1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* ??? Support for calling functions from gdb in sparc64 is unfinished. */
27 #include "arch-utils.h"
33 #include "gdb_string.h"
38 #include <sys/procfs.h>
39 /* Prototypes for supply_gregset etc. */
45 #include "symfile.h" /* for 'entry_point_address' */
48 * Some local macros that have multi-arch and non-multi-arch versions:
51 #if (GDB_MULTI_ARCH > 0)
53 /* Does the target have Floating Point registers? */
54 #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
55 /* Number of bytes devoted to Floating Point registers: */
56 #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
57 /* Highest numbered Floating Point register. */
58 #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
59 /* Size of a general (integer) register: */
60 #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
61 /* Offset within the call dummy stack of the saved registers. */
62 #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
64 #else /* non-multi-arch */
67 /* Does the target have Floating Point registers? */
68 #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
69 #define SPARC_HAS_FPU 0
71 #define SPARC_HAS_FPU 1
74 /* Number of bytes devoted to Floating Point registers: */
75 #if (GDB_TARGET_IS_SPARC64)
76 #define FP_REGISTER_BYTES (64 * 4)
79 #define FP_REGISTER_BYTES (32 * 4)
81 #define FP_REGISTER_BYTES 0
85 /* Highest numbered Floating Point register. */
86 #if (GDB_TARGET_IS_SPARC64)
87 #define FP_MAX_REGNUM (FP0_REGNUM + 48)
89 #define FP_MAX_REGNUM (FP0_REGNUM + 32)
92 /* Size of a general (integer) register: */
93 #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
95 /* Offset within the call dummy stack of the saved registers. */
96 #if (GDB_TARGET_IS_SPARC64)
97 #define DUMMY_REG_SAVE_OFFSET (128 + 16)
99 #define DUMMY_REG_SAVE_OFFSET 0x60
102 #endif /* GDB_MULTI_ARCH */
107 int fp_register_bytes;
112 int call_dummy_call_offset;
116 /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
117 /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
118 * define GDB_TARGET_IS_SPARC64 \
119 * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
120 * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
121 * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
125 extern int stop_after_trap;
127 /* We don't store all registers immediately when requested, since they
128 get sent over in large chunks anyway. Instead, we accumulate most
129 of the changes and send them over once. "deferred_stores" keeps
130 track of which sets of registers we have locally-changed copies of,
131 so we only need send the groups that have changed. */
133 int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
136 /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
137 where instructions are big-endian and data are little-endian.
138 This flag is set when we detect that the target is of this type. */
143 /* Fetch a single instruction. Even on bi-endian machines
144 such as sparc86x, instructions are always big-endian. */
147 fetch_instruction (CORE_ADDR pc)
149 unsigned long retval;
151 unsigned char buf[4];
153 read_memory (pc, buf, sizeof (buf));
155 /* Start at the most significant end of the integer, and work towards
156 the least significant. */
158 for (i = 0; i < sizeof (buf); ++i)
159 retval = (retval << 8) | buf[i];
164 /* Branches with prediction are treated like their non-predicting cousins. */
165 /* FIXME: What about floating point branches? */
167 /* Macros to extract fields from sparc instructions. */
168 #define X_OP(i) (((i) >> 30) & 0x3)
169 #define X_RD(i) (((i) >> 25) & 0x1f)
170 #define X_A(i) (((i) >> 29) & 1)
171 #define X_COND(i) (((i) >> 25) & 0xf)
172 #define X_OP2(i) (((i) >> 22) & 0x7)
173 #define X_IMM22(i) ((i) & 0x3fffff)
174 #define X_OP3(i) (((i) >> 19) & 0x3f)
175 #define X_RS1(i) (((i) >> 14) & 0x1f)
176 #define X_I(i) (((i) >> 13) & 1)
177 #define X_IMM13(i) ((i) & 0x1fff)
178 /* Sign extension macros. */
179 #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
180 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
181 #define X_CC(i) (((i) >> 20) & 3)
182 #define X_P(i) (((i) >> 19) & 1)
183 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
184 #define X_RCOND(i) (((i) >> 25) & 7)
185 #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
186 #define X_FCN(i) (((i) >> 25) & 31)
190 Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
193 /* Simulate single-step ptrace call for sun4. Code written by Gary
196 /* npc4 and next_pc describe the situation at the time that the
197 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
198 static CORE_ADDR next_pc, npc4, target;
199 static int brknpc4, brktrg;
200 typedef char binsn_quantum[BREAKPOINT_MAX];
201 static binsn_quantum break_mem[3];
203 static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
205 /* single_step() is called just before we want to resume the inferior,
206 if we want to single-step it but there is no hardware or kernel single-step
207 support (as on all SPARCs). We find all the possible targets of the
208 coming instruction and breakpoint them.
210 single_step is also called just after the inferior stops. If we had
211 set up a simulated single-step, we undo our damage. */
214 sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */
215 int insert_breakpoints_p)
221 if (insert_breakpoints_p)
223 /* Always set breakpoint for NPC. */
224 next_pc = read_register (NPC_REGNUM);
225 npc4 = next_pc + 4; /* branch not taken */
227 target_insert_breakpoint (next_pc, break_mem[0]);
228 /* printf_unfiltered ("set break at %x\n",next_pc); */
230 pc = read_register (PC_REGNUM);
231 pc_instruction = fetch_instruction (pc);
232 br = isbranch (pc_instruction, pc, &target);
233 brknpc4 = brktrg = 0;
237 /* Conditional annulled branch will either end up at
238 npc (if taken) or at npc+4 (if not taken).
241 target_insert_breakpoint (npc4, break_mem[1]);
243 else if (br == baa && target != next_pc)
245 /* Unconditional annulled branch will always end up at
248 target_insert_breakpoint (target, break_mem[2]);
250 else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
253 target_insert_breakpoint (target, break_mem[2]);
258 /* Remove breakpoints */
259 target_remove_breakpoint (next_pc, break_mem[0]);
262 target_remove_breakpoint (npc4, break_mem[1]);
265 target_remove_breakpoint (target, break_mem[2]);
269 struct frame_extra_info
274 /* Following fields only relevant for flat frames. */
277 /* Add this to ->frame to get the value of the stack pointer at the
278 time of the register saves. */
282 /* Call this for each newly created frame. For SPARC, we need to
283 calculate the bottom of the frame, and do some extra work if the
284 prologue has been generated via the -mflat option to GCC. In
285 particular, we need to know where the previous fp and the pc have
286 been stashed, since their exact position within the frame may vary. */
289 sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
292 CORE_ADDR prologue_start, prologue_end;
295 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
296 frame_saved_regs_zalloc (fi);
298 get_frame_extra_info (fi)->bottom =
300 ? (get_frame_base (fi) == get_frame_base (get_next_frame (fi))
301 ? get_frame_extra_info (get_next_frame (fi))->bottom
302 : get_frame_base (get_next_frame (fi)))
305 /* If fi->next is NULL, then we already set ->frame by passing read_fp()
306 to create_new_frame. */
307 if (get_next_frame (fi))
311 buf = alloca (MAX_REGISTER_RAW_SIZE);
313 /* Compute ->frame as if not flat. If it is flat, we'll change
315 if (get_next_frame (get_next_frame (fi)) != NULL
316 && ((get_frame_type (get_next_frame (get_next_frame (fi))) == SIGTRAMP_FRAME)
317 || deprecated_frame_in_dummy (get_next_frame (get_next_frame (fi))))
318 && frameless_look_for_prologue (get_next_frame (fi)))
320 /* A frameless function interrupted by a signal did not change
321 the frame pointer, fix up frame pointer accordingly. */
322 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
323 get_frame_extra_info (fi)->bottom =
324 get_frame_extra_info (get_next_frame (fi))->bottom;
328 /* Should we adjust for stack bias here? */
329 get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
330 deprecated_update_frame_base_hack (fi, extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)));
332 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
333 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
337 /* Decide whether this is a function with a ``flat register window''
338 frame. For such functions, the frame pointer is actually in %i7. */
339 get_frame_extra_info (fi)->flat = 0;
340 get_frame_extra_info (fi)->in_prologue = 0;
341 if (find_pc_partial_function (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
343 /* See if the function starts with an add (which will be of a
344 negative number if a flat frame) to the sp. FIXME: Does not
345 handle large frames which will need more than one instruction
347 insn = fetch_instruction (prologue_start);
348 if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
349 && X_I (insn) && X_SIMM13 (insn) < 0)
351 int offset = X_SIMM13 (insn);
353 /* Then look for a save of %i7 into the frame. */
354 insn = fetch_instruction (prologue_start + 4);
358 && X_RS1 (insn) == 14)
362 buf = alloca (MAX_REGISTER_RAW_SIZE);
364 /* We definitely have a flat frame now. */
365 get_frame_extra_info (fi)->flat = 1;
367 get_frame_extra_info (fi)->sp_offset = offset;
369 /* Overwrite the frame's address with the value in %i7. */
370 get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
371 deprecated_update_frame_base_hack (fi, extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)));
373 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
374 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
376 /* Record where the fp got saved. */
377 get_frame_extra_info (fi)->fp_addr =
378 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
380 /* Also try to collect where the pc got saved to. */
381 get_frame_extra_info (fi)->pc_addr = 0;
382 insn = fetch_instruction (prologue_start + 12);
386 && X_RS1 (insn) == 14)
387 get_frame_extra_info (fi)->pc_addr =
388 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
393 /* Check if the PC is in the function prologue before a SAVE
394 instruction has been executed yet. If so, set the frame
395 to the current value of the stack pointer and set
396 the in_prologue flag. */
398 struct symtab_and_line sal;
400 sal = find_pc_line (prologue_start, 0);
401 if (sal.line == 0) /* no line info, use PC */
402 prologue_end = get_frame_pc (fi);
403 else if (sal.end < prologue_end)
404 prologue_end = sal.end;
405 if (get_frame_pc (fi) < prologue_end)
407 for (addr = prologue_start; addr < get_frame_pc (fi); addr += 4)
409 insn = read_memory_integer (addr, 4);
410 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
411 break; /* SAVE seen, stop searching */
413 if (addr >= get_frame_pc (fi))
415 get_frame_extra_info (fi)->in_prologue = 1;
416 deprecated_update_frame_base_hack (fi, read_register (SP_REGNUM));
421 if (get_next_frame (fi) && get_frame_base (fi) == 0)
423 /* Kludge to cause init_prev_frame_info to destroy the new frame. */
424 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
425 deprecated_update_frame_pc_hack (fi, get_frame_pc (get_next_frame (fi)));
430 sparc_frame_chain (struct frame_info *frame)
432 /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
433 value. If it really is zero, we detect it later in
434 sparc_init_prev_frame.
