1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
39 #include "arch-utils.h"
43 #include "opcode/mips.h"
48 /* A useful bit in the CP0 status register (PS_REGNUM). */
49 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50 #define ST0_FR (1 << 26)
52 /* The sizes of floating point registers. */
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
60 /* All the possible MIPS ABIs. */
74 static const char *mips_abi_string;
76 static const char *mips_abi_strings[] = {
87 struct frame_extra_info
89 mips_extra_func_info_t proc_desc;
93 /* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
97 static const char size_auto[] = "auto";
98 static const char size_32[] = "32";
99 static const char size_64[] = "64";
101 static const char *size_enums[] = {
108 /* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
119 #ifndef MIPS_DEFAULT_FPU_TYPE
120 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
122 static int mips_fpu_type_auto = 1;
123 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
125 static int mips_debug = 0;
127 /* MIPS specific per-architecture information */
130 /* from the elf header */
134 enum mips_abi mips_abi;
135 enum mips_abi found_abi;
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
139 int mips_default_saved_regsize;
140 int mips_fp_register_double;
141 int mips_default_stack_argsize;
142 int gdb_target_is_mips64;
143 int default_mask_address_p;
145 enum gdb_osabi osabi;
148 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
151 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
153 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
155 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
157 /* Return the currently configured (or set) saved register size. */
159 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
161 static const char *mips_saved_regsize_string = size_auto;
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
166 mips_saved_regsize (void)
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
172 else /* if (mips_saved_regsize_string == size_32) */
176 /* Functions for setting and testing a bit in a minimal symbol that
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
191 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
202 msymbol_is_special (struct minimal_symbol *msym)
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
208 msymbol_size (struct minimal_symbol *msym)
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
213 /* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
219 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
232 case BFD_ENDIAN_LITTLE:
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
239 internal_error (__FILE__, __LINE__, "bad switch");
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
245 if (mips_debug && out != NULL)
248 fprintf_unfiltered (gdb_stdlog, "out ");
249 for (i = 0; i < length; i++)
250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
259 fprintf_unfiltered (gdb_stdlog, "in ");
260 for (i = 0; i < length; i++)
261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
264 fprintf_unfiltered (gdb_stdlog, "\n");
267 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
272 mips2_fp_compat (void)
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
292 /* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
297 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
299 /* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
303 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
305 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
307 static const char *mips_stack_argsize_string = size_auto;
310 mips_stack_argsize (void)
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
316 else /* if (mips_stack_argsize_string == size_32) */
320 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
322 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
324 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
326 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
328 static void mips_print_register (int, int);
330 static mips_extra_func_info_t
331 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
333 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
335 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
337 static int mips_set_processor_type (char *);
339 static void mips_show_processor_type_command (char *, int);
341 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
343 static mips_extra_func_info_t
344 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
346 static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
349 static void mips_read_fp_register_single (int regno, char *rare_buffer);
350 static void mips_read_fp_register_double (int regno, char *rare_buffer);
352 static struct type *mips_float_register_type (void);
353 static struct type *mips_double_register_type (void);
355 /* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
358 char *mips_processor_type;
360 char *tmp_mips_processor_type;
362 /* The list of available "set mips " and "show mips " commands */
364 static struct cmd_list_element *setmipscmdlist = NULL;
365 static struct cmd_list_element *showmipscmdlist = NULL;
367 /* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
370 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371 char **mips_processor_reg_names = mips_generic_reg_names;
374 mips_register_name (int i)
376 return mips_processor_reg_names[i];
379 /* Names of IDT R3041 registers. */
381 char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
391 "fsr", "fir", "",/*"fp"*/ "",
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
396 /* Names of IDT R3051 registers. */
398 char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
408 "fsr", "fir", ""/*"fp"*/, "",
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
413 /* Names of IDT R3081 registers. */
415 char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
425 "fsr", "fir", ""/*"fp"*/, "",
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
430 /* Names of LSI 33k registers. */
432 char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
450 } mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
464 /* Table to translate MIPS16 register field to actual register number. */
465 static int mips16_to_32_reg[8] =
466 {16, 17, 2, 3, 4, 5, 6, 7};
468 /* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
472 static unsigned int heuristic_fence_post = 0;
474 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
476 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
484 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
486 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487 #define _PROC_MAGIC_ 0x0F0F0F0F
488 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
491 struct linked_proc_info
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
496 *linked_proc_desc_table = NULL;
499 mips_print_extra_frame_info (struct frame_info *fi)
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
505 printf_filtered (" frame pointer is at %s+%s\n",
506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
510 /* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
514 static int mips64_transfers_32bit_regs_p = 0;
517 mips_register_raw_size (int reg_nr)
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
530 /* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
534 mips_register_convertible (int reg_nr)
536 if (mips64_transfers_32bit_regs_p)
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
543 mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
553 TYPE_LENGTH (virtual_type));
557 mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
564 TYPE_LENGTH (virtual_type));
568 TYPE_LENGTH (virtual_type));
572 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
588 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
590 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
603 /* Return the GDB type object for the "standard" data type
604 of data in register REG.
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
614 mips_register_virtual_type (int reg)
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
622 return builtin_type_ieee_double_little;
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
635 return builtin_type_uint32;
639 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
647 /* Should the upper word of 64-bit addresses be zeroed? */
648 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
651 mips_mask_address_p (void)
653 switch (mask_address_var)
655 case AUTO_BOOLEAN_TRUE:
657 case AUTO_BOOLEAN_FALSE:
660 case AUTO_BOOLEAN_AUTO:
661 return MIPS_DEFAULT_MASK_ADDRESS_P;
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
670 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
672 switch (mask_address_var)
674 case AUTO_BOOLEAN_TRUE:
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
677 case AUTO_BOOLEAN_FALSE:
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
680 case AUTO_BOOLEAN_AUTO:
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
691 /* Should call_function allocate stack space for a struct return? */
694 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
700 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
706 mips_o32_use_struct_convention (int gcc_p, struct type *type)
708 return 1; /* Structures are returned by ref in extra arg0. */
711 /* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
716 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
728 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
734 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
739 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
742 pc_is_mips16 (bfd_vma memaddr)
744 struct minimal_symbol *sym;
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
755 return msymbol_is_special (sym);
760 /* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
764 mips_read_pc (ptid_t ptid)
766 return read_signed_register_pid (PC_REGNUM, ptid);
769 /* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
773 after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
785 proc_desc = find_proc_desc (pc, NULL, 0);
789 /* If function is frameless, then we need to do it the hard way. I
790 strongly suspect that frameless always means prologueless... */
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
799 sal = find_pc_line (func_addr, 0);
801 if (sal.end < func_end)
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
810 /* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
816 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
825 /* It might be possible to use the instruction to
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
843 /* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
849 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
867 /* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
871 mips_fetch_instruction (CORE_ADDR addr)
873 char buf[MIPS_INSTLEN];
877 if (pc_is_mips16 (addr))
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
883 instlen = MIPS_INSTLEN;
884 status = read_memory_nobpt (addr, buf, instlen);
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
891 /* These the fields of 32 bit mips instructions */
892 #define mips32_op(x) (x >> 26)
893 #define itype_op(x) (x >> 26)
894 #define itype_rs(x) ((x >> 21) & 0x1f)
895 #define itype_rt(x) ((x >> 16) & 0x1f)
896 #define itype_immediate(x) (x & 0xffff)
898 #define jtype_op(x) (x >> 26)
899 #define jtype_target(x) (x & 0x03ffffff)
901 #define rtype_op(x) (x >> 26)
902 #define rtype_rs(x) ((x >> 21) & 0x1f)
903 #define rtype_rt(x) ((x >> 16) & 0x1f)
904 #define rtype_rd(x) ((x >> 11) & 0x1f)
905 #define rtype_shamt(x) ((x >> 6) & 0x1f)
906 #define rtype_funct(x) (x & 0x3f)
909 mips32_relative_offset (unsigned long inst)
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
915 x |= 0xffff0000; /* sign extension */
921 /* Determine whate to set a single step breakpoint while considering
924 mips32_next_pc (CORE_ADDR pc)
928 inst = mips_fetch_instruction (pc);
929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
934 op = (itype_op (inst) & 0x03);
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
963 pc += 4; /* Not a branch, next instruction is easy */
966 { /* This gets way messy */
968 /* Further subdivide into SPECIAL, REGIMM and other */
969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
984 break; /* end SPECIAL */
987 op = itype_rt (inst); /* branch condition */
992 case 16: /* BLTZAL */
993 case 18: /* BLTZALL */
995 if (read_signed_register (itype_rs (inst)) < 0)
996 pc += mips32_relative_offset (inst) + 4;
998 pc += 8; /* after the delay slot */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
1004 greater_equal_branch:
1005 if (read_signed_register (itype_rs (inst)) >= 0)
1006 pc += mips32_relative_offset (inst) + 4;
1008 pc += 8; /* after the delay slot */
1010 /* All of the other instructions in the REGIMM category */
1015 break; /* end REGIMM */
1020 reg = jtype_target (inst) << 2;
1021 /* Upper four bits get never changed... */
1022 pc = reg + ((pc + 4) & 0xf0000000);
1025 /* FIXME case JALX : */
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1032 break; /* The new PC will be alternate mode */
1033 case 4: /* BEQ, BEQL */
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
1037 pc += mips32_relative_offset (inst) + 4;
1041 case 5: /* BNE, BNEL */
1043 if (read_signed_register (itype_rs (inst)) !=
1044 read_signed_register (itype_rt (inst)))
1045 pc += mips32_relative_offset (inst) + 4;
1049 case 6: /* BLEZ, BLEZL */
1051 if (read_signed_register (itype_rs (inst) <= 0))
1052 pc += mips32_relative_offset (inst) + 4;
1058 greater_branch: /* BGTZ, BGTZL */
1059 if (read_signed_register (itype_rs (inst) > 0))
1060 pc += mips32_relative_offset (inst) + 4;
1067 } /* mips32_next_pc */
1069 /* Decoding the next place to set a breakpoint is irregular for the
1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1076 /* Lots of mips16 instruction formats */
1077 /* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
1080 enum mips16_inst_fmts
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1105 /* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
1110 unsigned int regx; /* Function in i8 type */
1115 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
1119 extended_offset (unsigned int extension)
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1126 value |= extension & 0x01f; /* extract 4:0 */
1130 /* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
1135 /* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1140 fetch_mips_16 (CORE_ADDR pc)
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
1149 unpack_mips16 (CORE_ADDR pc,
1150 unsigned int extension,
1152 enum mips16_inst_fmts insn_format,
1153 struct upk_mips16 *upk)
1158 switch (insn_format)
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
1167 value |= inst & 0x7ff; /* eleven bits from instruction */
1171 value = inst & 0x7ff;
1172 /* FIXME : Consider sign extension */
1181 { /* A register identifier and an offset */
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1193 value &= ~0x3fff; /* remove the sign bit */
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1204 value &= 0xef; /* remove the sign bit */
1214 unsigned long value;
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1226 internal_error (__FILE__, __LINE__,
1229 upk->offset = offset;
1236 add_offset_16 (CORE_ADDR pc, int offset)
1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1242 extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1246 int op = (insn >> 11);
1249 case 2: /* Branch */
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1260 pc += (offset << 1) + 2;
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1276 struct upk_mips16 upk;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1281 pc += (upk.offset << 1) + 2;
1288 struct upk_mips16 upk;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1293 pc += (upk.offset << 1) + 2;
1298 case 12: /* I8 Formats btez btnez */
1300 struct upk_mips16 upk;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1330 break; /* Function return instruction */
1336 break; /* BOGUS Guess */
1338 pc = read_signed_register (reg);
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1363 mips16_next_pc (CORE_ADDR pc)
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1369 /* The mips_next_pc function supports single_step when the remote
1370 target monitor or stub is not developed enough to do a single_step.
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
1375 mips_next_pc (CORE_ADDR pc)
1378 return mips16_next_pc (pc);
1380 return mips32_next_pc (pc);
1383 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
1395 mips_find_saved_regs (struct frame_info *fci)
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1406 frame_saved_regs_zalloc (fci);
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412 #ifndef SIGFRAME_BASE
1413 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415 #define SIGFRAME_BASE MIPS_REGSIZE
1416 /* FIXME! Are these correct?? */
1417 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419 #define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1422 #ifndef SIGFRAME_REG_SIZE
1423 /* FIXME! Is this correct?? */
1424 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1426 if (fci->signal_handler_caller)
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1444 proc_desc = fci->extra_info->proc_desc;
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || fci->next->signal_handler_caller)
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1475 /* We need to figure out whether the registers that the proc_desc
1476 claims are saved have been saved yet. */
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1504 /* Fill in the offsets for the registers which gen_mask says
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1508 if (gen_mask & 0x80000000)
1510 fci->saved_regs[ireg] = reg_position;
1511 reg_position -= MIPS_SAVED_REGSIZE;
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1524 int sreg_count = (inst >> 6) & 3;
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1529 reg_position -= MIPS_SAVED_REGSIZE;
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
1532 for (reg = 16; reg < sreg_count + 16; reg++)
1534 fci->saved_regs[reg] = reg_position;
1535 reg_position -= MIPS_SAVED_REGSIZE;
1540 /* Fill in the offsets for the registers which float_mask says
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1557 if (MIPS_SAVED_REGSIZE == 4)
1558 reg_position += MIPS_SAVED_REGSIZE;
1560 /* Fill in the offsets for the float registers which float_mask says
1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1563 if (float_mask & 0x80000000)
1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1566 reg_position -= MIPS_SAVED_REGSIZE;
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1572 /* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1580 mips_frame_init_saved_regs (struct frame_info *frame)
1582 if (frame->saved_regs == NULL)
1584 mips_find_saved_regs (frame);
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1590 read_next_frame_reg (struct frame_info *fi, int regno)
1595 enum lval_type lval;
1596 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1597 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1599 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1600 should have a pseudo register range that correspons to the ABI's,
1601 rather than the ISA's, view of registers. These registers would
1602 then implicitly describe their size and hence could be used
1603 without the below munging. */
1604 if (lval == lval_memory)
1608 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1610 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1614 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1617 /* mips_addr_bits_remove - remove useless address bits */
1620 mips_addr_bits_remove (CORE_ADDR addr)
1622 if (GDB_TARGET_IS_MIPS64)
1624 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1626 /* This hack is a work-around for existing boards using
1627 PMON, the simulator, and any other 64-bit targets that
1628 doesn't have true 64-bit addressing. On these targets,
1629 the upper 32 bits of addresses are ignored by the
1630 hardware. Thus, the PC or SP are likely to have been
1631 sign extended to all 1s by instruction sequences that
1632 load 32-bit addresses. For example, a typical piece of
1633 code that loads an address is this:
1634 lui $r2, <upper 16 bits>
1635 ori $r2, <lower 16 bits>
1636 But the lui sign-extends the value such that the upper 32
1637 bits may be all 1s. The workaround is simply to mask off
1638 these bits. In the future, gcc may be changed to support
1639 true 64-bit addressing, and this masking will have to be
1641 addr &= (CORE_ADDR) 0xffffffff;
1644 else if (mips_mask_address_p ())
1646 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1647 masking off bits, instead, the actual target should be asking
1648 for the address to be converted to a valid pointer. */
1649 /* Even when GDB is configured for some 32-bit targets
1650 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1651 so CORE_ADDR is 64 bits. So we still have to mask off
1652 useless bits from addresses. */
1653 addr &= (CORE_ADDR) 0xffffffff;
1658 /* mips_software_single_step() is called just before we want to resume
1659 the inferior, if we want to single-step it but there is no hardware
1660 or kernel single-step support (MIPS on GNU/Linux for example). We find
1661 the target of the coming instruction and breakpoint it.
