_PC_G0:
8223 case R_ARM_ALU_PC_G1:
8224 case R_ARM_ALU_PC_G2:
8225 case R_ARM_ALU_SB_G0_NC:
8226 case R_ARM_ALU_SB_G1_NC:
8227 case R_ARM_ALU_SB_G0:
8228 case R_ARM_ALU_SB_G1:
8229 case R_ARM_ALU_SB_G2:
8231 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8232 bfd_vma pc = input_section->output_section->vma
8233 + input_section->output_offset + rel->r_offset;
8234 /* sb should be the origin of the *segment* containing the symbol.
8235 It is not clear how to obtain this OS-dependent value, so we
8236 make an arbitrary choice of zero. */
8240 bfd_signed_vma signed_value;
8243 /* Determine which group of bits to select. */
8246 case R_ARM_ALU_PC_G0_NC:
8247 case R_ARM_ALU_PC_G0:
8248 case R_ARM_ALU_SB_G0_NC:
8249 case R_ARM_ALU_SB_G0:
8253 case R_ARM_ALU_PC_G1_NC:
8254 case R_ARM_ALU_PC_G1:
8255 case R_ARM_ALU_SB_G1_NC:
8256 case R_ARM_ALU_SB_G1:
8260 case R_ARM_ALU_PC_G2:
8261 case R_ARM_ALU_SB_G2:
8269 /* If REL, extract the addend from the insn. If RELA, it will
8270 have already been fetched for us. */
8271 if (globals->use_rel)
8274 bfd_vma constant = insn & 0xff;
8275 bfd_vma rotation = (insn & 0xf00) >> 8;
8278 signed_addend = constant;
8281 /* Compensate for the fact that in the instruction, the
8282 rotation is stored in multiples of 2 bits. */
8285 /* Rotate "constant" right by "rotation" bits. */
8286 signed_addend = (constant >> rotation) |
8287 (constant << (8 * sizeof (bfd_vma) - rotation));
8290 /* Determine if the instruction is an ADD or a SUB.
8291 (For REL, this determines the sign of the addend.) */
8292 negative = identify_add_or_sub (insn);
8295 (*_bfd_error_handler)
8296 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8297 input_bfd, input_section,
8298 (long) rel->r_offset, howto->name);
8299 return bfd_reloc_overflow;
8302 signed_addend *= negative;
8305 /* Compute the value (X) to go in the place. */
8306 if (r_type == R_ARM_ALU_PC_G0_NC
8307 || r_type == R_ARM_ALU_PC_G1_NC
8308 || r_type == R_ARM_ALU_PC_G0
8309 || r_type == R_ARM_ALU_PC_G1
8310 || r_type == R_ARM_ALU_PC_G2)
8312 signed_value = value - pc + signed_addend;
8314 /* Section base relative. */
8315 signed_value = value - sb + signed_addend;
8317 /* If the target symbol is a Thumb function, then set the
8318 Thumb bit in the address. */
8319 if (sym_flags == STT_ARM_TFUNC)
8322 /* Calculate the value of the relevant G_n, in encoded
8323 constant-with-rotation format. */
8324 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8327 /* Check for overflow if required. */
8328 if ((r_type == R_ARM_ALU_PC_G0
8329 || r_type == R_ARM_ALU_PC_G1
8330 || r_type == R_ARM_ALU_PC_G2
8331 || r_type == R_ARM_ALU_SB_G0
8332 || r_type == R_ARM_ALU_SB_G1
8333 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8335 (*_bfd_error_handler)
8336 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8337 input_bfd, input_section,
8338 (long) rel->r_offset, abs (signed_value), howto->name);
8339 return bfd_reloc_overflow;
8342 /* Mask out the value and the ADD/SUB part of the opcode; take care
8343 not to destroy the S bit. */
8346 /* Set the opcode according to whether the value to go in the
8347 place is negative. */
8348 if (signed_value < 0)
8353 /* Encode the offset. */
8356 bfd_put_32 (input_bfd, insn, hit_data);
8358 return bfd_reloc_ok;
8360 case R_ARM_LDR_PC_G0:
8361 case R_ARM_LDR_PC_G1:
8362 case R_ARM_LDR_PC_G2:
8363 case R_ARM_LDR_SB_G0:
8364 case R_ARM_LDR_SB_G1:
8365 case R_ARM_LDR_SB_G2:
8367 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8368 bfd_vma pc = input_section->output_section->vma
8369 + input_section->output_offset + rel->r_offset;
8370 bfd_vma sb = 0; /* See note above. */
8372 bfd_signed_vma signed_value;
8375 /* Determine which groups of bits to calculate. */
8378 case R_ARM_LDR_PC_G0:
8379 case R_ARM_LDR_SB_G0:
8383 case R_ARM_LDR_PC_G1:
8384 case R_ARM_LDR_SB_G1:
8388 case R_ARM_LDR_PC_G2:
8389 case R_ARM_LDR_SB_G2:
8397 /* If REL, extract the addend from the insn. If RELA, it will
8398 have already been fetched for us. */
8399 if (globals->use_rel)
8401 int negative = (insn & (1 << 23)) ? 1 : -1;
8402 signed_addend = negative * (insn & 0xfff);
8405 /* Compute the value (X) to go in the place. */
8406 if (r_type == R_ARM_LDR_PC_G0
8407 || r_type == R_ARM_LDR_PC_G1
8408 || r_type == R_ARM_LDR_PC_G2)
8410 signed_value = value - pc + signed_addend;
8412 /* Section base relative. */
8413 signed_value = value - sb + signed_addend;
8415 /* Calculate the value of the relevant G_{n-1} to obtain
8416 the residual at that stage. */
8417 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8419 /* Check for overflow. */
8420 if (residual >= 0x1000)
8422 (*_bfd_error_handler)
8423 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8424 input_bfd, input_section,
8425 (long) rel->r_offset, abs (signed_value), howto->name);
8426 return bfd_reloc_overflow;
8429 /* Mask out the value and U bit. */
8432 /* Set the U bit if the value to go in the place is non-negative. */
8433 if (signed_value >= 0)
8436 /* Encode the offset. */
8439 bfd_put_32 (input_bfd, insn, hit_data);
8441 return bfd_reloc_ok;
8443 case R_ARM_LDRS_PC_G0:
8444 case R_ARM_LDRS_PC_G1:
8445 case R_ARM_LDRS_PC_G2:
8446 case R_ARM_LDRS_SB_G0:
8447 case R_ARM_LDRS_SB_G1:
8448 case R_ARM_LDRS_SB_G2:
8450 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8451 bfd_vma pc = input_section->output_section->vma
8452 + input_section->output_offset + rel->r_offset;
8453 bfd_vma sb = 0; /* See note above. */
8455 bfd_signed_vma signed_value;
8458 /* Determine which groups of bits to calculate. */
8461 case R_ARM_LDRS_PC_G0:
8462 case R_ARM_LDRS_SB_G0:
8466 case R_ARM_LDRS_PC_G1:
8467 case R_ARM_LDRS_SB_G1:
8471 case R_ARM_LDRS_PC_G2:
8472 case R_ARM_LDRS_SB_G2:
8480 /* If REL, extract the addend from the insn. If RELA, it will
8481 have already been fetched for us. */
8482 if (globals->use_rel)
8484 int negative = (insn & (1 << 23)) ? 1 : -1;
8485 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8488 /* Compute the value (X) to go in the place. */
8489 if (r_type == R_ARM_LDRS_PC_G0
8490 || r_type == R_ARM_LDRS_PC_G1
8491 || r_type == R_ARM_LDRS_PC_G2)
8493 signed_value = value - pc + signed_addend;
8495 /* Section base relative. */
8496 signed_value = value - sb + signed_addend;
8498 /* Calculate the value of the relevant G_{n-1} to obtain
8499 the residual at that stage. */
8500 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8502 /* Check for overflow. */
8503 if (residual >= 0x100)
8505 (*_bfd_error_handler)
8506 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8507 input_bfd, input_section,
8508 (long) rel->r_offset, abs (signed_value), howto->name);
8509 return bfd_reloc_overflow;
8512 /* Mask out the value and U bit. */
8515 /* Set the U bit if the value to go in the place is non-negative. */
8516 if (signed_value >= 0)
8519 /* Encode the offset. */
8520 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8522 bfd_put_32 (input_bfd, insn, hit_data);
8524 return bfd_reloc_ok;
8526 case R_ARM_LDC_PC_G0:
8527 case R_ARM_LDC_PC_G1:
8528 case R_ARM_LDC_PC_G2:
8529 case R_ARM_LDC_SB_G0:
8530 case R_ARM_LDC_SB_G1:
8531 case R_ARM_LDC_SB_G2:
8533 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8534 bfd_vma pc = input_section->output_section->vma
8535 + input_section->output_offset + rel->r_offset;
8536 bfd_vma sb = 0; /* See note above. */
8538 bfd_signed_vma signed_value;
8541 /* Determine which groups of bits to calculate. */
8544 case R_ARM_LDC_PC_G0:
8545 case R_ARM_LDC_SB_G0:
8549 case R_ARM_LDC_PC_G1:
8550 case R_ARM_LDC_SB_G1:
8554 case R_ARM_LDC_PC_G2:
8555 case R_ARM_LDC_SB_G2:
8563 /* If REL, extract the addend from the insn. If RELA, it will
8564 have already been fetched for us. */
8565 if (globals->use_rel)
8567 int negative = (insn & (1 << 23)) ? 1 : -1;
8568 signed_addend = negative * ((insn & 0xff) << 2);
8571 /* Compute the value (X) to go in the place. */
8572 if (r_type == R_ARM_LDC_PC_G0
8573 || r_type == R_ARM_LDC_PC_G1
8574 || r_type == R_ARM_LDC_PC_G2)
8576 signed_value = value - pc + signed_addend;
8578 /* Section base relative. */
8579 signed_value = value - sb + signed_addend;
8581 /* Calculate the value of the relevant G_{n-1} to obtain
8582 the residual at that stage. */
8583 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8585 /* Check for overflow. (The absolute value to go in the place must be
8586 divisible by four and, after having been divided by four, must
8587 fit in eight bits.) */
8588 if ((residual & 0x3) != 0 || residual >= 0x400)
8590 (*_bfd_error_handler)
8591 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8592 input_bfd, input_section,
8593 (long) rel->r_offset, abs (signed_value), howto->name);
8594 return bfd_reloc_overflow;
8597 /* Mask out the value and U bit. */
8600 /* Set the U bit if the value to go in the place is non-negative. */
8601 if (signed_value >= 0)
8604 /* Encode the offset. */
8605 insn |= residual >> 2;
8607 bfd_put_32 (input_bfd, insn, hit_data);
8609 return bfd_reloc_ok;
8612 return bfd_reloc_notsupported;
8616 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8618 arm_add_to_rel (bfd * abfd,
8620 reloc_howto_type * howto,
8621 bfd_signed_vma increment)
8623 bfd_signed_vma addend;
8625 if (howto->type == R_ARM_THM_CALL
8626 || howto->type == R_ARM_THM_JUMP24)
8628 int upper_insn, lower_insn;
8631 upper_insn = bfd_get_16 (abfd, address);
8632 lower_insn = bfd_get_16 (abfd, address + 2);
8633 upper = upper_insn & 0x7ff;
8634 lower = lower_insn & 0x7ff;
8636 addend = (upper << 12) | (lower << 1);
8637 addend += increment;
8640 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8641 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8643 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8644 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
8650 contents = bfd_get_32 (abfd, address);
8652 /* Get the (signed) value from the instruction. */
8653 addend = contents & howto->src_mask;
8654 if (addend & ((howto->src_mask + 1) >> 1))
8656 bfd_signed_vma mask;
8659 mask &= ~ howto->src_mask;
8663 /* Add in the increment, (which is a byte value). */
8664 switch (howto->type)
8667 addend += increment;
8674 addend <<= howto->size;
8675 addend += increment;
8677 /* Should we check for overflow here ? */
8679 /* Drop any undesired bits. */
8680 addend >>= howto->rightshift;
8684 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8686 bfd_put_32 (abfd, contents, address);
8690 #define IS_ARM_TLS_RELOC(R_TYPE) \
8691 ((R_TYPE) == R_ARM_TLS_GD32 \
8692 || (R_TYPE) == R_ARM_TLS_LDO32 \
8693 || (R_TYPE) == R_ARM_TLS_LDM32 \
8694 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8695 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8696 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8697 || (R_TYPE) == R_ARM_TLS_LE32 \
8698 || (R_TYPE) == R_ARM_TLS_IE32)
8700 /* Relocate an ARM ELF section. */
8703 elf32_arm_relocate_section (bfd * output_bfd,
8704 struct bfd_link_info * info,
8706 asection * input_section,
8707 bfd_byte * contents,
8708 Elf_Internal_Rela * relocs,
8709 Elf_Internal_Sym * local_syms,
8710 asection ** local_sections)
8712 Elf_Internal_Shdr *symtab_hdr;
8713 struct elf_link_hash_entry **sym_hashes;
8714 Elf_Internal_Rela *rel;
8715 Elf_Internal_Rela *relend;
8717 struct elf32_arm_link_hash_table * globals;
8719 globals = elf32_arm_hash_table (info);
8721 symtab_hdr = & elf_symtab_hdr (input_bfd);
8722 sym_hashes = elf_sym_hashes (input_bfd);
8725 relend = relocs + input_section->reloc_count;
8726 for (; rel < relend; rel++)
8729 reloc_howto_type * howto;
8730 unsigned long r_symndx;
8731 Elf_Internal_Sym * sym;
8733 struct elf_link_hash_entry * h;
8735 bfd_reloc_status_type r;
8738 bfd_boolean unresolved_reloc = FALSE;
8739 char *error_message = NULL;
8741 r_symndx = ELF32_R_SYM (rel->r_info);
8742 r_type = ELF32_R_TYPE (rel->r_info);
8743 r_type = arm_real_reloc_type (globals, r_type);
8745 if ( r_type == R_ARM_GNU_VTENTRY
8746 || r_type == R_ARM_GNU_VTINHERIT)
8749 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
8750 howto = bfd_reloc.howto;
8756 if (r_symndx < symtab_hdr->sh_info)
8758 sym = local_syms + r_symndx;
8759 sym_type = ELF32_ST_TYPE (sym->st_info);
8760 sec = local_sections[r_symndx];
8762 /* An object file might have a reference to a local
8763 undefined symbol. This is a daft object file, but we
8764 should at least do something about it. V4BX & NONE
8765 relocations do not use the symbol and are explicitly
8766 allowed to use the undefined symbol, so allow those. */
8767 if (r_type != R_ARM_V4BX
8768 && r_type != R_ARM_NONE
8769 && bfd_is_und_section (sec)
8770 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8772 if (!info->callbacks->undefined_symbol
8773 (info, bfd_elf_string_from_elf_section
8774 (input_bfd, symtab_hdr->sh_link, sym->st_name),
8775 input_bfd, input_section,
8776 rel->r_offset, TRUE))
8780 if (globals->use_rel)
8782 relocation = (sec->output_section->vma
8783 + sec->output_offset
8785 if (!info->relocatable
8786 && (sec->flags & SEC_MERGE)
8787 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8790 bfd_vma addend, value;
8794 case R_ARM_MOVW_ABS_NC:
8795 case R_ARM_MOVT_ABS:
8796 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8797 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8798 addend = (addend ^ 0x8000) - 0x8000;
8801 case R_ARM_THM_MOVW_ABS_NC:
8802 case R_ARM_THM_MOVT_ABS:
8803 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8805 value |= bfd_get_16 (input_bfd,
8806 contents + rel->r_offset + 2);
8807 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8808 | ((value & 0x04000000) >> 15);
8809 addend = (addend ^ 0x8000) - 0x8000;
8813 if (howto->rightshift
8814 || (howto->src_mask & (howto->src_mask + 1)))
8816 (*_bfd_error_handler)
8817 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8818 input_bfd, input_section,
8819 (long) rel->r_offset, howto->name);
8823 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8825 /* Get the (signed) value from the instruction. */
8826 addend = value & howto->src_mask;
8827 if (addend & ((howto->src_mask + 1) >> 1))
8829 bfd_signed_vma mask;
8832 mask &= ~ howto->src_mask;
8840 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8842 addend += msec->output_section->vma + msec->output_offset;
8844 /* Cases here must match those in the preceeding
8845 switch statement. */
8848 case R_ARM_MOVW_ABS_NC:
8849 case R_ARM_MOVT_ABS:
8850 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8852 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8855 case R_ARM_THM_MOVW_ABS_NC:
8856 case R_ARM_THM_MOVT_ABS:
8857 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8858 | (addend & 0xff) | ((addend & 0x0800) << 15);
8859 bfd_put_16 (input_bfd, value >> 16,
8860 contents + rel->r_offset);
8861 bfd_put_16 (input_bfd, value,
8862 contents + rel->r_offset + 2);
8866 value = (value & ~ howto->dst_mask)
8867 | (addend & howto->dst_mask);
8868 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8874 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8880 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8881 r_symndx, symtab_hdr, sym_hashes,
8883 unresolved_reloc, warned);
8888 if (sec != NULL && elf_discarded_section (sec))
8890 /* For relocs against symbols from removed linkonce sections,
8891 or sections discarded by a linker script, we just want the
8892 section contents zeroed. Avoid any special processing. */
8893 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8899 if (info->relocatable)
8901 /* This is a relocatable link. We don't have to change
8902 anything, unless the reloc is against a section symbol,
8903 in which case we have to adjust according to where the
8904 section symbol winds up in the output section. */
8905 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8907 if (globals->use_rel)
8908 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8909 howto, (bfd_signed_vma) sec->output_offset);
8911 rel->r_addend += sec->output_offset;
8917 name = h->root.root.string;
8920 name = (bfd_elf_string_from_elf_section
8921 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8922 if (name == NULL || *name == '\0')
8923 name = bfd_section_name (input_bfd, sec);
8927 && r_type != R_ARM_NONE
8929 || h->root.type == bfd_link_hash_defined
8930 || h->root.type == bfd_link_hash_defweak)
8931 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8933 (*_bfd_error_handler)
8934 ((sym_type == STT_TLS
8935 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8936 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8939 (long) rel->r_offset,
8944 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8945 input_section, contents, rel,
8946 relocation, info, sec, name,
8947 (h ? ELF_ST_TYPE (h->type) :
8948 ELF_ST_TYPE (sym->st_info)), h,
8949 &unresolved_reloc, &error_message);
8951 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8952 because such sections are not SEC_ALLOC and thus ld.so will
8953 not process them. */
8954 if (unresolved_reloc
8955 && !((input_section->flags & SEC_DEBUGGING) != 0
8958 (*_bfd_error_handler)
8959 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8962 (long) rel->r_offset,
8964 h->root.root.string);
8968 if (r != bfd_reloc_ok)
8972 case bfd_reloc_overflow:
8973 /* If the overflowing reloc was to an undefined symbol,
8974 we have already printed one error message and there
8975 is no point complaining again. */
8977 h->root.type != bfd_link_hash_undefined)
8978 && (!((*info->callbacks->reloc_overflow)
8979 (info, (h ? &h->root : NULL), name, howto->name,
8980 (bfd_vma) 0, input_bfd, input_section,
8985 case bfd_reloc_undefined:
8986 if (!((*info->callbacks->undefined_symbol)
8987 (info, name, input_bfd, input_section,
8988 rel->r_offset, TRUE)))
8992 case bfd_reloc_outofrange:
8993 error_message = _("out of range");
8996 case bfd_reloc_notsupported:
8997 error_message = _("unsupported relocation");
9000 case bfd_reloc_dangerous:
9001 /* error_message should already be set. */
9005 error_message = _("unknown error");
9009 BFD_ASSERT (error_message != NULL);
9010 if (!((*info->callbacks->reloc_dangerous)
9011 (info, error_message, input_bfd, input_section,
9022 /* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
9023 adds the edit to the start of the list. (The list must be built in order of
9024 ascending INDEX: the function's callers are primarily responsible for
9025 maintaining that condition). */
9028 add_unwind_table_edit (arm_unwind_table_edit **head,
9029 arm_unwind_table_edit **tail,
9030 arm_unwind_edit_type type,
9031 asection *linked_section,
9034 arm_unwind_table_edit *new_edit = xmalloc (sizeof (arm_unwind_table_edit));
9036 new_edit->type = type;
9037 new_edit->linked_section = linked_section;
9038 new_edit->index = index;
9042 new_edit->next = NULL;
9045 (*tail)->next = new_edit;
9054 new_edit->next = *head;
9063 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9065 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9067 adjust_exidx_size(asection *exidx_sec, int adjust)
9071 if (!exidx_sec->rawsize)
9072 exidx_sec->rawsize = exidx_sec->size;
9074 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9075 out_sec = exidx_sec->output_section;
9076 /* Adjust size of output section. */
9077 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9080 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9082 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9084 struct _arm_elf_section_data *exidx_arm_data;
9086 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9087 add_unwind_table_edit (
9088 &exidx_arm_data->u.exidx.unwind_edit_list,
9089 &exidx_arm_data->u.exidx.unwind_edit_tail,
9090 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9092 adjust_exidx_size(exidx_sec, 8);
9095 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9096 made to those tables, such that:
9098 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9099 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9100 codes which have been inlined into the index).