436 Note: kevinb/2003-02-18: The constant 1 used to be returned
437 here, but, after some recent changes to frame_chain_valid(),
438 this value is no longer suitable for causing frame_chain_valid()
439 to "not worry about the chain value." The constant ~0 (i.e,
440 0xfff...) causes the failing test in frame_chain_valid() to
441 succeed thus preserving the "not worry" property. I had considered
442 using something like ``get_frame_base (frame) + 1''. However, I think
443 a constant value is better, because when debugging this problem,
444 I knew that something funny was going on as soon as I saw the
445 constant 1 being used as the frame chain elsewhere in GDB. */
447 return ~ (CORE_ADDR) 0;
451 sparc_extract_struct_value_address (char *regbuf)
453 return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
454 REGISTER_RAW_SIZE (O0_REGNUM));
457 /* Find the pc saved in frame FRAME. */
460 sparc_frame_saved_pc (struct frame_info *frame)
465 buf = alloca (MAX_REGISTER_RAW_SIZE);
466 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
468 /* This is the signal trampoline frame.
469 Get the saved PC from the sigcontext structure. */
471 #ifndef SIGCONTEXT_PC_OFFSET
472 #define SIGCONTEXT_PC_OFFSET 12
475 CORE_ADDR sigcontext_addr;
477 int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
480 scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
482 /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
483 as the third parameter. The offset to the saved pc is 12. */
484 find_pc_partial_function (get_frame_pc (frame), &name,
485 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
486 if (name && STREQ (name, "ucbsigvechandler"))
487 saved_pc_offset = 12;
489 /* The sigcontext address is contained in register O2. */
490 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
491 frame, O0_REGNUM + 2, (enum lval_type *) NULL);
492 sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
494 /* Don't cause a memory_error when accessing sigcontext in case the
495 stack layout has changed or the stack is corrupt. */
496 target_read_memory (sigcontext_addr + saved_pc_offset,
497 scbuf, sizeof (scbuf));
498 return extract_address (scbuf, sizeof (scbuf));
500 else if (get_frame_extra_info (frame)->in_prologue ||
501 (get_next_frame (frame) != NULL &&
502 ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) ||
503 deprecated_frame_in_dummy (get_next_frame (frame))) &&
504 frameless_look_for_prologue (frame)))
506 /* A frameless function interrupted by a signal did not save
507 the PC, it is still in %o7. */
508 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
509 frame, O7_REGNUM, (enum lval_type *) NULL);
510 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
512 if (get_frame_extra_info (frame)->flat)
513 addr = get_frame_extra_info (frame)->pc_addr;
515 addr = get_frame_extra_info (frame)->bottom + FRAME_SAVED_I0 +
516 SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
519 /* A flat frame leaf function might not save the PC anywhere,
520 just leave it in %o7. */
521 return PC_ADJUST (read_register (O7_REGNUM));
523 read_memory (addr, buf, SPARC_INTREG_SIZE);
524 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
527 /* Since an individual frame in the frame cache is defined by two
528 arguments (a frame pointer and a stack pointer), we need two
529 arguments to get info for an arbitrary stack frame. This routine
530 takes two arguments and makes the cached frames look as if these
531 two arguments defined a frame on the cache. This allows the rest
532 of info frame to extract the important arguments without
536 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
538 struct frame_info *frame;
541 error ("Sparc frame specifications require two arguments: fp and sp");
543 frame = create_new_frame (argv[0], 0);
546 internal_error (__FILE__, __LINE__,
547 "create_new_frame returned invalid frame");
549 get_frame_extra_info (frame)->bottom = argv[1];
550 deprecated_update_frame_pc_hack (frame, DEPRECATED_FRAME_SAVED_PC (frame));
554 /* Given a pc value, skip it forward past the function prologue by
555 disassembling instructions that appear to be a prologue.
557 If FRAMELESS_P is set, we are only testing to see if the function
558 is frameless. This allows a quicker answer.
560 This routine should be more specific in its actions; making sure
561 that it uses the same register in the initial prologue section. */
563 static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
567 examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
568 CORE_ADDR *saved_regs)
572 CORE_ADDR pc = start_pc;
575 insn = fetch_instruction (pc);
577 /* Recognize the `sethi' insn and record its destination. */
578 if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
582 insn = fetch_instruction (pc);
585 /* Recognize an add immediate value to register to either %g1 or
586 the destination register recorded above. Actually, this might
587 well recognize several different arithmetic operations.
588 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
589 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
590 I imagine any compiler really does that, however). */
593 && (X_RD (insn) == 1 || X_RD (insn) == dest))
596 insn = fetch_instruction (pc);
599 /* Recognize any SAVE insn. */
600 if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
603 if (frameless_p) /* If the save is all we care about, */
604 return pc; /* return before doing more work */
605 insn = fetch_instruction (pc);
607 /* Recognize add to %sp. */
608 else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
611 if (frameless_p) /* If the add is all we care about, */
612 return pc; /* return before doing more work */
614 insn = fetch_instruction (pc);
615 /* Recognize store of frame pointer (i7). */
619 && X_RS1 (insn) == 14)
622 insn = fetch_instruction (pc);
624 /* Recognize sub %sp, <anything>, %i7. */
627 && X_RS1 (insn) == 14
628 && X_RD (insn) == 31)
631 insn = fetch_instruction (pc);
640 /* Without a save or add instruction, it's not a prologue. */
645 /* Recognize stores into the frame from the input registers.
646 This recognizes all non alternate stores of an input register,
647 into a location offset from the frame pointer between
650 /* The above will fail for arguments that are promoted
651 (eg. shorts to ints or floats to doubles), because the compiler
652 will pass them in positive-offset frame space, but the prologue
653 will save them (after conversion) in negative frame space at an
654 unpredictable offset. Therefore I am going to remove the
655 restriction on the target-address of the save, on the theory
656 that any unbroken sequence of saves from input registers must
657 be part of the prologue. In un-optimized code (at least), I'm
658 fairly sure that the compiler would emit SOME other instruction
659 (eg. a move or add) before emitting another save that is actually
660 a part of the function body.
662 Besides, the reserved stack space is different for SPARC64 anyway.
667 && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
668 && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
669 && X_I (insn) /* Immediate mode. */
670 && X_RS1 (insn) == 30) /* Off of frame pointer. */
671 ; /* empty statement -- fall thru to end of loop */
672 else if (GDB_TARGET_IS_SPARC64
674 && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
675 && (X_RD (insn) & 0x18) == 0x18 /* input register */
676 && X_I (insn) /* immediate mode */
677 && X_RS1 (insn) == 30) /* off of frame pointer */
678 ; /* empty statement -- fall thru to end of loop */
679 else if (X_OP (insn) == 3
680 && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
681 && X_I (insn) /* immediate mode */
682 && X_RS1 (insn) == 30) /* off of frame pointer */
683 ; /* empty statement -- fall thru to end of loop */
686 && X_OP3 (insn) == 4 /* store? */
687 && X_RS1 (insn) == 14) /* off of frame pointer */
689 if (saved_regs && X_I (insn))
690 saved_regs[X_RD (insn)] =
691 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
696 insn = fetch_instruction (pc);
702 /* Advance PC across any function entry prologue instructions to reach
706 sparc_skip_prologue (CORE_ADDR start_pc)
708 struct symtab_and_line sal;
709 CORE_ADDR func_start, func_end;
711 /* This is the preferred method, find the end of the prologue by
712 using the debugging information. */
713 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
715 sal = find_pc_line (func_start, 0);
717 if (sal.end < func_end
718 && start_pc <= sal.end)
722 /* Oh well, examine the code by hand. */
723 return examine_prologue (start_pc, 0, NULL, NULL);
726 /* Is the prologue at IP frameless? */
729 sparc_prologue_frameless_p (CORE_ADDR ip)
731 return ip == examine_prologue (ip, 1, NULL, NULL);
734 /* Check instruction at ADDR to see if it is a branch.
735 All non-annulled instructions will go to NPC or will trap.
736 Set *TARGET if we find a candidate branch; set to zero if not.
738 This isn't static as it's used by remote-sa.sparc.c. */
741 isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
743 branch_type val = not_branch;
744 long int offset = 0; /* Must be signed for sign-extend. */
748 if (X_OP (instruction) == 0
749 && (X_OP2 (instruction) == 2
750 || X_OP2 (instruction) == 6
751 || X_OP2 (instruction) == 1
752 || X_OP2 (instruction) == 3
753 || X_OP2 (instruction) == 5
754 || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
756 if (X_COND (instruction) == 8)
757 val = X_A (instruction) ? baa : ba;
759 val = X_A (instruction) ? bicca : bicc;
760 switch (X_OP2 (instruction))
763 if (!GDB_TARGET_IS_SPARC64)
768 offset = 4 * X_DISP22 (instruction);
772 offset = 4 * X_DISP19 (instruction);
775 offset = 4 * X_DISP16 (instruction);
778 *target = addr + offset;
780 else if (GDB_TARGET_IS_SPARC64
781 && X_OP (instruction) == 2
782 && X_OP3 (instruction) == 62)
784 if (X_FCN (instruction) == 0)
787 *target = read_register (TNPC_REGNUM);
790 else if (X_FCN (instruction) == 1)
793 *target = read_register (TPC_REGNUM);
801 /* Find register number REGNUM relative to FRAME and put its
802 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
803 was optimized out (and thus can't be fetched). If the variable
804 was fetched from memory, set *ADDRP to where it was fetched from,
805 otherwise it was fetched from a register.
807 The argument RAW_BUFFER must point to aligned memory. */
810 sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
811 struct frame_info *frame, int regnum,
812 enum lval_type *lval)
814 struct frame_info *frame1;
817 if (!target_has_registers)
818 error ("No registers.");
825 /* FIXME This code extracted from infcmd.c; should put elsewhere! */
828 /* error ("No selected frame."); */
829 if (!target_has_registers)
830 error ("The program has no registers now.");
831 if (deprecated_selected_frame == NULL)
832 error ("No selected frame.");
833 /* Try to use selected frame */
834 frame = get_prev_frame (deprecated_selected_frame);
836 error ("Cmd not meaningful in the outermost frame.");
840 frame1 = get_next_frame (frame);
842 /* Get saved PC from the frame info if not in innermost frame. */
843 if (regnum == PC_REGNUM && frame1 != NULL)
847 if (raw_buffer != NULL)
849 /* Put it back in target format. */
850 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), get_frame_pc (frame));
857 while (frame1 != NULL)
859 /* FIXME MVS: wrong test for dummy frame at entry. */
861 if (get_frame_pc (frame1) >= (get_frame_extra_info (frame1)->bottom
862 ? get_frame_extra_info (frame1)->bottom
864 && get_frame_pc (frame1) <= get_frame_base (frame1))
866 /* Dummy frame. All but the window regs are in there somewhere.
