1 /* Intel 387 floating point stuff.
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "target-float.h"
29 #include "i386-tdep.h"
30 #include "i387-tdep.h"
31 #include "x86-xstate.h"
33 /* Print the floating point number specified by RAW. */
36 print_i387_value (struct gdbarch *gdbarch,
37 const gdb_byte *raw, struct ui_file *file)
39 /* We try to print 19 digits. The last digit may or may not contain
40 garbage, but we'd better print one too many. We need enough room
41 to print the value, 1 position for the sign, 1 for the decimal
42 point, 19 for the digits and 6 for the exponent adds up to 27. */
43 const struct type *type = i387_ext_type (gdbarch);
44 std::string str = target_float_to_string (raw, type, " %-+27.19g");
45 fprintf_filtered (file, "%s", str.c_str ());
48 /* Print the classification for the register contents RAW. */
51 print_i387_ext (struct gdbarch *gdbarch,
52 const gdb_byte *raw, struct ui_file *file)
56 unsigned int exponent;
57 unsigned long fraction[2];
60 integer = raw[7] & 0x80;
61 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
62 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
63 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
64 | (raw[5] << 8) | raw[4]);
66 if (exponent == 0x7fff && integer)
68 if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
70 fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
71 else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
72 /* Real Indefinite (QNaN). */
73 fputs_unfiltered (" Real Indefinite (QNaN)", file);
74 else if (fraction[1] & 0x40000000)
76 fputs_filtered (" QNaN", file);
79 fputs_filtered (" SNaN", file);
81 else if (exponent < 0x7fff && exponent > 0x0000 && integer)
83 print_i387_value (gdbarch, raw, file);
84 else if (exponent == 0x0000)
86 /* Denormal or zero. */
87 print_i387_value (gdbarch, raw, file);
90 /* Pseudo-denormal. */
91 fputs_filtered (" Pseudo-denormal", file);
92 else if (fraction[0] || fraction[1])
94 fputs_filtered (" Denormal", file);
98 fputs_filtered (" Unsupported", file);
101 /* Print the status word STATUS. If STATUS_P is false, then STATUS
105 print_i387_status_word (int status_p,
106 unsigned int status, struct ui_file *file)
108 fprintf_filtered (file, "Status Word: ");
111 fprintf_filtered (file, "%s\n", _("<unavailable>"));
115 fprintf_filtered (file, "%s", hex_string_custom (status, 4));
116 fputs_filtered (" ", file);
117 fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " ");
118 fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " ");
119 fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " ");
120 fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " ");
121 fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " ");
122 fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " ");
123 fputs_filtered (" ", file);
124 fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " ");
125 fputs_filtered (" ", file);
126 fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " ");
127 fputs_filtered (" ", file);
128 fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " ");
129 fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " ");
130 fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " ");
131 fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " ");
133 fputs_filtered ("\n", file);
135 fprintf_filtered (file,
136 " TOP: %d\n", ((status >> 11) & 7));
139 /* Print the control word CONTROL. If CONTROL_P is false, then
140 CONTROL was unavailable. */
143 print_i387_control_word (int control_p,
144 unsigned int control, struct ui_file *file)
146 fprintf_filtered (file, "Control Word: ");
149 fprintf_filtered (file, "%s\n", _("<unavailable>"));
153 fprintf_filtered (file, "%s", hex_string_custom (control, 4));
154 fputs_filtered (" ", file);
155 fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " ");
156 fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " ");
157 fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " ");
158 fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " ");
159 fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " ");
160 fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " ");
162 fputs_filtered ("\n", file);
164 fputs_filtered (" PC: ", file);
165 switch ((control >> 8) & 3)
168 fputs_filtered ("Single Precision (24-bits)\n", file);
171 fputs_filtered ("Reserved\n", file);
174 fputs_filtered ("Double Precision (53-bits)\n", file);
177 fputs_filtered ("Extended Precision (64-bits)\n", file);
181 fputs_filtered (" RC: ", file);
182 switch ((control >> 10) & 3)
185 fputs_filtered ("Round to nearest\n", file);
188 fputs_filtered ("Round down\n", file);
191 fputs_filtered ("Round up\n", file);
194 fputs_filtered ("Round toward zero\n", file);
199 /* Print out the i387 floating point state. Note that we ignore FRAME
200 in the code below. That's OK since floating-point registers are
201 never saved on the stack. */
204 i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
205 struct frame_info *frame, const char *args)
207 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
227 gdb_assert (gdbarch == get_frame_arch (frame));
229 fctrl_p = read_frame_register_unsigned (frame,
230 I387_FCTRL_REGNUM (tdep), &fctrl);
231 fstat_p = read_frame_register_unsigned (frame,
232 I387_FSTAT_REGNUM (tdep), &fstat);
233 ftag_p = read_frame_register_unsigned (frame,
234 I387_FTAG_REGNUM (tdep), &ftag);
235 fiseg_p = read_frame_register_unsigned (frame,
236 I387_FISEG_REGNUM (tdep), &fiseg);
237 fioff_p = read_frame_register_unsigned (frame,
238 I387_FIOFF_REGNUM (tdep), &fioff);
239 foseg_p = read_frame_register_unsigned (frame,
240 I387_FOSEG_REGNUM (tdep), &foseg);
241 fooff_p = read_frame_register_unsigned (frame,