1663 single_step is also called just after the inferior stops. If we had
1664 set up a simulated single-step, we undo our damage. */
1667 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1669 static CORE_ADDR next_pc;
1670 typedef char binsn_quantum[BREAKPOINT_MAX];
1671 static binsn_quantum break_mem;
1674 if (insert_breakpoints_p)
1676 pc = read_register (PC_REGNUM);
1677 next_pc = mips_next_pc (pc);
1679 target_insert_breakpoint (next_pc, break_mem);
1682 target_remove_breakpoint (next_pc, break_mem);
1686 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1690 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1691 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1692 tmp = SKIP_TRAMPOLINE_CODE (pc);
1693 prev->pc = tmp ? tmp : pc;
1698 mips_frame_saved_pc (struct frame_info *frame)
1701 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1702 /* We have to get the saved pc from the sigcontext
1703 if it is a signal handler frame. */
1704 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1705 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1707 if (USE_GENERIC_DUMMY_FRAMES
1708 && PC_IN_CALL_DUMMY (frame->pc, 0, 0))
1711 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1714 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1715 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1717 saved_pc = read_next_frame_reg (frame, pcreg);
1719 return ADDR_BITS_REMOVE (saved_pc);
1722 static struct mips_extra_func_info temp_proc_desc;
1723 static CORE_ADDR temp_saved_regs[NUM_REGS];
1725 /* Set a register's saved stack address in temp_saved_regs. If an address
1726 has already been set for this register, do nothing; this way we will
1727 only recognize the first save of a given register in a function prologue.
1728 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1731 set_reg_offset (int regno, CORE_ADDR offset)
1733 if (temp_saved_regs[regno] == 0)
1734 temp_saved_regs[regno] = offset;
1738 /* Test whether the PC points to the return instruction at the
1739 end of a function. */
1742 mips_about_to_return (CORE_ADDR pc)
1744 if (pc_is_mips16 (pc))
1745 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1746 generates a "jr $ra"; other times it generates code to load
1747 the return address from the stack to an accessible register (such
1748 as $a3), then a "jr" using that register. This second case
1749 is almost impossible to distinguish from an indirect jump
1750 used for switch statements, so we don't even try. */
1751 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1753 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1757 /* This fencepost looks highly suspicious to me. Removing it also
1758 seems suspicious as it could affect remote debugging across serial
1762 heuristic_proc_start (CORE_ADDR pc)
1769 pc = ADDR_BITS_REMOVE (pc);
1771 fence = start_pc - heuristic_fence_post;
1775 if (heuristic_fence_post == UINT_MAX
1776 || fence < VM_MIN_ADDRESS)
1777 fence = VM_MIN_ADDRESS;
1779 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1781 /* search back for previous return */
1782 for (start_pc -= instlen;; start_pc -= instlen)
1783 if (start_pc < fence)
1785 /* It's not clear to me why we reach this point when
1786 stop_soon_quietly, but with this test, at least we
1787 don't print out warnings for every child forked (eg, on
1789 if (!stop_soon_quietly)
1791 static int blurb_printed = 0;
1793 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1798 /* This actually happens frequently in embedded
1799 development, when you first connect to a board
1800 and your stack pointer and pc are nowhere in
1801 particular. This message needs to give people
1802 in that situation enough information to
1803 determine that it's no big deal. */
1804 printf_filtered ("\n\
1805 GDB is unable to find the start of the function at 0x%s\n\
1806 and thus can't determine the size of that function's stack frame.\n\
1807 This means that GDB may be unable to access that stack frame, or\n\
1808 the frames below it.\n\
1809 This problem is most likely caused by an invalid program counter or\n\
1811 However, if you think GDB should simply search farther back\n\
1812 from 0x%s for code which looks like the beginning of a\n\
1813 function, you can increase the range of the search using the `set\n\
1814 heuristic-fence-post' command.\n",
1815 paddr_nz (pc), paddr_nz (pc));
1822 else if (pc_is_mips16 (start_pc))
1824 unsigned short inst;
1826 /* On MIPS16, any one of the following is likely to be the
1827 start of a function:
1831 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1832 inst = mips_fetch_instruction (start_pc);
1833 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1834 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1835 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1836 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1838 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1839 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1844 else if (mips_about_to_return (start_pc))
1846 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1853 /* Fetch the immediate value from a MIPS16 instruction.
1854 If the previous instruction was an EXTEND, use it to extend
1855 the upper bits of the immediate value. This is a helper function
1856 for mips16_heuristic_proc_desc. */
1859 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1860 unsigned short inst, /* current instruction */
1861 int nbits, /* number of bits in imm field */
1862 int scale, /* scale factor to be applied to imm */
1863 int is_signed) /* is the imm field signed? */
1867 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1869 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1870 if (offset & 0x8000) /* check for negative extend */
1871 offset = 0 - (0x10000 - (offset & 0xffff));
1872 return offset | (inst & 0x1f);
1876 int max_imm = 1 << nbits;
1877 int mask = max_imm - 1;
1878 int sign_bit = max_imm >> 1;
1880 offset = inst & mask;
1881 if (is_signed && (offset & sign_bit))
1882 offset = 0 - (max_imm - offset);
1883 return offset * scale;
1888 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1889 stream from start_pc to limit_pc. */
1892 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1893 struct frame_info *next_frame, CORE_ADDR sp)
1896 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1897 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1898 unsigned inst = 0; /* current instruction */
1899 unsigned entry_inst = 0; /* the entry instruction */
1902 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1903 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1905 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1907 /* Save the previous instruction. If it's an EXTEND, we'll extract
1908 the immediate offset extension from it in mips16_get_imm. */
1911 /* Fetch and decode the instruction. */
1912 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1913 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1914 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1916 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1917 if (offset < 0) /* negative stack adjustment? */
1918 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1920 /* Exit loop if a positive stack adjustment is found, which
1921 usually means that the stack cleanup code in the function
1922 epilogue is reached. */
1925 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1927 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1928 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1929 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1930 set_reg_offset (reg, sp + offset);
1932 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1934 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1935 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1936 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1937 set_reg_offset (reg, sp + offset);
1939 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1941 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1942 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1943 set_reg_offset (RA_REGNUM, sp + offset);
1945 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1947 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1948 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1949 set_reg_offset (RA_REGNUM, sp + offset);
1951 else if (inst == 0x673d) /* move $s1, $sp */
1954 PROC_FRAME_REG (&temp_proc_desc) = 17;
1956 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1958 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1959 frame_addr = sp + offset;
1960 PROC_FRAME_REG (&temp_proc_desc) = 17;
1961 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1963 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1965 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1966 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1967 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1968 set_reg_offset (reg, frame_addr + offset);
1970 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1972 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1973 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1974 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1975 set_reg_offset (reg, frame_addr + offset);
1977 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1978 entry_inst = inst; /* save for later processing */
1979 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1980 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1983 /* The entry instruction is typically the first instruction in a function,
1984 and it stores registers at offsets relative to the value of the old SP
1985 (before the prologue). But the value of the sp parameter to this
1986 function is the new SP (after the prologue has been executed). So we
1987 can't calculate those offsets until we've seen the entire prologue,
1988 and can calculate what the old SP must have been. */
1989 if (entry_inst != 0)
1991 int areg_count = (entry_inst >> 8) & 7;
1992 int sreg_count = (entry_inst >> 6) & 3;
1994 /* The entry instruction always subtracts 32 from the SP. */
1995 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1997 /* Now we can calculate what the SP must have been at the
1998 start of the function prologue. */
1999 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2001 /* Check if a0-a3 were saved in the caller's argument save area. */
2002 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2004 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2005 set_reg_offset (reg, sp + offset);
2006 offset += MIPS_SAVED_REGSIZE;
2009 /* Check if the ra register was pushed on the stack. */
2011 if (entry_inst & 0x20)
2013 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2014 set_reg_offset (RA_REGNUM, sp + offset);
2015 offset -= MIPS_SAVED_REGSIZE;
2018 /* Check if the s0 and s1 registers were pushed on the stack. */
2019 for (reg = 16; reg < sreg_count + 16; reg++)
2021 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2022 set_reg_offset (reg, sp + offset);
2023 offset -= MIPS_SAVED_REGSIZE;
2029 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2030 struct frame_info *next_frame, CORE_ADDR sp)
2033 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2035 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2036 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2037 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2038 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2040 unsigned long inst, high_word, low_word;
2043 /* Fetch the instruction. */
2044 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2046 /* Save some code by pre-extracting some useful fields. */
2047 high_word = (inst >> 16) & 0xffff;
2048 low_word = inst & 0xffff;
2049 reg = high_word & 0x1f;
2051 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2052 || high_word == 0x23bd /* addi $sp,$sp,-i */
2053 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2055 if (low_word & 0x8000) /* negative stack adjustment? */
2056 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2058 /* Exit loop if a positive stack adjustment is found, which
2059 usually means that the stack cleanup code in the function
2060 epilogue is reached. */
2063 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2065 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2066 set_reg_offset (reg, sp + low_word);
2068 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2070 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2071 but the register size used is only 32 bits. Make the address
2072 for the saved register point to the lower 32 bits. */
2073 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2074 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2076 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2078 /* Old gcc frame, r30 is virtual frame pointer. */
2079 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2080 frame_addr = sp + low_word;
2081 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2083 unsigned alloca_adjust;
2084 PROC_FRAME_REG (&temp_proc_desc) = 30;
2085 frame_addr = read_next_frame_reg (next_frame, 30);
2086 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2087 if (alloca_adjust > 0)
2089 /* FP > SP + frame_size. This may be because
2090 * of an alloca or somethings similar.
2091 * Fix sp to "pre-alloca" value, and try again.
2093 sp += alloca_adjust;
2098 /* move $30,$sp. With different versions of gas this will be either
2099 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2100 Accept any one of these. */
2101 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2103 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2104 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2106 unsigned alloca_adjust;
2107 PROC_FRAME_REG (&temp_proc_desc) = 30;
2108 frame_addr = read_next_frame_reg (next_frame, 30);
2109 alloca_adjust = (unsigned) (frame_addr - sp);
2110 if (alloca_adjust > 0)
2112 /* FP > SP + frame_size. This may be because
2113 * of an alloca or somethings similar.
2114 * Fix sp to "pre-alloca" value, and try again.
2116 sp += alloca_adjust;
2121 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2123 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2124 set_reg_offset (reg, frame_addr + low_word);
2129 static mips_extra_func_info_t
2130 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2131 struct frame_info *next_frame, int cur_frame)
2136 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2142 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2143 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2144 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2145 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2146 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2148 if (start_pc + 200 < limit_pc)
2149 limit_pc = start_pc + 200;
2150 if (pc_is_mips16 (start_pc))
2151 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2153 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2154 return &temp_proc_desc;
2157 struct mips_objfile_private
2163 /* Global used to communicate between non_heuristic_proc_desc and
2164 compare_pdr_entries within qsort (). */
2165 static bfd *the_bfd;
2168 compare_pdr_entries (const void *a, const void *b)
2170 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2171 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2175 else if (lhs == rhs)
2181 static mips_extra_func_info_t
2182 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2184 CORE_ADDR startaddr;
2185 mips_extra_func_info_t proc_desc;
2186 struct block *b = block_for_pc (pc);
2188 struct obj_section *sec;
2189 struct mips_objfile_private *priv;
2191 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2194 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2196 *addrptr = startaddr;
2200 sec = find_pc_section (pc);
2203 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2205 /* Search the ".pdr" section generated by GAS. This includes most of
2206 the information normally found in ECOFF PDRs. */
2208 the_bfd = sec->objfile->obfd;
2210 && (the_bfd->format == bfd_object
2211 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2212 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2214 /* Right now GAS only outputs the address as a four-byte sequence.
2215 This means that we should not bother with this method on 64-bit
2216 targets (until that is fixed). */
2218 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2219 sizeof (struct mips_objfile_private));
2221 sec->objfile->obj_private = priv;
2223 else if (priv == NULL)
2227 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2228 sizeof (struct mips_objfile_private));
2230 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2233 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2234 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2236 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2237 priv->contents, 0, priv->size);
2239 /* In general, the .pdr section is sorted. However, in the
2240 presence of multiple code sections (and other corner cases)
2241 it can become unsorted. Sort it so that we can use a faster
2243 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2248 sec->objfile->obj_private = priv;
2252 if (priv->size != 0)
2258 high = priv->size / 32;
2264 mid = (low + high) / 2;
2266 ptr = priv->contents + mid * 32;
2267 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2268 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2269 SECT_OFF_TEXT (sec->objfile));
2270 if (pdr_pc == startaddr)
2272 if (pdr_pc > startaddr)
2277 while (low != high);
2281 struct symbol *sym = find_pc_function (pc);
2283 /* Fill in what we need of the proc_desc. */
2284 proc_desc = (mips_extra_func_info_t)
2285 obstack_alloc (&sec->objfile->psymbol_obstack,
2286 sizeof (struct mips_extra_func_info));
2287 PROC_LOW_ADDR (proc_desc) = startaddr;
2289 /* Only used for dummy frames. */
2290 PROC_HIGH_ADDR (proc_desc) = 0;
2292 PROC_FRAME_OFFSET (proc_desc)
2293 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2294 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2296 PROC_FRAME_ADJUST (proc_desc) = 0;
2297 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2299 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2301 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2303 PROC_FREG_OFFSET (proc_desc)
2304 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2305 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2307 proc_desc->pdr.isym = (long) sym;
2317 if (startaddr > BLOCK_START (b))
2319 /* This is the "pathological" case referred to in a comment in
2320 print_frame_info. It might be better to move this check into
2325 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2327 /* If we never found a PDR for this function in symbol reading, then
2328 examine prologues to find the information. */
2331 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2332 if (PROC_FRAME_REG (proc_desc) == -1)
2342 static mips_extra_func_info_t
2343 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2345 mips_extra_func_info_t proc_desc;
2346 CORE_ADDR startaddr = 0;
2348 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2352 /* IF this is the topmost frame AND
2353 * (this proc does not have debugging information OR
2354 * the PC is in the procedure prologue)
2355 * THEN create a "heuristic" proc_desc (by analyzing
2356 * the actual code) to replace the "official" proc_desc.
2358 if (next_frame == NULL)
2360 struct symtab_and_line val;
2361 struct symbol *proc_symbol =
2362 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2366 val = find_pc_line (BLOCK_START
2367 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2369 val.pc = val.end ? val.end : pc;
2371 if (!proc_symbol || pc < val.pc)
2373 mips_extra_func_info_t found_heuristic =
2374 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2375 pc, next_frame, cur_frame);
2376 if (found_heuristic)
2377 proc_desc = found_heuristic;
2383 /* Is linked_proc_desc_table really necessary? It only seems to be used
2384 by procedure call dummys. However, the procedures being called ought
2385 to have their own proc_descs, and even if they don't,
2386 heuristic_proc_desc knows how to create them! */
2388 register struct linked_proc_info *link;
2390 for (link = linked_proc_desc_table; link; link = link->next)
2391 if (PROC_LOW_ADDR (&link->info) <= pc
2392 && PROC_HIGH_ADDR (&link->info) > pc)
2396 startaddr = heuristic_proc_start (pc);
2399 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2405 get_frame_pointer (struct frame_info *frame,
2406 mips_extra_func_info_t proc_desc)
2408 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2409 PROC_FRAME_REG (proc_desc)) +
2410 PROC_FRAME_OFFSET (proc_desc) -
2411 PROC_FRAME_ADJUST (proc_desc));
2414 static mips_extra_func_info_t cached_proc_desc;
2417 mips_frame_chain (struct frame_info *frame)
2419 mips_extra_func_info_t proc_desc;
2421 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2423 if (saved_pc == 0 || inside_entry_file (saved_pc))
2426 /* Check if the PC is inside a call stub. If it is, fetch the
2427 PC of the caller of that stub. */
2428 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2431 if (USE_GENERIC_DUMMY_FRAMES
2432 && PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2434 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2435 is well, frame->frame the bottom of the current frame will
2436 contain that value. */
2437 return frame->frame;
2440 /* Look up the procedure descriptor for this PC. */
2441 proc_desc = find_proc_desc (saved_pc, frame, 1);
2445 cached_proc_desc = proc_desc;
2447 /* If no frame pointer and frame size is zero, we must be at end
2448 of stack (or otherwise hosed). If we don't check frame size,
2449 we loop forever if we see a zero size frame. */
2450 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2451 && PROC_FRAME_OFFSET (proc_desc) == 0
2452 /* The previous frame from a sigtramp frame might be frameless
2453 and have frame size zero. */
2454 && !frame->signal_handler_caller
2455 /* For a generic dummy frame, let get_frame_pointer() unwind a
2456 register value saved as part of the dummy frame call. */
2457 && !(USE_GENERIC_DUMMY_FRAMES
2458 && PC_IN_CALL_DUMMY (frame->pc, 0, 0)))
2461 return get_frame_pointer (frame, proc_desc);
2465 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2469 /* Use proc_desc calculated in frame_chain */
2470 mips_extra_func_info_t proc_desc =
2471 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2473 fci->extra_info = (struct frame_extra_info *)
2474 frame_obstack_alloc (sizeof (struct frame_extra_info));
2476 fci->saved_regs = NULL;
2477 fci->extra_info->proc_desc =
2478 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2481 /* Fixup frame-pointer - only needed for top frame */
2482 /* This may not be quite right, if proc has a real frame register.