867 The window registers are saved on the stack, just like in a
869 if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
870 addr = get_frame_base (frame1) + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
871 - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
872 else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
873 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
874 is safe/cheap - there will always be a prev frame.
875 This is because frame1 is initialized to frame->next
876 (frame1->prev == frame) and is then advanced towards
877 the innermost (next) frame. */
878 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
879 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
881 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
882 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
883 is safe/cheap - there will always be a prev frame.
884 This is because frame1 is initialized to frame->next
885 (frame1->prev == frame) and is then advanced towards
886 the innermost (next) frame. */
887 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
888 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
890 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
891 addr = get_frame_base (frame1) + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
892 - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
893 else if (SPARC_HAS_FPU &&
894 regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
895 addr = get_frame_base (frame1) + (regnum - FP0_REGNUM) * 4
896 - (FP_REGISTER_BYTES);
897 else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
898 regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
899 addr = get_frame_base (frame1) + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
900 - (FP_REGISTER_BYTES);
901 else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
902 addr = get_frame_base (frame1) + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
903 - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
905 else if (get_frame_extra_info (frame1)->flat)
908 if (regnum == RP_REGNUM)
909 addr = get_frame_extra_info (frame1)->pc_addr;
910 else if (regnum == I7_REGNUM)
911 addr = get_frame_extra_info (frame1)->fp_addr;
914 CORE_ADDR func_start;
917 regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
918 memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
920 find_pc_partial_function (get_frame_pc (frame1), NULL, &func_start, NULL);
921 examine_prologue (func_start, 0, frame1, regs);
927 /* Normal frame. Local and In registers are saved on stack. */
928 if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
929 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
930 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
932 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
933 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
934 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
936 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
938 /* Outs become ins. */
939 get_saved_register (raw_buffer, optimized, addrp, frame1,
940 (regnum - O0_REGNUM + I0_REGNUM), lval);
946 frame1 = get_next_frame (frame1);
952 if (regnum == SP_REGNUM)
954 if (raw_buffer != NULL)
956 /* Put it back in target format. */
957 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
963 if (raw_buffer != NULL)
964 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
969 *lval = lval_register;
970 addr = REGISTER_BYTE (regnum);
971 if (raw_buffer != NULL)
972 deprecated_read_register_gen (regnum, raw_buffer);
978 /* Push an empty stack frame, and record in it the current PC, regs, etc.
980 We save the non-windowed registers and the ins. The locals and outs
981 are new; they don't need to be saved. The i's and l's of
982 the last frame were already saved on the stack. */
984 /* Definitely see tm-sparc.h for more doc of the frame format here. */
986 /* See tm-sparc.h for how this is calculated. */
988 #define DUMMY_STACK_REG_BUF_SIZE \
989 (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
990 #define DUMMY_STACK_SIZE \
991 (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
994 sparc_push_dummy_frame (void)
996 CORE_ADDR sp, old_sp;
999 register_temp = alloca (DUMMY_STACK_SIZE);
1001 old_sp = sp = read_sp ();
1003 if (GDB_TARGET_IS_SPARC64)
1005 /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
1006 deprecated_read_register_bytes (REGISTER_BYTE (PC_REGNUM),
1008 REGISTER_RAW_SIZE (PC_REGNUM) * 7);
1009 deprecated_read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
1010 ®ister_temp[7 * SPARC_INTREG_SIZE],
1011 REGISTER_RAW_SIZE (PSTATE_REGNUM));
1012 /* FIXME: not sure what needs to be saved here. */
1016 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
1017 deprecated_read_register_bytes (REGISTER_BYTE (Y_REGNUM),
1019 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
1022 deprecated_read_register_bytes (REGISTER_BYTE (O0_REGNUM),
1023 ®ister_temp[8 * SPARC_INTREG_SIZE],
1024 SPARC_INTREG_SIZE * 8);
1026 deprecated_read_register_bytes (REGISTER_BYTE (G0_REGNUM),
1027 ®ister_temp[16 * SPARC_INTREG_SIZE],
1028 SPARC_INTREG_SIZE * 8);
1031 deprecated_read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1032 ®ister_temp[24 * SPARC_INTREG_SIZE],
1035 sp -= DUMMY_STACK_SIZE;
1039 write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0],
1040 DUMMY_STACK_REG_BUF_SIZE);
1042 if (strcmp (target_shortname, "sim") != 0)
1044 /* NOTE: cagney/2002-04-04: The code below originally contained
1045 GDB's _only_ call to write_fp(). That call was eliminated by
1046 inlining the corresponding code. For the 64 bit case, the
1047 old function (sparc64_write_fp) did the below although I'm
1048 not clear why. The same goes for why this is only done when
1049 the underlying target is a simulator. */
1050 if (GDB_TARGET_IS_SPARC64)
1052 /* Target is a 64 bit SPARC. */
1053 CORE_ADDR oldfp = read_register (FP_REGNUM);
1055 write_register (FP_REGNUM, old_sp - 2047);
1057 write_register (FP_REGNUM, old_sp);
1061 /* Target is a 32 bit SPARC. */
1062 write_register (FP_REGNUM, old_sp);
1064 /* Set return address register for the call dummy to the current PC. */
1065 write_register (I7_REGNUM, read_pc () - 8);
1069 /* The call dummy will write this value to FP before executing
1070 the 'save'. This ensures that register window flushes work
1071 correctly in the simulator. */
1072 write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
1074 /* The call dummy will write this value to FP after executing
1076 write_register (G0_REGNUM + 2, old_sp);
1078 /* The call dummy will write this value to the return address (%i7) after
1079 executing the 'save'. */
1080 write_register (G0_REGNUM + 3, read_pc () - 8);
1082 /* Set the FP that the call dummy will be using after the 'save'.
1083 This makes backtraces from an inferior function call work properly. */
1084 write_register (FP_REGNUM, old_sp);
1088 /* sparc_frame_find_saved_regs (). This function is here only because
1089 pop_frame uses it. Note there is an interesting corner case which
1090 I think few ports of GDB get right--if you are popping a frame
1091 which does not save some register that *is* saved by a more inner
1092 frame (such a frame will never be a dummy frame because dummy
1093 frames save all registers). Rewriting pop_frame to use
1094 get_saved_register would solve this problem and also get rid of the
1095 ugly duplication between sparc_frame_find_saved_regs and
1098 Stores, into an array of CORE_ADDR,
1099 the addresses of the saved registers of frame described by FRAME_INFO.
1100 This includes special registers such as pc and fp saved in special
1101 ways in the stack frame. sp is even more special:
1102 the address we return for it IS the sp for the next frame.
1104 Note that on register window machines, we are currently making the
1105 assumption that window registers are being saved somewhere in the
1106 frame in which they are being used. If they are stored in an
1107 inferior frame, find_saved_register will break.
1109 On the Sun 4, the only time all registers are saved is when
1110 a dummy frame is involved. Otherwise, the only saved registers
1111 are the LOCAL and IN registers which are saved as a result
1112 of the "save/restore" opcodes. This condition is determined
1113 by address rather than by value.
1115 The "pc" is not stored in a frame on the SPARC. (What is stored
1116 is a return address minus 8.) sparc_pop_frame knows how to
1117 deal with that. Other routines might or might not.
1119 See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
1120 about how this works. */
1122 static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
1125 sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
1127 register int regnum;
1128 CORE_ADDR frame_addr = get_frame_base (fi);
1131 internal_error (__FILE__, __LINE__,
1132 "Bad frame info struct in FRAME_FIND_SAVED_REGS");
1134 memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
1136 if (get_frame_pc (fi) >= (get_frame_extra_info (fi)->bottom
1137 ? get_frame_extra_info (fi)->bottom
1139 && get_frame_pc (fi) <= get_frame_base (fi))
1141 /* Dummy frame. All but the window regs are in there somewhere. */
1142 for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
1143 saved_regs_addr[regnum] =
1144 frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
1145 - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
1147 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1148 saved_regs_addr[regnum] =
1149 frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1150 - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
1153 for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
1154 saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
1155 - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
1157 if (GDB_TARGET_IS_SPARC64)
1159 for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
1161 saved_regs_addr[regnum] =
1162 frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
1163 - DUMMY_STACK_REG_BUF_SIZE;
1165 saved_regs_addr[PSTATE_REGNUM] =
1166 frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
1169 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
1170 saved_regs_addr[regnum] =
1171 frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
1172 - DUMMY_STACK_REG_BUF_SIZE;
1174 frame_addr = (get_frame_extra_info (fi)->bottom
1175 ? get_frame_extra_info (fi)->bottom
1178 else if (get_frame_extra_info (fi)->flat)
1180 CORE_ADDR func_start;
1181 find_pc_partial_function (get_frame_pc (fi), NULL, &func_start, NULL);
1182 examine_prologue (func_start, 0, fi, saved_regs_addr);
1184 /* Flat register window frame. */
1185 saved_regs_addr[RP_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1186 saved_regs_addr[I7_REGNUM] = get_frame_extra_info (fi)->fp_addr;
1190 /* Normal frame. Just Local and In registers */
1191 frame_addr = (get_frame_extra_info (fi)->bottom
1192 ? get_frame_extra_info (fi)->bottom
1194 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
1195 saved_regs_addr[regnum] =
1196 (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
1198 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1199 saved_regs_addr[regnum] =
1200 (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1203 if (get_next_frame (fi))
1205 if (get_frame_extra_info (fi)->flat)
1207 saved_regs_addr[O7_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1211 /* Pull off either the next frame pointer or the stack pointer */
1212 CORE_ADDR next_next_frame_addr =
1213 (get_frame_extra_info (get_next_frame (fi))->bottom
1214 ? get_frame_extra_info (get_next_frame (fi))->bottom
1216 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
1217 saved_regs_addr[regnum] =
1218 (next_next_frame_addr
1219 + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
1223 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
1224 /* FIXME -- should this adjust for the sparc64 offset? */
1225 saved_regs_addr[SP_REGNUM] = get_frame_base (fi);
1228 /* Discard from the stack the innermost frame, restoring all saved registers.