242 I387_FOOFF_REGNUM (tdep), &fooff);
243 fop_p = read_frame_register_unsigned (frame,
244 I387_FOP_REGNUM (tdep), &fop);
248 top = ((fstat >> 11) & 7);
250 for (fpreg = 7; fpreg >= 0; fpreg--)
252 struct value *regval;
257 fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
261 tag = (ftag >> (fpreg * 2)) & 3;
266 fputs_filtered ("Valid ", file);
269 fputs_filtered ("Zero ", file);
272 fputs_filtered ("Special ", file);
275 fputs_filtered ("Empty ", file);
280 fputs_filtered ("Unknown ", file);
282 regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep);
283 regval = get_frame_register_value (frame, regnum);
285 if (value_entirely_available (regval))
287 const gdb_byte *raw = value_contents (regval);
289 fputs_filtered ("0x", file);
290 for (i = 9; i >= 0; i--)
291 fprintf_filtered (file, "%02x", raw[i]);
293 if (tag != -1 && tag != 3)
294 print_i387_ext (gdbarch, raw, file);
297 fprintf_filtered (file, "%s", _("<unavailable>"));
299 fputs_filtered ("\n", file);
303 fputs_filtered ("\n", file);
304 print_i387_status_word (fstat_p, fstat, file);
305 print_i387_control_word (fctrl_p, fctrl, file);
306 fprintf_filtered (file, "Tag Word: %s\n",
307 ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>"));
308 fprintf_filtered (file, "Instruction Pointer: %s:",
309 fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>"));
310 fprintf_filtered (file, "%s\n",
311 fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>"));
312 fprintf_filtered (file, "Operand Pointer: %s:",
313 foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>"));
314 fprintf_filtered (file, "%s\n",
315 fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>"));
316 fprintf_filtered (file, "Opcode: %s\n",
318 ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4))
319 : _("<unavailable>"));
323 /* Return nonzero if a value of type TYPE stored in register REGNUM
324 needs any special handling. */
327 i387_convert_register_p (struct gdbarch *gdbarch, int regnum,
330 if (i386_fp_regnum_p (gdbarch, regnum))
332 /* Floating point registers must be converted unless we are
333 accessing them in their hardware type or TYPE is not float. */
334 if (type == i387_ext_type (gdbarch)
335 || TYPE_CODE (type) != TYPE_CODE_FLT)
344 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
345 return its contents in TO. */
348 i387_register_to_value (struct frame_info *frame, int regnum,
349 struct type *type, gdb_byte *to,
350 int *optimizedp, int *unavailablep)
352 struct gdbarch *gdbarch = get_frame_arch (frame);
353 gdb_byte from[I386_MAX_REGISTER_SIZE];
355 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
357 /* We only support floating-point values. */
358 if (TYPE_CODE (type) != TYPE_CODE_FLT)
360 warning (_("Cannot convert floating-point register value "
361 "to non-floating-point type."));
362 *optimizedp = *unavailablep = 0;
366 /* Convert to TYPE. */
367 if (!get_frame_register_bytes (frame, regnum, 0,
368 register_size (gdbarch, regnum),
369 from, optimizedp, unavailablep))
372 target_float_convert (from, i387_ext_type (gdbarch), to, type);
373 *optimizedp = *unavailablep = 0;
377 /* Write the contents FROM of a value of type TYPE into register
378 REGNUM in frame FRAME. */
381 i387_value_to_register (struct frame_info *frame, int regnum,
382 struct type *type, const gdb_byte *from)
384 struct gdbarch *gdbarch = get_frame_arch (frame);
385 gdb_byte to[I386_MAX_REGISTER_SIZE];
387 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
389 /* We only support floating-point values. */
390 if (TYPE_CODE (type) != TYPE_CODE_FLT)
392 warning (_("Cannot convert non-floating-point type "
393 "to floating-point register value."));
397 /* Convert from TYPE. */
398 target_float_convert (from, type, to, i387_ext_type (gdbarch));
399 put_frame_register (frame, regnum, to);
403 /* Handle FSAVE and FXSAVE formats. */
405 /* At fsave_offset[REGNUM] you'll find the offset to the location in
406 the data structure used by the "fsave" instruction where GDB
407 register REGNUM is stored. */
409 static int fsave_offset[] =
411 28 + 0 * 10, /* %st(0) ... */
418 28 + 7 * 10, /* ... %st(7). */
419 0, /* `fctrl' (16 bits). */
420 4, /* `fstat' (16 bits). */
421 8, /* `ftag' (16 bits). */
422 16, /* `fiseg' (16 bits). */
424 24, /* `foseg' (16 bits). */
426 18 /* `fop' (bottom 11 bits). */
429 #define FSAVE_ADDR(tdep, fsave, regnum) \
430 (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
433 /* Fill register REGNUM in REGCACHE with the appropriate value from
434 *FSAVE. This function masks off any of the reserved bits in
438 i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
440 struct gdbarch *gdbarch = regcache->arch ();
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
443 const gdb_byte *regs = (const gdb_byte *) fsave;
446 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
448 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
449 if (regnum == -1 || regnum == i)
453 regcache->raw_supply (i, NULL);
457 /* Most of the FPU control registers occupy only 16 bits in the
458 fsave area. Give those a special treatment. */
459 if (i >= I387_FCTRL_REGNUM (tdep)
460 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
464 memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
466 if (i == I387_FOP_REGNUM (tdep))
467 val[1] &= ((1 << 3) - 1);
468 regcache->raw_supply (i, val);
471 regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i));
474 /* Provide dummy values for the SSE registers. */
475 for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
476 if (regnum == -1 || regnum == i)
477 regcache->raw_supply (i, NULL);
478 if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