2483 Get the value of the frame relative sp, procedure might have been
2484 interrupted by a signal at it's very start. */
2485 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2486 && !PROC_DESC_IS_DUMMY (proc_desc))
2487 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2488 else if (USE_GENERIC_DUMMY_FRAMES
2489 && PC_IN_CALL_DUMMY (fci->pc, 0, 0))
2490 /* Do not ``fix'' fci->frame. It will have the value of the
2491 generic dummy frame's top-of-stack (since the draft
2492 fci->frame is obtained by returning the unwound stack
2493 pointer) and that is what we want. That way the fci->frame
2494 value will match the top-of-stack value that was saved as
2495 part of the dummy frames data. */
2498 fci->frame = get_frame_pointer (fci->next, proc_desc);
2500 if (proc_desc == &temp_proc_desc)
2504 /* Do not set the saved registers for a sigtramp frame,
2505 mips_find_saved_registers will do that for us.
2506 We can't use fci->signal_handler_caller, it is not yet set. */
2507 find_pc_partial_function (fci->pc, &name,
2508 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2509 if (!PC_IN_SIGTRAMP (fci->pc, name))
2511 frame_saved_regs_zalloc (fci);
2512 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2513 fci->saved_regs[PC_REGNUM]
2514 = fci->saved_regs[RA_REGNUM];
2515 /* Set value of previous frame's stack pointer. Remember that
2516 saved_regs[SP_REGNUM] is special in that it contains the
2517 value of the stack pointer register. The other saved_regs
2518 values are addresses (in the inferior) at which a given
2519 register's value may be found. */
2520 fci->saved_regs[SP_REGNUM] = fci->frame;
2524 /* hack: if argument regs are saved, guess these contain args */
2525 /* assume we can't tell how many args for now */
2526 fci->extra_info->num_args = -1;
2527 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2529 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2531 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2538 /* MIPS stack frames are almost impenetrable. When execution stops,
2539 we basically have to look at symbol information for the function
2540 that we stopped in, which tells us *which* register (if any) is
2541 the base of the frame pointer, and what offset from that register
2542 the frame itself is at.
2544 This presents a problem when trying to examine a stack in memory
2545 (that isn't executing at the moment), using the "frame" command. We
2546 don't have a PC, nor do we have any registers except SP.
2548 This routine takes two arguments, SP and PC, and tries to make the
2549 cached frames look as if these two arguments defined a frame on the
2550 cache. This allows the rest of info frame to extract the important
2551 arguments without difficulty. */
2554 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2557 error ("MIPS frame specifications require two arguments: sp and pc");
2559 return create_new_frame (argv[0], argv[1]);
2562 /* According to the current ABI, should the type be passed in a
2563 floating-point register (assuming that there is space)? When there
2564 is no FPU, FP are not even considered as possibile candidates for
2565 FP registers and, consequently this returns false - forces FP
2566 arguments into integer registers. */
2569 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2571 return ((typecode == TYPE_CODE_FLT
2573 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2574 && TYPE_NFIELDS (arg_type) == 1
2575 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2576 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2579 /* On o32, argument passing in GPRs depends on the alignment of the type being
2580 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2583 mips_type_needs_double_align (struct type *type)
2585 enum type_code typecode = TYPE_CODE (type);
2587 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2589 else if (typecode == TYPE_CODE_STRUCT)
2591 if (TYPE_NFIELDS (type) < 1)
2593 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2595 else if (typecode == TYPE_CODE_UNION)
2599 n = TYPE_NFIELDS (type);
2600 for (i = 0; i < n; i++)
2601 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2608 /* Macros to round N up or down to the next A boundary;
2609 A must be a power of two. */
2611 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2612 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2614 /* Adjust the address downward (direction of stack growth) so that it
2615 is correctly aligned for a new stack frame. */
2617 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2619 return ROUND_DOWN (addr, 16);
2623 mips_eabi_push_arguments (int nargs,
2624 struct value **args,
2627 CORE_ADDR struct_addr)
2633 int stack_offset = 0;
2635 /* First ensure that the stack and structure return address (if any)
2636 are properly aligned. The stack has to be at least 64-bit
2637 aligned even on 32-bit machines, because doubles must be 64-bit
2638 aligned. For n32 and n64, stack frames need to be 128-bit
2639 aligned, so we round to this widest known alignment. */
2641 sp = ROUND_DOWN (sp, 16);
2642 struct_addr = ROUND_DOWN (struct_addr, 16);
2644 /* Now make space on the stack for the args. We allocate more
2645 than necessary for EABI, because the first few arguments are
2646 passed in registers, but that's OK. */
2647 for (argnum = 0; argnum < nargs; argnum++)
2648 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2649 MIPS_STACK_ARGSIZE);
2650 sp -= ROUND_UP (len, 16);
2653 fprintf_unfiltered (gdb_stdlog,
2654 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2655 paddr_nz (sp), ROUND_UP (len, 16));
2657 /* Initialize the integer and float register pointers. */
2659 float_argreg = FPA0_REGNUM;
2661 /* The struct_return pointer occupies the first parameter-passing reg. */
2665 fprintf_unfiltered (gdb_stdlog,
2666 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2667 argreg, paddr_nz (struct_addr));
2668 write_register (argreg++, struct_addr);
2671 /* Now load as many as possible of the first arguments into
2672 registers, and push the rest onto the stack. Loop thru args
2673 from first to last. */
2674 for (argnum = 0; argnum < nargs; argnum++)
2677 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2678 struct value *arg = args[argnum];
2679 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2680 int len = TYPE_LENGTH (arg_type);
2681 enum type_code typecode = TYPE_CODE (arg_type);
2684 fprintf_unfiltered (gdb_stdlog,
2685 "mips_eabi_push_arguments: %d len=%d type=%d",
2686 argnum + 1, len, (int) typecode);
2688 /* The EABI passes structures that do not fit in a register by
2690 if (len > MIPS_SAVED_REGSIZE
2691 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2693 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2694 typecode = TYPE_CODE_PTR;
2695 len = MIPS_SAVED_REGSIZE;
2698 fprintf_unfiltered (gdb_stdlog, " push");
2701 val = (char *) VALUE_CONTENTS (arg);
2703 /* 32-bit ABIs always start floating point arguments in an
2704 even-numbered floating point register. Round the FP register
2705 up before the check to see if there are any FP registers
2706 left. Non MIPS_EABI targets also pass the FP in the integer
2707 registers so also round up normal registers. */
2708 if (!FP_REGISTER_DOUBLE
2709 && fp_register_arg_p (typecode, arg_type))
2711 if ((float_argreg & 1))
2715 /* Floating point arguments passed in registers have to be
2716 treated specially. On 32-bit architectures, doubles
2717 are passed in register pairs; the even register gets
2718 the low word, and the odd register gets the high word.
2719 On non-EABI processors, the first two floating point arguments are
2720 also copied to general registers, because MIPS16 functions
2721 don't use float registers for arguments. This duplication of
2722 arguments in general registers can't hurt non-MIPS16 functions
2723 because those registers are normally skipped. */
2724 /* MIPS_EABI squeezes a struct that contains a single floating
2725 point value into an FP register instead of pushing it onto the
2727 if (fp_register_arg_p (typecode, arg_type)
2728 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2730 if (!FP_REGISTER_DOUBLE && len == 8)
2732 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2733 unsigned long regval;
2735 /* Write the low word of the double to the even register(s). */
2736 regval = extract_unsigned_integer (val + low_offset, 4);
2738 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2739 float_argreg, phex (regval, 4));
2740 write_register (float_argreg++, regval);
2742 /* Write the high word of the double to the odd register(s). */
2743 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2745 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2746 float_argreg, phex (regval, 4));
2747 write_register (float_argreg++, regval);
2751 /* This is a floating point value that fits entirely
2752 in a single register. */
2753 /* On 32 bit ABI's the float_argreg is further adjusted
2754 above to ensure that it is even register aligned. */
2755 LONGEST regval = extract_unsigned_integer (val, len);
2757 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2758 float_argreg, phex (regval, len));
2759 write_register (float_argreg++, regval);
2764 /* Copy the argument to general registers or the stack in
2765 register-sized pieces. Large arguments are split between
2766 registers and stack. */
2767 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2768 are treated specially: Irix cc passes them in registers
2769 where gcc sometimes puts them on the stack. For maximum
2770 compatibility, we will put them in both places. */
2771 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2772 (len % MIPS_SAVED_REGSIZE != 0));
2774 /* Note: Floating-point values that didn't fit into an FP
2775 register are only written to memory. */
2778 /* Remember if the argument was written to the stack. */
2779 int stack_used_p = 0;
2781 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2784 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2787 /* Write this portion of the argument to the stack. */
2788 if (argreg > MIPS_LAST_ARG_REGNUM
2790 || fp_register_arg_p (typecode, arg_type))
2792 /* Should shorter than int integer values be
2793 promoted to int before being stored? */
2794 int longword_offset = 0;
2797 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2799 if (MIPS_STACK_ARGSIZE == 8 &&
2800 (typecode == TYPE_CODE_INT ||
2801 typecode == TYPE_CODE_PTR ||
2802 typecode == TYPE_CODE_FLT) && len <= 4)
2803 longword_offset = MIPS_STACK_ARGSIZE - len;
2804 else if ((typecode == TYPE_CODE_STRUCT ||
2805 typecode == TYPE_CODE_UNION) &&
2806 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2807 longword_offset = MIPS_STACK_ARGSIZE - len;
2812 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2813 paddr_nz (stack_offset));
2814 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2815 paddr_nz (longword_offset));
2818 addr = sp + stack_offset + longword_offset;
2823 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2825 for (i = 0; i < partial_len; i++)
2827 fprintf_unfiltered (gdb_stdlog, "%02x",
2831 write_memory (addr, val, partial_len);
2834 /* Note!!! This is NOT an else clause. Odd sized
2835 structs may go thru BOTH paths. Floating point
2836 arguments will not. */
2837 /* Write this portion of the argument to a general
2838 purpose register. */
2839 if (argreg <= MIPS_LAST_ARG_REGNUM
2840 && !fp_register_arg_p (typecode, arg_type))
2842 LONGEST regval = extract_unsigned_integer (val, partial_len);
2845 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2847 phex (regval, MIPS_SAVED_REGSIZE));
2848 write_register (argreg, regval);
2855 /* Compute the the offset into the stack at which we
2856 will copy the next parameter.
2858 In the new EABI (and the NABI32), the stack_offset
2859 only needs to be adjusted when it has been used. */
2862 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2866 fprintf_unfiltered (gdb_stdlog, "\n");
2869 /* Return adjusted stack pointer. */
2873 /* N32/N64 version of push_arguments. */
2876 mips_n32n64_push_arguments (int nargs,
2877 struct value **args,
2880 CORE_ADDR struct_addr)
2886 int stack_offset = 0;
2888 /* First ensure that the stack and structure return address (if any)
2889 are properly aligned. The stack has to be at least 64-bit
2890 aligned even on 32-bit machines, because doubles must be 64-bit
2891 aligned. For n32 and n64, stack frames need to be 128-bit
2892 aligned, so we round to this widest known alignment. */
2894 sp = ROUND_DOWN (sp, 16);
2895 struct_addr = ROUND_DOWN (struct_addr, 16);
2897 /* Now make space on the stack for the args. */
2898 for (argnum = 0; argnum < nargs; argnum++)
2899 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2900 MIPS_STACK_ARGSIZE);
2901 sp -= ROUND_UP (len, 16);
2904 fprintf_unfiltered (gdb_stdlog,
2905 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2906 paddr_nz (sp), ROUND_UP (len, 16));
2908 /* Initialize the integer and float register pointers. */
2910 float_argreg = FPA0_REGNUM;
2912 /* The struct_return pointer occupies the first parameter-passing reg. */
2916 fprintf_unfiltered (gdb_stdlog,
2917 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2918 argreg, paddr_nz (struct_addr));
2919 write_register (argreg++, struct_addr);
2922 /* Now load as many as possible of the first arguments into
2923 registers, and push the rest onto the stack. Loop thru args
2924 from first to last. */
2925 for (argnum = 0; argnum < nargs; argnum++)
2928 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2929 struct value *arg = args[argnum];
2930 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2931 int len = TYPE_LENGTH (arg_type);
2932 enum type_code typecode = TYPE_CODE (arg_type);
2935 fprintf_unfiltered (gdb_stdlog,
2936 "mips_n32n64_push_arguments: %d len=%d type=%d",
2937 argnum + 1, len, (int) typecode);
2939 val = (char *) VALUE_CONTENTS (arg);
2941 if (fp_register_arg_p (typecode, arg_type)
2942 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2944 /* This is a floating point value that fits entirely
2945 in a single register. */
2946 /* On 32 bit ABI's the float_argreg is further adjusted
2947 above to ensure that it is even register aligned. */
2948 LONGEST regval = extract_unsigned_integer (val, len);
2950 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2951 float_argreg, phex (regval, len));
2952 write_register (float_argreg++, regval);
2955 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2956 argreg, phex (regval, len));
2957 write_register (argreg, regval);
2962 /* Copy the argument to general registers or the stack in
2963 register-sized pieces. Large arguments are split between
2964 registers and stack. */
2965 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2966 are treated specially: Irix cc passes them in registers
2967 where gcc sometimes puts them on the stack. For maximum
2968 compatibility, we will put them in both places. */
2969 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2970 (len % MIPS_SAVED_REGSIZE != 0));
2971 /* Note: Floating-point values that didn't fit into an FP
2972 register are only written to memory. */
2975 /* Rememer if the argument was written to the stack. */
2976 int stack_used_p = 0;
2977 int partial_len = len < MIPS_SAVED_REGSIZE ?
2978 len : MIPS_SAVED_REGSIZE;
2981 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2984 /* Write this portion of the argument to the stack. */
2985 if (argreg > MIPS_LAST_ARG_REGNUM
2987 || fp_register_arg_p (typecode, arg_type))
2989 /* Should shorter than int integer values be
2990 promoted to int before being stored? */
2991 int longword_offset = 0;
2994 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2996 if (MIPS_STACK_ARGSIZE == 8 &&
2997 (typecode == TYPE_CODE_INT ||
2998 typecode == TYPE_CODE_PTR ||
2999 typecode == TYPE_CODE_FLT) && len <= 4)
3000 longword_offset = MIPS_STACK_ARGSIZE - len;
3005 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3006 paddr_nz (stack_offset));
3007 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3008 paddr_nz (longword_offset));
3011 addr = sp + stack_offset + longword_offset;
3016 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3018 for (i = 0; i < partial_len; i++)
3020 fprintf_unfiltered (gdb_stdlog, "%02x",
3024 write_memory (addr, val, partial_len);
3027 /* Note!!! This is NOT an else clause. Odd sized
3028 structs may go thru BOTH paths. Floating point
3029 arguments will not. */
3030 /* Write this portion of the argument to a general
3031 purpose register. */
3032 if (argreg <= MIPS_LAST_ARG_REGNUM
3033 && !fp_register_arg_p (typecode, arg_type))
3035 LONGEST regval = extract_unsigned_integer (val, partial_len);
3037 /* A non-floating-point argument being passed in a
3038 general register. If a struct or union, and if
3039 the remaining length is smaller than the register
3040 size, we have to adjust the register value on
3043 It does not seem to be necessary to do the
3044 same for integral types.
3046 cagney/2001-07-23: gdb/179: Also, GCC, when
3047 outputting LE O32 with sizeof (struct) <
3048 MIPS_SAVED_REGSIZE, generates a left shift as
3049 part of storing the argument in a register a
3050 register (the left shift isn't generated when
3051 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3052 is quite possible that this is GCC contradicting
3053 the LE/O32 ABI, GDB has not been adjusted to
3054 accommodate this. Either someone needs to
3055 demonstrate that the LE/O32 ABI specifies such a
3056 left shift OR this new ABI gets identified as
3057 such and GDB gets tweaked accordingly. */
3059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3060 && partial_len < MIPS_SAVED_REGSIZE
3061 && (typecode == TYPE_CODE_STRUCT ||
3062 typecode == TYPE_CODE_UNION))
3063 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3067 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3069 phex (regval, MIPS_SAVED_REGSIZE));
3070 write_register (argreg, regval);
3077 /* Compute the the offset into the stack at which we
3078 will copy the next parameter.