9102 The edits are applied when the tables are written
9103 (in elf32_arm_write_section).
9107 elf32_arm_fix_exidx_coverage (asection **text_section_order,
9108 unsigned int num_text_sections,
9109 struct bfd_link_info *info)
9112 unsigned int last_second_word = 0, i;
9113 asection *last_exidx_sec = NULL;
9114 asection *last_text_sec = NULL;
9115 int last_unwind_type = -1;
9117 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9119 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9123 for (sec = inp->sections; sec != NULL; sec = sec->next)
9125 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9126 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9128 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
9131 if (elf_sec->linked_to)
9133 Elf_Internal_Shdr *linked_hdr
9134 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9135 struct _arm_elf_section_data *linked_sec_arm_data
9136 = get_arm_elf_section_data (linked_hdr->bfd_section);
9138 if (linked_sec_arm_data == NULL)
9141 /* Link this .ARM.exidx section back from the text section it
9143 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9148 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9149 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9150 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
9153 for (i = 0; i < num_text_sections; i++)
9155 asection *sec = text_section_order[i];
9156 asection *exidx_sec;
9157 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9158 struct _arm_elf_section_data *exidx_arm_data;
9159 bfd_byte *contents = NULL;
9160 int deleted_exidx_bytes = 0;
9162 arm_unwind_table_edit *unwind_edit_head = NULL;
9163 arm_unwind_table_edit *unwind_edit_tail = NULL;
9164 Elf_Internal_Shdr *hdr;
9167 if (arm_data == NULL)
9170 exidx_sec = arm_data->u.text.arm_exidx_sec;
9171 if (exidx_sec == NULL)
9173 /* Section has no unwind data. */
9174 if (last_unwind_type == 0 || !last_exidx_sec)
9177 /* Ignore zero sized sections. */
9181 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9182 last_unwind_type = 0;
9186 /* Skip /DISCARD/ sections. */
9187 if (bfd_is_abs_section (exidx_sec->output_section))
9190 hdr = &elf_section_data (exidx_sec)->this_hdr;
9191 if (hdr->sh_type != SHT_ARM_EXIDX)
9194 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9195 if (exidx_arm_data == NULL)
9198 ibfd = exidx_sec->owner;
9200 if (hdr->contents != NULL)
9201 contents = hdr->contents;
9202 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9206 for (j = 0; j < hdr->sh_size; j += 8)
9208 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9212 /* An EXIDX_CANTUNWIND entry. */
9213 if (second_word == 1)
9215 if (last_unwind_type == 0)
9219 /* Inlined unwinding data. Merge if equal to previous. */
9220 else if ((second_word & 0x80000000) != 0)
9222 if (last_second_word == second_word && last_unwind_type == 1)
9225 last_second_word = second_word;
9227 /* Normal table entry. In theory we could merge these too,
9228 but duplicate entries are likely to be much less common. */
9234 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9235 DELETE_EXIDX_ENTRY, NULL, j / 8);
9237 deleted_exidx_bytes += 8;
9240 last_unwind_type = unwind_type;
9243 /* Free contents if we allocated it ourselves. */
9244 if (contents != hdr->contents)
9247 /* Record edits to be applied later (in elf32_arm_write_section). */
9248 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9249 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9251 if (deleted_exidx_bytes > 0)
9252 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9254 last_exidx_sec = exidx_sec;
9255 last_text_sec = sec;
9258 /* Add terminating CANTUNWIND entry. */
9259 if (last_exidx_sec && last_unwind_type != 0)
9260 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9266 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9267 bfd *ibfd, const char *name)
9269 asection *sec, *osec;
9271 sec = bfd_get_section_by_name (ibfd, name);
9272 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9275 osec = sec->output_section;
9276 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9279 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9280 sec->output_offset, sec->size))
9287 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9289 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9291 /* Invoke the regular ELF backend linker to do all the work. */
9292 if (!bfd_elf_final_link (abfd, info))
9295 /* Write out any glue sections now that we have created all the
9297 if (globals->bfd_of_glue_owner != NULL)
9299 if (! elf32_arm_output_glue_section (info, abfd,
9300 globals->bfd_of_glue_owner,
9301 ARM2THUMB_GLUE_SECTION_NAME))
9304 if (! elf32_arm_output_glue_section (info, abfd,
9305 globals->bfd_of_glue_owner,
9306 THUMB2ARM_GLUE_SECTION_NAME))
9309 if (! elf32_arm_output_glue_section (info, abfd,
9310 globals->bfd_of_glue_owner,
9311 VFP11_ERRATUM_VENEER_SECTION_NAME))
9314 if (! elf32_arm_output_glue_section (info, abfd,
9315 globals->bfd_of_glue_owner,
9316 ARM_BX_GLUE_SECTION_NAME))
9323 /* Set the right machine number. */
9326 elf32_arm_object_p (bfd *abfd)
9330 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
9332 if (mach != bfd_mach_arm_unknown)
9333 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9335 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9336 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
9339 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9344 /* Function to keep ARM specific flags in the ELF header. */
9347 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
9349 if (elf_flags_init (abfd)
9350 && elf_elfheader (abfd)->e_flags != flags)
9352 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9354 if (flags & EF_ARM_INTERWORK)
9355 (*_bfd_error_handler)
9356 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9360 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9366 elf_elfheader (abfd)->e_flags = flags;
9367 elf_flags_init (abfd) = TRUE;
9373 /* Copy backend specific data from one object module to another. */
9376 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
9381 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9384 in_flags = elf_elfheader (ibfd)->e_flags;
9385 out_flags = elf_elfheader (obfd)->e_flags;
9387 if (elf_flags_init (obfd)
9388 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9389 && in_flags != out_flags)
9391 /* Cannot mix APCS26 and APCS32 code. */
9392 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9395 /* Cannot mix float APCS and non-float APCS code. */
9396 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9399 /* If the src and dest have different interworking flags
9400 then turn off the interworking bit. */
9401 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9403 if (out_flags & EF_ARM_INTERWORK)
9405 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9408 in_flags &= ~EF_ARM_INTERWORK;
9411 /* Likewise for PIC, though don't warn for this case. */
9412 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9413 in_flags &= ~EF_ARM_PIC;
9416 elf_elfheader (obfd)->e_flags = in_flags;
9417 elf_flags_init (obfd) = TRUE;
9419 /* Also copy the EI_OSABI field. */
9420 elf_elfheader (obfd)->e_ident[EI_OSABI] =
9421 elf_elfheader (ibfd)->e_ident[EI_OSABI];
9423 /* Copy object attributes. */
9424 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9429 /* Values for Tag_ABI_PCS_R9_use. */
9438 /* Values for Tag_ABI_PCS_RW_data. */
9441 AEABI_PCS_RW_data_absolute,
9442 AEABI_PCS_RW_data_PCrel,
9443 AEABI_PCS_RW_data_SBrel,
9444 AEABI_PCS_RW_data_unused
9447 /* Values for Tag_ABI_enum_size. */
9453 AEABI_enum_forced_wide
9456 /* Determine whether an object attribute tag takes an integer, a
9460 elf32_arm_obj_attrs_arg_type (int tag)
9462 if (tag == Tag_compatibility)
9463 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
9464 else if (tag == Tag_nodefaults)
9465 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9466 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9467 return ATTR_TYPE_FLAG_STR_VAL;
9469 return ATTR_TYPE_FLAG_INT_VAL;
9471 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
9474 /* The ABI defines that Tag_conformance should be emitted first, and that
9475 Tag_nodefaults should be second (if either is defined). This sets those
9476 two positions, and bumps up the position of all the remaining tags to
9479 elf32_arm_obj_attrs_order (int num)
9482 return Tag_conformance;
9484 return Tag_nodefaults;
9485 if ((num - 2) < Tag_nodefaults)
9487 if ((num - 1) < Tag_conformance)
9492 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9493 Returns -1 if no architecture could be read. */
9496 get_secondary_compatible_arch (bfd *abfd)
9498 obj_attribute *attr =
9499 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9501 /* Note: the tag and its argument below are uleb128 values, though
9502 currently-defined values fit in one byte for each. */
9504 && attr->s[0] == Tag_CPU_arch
9505 && (attr->s[1] & 128) != 128
9509 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9513 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9514 The tag is removed if ARCH is -1. */
9517 set_secondary_compatible_arch (bfd *abfd, int arch)
9519 obj_attribute *attr =
9520 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9528 /* Note: the tag and its argument below are uleb128 values, though
9529 currently-defined values fit in one byte for each. */
9531 attr->s = bfd_alloc (abfd, 3);
9532 attr->s[0] = Tag_CPU_arch;
9537 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9541 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9542 int newtag, int secondary_compat)
9544 #define T(X) TAG_CPU_ARCH_##X
9545 int tagl, tagh, result;
9548 T(V6T2), /* PRE_V4. */
9552 T(V6T2), /* V5TE. */
9553 T(V6T2), /* V5TEJ. */
9560 T(V6K), /* PRE_V4. */
9565 T(V6K), /* V5TEJ. */
9567 T(V6KZ), /* V6KZ. */
9573 T(V7), /* PRE_V4. */
9592 T(V6K), /* V5TEJ. */
9594 T(V6KZ), /* V6KZ. */
9607 T(V6K), /* V5TEJ. */
9609 T(V6KZ), /* V6KZ. */
9613 T(V6S_M), /* V6_M. */
9614 T(V6S_M) /* V6S_M. */
9616 const int v4t_plus_v6_m[] =
9622 T(V5TE), /* V5TE. */
9623 T(V5TEJ), /* V5TEJ. */
9625 T(V6KZ), /* V6KZ. */
9626 T(V6T2), /* V6T2. */
9629 T(V6_M), /* V6_M. */
9630 T(V6S_M), /* V6S_M. */
9631 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
9640 /* Pseudo-architecture. */
9644 /* Check we've not got a higher architecture than we know about. */
9646 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
9648 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
9652 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9654 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9655 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9656 oldtag = T(V4T_PLUS_V6_M);
9658 /* And override the new tag if we have a Tag_also_compatible_with on the
9661 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9662 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9663 newtag = T(V4T_PLUS_V6_M);
9665 tagl = (oldtag < newtag) ? oldtag : newtag;
9666 result = tagh = (oldtag > newtag) ? oldtag : newtag;
9668 /* Architectures before V6KZ add features monotonically. */
9669 if (tagh <= TAG_CPU_ARCH_V6KZ)
9672 result = comb[tagh - T(V6T2)][tagl];
9674 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9675 as the canonical version. */
9676 if (result == T(V4T_PLUS_V6_M))
9679 *secondary_compat_out = T(V6_M);
9682 *secondary_compat_out = -1;
9686 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9687 ibfd, oldtag, newtag);
9695 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9696 are conflicting attributes. */
9699 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9701 obj_attribute *in_attr;
9702 obj_attribute *out_attr;
9703 obj_attribute_list *in_list;
9704 obj_attribute_list *out_list;
9705 obj_attribute_list **out_listp;
9706 /* Some tags have 0 = don't care, 1 = strong requirement,
9707 2 = weak requirement. */
9708 static const int order_021[3] = {0, 2, 1};
9709 /* For use with Tag_VFP_arch. */
9710 static const int order_01243[5] = {0, 1, 2, 4, 3};
9712 bfd_boolean result = TRUE;
9714 /* Skip the linker stubs file. This preserves previous behavior
9715 of accepting unknown attributes in the first input file - but
9717 if (ibfd->flags & BFD_LINKER_CREATED)
9720 if (!elf_known_obj_attributes_proc (obfd)[0].i)
9722 /* This is the first object. Copy the attributes. */
9723 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9725 /* Use the Tag_null value to indicate the attributes have been
9727 elf_known_obj_attributes_proc (obfd)[0].i = 1;
9732 in_attr = elf_known_obj_attributes_proc (ibfd);
9733 out_attr = elf_known_obj_attributes_proc (obfd);
9734 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9735 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9737 /* Ignore mismatches if the object doesn't use floating point. */
9738 if (out_attr[Tag_ABI_FP_number_model].i == 0)
9739 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9740 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9743 (_("error: %B uses VFP register arguments, %B does not"),
9749 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
9751 /* Merge this attribute with existing attributes. */
9754 case Tag_CPU_raw_name:
9756 /* These are merged after Tag_CPU_arch. */
9759 case Tag_ABI_optimization_goals:
9760 case Tag_ABI_FP_optimization_goals:
9761 /* Use the first value seen. */
9766 int secondary_compat = -1, secondary_compat_out = -1;
9767 unsigned int saved_out_attr = out_attr[i].i;
9768 static const char *name_table[] = {
9769 /* These aren't real CPU names, but we can't guess
9770 that from the architecture version alone. */
9786 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9787 secondary_compat = get_secondary_compatible_arch (ibfd);
9788 secondary_compat_out = get_secondary_compatible_arch (obfd);
9789 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9790 &secondary_compat_out,
9793 set_secondary_compatible_arch (obfd, secondary_compat_out);
9795 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9796 if (out_attr[i].i == saved_out_attr)
9797 ; /* Leave the names alone. */
9798 else if (out_attr[i].i == in_attr[i].i)
9800 /* The output architecture has been changed to match the
9801 input architecture. Use the input names. */
9802 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9803 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9805 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9806 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9811 out_attr[Tag_CPU_name].s = NULL;
9812 out_attr[Tag_CPU_raw_name].s = NULL;
9815 /* If we still don't have a value for Tag_CPU_name,
9816 make one up now. Tag_CPU_raw_name remains blank. */
9817 if (out_attr[Tag_CPU_name].s == NULL
9818 && out_attr[i].i < ARRAY_SIZE (name_table))
9819 out_attr[Tag_CPU_name].s =
9820 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9824 case Tag_ARM_ISA_use:
9825 case Tag_THUMB_ISA_use:
9827 case Tag_Advanced_SIMD_arch:
9828 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
9829 case Tag_ABI_FP_rounding:
9830 case Tag_ABI_FP_exceptions:
9831 case Tag_ABI_FP_user_exceptions:
9832 case Tag_ABI_FP_number_model:
9833 case Tag_VFP_HP_extension:
9834 case Tag_CPU_unaligned_access:
9836 case Tag_Virtualization_use:
9837 case Tag_MPextension_use:
9838 /* Use the largest value specified. */
9839 if (in_attr[i].i > out_attr[i].i)
9840 out_attr[i].i = in_attr[i].i;
9843 case Tag_ABI_align8_preserved:
9844 case Tag_ABI_PCS_RO_data:
9845 /* Use the smallest value specified. */
9846 if (in_attr[i].i < out_attr[i].i)
9847 out_attr[i].i = in_attr[i].i;
9850 case Tag_ABI_align8_needed:
9851 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
9852 && (in_attr[Tag_ABI_align8_preserved].i == 0
9853 || out_attr[Tag_ABI_align8_preserved].i == 0))
9855 /* This error message should be enabled once all non-conformant
9856 binaries in the toolchain have had the attributes set
9859 (_("error: %B: 8-byte data alignment conflicts with %B"),
9864 case Tag_ABI_FP_denormal:
9865 case Tag_ABI_PCS_GOT_use:
9866 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9867 value if greater than 2 (for future-proofing). */
9868 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
9869 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
9870 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
9871 out_attr[i].i = in_attr[i].i;
9875 case Tag_CPU_arch_profile:
9876 if (out_attr[i].i != in_attr[i].i)
9878 /* 0 will merge with anything.