482 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
483 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
487 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
488 with the value from REGCACHE. If REGNUM is -1, do this for all
489 registers. This function doesn't touch any of the reserved bits in
493 i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
495 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
496 gdb_byte *regs = (gdb_byte *) fsave;
499 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
501 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
502 if (regnum == -1 || regnum == i)
504 /* Most of the FPU control registers occupy only 16 bits in
505 the fsave area. Give those a special treatment. */
506 if (i >= I387_FCTRL_REGNUM (tdep)
507 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
511 regcache_raw_collect (regcache, i, buf);
513 if (i == I387_FOP_REGNUM (tdep))
515 /* The opcode occupies only 11 bits. Make sure we
516 don't touch the other bits. */
517 buf[1] &= ((1 << 3) - 1);
518 buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
520 memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
523 regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i));
528 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
529 the data structure used by the "fxsave" instruction where GDB
530 register REGNUM is stored. */
532 static int fxsave_offset[] =
534 32, /* %st(0) through ... */
541 144, /* ... %st(7) (80 bits each). */
542 0, /* `fctrl' (16 bits). */
543 2, /* `fstat' (16 bits). */
544 4, /* `ftag' (16 bits). */
545 12, /* `fiseg' (16 bits). */
547 20, /* `foseg' (16 bits). */
549 6, /* `fop' (bottom 11 bits). */
550 160 + 0 * 16, /* %xmm0 through ... */
565 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
568 #define FXSAVE_ADDR(tdep, fxsave, regnum) \
569 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
571 /* We made an unfortunate choice in putting %mxcsr after the SSE
572 registers %xmm0-%xmm7 instead of before, since it makes supporting
573 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
574 don't include the offset for %mxcsr here above. */
576 #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
578 static int i387_tag (const gdb_byte *raw);
581 /* Fill register REGNUM in REGCACHE with the appropriate
582 floating-point or SSE register value from *FXSAVE. This function
583 masks off any of the reserved bits in *FXSAVE. */
586 i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
588 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
589 const gdb_byte *regs = (const gdb_byte *) fxsave;
592 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
593 gdb_assert (tdep->num_xmm_regs > 0);
595 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
596 if (regnum == -1 || regnum == i)
600 regcache->raw_supply (i, NULL);
604 /* Most of the FPU control registers occupy only 16 bits in
605 the fxsave area. Give those a special treatment. */
606 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
607 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
611 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
613 if (i == I387_FOP_REGNUM (tdep))
614 val[1] &= ((1 << 3) - 1);
615 else if (i== I387_FTAG_REGNUM (tdep))
617 /* The fxsave area contains a simplified version of
618 the tag word. We have to look at the actual 80-bit
619 FP data to recreate the traditional i387 tag word. */
621 unsigned long ftag = 0;
625 top = ((FXSAVE_ADDR (tdep, regs,
626 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
629 for (fpreg = 7; fpreg >= 0; fpreg--)
633 if (val[0] & (1 << fpreg))
635 int thisreg = (fpreg + 8 - top) % 8
636 + I387_ST0_REGNUM (tdep);
637 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
642 ftag |= tag << (2 * fpreg);
644 val[0] = ftag & 0xff;
645 val[1] = (ftag >> 8) & 0xff;
647 regcache->raw_supply (i, val);
650 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
653 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
656 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL);
658 regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
659 FXSAVE_MXCSR_ADDR (regs));
663 /* Fill register REGNUM (if it is a floating-point or SSE register) in
664 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
665 all registers. This function doesn't touch any of the reserved
669 i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
671 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
672 gdb_byte *regs = (gdb_byte *) fxsave;
675 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
676 gdb_assert (tdep->num_xmm_regs > 0);
678 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
679 if (regnum == -1 || regnum == i)
681 /* Most of the FPU control registers occupy only 16 bits in
682 the fxsave area. Give those a special treatment. */
683 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
684 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
688 regcache_raw_collect (regcache, i, buf);
690 if (i == I387_FOP_REGNUM (tdep))
692 /* The opcode occupies only 11 bits. Make sure we
693 don't touch the other bits. */
694 buf[1] &= ((1 << 3) - 1);
695 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
697 else if (i == I387_FTAG_REGNUM (tdep))
699 /* Converting back is much easier. */
704 ftag = (buf[1] << 8) | buf[0];
708 for (fpreg = 7; fpreg >= 0; fpreg--)
710 int tag = (ftag >> (fpreg * 2)) & 3;
713 buf[0] |= (1 << fpreg);
716 memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
719 regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i));
722 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
723 regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep),