3080 In N32 (N64?), the stack_offset only needs to be
3081 adjusted when it has been used. */
3084 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3088 fprintf_unfiltered (gdb_stdlog, "\n");
3091 /* Return adjusted stack pointer. */
3095 /* O32 version of push_arguments. */
3098 mips_o32_push_arguments (int nargs,
3099 struct value **args,
3102 CORE_ADDR struct_addr)
3108 int stack_offset = 0;
3110 /* First ensure that the stack and structure return address (if any)
3111 are properly aligned. The stack has to be at least 64-bit
3112 aligned even on 32-bit machines, because doubles must be 64-bit
3113 aligned. For n32 and n64, stack frames need to be 128-bit
3114 aligned, so we round to this widest known alignment. */
3116 sp = ROUND_DOWN (sp, 16);
3117 struct_addr = ROUND_DOWN (struct_addr, 16);
3119 /* Now make space on the stack for the args. */
3120 for (argnum = 0; argnum < nargs; argnum++)
3121 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3122 MIPS_STACK_ARGSIZE);
3123 sp -= ROUND_UP (len, 16);
3126 fprintf_unfiltered (gdb_stdlog,
3127 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3128 paddr_nz (sp), ROUND_UP (len, 16));
3130 /* Initialize the integer and float register pointers. */
3132 float_argreg = FPA0_REGNUM;
3134 /* The struct_return pointer occupies the first parameter-passing reg. */
3138 fprintf_unfiltered (gdb_stdlog,
3139 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3140 argreg, paddr_nz (struct_addr));
3141 write_register (argreg++, struct_addr);
3142 stack_offset += MIPS_STACK_ARGSIZE;
3145 /* Now load as many as possible of the first arguments into
3146 registers, and push the rest onto the stack. Loop thru args
3147 from first to last. */
3148 for (argnum = 0; argnum < nargs; argnum++)
3151 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3152 struct value *arg = args[argnum];
3153 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3154 int len = TYPE_LENGTH (arg_type);
3155 enum type_code typecode = TYPE_CODE (arg_type);
3158 fprintf_unfiltered (gdb_stdlog,
3159 "mips_o32_push_arguments: %d len=%d type=%d",
3160 argnum + 1, len, (int) typecode);
3162 val = (char *) VALUE_CONTENTS (arg);
3164 /* 32-bit ABIs always start floating point arguments in an
3165 even-numbered floating point register. Round the FP register
3166 up before the check to see if there are any FP registers
3167 left. O32/O64 targets also pass the FP in the integer
3168 registers so also round up normal registers. */
3169 if (!FP_REGISTER_DOUBLE
3170 && fp_register_arg_p (typecode, arg_type))
3172 if ((float_argreg & 1))
3176 /* Floating point arguments passed in registers have to be
3177 treated specially. On 32-bit architectures, doubles
3178 are passed in register pairs; the even register gets
3179 the low word, and the odd register gets the high word.
3180 On O32/O64, the first two floating point arguments are
3181 also copied to general registers, because MIPS16 functions
3182 don't use float registers for arguments. This duplication of
3183 arguments in general registers can't hurt non-MIPS16 functions
3184 because those registers are normally skipped. */
3186 if (fp_register_arg_p (typecode, arg_type)
3187 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3189 if (!FP_REGISTER_DOUBLE && len == 8)
3191 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3192 unsigned long regval;
3194 /* Write the low word of the double to the even register(s). */
3195 regval = extract_unsigned_integer (val + low_offset, 4);
3197 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3198 float_argreg, phex (regval, 4));
3199 write_register (float_argreg++, regval);
3201 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3202 argreg, phex (regval, 4));
3203 write_register (argreg++, regval);
3205 /* Write the high word of the double to the odd register(s). */
3206 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3208 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3209 float_argreg, phex (regval, 4));
3210 write_register (float_argreg++, regval);
3213 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3214 argreg, phex (regval, 4));
3215 write_register (argreg++, regval);
3219 /* This is a floating point value that fits entirely
3220 in a single register. */
3221 /* On 32 bit ABI's the float_argreg is further adjusted
3222 above to ensure that it is even register aligned. */
3223 LONGEST regval = extract_unsigned_integer (val, len);
3225 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3226 float_argreg, phex (regval, len));
3227 write_register (float_argreg++, regval);
3228 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3229 registers for each argument. The below is (my
3230 guess) to ensure that the corresponding integer
3231 register has reserved the same space. */
3233 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3234 argreg, phex (regval, len));
3235 write_register (argreg, regval);
3236 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3238 /* Reserve space for the FP register. */
3239 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3243 /* Copy the argument to general registers or the stack in
3244 register-sized pieces. Large arguments are split between
3245 registers and stack. */
3246 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3247 are treated specially: Irix cc passes them in registers
3248 where gcc sometimes puts them on the stack. For maximum
3249 compatibility, we will put them in both places. */
3250 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3251 (len % MIPS_SAVED_REGSIZE != 0));
3252 /* Structures should be aligned to eight bytes (even arg registers)
3253 on MIPS_ABI_O32, if their first member has double precision. */
3254 if (MIPS_SAVED_REGSIZE < 8
3255 && mips_type_needs_double_align (arg_type))
3260 /* Note: Floating-point values that didn't fit into an FP
3261 register are only written to memory. */
3264 /* Remember if the argument was written to the stack. */
3265 int stack_used_p = 0;
3267 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3270 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3273 /* Write this portion of the argument to the stack. */
3274 if (argreg > MIPS_LAST_ARG_REGNUM
3276 || fp_register_arg_p (typecode, arg_type))
3278 /* Should shorter than int integer values be
3279 promoted to int before being stored? */
3280 int longword_offset = 0;
3283 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3285 if (MIPS_STACK_ARGSIZE == 8 &&
3286 (typecode == TYPE_CODE_INT ||
3287 typecode == TYPE_CODE_PTR ||
3288 typecode == TYPE_CODE_FLT) && len <= 4)
3289 longword_offset = MIPS_STACK_ARGSIZE - len;
3294 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3295 paddr_nz (stack_offset));
3296 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3297 paddr_nz (longword_offset));
3300 addr = sp + stack_offset + longword_offset;
3305 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3307 for (i = 0; i < partial_len; i++)
3309 fprintf_unfiltered (gdb_stdlog, "%02x",
3313 write_memory (addr, val, partial_len);
3316 /* Note!!! This is NOT an else clause. Odd sized
3317 structs may go thru BOTH paths. Floating point
3318 arguments will not. */
3319 /* Write this portion of the argument to a general
3320 purpose register. */
3321 if (argreg <= MIPS_LAST_ARG_REGNUM
3322 && !fp_register_arg_p (typecode, arg_type))
3324 LONGEST regval = extract_signed_integer (val, partial_len);
3325 /* Value may need to be sign extended, because
3326 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3328 /* A non-floating-point argument being passed in a
3329 general register. If a struct or union, and if
3330 the remaining length is smaller than the register
3331 size, we have to adjust the register value on
3334 It does not seem to be necessary to do the
3335 same for integral types.
3337 Also don't do this adjustment on O64 binaries.
3339 cagney/2001-07-23: gdb/179: Also, GCC, when
3340 outputting LE O32 with sizeof (struct) <
3341 MIPS_SAVED_REGSIZE, generates a left shift as
3342 part of storing the argument in a register a
3343 register (the left shift isn't generated when
3344 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3345 is quite possible that this is GCC contradicting
3346 the LE/O32 ABI, GDB has not been adjusted to
3347 accommodate this. Either someone needs to
3348 demonstrate that the LE/O32 ABI specifies such a
3349 left shift OR this new ABI gets identified as
3350 such and GDB gets tweaked accordingly. */
3352 if (MIPS_SAVED_REGSIZE < 8
3353 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3354 && partial_len < MIPS_SAVED_REGSIZE
3355 && (typecode == TYPE_CODE_STRUCT ||
3356 typecode == TYPE_CODE_UNION))
3357 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3361 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3363 phex (regval, MIPS_SAVED_REGSIZE));
3364 write_register (argreg, regval);
3367 /* Prevent subsequent floating point arguments from
3368 being passed in floating point registers. */
3369 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3375 /* Compute the the offset into the stack at which we
3376 will copy the next parameter.
3378 In older ABIs, the caller reserved space for
3379 registers that contained arguments. This was loosely
3380 refered to as their "home". Consequently, space is
3381 always allocated. */
3383 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3387 fprintf_unfiltered (gdb_stdlog, "\n");
3390 /* Return adjusted stack pointer. */
3394 /* O64 version of push_arguments. */
3397 mips_o64_push_arguments (int nargs,
3398 struct value **args,
3401 CORE_ADDR struct_addr)
3407 int stack_offset = 0;
3409 /* First ensure that the stack and structure return address (if any)
3410 are properly aligned. The stack has to be at least 64-bit
3411 aligned even on 32-bit machines, because doubles must be 64-bit
3412 aligned. For n32 and n64, stack frames need to be 128-bit
3413 aligned, so we round to this widest known alignment. */
3415 sp = ROUND_DOWN (sp, 16);
3416 struct_addr = ROUND_DOWN (struct_addr, 16);
3418 /* Now make space on the stack for the args. */
3419 for (argnum = 0; argnum < nargs; argnum++)
3420 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3421 MIPS_STACK_ARGSIZE);
3422 sp -= ROUND_UP (len, 16);
3425 fprintf_unfiltered (gdb_stdlog,
3426 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3427 paddr_nz (sp), ROUND_UP (len, 16));
3429 /* Initialize the integer and float register pointers. */
3431 float_argreg = FPA0_REGNUM;
3433 /* The struct_return pointer occupies the first parameter-passing reg. */
3437 fprintf_unfiltered (gdb_stdlog,
3438 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3439 argreg, paddr_nz (struct_addr));
3440 write_register (argreg++, struct_addr);
3441 stack_offset += MIPS_STACK_ARGSIZE;
3444 /* Now load as many as possible of the first arguments into
3445 registers, and push the rest onto the stack. Loop thru args
3446 from first to last. */
3447 for (argnum = 0; argnum < nargs; argnum++)
3450 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3451 struct value *arg = args[argnum];
3452 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3453 int len = TYPE_LENGTH (arg_type);
3454 enum type_code typecode = TYPE_CODE (arg_type);
3457 fprintf_unfiltered (gdb_stdlog,
3458 "mips_o64_push_arguments: %d len=%d type=%d",
3459 argnum + 1, len, (int) typecode);
3461 val = (char *) VALUE_CONTENTS (arg);
3463 /* 32-bit ABIs always start floating point arguments in an
3464 even-numbered floating point register. Round the FP register
3465 up before the check to see if there are any FP registers
3466 left. O32/O64 targets also pass the FP in the integer
3467 registers so also round up normal registers. */
3468 if (!FP_REGISTER_DOUBLE
3469 && fp_register_arg_p (typecode, arg_type))
3471 if ((float_argreg & 1))
3475 /* Floating point arguments passed in registers have to be
3476 treated specially. On 32-bit architectures, doubles
3477 are passed in register pairs; the even register gets
3478 the low word, and the odd register gets the high word.
3479 On O32/O64, the first two floating point arguments are
3480 also copied to general registers, because MIPS16 functions
3481 don't use float registers for arguments. This duplication of
3482 arguments in general registers can't hurt non-MIPS16 functions
3483 because those registers are normally skipped. */
3485 if (fp_register_arg_p (typecode, arg_type)
3486 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3488 if (!FP_REGISTER_DOUBLE && len == 8)
3490 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3491 unsigned long regval;
3493 /* Write the low word of the double to the even register(s). */
3494 regval = extract_unsigned_integer (val + low_offset, 4);
3496 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3497 float_argreg, phex (regval, 4));
3498 write_register (float_argreg++, regval);
3500 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3501 argreg, phex (regval, 4));
3502 write_register (argreg++, regval);
3504 /* Write the high word of the double to the odd register(s). */
3505 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3507 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3508 float_argreg, phex (regval, 4));
3509 write_register (float_argreg++, regval);
3512 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3513 argreg, phex (regval, 4));
3514 write_register (argreg++, regval);
3518 /* This is a floating point value that fits entirely
3519 in a single register. */
3520 /* On 32 bit ABI's the float_argreg is further adjusted
3521 above to ensure that it is even register aligned. */
3522 LONGEST regval = extract_unsigned_integer (val, len);
3524 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3525 float_argreg, phex (regval, len));
3526 write_register (float_argreg++, regval);
3527 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3528 registers for each argument. The below is (my
3529 guess) to ensure that the corresponding integer
3530 register has reserved the same space. */
3532 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3533 argreg, phex (regval, len));
3534 write_register (argreg, regval);
3535 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3537 /* Reserve space for the FP register. */
3538 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3542 /* Copy the argument to general registers or the stack in
3543 register-sized pieces. Large arguments are split between
3544 registers and stack. */
3545 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3546 are treated specially: Irix cc passes them in registers
3547 where gcc sometimes puts them on the stack. For maximum
3548 compatibility, we will put them in both places. */
3549 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3550 (len % MIPS_SAVED_REGSIZE != 0));
3551 /* Structures should be aligned to eight bytes (even arg registers)
3552 on MIPS_ABI_O32, if their first member has double precision. */
3553 if (MIPS_SAVED_REGSIZE < 8
3554 && mips_type_needs_double_align (arg_type))
3559 /* Note: Floating-point values that didn't fit into an FP
3560 register are only written to memory. */
3563 /* Remember if the argument was written to the stack. */
3564 int stack_used_p = 0;
3566 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3569 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3572 /* Write this portion of the argument to the stack. */
3573 if (argreg > MIPS_LAST_ARG_REGNUM
3575 || fp_register_arg_p (typecode, arg_type))
3577 /* Should shorter than int integer values be
3578 promoted to int before being stored? */
3579 int longword_offset = 0;
3582 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3584 if (MIPS_STACK_ARGSIZE == 8 &&
3585 (typecode == TYPE_CODE_INT ||
3586 typecode == TYPE_CODE_PTR ||
3587 typecode == TYPE_CODE_FLT) && len <= 4)
3588 longword_offset = MIPS_STACK_ARGSIZE - len;
3593 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3594 paddr_nz (stack_offset));
3595 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3596 paddr_nz (longword_offset));
3599 addr = sp + stack_offset + longword_offset;
3604 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3606 for (i = 0; i < partial_len; i++)
3608 fprintf_unfiltered (gdb_stdlog, "%02x",
3612 write_memory (addr, val, partial_len);
3615 /* Note!!! This is NOT an else clause. Odd sized
3616 structs may go thru BOTH paths. Floating point
3617 arguments will not. */
3618 /* Write this portion of the argument to a general
3619 purpose register. */
3620 if (argreg <= MIPS_LAST_ARG_REGNUM
3621 && !fp_register_arg_p (typecode, arg_type))
3623 LONGEST regval = extract_signed_integer (val, partial_len);
3624 /* Value may need to be sign extended, because
3625 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3627 /* A non-floating-point argument being passed in a
3628 general register. If a struct or union, and if
3629 the remaining length is smaller than the register
3630 size, we have to adjust the register value on
3633 It does not seem to be necessary to do the
3634 same for integral types.
3636 Also don't do this adjustment on O64 binaries.
3638 cagney/2001-07-23: gdb/179: Also, GCC, when
3639 outputting LE O32 with sizeof (struct) <
3640 MIPS_SAVED_REGSIZE, generates a left shift as
3641 part of storing the argument in a register a
3642 register (the left shift isn't generated when
3643 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3644 is quite possible that this is GCC contradicting
3645 the LE/O32 ABI, GDB has not been adjusted to
3646 accommodate this. Either someone needs to
3647 demonstrate that the LE/O32 ABI specifies such a
3648 left shift OR this new ABI gets identified as
3649 such and GDB gets tweaked accordingly. */
3651 if (MIPS_SAVED_REGSIZE < 8
3652 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3653 && partial_len < MIPS_SAVED_REGSIZE
3654 && (typecode == TYPE_CODE_STRUCT ||
3655 typecode == TYPE_CODE_UNION))
3656 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3660 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3662 phex (regval, MIPS_SAVED_REGSIZE));
3663 write_register (argreg, regval);
3666 /* Prevent subsequent floating point arguments from
3667 being passed in floating point registers. */
3668 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3674 /* Compute the the offset into the stack at which we
3675 will copy the next parameter.