9879 'A' and 'S' merge to 'A'.
9880 'R' and 'S' merge to 'R'.
9881 'M' and 'A|R|S' is an error. */
9882 if (out_attr[i].i == 0
9883 || (out_attr[i].i == 'S'
9884 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
9885 out_attr[i].i = in_attr[i].i;
9886 else if (in_attr[i].i == 0
9887 || (in_attr[i].i == 'S'
9888 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
9893 (_("error: %B: Conflicting architecture profiles %c/%c"),
9895 in_attr[i].i ? in_attr[i].i : '0',
9896 out_attr[i].i ? out_attr[i].i : '0');
9902 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9903 largest value if greater than 4 (for future-proofing). */
9904 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
9905 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
9906 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
9907 out_attr[i].i = in_attr[i].i;
9909 case Tag_PCS_config:
9910 if (out_attr[i].i == 0)
9911 out_attr[i].i = in_attr[i].i;
9912 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
9914 /* It's sometimes ok to mix different configs, so this is only
9917 (_("Warning: %B: Conflicting platform configuration"), ibfd);
9920 case Tag_ABI_PCS_R9_use:
9921 if (in_attr[i].i != out_attr[i].i
9922 && out_attr[i].i != AEABI_R9_unused
9923 && in_attr[i].i != AEABI_R9_unused)
9926 (_("error: %B: Conflicting use of R9"), ibfd);
9929 if (out_attr[i].i == AEABI_R9_unused)
9930 out_attr[i].i = in_attr[i].i;
9932 case Tag_ABI_PCS_RW_data:
9933 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
9934 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
9935 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
9938 (_("error: %B: SB relative addressing conflicts with use of R9"),
9942 /* Use the smallest value specified. */
9943 if (in_attr[i].i < out_attr[i].i)
9944 out_attr[i].i = in_attr[i].i;
9946 case Tag_ABI_PCS_wchar_t:
9947 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
9948 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
9951 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9952 ibfd, in_attr[i].i, out_attr[i].i);
9954 else if (in_attr[i].i && !out_attr[i].i)
9955 out_attr[i].i = in_attr[i].i;
9957 case Tag_ABI_enum_size:
9958 if (in_attr[i].i != AEABI_enum_unused)
9960 if (out_attr[i].i == AEABI_enum_unused
9961 || out_attr[i].i == AEABI_enum_forced_wide)
9963 /* The existing object is compatible with anything.
9964 Use whatever requirements the new object has. */
9965 out_attr[i].i = in_attr[i].i;
9967 else if (in_attr[i].i != AEABI_enum_forced_wide
9968 && out_attr[i].i != in_attr[i].i
9969 && !elf_arm_tdata (obfd)->no_enum_size_warning)
9971 static const char *aeabi_enum_names[] =
9972 { "", "variable-size", "32-bit", "" };
9973 const char *in_name =
9974 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9975 ? aeabi_enum_names[in_attr[i].i]
9977 const char *out_name =
9978 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9979 ? aeabi_enum_names[out_attr[i].i]
9982 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
9983 ibfd, in_name, out_name);
9987 case Tag_ABI_VFP_args:
9990 case Tag_ABI_WMMX_args:
9991 if (in_attr[i].i != out_attr[i].i)
9994 (_("error: %B uses iWMMXt register arguments, %B does not"),
9999 case Tag_compatibility:
10000 /* Merged in target-independent code. */
10002 case Tag_ABI_HardFP_use:
10003 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
10004 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
10005 || (in_attr[i].i == 2 && out_attr[i].i == 1))
10007 else if (in_attr[i].i > out_attr[i].i)
10008 out_attr[i].i = in_attr[i].i;
10010 case Tag_ABI_FP_16bit_format:
10011 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10013 if (in_attr[i].i != out_attr[i].i)
10016 (_("error: fp16 format mismatch between %B and %B"),
10021 if (in_attr[i].i != 0)
10022 out_attr[i].i = in_attr[i].i;
10025 case Tag_nodefaults:
10026 /* This tag is set if it exists, but the value is unused (and is
10027 typically zero). We don't actually need to do anything here -
10028 the merge happens automatically when the type flags are merged
10031 case Tag_also_compatible_with:
10032 /* Already done in Tag_CPU_arch. */
10034 case Tag_conformance:
10035 /* Keep the attribute if it matches. Throw it away otherwise.
10036 No attribute means no claim to conform. */
10037 if (!in_attr[i].s || !out_attr[i].s
10038 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10039 out_attr[i].s = NULL;
10044 bfd *err_bfd = NULL;
10046 /* The "known_obj_attributes" table does contain some undefined
10047 attributes. Ensure that there are unused. */
10048 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10050 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10053 if (err_bfd != NULL)
10055 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10056 if ((i & 127) < 64)
10059 (_("%B: Unknown mandatory EABI object attribute %d"),
10061 bfd_set_error (bfd_error_bad_value);
10067 (_("Warning: %B: Unknown EABI object attribute %d"),
10072 /* Only pass on attributes that match in both inputs. */
10073 if (in_attr[i].i != out_attr[i].i
10074 || in_attr[i].s != out_attr[i].s
10075 || (in_attr[i].s != NULL && out_attr[i].s != NULL
10076 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10079 out_attr[i].s = NULL;
10084 /* If out_attr was copied from in_attr then it won't have a type yet. */
10085 if (in_attr[i].type && !out_attr[i].type)
10086 out_attr[i].type = in_attr[i].type;
10089 /* Merge Tag_compatibility attributes and any common GNU ones. */
10090 _bfd_elf_merge_object_attributes (ibfd, obfd);
10092 /* Check for any attributes not known on ARM. */
10093 in_list = elf_other_obj_attributes_proc (ibfd);
10094 out_listp = &elf_other_obj_attributes_proc (obfd);
10095 out_list = *out_listp;
10097 for (; in_list || out_list; )
10099 bfd *err_bfd = NULL;
10102 /* The tags for each list are in numerical order. */
10103 /* If the tags are equal, then merge. */
10104 if (out_list && (!in_list || in_list->tag > out_list->tag))
10106 /* This attribute only exists in obfd. We can't merge, and we don't
10107 know what the tag means, so delete it. */
10109 err_tag = out_list->tag;
10110 *out_listp = out_list->next;
10111 out_list = *out_listp;
10113 else if (in_list && (!out_list || in_list->tag < out_list->tag))
10115 /* This attribute only exists in ibfd. We can't merge, and we don't
10116 know what the tag means, so ignore it. */
10118 err_tag = in_list->tag;
10119 in_list = in_list->next;
10121 else /* The tags are equal. */
10123 /* As present, all attributes in the list are unknown, and
10124 therefore can't be merged meaningfully. */
10126 err_tag = out_list->tag;
10128 /* Only pass on attributes that match in both inputs. */
10129 if (in_list->attr.i != out_list->attr.i
10130 || in_list->attr.s != out_list->attr.s
10131 || (in_list->attr.s && out_list->attr.s
10132 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10134 /* No match. Delete the attribute. */
10135 *out_listp = out_list->next;
10136 out_list = *out_listp;
10140 /* Matched. Keep the attribute and move to the next. */
10141 out_list = out_list->next;
10142 in_list = in_list->next;
10148 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10149 if ((err_tag & 127) < 64)
10152 (_("%B: Unknown mandatory EABI object attribute %d"),
10154 bfd_set_error (bfd_error_bad_value);
10160 (_("Warning: %B: Unknown EABI object attribute %d"),
10169 /* Return TRUE if the two EABI versions are incompatible. */
10172 elf32_arm_versions_compatible (unsigned iver, unsigned over)
10174 /* v4 and v5 are the same spec before and after it was released,
10175 so allow mixing them. */
10176 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10177 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10180 return (iver == over);
10183 /* Merge backend specific data from an object file to the output
10184 object file when linking. */
10187 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
10189 flagword out_flags;
10191 bfd_boolean flags_compatible = TRUE;
10194 /* Check if we have the same endianess. */
10195 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10198 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10201 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
10204 /* The input BFD must have had its flags initialised. */
10205 /* The following seems bogus to me -- The flags are initialized in
10206 the assembler but I don't think an elf_flags_init field is
10207 written into the object. */
10208 /* BFD_ASSERT (elf_flags_init (ibfd)); */
10210 in_flags = elf_elfheader (ibfd)->e_flags;
10211 out_flags = elf_elfheader (obfd)->e_flags;
10213 /* In theory there is no reason why we couldn't handle this. However
10214 in practice it isn't even close to working and there is no real
10215 reason to want it. */
10216 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
10217 && !(ibfd->flags & DYNAMIC)
10218 && (in_flags & EF_ARM_BE8))
10220 _bfd_error_handler (_("error: %B is already in final BE8 format"),
10225 if (!elf_flags_init (obfd))
10227 /* If the input is the default architecture and had the default
10228 flags then do not bother setting the flags for the output
10229 architecture, instead allow future merges to do this. If no
10230 future merges ever set these flags then they will retain their
10231 uninitialised values, which surprise surprise, correspond
10232 to the default values. */
10233 if (bfd_get_arch_info (ibfd)->the_default
10234 && elf_elfheader (ibfd)->e_flags == 0)
10237 elf_flags_init (obfd) = TRUE;
10238 elf_elfheader (obfd)->e_flags = in_flags;
10240 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10241 && bfd_get_arch_info (obfd)->the_default)
10242 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
10247 /* Determine what should happen if the input ARM architecture
10248 does not match the output ARM architecture. */
10249 if (! bfd_arm_merge_machines (ibfd, obfd))
10252 /* Identical flags must be compatible. */
10253 if (in_flags == out_flags)
10256 /* Check to see if the input BFD actually contains any sections. If
10257 not, its flags may not have been initialised either, but it
10258 cannot actually cause any incompatiblity. Do not short-circuit
10259 dynamic objects; their section list may be emptied by
10260 elf_link_add_object_symbols.
10262 Also check to see if there are no code sections in the input.
10263 In this case there is no need to check for code specific flags.
10264 XXX - do we need to worry about floating-point format compatability
10265 in data sections ? */
10266 if (!(ibfd->flags & DYNAMIC))
10268 bfd_boolean null_input_bfd = TRUE;
10269 bfd_boolean only_data_sections = TRUE;
10271 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10273 /* Ignore synthetic glue sections. */
10274 if (strcmp (sec->name, ".glue_7")
10275 && strcmp (sec->name, ".glue_7t"))
10277 if ((bfd_get_section_flags (ibfd, sec)
10278 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
10279 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
10280 only_data_sections = FALSE;
10282 null_input_bfd = FALSE;
10287 if (null_input_bfd || only_data_sections)
10291 /* Complain about various flag mismatches. */
10292 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
10293 EF_ARM_EABI_VERSION (out_flags)))
10296 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
10298 (in_flags & EF_ARM_EABIMASK) >> 24,
10299 (out_flags & EF_ARM_EABIMASK) >> 24);
10303 /* Not sure what needs to be checked for EABI versions >= 1. */
10304 /* VxWorks libraries do not use these flags. */
10305 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
10306 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
10307 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
10309 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10312 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
10314 in_flags & EF_ARM_APCS_26 ? 26 : 32,
10315 out_flags & EF_ARM_APCS_26 ? 26 : 32);
10316 flags_compatible = FALSE;
10319 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10321 if (in_flags & EF_ARM_APCS_FLOAT)
10323 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
10327 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
10330 flags_compatible = FALSE;
10333 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
10335 if (in_flags & EF_ARM_VFP_FLOAT)
10337 (_("error: %B uses VFP instructions, whereas %B does not"),
10341 (_("error: %B uses FPA instructions, whereas %B does not"),
10344 flags_compatible = FALSE;
10347 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
10349 if (in_flags & EF_ARM_MAVERICK_FLOAT)
10351 (_("error: %B uses Maverick instructions, whereas %B does not"),
10355 (_("error: %B does not use Maverick instructions, whereas %B does"),
10358 flags_compatible = FALSE;
10361 #ifdef EF_ARM_SOFT_FLOAT
10362 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
10364 /* We can allow interworking between code that is VFP format
10365 layout, and uses either soft float or integer regs for
10366 passing floating point arguments and results. We already
10367 know that the APCS_FLOAT flags match; similarly for VFP
10369 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
10370 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
10372 if (in_flags & EF_ARM_SOFT_FLOAT)
10374 (_("error: %B uses software FP, whereas %B uses hardware FP"),
10378 (_("error: %B uses hardware FP, whereas %B uses software FP"),
10381 flags_compatible = FALSE;
10386 /* Interworking mismatch is only a warning. */
10387 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10389 if (in_flags & EF_ARM_INTERWORK)
10392 (_("Warning: %B supports interworking, whereas %B does not"),
10398 (_("Warning: %B does not support interworking, whereas %B does"),
10404 return flags_compatible;
10407 /* Display the flags field. */
10410 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
10412 FILE * file = (FILE *) ptr;
10413 unsigned long flags;
10415 BFD_ASSERT (abfd != NULL && ptr != NULL);
10417 /* Print normal ELF private data. */
10418 _bfd_elf_print_private_bfd_data (abfd, ptr);
10420 flags = elf_elfheader (abfd)->e_flags;
10421 /* Ignore init flag - it may not be set, despite the flags field
10422 containing valid data. */
10424 /* xgettext:c-format */
10425 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10427 switch (EF_ARM_EABI_VERSION (flags))
10429 case EF_ARM_EABI_UNKNOWN:
10430 /* The following flag bits are GNU extensions and not part of the
10431 official ARM ELF extended ABI. Hence they are only decoded if
10432 the EABI version is not set. */
10433 if (flags & EF_ARM_INTERWORK)
10434 fprintf (file, _(" [interworking enabled]"));
10436 if (flags & EF_ARM_APCS_26)
10437 fprintf (file, " [APCS-26]");
10439 fprintf (file, " [APCS-32]");
10441 if (flags & EF_ARM_VFP_FLOAT)
10442 fprintf (file, _(" [VFP float format]"));
10443 else if (flags & EF_ARM_MAVERICK_FLOAT)
10444 fprintf (file, _(" [Maverick float format]"));
10446 fprintf (file, _(" [FPA float format]"));
10448 if (flags & EF_ARM_APCS_FLOAT)
10449 fprintf (file, _(" [floats passed in float registers]"));
10451 if (flags & EF_ARM_PIC)
10452 fprintf (file, _(" [position independent]"));
10454 if (flags & EF_ARM_NEW_ABI)
10455 fprintf (file, _(" [new ABI]"));
10457 if (flags & EF_ARM_OLD_ABI)
10458 fprintf (file, _(" [old ABI]"));
10460 if (flags & EF_ARM_SOFT_FLOAT)
10461 fprintf (file, _(" [software FP]"));
10463 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10464 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
10465 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10466 | EF_ARM_MAVERICK_FLOAT);
10469 case EF_ARM_EABI_VER1:
10470 fprintf (file, _(" [Version1 EABI]"));
10472 if (flags & EF_ARM_SYMSARESORTED)
10473 fprintf (file, _(" [sorted symbol table]"));
10475 fprintf (file, _(" [unsorted symbol table]"));
10477 flags &= ~ EF_ARM_SYMSARESORTED;
10480 case EF_ARM_EABI_VER2:
10481 fprintf (file, _(" [Version2 EABI]"));
10483 if (flags & EF_ARM_SYMSARESORTED)
10484 fprintf (file, _(" [sorted symbol table]"));
10486 fprintf (file, _(" [unsorted symbol table]"));
10488 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10489 fprintf (file, _(" [dynamic symbols use segment index]"));
10491 if (flags & EF_ARM_MAPSYMSFIRST)
10492 fprintf (file, _(" [mapping symbols precede others]"));
10494 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
10495 | EF_ARM_MAPSYMSFIRST);
10498 case EF_ARM_EABI_VER3:
10499 fprintf (file, _(" [Version3 EABI]"));
10502 case EF_ARM_EABI_VER4:
10503 fprintf (file, _(" [Version4 EABI]"));
10506 case EF_ARM_EABI_VER5:
10507 fprintf (file, _(" [Version5 EABI]"));
10509 if (flags & EF_ARM_BE8)
10510 fprintf (file, _(" [BE8]"));
10512 if (flags & EF_ARM_LE8)
10513 fprintf (file, _(" [LE8]"));
10515 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10519 fprintf (file, _(" <EABI version unrecognised>"));
10523 flags &= ~ EF_ARM_EABIMASK;
10525 if (flags & EF_ARM_RELEXEC)
10526 fprintf (file, _(" [relocatable executable]"));
10528 if (flags & EF_ARM_HASENTRY)
10529 fprintf (file, _(" [has entry point]"));
10531 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10534 fprintf (file, _("<Unrecognised flag bits set>"));
10536 fputc ('\n', file);
10542 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
10544 switch (ELF_ST_TYPE (elf_sym->st_info))
10546 case STT_ARM_TFUNC:
10547 return ELF_ST_TYPE (elf_sym->st_info);
10549 case STT_ARM_16BIT:
10550 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10551 This allows us to distinguish between data used by Thumb instructions
10552 and non-data (which is probably code) inside Thumb regions of an
10554 if (type != STT_OBJECT && type != STT_TLS)
10555 return ELF_ST_TYPE (elf_sym->st_info);
10566 elf32_arm_gc_mark_hook (asection *sec,
10567 struct bfd_link_info *info,
10568 Elf_Internal_Rela *rel,
10569 struct elf_link_hash_entry *h,
10570 Elf_Internal_Sym *sym)
10573 switch (ELF32_R_TYPE (rel->r_info))
10575 case R_ARM_GNU_VTINHERIT:
10576 case R_ARM_GNU_VTENTRY:
10580 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10583 /* Update the got entry reference counts for the section being removed. */