724 FXSAVE_MXCSR_ADDR (regs));
727 /* `xstate_bv' is at byte offset 512. */
728 #define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
730 /* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in
731 the upper 128bit of AVX register data structure used by the "xsave"
732 instruction where GDB register REGNUM is stored. */
734 static int xsave_avxh_offset[] =
736 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */
751 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
754 #define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
755 (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
757 /* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in
758 the upper 128bit of ZMM register data structure used by the "xsave"
759 instruction where GDB register REGNUM is stored. */
761 static int xsave_ymm_avx512_offset[] =
763 /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */
764 1664 + 16 + 0 * 64, /* %ymm16 through... */
779 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */
782 #define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
783 (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
785 static int xsave_xmm_avx512_offset[] =
787 1664 + 0 * 64, /* %ymm16 through... */
802 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */
805 #define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
806 (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
808 static int xsave_mpx_offset[] = {
809 960 + 0 * 16, /* bnd0r...bnd3r registers. */
813 1024 + 0 * 8, /* bndcfg ... bndstatus. */
817 #define XSAVE_MPX_ADDR(tdep, xsave, regnum) \
818 (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)])
820 /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location
821 of the AVX512 opmask register data structure used by the "xsave"
822 instruction where GDB register REGNUM is stored. */
824 static int xsave_avx512_k_offset[] =
826 1088 + 0 * 8, /* %k0 through... */
833 1088 + 7 * 8 /* %k7 (64 bits each). */
836 #define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
837 (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
839 /* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in
840 the upper 256bit of AVX512 ZMMH register data structure used by the "xsave"
841 instruction where GDB register REGNUM is stored. */
843 static int xsave_avx512_zmm_h_offset[] =
846 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */
860 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */
861 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
876 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
879 #define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \
880 (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
882 /* At xsave_pkeys_offset[REGNUM] you find the offset to the location
883 of the PKRU register data structure used by the "xsave"
884 instruction where GDB register REGNUM is stored. */
886 static int xsave_pkeys_offset[] =
888 2688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by
889 instructions and applications). */
892 #define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \
893 (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)])
896 /* Extract from XSAVE a bitset of the features that are available on the
897 target, but which have not yet been enabled. */
900 i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave)
902 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
903 const gdb_byte *regs = (const gdb_byte *) xsave;
904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
906 /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */
907 ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
910 /* Clear part in vector registers if its bit in xstat_bv is zero. */
911 ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0;
916 /* Similar to i387_supply_fxsave, but use XSAVE extended state. */
919 i387_supply_xsave (struct regcache *regcache, int regnum,
922 struct gdbarch *gdbarch = regcache->arch ();
923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
925 const gdb_byte *regs = (const gdb_byte *) xsave;
928 static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 };
938 avx512_ymmh_avx512 = 0x40,
939 avx512_xmm_avx512 = 0x80,
941 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
942 | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
945 gdb_assert (regs != NULL);
946 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
947 gdb_assert (tdep->num_xmm_regs > 0);
951 else if (regnum >= I387_PKRU_REGNUM (tdep)
952 && regnum < I387_PKEYSEND_REGNUM (tdep))
954 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
955 && regnum < I387_ZMMENDH_REGNUM (tdep))
956 regclass = avx512_zmm_h;
957 else if (regnum >= I387_K0_REGNUM (tdep)
958 && regnum < I387_KEND_REGNUM (tdep))
960 else if (regnum >= I387_YMM16H_REGNUM (tdep)
961 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
962 regclass = avx512_ymmh_avx512;
963 else if (regnum >= I387_XMM16_REGNUM (tdep)
964 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
965 regclass = avx512_xmm_avx512;
966 else if (regnum >= I387_YMM0H_REGNUM (tdep)
967 && regnum < I387_YMMENDH_REGNUM (tdep))
969 else if (regnum >= I387_BND0R_REGNUM (tdep)
970 && regnum < I387_MPXEND_REGNUM (tdep))
972 else if (regnum >= I387_XMM0_REGNUM (tdep)
973 && regnum < I387_MXCSR_REGNUM (tdep))
975 else if (regnum >= I387_ST0_REGNUM (tdep)
976 && regnum < I387_FCTRL_REGNUM (tdep))
981 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
983 /* With the delayed xsave mechanism, in between the program
984 starting, and the program accessing the vector registers for the
985 first time, the register's values are invalid. The kernel
986 initializes register states to zero when they are set the first