3677 In older ABIs, the caller reserved space for
3678 registers that contained arguments. This was loosely
3679 refered to as their "home". Consequently, space is
3680 always allocated. */
3682 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3686 fprintf_unfiltered (gdb_stdlog, "\n");
3689 /* Return adjusted stack pointer. */
3694 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3696 /* Set the return address register to point to the entry
3697 point of the program, where a breakpoint lies in wait. */
3698 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3703 mips_push_register (CORE_ADDR * sp, int regno)
3705 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3708 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3710 regsize = MIPS_SAVED_REGSIZE;
3711 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3712 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3717 regsize = REGISTER_RAW_SIZE (regno);
3721 deprecated_read_register_gen (regno, buffer);
3722 write_memory (*sp, buffer + offset, regsize);
3725 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3726 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3729 mips_push_dummy_frame (void)
3732 struct linked_proc_info *link = (struct linked_proc_info *)
3733 xmalloc (sizeof (struct linked_proc_info));
3734 mips_extra_func_info_t proc_desc = &link->info;
3735 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3736 CORE_ADDR old_sp = sp;
3737 link->next = linked_proc_desc_table;
3738 linked_proc_desc_table = link;
3740 /* FIXME! are these correct ? */
3741 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3742 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3743 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3744 #define FLOAT_SINGLE_REG_SAVE_MASK \
3745 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3747 * The registers we must save are all those not preserved across
3748 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3749 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3750 * and FP Control/Status registers.
3753 * Dummy frame layout:
3756 * Saved MMHI, MMLO, FPC_CSR
3761 * Saved D18 (i.e. F19, F18)
3763 * Saved D0 (i.e. F1, F0)
3764 * Argument build area and stack arguments written via mips_push_arguments
3768 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3769 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3770 PROC_FRAME_OFFSET (proc_desc) = 0;
3771 PROC_FRAME_ADJUST (proc_desc) = 0;
3772 mips_push_register (&sp, PC_REGNUM);
3773 mips_push_register (&sp, HI_REGNUM);
3774 mips_push_register (&sp, LO_REGNUM);
3775 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3777 /* Save general CPU registers */
3778 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3779 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3780 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3781 for (ireg = 32; --ireg >= 0;)
3782 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3783 mips_push_register (&sp, ireg);
3785 /* Save floating point registers starting with high order word */
3786 PROC_FREG_MASK (proc_desc) =
3787 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3788 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3789 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3791 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3792 for (ireg = 32; --ireg >= 0;)
3793 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3794 mips_push_register (&sp, ireg + FP0_REGNUM);
3796 /* Update the frame pointer for the call dummy and the stack pointer.
3797 Set the procedure's starting and ending addresses to point to the
3798 call dummy address at the entry point. */
3799 write_register (PUSH_FP_REGNUM, old_sp);
3800 write_register (SP_REGNUM, sp);
3801 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3802 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3803 SET_PROC_DESC_IS_DUMMY (proc_desc);
3804 PROC_PC_REG (proc_desc) = RA_REGNUM;
3808 mips_pop_frame (void)
3810 register int regnum;
3811 struct frame_info *frame = get_current_frame ();
3812 CORE_ADDR new_sp = FRAME_FP (frame);
3813 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3815 if (USE_GENERIC_DUMMY_FRAMES
3816 && PC_IN_CALL_DUMMY (frame->pc, 0, 0))
3818 generic_pop_dummy_frame ();
3819 flush_cached_frames ();
3823 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3824 if (frame->saved_regs == NULL)
3825 FRAME_INIT_SAVED_REGS (frame);
3826 for (regnum = 0; regnum < NUM_REGS; regnum++)
3827 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3828 && frame->saved_regs[regnum])
3830 /* Floating point registers must not be sign extended,
3831 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3833 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3834 write_register (regnum,
3835 read_memory_unsigned_integer (frame->saved_regs[regnum],
3836 MIPS_SAVED_REGSIZE));
3838 write_register (regnum,
3839 read_memory_integer (frame->saved_regs[regnum],
3840 MIPS_SAVED_REGSIZE));
3843 write_register (SP_REGNUM, new_sp);
3844 flush_cached_frames ();
3846 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3848 struct linked_proc_info *pi_ptr, *prev_ptr;
3850 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3852 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3854 if (&pi_ptr->info == proc_desc)
3859 error ("Can't locate dummy extra frame info\n");
3861 if (prev_ptr != NULL)
3862 prev_ptr->next = pi_ptr->next;
3864 linked_proc_desc_table = pi_ptr->next;
3868 write_register (HI_REGNUM,
3869 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3870 MIPS_SAVED_REGSIZE));
3871 write_register (LO_REGNUM,
3872 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3873 MIPS_SAVED_REGSIZE));
3874 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3875 write_register (FCRCS_REGNUM,
3876 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3877 MIPS_SAVED_REGSIZE));
3882 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3883 struct value **args, struct type *type, int gcc_p)
3885 write_register(T9_REGNUM, fun);
3888 /* Floating point register management.
3890 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3891 64bit operations, these early MIPS cpus treat fp register pairs
3892 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3893 registers and offer a compatibility mode that emulates the MIPS2 fp
3894 model. When operating in MIPS2 fp compat mode, later cpu's split
3895 double precision floats into two 32-bit chunks and store them in
3896 consecutive fp regs. To display 64-bit floats stored in this
3897 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3898 Throw in user-configurable endianness and you have a real mess.
3900 The way this works is:
3901 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3902 double-precision value will be split across two logical registers.
3903 The lower-numbered logical register will hold the low-order bits,
3904 regardless of the processor's endianness.
3905 - If we are on a 64-bit processor, and we are looking for a
3906 single-precision value, it will be in the low ordered bits
3907 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3908 save slot in memory.
3909 - If we are in 64-bit mode, everything is straightforward.
3911 Note that this code only deals with "live" registers at the top of the
3912 stack. We will attempt to deal with saved registers later, when
3913 the raw/cooked register interface is in place. (We need a general
3914 interface that can deal with dynamic saved register sizes -- fp
3915 regs could be 32 bits wide in one frame and 64 on the frame above
3918 static struct type *
3919 mips_float_register_type (void)
3921 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3922 return builtin_type_ieee_single_big;
3924 return builtin_type_ieee_single_little;
3927 static struct type *
3928 mips_double_register_type (void)
3930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3931 return builtin_type_ieee_double_big;
3933 return builtin_type_ieee_double_little;
3936 /* Copy a 32-bit single-precision value from the current frame
3937 into rare_buffer. */
3940 mips_read_fp_register_single (int regno, char *rare_buffer)
3942 int raw_size = REGISTER_RAW_SIZE (regno);
3943 char *raw_buffer = alloca (raw_size);
3945 if (!frame_register_read (selected_frame, regno, raw_buffer))
3946 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3949 /* We have a 64-bit value for this register. Find the low-order
3953 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3958 memcpy (rare_buffer, raw_buffer + offset, 4);
3962 memcpy (rare_buffer, raw_buffer, 4);
3966 /* Copy a 64-bit double-precision value from the current frame into
3967 rare_buffer. This may include getting half of it from the next
3971 mips_read_fp_register_double (int regno, char *rare_buffer)
3973 int raw_size = REGISTER_RAW_SIZE (regno);
3975 if (raw_size == 8 && !mips2_fp_compat ())
3977 /* We have a 64-bit value for this register, and we should use
3979 if (!frame_register_read (selected_frame, regno, rare_buffer))
3980 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3984 if ((regno - FP0_REGNUM) & 1)
3985 internal_error (__FILE__, __LINE__,
3986 "mips_read_fp_register_double: bad access to "
3987 "odd-numbered FP register");
3989 /* mips_read_fp_register_single will find the correct 32 bits from
3991 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3993 mips_read_fp_register_single (regno, rare_buffer + 4);
3994 mips_read_fp_register_single (regno + 1, rare_buffer);
3998 mips_read_fp_register_single (regno, rare_buffer);
3999 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4005 mips_print_register (int regnum, int all)
4007 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4009 /* Get the data in raw format. */
4010 if (!frame_register_read (selected_frame, regnum, raw_buffer))
4012 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4016 /* If we have a actual 32-bit floating point register (or we are in
4017 32-bit compatibility mode), and the register is even-numbered,
4018 also print it as a double (spanning two registers). */
4019 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4020 && (REGISTER_RAW_SIZE (regnum) == 4
4021 || mips2_fp_compat ())
4022 && !((regnum - FP0_REGNUM) & 1))
4024 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4026 mips_read_fp_register_double (regnum, dbuffer);
4028 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4029 val_print (mips_double_register_type (), dbuffer, 0, 0,
4030 gdb_stdout, 0, 1, 0, Val_pretty_default);
4031 printf_filtered ("); ");
4033 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4035 /* The problem with printing numeric register names (r26, etc.) is that
4036 the user can't use them on input. Probably the best solution is to
4037 fix it so that either the numeric or the funky (a2, etc.) names
4038 are accepted on input. */
4039 if (regnum < MIPS_NUMREGS)
4040 printf_filtered ("(r%d): ", regnum);
4042 printf_filtered (": ");
4044 /* If virtual format is floating, print it that way. */
4045 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4046 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4048 /* We have a meaningful 64-bit value in this register. Show
4049 it as a 32-bit float and a 64-bit double. */
4050 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4052 printf_filtered (" (float) ");
4053 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4054 gdb_stdout, 0, 1, 0, Val_pretty_default);
4055 printf_filtered (", (double) ");
4056 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4057 gdb_stdout, 0, 1, 0, Val_pretty_default);
4060 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4061 gdb_stdout, 0, 1, 0, Val_pretty_default);
4062 /* Else print as integer in hex. */
4067 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4068 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4072 print_scalar_formatted (raw_buffer + offset,
4073 REGISTER_VIRTUAL_TYPE (regnum),
4074 'x', 0, gdb_stdout);
4078 /* Replacement for generic do_registers_info.
4079 Print regs in pretty columns. */
4082 do_fp_register_row (int regnum)
4083 { /* do values for FP (float) regs */
4085 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4086 int inv1, inv2, inv3;
4088 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4090 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4092 /* 4-byte registers: we can fit two registers per row. */
4093 /* Also print every pair of 4-byte regs as an 8-byte double. */
4094 mips_read_fp_register_single (regnum, raw_buffer);
4095 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4097 mips_read_fp_register_single (regnum + 1, raw_buffer);
4098 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4100 mips_read_fp_register_double (regnum, raw_buffer);
4101 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4103 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4105 printf_filtered (": <invalid float>");
4107 printf_filtered ("%-17.9g", flt1);
4109 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4111 printf_filtered (": <invalid float>");
4113 printf_filtered ("%-17.9g", flt2);
4115 printf_filtered (" dbl: ");
4117 printf_filtered ("<invalid double>");
4119 printf_filtered ("%-24.17g", doub);
4120 printf_filtered ("\n");
4122 /* may want to do hex display here (future enhancement) */
4127 /* Eight byte registers: print each one as float AND as double. */
4128 mips_read_fp_register_single (regnum, raw_buffer);
4129 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4131 mips_read_fp_register_double (regnum, raw_buffer);
4132 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4134 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4136 printf_filtered ("<invalid float>");
4138 printf_filtered ("flt: %-17.9g", flt1);
4140 printf_filtered (" dbl: ");
4142 printf_filtered ("<invalid double>");
4144 printf_filtered ("%-24.17g", doub);
4146 printf_filtered ("\n");
4147 /* may want to do hex display here (future enhancement) */
4153 /* Print a row's worth of GP (int) registers, with name labels above */
4156 do_gp_register_row (int regnum)
4158 /* do values for GP (int) regs */
4159 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4160 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4162 int start_regnum = regnum;
4163 int numregs = NUM_REGS;
4166 /* For GP registers, we print a separate row of names above the vals */
4167 printf_filtered (" ");
4168 for (col = 0; col < ncols && regnum < numregs; regnum++)
4170 if (*REGISTER_NAME (regnum) == '\0')
4171 continue; /* unused register */
4172 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4173 break; /* end the row: reached FP register */
4174 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4175 REGISTER_NAME (regnum));
4178 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4179 start_regnum); /* print the R0 to R31 names */
4181 regnum = start_regnum; /* go back to start of row */
4182 /* now print the values in hex, 4 or 8 to the row */
4183 for (col = 0; col < ncols && regnum < numregs; regnum++)
4185 if (*REGISTER_NAME (regnum) == '\0')
4186 continue; /* unused register */
4187 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4188 break; /* end row: reached FP register */
4189 /* OK: get the data in raw format. */
4190 if (!frame_register_read (selected_frame, regnum, raw_buffer))
4191 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4192 /* pad small registers */
4193 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4194 printf_filtered (" ");
4195 /* Now print the register value in hex, endian order. */
4196 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4197 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4198 byte < REGISTER_RAW_SIZE (regnum);
4200 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4202 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4205 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4206 printf_filtered (" ");
4209 if (col > 0) /* ie. if we actually printed anything... */
4210 printf_filtered ("\n");
4215 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4218 mips_do_registers_info (int regnum, int fpregs)
4220 if (regnum != -1) /* do one specified register */
4222 if (*(REGISTER_NAME (regnum)) == '\0')
4223 error ("Not a valid register for the current processor type");
4225 mips_print_register (regnum, 0);
4226 printf_filtered ("\n");
4229 /* do all (or most) registers */
4232 while (regnum < NUM_REGS)
4234 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4235 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4236 regnum = do_fp_register_row (regnum); /* FP regs */
4238 regnum += MIPS_NUMREGS; /* skip floating point regs */
4240 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4245 /* Is this a branch with a delay slot? */
4247 static int is_delayed (unsigned long);
4250 is_delayed (unsigned long insn)
4253 for (i = 0; i < NUMOPCODES; ++i)
4254 if (mips_opcodes[i].pinfo != INSN_MACRO
4255 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4257 return (i < NUMOPCODES
4258 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4259 | INSN_COND_BRANCH_DELAY
4260 | INSN_COND_BRANCH_LIKELY)));
4264 mips_step_skips_delay (CORE_ADDR pc)
4266 char buf[MIPS_INSTLEN];
4268 /* There is no branch delay slot on MIPS16. */
4269 if (pc_is_mips16 (pc))
4272 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4273 /* If error reading memory, guess that it is not a delayed branch. */
4275 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4279 /* Skip the PC past function prologue instructions (32-bit version).
4280 This is a helper function for mips_skip_prologue. */
4283 mips32_skip_prologue (CORE_ADDR pc)
4287 int seen_sp_adjust = 0;
4288 int load_immediate_bytes = 0;
4290 /* Skip the typical prologue instructions. These are the stack adjustment
4291 instruction and the instructions that save registers on the stack
4292 or in the gcc frame. */
4293 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4295 unsigned long high_word;
4297 inst = mips_fetch_instruction (pc);
4298 high_word = (inst >> 16) & 0xffff;
4300 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4301 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4303 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4304 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4306 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4307 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4308 && (inst & 0x001F0000)) /* reg != $zero */
4311 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4313 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4315 continue; /* reg != $zero */
4317 /* move $s8,$sp. With different versions of gas this will be either
4318 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4319 Accept any one of these. */
4320 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4323 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4325 else if (high_word == 0x3c1c) /* lui $gp,n */
4327 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4329 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4330 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4332 /* The following instructions load $at or $t0 with an immediate
4333 value in preparation for a stack adjustment via
4334 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4335 a local variable, so we accept them only before a stack adjustment
4336 instruction was seen. */
4337 else if (!seen_sp_adjust)
4339 if (high_word == 0x3c01 || /* lui $at,n */
4340 high_word == 0x3c08) /* lui $t0,n */
4342 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4345 else if (high_word == 0x3421 || /* ori $at,$at,n */
4346 high_word == 0x3508 || /* ori $t0,$t0,n */
4347 high_word == 0x3401 || /* ori $at,$zero,n */
4348 high_word == 0x3408) /* ori $t0,$zero,n */
4350 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4360 /* In a frameless function, we might have incorrectly
4361 skipped some load immediate instructions. Undo the skipping
4362 if the load immediate was not followed by a stack adjustment. */
4363 if (load_immediate_bytes && !seen_sp_adjust)
4364 pc -= load_immediate_bytes;
4368 /* Skip the PC past function prologue instructions (16-bit version).