1230 Note that the values stored in fsr by
1231 deprecated_get_frame_saved_regs are *in the context of the called
1232 frame*. What this means is that the i regs of fsr must be restored
1233 into the o regs of the (calling) frame that we pop into. We don't
1234 care about the output regs of the calling frame, since unless it's
1235 a dummy frame, it won't have any output regs in it.
1237 We never have to bother with %l (local) regs, since the called routine's
1238 locals get tossed, and the calling routine's locals are already saved
1241 /* Definitely see tm-sparc.h for more doc of the frame format here. */
1244 sparc_pop_frame (void)
1246 register struct frame_info *frame = get_current_frame ();
1247 register CORE_ADDR pc;
1252 fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
1253 raw_buffer = alloca (REGISTER_BYTES);
1254 sparc_frame_find_saved_regs (frame, &fsr[0]);
1257 if (fsr[FP0_REGNUM])
1259 read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
1260 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1261 raw_buffer, FP_REGISTER_BYTES);
1263 if (!(GDB_TARGET_IS_SPARC64))
1265 if (fsr[FPS_REGNUM])
1267 read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1268 deprecated_write_register_gen (FPS_REGNUM, raw_buffer);
1270 if (fsr[CPS_REGNUM])
1272 read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1273 deprecated_write_register_gen (CPS_REGNUM, raw_buffer);
1279 read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
1280 deprecated_write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
1281 7 * SPARC_INTREG_SIZE);
1284 if (get_frame_extra_info (frame)->flat)
1286 /* Each register might or might not have been saved, need to test
1288 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
1290 write_register (regnum, read_memory_integer (fsr[regnum],
1291 SPARC_INTREG_SIZE));
1292 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
1294 write_register (regnum, read_memory_integer (fsr[regnum],
1295 SPARC_INTREG_SIZE));
1297 /* Handle all outs except stack pointer (o0-o5; o7). */
1298 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
1300 write_register (regnum, read_memory_integer (fsr[regnum],
1301 SPARC_INTREG_SIZE));
1302 if (fsr[O0_REGNUM + 7])
1303 write_register (O0_REGNUM + 7,
1304 read_memory_integer (fsr[O0_REGNUM + 7],
1305 SPARC_INTREG_SIZE));
1307 write_sp (get_frame_base (frame));
1309 else if (fsr[I0_REGNUM])
1315 reg_temp = alloca (SPARC_INTREG_SIZE * 16);
1317 read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
1319 /* Get the ins and locals which we are about to restore. Just
1320 moving the stack pointer is all that is really needed, except
1321 store_inferior_registers is then going to write the ins and
1322 locals from the registers array, so we need to muck with the
1324 sp = fsr[SP_REGNUM];
1326 if (GDB_TARGET_IS_SPARC64 && (sp & 1))
1329 read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
1331 /* Restore the out registers.
1332 Among other things this writes the new stack pointer. */
1333 deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
1334 SPARC_INTREG_SIZE * 8);
1336 deprecated_write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
1337 SPARC_INTREG_SIZE * 16);
1340 if (!(GDB_TARGET_IS_SPARC64))
1342 write_register (PS_REGNUM,
1343 read_memory_integer (fsr[PS_REGNUM],
1344 REGISTER_RAW_SIZE (PS_REGNUM)));
1347 write_register (Y_REGNUM,
1348 read_memory_integer (fsr[Y_REGNUM],
1349 REGISTER_RAW_SIZE (Y_REGNUM)));
1352 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
1353 write_register (PC_REGNUM,
1354 read_memory_integer (fsr[PC_REGNUM],
1355 REGISTER_RAW_SIZE (PC_REGNUM)));
1356 if (fsr[NPC_REGNUM])
1357 write_register (NPC_REGNUM,
1358 read_memory_integer (fsr[NPC_REGNUM],
1359 REGISTER_RAW_SIZE (NPC_REGNUM)));
1361 else if (get_frame_extra_info (frame)->flat)
1363 if (get_frame_extra_info (frame)->pc_addr)
1364 pc = PC_ADJUST ((CORE_ADDR)
1365 read_memory_integer (get_frame_extra_info (frame)->pc_addr,
1366 REGISTER_RAW_SIZE (PC_REGNUM)));
1369 /* I think this happens only in the innermost frame, if so then
1370 it is a complicated way of saying
1371 "pc = read_register (O7_REGNUM);". */
1374 buf = alloca (MAX_REGISTER_RAW_SIZE);
1375 get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
1376 pc = PC_ADJUST (extract_address
1377 (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
1380 write_register (PC_REGNUM, pc);
1381 write_register (NPC_REGNUM, pc + 4);
1383 else if (fsr[I7_REGNUM])
1385 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
1386 pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
1387 SPARC_INTREG_SIZE));
1388 write_register (PC_REGNUM, pc);
1389 write_register (NPC_REGNUM, pc + 4);
1391 flush_cached_frames ();
1394 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
1395 encodes the structure size being returned. If we detect such
1396 a fake insn, step past it. */
1399 sparc_pc_adjust (CORE_ADDR pc)
1405 err = target_read_memory (pc + 8, buf, 4);
1406 insn = extract_unsigned_integer (buf, 4);
1407 if ((err == 0) && (insn & 0xffc00000) == 0)
1413 /* If pc is in a shared library trampoline, return its target.
1414 The SunOs 4.x linker rewrites the jump table entries for PIC
1415 compiled modules in the main executable to bypass the dynamic linker
1416 with jumps of the form
1419 and removes the corresponding jump table relocation entry in the
1420 dynamic relocations.
1421 find_solib_trampoline_target relies on the presence of the jump
1422 table relocation entry, so we have to detect these jump instructions
1426 sunos4_skip_trampoline_code (CORE_ADDR pc)
1428 unsigned long insn1;
1432 err = target_read_memory (pc, buf, 4);
1433 insn1 = extract_unsigned_integer (buf, 4);
1434 if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
1436 unsigned long insn2;
1438 err = target_read_memory (pc + 4, buf, 4);
1439 insn2 = extract_unsigned_integer (buf, 4);
1440 if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
1442 CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
1443 int delta = insn2 & 0x1fff;
1445 /* Sign extend the displacement. */
1448 return target_pc + delta;
1451 return find_solib_trampoline_target (pc);
1454 #ifdef USE_PROC_FS /* Target dependent support for /proc */
1456 /* The /proc interface divides the target machine's register set up into
1457 two different sets, the general register set (gregset) and the floating
1458 point register set (fpregset). For each set, there is an ioctl to get
1459 the current register set and another ioctl to set the current values.
1461 The actual structure passed through the ioctl interface is, of course,
1462 naturally machine dependent, and is different for each set of registers.
1463 For the sparc for example, the general register set is typically defined
1466 typedef int gregset_t[38];
1472 and the floating point set by:
1474 typedef struct prfpregset {
1477 double pr_dregs[16];
1482 u_char pr_q_entrysize;
1487 These routines provide the packing and unpacking of gregset_t and
1488 fpregset_t formatted data.
1493 /* Given a pointer to a general register set in /proc format (gregset_t *),
1494 unpack the register contents and supply them as gdb's idea of the current
1498 supply_gregset (gdb_gregset_t *gregsetp)
1500 prgreg_t *regp = (prgreg_t *) gregsetp;
1501 int regi, offset = 0;
1503 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1504 then the gregset may contain 64-bit ints while supply_register
1505 is expecting 32-bit ints. Compensate. */
1506 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1509 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
1510 /* FIXME MVS: assumes the order of the first 32 elements... */
1511 for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
1513 supply_register (regi, ((char *) (regp + regi)) + offset);
1516 /* These require a bit more care. */
1517 supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
1518 supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
1519 supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
1521 if (GDB_TARGET_IS_SPARC64)
1524 supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1526 supply_register (CCR_REGNUM, NULL);
1529 supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1531 supply_register (FPRS_REGNUM, NULL);
1534 supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1536 supply_register (ASI_REGNUM, NULL);
1542 supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1544 supply_register (PS_REGNUM, NULL);
1547 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1548 Steal R_ASI and R_FPRS, and hope for the best! */
1550 #if !defined (R_WIM) && defined (R_ASI)
1554 #if !defined (R_TBR) && defined (R_FPRS)
1555 #define R_TBR R_FPRS
1559 supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1561 supply_register (WIM_REGNUM, NULL);
1565 supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1567 supply_register (TBR_REGNUM, NULL);
1571 /* Fill inaccessible registers with zero. */
1572 if (GDB_TARGET_IS_SPARC64)
1575 * don't know how to get value of any of the following:
1577 supply_register (VER_REGNUM, NULL);
1578 supply_register (TICK_REGNUM, NULL);
1579 supply_register (PIL_REGNUM, NULL);
1580 supply_register (PSTATE_REGNUM, NULL);
1581 supply_register (TSTATE_REGNUM, NULL);
1582 supply_register (TBA_REGNUM, NULL);
1583 supply_register (TL_REGNUM, NULL);
1584 supply_register (TT_REGNUM, NULL);
1585 supply_register (TPC_REGNUM, NULL);
1586 supply_register (TNPC_REGNUM, NULL);
1587 supply_register (WSTATE_REGNUM, NULL);
1588 supply_register (CWP_REGNUM, NULL);
1589 supply_register (CANSAVE_REGNUM, NULL);
1590 supply_register (CANRESTORE_REGNUM, NULL);
1591 supply_register (CLEANWIN_REGNUM, NULL);
1592 supply_register (OTHERWIN_REGNUM, NULL);
1593 supply_register (ASR16_REGNUM, NULL);
1594 supply_register (ASR17_REGNUM, NULL);
1595 supply_register (ASR18_REGNUM, NULL);
1596 supply_register (ASR19_REGNUM, NULL);
1597 supply_register (ASR20_REGNUM, NULL);
1598 supply_register (ASR21_REGNUM, NULL);
1599 supply_register (ASR22_REGNUM, NULL);
1600 supply_register (ASR23_REGNUM, NULL);
1601 supply_register (ASR24_REGNUM, NULL);
1602 supply_register (ASR25_REGNUM, NULL);
1603 supply_register (ASR26_REGNUM, NULL);
1604 supply_register (ASR27_REGNUM, NULL);
1605 supply_register (ASR28_REGNUM, NULL);
1606 supply_register (ASR29_REGNUM, NULL);
1607 supply_register (ASR30_REGNUM, NULL);
1608 supply_register (ASR31_REGNUM, NULL);
1609 supply_register (ICC_REGNUM, NULL);
1610 supply_register (XCC_REGNUM, NULL);
1614 supply_register (CPS_REGNUM, NULL);
1619 fill_gregset (gdb_gregset_t *gregsetp, int regno)
1621 prgreg_t *regp = (prgreg_t *) gregsetp;
1622 int regi, offset = 0;
1624 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1625 then the gregset may contain 64-bit ints while supply_register
1626 is expecting 32-bit ints. Compensate. */
1627 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1630 for (regi = 0; regi <= R_I7; regi++)
1631 if ((regno == -1) || (regno == regi))
1632 deprecated_read_register_gen (regi, (char *) (regp + regi) + offset);
1634 if ((regno == -1) || (regno == PC_REGNUM))
1635 deprecated_read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
1637 if ((regno == -1) || (regno == NPC_REGNUM))
1638 deprecated_read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
1640 if ((regno == -1) || (regno == Y_REGNUM))
1641 deprecated_read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
1643 if (GDB_TARGET_IS_SPARC64)
1646 if (regno == -1 || regno == CCR_REGNUM)
1647 deprecated_read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1650 if (regno == -1 || regno == FPRS_REGNUM)
1651 deprecated_read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1654 if (regno == -1 || regno == ASI_REGNUM)
1655 deprecated_read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1661 if (regno == -1 || regno == PS_REGNUM)
1662 deprecated_read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1665 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1666 Steal R_ASI and R_FPRS, and hope for the best! */
1668 #if !defined (R_WIM) && defined (R_ASI)
1672 #if !defined (R_TBR) && defined (R_FPRS)
1673 #define R_TBR R_FPRS
1677 if (regno == -1 || regno == WIM_REGNUM)
1678 deprecated_read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1680 if (regno == -1 || regno == WIM_REGNUM)
1681 deprecated_read_register_gen (WIM_REGNUM, NULL);
1685 if (regno == -1 || regno == TBR_REGNUM)
1686 deprecated_read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1688 if (regno == -1 || regno == TBR_REGNUM)
1689 deprecated_read_register_gen (TBR_REGNUM, NULL);
1694 /* Given a pointer to a floating point register set in /proc format
1695 (fpregset_t *), unpack the register contents and supply them as gdb's
1696 idea of the current floating point register values. */
1699 supply_fpregset (gdb_fpregset_t *fpregsetp)
1707 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1709 from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1710 supply_register (regi, from);
1713 if (GDB_TARGET_IS_SPARC64)
1716 * don't know how to get value of the following.