10586 elf32_arm_gc_sweep_hook (bfd * abfd,
10587 struct bfd_link_info * info,
10589 const Elf_Internal_Rela * relocs)
10591 Elf_Internal_Shdr *symtab_hdr;
10592 struct elf_link_hash_entry **sym_hashes;
10593 bfd_signed_vma *local_got_refcounts;
10594 const Elf_Internal_Rela *rel, *relend;
10595 struct elf32_arm_link_hash_table * globals;
10597 if (info->relocatable)
10600 globals = elf32_arm_hash_table (info);
10602 elf_section_data (sec)->local_dynrel = NULL;
10604 symtab_hdr = & elf_symtab_hdr (abfd);
10605 sym_hashes = elf_sym_hashes (abfd);
10606 local_got_refcounts = elf_local_got_refcounts (abfd);
10608 check_use_blx (globals);
10610 relend = relocs + sec->reloc_count;
10611 for (rel = relocs; rel < relend; rel++)
10613 unsigned long r_symndx;
10614 struct elf_link_hash_entry *h = NULL;
10617 r_symndx = ELF32_R_SYM (rel->r_info);
10618 if (r_symndx >= symtab_hdr->sh_info)
10620 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10621 while (h->root.type == bfd_link_hash_indirect
10622 || h->root.type == bfd_link_hash_warning)
10623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10626 r_type = ELF32_R_TYPE (rel->r_info);
10627 r_type = arm_real_reloc_type (globals, r_type);
10631 case R_ARM_GOT_PREL:
10632 case R_ARM_TLS_GD32:
10633 case R_ARM_TLS_IE32:
10636 if (h->got.refcount > 0)
10637 h->got.refcount -= 1;
10639 else if (local_got_refcounts != NULL)
10641 if (local_got_refcounts[r_symndx] > 0)
10642 local_got_refcounts[r_symndx] -= 1;
10646 case R_ARM_TLS_LDM32:
10647 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
10651 case R_ARM_ABS32_NOI:
10653 case R_ARM_REL32_NOI:
10659 case R_ARM_THM_CALL:
10660 case R_ARM_THM_JUMP24:
10661 case R_ARM_THM_JUMP19:
10662 case R_ARM_MOVW_ABS_NC:
10663 case R_ARM_MOVT_ABS:
10664 case R_ARM_MOVW_PREL_NC:
10665 case R_ARM_MOVT_PREL:
10666 case R_ARM_THM_MOVW_ABS_NC:
10667 case R_ARM_THM_MOVT_ABS:
10668 case R_ARM_THM_MOVW_PREL_NC:
10669 case R_ARM_THM_MOVT_PREL:
10670 /* Should the interworking branches be here also? */
10674 struct elf32_arm_link_hash_entry *eh;
10675 struct elf32_arm_relocs_copied **pp;
10676 struct elf32_arm_relocs_copied *p;
10678 eh = (struct elf32_arm_link_hash_entry *) h;
10680 if (h->plt.refcount > 0)
10682 h->plt.refcount -= 1;
10683 if (r_type == R_ARM_THM_CALL)
10684 eh->plt_maybe_thumb_refcount--;
10686 if (r_type == R_ARM_THM_JUMP24
10687 || r_type == R_ARM_THM_JUMP19)
10688 eh->plt_thumb_refcount--;
10691 if (r_type == R_ARM_ABS32
10692 || r_type == R_ARM_REL32
10693 || r_type == R_ARM_ABS32_NOI
10694 || r_type == R_ARM_REL32_NOI)
10696 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10698 if (p->section == sec)
10701 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10702 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
10720 /* Look through the relocs for a section during the first phase. */
10723 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10724 asection *sec, const Elf_Internal_Rela *relocs)
10726 Elf_Internal_Shdr *symtab_hdr;
10727 struct elf_link_hash_entry **sym_hashes;
10728 const Elf_Internal_Rela *rel;
10729 const Elf_Internal_Rela *rel_end;
10732 bfd_vma *local_got_offsets;
10733 struct elf32_arm_link_hash_table *htab;
10734 bfd_boolean needs_plt;
10735 unsigned long nsyms;
10737 if (info->relocatable)
10740 BFD_ASSERT (is_arm_elf (abfd));
10742 htab = elf32_arm_hash_table (info);
10745 /* Create dynamic sections for relocatable executables so that we can
10746 copy relocations. */
10747 if (htab->root.is_relocatable_executable
10748 && ! htab->root.dynamic_sections_created)
10750 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10754 dynobj = elf_hash_table (info)->dynobj;
10755 local_got_offsets = elf_local_got_offsets (abfd);
10757 symtab_hdr = & elf_symtab_hdr (abfd);
10758 sym_hashes = elf_sym_hashes (abfd);
10759 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10761 rel_end = relocs + sec->reloc_count;
10762 for (rel = relocs; rel < rel_end; rel++)
10764 struct elf_link_hash_entry *h;
10765 struct elf32_arm_link_hash_entry *eh;
10766 unsigned long r_symndx;
10769 r_symndx = ELF32_R_SYM (rel->r_info);
10770 r_type = ELF32_R_TYPE (rel->r_info);
10771 r_type = arm_real_reloc_type (htab, r_type);
10773 if (r_symndx >= nsyms
10774 /* PR 9934: It is possible to have relocations that do not
10775 refer to symbols, thus it is also possible to have an
10776 object file containing relocations but no symbol table. */
10777 && (r_symndx > 0 || nsyms > 0))
10779 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
10784 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
10788 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10789 while (h->root.type == bfd_link_hash_indirect
10790 || h->root.type == bfd_link_hash_warning)
10791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10794 eh = (struct elf32_arm_link_hash_entry *) h;
10799 case R_ARM_GOT_PREL:
10800 case R_ARM_TLS_GD32:
10801 case R_ARM_TLS_IE32:
10802 /* This symbol requires a global offset table entry. */
10804 int tls_type, old_tls_type;
10808 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10809 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10810 default: tls_type = GOT_NORMAL; break;
10816 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10820 bfd_signed_vma *local_got_refcounts;
10822 /* This is a global offset table entry for a local symbol. */
10823 local_got_refcounts = elf_local_got_refcounts (abfd);
10824 if (local_got_refcounts == NULL)
10826 bfd_size_type size;
10828 size = symtab_hdr->sh_info;
10829 size *= (sizeof (bfd_signed_vma) + sizeof (char));
10830 local_got_refcounts = bfd_zalloc (abfd, size);
10831 if (local_got_refcounts == NULL)
10833 elf_local_got_refcounts (abfd) = local_got_refcounts;
10834 elf32_arm_local_got_tls_type (abfd)
10835 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10837 local_got_refcounts[r_symndx] += 1;
10838 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10841 /* We will already have issued an error message if there is a
10842 TLS / non-TLS mismatch, based on the symbol type. We don't
10843 support any linker relaxations. So just combine any TLS
10845 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10846 && tls_type != GOT_NORMAL)
10847 tls_type |= old_tls_type;
10849 if (old_tls_type != tls_type)
10852 elf32_arm_hash_entry (h)->tls_type = tls_type;
10854 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10857 /* Fall through. */
10859 case R_ARM_TLS_LDM32:
10860 if (r_type == R_ARM_TLS_LDM32)
10861 htab->tls_ldm_got.refcount++;
10862 /* Fall through. */
10864 case R_ARM_GOTOFF32:
10866 if (htab->sgot == NULL)
10868 if (htab->root.dynobj == NULL)
10869 htab->root.dynobj = abfd;
10870 if (!create_got_section (htab->root.dynobj, info))
10876 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10877 ldr __GOTT_INDEX__ offsets. */
10878 if (!htab->vxworks_p)
10880 /* Fall through. */
10887 case R_ARM_THM_CALL:
10888 case R_ARM_THM_JUMP24:
10889 case R_ARM_THM_JUMP19:
10893 case R_ARM_MOVW_ABS_NC:
10894 case R_ARM_MOVT_ABS:
10895 case R_ARM_THM_MOVW_ABS_NC:
10896 case R_ARM_THM_MOVT_ABS:
10899 (*_bfd_error_handler)
10900 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10901 abfd, elf32_arm_howto_table_1[r_type].name,
10902 (h) ? h->root.root.string : "a local symbol");
10903 bfd_set_error (bfd_error_bad_value);
10907 /* Fall through. */
10909 case R_ARM_ABS32_NOI:
10911 case R_ARM_REL32_NOI:
10912 case R_ARM_MOVW_PREL_NC:
10913 case R_ARM_MOVT_PREL:
10914 case R_ARM_THM_MOVW_PREL_NC:
10915 case R_ARM_THM_MOVT_PREL:
10919 /* Should the interworking branches be listed here? */
10922 /* If this reloc is in a read-only section, we might
10923 need a copy reloc. We can't check reliably at this
10924 stage whether the section is read-only, as input
10925 sections have not yet been mapped to output sections.
10926 Tentatively set the flag for now, and correct in
10927 adjust_dynamic_symbol. */
10929 h->non_got_ref = 1;
10931 /* We may need a .plt entry if the function this reloc
10932 refers to is in a different object. We can't tell for
10933 sure yet, because something later might force the
10938 /* If we create a PLT entry, this relocation will reference
10939 it, even if it's an ABS32 relocation. */
10940 h->plt.refcount += 1;
10942 /* It's too early to use htab->use_blx here, so we have to
10943 record possible blx references separately from
10944 relocs that definitely need a thumb stub. */
10946 if (r_type == R_ARM_THM_CALL)
10947 eh->plt_maybe_thumb_refcount += 1;
10949 if (r_type == R_ARM_THM_JUMP24
10950 || r_type == R_ARM_THM_JUMP19)
10951 eh->plt_thumb_refcount += 1;
10954 /* If we are creating a shared library or relocatable executable,
10955 and this is a reloc against a global symbol, or a non PC
10956 relative reloc against a local symbol, then we need to copy
10957 the reloc into the shared library. However, if we are linking
10958 with -Bsymbolic, we do not need to copy a reloc against a
10959 global symbol which is defined in an object we are
10960 including in the link (i.e., DEF_REGULAR is set). At
10961 this point we have not seen all the input files, so it is
10962 possible that DEF_REGULAR is not set now but will be set
10963 later (it is never cleared). We account for that
10964 possibility below by storing information in the
10965 relocs_copied field of the hash table entry. */
10966 if ((info->shared || htab->root.is_relocatable_executable)
10967 && (sec->flags & SEC_ALLOC) != 0
10968 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
10969 || (h != NULL && ! h->needs_plt
10970 && (! info->symbolic || ! h->def_regular))))
10972 struct elf32_arm_relocs_copied *p, **head;
10974 /* When creating a shared object, we must copy these
10975 reloc types into the output file. We create a reloc
10976 section in dynobj and make room for this reloc. */
10977 if (sreloc == NULL)
10979 sreloc = _bfd_elf_make_dynamic_reloc_section
10980 (sec, dynobj, 2, abfd, ! htab->use_rel);
10982 if (sreloc == NULL)
10985 /* BPABI objects never have dynamic relocations mapped. */
10986 if (htab->symbian_p)
10990 flags = bfd_get_section_flags (dynobj, sreloc);
10991 flags &= ~(SEC_LOAD | SEC_ALLOC);
10992 bfd_set_section_flags (dynobj, sreloc, flags);
10996 /* If this is a global symbol, we count the number of
10997 relocations we need for this symbol. */
11000 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
11004 /* Track dynamic relocs needed for local syms too.
11005 We really need local syms available to do this
11006 easily. Oh well. */
11009 Elf_Internal_Sym *isym;
11011 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11016 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11020 vpp = &elf_section_data (s)->local_dynrel;
11021 head = (struct elf32_arm_relocs_copied **) vpp;
11025 if (p == NULL || p->section != sec)
11027 bfd_size_type amt = sizeof *p;
11029 p = bfd_alloc (htab->root.dynobj, amt);
11039 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
11045 /* This relocation describes the C++ object vtable hierarchy.
11046 Reconstruct it for later use during GC. */
11047 case R_ARM_GNU_VTINHERIT:
11048 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
11052 /* This relocation describes which C++ vtable entries are actually
11053 used. Record for later use during GC. */
11054 case R_ARM_GNU_VTENTRY:
11055 BFD_ASSERT (h != NULL);
11057 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
11066 /* Unwinding tables are not referenced directly. This pass marks them as
11067 required if the corresponding code section is marked. */
11070 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11071 elf_gc_mark_hook_fn gc_mark_hook)
11074 Elf_Internal_Shdr **elf_shdrp;
11077 /* Marking EH data may cause additional code sections to be marked,
11078 requiring multiple passes. */
11083 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11087 if (! is_arm_elf (sub))
11090 elf_shdrp = elf_elfsections (sub);
11091 for (o = sub->sections; o != NULL; o = o->next)
11093 Elf_Internal_Shdr *hdr;
11095 hdr = &elf_section_data (o)->this_hdr;
11096 if (hdr->sh_type == SHT_ARM_EXIDX
11098 && hdr->sh_link < elf_numsections (sub)
11100 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11103 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11113 /* Treat mapping symbols as special target symbols. */
11116 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11118 return bfd_is_arm_special_symbol_name (sym->name,
11119 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
11122 /* This is a copy of elf_find_function() from elf.c except that
11123 ARM mapping symbols are ignored when looking for function names
11124 and STT_ARM_TFUNC is considered to a function type. */
11127 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
11128 asection * section,
11129 asymbol ** symbols,
11131 const char ** filename_ptr,
11132 const char ** functionname_ptr)
11134 const char * filename = NULL;
11135 asymbol * func = NULL;
11136 bfd_vma low_func = 0;
11139 for (p = symbols; *p != NULL; p++)
11141 elf_symbol_type *q;
11143 q = (elf_symbol_type *) *p;
11145 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11150 filename = bfd_asymbol_name (&q->symbol);
11153 case STT_ARM_TFUNC:
11155 /* Skip mapping symbols. */
11156 if ((q->symbol.flags & BSF_LOCAL)
11157 && bfd_is_arm_special_symbol_name (q->symbol.name,
11158 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
11160 /* Fall through. */
11161 if (bfd_get_section (&q->symbol) == section
11162 && q->symbol.value >= low_func
11163 && q->symbol.value <= offset)
11165 func = (asymbol *) q;
11166 low_func = q->symbol.value;
11176 *filename_ptr = filename;
11177 if (functionname_ptr)
11178 *functionname_ptr = bfd_asymbol_name (func);
11184 /* Find the nearest line to a particular section and offset, for error
11185 reporting. This code is a duplicate of the code in elf.c, except
11186 that it uses arm_elf_find_function. */
11189 elf32_arm_find_nearest_line (bfd * abfd,
11190 asection * section,
11191 asymbol ** symbols,
11193 const char ** filename_ptr,
11194 const char ** functionname_ptr,
11195 unsigned int * line_ptr)
11197 bfd_boolean found = FALSE;
11199 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11201 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11202 filename_ptr, functionname_ptr,
11204 & elf_tdata (abfd)->dwarf2_find_line_info))
11206 if (!*functionname_ptr)
11207 arm_elf_find_function (abfd, section, symbols, offset,
11208 *filename_ptr ? NULL : filename_ptr,
11214 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11215 & found, filename_ptr,
11216 functionname_ptr, line_ptr,
11217 & elf_tdata (abfd)->line_info))
11220 if (found && (*functionname_ptr || *line_ptr))
11223 if (symbols == NULL)
11226 if (! arm_elf_find_function (abfd, section, symbols, offset,
11227 filename_ptr, functionname_ptr))
11235 elf32_arm_find_inliner_info (bfd * abfd,
11236 const char ** filename_ptr,
11237 const char ** functionname_ptr,
11238 unsigned int * line_ptr)
11241 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11242 functionname_ptr, line_ptr,
11243 & elf_tdata (abfd)->dwarf2_find_line_info);
11247 /* Adjust a symbol defined by a dynamic object and referenced by a
11248 regular object. The current definition is in some section of the
11249 dynamic object, but we're not including those sections. We have to
11250 change the definition to something the rest of the link can
11254 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11255 struct elf_link_hash_entry * h)
11259 struct elf32_arm_link_hash_entry * eh;
11260 struct elf32_arm_link_hash_table *globals;
11262 globals = elf32_arm_hash_table (info);
11263 dynobj = elf_hash_table (info)->dynobj;
11265 /* Make sure we know what is going on here. */
11266 BFD_ASSERT (dynobj != NULL
11268 || h->u.weakdef != NULL
11271 && !h->def_regular)));
11273 eh = (struct elf32_arm_link_hash_entry *) h;
11275 /* If this is a function, put it in the procedure linkage table. We
11276 will fill in the contents of the procedure linkage table later,
11277 when we know the address of the .got section. */
11278 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
11281 if (h->plt.refcount <= 0
11282 || SYMBOL_CALLS_LOCAL (info, h)
11283 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11284 && h->root.type == bfd_link_hash_undefweak))
11286 /* This case can occur if we saw a PLT32 reloc in an input
11287 file, but the symbol was never referred to by a dynamic
11288 object, or if all references were garbage collected. In
11289 such a case, we don't actually need to build a procedure
11290 linkage table, and we can just do a PC24 reloc instead. */
11291 h->plt.offset = (bfd_vma) -1;
11292 eh->plt_thumb_refcount = 0;
11293 eh->plt_maybe_thumb_refcount = 0;
11301 /* It's possible that we incorrectly decided a .plt reloc was
11302 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11303 in check_relocs. We can't decide accurately between function
11304 and non-function syms in check-relocs; Objects loaded later in
11305 the link may change h->type. So fix it now. */
11306 h->plt.offset = (bfd_vma) -1;
11307 eh->plt_thumb_refcount = 0;
11308 eh->plt_maybe_thumb_refcount = 0;
11311 /* If this is a weak symbol, and there is a real definition, the
11312 processor independent code will have arranged for us to see the
11313 real definition first, and we can just use the same value. */
11314 if (h->u.weakdef != NULL)
11316 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11317 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11318 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11319 h->root.u.def.value = h->u.weakdef->root.u.def.value;
11323 /* If there are no non-GOT references, we do not need a copy
11325 if (!h->non_got_ref)
11328 /* This is a reference to a symbol defined by a dynamic object which
11329 is not a function. */
11331 /* If we are creating a shared library, we must presume that the
11332 only references to the symbol are via the global offset table.