4369 This is a helper function for mips_skip_prologue. */
4372 mips16_skip_prologue (CORE_ADDR pc)
4375 int extend_bytes = 0;
4376 int prev_extend_bytes;
4378 /* Table of instructions likely to be found in a function prologue. */
4381 unsigned short inst;
4382 unsigned short mask;
4389 , /* addiu $sp,offset */
4393 , /* daddiu $sp,offset */
4397 , /* sw reg,n($sp) */
4401 , /* sd reg,n($sp) */
4405 , /* sw $ra,n($sp) */
4409 , /* sd $ra,n($sp) */
4417 , /* sw $a0-$a3,n($s1) */
4421 , /* move reg,$a0-$a3 */
4425 , /* entry pseudo-op */
4429 , /* addiu $s1,$sp,n */
4432 } /* end of table marker */
4435 /* Skip the typical prologue instructions. These are the stack adjustment
4436 instruction and the instructions that save registers on the stack
4437 or in the gcc frame. */
4438 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4440 unsigned short inst;
4443 inst = mips_fetch_instruction (pc);
4445 /* Normally we ignore an extend instruction. However, if it is
4446 not followed by a valid prologue instruction, we must adjust
4447 the pc back over the extend so that it won't be considered
4448 part of the prologue. */
4449 if ((inst & 0xf800) == 0xf000) /* extend */
4451 extend_bytes = MIPS16_INSTLEN;
4454 prev_extend_bytes = extend_bytes;
4457 /* Check for other valid prologue instructions besides extend. */
4458 for (i = 0; table[i].mask != 0; i++)
4459 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4461 if (table[i].mask != 0) /* it was in table? */
4462 continue; /* ignore it */
4466 /* Return the current pc, adjusted backwards by 2 if
4467 the previous instruction was an extend. */
4468 return pc - prev_extend_bytes;
4474 /* To skip prologues, I use this predicate. Returns either PC itself
4475 if the code at PC does not look like a function prologue; otherwise
4476 returns an address that (if we're lucky) follows the prologue. If
4477 LENIENT, then we must skip everything which is involved in setting
4478 up the frame (it's OK to skip more, just so long as we don't skip
4479 anything which might clobber the registers which are being saved.
4480 We must skip more in the case where part of the prologue is in the
4481 delay slot of a non-prologue instruction). */
4484 mips_skip_prologue (CORE_ADDR pc)
4486 /* See if we can determine the end of the prologue via the symbol table.
4487 If so, then return either PC, or the PC after the prologue, whichever
4490 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4492 if (post_prologue_pc != 0)
4493 return max (pc, post_prologue_pc);
4495 /* Can't determine prologue from the symbol table, need to examine
4498 if (pc_is_mips16 (pc))
4499 return mips16_skip_prologue (pc);
4501 return mips32_skip_prologue (pc);
4504 /* Determine how a return value is stored within the MIPS register
4505 file, given the return type `valtype'. */
4507 struct return_value_word
4516 return_value_location (struct type *valtype,
4517 struct return_value_word *hi,
4518 struct return_value_word *lo)
4520 int len = TYPE_LENGTH (valtype);
4522 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4523 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4524 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4526 if (!FP_REGISTER_DOUBLE && len == 8)
4528 /* We need to break a 64bit float in two 32 bit halves and
4529 spread them across a floating-point register pair. */
4530 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4531 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4532 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4533 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4535 hi->reg_offset = lo->reg_offset;
4536 lo->reg = FP0_REGNUM + 0;
4537 hi->reg = FP0_REGNUM + 1;
4543 /* The floating point value fits in a single floating-point
4545 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4546 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4549 lo->reg = FP0_REGNUM;
4560 /* Locate a result possibly spread across two registers. */
4562 lo->reg = regnum + 0;
4563 hi->reg = regnum + 1;
4564 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4565 && len < MIPS_SAVED_REGSIZE)
4567 /* "un-left-justify" the value in the low register */
4568 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4573 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4574 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4575 && len < MIPS_SAVED_REGSIZE * 2
4576 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4577 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4579 /* "un-left-justify" the value spread across two registers. */
4580 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4581 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4583 hi->len = len - lo->len;
4587 /* Only perform a partial copy of the second register. */
4590 if (len > MIPS_SAVED_REGSIZE)
4592 lo->len = MIPS_SAVED_REGSIZE;
4593 hi->len = len - MIPS_SAVED_REGSIZE;
4601 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4602 && REGISTER_RAW_SIZE (regnum) == 8
4603 && MIPS_SAVED_REGSIZE == 4)
4605 /* Account for the fact that only the least-signficant part
4606 of the register is being used */
4607 lo->reg_offset += 4;
4608 hi->reg_offset += 4;
4611 hi->buf_offset = lo->len;
4615 /* Given a return value in `regbuf' with a type `valtype', extract and
4616 copy its value into `valbuf'. */
4619 mips_eabi_extract_return_value (struct type *valtype,
4620 char regbuf[REGISTER_BYTES],
4623 struct return_value_word lo;
4624 struct return_value_word hi;
4625 return_value_location (valtype, &hi, &lo);
4627 memcpy (valbuf + lo.buf_offset,
4628 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4632 memcpy (valbuf + hi.buf_offset,
4633 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4638 mips_o64_extract_return_value (struct type *valtype,
4639 char regbuf[REGISTER_BYTES],
4642 struct return_value_word lo;
4643 struct return_value_word hi;
4644 return_value_location (valtype, &hi, &lo);
4646 memcpy (valbuf + lo.buf_offset,
4647 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4651 memcpy (valbuf + hi.buf_offset,
4652 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4656 /* Given a return value in `valbuf' with a type `valtype', write it's
4657 value into the appropriate register. */
4660 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4662 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4663 struct return_value_word lo;
4664 struct return_value_word hi;
4665 return_value_location (valtype, &hi, &lo);
4667 memset (raw_buffer, 0, sizeof (raw_buffer));
4668 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4669 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4670 REGISTER_RAW_SIZE (lo.reg));
4674 memset (raw_buffer, 0, sizeof (raw_buffer));
4675 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4676 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4677 REGISTER_RAW_SIZE (hi.reg));
4682 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4684 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4685 struct return_value_word lo;
4686 struct return_value_word hi;
4687 return_value_location (valtype, &hi, &lo);
4689 memset (raw_buffer, 0, sizeof (raw_buffer));
4690 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4691 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4692 REGISTER_RAW_SIZE (lo.reg));
4696 memset (raw_buffer, 0, sizeof (raw_buffer));
4697 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4698 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4699 REGISTER_RAW_SIZE (hi.reg));
4703 /* O32 ABI stuff. */
4706 mips_o32_xfer_return_value (struct type *type,
4707 struct regcache *regcache,
4708 bfd_byte *in, const bfd_byte *out)
4710 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4711 if (TYPE_CODE (type) == TYPE_CODE_FLT
4712 && TYPE_LENGTH (type) == 4
4713 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4715 /* A single-precision floating-point value. It fits in the
4716 least significant part of FP0. */
4718 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4719 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4720 TARGET_BYTE_ORDER, in, out, 0);
4722 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4723 && TYPE_LENGTH (type) == 8
4724 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4726 /* A double-precision floating-point value. It fits in the
4727 least significant part of FP0/FP1 but with byte ordering
4728 based on the target (???). */
4730 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4731 switch (TARGET_BYTE_ORDER)
4733 case BFD_ENDIAN_LITTLE:
4734 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4735 TARGET_BYTE_ORDER, in, out, 0);
4736 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4737 TARGET_BYTE_ORDER, in, out, 4);
4739 case BFD_ENDIAN_BIG:
4740 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4741 TARGET_BYTE_ORDER, in, out, 0);
4742 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4743 TARGET_BYTE_ORDER, in, out, 4);
4746 internal_error (__FILE__, __LINE__, "bad switch");
4750 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4751 && TYPE_NFIELDS (type) <= 2
4752 && TYPE_NFIELDS (type) >= 1
4753 && ((TYPE_NFIELDS (type) == 1
4754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4756 || (TYPE_NFIELDS (type) == 2
4757 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4759 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4761 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4763 /* A struct that contains one or two floats. Each value is part
4764 in the least significant part of their floating point
4766 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4769 for (field = 0, regnum = FP0_REGNUM;
4770 field < TYPE_NFIELDS (type);
4771 field++, regnum += 2)
4773 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4776 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4777 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4778 TARGET_BYTE_ORDER, in, out, offset);
4783 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4784 || TYPE_CODE (type) == TYPE_CODE_UNION)
4786 /* A structure or union. Extract the left justified value,
4787 regardless of the byte order. I.e. DO NOT USE
4791 for (offset = 0, regnum = V0_REGNUM;
4792 offset < TYPE_LENGTH (type);
4793 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4795 int xfer = REGISTER_RAW_SIZE (regnum);
4796 if (offset + xfer > TYPE_LENGTH (type))
4797 xfer = TYPE_LENGTH (type) - offset;
4799 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4800 offset, xfer, regnum);
4801 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4808 /* A scalar extract each part but least-significant-byte
4809 justified. o32 thinks registers are 4 byte, regardless of
4810 the ISA. mips_stack_argsize controls this. */
4813 for (offset = 0, regnum = V0_REGNUM;
4814 offset < TYPE_LENGTH (type);
4815 offset += mips_stack_argsize (), regnum++)
4817 int xfer = mips_stack_argsize ();
4819 if (offset + xfer > TYPE_LENGTH (type))
4820 xfer = TYPE_LENGTH (type) - offset;
4822 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4823 offset, xfer, regnum);
4824 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4831 mips_o32_extract_return_value (struct type *type,
4832 struct regcache *regcache,
4835 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4839 mips_o32_store_return_value (struct type *type, char *valbuf)
4841 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4844 /* N32/N44 ABI stuff. */
4847 mips_n32n64_xfer_return_value (struct type *type,
4848 struct regcache *regcache,
4849 bfd_byte *in, const bfd_byte *out)
4851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4852 if (TYPE_CODE (type) == TYPE_CODE_FLT
4853 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4855 /* A floating-point value belongs in the least significant part
4858 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4859 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4860 TARGET_BYTE_ORDER, in, out, 0);
4862 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4863 && TYPE_NFIELDS (type) <= 2
4864 && TYPE_NFIELDS (type) >= 1
4865 && ((TYPE_NFIELDS (type) == 1
4866 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4868 || (TYPE_NFIELDS (type) == 2
4869 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4871 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4873 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4875 /* A struct that contains one or two floats. Each value is part
4876 in the least significant part of their floating point
4878 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4881 for (field = 0, regnum = FP0_REGNUM;
4882 field < TYPE_NFIELDS (type);
4883 field++, regnum += 2)
4885 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4888 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4889 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4890 TARGET_BYTE_ORDER, in, out, offset);
4893 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4894 || TYPE_CODE (type) == TYPE_CODE_UNION)
4896 /* A structure or union. Extract the left justified value,
4897 regardless of the byte order. I.e. DO NOT USE
4901 for (offset = 0, regnum = V0_REGNUM;
4902 offset < TYPE_LENGTH (type);
4903 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4905 int xfer = REGISTER_RAW_SIZE (regnum);
4906 if (offset + xfer > TYPE_LENGTH (type))
4907 xfer = TYPE_LENGTH (type) - offset;
4909 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4910 offset, xfer, regnum);
4911 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4917 /* A scalar extract each part but least-significant-byte
4921 for (offset = 0, regnum = V0_REGNUM;
4922 offset < TYPE_LENGTH (type);
4923 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4925 int xfer = REGISTER_RAW_SIZE (regnum);
4927 if (offset + xfer > TYPE_LENGTH (type))
4928 xfer = TYPE_LENGTH (type) - offset;
4930 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4931 offset, xfer, regnum);
4932 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4939 mips_n32n64_extract_return_value (struct type *type,
4940 struct regcache *regcache,
4943 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4947 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4949 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4953 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4955 /* Nothing to do -- push_arguments does all the work. */
4959 mips_extract_struct_value_address (struct regcache *regcache)
4961 /* FIXME: This will only work at random. The caller passes the
4962 struct_return address in V0, but it is not preserved. It may
4963 still be there, or this may be a random value. */
4966 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4970 /* Exported procedure: Is PC in the signal trampoline code */
4973 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4975 if (sigtramp_address == 0)
4977 return (pc >= sigtramp_address && pc < sigtramp_end);
4980 /* Root of all "set mips "/"show mips " commands. This will eventually be
4981 used for all MIPS-specific commands. */
4984 show_mips_command (char *args, int from_tty)
4986 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4990 set_mips_command (char *args, int from_tty)
4992 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4993 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4996 /* Commands to show/set the MIPS FPU type. */
4999 show_mipsfpu_command (char *args, int from_tty)
5002 switch (MIPS_FPU_TYPE)
5004 case MIPS_FPU_SINGLE:
5005 fpu = "single-precision";
5007 case MIPS_FPU_DOUBLE:
5008 fpu = "double-precision";
5011 fpu = "absent (none)";
5014 internal_error (__FILE__, __LINE__, "bad switch");
5016 if (mips_fpu_type_auto)
5017 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5020 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5026 set_mipsfpu_command (char *args, int from_tty)
5028 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5029 show_mipsfpu_command (args, from_tty);
5033 set_mipsfpu_single_command (char *args, int from_tty)
5035 mips_fpu_type = MIPS_FPU_SINGLE;
5036 mips_fpu_type_auto = 0;
5037 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5041 set_mipsfpu_double_command (char *args, int from_tty)
5043 mips_fpu_type = MIPS_FPU_DOUBLE;
5044 mips_fpu_type_auto = 0;
5045 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5049 set_mipsfpu_none_command (char *args, int from_tty)
5051 mips_fpu_type = MIPS_FPU_NONE;
5052 mips_fpu_type_auto = 0;
5053 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5057 set_mipsfpu_auto_command (char *args, int from_tty)
5059 mips_fpu_type_auto = 1;
5062 /* Command to set the processor type. */
5065 mips_set_processor_type_command (char *args, int from_tty)
5069 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5071 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5072 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5073 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5075 /* Restore the value. */
5076 tmp_mips_processor_type = xstrdup (mips_processor_type);
5081 if (!mips_set_processor_type (tmp_mips_processor_type))
5083 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5084 /* Restore its value. */
5085 tmp_mips_processor_type = xstrdup (mips_processor_type);
5090 mips_show_processor_type_command (char *args, int from_tty)
5094 /* Modify the actual processor type. */
5097 mips_set_processor_type (char *str)
5104 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5106 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5108 mips_processor_type = str;
5109 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5111 /* FIXME tweak fpu flag too */
5118 /* Attempt to identify the particular processor model by reading the
5122 mips_read_processor_type (void)
5126 prid = read_register (PRID_REGNUM);
5128 if ((prid & ~0xf) == 0x700)
5129 return savestring ("r3041", strlen ("r3041"));
5134 /* Just like reinit_frame_cache, but with the right arguments to be
5135 callable as an sfunc. */
5138 reinit_frame_cache_sfunc (char *args, int from_tty,
5139 struct cmd_list_element *c)
5141 reinit_frame_cache ();
5145 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5147 mips_extra_func_info_t proc_desc;
5149 /* Search for the function containing this address. Set the low bit
5150 of the address when searching, in case we were given an even address
5151 that is the start of a 16-bit function. If we didn't do this,
5152 the search would fail because the symbol table says the function
5153 starts at an odd address, i.e. 1 byte past the given address. */
5154 memaddr = ADDR_BITS_REMOVE (memaddr);
5155 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5157 /* Make an attempt to determine if this is a 16-bit function. If
5158 the procedure descriptor exists and the address therein is odd,
5159 it's definitely a 16-bit function. Otherwise, we have to just
5160 guess that if the address passed in is odd, it's 16-bits. */
5162 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5163 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5165 info->mach = pc_is_mips16 (memaddr) ?
5166 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5168 /* Round down the instruction address to the appropriate boundary. */
5169 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5171 /* Call the appropriate disassembler based on the target endian-ness. */
5172 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5173 return print_insn_big_mips (memaddr, info);
5175 return print_insn_little_mips (memaddr, info);
5178 /* Old-style breakpoint macros.