987 time in a program. This means that from the user-space programs'
988 perspective, it's the same as if the registers have always been
989 zero from the start of the program. Therefore, the debugger
990 should provide the same illusion to the user. */
998 if ((clear_bv & X86_XSTATE_PKRU))
999 regcache->raw_supply (regnum, zero);
1001 regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum));
1005 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1006 regcache->raw_supply (regnum, zero);
1008 regcache->raw_supply (regnum,
1009 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum));
1013 if ((clear_bv & X86_XSTATE_K))
1014 regcache->raw_supply (regnum, zero);
1016 regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum));
1019 case avx512_ymmh_avx512:
1020 if ((clear_bv & X86_XSTATE_ZMM))
1021 regcache->raw_supply (regnum, zero);
1023 regcache->raw_supply (regnum,
1024 XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum));
1027 case avx512_xmm_avx512:
1028 if ((clear_bv & X86_XSTATE_ZMM))
1029 regcache->raw_supply (regnum, zero);
1031 regcache->raw_supply (regnum,
1032 XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum));
1036 if ((clear_bv & X86_XSTATE_AVX))
1037 regcache->raw_supply (regnum, zero);
1039 regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum));
1043 if ((clear_bv & X86_XSTATE_BNDREGS))
1044 regcache->raw_supply (regnum, zero);
1046 regcache->raw_supply (regnum, XSAVE_MPX_ADDR (tdep, regs, regnum));
1050 if ((clear_bv & X86_XSTATE_SSE))
1051 regcache->raw_supply (regnum, zero);
1053 regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
1057 if ((clear_bv & X86_XSTATE_X87))
1058 regcache->raw_supply (regnum, zero);
1060 regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
1064 /* Handle PKEYS registers. */
1065 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1067 if ((clear_bv & X86_XSTATE_PKRU))
1069 for (i = I387_PKRU_REGNUM (tdep);
1070 i < I387_PKEYSEND_REGNUM (tdep);
1072 regcache->raw_supply (i, zero);
1076 for (i = I387_PKRU_REGNUM (tdep);
1077 i < I387_PKEYSEND_REGNUM (tdep);
1079 regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i));
1083 /* Handle the upper ZMM registers. */
1084 if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1086 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1088 for (i = I387_ZMM0H_REGNUM (tdep);
1089 i < I387_ZMMENDH_REGNUM (tdep);
1091 regcache->raw_supply (i, zero);
1095 for (i = I387_ZMM0H_REGNUM (tdep);
1096 i < I387_ZMMENDH_REGNUM (tdep);
1098 regcache->raw_supply (i,
1099 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i));
1103 /* Handle AVX512 OpMask registers. */
1104 if ((tdep->xcr0 & X86_XSTATE_K))
1106 if ((clear_bv & X86_XSTATE_K))
1108 for (i = I387_K0_REGNUM (tdep);
1109 i < I387_KEND_REGNUM (tdep);
1111 regcache->raw_supply (i, zero);
1115 for (i = I387_K0_REGNUM (tdep);
1116 i < I387_KEND_REGNUM (tdep);
1118 regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i));
1122 /* Handle the YMM_AVX512 registers. */
1123 if ((tdep->xcr0 & X86_XSTATE_ZMM))
1125 if ((clear_bv & X86_XSTATE_ZMM))
1127 for (i = I387_YMM16H_REGNUM (tdep);
1128 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1130 regcache->raw_supply (i, zero);
1131 for (i = I387_XMM16_REGNUM (tdep);
1132 i < I387_XMM_AVX512_END_REGNUM (tdep);
1134 regcache->raw_supply (i, zero);
1138 for (i = I387_YMM16H_REGNUM (tdep);
1139 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1141 regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i));
1142 for (i = I387_XMM16_REGNUM (tdep);
1143 i < I387_XMM_AVX512_END_REGNUM (tdep);
1145 regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i));
1148 /* Handle the upper YMM registers. */
1149 if ((tdep->xcr0 & X86_XSTATE_AVX))
1151 if ((clear_bv & X86_XSTATE_AVX))
1153 for (i = I387_YMM0H_REGNUM (tdep);
1154 i < I387_YMMENDH_REGNUM (tdep);
1156 regcache->raw_supply (i, zero);
1160 for (i = I387_YMM0H_REGNUM (tdep);
1161 i < I387_YMMENDH_REGNUM (tdep);
1163 regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i));
1167 /* Handle the MPX registers. */
1168 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1170 if (clear_bv & X86_XSTATE_BNDREGS)
1172 for (i = I387_BND0R_REGNUM (tdep);
1173 i < I387_BNDCFGU_REGNUM (tdep); i++)
1174 regcache->raw_supply (i, zero);
1178 for (i = I387_BND0R_REGNUM (tdep);
1179 i < I387_BNDCFGU_REGNUM (tdep); i++)
1180 regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i));
1184 /* Handle the MPX registers. */
1185 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1187 if (clear_bv & X86_XSTATE_BNDCFG)
1189 for (i = I387_BNDCFGU_REGNUM (tdep);
1190 i < I387_MPXEND_REGNUM (tdep); i++)
1191 regcache->raw_supply (i, zero);
1195 for (i = I387_BNDCFGU_REGNUM (tdep);
1196 i < I387_MPXEND_REGNUM (tdep); i++)
1197 regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i));
1201 /* Handle the XMM registers. */
1202 if ((tdep->xcr0 & X86_XSTATE_SSE))
1204 if ((clear_bv & X86_XSTATE_SSE))
1206 for (i = I387_XMM0_REGNUM (tdep);
1207 i < I387_MXCSR_REGNUM (tdep);
1209 regcache->raw_supply (i, zero);
1213 for (i = I387_XMM0_REGNUM (tdep);
1214 i < I387_MXCSR_REGNUM (tdep); i++)
1215 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
1219 /* Handle the x87 registers. */
1220 if ((tdep->xcr0 & X86_XSTATE_X87))
1222 if ((clear_bv & X86_XSTATE_X87))
1224 for (i = I387_ST0_REGNUM (tdep);
1225 i < I387_FCTRL_REGNUM (tdep);
1227 regcache->raw_supply (i, zero);
1231 for (i = I387_ST0_REGNUM (tdep);
1232 i < I387_FCTRL_REGNUM (tdep);
1234 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
1240 /* Only handle x87 control registers. */