11333 For such cases we need not do anything here; the relocations will
11334 be handled correctly by relocate_section. Relocatable executables
11335 can reference data in shared objects directly, so we don't need to
11336 do anything here. */
11337 if (info->shared || globals->root.is_relocatable_executable)
11342 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11343 h->root.root.string);
11347 /* We must allocate the symbol in our .dynbss section, which will
11348 become part of the .bss section of the executable. There will be
11349 an entry for this symbol in the .dynsym section. The dynamic
11350 object will contain position independent code, so all references
11351 from the dynamic object to this symbol will go through the global
11352 offset table. The dynamic linker will use the .dynsym entry to
11353 determine the address it must put in the global offset table, so
11354 both the dynamic object and the regular object will refer to the
11355 same memory location for the variable. */
11356 s = bfd_get_section_by_name (dynobj, ".dynbss");
11357 BFD_ASSERT (s != NULL);
11359 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11360 copy the initial value out of the dynamic object and into the
11361 runtime process image. We need to remember the offset into the
11362 .rel(a).bss section we are going to use. */
11363 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11367 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
11368 BFD_ASSERT (srel != NULL);
11369 srel->size += RELOC_SIZE (globals);
11373 return _bfd_elf_adjust_dynamic_copy (h, s);
11376 /* Allocate space in .plt, .got and associated reloc sections for
11380 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
11382 struct bfd_link_info *info;
11383 struct elf32_arm_link_hash_table *htab;
11384 struct elf32_arm_link_hash_entry *eh;
11385 struct elf32_arm_relocs_copied *p;
11386 bfd_signed_vma thumb_refs;
11388 eh = (struct elf32_arm_link_hash_entry *) h;
11390 if (h->root.type == bfd_link_hash_indirect)
11393 if (h->root.type == bfd_link_hash_warning)
11394 /* When warning symbols are created, they **replace** the "real"
11395 entry in the hash table, thus we never get to see the real
11396 symbol in a hash traversal. So look at it now. */
11397 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11399 info = (struct bfd_link_info *) inf;
11400 htab = elf32_arm_hash_table (info);
11402 if (htab->root.dynamic_sections_created
11403 && h->plt.refcount > 0)
11405 /* Make sure this symbol is output as a dynamic symbol.
11406 Undefined weak syms won't yet be marked as dynamic. */
11407 if (h->dynindx == -1
11408 && !h->forced_local)
11410 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11415 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
11417 asection *s = htab->splt;
11419 /* If this is the first .plt entry, make room for the special
11422 s->size += htab->plt_header_size;
11424 h->plt.offset = s->size;
11426 /* If we will insert a Thumb trampoline before this PLT, leave room
11428 thumb_refs = eh->plt_thumb_refcount;
11429 if (!htab->use_blx)
11430 thumb_refs += eh->plt_maybe_thumb_refcount;
11432 if (thumb_refs > 0)
11434 h->plt.offset += PLT_THUMB_STUB_SIZE;
11435 s->size += PLT_THUMB_STUB_SIZE;
11438 /* If this symbol is not defined in a regular file, and we are
11439 not generating a shared library, then set the symbol to this
11440 location in the .plt. This is required to make function
11441 pointers compare as equal between the normal executable and
11442 the shared library. */
11444 && !h->def_regular)
11446 h->root.u.def.section = s;
11447 h->root.u.def.value = h->plt.offset;
11450 /* Make sure the function is not marked as Thumb, in case
11451 it is the target of an ABS32 relocation, which will
11452 point to the PLT entry. */
11453 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11454 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11456 /* Make room for this entry. */
11457 s->size += htab->plt_entry_size;
11459 if (!htab->symbian_p)
11461 /* We also need to make an entry in the .got.plt section, which
11462 will be placed in the .got section by the linker script. */
11463 eh->plt_got_offset = htab->sgotplt->size;
11464 htab->sgotplt->size += 4;
11467 /* We also need to make an entry in the .rel(a).plt section. */
11468 htab->srelplt->size += RELOC_SIZE (htab);
11470 /* VxWorks executables have a second set of relocations for
11471 each PLT entry. They go in a separate relocation section,
11472 which is processed by the kernel loader. */
11473 if (htab->vxworks_p && !info->shared)
11475 /* There is a relocation for the initial PLT entry:
11476 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11477 if (h->plt.offset == htab->plt_header_size)
11478 htab->srelplt2->size += RELOC_SIZE (htab);
11480 /* There are two extra relocations for each subsequent
11481 PLT entry: an R_ARM_32 relocation for the GOT entry,
11482 and an R_ARM_32 relocation for the PLT entry. */
11483 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11488 h->plt.offset = (bfd_vma) -1;
11494 h->plt.offset = (bfd_vma) -1;
11498 if (h->got.refcount > 0)
11502 int tls_type = elf32_arm_hash_entry (h)->tls_type;
11505 /* Make sure this symbol is output as a dynamic symbol.
11506 Undefined weak syms won't yet be marked as dynamic. */
11507 if (h->dynindx == -1
11508 && !h->forced_local)
11510 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11514 if (!htab->symbian_p)
11517 h->got.offset = s->size;
11519 if (tls_type == GOT_UNKNOWN)
11522 if (tls_type == GOT_NORMAL)
11523 /* Non-TLS symbols need one GOT slot. */
11527 if (tls_type & GOT_TLS_GD)
11528 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11530 if (tls_type & GOT_TLS_IE)
11531 /* R_ARM_TLS_IE32 needs one GOT slot. */
11535 dyn = htab->root.dynamic_sections_created;
11538 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11540 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11543 if (tls_type != GOT_NORMAL
11544 && (info->shared || indx != 0)
11545 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11546 || h->root.type != bfd_link_hash_undefweak))
11548 if (tls_type & GOT_TLS_IE)
11549 htab->srelgot->size += RELOC_SIZE (htab);
11551 if (tls_type & GOT_TLS_GD)
11552 htab->srelgot->size += RELOC_SIZE (htab);
11554 if ((tls_type & GOT_TLS_GD) && indx != 0)
11555 htab->srelgot->size += RELOC_SIZE (htab);
11557 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11558 || h->root.type != bfd_link_hash_undefweak)
11560 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
11561 htab->srelgot->size += RELOC_SIZE (htab);
11565 h->got.offset = (bfd_vma) -1;
11567 /* Allocate stubs for exported Thumb functions on v4t. */
11568 if (!htab->use_blx && h->dynindx != -1
11570 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11571 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11573 struct elf_link_hash_entry * th;
11574 struct bfd_link_hash_entry * bh;
11575 struct elf_link_hash_entry * myh;
11579 /* Create a new symbol to regist the real location of the function. */
11580 s = h->root.u.def.section;
11581 sprintf (name, "__real_%s", h->root.root.string);
11582 _bfd_generic_link_add_one_symbol (info, s->owner,
11583 name, BSF_GLOBAL, s,
11584 h->root.u.def.value,
11585 NULL, TRUE, FALSE, &bh);
11587 myh = (struct elf_link_hash_entry *) bh;
11588 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11589 myh->forced_local = 1;
11590 eh->export_glue = myh;
11591 th = record_arm_to_thumb_glue (info, h);
11592 /* Point the symbol at the stub. */
11593 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11594 h->root.u.def.section = th->root.u.def.section;
11595 h->root.u.def.value = th->root.u.def.value & ~1;
11598 if (eh->relocs_copied == NULL)
11601 /* In the shared -Bsymbolic case, discard space allocated for
11602 dynamic pc-relative relocs against symbols which turn out to be
11603 defined in regular objects. For the normal shared case, discard
11604 space for pc-relative relocs that have become local due to symbol
11605 visibility changes. */
11607 if (info->shared || htab->root.is_relocatable_executable)
11609 /* The only relocs that use pc_count are R_ARM_REL32 and
11610 R_ARM_REL32_NOI, which will appear on something like
11611 ".long foo - .". We want calls to protected symbols to resolve
11612 directly to the function rather than going via the plt. If people
11613 want function pointer comparisons to work as expected then they
11614 should avoid writing assembly like ".long foo - .". */
11615 if (SYMBOL_CALLS_LOCAL (info, h))
11617 struct elf32_arm_relocs_copied **pp;
11619 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11621 p->count -= p->pc_count;
11630 if (elf32_arm_hash_table (info)->vxworks_p)
11632 struct elf32_arm_relocs_copied **pp;
11634 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11636 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11643 /* Also discard relocs on undefined weak syms with non-default
11645 if (eh->relocs_copied != NULL
11646 && h->root.type == bfd_link_hash_undefweak)
11648 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11649 eh->relocs_copied = NULL;
11651 /* Make sure undefined weak symbols are output as a dynamic
11653 else if (h->dynindx == -1
11654 && !h->forced_local)
11656 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11661 else if (htab->root.is_relocatable_executable && h->dynindx == -1
11662 && h->root.type == bfd_link_hash_new)
11664 /* Output absolute symbols so that we can create relocations
11665 against them. For normal symbols we output a relocation
11666 against the section that contains them. */
11667 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11674 /* For the non-shared case, discard space for relocs against
11675 symbols which turn out to need copy relocs or are not
11678 if (!h->non_got_ref
11679 && ((h->def_dynamic
11680 && !h->def_regular)
11681 || (htab->root.dynamic_sections_created
11682 && (h->root.type == bfd_link_hash_undefweak
11683 || h->root.type == bfd_link_hash_undefined))))
11685 /* Make sure this symbol is output as a dynamic symbol.
11686 Undefined weak syms won't yet be marked as dynamic. */
11687 if (h->dynindx == -1
11688 && !h->forced_local)
11690 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11694 /* If that succeeded, we know we'll be keeping all the
11696 if (h->dynindx != -1)
11700 eh->relocs_copied = NULL;
11705 /* Finally, allocate space. */
11706 for (p = eh->relocs_copied; p != NULL; p = p->next)
11708 asection *sreloc = elf_section_data (p->section)->sreloc;
11709 sreloc->size += p->count * RELOC_SIZE (htab);
11715 /* Find any dynamic relocs that apply to read-only sections. */
11718 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
11720 struct elf32_arm_link_hash_entry * eh;
11721 struct elf32_arm_relocs_copied * p;
11723 if (h->root.type == bfd_link_hash_warning)
11724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11726 eh = (struct elf32_arm_link_hash_entry *) h;
11727 for (p = eh->relocs_copied; p != NULL; p = p->next)
11729 asection *s = p->section;
11731 if (s != NULL && (s->flags & SEC_READONLY) != 0)
11733 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11735 info->flags |= DF_TEXTREL;
11737 /* Not an error, just cut short the traversal. */
11745 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11748 struct elf32_arm_link_hash_table *globals;
11750 globals = elf32_arm_hash_table (info);
11751 globals->byteswap_code = byteswap_code;
11754 /* Set the sizes of the dynamic sections. */
11757 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11758 struct bfd_link_info * info)
11763 bfd_boolean relocs;
11765 struct elf32_arm_link_hash_table *htab;
11767 htab = elf32_arm_hash_table (info);
11768 dynobj = elf_hash_table (info)->dynobj;
11769 BFD_ASSERT (dynobj != NULL);
11770 check_use_blx (htab);
11772 if (elf_hash_table (info)->dynamic_sections_created)
11774 /* Set the contents of the .interp section to the interpreter. */
11775 if (info->executable)
11777 s = bfd_get_section_by_name (dynobj, ".interp");
11778 BFD_ASSERT (s != NULL);
11779 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
11780 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11784 /* Set up .got offsets for local syms, and space for local dynamic
11786 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11788 bfd_signed_vma *local_got;
11789 bfd_signed_vma *end_local_got;
11790 char *local_tls_type;
11791 bfd_size_type locsymcount;
11792 Elf_Internal_Shdr *symtab_hdr;
11794 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
11796 if (! is_arm_elf (ibfd))
11799 for (s = ibfd->sections; s != NULL; s = s->next)
11801 struct elf32_arm_relocs_copied *p;
11803 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
11805 if (!bfd_is_abs_section (p->section)
11806 && bfd_is_abs_section (p->section->output_section))
11808 /* Input section has been discarded, either because
11809 it is a copy of a linkonce section or due to
11810 linker script /DISCARD/, so we'll be discarding
11813 else if (is_vxworks
11814 && strcmp (p->section->output_section->name,
11817 /* Relocations in vxworks .tls_vars sections are
11818 handled specially by the loader. */
11820 else if (p->count != 0)
11822 srel = elf_section_data (p->section)->sreloc;
11823 srel->size += p->count * RELOC_SIZE (htab);
11824 if ((p->section->output_section->flags & SEC_READONLY) != 0)
11825 info->flags |= DF_TEXTREL;
11830 local_got = elf_local_got_refcounts (ibfd);
11834 symtab_hdr = & elf_symtab_hdr (ibfd);
11835 locsymcount = symtab_hdr->sh_info;
11836 end_local_got = local_got + locsymcount;
11837 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
11839 srel = htab->srelgot;
11840 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11842 if (*local_got > 0)
11844 *local_got = s->size;
11845 if (*local_tls_type & GOT_TLS_GD)
11846 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11848 if (*local_tls_type & GOT_TLS_IE)
11850 if (*local_tls_type == GOT_NORMAL)
11853 if (info->shared || *local_tls_type == GOT_TLS_GD)
11854 srel->size += RELOC_SIZE (htab);
11857 *local_got = (bfd_vma) -1;
11861 if (htab->tls_ldm_got.refcount > 0)
11863 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11864 for R_ARM_TLS_LDM32 relocations. */
11865 htab->tls_ldm_got.offset = htab->sgot->size;
11866 htab->sgot->size += 8;
11868 htab->srelgot->size += RELOC_SIZE (htab);
11871 htab->tls_ldm_got.offset = -1;
11873 /* Allocate global sym .plt and .got entries, and space for global
11874 sym dynamic relocs. */
11875 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
11877 /* Here we rummage through the found bfds to collect glue information. */
11878 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11880 if (! is_arm_elf (ibfd))
11883 /* Initialise mapping tables for code/data. */
11884 bfd_elf32_arm_init_maps (ibfd);
11886 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11887 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11888 /* xgettext:c-format */
11889 _bfd_error_handler (_("Errors encountered processing file %s"),
11893 /* Allocate space for the glue sections now that we've sized them. */
11894 bfd_elf32_arm_allocate_interworking_sections (info);
11896 /* The check_relocs and adjust_dynamic_symbol entry points have
11897 determined the sizes of the various dynamic sections. Allocate
11898 memory for them. */
11901 for (s = dynobj->sections; s != NULL; s = s->next)
11905 if ((s->flags & SEC_LINKER_CREATED) == 0)
11908 /* It's OK to base decisions on the section name, because none
11909 of the dynobj section names depend upon the input files. */
11910 name = bfd_get_section_name (dynobj, s);
11912 if (strcmp (name, ".plt") == 0)
11914 /* Remember whether there is a PLT. */
11915 plt = s->size != 0;
11917 else if (CONST_STRNEQ (name, ".rel"))
11921 /* Remember whether there are any reloc sections other