1718 supply_register (FSR_REGNUM, NULL); /* zero it out for now */
1719 supply_register (FCC0_REGNUM, NULL);
1720 supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
1721 supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
1722 supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
1726 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
1730 /* Given a pointer to a floating point register set in /proc format
1731 (fpregset_t *), update the register specified by REGNO from gdb's idea
1732 of the current floating point register set. If REGNO is -1, update
1734 /* This will probably need some changes for sparc64. */
1737 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1746 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1748 if ((regno == -1) || (regno == regi))
1750 from = (char *) &deprecated_registers[REGISTER_BYTE (regi)];
1751 to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1752 memcpy (to, from, REGISTER_RAW_SIZE (regi));
1756 if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
1757 if ((regno == -1) || (regno == FPS_REGNUM))
1759 from = (char *)&deprecated_registers[REGISTER_BYTE (FPS_REGNUM)];
1760 to = (char *) &fpregsetp->pr_fsr;
1761 memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
1765 #endif /* USE_PROC_FS */
1767 /* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test
1768 for a definition of JB_PC. */
1771 /* Figure out where the longjmp will land. We expect that we have just entered
1772 longjmp and haven't yet setup the stack frame, so the args are still in the
1773 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
1774 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
1775 This routine returns true on success */
1778 get_longjmp_target (CORE_ADDR *pc)
1781 #define LONGJMP_TARGET_SIZE 4
1782 char buf[LONGJMP_TARGET_SIZE];
1784 jb_addr = read_register (O0_REGNUM);
1786 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
1787 LONGJMP_TARGET_SIZE))
1790 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
1794 #endif /* GET_LONGJMP_TARGET */
1796 #ifdef STATIC_TRANSFORM_NAME
1797 /* SunPRO (3.0 at least), encodes the static variables. This is not
1798 related to C++ mangling, it is done for C too. */
1801 sunpro_static_transform_name (char *name)
1806 /* For file-local statics there will be a dollar sign, a bunch
1807 of junk (the contents of which match a string given in the
1808 N_OPT), a period and the name. For function-local statics
1809 there will be a bunch of junk (which seems to change the
1810 second character from 'A' to 'B'), a period, the name of the
1811 function, and the name. So just skip everything before the
1813 p = strrchr (name, '.');
1819 #endif /* STATIC_TRANSFORM_NAME */
1822 /* Utilities for printing registers.
1823 Page numbers refer to the SPARC Architecture Manual. */
1825 static void dump_ccreg (char *, int);
1828 dump_ccreg (char *reg, int val)
1831 printf_unfiltered ("%s:%s,%s,%s,%s", reg,
1832 val & 8 ? "N" : "NN",
1833 val & 4 ? "Z" : "NZ",
1834 val & 2 ? "O" : "NO",
1835 val & 1 ? "C" : "NC");
1839 decode_asi (int val)
1845 return "ASI_NUCLEUS";
1847 return "ASI_NUCLEUS_LITTLE";
1849 return "ASI_AS_IF_USER_PRIMARY";
1851 return "ASI_AS_IF_USER_SECONDARY";
1853 return "ASI_AS_IF_USER_PRIMARY_LITTLE";
1855 return "ASI_AS_IF_USER_SECONDARY_LITTLE";
1857 return "ASI_PRIMARY";
1859 return "ASI_SECONDARY";
1861 return "ASI_PRIMARY_NOFAULT";
1863 return "ASI_SECONDARY_NOFAULT";
1865 return "ASI_PRIMARY_LITTLE";
1867 return "ASI_SECONDARY_LITTLE";
1869 return "ASI_PRIMARY_NOFAULT_LITTLE";
1871 return "ASI_SECONDARY_NOFAULT_LITTLE";
1877 /* Pretty print various registers. */
1878 /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
1881 sparc_print_register_hook (int regno)
1885 /* Handle double/quad versions of lower 32 fp regs. */
1886 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
1887 && (regno & 1) == 0)
1891 if (frame_register_read (deprecated_selected_frame, regno, value)
1892 && frame_register_read (deprecated_selected_frame, regno + 1, value + 4))
1894 printf_unfiltered ("\t");
1895 print_floating (value, builtin_type_double, gdb_stdout);
1897 #if 0 /* FIXME: gdb doesn't handle long doubles */
1898 if ((regno & 3) == 0)
1900 if (frame_register_read (deprecated_selected_frame, regno + 2, value + 8)
1901 && frame_register_read (deprecated_selected_frame, regno + 3, value + 12))
1903 printf_unfiltered ("\t");
1904 print_floating (value, builtin_type_long_double, gdb_stdout);
1911 #if 0 /* FIXME: gdb doesn't handle long doubles */
1912 /* Print upper fp regs as long double if appropriate. */
1913 if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
1914 /* We test for even numbered regs and not a multiple of 4 because
1915 the upper fp regs are recorded as doubles. */
1916 && (regno & 1) == 0)
1920 if (frame_register_read (deprecated_selected_frame, regno, value)
1921 && frame_register_read (deprecated_selected_frame, regno + 1, value + 8))
1923 printf_unfiltered ("\t");
1924 print_floating (value, builtin_type_long_double, gdb_stdout);
1930 /* FIXME: Some of these are priviledged registers.
1931 Not sure how they should be handled. */
1933 #define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
1935 val = read_register (regno);
1938 if (GDB_TARGET_IS_SPARC64)
1942 printf_unfiltered ("\t");
1943 dump_ccreg ("xcc", val >> 4);
1944 printf_unfiltered (", ");
1945 dump_ccreg ("icc", val & 15);
1948 printf ("\tfef:%d, du:%d, dl:%d",
1949 BITS (2, 1), BITS (1, 1), BITS (0, 1));
1953 static char *fcc[4] =
1954 {"=", "<", ">", "?"};
1955 static char *rd[4] =
1956 {"N", "0", "+", "-"};
1957 /* Long, but I'd rather leave it as is and use a wide screen. */
1958 printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
1959 fcc[BITS (10, 3)], fcc[BITS (32, 3)],
1960 fcc[BITS (34, 3)], fcc[BITS (36, 3)],
1961 rd[BITS (30, 3)], BITS (23, 31));
1962 printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
1963 BITS (22, 1), BITS (17, 7), BITS (14, 7),
1964 BITS (13, 1), BITS (5, 31), BITS (0, 31));
1969 char *asi = decode_asi (val);
1971 printf ("\t%s", asi);
1975 printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
1976 BITS (48, 0xffff), BITS (32, 0xffff),
1977 BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
1981 static char *mm[4] =
1982 {"tso", "pso", "rso", "?"};
1983 printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
1984 BITS (9, 1), BITS (8, 1),
1985 mm[BITS (6, 3)], BITS (5, 1));
1986 printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
1987 BITS (4, 1), BITS (3, 1), BITS (2, 1),
1988 BITS (1, 1), BITS (0, 1));
1992 /* FIXME: print all 4? */
1995 /* FIXME: print all 4? */
1998 /* FIXME: print all 4? */
2001 /* FIXME: print all 4? */
2004 printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
2007 printf ("\t%d", BITS (0, 31));
2009 case CANSAVE_REGNUM:
2010 printf ("\t%-2d before spill", BITS (0, 31));
2012 case CANRESTORE_REGNUM:
2013 printf ("\t%-2d before fill", BITS (0, 31));
2015 case CLEANWIN_REGNUM:
2016 printf ("\t%-2d before clean", BITS (0, 31));
2018 case OTHERWIN_REGNUM:
2019 printf ("\t%d", BITS (0, 31));
2026 printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
2027 BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
2028 BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
2029 BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
2034 static char *fcc[4] =
2035 {"=", "<", ">", "?"};
2036 static char *rd[4] =
2037 {"N", "0", "+", "-"};
2038 /* Long, but I'd rather leave it as is and use a wide screen. */
2039 printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
2040 "fcc:%s, aexc:%d, cexc:%d",
2041 rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
2042 BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
2052 sparc_print_registers (struct gdbarch *gdbarch,
2053 struct ui_file *file,
2054 struct frame_info *frame,
2055 int regnum, int print_all,
2056 void (*print_register_hook) (int))
2059 const int numregs = NUM_REGS + NUM_PSEUDO_REGS;
2060 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
2061 char *virtual_buffer = alloca (MAX_REGISTER_VIRTUAL_SIZE);
2063 for (i = 0; i < numregs; i++)
2065 /* Decide between printing all regs, non-float / vector regs, or
2071 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2073 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)))
2083 /* If the register name is empty, it is undefined for this
2084 processor, so don't display anything. */
2085 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
2088 fputs_filtered (REGISTER_NAME (i), file);
2089 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), file);
2091 /* Get the data in raw format. */
2092 if (! frame_register_read (frame, i, raw_buffer))
2094 fprintf_filtered (file, "*value not available*\n");
2098 /* FIXME: cagney/2002-08-03: This code shouldn't be necessary.