5179 The IDT board uses an unusual breakpoint value, and sometimes gets
5180 confused when it sees the usual MIPS breakpoint instruction. */
5182 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5183 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5184 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5185 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5186 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5187 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5188 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5189 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5191 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5192 counter value to determine whether a 16- or 32-bit breakpoint should be
5193 used. It returns a pointer to a string of bytes that encode a breakpoint
5194 instruction, stores the length of the string to *lenptr, and adjusts pc
5195 (if necessary) to point to the actual memory location where the
5196 breakpoint should be inserted. */
5198 static const unsigned char *
5199 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5201 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5203 if (pc_is_mips16 (*pcptr))
5205 static unsigned char mips16_big_breakpoint[] =
5206 MIPS16_BIG_BREAKPOINT;
5207 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5208 *lenptr = sizeof (mips16_big_breakpoint);
5209 return mips16_big_breakpoint;
5213 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5214 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5215 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5217 *lenptr = sizeof (big_breakpoint);
5219 if (strcmp (target_shortname, "mips") == 0)
5220 return idt_big_breakpoint;
5221 else if (strcmp (target_shortname, "ddb") == 0
5222 || strcmp (target_shortname, "pmon") == 0
5223 || strcmp (target_shortname, "lsi") == 0)
5224 return pmon_big_breakpoint;
5226 return big_breakpoint;
5231 if (pc_is_mips16 (*pcptr))
5233 static unsigned char mips16_little_breakpoint[] =
5234 MIPS16_LITTLE_BREAKPOINT;
5235 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5236 *lenptr = sizeof (mips16_little_breakpoint);
5237 return mips16_little_breakpoint;
5241 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5242 static unsigned char pmon_little_breakpoint[] =
5243 PMON_LITTLE_BREAKPOINT;
5244 static unsigned char idt_little_breakpoint[] =
5245 IDT_LITTLE_BREAKPOINT;
5247 *lenptr = sizeof (little_breakpoint);
5249 if (strcmp (target_shortname, "mips") == 0)
5250 return idt_little_breakpoint;
5251 else if (strcmp (target_shortname, "ddb") == 0
5252 || strcmp (target_shortname, "pmon") == 0
5253 || strcmp (target_shortname, "lsi") == 0)
5254 return pmon_little_breakpoint;
5256 return little_breakpoint;
5261 /* If PC is in a mips16 call or return stub, return the address of the target
5262 PC, which is either the callee or the caller. There are several
5263 cases which must be handled:
5265 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5266 target PC is in $31 ($ra).
5267 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5268 and the target PC is in $2.
5269 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5270 before the jal instruction, this is effectively a call stub
5271 and the the target PC is in $2. Otherwise this is effectively
5272 a return stub and the target PC is in $18.
5274 See the source code for the stubs in gcc/config/mips/mips16.S for
5277 This function implements the SKIP_TRAMPOLINE_CODE macro.
5281 mips_skip_stub (CORE_ADDR pc)
5284 CORE_ADDR start_addr;
5286 /* Find the starting address and name of the function containing the PC. */
5287 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5290 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5291 target PC is in $31 ($ra). */
5292 if (strcmp (name, "__mips16_ret_sf") == 0
5293 || strcmp (name, "__mips16_ret_df") == 0)
5294 return read_signed_register (RA_REGNUM);
5296 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5298 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5299 and the target PC is in $2. */
5300 if (name[19] >= '0' && name[19] <= '9')
5301 return read_signed_register (2);
5303 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5304 before the jal instruction, this is effectively a call stub
5305 and the the target PC is in $2. Otherwise this is effectively
5306 a return stub and the target PC is in $18. */
5307 else if (name[19] == 's' || name[19] == 'd')
5309 if (pc == start_addr)
5311 /* Check if the target of the stub is a compiler-generated
5312 stub. Such a stub for a function bar might have a name
5313 like __fn_stub_bar, and might look like this:
5318 la $1,bar (becomes a lui/addiu pair)
5320 So scan down to the lui/addi and extract the target
5321 address from those two instructions. */
5323 CORE_ADDR target_pc = read_signed_register (2);
5327 /* See if the name of the target function is __fn_stub_*. */
5328 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5330 if (strncmp (name, "__fn_stub_", 10) != 0
5331 && strcmp (name, "etext") != 0
5332 && strcmp (name, "_etext") != 0)
5335 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5336 The limit on the search is arbitrarily set to 20
5337 instructions. FIXME. */
5338 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5340 inst = mips_fetch_instruction (target_pc);
5341 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5342 pc = (inst << 16) & 0xffff0000; /* high word */
5343 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5344 return pc | (inst & 0xffff); /* low word */
5347 /* Couldn't find the lui/addui pair, so return stub address. */
5351 /* This is the 'return' part of a call stub. The return
5352 address is in $r18. */
5353 return read_signed_register (18);
5356 return 0; /* not a stub */
5360 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5361 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5364 mips_in_call_stub (CORE_ADDR pc, char *name)
5366 CORE_ADDR start_addr;
5368 /* Find the starting address of the function containing the PC. If the
5369 caller didn't give us a name, look it up at the same time. */
5370 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5373 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5375 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5376 if (name[19] >= '0' && name[19] <= '9')
5378 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5379 before the jal instruction, this is effectively a call stub. */
5380 else if (name[19] == 's' || name[19] == 'd')
5381 return pc == start_addr;
5384 return 0; /* not a stub */
5388 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5389 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5392 mips_in_return_stub (CORE_ADDR pc, char *name)
5394 CORE_ADDR start_addr;
5396 /* Find the starting address of the function containing the PC. */
5397 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5400 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5401 if (strcmp (name, "__mips16_ret_sf") == 0
5402 || strcmp (name, "__mips16_ret_df") == 0)
5405 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5406 i.e. after the jal instruction, this is effectively a return stub. */
5407 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5408 && (name[19] == 's' || name[19] == 'd')
5409 && pc != start_addr)
5412 return 0; /* not a stub */
5416 /* Return non-zero if the PC is in a library helper function that should
5417 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5420 mips_ignore_helper (CORE_ADDR pc)
5424 /* Find the starting address and name of the function containing the PC. */
5425 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5428 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5429 that we want to ignore. */
5430 return (strcmp (name, "__mips16_ret_sf") == 0
5431 || strcmp (name, "__mips16_ret_df") == 0);
5435 /* Return a location where we can set a breakpoint that will be hit
5436 when an inferior function call returns. This is normally the
5437 program's entry point. Executables that don't have an entry
5438 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5439 whose address is the location where the breakpoint should be placed. */
5442 mips_call_dummy_address (void)
5444 struct minimal_symbol *sym;
5446 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5448 return SYMBOL_VALUE_ADDRESS (sym);
5450 return entry_point_address ();
5454 /* If the current gcc for this target does not produce correct debugging
5455 information for float parameters, both prototyped and unprototyped, then
5456 define this macro. This forces gdb to always assume that floats are
5457 passed as doubles and then converted in the callee.
5459 For the mips chip, it appears that the debug info marks the parameters as
5460 floats regardless of whether the function is prototyped, but the actual
5461 values are passed as doubles for the non-prototyped case and floats for
5462 the prototyped case. Thus we choose to make the non-prototyped case work
5463 for C and break the prototyped case, since the non-prototyped case is
5464 probably much more common. (FIXME). */
5467 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5469 return current_language->la_language == language_c;
5472 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5473 the register stored on the stack (32) is different to its real raw
5474 size (64). The below ensures that registers are fetched from the
5475 stack using their ABI size and then stored into the RAW_BUFFER
5476 using their raw size.
5478 The alternative to adding this function would be to add an ABI
5479 macro - REGISTER_STACK_SIZE(). */
5482 mips_get_saved_register (char *raw_buffer,
5485 struct frame_info *frame,
5487 enum lval_type *lvalp)
5490 enum lval_type lvalx;
5494 if (!target_has_registers)
5495 error ("No registers.");
5497 /* Make certain that all needed parameters are present. */
5502 if (optimizedp == NULL)
5503 optimizedp = &optimizedx;
5504 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5505 addrp, &realnum, raw_buffer);
5506 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5507 have a pseudo register range that correspons to the ABI's, rather
5508 than the ISA's, view of registers. These registers would then
5509 implicitly describe their size and hence could be used without
5510 the below munging. */
5511 if ((*lvalp) == lval_memory)
5513 if (raw_buffer != NULL)
5517 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5519 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5520 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5526 /* Immediately after a function call, return the saved pc.
5527 Can't always go through the frames for this because on some machines
5528 the new frame is not set up until the new function executes
5529 some instructions. */
5532 mips_saved_pc_after_call (struct frame_info *frame)
5534 return read_signed_register (RA_REGNUM);
5538 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5542 mips_stab_reg_to_regnum (int num)
5547 return num + FP0_REGNUM - 38;
5550 /* Convert a ecoff register number to a gdb REGNUM */
5553 mips_ecoff_reg_to_regnum (int num)
5558 return num + FP0_REGNUM - 32;
5561 /* Convert an integer into an address. By first converting the value
5562 into a pointer and then extracting it signed, the address is
5563 guarenteed to be correctly sign extended. */
5566 mips_integer_to_address (struct type *type, void *buf)
5568 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5569 LONGEST val = unpack_long (type, buf);
5570 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5571 return extract_signed_integer (tmp,
5572 TYPE_LENGTH (builtin_type_void_data_ptr));
5576 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5578 enum mips_abi *abip = (enum mips_abi *) obj;
5579 const char *name = bfd_get_section_name (abfd, sect);
5581 if (*abip != MIPS_ABI_UNKNOWN)
5584 if (strncmp (name, ".mdebug.", 8) != 0)
5587 if (strcmp (name, ".mdebug.abi32") == 0)
5588 *abip = MIPS_ABI_O32;
5589 else if (strcmp (name, ".mdebug.abiN32") == 0)
5590 *abip = MIPS_ABI_N32;
5591 else if (strcmp (name, ".mdebug.abi64") == 0)
5592 *abip = MIPS_ABI_N64;
5593 else if (strcmp (name, ".mdebug.abiO64") == 0)
5594 *abip = MIPS_ABI_O64;
5595 else if (strcmp (name, ".mdebug.eabi32") == 0)
5596 *abip = MIPS_ABI_EABI32;
5597 else if (strcmp (name, ".mdebug.eabi64") == 0)
5598 *abip = MIPS_ABI_EABI64;
5600 warning ("unsupported ABI %s.", name + 8);
5603 static enum mips_abi
5604 global_mips_abi (void)
5608 for (i = 0; mips_abi_strings[i] != NULL; i++)
5609 if (mips_abi_strings[i] == mips_abi_string)
5610 return (enum mips_abi) i;
5612 internal_error (__FILE__, __LINE__,
5613 "unknown ABI string");
5616 static struct gdbarch *
5617 mips_gdbarch_init (struct gdbarch_info info,
5618 struct gdbarch_list *arches)
5620 static LONGEST mips_call_dummy_words[] =
5622 struct gdbarch *gdbarch;
5623 struct gdbarch_tdep *tdep;
5625 enum mips_abi mips_abi, found_abi, wanted_abi;
5626 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5628 /* Reset the disassembly info, in case it was set to something
5630 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5631 tm_print_insn_info.arch = bfd_arch_unknown;
5632 tm_print_insn_info.mach = 0;
5638 /* First of all, extract the elf_flags, if available. */
5639 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5640 elf_flags = elf_elfheader (info.abfd)->e_flags;
5642 /* Try to determine the OS ABI of the object we are loading. If
5643 we end up with `unknown', just leave it that way. */
5644 osabi = gdbarch_lookup_osabi (info.abfd);
5647 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5648 switch ((elf_flags & EF_MIPS_ABI))
5650 case E_MIPS_ABI_O32:
5651 mips_abi = MIPS_ABI_O32;
5653 case E_MIPS_ABI_O64:
5654 mips_abi = MIPS_ABI_O64;
5656 case E_MIPS_ABI_EABI32:
5657 mips_abi = MIPS_ABI_EABI32;
5659 case E_MIPS_ABI_EABI64:
5660 mips_abi = MIPS_ABI_EABI64;
5663 if ((elf_flags & EF_MIPS_ABI2))
5664 mips_abi = MIPS_ABI_N32;
5666 mips_abi = MIPS_ABI_UNKNOWN;
5670 /* GCC creates a pseudo-section whose name describes the ABI. */
5671 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5672 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5674 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5675 Use the ABI from the last architecture if there is one. */
5676 if (info.abfd == NULL && arches != NULL)
5677 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5679 /* Try the architecture for any hint of the correct ABI. */
5680 if (mips_abi == MIPS_ABI_UNKNOWN
5681 && info.bfd_arch_info != NULL
5682 && info.bfd_arch_info->arch == bfd_arch_mips)
5684 switch (info.bfd_arch_info->mach)
5686 case bfd_mach_mips3900:
5687 mips_abi = MIPS_ABI_EABI32;
5689 case bfd_mach_mips4100:
5690 case bfd_mach_mips5000:
5691 mips_abi = MIPS_ABI_EABI64;
5693 case bfd_mach_mips8000:
5694 case bfd_mach_mips10000:
5695 /* On Irix, ELF64 executables use the N64 ABI. The
5696 pseudo-sections which describe the ABI aren't present
5697 on IRIX. (Even for executables created by gcc.) */
5698 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5699 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5700 mips_abi = MIPS_ABI_N64;
5702 mips_abi = MIPS_ABI_N32;
5707 if (mips_abi == MIPS_ABI_UNKNOWN)
5708 mips_abi = MIPS_ABI_O32;
5710 /* Now that we have found what the ABI for this binary would be,
5711 check whether the user is overriding it. */
5712 found_abi = mips_abi;
5713 wanted_abi = global_mips_abi ();
5714 if (wanted_abi != MIPS_ABI_UNKNOWN)
5715 mips_abi = wanted_abi;
5719 fprintf_unfiltered (gdb_stdlog,
5720 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5722 fprintf_unfiltered (gdb_stdlog,
5723 "mips_gdbarch_init: mips_abi = %d\n",
5725 fprintf_unfiltered (gdb_stdlog,
5726 "mips_gdbarch_init: found_mips_abi = %d\n",
5730 /* try to find a pre-existing architecture */
5731 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5733 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5735 /* MIPS needs to be pedantic about which ABI the object is
5737 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5739 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5741 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5742 return arches->gdbarch;
5745 /* Need a new architecture. Fill in a target specific vector. */
5746 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5747 gdbarch = gdbarch_alloc (&info, tdep);
5748 tdep->elf_flags = elf_flags;
5749 tdep->osabi = osabi;
5751 /* Initially set everything according to the default ABI/ISA. */
5752 set_gdbarch_short_bit (gdbarch, 16);
5753 set_gdbarch_int_bit (gdbarch, 32);
5754 set_gdbarch_float_bit (gdbarch, 32);
5755 set_gdbarch_double_bit (gdbarch, 64);
5756 set_gdbarch_long_double_bit (gdbarch, 64);
5757 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5758 set_gdbarch_max_register_raw_size (gdbarch, 8);
5759 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5760 tdep->found_abi = found_abi;
5761 tdep->mips_abi = mips_abi;
5763 set_gdbarch_elf_make_msymbol_special (gdbarch,
5764 mips_elf_make_msymbol_special);
5769 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5770 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5771 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5772 tdep->mips_default_saved_regsize = 4;
5773 tdep->mips_default_stack_argsize = 4;
5774 tdep->mips_fp_register_double = 0;
5775 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5776 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5777 tdep->gdb_target_is_mips64 = 0;
5778 tdep->default_mask_address_p = 0;
5779 set_gdbarch_long_bit (gdbarch, 32);
5780 set_gdbarch_ptr_bit (gdbarch, 32);
5781 set_gdbarch_long_long_bit (gdbarch, 64);
5782 set_gdbarch_reg_struct_has_addr (gdbarch,
5783 mips_o32_reg_struct_has_addr);
5784 set_gdbarch_use_struct_convention (gdbarch,
5785 mips_o32_use_struct_convention);
5788 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5789 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5790 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5791 tdep->mips_default_saved_regsize = 8;
5792 tdep->mips_default_stack_argsize = 8;
5793 tdep->mips_fp_register_double = 1;
5794 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5795 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5796 tdep->gdb_target_is_mips64 = 1;
5797 tdep->default_mask_address_p = 0;
5798 set_gdbarch_long_bit (gdbarch, 32);
5799 set_gdbarch_ptr_bit (gdbarch, 32);
5800 set_gdbarch_long_long_bit (gdbarch, 64);
5801 set_gdbarch_reg_struct_has_addr (gdbarch,
5802 mips_o32_reg_struct_has_addr);
5803 set_gdbarch_use_struct_convention (gdbarch,
5804 mips_o32_use_struct_convention);
5806 case MIPS_ABI_EABI32:
5807 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5808 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5809 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5810 tdep->mips_default_saved_regsize = 4;
5811 tdep->mips_default_stack_argsize = 4;
5812 tdep->mips_fp_register_double = 0;
5813 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5814 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5815 tdep->gdb_target_is_mips64 = 0;
5816 tdep->default_mask_address_p = 0;
5817 set_gdbarch_long_bit (gdbarch, 32);
5818 set_gdbarch_ptr_bit (gdbarch, 32);
5819 set_gdbarch_long_long_bit (gdbarch, 64);
5820 set_gdbarch_reg_struct_has_addr (gdbarch,
5821 mips_eabi_reg_struct_has_addr);
5822 set_gdbarch_use_struct_convention (gdbarch,
5823 mips_eabi_use_struct_convention);
5825 case MIPS_ABI_EABI64:
5826 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5827 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5828 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5829 tdep->mips_default_saved_regsize = 8;
5830 tdep->mips_default_stack_argsize = 8;
5831 tdep->mips_fp_register_double = 1;
5832 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5833 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5834 tdep->gdb_target_is_mips64 = 1;
5835 tdep->default_mask_address_p = 0;
5836 set_gdbarch_long_bit (gdbarch, 64);
5837 set_gdbarch_ptr_bit (gdbarch, 64);
5838 set_gdbarch_long_long_bit (gdbarch, 64);
5839 set_gdbarch_reg_struct_has_addr (gdbarch,
5840 mips_eabi_reg_struct_has_addr);
5841 set_gdbarch_use_struct_convention (gdbarch,
5842 mips_eabi_use_struct_convention);
5845 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5846 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5847 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5848 tdep->mips_default_saved_regsize = 8;
5849 tdep->mips_default_stack_argsize = 8;
5850 tdep->mips_fp_register_double = 1;
5851 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5852 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5853 tdep->gdb_target_is_mips64 = 1;
5854 tdep->default_mask_address_p = 0;
5855 set_gdbarch_long_bit (gdbarch, 32);
5856 set_gdbarch_ptr_bit (gdbarch, 32);
5857 set_gdbarch_long_long_bit (gdbarch, 64);
5859 /* Set up the disassembler info, so that we get the right
5860 register names from libopcodes. */
5861 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5862 tm_print_insn_info.arch = bfd_arch_mips;
5863 if (info.bfd_arch_info != NULL
5864 && info.bfd_arch_info->arch == bfd_arch_mips
5865 && info.bfd_arch_info->mach)
5866 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5868 tm_print_insn_info.mach = bfd_mach_mips8000;
5870 set_gdbarch_use_struct_convention (gdbarch,
5871 mips_n32n64_use_struct_convention);
5872 set_gdbarch_reg_struct_has_addr (gdbarch,
5873 mips_n32n64_reg_struct_has_addr);
5876 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5877 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5878 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5879 tdep->mips_default_saved_regsize = 8;
5880 tdep->mips_default_stack_argsize = 8;
5881 tdep->mips_fp_register_double = 1;
5882 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5883 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5884 tdep->gdb_target_is_mips64 = 1;
5885 tdep->default_mask_address_p = 0;
5886 set_gdbarch_long_bit (gdbarch, 64);
5887 set_gdbarch_ptr_bit (gdbarch, 64);
5888 set_gdbarch_long_long_bit (gdbarch, 64);
5890 /* Set up the disassembler info, so that we get the right
5891 register names from libopcodes. */
5892 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5893 tm_print_insn_info.arch = bfd_arch_mips;
5894 if (info.bfd_arch_info != NULL
5895 && info.bfd_arch_info->arch == bfd_arch_mips
5896 && info.bfd_arch_info->mach)
5897 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5899 tm_print_insn_info.mach = bfd_mach_mips8000;
5901 set_gdbarch_use_struct_convention (gdbarch,
5902 mips_n32n64_use_struct_convention);
5903 set_gdbarch_reg_struct_has_addr (gdbarch,
5904 mips_n32n64_reg_struct_has_addr);
5907 internal_error (__FILE__, __LINE__,
5908 "unknown ABI in switch");
5911 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5912 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5915 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5916 flag in object files because to do so would make it impossible to
5917 link with libraries compiled without "-gp32". This is
5918 unnecessarily restrictive.