11922 than .rel(a).plt and .rela.plt.unloaded. */
11923 if (s != htab->srelplt && s != htab->srelplt2)
11926 /* We use the reloc_count field as a counter if we need
11927 to copy relocs into the output file. */
11928 s->reloc_count = 0;
11931 else if (! CONST_STRNEQ (name, ".got")
11932 && strcmp (name, ".dynbss") != 0)
11934 /* It's not one of our sections, so don't allocate space. */
11940 /* If we don't need this section, strip it from the
11941 output file. This is mostly to handle .rel(a).bss and
11942 .rel(a).plt. We must create both sections in
11943 create_dynamic_sections, because they must be created
11944 before the linker maps input sections to output
11945 sections. The linker does that before
11946 adjust_dynamic_symbol is called, and it is that
11947 function which decides whether anything needs to go
11948 into these sections. */
11949 s->flags |= SEC_EXCLUDE;
11953 if ((s->flags & SEC_HAS_CONTENTS) == 0)
11956 /* Allocate memory for the section contents. */
11957 s->contents = bfd_zalloc (dynobj, s->size);
11958 if (s->contents == NULL)
11962 if (elf_hash_table (info)->dynamic_sections_created)
11964 /* Add some entries to the .dynamic section. We fill in the
11965 values later, in elf32_arm_finish_dynamic_sections, but we
11966 must add the entries now so that we get the correct size for
11967 the .dynamic section. The DT_DEBUG entry is filled in by the
11968 dynamic linker and used by the debugger. */
11969 #define add_dynamic_entry(TAG, VAL) \
11970 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
11972 if (info->executable)
11974 if (!add_dynamic_entry (DT_DEBUG, 0))
11980 if ( !add_dynamic_entry (DT_PLTGOT, 0)
11981 || !add_dynamic_entry (DT_PLTRELSZ, 0)
11982 || !add_dynamic_entry (DT_PLTREL,
11983 htab->use_rel ? DT_REL : DT_RELA)
11984 || !add_dynamic_entry (DT_JMPREL, 0))
11992 if (!add_dynamic_entry (DT_REL, 0)
11993 || !add_dynamic_entry (DT_RELSZ, 0)
11994 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
11999 if (!add_dynamic_entry (DT_RELA, 0)
12000 || !add_dynamic_entry (DT_RELASZ, 0)
12001 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12006 /* If any dynamic relocs apply to a read-only section,
12007 then we need a DT_TEXTREL entry. */
12008 if ((info->flags & DF_TEXTREL) == 0)
12009 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12012 if ((info->flags & DF_TEXTREL) != 0)
12014 if (!add_dynamic_entry (DT_TEXTREL, 0))
12017 if (htab->vxworks_p
12018 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12021 #undef add_dynamic_entry
12026 /* Finish up dynamic symbol handling. We set the contents of various
12027 dynamic sections here. */
12030 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12031 struct bfd_link_info * info,
12032 struct elf_link_hash_entry * h,
12033 Elf_Internal_Sym * sym)
12036 struct elf32_arm_link_hash_table *htab;
12037 struct elf32_arm_link_hash_entry *eh;
12039 dynobj = elf_hash_table (info)->dynobj;
12040 htab = elf32_arm_hash_table (info);
12041 eh = (struct elf32_arm_link_hash_entry *) h;
12043 if (h->plt.offset != (bfd_vma) -1)
12049 Elf_Internal_Rela rel;
12051 /* This symbol has an entry in the procedure linkage table. Set
12054 BFD_ASSERT (h->dynindx != -1);
12056 splt = bfd_get_section_by_name (dynobj, ".plt");
12057 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
12058 BFD_ASSERT (splt != NULL && srel != NULL);
12060 /* Fill in the entry in the procedure linkage table. */
12061 if (htab->symbian_p)
12063 put_arm_insn (htab, output_bfd,
12064 elf32_arm_symbian_plt_entry[0],
12065 splt->contents + h->plt.offset);
12066 bfd_put_32 (output_bfd,
12067 elf32_arm_symbian_plt_entry[1],
12068 splt->contents + h->plt.offset + 4);
12070 /* Fill in the entry in the .rel.plt section. */
12071 rel.r_offset = (splt->output_section->vma
12072 + splt->output_offset
12073 + h->plt.offset + 4);
12074 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12076 /* Get the index in the procedure linkage table which
12077 corresponds to this symbol. This is the index of this symbol
12078 in all the symbols for which we are making plt entries. The
12079 first entry in the procedure linkage table is reserved. */
12080 plt_index = ((h->plt.offset - htab->plt_header_size)
12081 / htab->plt_entry_size);
12085 bfd_vma got_offset, got_address, plt_address;
12086 bfd_vma got_displacement;
12090 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12091 BFD_ASSERT (sgot != NULL);
12093 /* Get the offset into the .got.plt table of the entry that
12094 corresponds to this function. */
12095 got_offset = eh->plt_got_offset;
12097 /* Get the index in the procedure linkage table which
12098 corresponds to this symbol. This is the index of this symbol
12099 in all the symbols for which we are making plt entries. The
12100 first three entries in .got.plt are reserved; after that
12101 symbols appear in the same order as in .plt. */
12102 plt_index = (got_offset - 12) / 4;
12104 /* Calculate the address of the GOT entry. */
12105 got_address = (sgot->output_section->vma
12106 + sgot->output_offset
12109 /* ...and the address of the PLT entry. */
12110 plt_address = (splt->output_section->vma
12111 + splt->output_offset
12114 ptr = htab->splt->contents + h->plt.offset;
12115 if (htab->vxworks_p && info->shared)
12120 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12122 val = elf32_arm_vxworks_shared_plt_entry[i];
12124 val |= got_address - sgot->output_section->vma;
12126 val |= plt_index * RELOC_SIZE (htab);
12127 if (i == 2 || i == 5)
12128 bfd_put_32 (output_bfd, val, ptr);
12130 put_arm_insn (htab, output_bfd, val, ptr);
12133 else if (htab->vxworks_p)
12138 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12140 val = elf32_arm_vxworks_exec_plt_entry[i];
12142 val |= got_address;
12144 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12146 val |= plt_index * RELOC_SIZE (htab);
12147 if (i == 2 || i == 5)
12148 bfd_put_32 (output_bfd, val, ptr);
12150 put_arm_insn (htab, output_bfd, val, ptr);
12153 loc = (htab->srelplt2->contents
12154 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12156 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12157 referencing the GOT for this PLT entry. */
12158 rel.r_offset = plt_address + 8;
12159 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12160 rel.r_addend = got_offset;
12161 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12162 loc += RELOC_SIZE (htab);
12164 /* Create the R_ARM_ABS32 relocation referencing the
12165 beginning of the PLT for this GOT entry. */
12166 rel.r_offset = got_address;
12167 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12169 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12173 bfd_signed_vma thumb_refs;
12174 /* Calculate the displacement between the PLT slot and the
12175 entry in the GOT. The eight-byte offset accounts for the
12176 value produced by adding to pc in the first instruction
12177 of the PLT stub. */
12178 got_displacement = got_address - (plt_address + 8);
12180 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12182 thumb_refs = eh->plt_thumb_refcount;
12183 if (!htab->use_blx)
12184 thumb_refs += eh->plt_maybe_thumb_refcount;
12186 if (thumb_refs > 0)
12188 put_thumb_insn (htab, output_bfd,
12189 elf32_arm_plt_thumb_stub[0], ptr - 4);
12190 put_thumb_insn (htab, output_bfd,
12191 elf32_arm_plt_thumb_stub[1], ptr - 2);
12194 put_arm_insn (htab, output_bfd,
12195 elf32_arm_plt_entry[0]
12196 | ((got_displacement & 0x0ff00000) >> 20),
12198 put_arm_insn (htab, output_bfd,
12199 elf32_arm_plt_entry[1]
12200 | ((got_displacement & 0x000ff000) >> 12),
12202 put_arm_insn (htab, output_bfd,
12203 elf32_arm_plt_entry[2]
12204 | (got_displacement & 0x00000fff),
12206 #ifdef FOUR_WORD_PLT
12207 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
12211 /* Fill in the entry in the global offset table. */
12212 bfd_put_32 (output_bfd,
12213 (splt->output_section->vma
12214 + splt->output_offset),
12215 sgot->contents + got_offset);
12217 /* Fill in the entry in the .rel(a).plt section. */
12219 rel.r_offset = got_address;
12220 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12223 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12224 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12226 if (!h->def_regular)
12228 /* Mark the symbol as undefined, rather than as defined in
12229 the .plt section. Leave the value alone. */
12230 sym->st_shndx = SHN_UNDEF;
12231 /* If the symbol is weak, we do need to clear the value.
12232 Otherwise, the PLT entry would provide a definition for
12233 the symbol even if the symbol wasn't defined anywhere,
12234 and so the symbol would never be NULL. */
12235 if (!h->ref_regular_nonweak)
12240 if (h->got.offset != (bfd_vma) -1
12241 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12242 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
12246 Elf_Internal_Rela rel;
12250 /* This symbol has an entry in the global offset table. Set it
12252 sgot = bfd_get_section_by_name (dynobj, ".got");
12253 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
12254 BFD_ASSERT (sgot != NULL && srel != NULL);
12256 offset = (h->got.offset & ~(bfd_vma) 1);
12258 rel.r_offset = (sgot->output_section->vma
12259 + sgot->output_offset
12262 /* If this is a static link, or it is a -Bsymbolic link and the
12263 symbol is defined locally or was forced to be local because
12264 of a version file, we just want to emit a RELATIVE reloc.
12265 The entry in the global offset table will already have been
12266 initialized in the relocate_section function. */
12268 && SYMBOL_REFERENCES_LOCAL (info, h))
12270 BFD_ASSERT ((h->got.offset & 1) != 0);
12271 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12272 if (!htab->use_rel)
12274 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12275 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12280 BFD_ASSERT ((h->got.offset & 1) == 0);
12281 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12282 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12285 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12286 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12292 Elf_Internal_Rela rel;
12295 /* This symbol needs a copy reloc. Set it up. */
12296 BFD_ASSERT (h->dynindx != -1
12297 && (h->root.type == bfd_link_hash_defined
12298 || h->root.type == bfd_link_hash_defweak));
12300 s = bfd_get_section_by_name (h->root.u.def.section->owner,
12301 RELOC_SECTION (htab, ".bss"));
12302 BFD_ASSERT (s != NULL);
12305 rel.r_offset = (h->root.u.def.value
12306 + h->root.u.def.section->output_section->vma
12307 + h->root.u.def.section->output_offset);
12308 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
12309 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12310 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12313 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12314 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12315 to the ".got" section. */
12316 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
12317 || (!htab->vxworks_p && h == htab->root.hgot))
12318 sym->st_shndx = SHN_ABS;
12323 /* Finish up the dynamic sections. */
12326 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
12332 dynobj = elf_hash_table (info)->dynobj;
12334 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12335 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
12336 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12338 if (elf_hash_table (info)->dynamic_sections_created)
12341 Elf32_External_Dyn *dyncon, *dynconend;
12342 struct elf32_arm_link_hash_table *htab;
12344 htab = elf32_arm_hash_table (info);
12345 splt = bfd_get_section_by_name (dynobj, ".plt");
12346 BFD_ASSERT (splt != NULL && sdyn != NULL);
12348 dyncon = (Elf32_External_Dyn *) sdyn->contents;
12349 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
12351 for (; dyncon < dynconend; dyncon++)
12353 Elf_Internal_Dyn dyn;
12357 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12364 if (htab->vxworks_p
12365 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12366 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12371 goto get_vma_if_bpabi;
12374 goto get_vma_if_bpabi;
12377 goto get_vma_if_bpabi;
12379 name = ".gnu.version";
12380 goto get_vma_if_bpabi;
12382 name = ".gnu.version_d";
12383 goto get_vma_if_bpabi;
12385 name = ".gnu.version_r";
12386 goto get_vma_if_bpabi;
12392 name = RELOC_SECTION (htab, ".plt");
12394 s = bfd_get_section_by_name (output_bfd, name);
12395 BFD_ASSERT (s != NULL);
12396 if (!htab->symbian_p)
12397 dyn.d_un.d_ptr = s->vma;
12399 /* In the BPABI, tags in the PT_DYNAMIC section point
12400 at the file offset, not the memory address, for the
12401 convenience of the post linker. */
12402 dyn.d_un.d_ptr = s->filepos;
12403 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12407 if (htab->symbian_p)
12412 s = bfd_get_section_by_name (output_bfd,
12413 RELOC_SECTION (htab, ".plt"));
12414 BFD_ASSERT (s != NULL);
12415 dyn.d_un.d_val = s->size;
12416 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12421 if (!htab->symbian_p)
12423 /* My reading of the SVR4 ABI indicates that the
12424 procedure linkage table relocs (DT_JMPREL) should be
12425 included in the overall relocs (DT_REL). This is
12426 what Solaris does. However, UnixWare can not handle
12427 that case. Therefore, we override the DT_RELSZ entry
12428 here to make it not include the JMPREL relocs. Since
12429 the linker script arranges for .rel(a).plt to follow all
12430 other relocation sections, we don't have to worry
12431 about changing the DT_REL entry. */
12432 s = bfd_get_section_by_name (output_bfd,
12433 RELOC_SECTION (htab, ".plt"));
12435 dyn.d_un.d_val -= s->size;
12436 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12439 /* Fall through. */
12443 /* In the BPABI, the DT_REL tag must point at the file
12444 offset, not the VMA, of the first relocation
12445 section. So, we use code similar to that in
12446 elflink.c, but do not check for SHF_ALLOC on the
12447 relcoation section, since relocations sections are
12448 never allocated under the BPABI. The comments above
12449 about Unixware notwithstanding, we include all of the
12450 relocations here. */
12451 if (htab->symbian_p)
12454 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12455 ? SHT_REL : SHT_RELA);
12456 dyn.d_un.d_val = 0;
12457 for (i = 1; i < elf_numsections (output_bfd); i++)
12459 Elf_Internal_Shdr *hdr
12460 = elf_elfsections (output_bfd)[i];
12461 if (hdr->sh_type == type)
12463 if (dyn.d_tag == DT_RELSZ
12464 || dyn.d_tag == DT_RELASZ)
12465 dyn.d_un.d_val += hdr->sh_size;
12466 else if ((ufile_ptr) hdr->sh_offset
12467 <= dyn.d_un.d_val - 1)
12468 dyn.d_un.d_val = hdr->sh_offset;
12471 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12475 /* Set the bottom bit of DT_INIT/FINI if the
12476 corresponding function is Thumb. */
12478 name = info->init_function;
12481 name = info->fini_function;
12483 /* If it wasn't set by elf_bfd_final_link
12484 then there is nothing to adjust. */
12485 if (dyn.d_un.d_val != 0)
12487 struct elf_link_hash_entry * eh;
12489 eh = elf_link_hash_lookup (elf_hash_table (info), name,
12490 FALSE, FALSE, TRUE);
12492 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12494 dyn.d_un.d_val |= 1;
12495 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12502 /* Fill in the first entry in the procedure linkage table. */
12503 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
12505 const bfd_vma *plt0_entry;
12506 bfd_vma got_address, plt_address, got_displacement;
12508 /* Calculate the addresses of the GOT and PLT. */
12509 got_address = sgot->output_section->vma + sgot->output_offset;
12510 plt_address = splt->output_section->vma + splt->output_offset;
12512 if (htab->vxworks_p)
12514 /* The VxWorks GOT is relocated by the dynamic linker.