2099 The function frame_register_read() should have returned the
2100 pre-cooked register so no conversion is necessary. */
2101 /* Convert raw data to virtual format if necessary. */
2102 if (REGISTER_CONVERTIBLE (i))
2104 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
2105 raw_buffer, virtual_buffer);
2109 memcpy (virtual_buffer, raw_buffer,
2110 REGISTER_VIRTUAL_SIZE (i));
2113 /* If virtual format is floating, print it that way, and in raw
2115 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2119 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2120 file, 0, 1, 0, Val_pretty_default);
2122 fprintf_filtered (file, "\t(raw 0x");
2123 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
2126 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2129 idx = REGISTER_RAW_SIZE (i) - 1 - j;
2130 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
2132 fprintf_filtered (file, ")");
2136 /* Print the register in hex. */
2137 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2138 file, 'x', 1, 0, Val_pretty_default);
2139 /* If not a vector register, print it also according to its
2141 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)) == 0)
2143 fprintf_filtered (file, "\t");
2144 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2145 file, 0, 1, 0, Val_pretty_default);
2149 /* Some sparc specific info. */
2150 if (print_register_hook != NULL)
2151 print_register_hook (i);
2153 fprintf_filtered (file, "\n");
2158 sparc_print_registers_info (struct gdbarch *gdbarch,
2159 struct ui_file *file,
2160 struct frame_info *frame,
2161 int regnum, int print_all)
2163 sparc_print_registers (gdbarch, file, frame, regnum, print_all,
2164 sparc_print_register_hook);
2168 sparc_do_registers_info (int regnum, int all)
2170 sparc_print_registers_info (current_gdbarch, gdb_stdout, deprecated_selected_frame,
2175 sparclet_print_registers_info (struct gdbarch *gdbarch,
2176 struct ui_file *file,
2177 struct frame_info *frame,
2178 int regnum, int print_all)
2180 sparc_print_registers (gdbarch, file, frame, regnum, print_all, NULL);
2184 sparclet_do_registers_info (int regnum, int all)
2186 sparclet_print_registers_info (current_gdbarch, gdb_stdout,
2187 deprecated_selected_frame, regnum, all);
2192 gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
2194 /* It's necessary to override mach again because print_insn messes it up. */
2195 info->mach = TARGET_ARCHITECTURE->mach;
2196 return print_insn_sparc (memaddr, info);
2199 /* The SPARC passes the arguments on the stack; arguments smaller
2200 than an int are promoted to an int. The first 6 words worth of
2201 args are also passed in registers o0 - o5. */
2204 sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2205 int struct_return, CORE_ADDR struct_addr)
2208 int accumulate_size = 0;
2215 struct sparc_arg *sparc_args =
2216 (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
2217 struct sparc_arg *m_arg;
2219 /* Promote arguments if necessary, and calculate their stack offsets
2221 for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
2223 struct value *arg = args[i];
2224 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2225 /* Cast argument to long if necessary as the compiler does it too. */
2226 switch (TYPE_CODE (arg_type))
2229 case TYPE_CODE_BOOL:
2230 case TYPE_CODE_CHAR:
2231 case TYPE_CODE_RANGE:
2232 case TYPE_CODE_ENUM:
2233 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
2235 arg_type = builtin_type_long;
2236 arg = value_cast (arg_type, arg);
2242 m_arg->len = TYPE_LENGTH (arg_type);
2243 m_arg->offset = accumulate_size;
2244 accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
2245 m_arg->contents = VALUE_CONTENTS (arg);
2248 /* Make room for the arguments on the stack. */
2249 accumulate_size += CALL_DUMMY_STACK_ADJUST;
2250 sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
2252 /* `Push' arguments on the stack. */
2253 for (i = 0, oregnum = 0, m_arg = sparc_args;
2257 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
2259 j < m_arg->len && oregnum < 6;
2260 j += SPARC_INTREG_SIZE, oregnum++)
2261 deprecated_write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
2268 /* Extract from an array REGBUF containing the (raw) register state
2269 a function return value of type TYPE, and copy that, in virtual format,
2273 sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2275 int typelen = TYPE_LENGTH (type);
2276 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2278 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2279 memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2282 ®buf[O0_REGNUM * regsize +
2284 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0
2285 : regsize - typelen)],
2290 /* Write into appropriate registers a function return value
2291 of type TYPE, given in virtual format. On SPARCs with FPUs,
2292 float values are returned in %f0 (and %f1). In all other cases,
2293 values are returned in register %o0. */
2296 sparc_store_return_value (struct type *type, char *valbuf)
2301 buffer = alloca (MAX_REGISTER_RAW_SIZE);
2303 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2304 /* Floating-point values are returned in the register pair */
2305 /* formed by %f0 and %f1 (doubles are, anyway). */
2308 /* Other values are returned in register %o0. */
2311 /* Add leading zeros to the value. */
2312 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
2314 memset (buffer, 0, REGISTER_RAW_SIZE (regno));
2315 memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
2316 TYPE_LENGTH (type));
2317 deprecated_write_register_gen (regno, buffer);
2320 deprecated_write_register_bytes (REGISTER_BYTE (regno), valbuf,
2321 TYPE_LENGTH (type));
2325 sparclet_store_return_value (struct type *type, char *valbuf)
2327 /* Other values are returned in register %o0. */
2328 deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
2329 TYPE_LENGTH (type));
2333 #ifndef CALL_DUMMY_CALL_OFFSET
2334 #define CALL_DUMMY_CALL_OFFSET \
2335 (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
2336 #endif /* CALL_DUMMY_CALL_OFFSET */
2338 /* Insert the function address into a call dummy instruction sequence
2341 For structs and unions, if the function was compiled with Sun cc,
2342 it expects 'unimp' after the call. But gcc doesn't use that
2343 (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
2344 can assume it is operating on a pristine CALL_DUMMY, not one that
2345 has already been customized for a different function). */
2348 sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
2349 struct type *value_type, int using_gcc)
2353 /* Store the relative adddress of the target function into the
2354 'call' instruction. */
2355 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
2357 | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
2360 /* If the called function returns an aggregate value, fill in the UNIMP
2361 instruction containing the size of the returned aggregate return value,
2362 which follows the call instruction.
2363 For details see the SPARC Architecture Manual Version 8, Appendix D.3.
2365 Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
2366 to the proper address in the call dummy, so that `finish' after a stop
2367 in a call dummy works.
2368 Tweeking current_gdbarch is not an optimal solution, but the call to
2369 sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy,
2370 which is the only function where dummy_breakpoint_offset is actually
2371 used, if it is non-zero. */
2372 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
2373 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
2375 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
2376 TYPE_LENGTH (value_type) & 0x1fff);
2377 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30);
2380 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c);
2382 if (!(GDB_TARGET_IS_SPARC64))
2384 /* If this is not a simulator target, change the first four
2385 instructions of the call dummy to NOPs. Those instructions
2386 include a 'save' instruction and are designed to work around
2387 problems with register window flushing in the simulator. */
2389 if (strcmp (target_shortname, "sim") != 0)
2391 for (i = 0; i < 4; i++)
2392 store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
2396 /* If this is a bi-endian target, GDB has written the call dummy
2397 in little-endian order. We must byte-swap it back to big-endian. */
2400 for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
2402 char tmp = dummy[i];
2403 dummy[i] = dummy[i + 3];
2406 dummy[i + 1] = dummy[i + 2];
2413 /* Set target byte order based on machine type. */
2416 sparc_target_architecture_hook (const bfd_arch_info_type *ap)
2420 if (ap->mach == bfd_mach_sparc_sparclite_le)
2422 target_byte_order = BFD_ENDIAN_LITTLE;
2432 * Module "constructor" function.
2435 static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
2436 struct gdbarch_list *arches);
2437 static void sparc_dump_tdep (struct gdbarch *, struct ui_file *);
2440 _initialize_sparc_tdep (void)
2442 /* Hook us into the gdbarch mechanism. */
2443 gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep);
2445 tm_print_insn = gdb_print_insn_sparc;
2446 tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
2447 target_architecture_hook = sparc_target_architecture_hook;
2450 /* Compensate for stack bias. Note that we currently don't handle
2451 mixed 32/64 bit code. */
2454 sparc64_read_sp (void)
2456 CORE_ADDR sp = read_register (SP_REGNUM);
2464 sparc64_read_fp (void)
2466 CORE_ADDR fp = read_register (FP_REGNUM);
2474 sparc64_write_sp (CORE_ADDR val)
2476 CORE_ADDR oldsp = read_register (SP_REGNUM);
2478 write_register (SP_REGNUM, val - 2047);
2480 write_register (SP_REGNUM, val);
2483 /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
2484 and all other arguments in O0 to O5. They are also copied onto
2485 the stack in the correct places. Apparently (empirically),
2486 structs of less than 16 bytes are passed member-by-member in
2487 separate registers, but I am unable to figure out the algorithm.