5920 We could solve this problem by adding "-gp32" multilibs to gcc,
5921 but to set this flag before gcc is built with such multilibs will
5922 break too many systems.''
5924 But even more unhelpfully, the default linker output target for
5925 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5926 for 64-bit programs - you need to change the ABI to change this,
5927 and not all gcc targets support that currently. Therefore using
5928 this flag to detect 32-bit mode would do the wrong thing given
5929 the current gcc - it would make GDB treat these 64-bit programs
5930 as 32-bit programs by default. */
5932 /* enable/disable the MIPS FPU */
5933 if (!mips_fpu_type_auto)
5934 tdep->mips_fpu_type = mips_fpu_type;
5935 else if (info.bfd_arch_info != NULL
5936 && info.bfd_arch_info->arch == bfd_arch_mips)
5937 switch (info.bfd_arch_info->mach)
5939 case bfd_mach_mips3900:
5940 case bfd_mach_mips4100:
5941 case bfd_mach_mips4111:
5942 tdep->mips_fpu_type = MIPS_FPU_NONE;
5944 case bfd_mach_mips4650:
5945 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5948 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5952 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5954 /* MIPS version of register names. NOTE: At present the MIPS
5955 register name management is part way between the old -
5956 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5957 Further work on it is required. */
5958 /* NOTE: many targets (esp. embedded) do not go thru the
5959 gdbarch_register_name vector at all, instead bypassing it
5960 by defining REGISTER_NAMES. */
5961 set_gdbarch_register_name (gdbarch, mips_register_name);
5962 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5963 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5964 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5965 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5966 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5968 /* Add/remove bits from an address. The MIPS needs be careful to
5969 ensure that all 32 bit addresses are sign extended to 64 bits. */
5970 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5972 /* There's a mess in stack frame creation. See comments in
5973 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5974 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5975 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
5977 /* Map debug register numbers onto internal register numbers. */
5978 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5979 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5981 /* Initialize a frame */
5982 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5983 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5985 /* MIPS version of CALL_DUMMY */
5987 set_gdbarch_call_dummy_p (gdbarch, 1);
5988 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5989 #if OLD_STYLE_MIPS_DUMMY_FRAMES
5990 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5992 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
5994 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5995 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5996 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5997 #if OLD_STYLE_MIPS_DUMMY_FRAMES
5998 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
6000 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
6002 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
6003 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
6004 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
6005 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
6006 set_gdbarch_call_dummy_length (gdbarch, 0);
6007 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
6008 #if OLD_STYLE_MIPS_DUMMY_FRAMES
6009 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
6011 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
6013 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
6014 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
6015 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
6016 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6017 #if OLD_STYLE_MIPS_DUMMY_FRAMES
6019 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6021 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
6022 set_gdbarch_register_convert_to_virtual (gdbarch,
6023 mips_register_convert_to_virtual);
6024 set_gdbarch_register_convert_to_raw (gdbarch,
6025 mips_register_convert_to_raw);
6027 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
6029 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
6030 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
6031 set_gdbarch_frameless_function_invocation (gdbarch,
6032 generic_frameless_function_invocation_not);
6033 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6034 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
6035 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
6036 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6037 set_gdbarch_frame_args_skip (gdbarch, 0);
6039 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
6041 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6042 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6043 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6045 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6046 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6048 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6049 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6050 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6052 set_gdbarch_function_start_offset (gdbarch, 0);
6054 /* There are MIPS targets which do not yet use this since they still
6055 define REGISTER_VIRTUAL_TYPE. */
6056 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6057 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6059 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6060 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6062 /* Hook in OS ABI-specific overrides, if they have been registered. */
6063 gdbarch_init_osabi (info, gdbarch, osabi);
6065 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6066 set_gdbarch_extract_struct_value_address (gdbarch,
6067 mips_extract_struct_value_address);
6069 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6071 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6072 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6078 mips_abi_update (char *ignore_args, int from_tty,
6079 struct cmd_list_element *c)
6081 struct gdbarch_info info;
6083 /* Force the architecture to update, and (if it's a MIPS architecture)
6084 mips_gdbarch_init will take care of the rest. */
6085 gdbarch_info_init (&info);
6086 gdbarch_update_p (info);
6090 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6092 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6096 int ef_mips_32bitmode;
6097 /* determine the ISA */
6098 switch (tdep->elf_flags & EF_MIPS_ARCH)
6116 /* determine the size of a pointer */
6117 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: ef_mips_arch = %d\n",
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6130 mips_abi_strings[tdep->mips_abi]);
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6133 mips_mask_address_p (),
6134 tdep->default_mask_address_p);
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6138 FP_REGISTER_DOUBLE);
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6141 MIPS_DEFAULT_FPU_TYPE,
6142 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6143 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6144 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: MIPS_EABI = %d\n",
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6151 MIPS_LAST_FP_ARG_REGNUM,
6152 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6156 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6157 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6158 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6162 MIPS_DEFAULT_SAVED_REGSIZE);
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6165 FP_REGISTER_DOUBLE);
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6168 MIPS_DEFAULT_STACK_ARGSIZE);
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6171 MIPS_STACK_ARGSIZE);
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: A0_REGNUM = %d\n",
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6180 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6183 XSTRING (ATTACH_DETACH));
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6194 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6197 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6206 FIRST_EMBED_REGNUM);
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6212 GDB_TARGET_IS_MIPS64);
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6215 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6218 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6224 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: HI_REGNUM = %d\n",
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6234 XSTRING (IGNORE_HELPER_CALL (PC)));
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6237 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6240 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: LO_REGNUM = %d\n",
6251 #ifdef MACHINE_CPROC_FP_OFFSET
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6254 MACHINE_CPROC_FP_OFFSET);
6256 #ifdef MACHINE_CPROC_PC_OFFSET
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6259 MACHINE_CPROC_PC_OFFSET);
6261 #ifdef MACHINE_CPROC_SP_OFFSET
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6264 MACHINE_CPROC_SP_OFFSET);
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6284 MIPS_LAST_ARG_REGNUM,
6285 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6293 MIPS_SAVED_REGSIZE);
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: OP_LDFPR = used?\n");
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: OP_LDGPR = used?\n");
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: PRID_REGNUM = %d\n",
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6307 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: PROC_PC_REG = function?\n");
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: PS_REGNUM = %d\n",
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: RA_REGNUM = %d\n",
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6343 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6346 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: ROUND_DOWN = function?\n");
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: ROUND_UP = function?\n");
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: SAVED_BYTES = %d\n",
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: SAVED_FP = %d\n",
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: SAVED_PC = %d\n",
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6370 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6378 SIGFRAME_FPREGSAVE_OFF);
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6384 SIGFRAME_REGSAVE_OFF);
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6388 fprintf_unfiltered (file,
6389 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6390 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6393 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6396 SOFTWARE_SINGLE_STEP_P ());
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6399 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6400 #ifdef STACK_END_ADDR
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6407 XSTRING (STEP_SKIPS_DELAY (PC)));
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6410 STEP_SKIPS_DELAY_P);
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6413 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: T9_REGNUM = %d\n",
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6421 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6424 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: TARGET_MIPS = used?\n");
6427 fprintf_unfiltered (file,
6428 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6429 XSTRING (TM_PRINT_INSN_MACH));
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6433 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6436 fprintf_unfiltered (file,
6437 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6440 #ifdef TRACE_FLAVOR_SIZE
6441 fprintf_unfiltered (file,
6442 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6446 fprintf_unfiltered (file,
6447 "mips_dump_tdep: TRACE_SET # %s\n",
6448 XSTRING (TRACE_SET (X,STATE)));
6450 fprintf_unfiltered (file,
6451 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6452 #ifdef UNUSED_REGNUM
6453 fprintf_unfiltered (file,
6454 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6457 fprintf_unfiltered (file,
6458 "mips_dump_tdep: V0_REGNUM = %d\n",
6460 fprintf_unfiltered (file,
6461 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6462 (long) VM_MIN_ADDRESS);
6464 fprintf_unfiltered (file,
6465 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6468 fprintf_unfiltered (file,
6469 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6471 fprintf_unfiltered (file,
6472 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6475 fprintf_unfiltered (file,
6476 "mips_dump_tdep: OS ABI = %s\n",
6477 gdbarch_osabi_name (tdep->osabi));
6481 _initialize_mips_tdep (void)
6483 static struct cmd_list_element *mipsfpulist = NULL;
6484 struct cmd_list_element *c;
6486 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6487 if (MIPS_ABI_LAST + 1
6488 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6489 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6491 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6492 if (!tm_print_insn) /* Someone may have already set it */
6493 tm_print_insn = gdb_print_insn_mips;
6495 /* Add root prefix command for all "set mips"/"show mips" commands */
6496 add_prefix_cmd ("mips", no_class, set_mips_command,
6497 "Various MIPS specific commands.",
6498 &setmipscmdlist, "set mips ", 0, &setlist);
6500 add_prefix_cmd ("mips", no_class, show_mips_command,
6501 "Various MIPS specific commands.",
6502 &showmipscmdlist, "show mips ", 0, &showlist);
6504 /* Allow the user to override the saved register size. */
6505 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6508 &mips_saved_regsize_string, "\
6509 Set size of general purpose registers saved on the stack.\n\
6510 This option can be set to one of:\n\
6511 32 - Force GDB to treat saved GP registers as 32-bit\n\
6512 64 - Force GDB to treat saved GP registers as 64-bit\n\
6513 auto - Allow GDB to use the target's default setting or autodetect the\n\
6514 saved GP register size from information contained in the executable.\n\
6519 /* Allow the user to override the argument stack size. */
6520 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6523 &mips_stack_argsize_string, "\
6524 Set the amount of stack space reserved for each argument.\n\
6525 This option can be set to one of:\n\
6526 32 - Force GDB to allocate 32-bit chunks per argument\n\
6527 64 - Force GDB to allocate 64-bit chunks per argument\n\
6528 auto - Allow GDB to determine the correct setting from the current\n\
6529 target and executable (default)",
6533 /* Allow the user to override the ABI. */
6534 c = add_set_enum_cmd
6535 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6536 "Set the ABI used by this program.\n"
6537 "This option can be set to one of:\n"
6538 " auto - the default ABI associated with the current binary\n"
6546 add_show_from_set (c, &showmipscmdlist);
6547 set_cmd_sfunc (c, mips_abi_update);
6549 /* Let the user turn off floating point and set the fence post for
6550 heuristic_proc_start. */
6552 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6553 "Set use of MIPS floating-point coprocessor.",
6554 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6555 add_cmd ("single", class_support, set_mipsfpu_single_command,
6556 "Select single-precision MIPS floating-point coprocessor.",
6558 add_cmd ("double", class_support, set_mipsfpu_double_command,
6559 "Select double-precision MIPS floating-point coprocessor.",
6561 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6562 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6563 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6564 add_cmd ("none", class_support, set_mipsfpu_none_command,
6565 "Select no MIPS floating-point coprocessor.",
6567 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6568 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6569 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6570 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6571 "Select MIPS floating-point coprocessor automatically.",
6573 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6574 "Show current use of MIPS floating-point coprocessor target.",
6577 /* We really would like to have both "0" and "unlimited" work, but
6578 command.c doesn't deal with that. So make it a var_zinteger
6579 because the user can always use "999999" or some such for unlimited. */
6580 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6581 (char *) &heuristic_fence_post,
6583 Set the distance searched for the start of a function.\n\
6584 If you are debugging a stripped executable, GDB needs to search through the\n\
6585 program for the start of a function. This command sets the distance of the\n\
6586 search. The only need to set it is when debugging a stripped executable.",
6588 /* We need to throw away the frame cache when we set this, since it
6589 might change our ability to get backtraces. */
6590 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6591 add_show_from_set (c, &showlist);
6593 /* Allow the user to control whether the upper bits of 64-bit
6594 addresses should be zeroed. */
6595 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6596 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6597 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6598 allow GDB to determine the correct value.\n", "\
6599 Show zeroing of upper 32 bits of 64-bit addresses.",
6600 NULL, show_mask_address,
6601 &setmipscmdlist, &showmipscmdlist);
6603 /* Allow the user to control the size of 32 bit registers within the
6604 raw remote packet. */
6605 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6608 (char *)&mips64_transfers_32bit_regs_p, "\
6609 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6610 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6611 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6612 64 bits for others. Use \"off\" to disable compatibility mode",
6616 /* Debug this files internals. */
6617 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6618 &mips_debug, "Set mips debugging.\n\
6619 When non-zero, mips specific debugging is enabled.", &setdebuglist),