12515 Therefore, we must emit relocations rather than simply
12516 computing the values now. */
12517 Elf_Internal_Rela rel;
12519 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
12520 put_arm_insn (htab, output_bfd, plt0_entry[0],
12521 splt->contents + 0);
12522 put_arm_insn (htab, output_bfd, plt0_entry[1],
12523 splt->contents + 4);
12524 put_arm_insn (htab, output_bfd, plt0_entry[2],
12525 splt->contents + 8);
12526 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12528 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12529 rel.r_offset = plt_address + 12;
12530 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12532 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12533 htab->srelplt2->contents);
12537 got_displacement = got_address - (plt_address + 16);
12539 plt0_entry = elf32_arm_plt0_entry;
12540 put_arm_insn (htab, output_bfd, plt0_entry[0],
12541 splt->contents + 0);
12542 put_arm_insn (htab, output_bfd, plt0_entry[1],
12543 splt->contents + 4);
12544 put_arm_insn (htab, output_bfd, plt0_entry[2],
12545 splt->contents + 8);
12546 put_arm_insn (htab, output_bfd, plt0_entry[3],
12547 splt->contents + 12);
12549 #ifdef FOUR_WORD_PLT
12550 /* The displacement value goes in the otherwise-unused
12551 last word of the second entry. */
12552 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
12554 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
12559 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12560 really seem like the right value. */
12561 if (splt->output_section->owner == output_bfd)
12562 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
12564 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12566 /* Correct the .rel(a).plt.unloaded relocations. They will have
12567 incorrect symbol indexes. */
12571 num_plts = ((htab->splt->size - htab->plt_header_size)
12572 / htab->plt_entry_size);
12573 p = htab->srelplt2->contents + RELOC_SIZE (htab);
12575 for (; num_plts; num_plts--)
12577 Elf_Internal_Rela rel;
12579 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12580 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12581 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12582 p += RELOC_SIZE (htab);
12584 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12585 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12586 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12587 p += RELOC_SIZE (htab);
12592 /* Fill in the first three entries in the global offset table. */
12595 if (sgot->size > 0)
12598 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12600 bfd_put_32 (output_bfd,
12601 sdyn->output_section->vma + sdyn->output_offset,
12603 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12604 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12607 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12614 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12616 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12617 struct elf32_arm_link_hash_table *globals;
12619 i_ehdrp = elf_elfheader (abfd);
12621 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12622 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12624 i_ehdrp->e_ident[EI_OSABI] = 0;
12625 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
12629 globals = elf32_arm_hash_table (link_info);
12630 if (globals->byteswap_code)
12631 i_ehdrp->e_flags |= EF_ARM_BE8;
12635 static enum elf_reloc_type_class
12636 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
12638 switch ((int) ELF32_R_TYPE (rela->r_info))
12640 case R_ARM_RELATIVE:
12641 return reloc_class_relative;
12642 case R_ARM_JUMP_SLOT:
12643 return reloc_class_plt;
12645 return reloc_class_copy;
12647 return reloc_class_normal;
12651 /* Set the right machine number for an Arm ELF file. */
12654 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
12656 if (hdr->sh_type == SHT_NOTE)
12657 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12663 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
12665 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
12668 /* Return TRUE if this is an unwinding table entry. */
12671 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12673 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12674 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
12678 /* Set the type and flags for an ARM section. We do this by
12679 the section name, which is a hack, but ought to work. */
12682 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12686 name = bfd_get_section_name (abfd, sec);
12688 if (is_arm_elf_unwind_section_name (abfd, name))
12690 hdr->sh_type = SHT_ARM_EXIDX;
12691 hdr->sh_flags |= SHF_LINK_ORDER;
12696 /* Handle an ARM specific section when reading an object file. This is
12697 called when bfd_section_from_shdr finds a section with an unknown
12701 elf32_arm_section_from_shdr (bfd *abfd,
12702 Elf_Internal_Shdr * hdr,
12706 /* There ought to be a place to keep ELF backend specific flags, but
12707 at the moment there isn't one. We just keep track of the
12708 sections by their name, instead. Fortunately, the ABI gives
12709 names for all the ARM specific sections, so we will probably get
12711 switch (hdr->sh_type)
12713 case SHT_ARM_EXIDX:
12714 case SHT_ARM_PREEMPTMAP:
12715 case SHT_ARM_ATTRIBUTES:
12722 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
12728 /* A structure used to record a list of sections, independently
12729 of the next and prev fields in the asection structure. */
12730 typedef struct section_list
12733 struct section_list * next;
12734 struct section_list * prev;
12738 /* Unfortunately we need to keep a list of sections for which
12739 an _arm_elf_section_data structure has been allocated. This
12740 is because it is possible for functions like elf32_arm_write_section
12741 to be called on a section which has had an elf_data_structure
12742 allocated for it (and so the used_by_bfd field is valid) but
12743 for which the ARM extended version of this structure - the
12744 _arm_elf_section_data structure - has not been allocated. */
12745 static section_list * sections_with_arm_elf_section_data = NULL;
12748 record_section_with_arm_elf_section_data (asection * sec)
12750 struct section_list * entry;
12752 entry = bfd_malloc (sizeof (* entry));
12756 entry->next = sections_with_arm_elf_section_data;
12757 entry->prev = NULL;
12758 if (entry->next != NULL)
12759 entry->next->prev = entry;
12760 sections_with_arm_elf_section_data = entry;
12763 static struct section_list *
12764 find_arm_elf_section_entry (asection * sec)
12766 struct section_list * entry;
12767 static struct section_list * last_entry = NULL;
12769 /* This is a short cut for the typical case where the sections are added
12770 to the sections_with_arm_elf_section_data list in forward order and
12771 then looked up here in backwards order. This makes a real difference
12772 to the ld-srec/sec64k.exp linker test. */
12773 entry = sections_with_arm_elf_section_data;
12774 if (last_entry != NULL)
12776 if (last_entry->sec == sec)
12777 entry = last_entry;
12778 else if (last_entry->next != NULL
12779 && last_entry->next->sec == sec)
12780 entry = last_entry->next;
12783 for (; entry; entry = entry->next)
12784 if (entry->sec == sec)
12788 /* Record the entry prior to this one - it is the entry we are most
12789 likely to want to locate next time. Also this way if we have been
12790 called from unrecord_section_with_arm_elf_section_data() we will not
12791 be caching a pointer that is about to be freed. */
12792 last_entry = entry->prev;
12797 static _arm_elf_section_data *
12798 get_arm_elf_section_data (asection * sec)
12800 struct section_list * entry;
12802 entry = find_arm_elf_section_entry (sec);
12805 return elf32_arm_section_data (entry->sec);
12811 unrecord_section_with_arm_elf_section_data (asection * sec)
12813 struct section_list * entry;
12815 entry = find_arm_elf_section_entry (sec);
12819 if (entry->prev != NULL)
12820 entry->prev->next = entry->next;
12821 if (entry->next != NULL)
12822 entry->next->prev = entry->prev;
12823 if (entry == sections_with_arm_elf_section_data)
12824 sections_with_arm_elf_section_data = entry->next;
12833 struct bfd_link_info *info;
12836 int (*func) (void *, const char *, Elf_Internal_Sym *,
12837 asection *, struct elf_link_hash_entry *);
12838 } output_arch_syminfo;
12840 enum map_symbol_type
12848 /* Output a single mapping symbol. */
12851 elf32_arm_output_map_sym (output_arch_syminfo *osi,
12852 enum map_symbol_type type,
12855 static const char *names[3] = {"$a", "$t", "$d"};
12856 struct elf32_arm_link_hash_table *htab;
12857 Elf_Internal_Sym sym;
12859 htab = elf32_arm_hash_table (osi->info);
12860 sym.st_value = osi->sec->output_section->vma
12861 + osi->sec->output_offset
12865 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
12866 sym.st_shndx = osi->sec_shndx;
12867 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
12871 /* Output mapping symbols for PLT entries associated with H. */
12874 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12876 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12877 struct elf32_arm_link_hash_table *htab;
12878 struct elf32_arm_link_hash_entry *eh;
12881 htab = elf32_arm_hash_table (osi->info);
12883 if (h->root.type == bfd_link_hash_indirect)
12886 if (h->root.type == bfd_link_hash_warning)
12887 /* When warning symbols are created, they **replace** the "real"
12888 entry in the hash table, thus we never get to see the real
12889 symbol in a hash traversal. So look at it now. */
12890 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12892 if (h->plt.offset == (bfd_vma) -1)
12895 eh = (struct elf32_arm_link_hash_entry *) h;
12896 addr = h->plt.offset;
12897 if (htab->symbian_p)
12899 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12901 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
12904 else if (htab->vxworks_p)
12906 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12908 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
12910 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
12912 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
12917 bfd_signed_vma thumb_refs;
12919 thumb_refs = eh->plt_thumb_refcount;
12920 if (!htab->use_blx)
12921 thumb_refs += eh->plt_maybe_thumb_refcount;
12923 if (thumb_refs > 0)
12925 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
12928 #ifdef FOUR_WORD_PLT
12929 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12931 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
12934 /* A three-word PLT with no Thumb thunk contains only Arm code,
12935 so only need to output a mapping symbol for the first PLT entry and
12936 entries with thumb thunks. */
12937 if (thumb_refs > 0 || addr == 20)
12939 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12948 /* Output a single local symbol for a generated stub. */
12951 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12952 bfd_vma offset, bfd_vma size)
12954 struct elf32_arm_link_hash_table *htab;
12955 Elf_Internal_Sym sym;
12957 htab = elf32_arm_hash_table (osi->info);
12958 sym.st_value = osi->sec->output_section->vma
12959 + osi->sec->output_offset
12961 sym.st_size = size;
12963 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12964 sym.st_shndx = osi->sec_shndx;
12965 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
12969 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12972 struct elf32_arm_stub_hash_entry *stub_entry;
12973 struct bfd_link_info *info;
12974 struct elf32_arm_link_hash_table *htab;
12975 asection *stub_sec;
12978 output_arch_syminfo *osi;
12979 const insn_sequence *template;
12980 enum stub_insn_type prev_type;
12983 enum map_symbol_type sym_type;
12985 /* Massage our args to the form they really have. */
12986 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
12987 osi = (output_arch_syminfo *) in_arg;
12991 htab = elf32_arm_hash_table (info);
12992 stub_sec = stub_entry->stub_sec;
12994 /* Ensure this stub is attached to the current section being
12996 if (stub_sec != osi->sec)
12999 addr = (bfd_vma) stub_entry->stub_offset;
13000 stub_name = stub_entry->output_name;
13002 template = stub_entry->stub_template;
13003 switch (template[0].type)
13006 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
13011 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
13012 stub_entry->stub_size))
13020 prev_type = DATA_TYPE;
13022 for (i = 0; i < stub_entry->stub_template_size; i++)
13024 switch (template[i].type)
13027 sym_type = ARM_MAP_ARM;
13032 sym_type = ARM_MAP_THUMB;
13036 sym_type = ARM_MAP_DATA;
13044 if (template[i].type != prev_type)
13046 prev_type = template[i].type;
13047 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13051 switch (template[i].type)
13075 /* Output mapping symbols for linker generated sections. */
13078 elf32_arm_output_arch_local_syms (bfd *output_bfd,
13079 struct bfd_link_info *info,
13081 int (*func) (void *, const char *,
13082 Elf_Internal_Sym *,
13084 struct elf_link_hash_entry *))
13086 output_arch_syminfo osi;
13087 struct elf32_arm_link_hash_table *htab;
13089 bfd_size_type size;
13091 htab = elf32_arm_hash_table (info);
13092 check_use_blx (htab);
13098 /* ARM->Thumb glue. */
13099 if (htab->arm_glue_size > 0)
13101 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13102 ARM2THUMB_GLUE_SECTION_NAME);
13104 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13105 (output_bfd, osi.sec->output_section);
13106 if (info->shared || htab->root.is_relocatable_executable
13107 || htab->pic_veneer)
13108 size = ARM2THUMB_PIC_GLUE_SIZE;
13109 else if (htab->use_blx)
13110 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13112 size = ARM2THUMB_STATIC_GLUE_SIZE;
13114 for (offset = 0; offset < htab->arm_glue_size; offset += size)
13116 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13117 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
13121 /* Thumb->ARM glue. */
13122 if (htab->thumb_glue_size > 0)
13124 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13125 THUMB2ARM_GLUE_SECTION_NAME);
13127 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13128 (output_bfd, osi.sec->output_section);
13129 size = THUMB2ARM_GLUE_SIZE;
13131 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13133 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13134 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
13138 /* ARMv4 BX veneers. */
13139 if (htab->bx_glue_size > 0)
13141 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13142 ARM_BX_GLUE_SECTION_NAME);
13144 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13145 (output_bfd, osi.sec->output_section);
13147 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
13150 /* Long calls stubs. */
13151 if (htab->stub_bfd && htab->stub_bfd->sections)
13153 asection* stub_sec;
13155 for (stub_sec = htab->stub_bfd->sections;
13157 stub_sec = stub_sec->next)
13159 /* Ignore non-stub sections. */
13160 if (!strstr (stub_sec->name, STUB_SUFFIX))
13163 osi.sec = stub_sec;
13165 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13166 (output_bfd, osi.sec->output_section);
13168 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13172 /* Finally, output mapping symbols for the PLT. */
13173 if (!htab->splt || htab->splt->size == 0)
13176 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
13177 htab->splt->output_section);
13178 osi.sec = htab->splt;
13179 /* Output mapping symbols for the plt header. SymbianOS does not have a
13181 if (htab->vxworks_p)
13183 /* VxWorks shared libraries have no PLT header. */
13186 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13188 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
13192 else if (!htab->symbian_p)
13194 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13196 #ifndef FOUR_WORD_PLT
13197 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
13202 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13206 /* Allocate target specific section data. */
13209 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13211 if (!sec->used_by_bfd)
13213 _arm_elf_section_data *sdata;
13214 bfd_size_type amt = sizeof (*sdata);
13216 sdata = bfd_zalloc (abfd, amt);
13219 sec->used_by_bfd = sdata;
13222 record_section_with_arm_elf_section_data (sec);
13224 return _bfd_elf_new_section_hook (abfd, sec);
13228 /* Used to order a list of mapping symbols by address. */
13231 elf32_arm_compare_mapping (const void * a, const void * b)
13233 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13234 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13236 if (amap->vma > bmap->vma)
13238 else if (amap->vma < bmap->vma)
13240 else if (amap->type > bmap->type)
13241 /* Ensure results do not depend on the host qsort for objects with
13242 multiple mapping symbols at the same address by sorting on type
13245 else if (amap->type < bmap->type)
13251 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13253 static unsigned long
13254 offset_prel31 (unsigned long addr, bfd_vma offset)
13256 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13259 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13263 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13265 unsigned long first_word = bfd_get_32 (output_bfd, from);
13266 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13268 /* High bit of first word is supposed to be zero. */
13269 if ((first_word & 0x80000000ul) == 0)
13270 first_word = offset_prel31 (first_word, offset);
13272 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13273 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13274 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13275 second_word = offset_prel31 (second_word, offset);
13277 bfd_put_32 (output_bfd, first_word, to);
13278 bfd_put_32 (output_bfd, second_word, to + 4);
13281 /* Data for make_branch_to_a8_stub(). */
13283 struct a8_branch_to_stub_data {
13284 asection *writing_section;
13285 bfd_byte *contents;
13289 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13290 places for a particular section. */
13293 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13296 struct elf32_arm_stub_hash_entry *stub_entry;
13297 struct a8_branch_to_stub_data *data;
13298 bfd_byte *contents;
13299 unsigned long branch_insn;
13300 bfd_vma veneered_insn_loc, veneer_entry_loc;
13301 bfd_signed_vma branch_offset;
13303 unsigned int index;
13305 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13306 data = (struct a8_branch_to_stub_data *) in_arg;
13308 if (stub_entry->target_section != data->writing_section
13309 || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13312 contents = data->contents;
13314 veneered_insn_loc = stub_entry->target_section->output_section->vma
13315 + stub_entry->target_section->output_offset
13316 + stub_entry->target_value;
13318 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13319 + stub_entry->stub_sec->output_offset
13320 + stub_entry->stub_offset;
13322 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13323 veneered_insn_loc &= ~3u;
13325 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13327 abfd = stub_entry->target_section->owner;
13328 index = stub_entry->target_value;
13330 /* We attempt to avoid this condition by setting stubs_always_after_branch
13331 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13332 This check is just to be on the safe side... */
13333 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13335 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13336 "allocated in unsafe location"), abfd);
13340 switch (stub_entry->stub_type)
13342 case arm_stub_a8_veneer_b:
13343 case arm_stub_a8_veneer_b_cond:
13344 branch_insn = 0xf0009000;
13347 case arm_stub_a8_veneer_blx:
13348 branch_insn = 0xf000e800;
13351 case arm_stub_a8_veneer_bl:
13353 unsigned int i1, j1, i2, j2, s;
13355 branch_insn = 0xf000d000;
13358 if (branch_offset < -16777216 || branch_offset > 16777214)
13360 /* There's not much we can do apart from complain if this
13362 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13363 "of range (input file too large)"), abfd);
13367 /* i1 = not(j1 eor s), so:
13369 j1 = (not i1) eor s. */
13371 branch_insn |= (branch_offset >> 1) & 0x7ff;
13372 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13373 i2 = (branch_offset >> 22) & 1;
13374 i1 = (branch_offset >> 23) & 1;
13375 s = (branch_offset >> 24) & 1;
13378 branch_insn |= j2 << 11;
13379 branch_insn |= j1 << 13;
13380 branch_insn |= s << 26;
13389 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[index]);
13390 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[index + 2]);
13395 /* Do code byteswapping. Return FALSE afterwards so that the section is
13396 written out as normal. */
13399 elf32_arm_write_section (bfd *output_bfd,
13400 struct bfd_link_info *link_info,
13402 bfd_byte *contents)
13404 unsigned int mapcount, errcount;
13405 _arm_elf_section_data *arm_data;
13406 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
13407 elf32_arm_section_map *map;
13408 elf32_vfp11_erratum_list *errnode;
13411 bfd_vma offset = sec->output_section->vma + sec->output_offset;
13415 /* If this section has not been allocated an _arm_elf_section_data
13416 structure then we cannot record anything. */
13417 arm_data = get_arm_elf_section_data (sec);
13418 if (arm_data == NULL)
13421 mapcount = arm_data->mapcount;