2488 Some members go in floating point regs, but I don't know which.
2490 FIXME: Handle small structs (less than 16 bytes containing floats).
2492 The counting regimen for using both integer and FP registers
2493 for argument passing is rather odd -- a single counter is used
2494 for both; this means that if the arguments alternate between
2495 int and float, we will waste every other register of both types. */
2498 sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2499 int struct_return, CORE_ADDR struct_retaddr)
2501 int i, j, register_counter = 0;
2503 struct type *sparc_intreg_type =
2504 TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
2505 builtin_type_long : builtin_type_long_long;
2507 sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
2509 /* Figure out how much space we'll need. */
2510 for (i = nargs - 1; i >= 0; i--)
2512 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2513 struct value *copyarg = args[i];
2516 if (copylen < SPARC_INTREG_SIZE)
2518 copyarg = value_cast (sparc_intreg_type, copyarg);
2519 copylen = SPARC_INTREG_SIZE;
2528 /* if STRUCT_RETURN, then first argument is the struct return location. */
2530 write_register (O0_REGNUM + register_counter++, struct_retaddr);
2532 /* Now write the arguments onto the stack, while writing FP
2533 arguments into the FP registers, and other arguments into the
2534 first six 'O' registers. */
2536 for (i = 0; i < nargs; i++)
2538 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2539 struct value *copyarg = args[i];
2540 enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
2543 if (typecode == TYPE_CODE_INT ||
2544 typecode == TYPE_CODE_BOOL ||
2545 typecode == TYPE_CODE_CHAR ||
2546 typecode == TYPE_CODE_RANGE ||
2547 typecode == TYPE_CODE_ENUM)
2548 if (len < SPARC_INTREG_SIZE)
2550 /* Small ints will all take up the size of one intreg on
2552 copyarg = value_cast (sparc_intreg_type, copyarg);
2553 copylen = SPARC_INTREG_SIZE;
2556 write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
2559 /* Corner case: Structs consisting of a single float member are floats.
2560 * FIXME! I don't know about structs containing multiple floats!
2561 * Structs containing mixed floats and ints are even more weird.
2566 /* Separate float args from all other args. */
2567 if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2569 if (register_counter < 16)
2571 /* This arg gets copied into a FP register. */
2575 case 4: /* Single-precision (float) */
2576 fpreg = FP0_REGNUM + 2 * register_counter + 1;
2577 register_counter += 1;
2579 case 8: /* Double-precision (double) */
2580 fpreg = FP0_REGNUM + 2 * register_counter;
2581 register_counter += 1;
2583 case 16: /* Quad-precision (long double) */
2584 fpreg = FP0_REGNUM + 2 * register_counter;
2585 register_counter += 2;
2588 internal_error (__FILE__, __LINE__, "bad switch");
2590 deprecated_write_register_bytes (REGISTER_BYTE (fpreg),
2591 VALUE_CONTENTS (args[i]),
2595 else /* all other args go into the first six 'o' registers */
2598 j < len && register_counter < 6;
2599 j += SPARC_INTREG_SIZE)
2601 int oreg = O0_REGNUM + register_counter;
2603 deprecated_write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
2604 register_counter += 1;
2611 /* Values <= 32 bytes are returned in o0-o3 (floating-point values are
2612 returned in f0-f3). */
2615 sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
2618 int typelen = TYPE_LENGTH (type);
2619 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2621 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2623 memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2627 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2628 || (TYPE_LENGTH (type) > 32))
2631 ®buf[O0_REGNUM * regsize +
2632 (typelen >= regsize ? 0 : regsize - typelen)],
2638 char *o0 = ®buf[O0_REGNUM * regsize];
2639 char *f0 = ®buf[FP0_REGNUM * regsize];
2642 for (x = 0; x < TYPE_NFIELDS (type); x++)
2644 struct field *f = &TYPE_FIELDS (type)[x];
2645 /* FIXME: We may need to handle static fields here. */
2646 int whichreg = (f->loc.bitpos + bitoffset) / 32;
2647 int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
2648 int where = (f->loc.bitpos + bitoffset) / 8;
2649 int size = TYPE_LENGTH (f->type);
2650 int typecode = TYPE_CODE (f->type);
2652 if (typecode == TYPE_CODE_STRUCT)
2654 sp64_extract_return_value (f->type,
2657 bitoffset + f->loc.bitpos);
2659 else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2661 memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
2665 memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
2672 sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2674 sp64_extract_return_value (type, regbuf, valbuf, 0);
2678 sparclet_extract_return_value (struct type *type,
2682 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
2683 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
2684 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
2686 memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
2691 sparc32_stack_align (CORE_ADDR addr)
2693 return ((addr + 7) & -8);
2697 sparc64_stack_align (CORE_ADDR addr)
2699 return ((addr + 15) & -16);
2703 sparc_print_extra_frame_info (struct frame_info *fi)
2705 if (fi && get_frame_extra_info (fi) && get_frame_extra_info (fi)->flat)
2706 printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
2707 paddr_nz (get_frame_extra_info (fi)->pc_addr),
2708 paddr_nz (get_frame_extra_info (fi)->fp_addr));
2711 /* MULTI_ARCH support */
2714 sparc32_register_name (int regno)
2716 static char *register_names[] =
2717 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2718 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2719 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2720 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2722 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2723 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2724 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2725 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2727 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
2731 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2734 return register_names[regno];
2738 sparc64_register_name (int regno)
2740 static char *register_names[] =
2741 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2742 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2743 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2744 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2746 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2747 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2748 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2749 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2750 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
2751 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
2753 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
2754 "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
2755 "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
2756 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
2757 "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
2758 /* These are here at the end to simplify removing them if we have to. */
2759 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
2763 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2766 return register_names[regno];
2770 sparclite_register_name (int regno)
2772 static char *register_names[] =
2773 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2774 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2775 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2776 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2778 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2779 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2780 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2781 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2783 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
2784 "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
2788 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2791 return register_names[regno];
2795 sparclet_register_name (int regno)
2797 static char *register_names[] =
2798 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2799 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2800 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2801 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2803 "", "", "", "", "", "", "", "", /* no floating point registers */
2804 "", "", "", "", "", "", "", "",
2805 "", "", "", "", "", "", "", "",
2806 "", "", "", "", "", "", "", "",
2808 "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
2809 "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
2811 /* ASR15 ASR19 (don't display them) */
2812 "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
2813 /* None of the rest get displayed */
2815 "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
2816 "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
2817 "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
2818 "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
2824 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2827 return register_names[regno];
2831 sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
2833 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2835 /* The return PC of the dummy_frame is the former 'current' PC
2836 (where we were before we made the target function call).
2837 This is saved in %i7 by push_dummy_frame.
2839 We will save the 'call dummy location' (ie. the address
2840 to which the target function will return) in %o7.
2841 This address will actually be the program's entry point.
2842 There will be a special call_dummy breakpoint there. */
2844 write_register (O7_REGNUM,
2845 CALL_DUMMY_ADDRESS () - 8);
2851 /* Should call_function allocate stack space for a struct return? */
2854 sparc64_use_struct_convention (int gcc_p, struct type *type)
2856 return (TYPE_LENGTH (type) > 32);
2859 /* Store the address of the place in which to copy the structure the
2860 subroutine will return. This is called from call_function_by_hand.
2861 The ultimate mystery is, tho, what is the value "16"?
2863 MVS: That's the offset from where the sp is now, to where the
2864 subroutine is gonna expect to find the struct return address. */
2867 sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2872 val = alloca (SPARC_INTREG_SIZE);
2873 store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
2874 write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
2876 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2878 /* Now adjust the value of the link register, which was previously
2879 stored by push_return_address. Functions that return structs are
2880 peculiar in that they return to link register + 12, rather than
2881 link register + 8. */
2883 o7 = read_register (O7_REGNUM);
2884 write_register (O7_REGNUM, o7 - 4);
2889 sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2891 /* FIXME: V9 uses %o0 for this. */
2892 /* FIXME MVS: Only for small enough structs!!! */
2894 target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
2895 (char *) &addr, SPARC_INTREG_SIZE);
2897 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2899 /* Now adjust the value of the link register, which was previously
2900 stored by push_return_address. Functions that return structs are
2901 peculiar in that they return to link register + 12, rather than
2902 link register + 8. */
2904 write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
2909 /* Default target data type for register REGNO. */
2911 static struct type *
2912 sparc32_register_virtual_type (int regno)
2914 if (regno == PC_REGNUM ||
2915 regno == FP_REGNUM ||
2917 return builtin_type_unsigned_int;
2919 return builtin_type_int;
2921 return builtin_type_float;
2922 return builtin_type_int;
2925 static struct type *
2926 sparc64_register_virtual_type (int regno)
2928 if (regno == PC_REGNUM ||
2929 regno == FP_REGNUM ||
2931 return builtin_type_unsigned_long_long;
2933 return builtin_type_long_long;
2935 return builtin_type_float;
2937 return builtin_type_double;
2938 return builtin_type_long_long;
2941 /* Number of bytes of storage in the actual machine representation for
2945 sparc32_register_size (int regno)
2951 sparc64_register_size (int regno)
2953 return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
2956 /* Index within the `registers' buffer of the first byte of the space
2957 for register REGNO. */
2960 sparc32_register_byte (int regno)
2966 sparc64_register_byte (int regno)
2970 else if (regno < 64)
2971 return 32 * 8 + (regno - 32) * 4;
2972 else if (regno < 80)
2973 return 32 * 8 + 32 * 4 + (regno - 64) * 8;
2975 return 64 * 8 + (regno - 80) * 8;
2978 /* Immediately after a function call, return the saved pc.
2979 Can't go through the frames for this because on some machines
2980 the new frame is not set up until the new function executes
2981 some instructions. */
2984 sparc_saved_pc_after_call (struct frame_info *fi)
2986 return sparc_pc_adjust (read_register (RP_REGNUM));
2989 /* Convert registers between 'raw' and 'virtual' formats.
2990 They are the same on sparc, so there's nothing to do. */
2993 sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
2994 { /* do nothing (should never be called) */
2998 sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
2999 { /* do nothing (should never be called) */
3002 /* Init saved regs: nothing to do, just a place-holder function. */
3005 sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
3009 /* gdbarch fix call dummy:
3010 All this function does is rearrange the arguments before calling
3011 sparc_fix_call_dummy (which does the real work). */
3014 sparc_gdbarch_fix_call_dummy (char *dummy,
3018 struct value **args,
3022 if (CALL_DUMMY_LOCATION == ON_STACK)
3023 sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
3026 /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
3029 sparc_call_dummy_address (void)
3031 return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
3034 /* Supply the Y register number to those that need it. */
3037 sparc_y_regnum (void)
3039 return gdbarch_tdep (current_gdbarch)->y_regnum;
3043 sparc_reg_struct_has_addr (int gcc_p, struct type *type)
3045 if (GDB_TARGET_IS_SPARC64)
3046 return (TYPE_LENGTH (type) > 32);
3048 return (gcc_p != 1);
3052 sparc_intreg_size (void)
3054 return SPARC_INTREG_SIZE;
3058 sparc_return_value_on_stack (struct type *type)
3060 if (TYPE_CODE (type) == TYPE_CODE_FLT &&
3061 TYPE_LENGTH (type) > 8)
3068 * Gdbarch "constructor" function.