1241 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1242 if (regnum == -1 || regnum == i)
1244 if (clear_bv & X86_XSTATE_X87)
1246 if (i == I387_FCTRL_REGNUM (tdep))
1250 store_unsigned_integer (buf, 4, byte_order,
1251 I387_FCTRL_INIT_VAL);
1252 regcache->raw_supply (i, buf);
1254 else if (i == I387_FTAG_REGNUM (tdep))
1258 store_unsigned_integer (buf, 4, byte_order, 0xffff);
1259 regcache->raw_supply (i, buf);
1262 regcache->raw_supply (i, zero);
1264 /* Most of the FPU control registers occupy only 16 bits in
1265 the xsave extended state. Give those a special treatment. */
1266 else if (i != I387_FIOFF_REGNUM (tdep)
1267 && i != I387_FOOFF_REGNUM (tdep))
1271 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
1272 val[2] = val[3] = 0;
1273 if (i == I387_FOP_REGNUM (tdep))
1274 val[1] &= ((1 << 3) - 1);
1275 else if (i == I387_FTAG_REGNUM (tdep))
1277 /* The fxsave area contains a simplified version of
1278 the tag word. We have to look at the actual 80-bit
1279 FP data to recreate the traditional i387 tag word. */
1281 unsigned long ftag = 0;
1285 top = ((FXSAVE_ADDR (tdep, regs,
1286 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
1289 for (fpreg = 7; fpreg >= 0; fpreg--)
1293 if (val[0] & (1 << fpreg))
1295 int thisreg = (fpreg + 8 - top) % 8
1296 + I387_ST0_REGNUM (tdep);
1297 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
1300 tag = 3; /* Empty */
1302 ftag |= tag << (2 * fpreg);
1304 val[0] = ftag & 0xff;
1305 val[1] = (ftag >> 8) & 0xff;
1307 regcache->raw_supply (i, val);
1310 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
1313 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
1315 /* The MXCSR register is placed into the xsave buffer if either the
1316 AVX or SSE features are enabled. */
1317 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1318 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
1322 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
1323 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
1326 regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
1327 FXSAVE_MXCSR_ADDR (regs));
1331 /* Similar to i387_collect_fxsave, but use XSAVE extended state. */
1334 i387_collect_xsave (const struct regcache *regcache, int regnum,
1335 void *xsave, int gcore)
1337 struct gdbarch *gdbarch = regcache->arch ();
1338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1340 gdb_byte *p, *regs = (gdb_byte *) xsave;
1341 gdb_byte raw[I386_MAX_REGISTER_SIZE];
1342 ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0;
1346 x87_ctrl_or_mxcsr = 0x1,
1352 avx512_zmm_h = 0x40,
1353 avx512_ymmh_avx512 = 0x80,
1354 avx512_xmm_avx512 = 0x100,
1356 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
1357 | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
1360 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
1361 gdb_assert (tdep->num_xmm_regs > 0);
1365 else if (regnum >= I387_PKRU_REGNUM (tdep)
1366 && regnum < I387_PKEYSEND_REGNUM (tdep))
1368 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
1369 && regnum < I387_ZMMENDH_REGNUM (tdep))
1370 regclass = avx512_zmm_h;
1371 else if (regnum >= I387_K0_REGNUM (tdep)
1372 && regnum < I387_KEND_REGNUM (tdep))
1373 regclass = avx512_k;
1374 else if (regnum >= I387_YMM16H_REGNUM (tdep)
1375 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
1376 regclass = avx512_ymmh_avx512;
1377 else if (regnum >= I387_XMM16_REGNUM (tdep)
1378 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
1379 regclass = avx512_xmm_avx512;
1380 else if (regnum >= I387_YMM0H_REGNUM (tdep)
1381 && regnum < I387_YMMENDH_REGNUM (tdep))
1383 else if (regnum >= I387_BND0R_REGNUM (tdep)
1384 && regnum < I387_MPXEND_REGNUM (tdep))
1386 else if (regnum >= I387_XMM0_REGNUM (tdep)
1387 && regnum < I387_MXCSR_REGNUM (tdep))
1389 else if (regnum >= I387_ST0_REGNUM (tdep)
1390 && regnum < I387_FCTRL_REGNUM (tdep))
1392 else if ((regnum >= I387_FCTRL_REGNUM (tdep)
1393 && regnum < I387_XMM0_REGNUM (tdep))
1394 || regnum == I387_MXCSR_REGNUM (tdep))
1395 regclass = x87_ctrl_or_mxcsr;
1397 internal_error (__FILE__, __LINE__, _("invalid i387 regnum %d"), regnum);
1401 /* Clear XSAVE extended state. */
1402 memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0));
1404 /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
1405 if (tdep->xsave_xcr0_offset != -1)
1406 memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8);
1407 memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8);
1410 /* The supported bits in `xstat_bv' are 8 bytes. */
1411 initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1413 clear_bv = (~(initial_xstate_bv)) & tdep->xcr0;
1415 /* The XSAVE buffer was filled lazily by the kernel. Only those
1416 features that are enabled were written into the buffer, disabled
1417 features left the buffer uninitialised. In order to identify if any
1418 registers have changed we will be comparing the register cache
1419 version to the version in the XSAVE buffer, it is important then that
1420 at this point we initialise to the default values any features in
1421 XSAVE that are not yet initialised.
1423 This could be made more efficient, we know which features (from
1424 REGNUM) we will be potentially updating, and could limit ourselves to
1425 only clearing that feature. However, the extra complexity does not
1426 seem justified at this point. */
1429 if ((clear_bv & X86_XSTATE_PKRU))
1430 for (i = I387_PKRU_REGNUM (tdep);
1431 i < I387_PKEYSEND_REGNUM (tdep); i++)
1432 memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4);
1434 if ((clear_bv & X86_XSTATE_BNDREGS))
1435 for (i = I387_BND0R_REGNUM (tdep);
1436 i < I387_BNDCFGU_REGNUM (tdep); i++)
1437 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16);