13422 map = arm_data->map;
13423 errcount = arm_data->erratumcount;
13427 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13429 for (errnode = arm_data->erratumlist; errnode != 0;
13430 errnode = errnode->next)
13432 bfd_vma index = errnode->vma - offset;
13434 switch (errnode->type)
13436 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13438 bfd_vma branch_to_veneer;
13439 /* Original condition code of instruction, plus bit mask for
13440 ARM B instruction. */
13441 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13444 /* The instruction is before the label. */
13447 /* Above offset included in -4 below. */
13448 branch_to_veneer = errnode->u.b.veneer->vma
13449 - errnode->vma - 4;
13451 if ((signed) branch_to_veneer < -(1 << 25)
13452 || (signed) branch_to_veneer >= (1 << 25))
13453 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13454 "range"), output_bfd);
13456 insn |= (branch_to_veneer >> 2) & 0xffffff;
13457 contents[endianflip ^ index] = insn & 0xff;
13458 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13459 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13460 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13464 case VFP11_ERRATUM_ARM_VENEER:
13466 bfd_vma branch_from_veneer;
13469 /* Take size of veneer into account. */
13470 branch_from_veneer = errnode->u.v.branch->vma
13471 - errnode->vma - 12;
13473 if ((signed) branch_from_veneer < -(1 << 25)
13474 || (signed) branch_from_veneer >= (1 << 25))
13475 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13476 "range"), output_bfd);
13478 /* Original instruction. */
13479 insn = errnode->u.v.branch->u.b.vfp_insn;
13480 contents[endianflip ^ index] = insn & 0xff;
13481 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13482 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13483 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13485 /* Branch back to insn after original insn. */
13486 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13487 contents[endianflip ^ (index + 4)] = insn & 0xff;
13488 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
13489 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
13490 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
13500 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13502 arm_unwind_table_edit *edit_node
13503 = arm_data->u.exidx.unwind_edit_list;
13504 /* Now, sec->size is the size of the section we will write. The original
13505 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13506 markers) was sec->rawsize. (This isn't the case if we perform no
13507 edits, then rawsize will be zero and we should use size). */
13508 bfd_byte *edited_contents = bfd_malloc (sec->size);
13509 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13510 unsigned int in_index, out_index;
13511 bfd_vma add_to_offsets = 0;
13513 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13517 unsigned int edit_index = edit_node->index;
13519 if (in_index < edit_index && in_index * 8 < input_size)
13521 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13522 contents + in_index * 8, add_to_offsets);
13526 else if (in_index == edit_index
13527 || (in_index * 8 >= input_size
13528 && edit_index == UINT_MAX))
13530 switch (edit_node->type)
13532 case DELETE_EXIDX_ENTRY:
13534 add_to_offsets += 8;
13537 case INSERT_EXIDX_CANTUNWIND_AT_END:
13539 asection *text_sec = edit_node->linked_section;
13540 bfd_vma text_offset = text_sec->output_section->vma
13541 + text_sec->output_offset
13543 bfd_vma exidx_offset = offset + out_index * 8;
13544 unsigned long prel31_offset;
13546 /* Note: this is meant to be equivalent to an
13547 R_ARM_PREL31 relocation. These synthetic
13548 EXIDX_CANTUNWIND markers are not relocated by the
13549 usual BFD method. */
13550 prel31_offset = (text_offset - exidx_offset)
13553 /* First address we can't unwind. */
13554 bfd_put_32 (output_bfd, prel31_offset,
13555 &edited_contents[out_index * 8]);
13557 /* Code for EXIDX_CANTUNWIND. */
13558 bfd_put_32 (output_bfd, 0x1,
13559 &edited_contents[out_index * 8 + 4]);
13562 add_to_offsets -= 8;
13567 edit_node = edit_node->next;
13572 /* No more edits, copy remaining entries verbatim. */
13573 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13574 contents + in_index * 8, add_to_offsets);
13580 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13581 bfd_set_section_contents (output_bfd, sec->output_section,
13583 (file_ptr) sec->output_offset, sec->size);
13588 /* Fix code to point to Cortex-A8 erratum stubs. */
13589 if (globals->fix_cortex_a8)
13591 struct a8_branch_to_stub_data data;
13593 data.writing_section = sec;
13594 data.contents = contents;
13596 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13603 if (globals->byteswap_code)
13605 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
13608 for (i = 0; i < mapcount; i++)
13610 if (i == mapcount - 1)
13613 end = map[i + 1].vma;
13615 switch (map[i].type)
13618 /* Byte swap code words. */
13619 while (ptr + 3 < end)
13621 tmp = contents[ptr];
13622 contents[ptr] = contents[ptr + 3];
13623 contents[ptr + 3] = tmp;
13624 tmp = contents[ptr + 1];
13625 contents[ptr + 1] = contents[ptr + 2];
13626 contents[ptr + 2] = tmp;
13632 /* Byte swap code halfwords. */
13633 while (ptr + 1 < end)
13635 tmp = contents[ptr];
13636 contents[ptr] = contents[ptr + 1];
13637 contents[ptr + 1] = tmp;
13643 /* Leave data alone. */
13651 arm_data->mapcount = 0;
13652 arm_data->mapsize = 0;
13653 arm_data->map = NULL;
13654 unrecord_section_with_arm_elf_section_data (sec);
13660 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
13662 void * ignore ATTRIBUTE_UNUSED)
13664 unrecord_section_with_arm_elf_section_data (sec);
13668 elf32_arm_close_and_cleanup (bfd * abfd)
13670 if (abfd->sections)
13671 bfd_map_over_sections (abfd,
13672 unrecord_section_via_map_over_sections,
13675 return _bfd_elf_close_and_cleanup (abfd);
13679 elf32_arm_bfd_free_cached_info (bfd * abfd)
13681 if (abfd->sections)
13682 bfd_map_over_sections (abfd,
13683 unrecord_section_via_map_over_sections,
13686 return _bfd_free_cached_info (abfd);
13689 /* Display STT_ARM_TFUNC symbols as functions. */
13692 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13695 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13697 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13698 elfsym->symbol.flags |= BSF_FUNCTION;
13702 /* Mangle thumb function symbols as we read them in. */
13705 elf32_arm_swap_symbol_in (bfd * abfd,
13708 Elf_Internal_Sym *dst)
13710 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13713 /* New EABI objects mark thumb function symbols by setting the low bit of
13714 the address. Turn these into STT_ARM_TFUNC. */
13715 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
13716 && (dst->st_value & 1))
13718 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13719 dst->st_value &= ~(bfd_vma) 1;
13725 /* Mangle thumb function symbols as we write them out. */
13728 elf32_arm_swap_symbol_out (bfd *abfd,
13729 const Elf_Internal_Sym *src,
13733 Elf_Internal_Sym newsym;
13735 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13736 of the address set, as per the new EABI. We do this unconditionally
13737 because objcopy does not set the elf header flags until after
13738 it writes out the symbol table. */
13739 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13742 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
13743 if (newsym.st_shndx != SHN_UNDEF)
13745 /* Do this only for defined symbols. At link type, the static
13746 linker will simulate the work of dynamic linker of resolving
13747 symbols and will carry over the thumbness of found symbols to
13748 the output symbol table. It's not clear how it happens, but
13749 the thumbness of undefined symbols can well be different at
13750 runtime, and writing '1' for them will be confusing for users
13751 and possibly for dynamic linker itself.
13753 newsym.st_value |= 1;
13758 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13761 /* Add the PT_ARM_EXIDX program header. */
13764 elf32_arm_modify_segment_map (bfd *abfd,
13765 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13767 struct elf_segment_map *m;
13770 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13771 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13773 /* If there is already a PT_ARM_EXIDX header, then we do not
13774 want to add another one. This situation arises when running
13775 "strip"; the input binary already has the header. */
13776 m = elf_tdata (abfd)->segment_map;
13777 while (m && m->p_type != PT_ARM_EXIDX)
13781 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13784 m->p_type = PT_ARM_EXIDX;
13786 m->sections[0] = sec;
13788 m->next = elf_tdata (abfd)->segment_map;
13789 elf_tdata (abfd)->segment_map = m;
13796 /* We may add a PT_ARM_EXIDX program header. */
13799 elf32_arm_additional_program_headers (bfd *abfd,
13800 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13804 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13805 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13811 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13814 elf32_arm_is_function_type (unsigned int type)
13816 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
13819 /* We use this to override swap_symbol_in and swap_symbol_out. */
13820 const struct elf_size_info elf32_arm_size_info =
13822 sizeof (Elf32_External_Ehdr),
13823 sizeof (Elf32_External_Phdr),
13824 sizeof (Elf32_External_Shdr),
13825 sizeof (Elf32_External_Rel),
13826 sizeof (Elf32_External_Rela),
13827 sizeof (Elf32_External_Sym),
13828 sizeof (Elf32_External_Dyn),
13829 sizeof (Elf_External_Note),
13833 ELFCLASS32, EV_CURRENT,
13834 bfd_elf32_write_out_phdrs,
13835 bfd_elf32_write_shdrs_and_ehdr,
13836 bfd_elf32_checksum_contents,
13837 bfd_elf32_write_relocs,
13838 elf32_arm_swap_symbol_in,
13839 elf32_arm_swap_symbol_out,
13840 bfd_elf32_slurp_reloc_table,
13841 bfd_elf32_slurp_symbol_table,
13842 bfd_elf32_swap_dyn_in,
13843 bfd_elf32_swap_dyn_out,
13844 bfd_elf32_swap_reloc_in,
13845 bfd_elf32_swap_reloc_out,
13846 bfd_elf32_swap_reloca_in,
13847 bfd_elf32_swap_reloca_out
13850 #define ELF_ARCH bfd_arch_arm
13851 #define ELF_MACHINE_CODE EM_ARM
13852 #ifdef __QNXTARGET__
13853 #define ELF_MAXPAGESIZE 0x1000
13855 #define ELF_MAXPAGESIZE 0x8000
13857 #define ELF_MINPAGESIZE 0x1000
13858 #define ELF_COMMONPAGESIZE 0x1000
13860 #define bfd_elf32_mkobject elf32_arm_mkobject
13862 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13863 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13864 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13865 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13866 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13867 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13868 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13869 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13870 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13871 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13872 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13873 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13874 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
13875 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
13876 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13878 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13879 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13880 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13881 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13882 #define elf_backend_check_relocs elf32_arm_check_relocs
13883 #define elf_backend_relocate_section elf32_arm_relocate_section
13884 #define elf_backend_write_section elf32_arm_write_section
13885 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13886 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13887 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13888 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13889 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13890 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13891 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13892 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13893 #define elf_backend_object_p elf32_arm_object_p
13894 #define elf_backend_section_flags elf32_arm_section_flags
13895 #define elf_backend_fake_sections elf32_arm_fake_sections
13896 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13897 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13898 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13899 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13900 #define elf_backend_size_info elf32_arm_size_info
13901 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13902 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13903 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13904 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13905 #define elf_backend_is_function_type elf32_arm_is_function_type
13907 #define elf_backend_can_refcount 1
13908 #define elf_backend_can_gc_sections 1
13909 #define elf_backend_plt_readonly 1
13910 #define elf_backend_want_got_plt 1
13911 #define elf_backend_want_plt_sym 0
13912 #define elf_backend_may_use_rel_p 1
13913 #define elf_backend_may_use_rela_p 0
13914 #define elf_backend_default_use_rela_p 0
13916 #define elf_backend_got_header_size 12
13918 #undef elf_backend_obj_attrs_vendor
13919 #define elf_backend_obj_attrs_vendor "aeabi"
13920 #undef elf_backend_obj_attrs_section
13921 #define elf_backend_obj_attrs_section ".ARM.attributes"
13922 #undef elf_backend_obj_attrs_arg_type
13923 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13924 #undef elf_backend_obj_attrs_section_type
13925 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13926 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13928 #include "elf32-target.h"
13930 /* VxWorks Targets. */
13932 #undef TARGET_LITTLE_SYM
13933 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13934 #undef TARGET_LITTLE_NAME
13935 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13936 #undef TARGET_BIG_SYM
13937 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13938 #undef TARGET_BIG_NAME
13939 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13941 /* Like elf32_arm_link_hash_table_create -- but overrides
13942 appropriately for VxWorks. */
13944 static struct bfd_link_hash_table *
13945 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13947 struct bfd_link_hash_table *ret;
13949 ret = elf32_arm_link_hash_table_create (abfd);
13952 struct elf32_arm_link_hash_table *htab
13953 = (struct elf32_arm_link_hash_table *) ret;
13955 htab->vxworks_p = 1;
13961 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13963 elf32_arm_final_write_processing (abfd, linker);
13964 elf_vxworks_final_write_processing (abfd, linker);
13968 #define elf32_bed elf32_arm_vxworks_bed
13970 #undef bfd_elf32_bfd_link_hash_table_create
13971 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13972 #undef elf_backend_add_symbol_hook
13973 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13974 #undef elf_backend_final_write_processing
13975 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13976 #undef elf_backend_emit_relocs
13977 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
13979 #undef elf_backend_may_use_rel_p
13980 #define elf_backend_may_use_rel_p 0
13981 #undef elf_backend_may_use_rela_p
13982 #define elf_backend_may_use_rela_p 1
13983 #undef elf_backend_default_use_rela_p
13984 #define elf_backend_default_use_rela_p 1
13985 #undef elf_backend_want_plt_sym
13986 #define elf_backend_want_plt_sym 1
13987 #undef ELF_MAXPAGESIZE
13988 #define ELF_MAXPAGESIZE 0x1000
13990 #include "elf32-target.h"
13993 /* Symbian OS Targets. */
13995 #undef TARGET_LITTLE_SYM
13996 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
13997 #undef TARGET_LITTLE_NAME
13998 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
13999 #undef TARGET_BIG_SYM
14000 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
14001 #undef TARGET_BIG_NAME
14002 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
14004 /* Like elf32_arm_link_hash_table_create -- but overrides
14005 appropriately for Symbian OS. */
14007 static struct bfd_link_hash_table *
14008 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14010 struct bfd_link_hash_table *ret;
14012 ret = elf32_arm_link_hash_table_create (abfd);
14015 struct elf32_arm_link_hash_table *htab
14016 = (struct elf32_arm_link_hash_table *)ret;
14017 /* There is no PLT header for Symbian OS. */
14018 htab->plt_header_size = 0;
14019 /* The PLT entries are each one instruction and one word. */
14020 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
14021 htab->symbian_p = 1;
14022 /* Symbian uses armv5t or above, so use_blx is always true. */
14024 htab->root.is_relocatable_executable = 1;
14029 static const struct bfd_elf_special_section
14030 elf32_arm_symbian_special_sections[] =
14032 /* In a BPABI executable, the dynamic linking sections do not go in
14033 the loadable read-only segment. The post-linker may wish to
14034 refer to these sections, but they are not part of the final
14036 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
14037 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
14038 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
14039 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
14040 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
14041 /* These sections do not need to be writable as the SymbianOS
14042 postlinker will arrange things so that no dynamic relocation is
14044 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
14045 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
14046 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14047 { NULL, 0, 0, 0, 0 }
14051 elf32_arm_symbian_begin_write_processing (bfd *abfd,
14052 struct bfd_link_info *link_info)
14054 /* BPABI objects are never loaded directly by an OS kernel; they are
14055 processed by a postlinker first, into an OS-specific format. If
14056 the D_PAGED bit is set on the file, BFD will align segments on
14057 page boundaries, so that an OS can directly map the file. With
14058 BPABI objects, that just results in wasted space. In addition,
14059 because we clear the D_PAGED bit, map_sections_to_segments will
14060 recognize that the program headers should not be mapped into any
14061 loadable segment. */
14062 abfd->flags &= ~D_PAGED;
14063 elf32_arm_begin_write_processing (abfd, link_info);
14067 elf32_arm_symbian_modify_segment_map (bfd *abfd,
14068 struct bfd_link_info *info)
14070 struct elf_segment_map *m;
14073 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14074 segment. However, because the .dynamic section is not marked
14075 with SEC_LOAD, the generic ELF code will not create such a
14077 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14080 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14081 if (m->p_type == PT_DYNAMIC)
14086 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14087 m->next = elf_tdata (abfd)->segment_map;
14088 elf_tdata (abfd)->segment_map = m;
14092 /* Also call the generic arm routine. */
14093 return elf32_arm_modify_segment_map (abfd, info);
14096 /* Return address for Ith PLT stub in section PLT, for relocation REL
14097 or (bfd_vma) -1 if it should not be included. */
14100 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14101 const arelent *rel ATTRIBUTE_UNUSED)
14103 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14108 #define elf32_bed elf32_arm_symbian_bed
14110 /* The dynamic sections are not allocated on SymbianOS; the postlinker
14111 will process them and then discard them. */
14112 #undef ELF_DYNAMIC_SEC_FLAGS
14113 #define ELF_DYNAMIC_SEC_FLAGS \
14114 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14116 #undef elf_backend_add_symbol_hook
14117 #undef elf_backend_emit_relocs
14119 #undef bfd_elf32_bfd_link_hash_table_create
14120 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14121 #undef elf_backend_special_sections
14122 #define elf_backend_special_sections elf32_arm_symbian_special_sections
14123 #undef elf_backend_begin_write_processing
14124 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14125 #undef elf_backend_final_write_processing
14126 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14128 #undef elf_backend_modify_segment_map
14129 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14131 /* There is no .got section for BPABI objects, and hence no header. */
14132 #undef elf_backend_got_header_size
14133 #define elf_backend_got_header_size 0
14135 /* Similarly, there is no .got.plt section. */
14136 #undef elf_backend_want_got_plt
14137 #define elf_backend_want_got_plt 0
14139 #undef elf_backend_plt_sym_val
14140 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14142 #undef elf_backend_may_use_rel_p
14143 #define elf_backend_may_use_rel_p 1
14144 #undef elf_backend_may_use_rela_p
14145 #define elf_backend_may_use_rela_p 0
14146 #undef elf_backend_default_use_rela_p
14147 #define elf_backend_default_use_rela_p 0
14148 #undef elf_backend_want_plt_sym
14149 #define elf_backend_want_plt_sym 0
14150 #undef ELF_MAXPAGESIZE
14151 #define ELF_MAXPAGESIZE 0x8000
14153 #include "elf32-target.h"