3071 #define SPARC32_CALL_DUMMY_ON_STACK
3073 #define SPARC_SP_REGNUM 14
3074 #define SPARC_FP_REGNUM 30
3075 #define SPARC_FP0_REGNUM 32
3076 #define SPARC32_NPC_REGNUM 69
3077 #define SPARC32_PC_REGNUM 68
3078 #define SPARC32_Y_REGNUM 64
3079 #define SPARC64_PC_REGNUM 80
3080 #define SPARC64_NPC_REGNUM 81
3081 #define SPARC64_Y_REGNUM 85
3083 static struct gdbarch *
3084 sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3086 struct gdbarch *gdbarch;
3087 struct gdbarch_tdep *tdep;
3089 static LONGEST call_dummy_32[] =
3090 { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
3091 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
3092 0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
3093 0x91d02001, 0x01000000
3095 static LONGEST call_dummy_64[] =
3096 { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
3097 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
3098 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
3099 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
3100 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
3101 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
3102 0xf03fa73f01000000LL, 0x0100000001000000LL,
3103 0x0100000091580000LL, 0xd027a72b93500000LL,
3104 0xd027a72791480000LL, 0xd027a72391400000LL,
3105 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
3106 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
3107 0x0100000091d02001LL, 0x0100000001000000LL
3109 static LONGEST call_dummy_nil[] = {0};
3111 /* Try to determine the OS ABI of the object we are loading. */
3113 if (info.abfd != NULL
3114 && info.osabi == GDB_OSABI_UNKNOWN)
3116 /* If it's an ELF file, assume it's Solaris. */
3117 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3118 info.osabi = GDB_OSABI_SOLARIS;
3121 /* First see if there is already a gdbarch that can satisfy the request. */
3122 arches = gdbarch_list_lookup_by_info (arches, &info);
3124 return arches->gdbarch;
3126 /* None found: is the request for a sparc architecture? */
3127 if (info.bfd_arch_info->arch != bfd_arch_sparc)
3128 return NULL; /* No; then it's not for us. */
3130 /* Yes: create a new gdbarch for the specified machine type. */
3131 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3132 gdbarch = gdbarch_alloc (&info, tdep);
3134 /* First set settings that are common for all sparc architectures. */
3135 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3136 set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
3137 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
3138 set_gdbarch_call_dummy_p (gdbarch, 1);
3139 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
3140 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3141 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3142 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address);
3143 set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
3144 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3145 set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
3146 set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
3147 set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
3148 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
3149 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
3150 set_gdbarch_deprecated_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
3151 set_gdbarch_frameless_function_invocation (gdbarch,
3152 frameless_look_for_prologue);
3153 set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
3154 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
3155 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3156 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3157 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3158 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3159 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
3160 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
3161 set_gdbarch_deprecated_pop_frame (gdbarch, sparc_pop_frame);
3162 set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
3163 set_gdbarch_deprecated_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
3164 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
3165 set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
3166 set_gdbarch_register_convert_to_virtual (gdbarch,
3167 sparc_convert_to_virtual);
3168 set_gdbarch_register_convertible (gdbarch,
3169 generic_register_convertible_not);
3170 set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
3171 set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
3172 set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
3173 set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p);
3174 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3175 set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue);
3176 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
3177 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
3178 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3181 * Settings that depend only on 32/64 bit word size
3184 switch (info.bfd_arch_info->mach)
3186 case bfd_mach_sparc:
3187 case bfd_mach_sparc_sparclet:
3188 case bfd_mach_sparc_sparclite:
3189 case bfd_mach_sparc_v8plus:
3190 case bfd_mach_sparc_v8plusa:
3191 case bfd_mach_sparc_sparclite_le:
3192 /* 32-bit machine types: */
3194 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3195 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3196 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3197 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
3198 set_gdbarch_call_dummy_length (gdbarch, 0x38);
3200 /* NOTE: cagney/2002-04-26: Based from info posted by Peter
3201 Schauer around Oct '99. Briefly, due to aspects of the SPARC
3202 ABI, it isn't possible to use ON_STACK with a strictly
3205 Peter Schauer writes ...
3207 No, any call from GDB to a user function returning a
3208 struct/union will fail miserably. Try this:
3227 for (i = 0; i < 4; i++)
3233 Set a breakpoint at the gx = sret () statement, run to it and
3234 issue a `print sret()'. It will not succed with your
3235 approach, and I doubt that continuing the program will work
3238 For details of the ABI see the Sparc Architecture Manual. I
3239 have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the
3240 calling conventions for functions returning aggregate values
3241 are explained in Appendix D.3. */
3243 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3244 set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
3246 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3247 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3248 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3249 set_gdbarch_call_dummy_length (gdbarch, 0);
3250 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3252 set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
3253 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3254 set_gdbarch_frame_args_skip (gdbarch, 68);
3255 set_gdbarch_function_start_offset (gdbarch, 0);
3256 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3257 set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
3258 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
3259 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3260 set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
3261 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
3262 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
3264 set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
3265 set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
3266 set_gdbarch_register_size (gdbarch, 4);
3267 set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
3268 set_gdbarch_register_virtual_type (gdbarch,
3269 sparc32_register_virtual_type);
3270 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3271 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
3273 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3275 set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
3276 set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
3277 set_gdbarch_use_struct_convention (gdbarch,
3278 generic_use_struct_convention);
3279 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
3280 tdep->y_regnum = SPARC32_Y_REGNUM;
3281 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
3282 tdep->intreg_size = 4;
3283 tdep->reg_save_offset = 0x60;
3284 tdep->call_dummy_call_offset = 0x24;
3287 case bfd_mach_sparc_v9:
3288 case bfd_mach_sparc_v9a:
3289 /* 64-bit machine types: */
3290 default: /* Any new machine type is likely to be 64-bit. */
3292 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3293 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3294 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3295 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
3296 set_gdbarch_call_dummy_length (gdbarch, 192);
3297 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3298 set_gdbarch_call_dummy_start_offset (gdbarch, 148);
3299 set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
3301 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3302 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3303 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3304 set_gdbarch_call_dummy_length (gdbarch, 0);
3305 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3306 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3308 set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
3309 set_gdbarch_frame_args_skip (gdbarch, 136);
3310 set_gdbarch_function_start_offset (gdbarch, 0);
3311 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3312 set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
3313 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
3314 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3315 set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
3316 /* NOTE different for at_entry */
3317 set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
3318 set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
3319 /* Some of the registers aren't 64 bits, but it's a lot simpler just
3320 to assume they all are (since most of them are). */
3321 set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
3322 set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
3323 set_gdbarch_register_size (gdbarch, 8);
3324 set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
3325 set_gdbarch_register_virtual_type (gdbarch,
3326 sparc64_register_virtual_type);
3327 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3328 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
3330 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3332 set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
3333 set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
3334 set_gdbarch_use_struct_convention (gdbarch,
3335 sparc64_use_struct_convention);
3336 set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
3337 tdep->y_regnum = SPARC64_Y_REGNUM;
3338 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
3339 tdep->intreg_size = 8;
3340 tdep->reg_save_offset = 0x90;
3341 tdep->call_dummy_call_offset = 148 + 4 * 5;
3346 * Settings that vary per-architecture:
3349 switch (info.bfd_arch_info->mach)
3351 case bfd_mach_sparc:
3352 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3353 set_gdbarch_num_regs (gdbarch, 72);
3354 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3355 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3356 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3357 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3358 tdep->fp_register_bytes = 32 * 4;
3359 tdep->print_insn_mach = bfd_mach_sparc;
3361 case bfd_mach_sparc_sparclet:
3362 set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value);
3363 set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
3364 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
3365 set_gdbarch_register_name (gdbarch, sparclet_register_name);
3366 set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value);
3367 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3368 tdep->fp_register_bytes = 0;
3369 tdep->print_insn_mach = bfd_mach_sparc_sparclet;
3371 case bfd_mach_sparc_sparclite:
3372 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3373 set_gdbarch_num_regs (gdbarch, 80);
3374 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3375 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3376 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3377 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3378 tdep->fp_register_bytes = 0;
3379 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3381 case bfd_mach_sparc_v8plus:
3382 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3383 set_gdbarch_num_regs (gdbarch, 72);
3384 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3385 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3386 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3387 tdep->print_insn_mach = bfd_mach_sparc;
3388 tdep->fp_register_bytes = 32 * 4;
3389 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3391 case bfd_mach_sparc_v8plusa:
3392 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3393 set_gdbarch_num_regs (gdbarch, 72);
3394 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3395 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3396 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3397 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3398 tdep->fp_register_bytes = 32 * 4;
3399 tdep->print_insn_mach = bfd_mach_sparc;
3401 case bfd_mach_sparc_sparclite_le:
3402 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3403 set_gdbarch_num_regs (gdbarch, 80);
3404 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3405 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3406 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3407 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3408 tdep->fp_register_bytes = 0;
3409 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3411 case bfd_mach_sparc_v9:
3412 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3413 set_gdbarch_num_regs (gdbarch, 125);
3414 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3415 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3416 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3417 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3418 tdep->fp_register_bytes = 64 * 4;
3419 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3421 case bfd_mach_sparc_v9a:
3422 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3423 set_gdbarch_num_regs (gdbarch, 125);
3424 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3425 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3426 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3427 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3428 tdep->fp_register_bytes = 64 * 4;
3429 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3433 /* Hook in OS ABI-specific overrides, if they have been registered. */
3434 gdbarch_init_osabi (info, gdbarch);
3440 sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3442 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3447 fprintf_unfiltered (file, "sparc_dump_tdep: has_fpu = %d\n",
3449 fprintf_unfiltered (file, "sparc_dump_tdep: fp_register_bytes = %d\n",
3450 tdep->fp_register_bytes);
3451 fprintf_unfiltered (file, "sparc_dump_tdep: y_regnum = %d\n",
3453 fprintf_unfiltered (file, "sparc_dump_tdep: fp_max_regnum = %d\n",
3454 tdep->fp_max_regnum);
3455 fprintf_unfiltered (file, "sparc_dump_tdep: intreg_size = %d\n",
3457 fprintf_unfiltered (file, "sparc_dump_tdep: reg_save_offset = %d\n",
3458 tdep->reg_save_offset);
3459 fprintf_unfiltered (file, "sparc_dump_tdep: call_dummy_call_offset = %d\n",
3460 tdep->call_dummy_call_offset);
3461 fprintf_unfiltered (file, "sparc_dump_tdep: print_insn_match = %d\n",
3462 tdep->print_insn_mach);