1439 if ((clear_bv & X86_XSTATE_BNDCFG))
1440 for (i = I387_BNDCFGU_REGNUM (tdep);
1441 i < I387_MPXEND_REGNUM (tdep); i++)
1442 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8);
1444 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1445 for (i = I387_ZMM0H_REGNUM (tdep);
1446 i < I387_ZMMENDH_REGNUM (tdep); i++)
1447 memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32);
1449 if ((clear_bv & X86_XSTATE_K))
1450 for (i = I387_K0_REGNUM (tdep);
1451 i < I387_KEND_REGNUM (tdep); i++)
1452 memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8);
1454 if ((clear_bv & X86_XSTATE_ZMM))
1456 for (i = I387_YMM16H_REGNUM (tdep);
1457 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1458 memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1459 for (i = I387_XMM16_REGNUM (tdep);
1460 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1461 memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1464 if ((clear_bv & X86_XSTATE_AVX))
1465 for (i = I387_YMM0H_REGNUM (tdep);
1466 i < I387_YMMENDH_REGNUM (tdep); i++)
1467 memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16);
1469 if ((clear_bv & X86_XSTATE_SSE))
1470 for (i = I387_XMM0_REGNUM (tdep);
1471 i < I387_MXCSR_REGNUM (tdep); i++)
1472 memset (FXSAVE_ADDR (tdep, regs, i), 0, 16);
1474 /* The mxcsr register is written into the xsave buffer if either AVX
1475 or SSE is enabled, so only clear it if both of those features
1476 require clearing. */
1477 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1478 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
1479 store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order,
1480 I387_MXCSR_INIT_VAL);
1482 if ((clear_bv & X86_XSTATE_X87))
1484 for (i = I387_ST0_REGNUM (tdep);
1485 i < I387_FCTRL_REGNUM (tdep); i++)
1486 memset (FXSAVE_ADDR (tdep, regs, i), 0, 10);
1488 for (i = I387_FCTRL_REGNUM (tdep);
1489 i < I387_XMM0_REGNUM (tdep); i++)
1491 if (i == I387_FCTRL_REGNUM (tdep))
1492 store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2,
1493 byte_order, I387_FCTRL_INIT_VAL);
1495 memset (FXSAVE_ADDR (tdep, regs, i), 0,
1496 regcache_register_size (regcache, i));
1501 if (regclass == all)
1503 /* Check if any PKEYS registers are changed. */
1504 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1505 for (i = I387_PKRU_REGNUM (tdep);
1506 i < I387_PKEYSEND_REGNUM (tdep); i++)
1508 regcache_raw_collect (regcache, i, raw);
1509 p = XSAVE_PKEYS_ADDR (tdep, regs, i);
1510 if (memcmp (raw, p, 4) != 0)
1512 xstate_bv |= X86_XSTATE_PKRU;
1517 /* Check if any ZMMH registers are changed. */
1518 if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1519 for (i = I387_ZMM0H_REGNUM (tdep);
1520 i < I387_ZMMENDH_REGNUM (tdep); i++)
1522 regcache_raw_collect (regcache, i, raw);
1523 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i);
1524 if (memcmp (raw, p, 32) != 0)
1526 xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
1527 memcpy (p, raw, 32);
1531 /* Check if any K registers are changed. */
1532 if ((tdep->xcr0 & X86_XSTATE_K))
1533 for (i = I387_K0_REGNUM (tdep);
1534 i < I387_KEND_REGNUM (tdep); i++)
1536 regcache_raw_collect (regcache, i, raw);
1537 p = XSAVE_AVX512_K_ADDR (tdep, regs, i);
1538 if (memcmp (raw, p, 8) != 0)
1540 xstate_bv |= X86_XSTATE_K;
1545 /* Check if any XMM or upper YMM registers are changed. */
1546 if ((tdep->xcr0 & X86_XSTATE_ZMM))
1548 for (i = I387_YMM16H_REGNUM (tdep);
1549 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1551 regcache_raw_collect (regcache, i, raw);
1552 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i);
1553 if (memcmp (raw, p, 16) != 0)
1555 xstate_bv |= X86_XSTATE_ZMM;
1556 memcpy (p, raw, 16);
1559 for (i = I387_XMM16_REGNUM (tdep);
1560 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1562 regcache_raw_collect (regcache, i, raw);
1563 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i);
1564 if (memcmp (raw, p, 16) != 0)
1566 xstate_bv |= X86_XSTATE_ZMM;
1567 memcpy (p, raw, 16);
1572 /* Check if any upper MPX registers are changed. */
1573 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1574 for (i = I387_BND0R_REGNUM (tdep);
1575 i < I387_BNDCFGU_REGNUM (tdep); i++)
1577 regcache_raw_collect (regcache, i, raw);
1578 p = XSAVE_MPX_ADDR (tdep, regs, i);
1579 if (memcmp (raw, p, 16))
1581 xstate_bv |= X86_XSTATE_BNDREGS;
1582 memcpy (p, raw, 16);
1586 /* Check if any upper MPX registers are changed. */
1587 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1588 for (i = I387_BNDCFGU_REGNUM (tdep);
1589 i < I387_MPXEND_REGNUM (tdep); i++)
1591 regcache_raw_collect (regcache, i, raw);
1592 p = XSAVE_MPX_ADDR (tdep, regs, i);
1593 if (memcmp (raw, p, 8))
1595 xstate_bv |= X86_XSTATE_BNDCFG;
1600 /* Check if any upper YMM registers are changed. */
1601 if ((tdep->xcr0 & X86_XSTATE_AVX))
1602 for (i = I387_YMM0H_REGNUM (tdep);
1603 i < I387_YMMENDH_REGNUM (tdep); i++)
1605 regcache_raw_collect (regcache, i, raw);
1606 p = XSAVE_AVXH_ADDR (tdep, regs, i);
1607 if (memcmp (raw, p, 16))
1609 xstate_bv |= X86_XSTATE_AVX;
1610 memcpy (p, raw, 16);
1614 /* Check if any SSE registers are changed. */
1615 if ((tdep->xcr0 & X86_XSTATE_SSE))
1616 for (i = I387_XMM0_REGNUM (tdep);
1617 i < I387_MXCSR_REGNUM (tdep); i++)
1619 regcache_raw_collect (regcache, i, raw);
1620 p = FXSAVE_ADDR (tdep, regs, i);
1621 if (memcmp (raw, p, 16))
1623 xstate_bv |= X86_XSTATE_SSE;
1624 memcpy (p, raw, 16);
1628 if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE))
1630 i = I387_MXCSR_REGNUM (tdep);
1631 regcache_raw_collect (regcache, i, raw);
1632 p = FXSAVE_MXCSR_ADDR (regs);
1633 if (memcmp (raw, p, 4))
1635 /* Now, we need to mark one of either SSE of AVX as enabled.
1636 We could pick either. What we do is check to see if one
1637 of the features is already enabled, if it is then we leave
1638 it at that, otherwise we pick SSE. */
1639 if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0)
1640 xstate_bv |= X86_XSTATE_SSE;
1645 /* Check if any X87 registers are changed. Only the non-control
1646 registers are handled here, the control registers are all handled
1647 later on in this function. */
1648 if ((tdep->xcr0 & X86_XSTATE_X87))
1649 for (i = I387_ST0_REGNUM (tdep);
1650 i < I387_FCTRL_REGNUM (tdep); i++)
1652 regcache_raw_collect (regcache, i, raw);
1653 p = FXSAVE_ADDR (tdep, regs, i);
1654 if (memcmp (raw, p, 10))
1656 xstate_bv |= X86_XSTATE_X87;
1657 memcpy (p, raw, 10);
1663 /* Check if REGNUM is changed. */
1664 regcache_raw_collect (regcache, regnum, raw);
1669 internal_error (__FILE__, __LINE__,
1670 _("invalid i387 regclass"));
1673 /* This is a PKEYS register. */
1674 p = XSAVE_PKEYS_ADDR (tdep, regs, regnum);
1675 if (memcmp (raw, p, 4) != 0)
1677 xstate_bv |= X86_XSTATE_PKRU;
1683 /* This is a ZMM register. */
1684 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum);
1685 if (memcmp (raw, p, 32) != 0)
1687 xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
1688 memcpy (p, raw, 32);
1692 /* This is a AVX512 mask register. */
1693 p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum);
1694 if (memcmp (raw, p, 8) != 0)
1696 xstate_bv |= X86_XSTATE_K;
1701 case avx512_ymmh_avx512:
1702 /* This is an upper YMM16-31 register. */
1703 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum);
1704 if (memcmp (raw, p, 16) != 0)
1706 xstate_bv |= X86_XSTATE_ZMM;
1707 memcpy (p, raw, 16);
1711 case avx512_xmm_avx512:
1712 /* This is an upper XMM16-31 register. */
1713 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum);
1714 if (memcmp (raw, p, 16) != 0)
1716 xstate_bv |= X86_XSTATE_ZMM;
1717 memcpy (p, raw, 16);
1722 /* This is an upper YMM register. */
1723 p = XSAVE_AVXH_ADDR (tdep, regs, regnum);
1724 if (memcmp (raw, p, 16))
1726 xstate_bv |= X86_XSTATE_AVX;
1727 memcpy (p, raw, 16);
1732 if (regnum < I387_BNDCFGU_REGNUM (tdep))
1734 regcache_raw_collect (regcache, regnum, raw);
1735 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
1736 if (memcmp (raw, p, 16))
1738 xstate_bv |= X86_XSTATE_BNDREGS;
1739 memcpy (p, raw, 16);
1744 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
1745 xstate_bv |= X86_XSTATE_BNDCFG;
1751 /* This is an SSE register. */
1752 p = FXSAVE_ADDR (tdep, regs, regnum);
1753 if (memcmp (raw, p, 16))
1755 xstate_bv |= X86_XSTATE_SSE;
1756 memcpy (p, raw, 16);
1761 /* This is an x87 register. */
1762 p = FXSAVE_ADDR (tdep, regs, regnum);
1763 if (memcmp (raw, p, 10))
1765 xstate_bv |= X86_XSTATE_X87;
1766 memcpy (p, raw, 10);
1770 case x87_ctrl_or_mxcsr:
1771 /* We only handle MXCSR here. All other x87 control registers
1772 are handled separately below. */
1773 if (regnum == I387_MXCSR_REGNUM (tdep))
1775 p = FXSAVE_MXCSR_ADDR (regs);
1776 if (memcmp (raw, p, 2))
1778 /* We're only setting MXCSR, so check the initial state
1779 to see if either of AVX or SSE are already enabled.
1780 If they are then we'll attribute this changed MXCSR to
1781 that feature. If neither feature is enabled, then
1782 we'll attribute this change to the SSE feature. */
1783 xstate_bv |= (initial_xstate_bv
1784 & (X86_XSTATE_AVX | X86_XSTATE_SSE));
1785 if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0)
1786 xstate_bv |= X86_XSTATE_SSE;
1793 /* Only handle x87 control registers. */
1794 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1795 if (regnum == -1 || regnum == i)
1797 /* Most of the FPU control registers occupy only 16 bits in
1798 the xsave extended state. Give those a special treatment. */
1799 if (i != I387_FIOFF_REGNUM (tdep)
1800 && i != I387_FOOFF_REGNUM (tdep))
1804 regcache_raw_collect (regcache, i, buf);
1806 if (i == I387_FOP_REGNUM (tdep))
1808 /* The opcode occupies only 11 bits. Make sure we
1809 don't touch the other bits. */
1810 buf[1] &= ((1 << 3) - 1);
1811 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
1813 else if (i == I387_FTAG_REGNUM (tdep))
1815 /* Converting back is much easier. */
1817 unsigned short ftag;
1820 ftag = (buf[1] << 8) | buf[0];
1824 for (fpreg = 7; fpreg >= 0; fpreg--)
1826 int tag = (ftag >> (fpreg * 2)) & 3;
1829 buf[0] |= (1 << fpreg);
1832 p = FXSAVE_ADDR (tdep, regs, i);
1833 if (memcmp (p, buf, 2))
1835 xstate_bv |= X86_XSTATE_X87;
1843 regcache_raw_collect (regcache, i, raw);
1844 regsize = regcache_register_size (regcache, i);
1845 p = FXSAVE_ADDR (tdep, regs, i);
1846 if (memcmp (raw, p, regsize))
1848 xstate_bv |= X86_XSTATE_X87;
1849 memcpy (p, raw, regsize);
1854 /* Update the corresponding bits in `xstate_bv' if any
1855 registers are changed. */
1858 /* The supported bits in `xstat_bv' are 8 bytes. */
1859 initial_xstate_bv |= xstate_bv;
1860 store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1866 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
1870 i387_tag (const gdb_byte *raw)
1873 unsigned int exponent;
1874 unsigned long fraction[2];
1876 integer = raw[7] & 0x80;
1877 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
1878 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
1879 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
1880 | (raw[5] << 8) | raw[4]);
1882 if (exponent == 0x7fff)
1887 else if (exponent == 0x0000)
1889 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
1915 /* Prepare the FPU stack in REGCACHE for a function return. */
1918 i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
1920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1923 /* Set the top of the floating-point register stack to 7. The
1924 actual value doesn't really matter, but 7 is what a normal
1925 function return would end up with if the program started out with
1926 a freshly initialized FPU. */
1927 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1929 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1931 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
1932 floating-point register stack to 7, the appropriate value for the
1933 tag word is 0x3fff. */
1934 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1938 /* See i387-tdep.h. */
1941 i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache)
1943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1945 if (I387_BND0R_REGNUM (tdep) > 0)
1947 gdb_byte bnd_buf[16];
1949 memset (bnd_buf, 0, 16);
1950 for (int i = 0; i < I387_NUM_BND_REGS; i++)
1951 regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf);