1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry *h;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
118 struct mips_got_page_range
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
131 /* The index of the symbol, as stored in the relocation r_info. */
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
139 /* This structure is used to hold .got information when linking. */
143 /* The global symbol in the GOT with the lowest index in the dynamic
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of .got slots used for TLS. */
149 unsigned int tls_gotno;
150 /* The first unused TLS .got entry. Used only during
151 mips_elf_initialize_tls_index. */
152 unsigned int tls_assigned_gotno;
153 /* The number of local .got entries, eventually including page entries. */
154 unsigned int local_gotno;
155 /* The maximum number of page entries needed. */
156 unsigned int page_gotno;
157 /* The number of local .got entries we have used. */
158 unsigned int assigned_gotno;
159 /* A hash table holding members of the got. */
160 struct htab *got_entries;
161 /* A hash table of mips_got_page_entry structures. */
162 struct htab *got_page_entries;
163 /* A hash table mapping input bfds to other mips_got_info. NULL
164 unless multi-got was necessary. */
165 struct htab *bfd2got;
166 /* In multi-got links, a pointer to the next got (err, rather, most
167 of the time, it points to the previous got). */
168 struct mips_got_info *next;
169 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
170 for none, or MINUS_TWO for not yet assigned. This is needed
171 because a single-GOT link may have multiple hash table entries
172 for the LDM. It does not get initialized in multi-GOT mode. */
173 bfd_vma tls_ldm_offset;
176 /* Map an input bfd to a got in a multi-got link. */
178 struct mips_elf_bfd2got_hash {
180 struct mips_got_info *g;
183 /* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
186 struct mips_elf_got_per_bfd_arg
188 /* A hashtable that maps bfds to gots. */
190 /* The output bfd. */
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
210 unsigned int global_count;
213 /* Another structure used to pass arguments for got entries traversal. */
215 struct mips_elf_set_global_got_offset_arg
217 struct mips_got_info *g;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
223 /* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
226 struct mips_elf_count_tls_arg
228 struct bfd_link_info *info;
232 struct _mips_elf_section_data
234 struct bfd_elf_section_data elf;
237 struct mips_got_info *got_info;
242 #define mips_elf_section_data(sec) \
243 ((struct _mips_elf_section_data *) elf_section_data (sec))
245 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
246 the dynamic symbols. */
248 struct mips_elf_hash_sort_data
250 /* The symbol in the global GOT with the lowest dynamic symbol table
252 struct elf_link_hash_entry *low;
253 /* The least dynamic symbol table index corresponding to a non-TLS
254 symbol with a GOT entry. */
255 long min_got_dynindx;
256 /* The greatest dynamic symbol table index corresponding to a symbol
257 with a GOT entry that is not referenced (e.g., a dynamic symbol
258 with dynamic relocations pointing to it from non-primary GOTs). */
259 long max_unref_got_dynindx;
260 /* The greatest dynamic symbol table index not corresponding to a
261 symbol without a GOT entry. */
262 long max_non_got_dynindx;
265 /* The MIPS ELF linker needs additional information for each symbol in
266 the global hash table. */
268 struct mips_elf_link_hash_entry
270 struct elf_link_hash_entry root;
272 /* External symbol information. */
275 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
277 unsigned int possibly_dynamic_relocs;
279 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
280 a readonly section. */
281 bfd_boolean readonly_reloc;
283 /* We must not create a stub for a symbol that has relocations
284 related to taking the function's address, i.e. any but
285 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
287 bfd_boolean no_fn_stub;
289 /* If there is a stub that 32 bit functions should use to call this
290 16 bit function, this points to the section containing the stub. */
293 /* Whether we need the fn_stub; this is set if this symbol appears
294 in any relocs other than a 16 bit call. */
295 bfd_boolean need_fn_stub;
297 /* If there is a stub that 16 bit functions should use to call this
298 32 bit function, this points to the section containing the stub. */
301 /* This is like the call_stub field, but it is used if the function
302 being called returns a floating point value. */
303 asection *call_fp_stub;
305 /* Are we forced local? This will only be set if we have converted
306 the initial global GOT entry to a local GOT entry. */
307 bfd_boolean forced_local;
309 /* Are we referenced by some kind of relocation? */
310 bfd_boolean is_relocation_target;
312 /* Are we referenced by branch relocations? */
313 bfd_boolean is_branch_target;
317 #define GOT_TLS_LDM 2
319 #define GOT_TLS_OFFSET_DONE 0x40
320 #define GOT_TLS_DONE 0x80
321 unsigned char tls_type;
322 /* This is only used in single-GOT mode; in multi-GOT mode there
323 is one mips_got_entry per GOT entry, so the offset is stored
324 there. In single-GOT mode there may be many mips_got_entry
325 structures all referring to the same GOT slot. It might be
326 possible to use root.got.offset instead, but that field is
327 overloaded already. */
328 bfd_vma tls_got_offset;
331 /* MIPS ELF linker hash table. */
333 struct mips_elf_link_hash_table
335 struct elf_link_hash_table root;
337 /* We no longer use this. */
338 /* String section indices for the dynamic section symbols. */
339 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
341 /* The number of .rtproc entries. */
342 bfd_size_type procedure_count;
343 /* The size of the .compact_rel section (if SGI_COMPAT). */
344 bfd_size_type compact_rel_size;
345 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
346 entry is set to the address of __rld_obj_head as in IRIX5. */
347 bfd_boolean use_rld_obj_head;
348 /* This is the value of the __rld_map or __rld_obj_head symbol. */
350 /* This is set if we see any mips16 stub sections. */
351 bfd_boolean mips16_stubs_seen;
352 /* True if we've computed the size of the GOT. */
353 bfd_boolean computed_got_sizes;
354 /* True if we're generating code for VxWorks. */
355 bfd_boolean is_vxworks;
356 /* True if we already reported the small-data section overflow. */
357 bfd_boolean small_data_overflow_reported;
358 /* Shortcuts to some dynamic sections, or NULL if they are not
366 /* The size of the PLT header in bytes (VxWorks only). */
367 bfd_vma plt_header_size;
368 /* The size of a PLT entry in bytes (VxWorks only). */
369 bfd_vma plt_entry_size;
370 /* The size of a function stub entry in bytes. */
371 bfd_vma function_stub_size;
374 #define TLS_RELOC_P(r_type) \
375 (r_type == R_MIPS_TLS_DTPMOD32 \
376 || r_type == R_MIPS_TLS_DTPMOD64 \
377 || r_type == R_MIPS_TLS_DTPREL32 \
378 || r_type == R_MIPS_TLS_DTPREL64 \
379 || r_type == R_MIPS_TLS_GD \
380 || r_type == R_MIPS_TLS_LDM \
381 || r_type == R_MIPS_TLS_DTPREL_HI16 \
382 || r_type == R_MIPS_TLS_DTPREL_LO16 \
383 || r_type == R_MIPS_TLS_GOTTPREL \
384 || r_type == R_MIPS_TLS_TPREL32 \
385 || r_type == R_MIPS_TLS_TPREL64 \
386 || r_type == R_MIPS_TLS_TPREL_HI16 \
387 || r_type == R_MIPS_TLS_TPREL_LO16)
389 /* Structure used to pass information to mips_elf_output_extsym. */
394 struct bfd_link_info *info;
395 struct ecoff_debug_info *debug;
396 const struct ecoff_debug_swap *swap;
400 /* The names of the runtime procedure table symbols used on IRIX5. */
402 static const char * const mips_elf_dynsym_rtproc_names[] =
405 "_procedure_string_table",
406 "_procedure_table_size",
410 /* These structures are used to generate the .compact_rel section on
415 unsigned long id1; /* Always one? */
416 unsigned long num; /* Number of compact relocation entries. */
417 unsigned long id2; /* Always two? */
418 unsigned long offset; /* The file offset of the first relocation. */
419 unsigned long reserved0; /* Zero? */
420 unsigned long reserved1; /* Zero? */
429 bfd_byte reserved0[4];
430 bfd_byte reserved1[4];
431 } Elf32_External_compact_rel;
435 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
436 unsigned int rtype : 4; /* Relocation types. See below. */
437 unsigned int dist2to : 8;
438 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
439 unsigned long konst; /* KONST field. See below. */
440 unsigned long vaddr; /* VADDR to be relocated. */
445 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
446 unsigned int rtype : 4; /* Relocation types. See below. */
447 unsigned int dist2to : 8;
448 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
449 unsigned long konst; /* KONST field. See below. */
457 } Elf32_External_crinfo;
463 } Elf32_External_crinfo2;
465 /* These are the constants used to swap the bitfields in a crinfo. */
467 #define CRINFO_CTYPE (0x1)
468 #define CRINFO_CTYPE_SH (31)
469 #define CRINFO_RTYPE (0xf)
470 #define CRINFO_RTYPE_SH (27)
471 #define CRINFO_DIST2TO (0xff)
472 #define CRINFO_DIST2TO_SH (19)
473 #define CRINFO_RELVADDR (0x7ffff)
474 #define CRINFO_RELVADDR_SH (0)
476 /* A compact relocation info has long (3 words) or short (2 words)
477 formats. A short format doesn't have VADDR field and relvaddr
478 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
479 #define CRF_MIPS_LONG 1
480 #define CRF_MIPS_SHORT 0
482 /* There are 4 types of compact relocation at least. The value KONST
483 has different meaning for each type:
486 CT_MIPS_REL32 Address in data
487 CT_MIPS_WORD Address in word (XXX)
488 CT_MIPS_GPHI_LO GP - vaddr
489 CT_MIPS_JMPAD Address to jump
492 #define CRT_MIPS_REL32 0xa
493 #define CRT_MIPS_WORD 0xb
494 #define CRT_MIPS_GPHI_LO 0xc
495 #define CRT_MIPS_JMPAD 0xd
497 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
498 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
499 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
500 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
502 /* The structure of the runtime procedure descriptor created by the
503 loader for use by the static exception system. */
505 typedef struct runtime_pdr {
506 bfd_vma adr; /* Memory address of start of procedure. */
507 long regmask; /* Save register mask. */
508 long regoffset; /* Save register offset. */
509 long fregmask; /* Save floating point register mask. */
510 long fregoffset; /* Save floating point register offset. */
511 long frameoffset; /* Frame size. */
512 short framereg; /* Frame pointer register. */
513 short pcreg; /* Offset or reg of return pc. */
514 long irpss; /* Index into the runtime string table. */
516 struct exception_info *exception_info;/* Pointer to exception array. */
518 #define cbRPDR sizeof (RPDR)
519 #define rpdNil ((pRPDR) 0)
521 static struct mips_got_entry *mips_elf_create_local_got_entry
522 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
523 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
524 static bfd_boolean mips_elf_sort_hash_table_f
525 (struct mips_elf_link_hash_entry *, void *);
526 static bfd_vma mips_elf_high
528 static bfd_boolean mips_elf_create_dynamic_relocation
529 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
530 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
531 bfd_vma *, asection *);
532 static hashval_t mips_elf_got_entry_hash
534 static bfd_vma mips_elf_adjust_gp
535 (bfd *, struct mips_got_info *, bfd *);
536 static struct mips_got_info *mips_elf_got_for_ibfd
537 (struct mips_got_info *, bfd *);
539 /* This will be used when we sort the dynamic relocation records. */
540 static bfd *reldyn_sorting_bfd;
542 /* Nonzero if ABFD is using the N32 ABI. */
543 #define ABI_N32_P(abfd) \
544 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
546 /* Nonzero if ABFD is using the N64 ABI. */
547 #define ABI_64_P(abfd) \
548 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
550 /* Nonzero if ABFD is using NewABI conventions. */
551 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
553 /* The IRIX compatibility level we are striving for. */
554 #define IRIX_COMPAT(abfd) \
555 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
557 /* Whether we are trying to be compatible with IRIX at all. */
558 #define SGI_COMPAT(abfd) \
559 (IRIX_COMPAT (abfd) != ict_none)
561 /* The name of the options section. */
562 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
563 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
565 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
566 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
567 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
568 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
570 /* Whether the section is readonly. */
571 #define MIPS_ELF_READONLY_SECTION(sec) \
572 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
573 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
575 /* The name of the stub section. */
576 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
578 /* The size of an external REL relocation. */
579 #define MIPS_ELF_REL_SIZE(abfd) \
580 (get_elf_backend_data (abfd)->s->sizeof_rel)
582 /* The size of an external RELA relocation. */
583 #define MIPS_ELF_RELA_SIZE(abfd) \
584 (get_elf_backend_data (abfd)->s->sizeof_rela)
586 /* The size of an external dynamic table entry. */
587 #define MIPS_ELF_DYN_SIZE(abfd) \
588 (get_elf_backend_data (abfd)->s->sizeof_dyn)
590 /* The size of a GOT entry. */
591 #define MIPS_ELF_GOT_SIZE(abfd) \
592 (get_elf_backend_data (abfd)->s->arch_size / 8)
594 /* The size of a symbol-table entry. */
595 #define MIPS_ELF_SYM_SIZE(abfd) \
596 (get_elf_backend_data (abfd)->s->sizeof_sym)
598 /* The default alignment for sections, as a power of two. */
599 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
600 (get_elf_backend_data (abfd)->s->log_file_align)
602 /* Get word-sized data. */
603 #define MIPS_ELF_GET_WORD(abfd, ptr) \
604 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
606 /* Put out word-sized data. */
607 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
609 ? bfd_put_64 (abfd, val, ptr) \
610 : bfd_put_32 (abfd, val, ptr))
612 /* Add a dynamic symbol table-entry. */
613 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
614 _bfd_elf_add_dynamic_entry (info, tag, val)
616 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
617 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
619 /* Determine whether the internal relocation of index REL_IDX is REL
620 (zero) or RELA (non-zero). The assumption is that, if there are
621 two relocation sections for this section, one of them is REL and
622 the other is RELA. If the index of the relocation we're testing is
623 in range for the first relocation section, check that the external
624 relocation size is that for RELA. It is also assumed that, if
625 rel_idx is not in range for the first section, and this first
626 section contains REL relocs, then the relocation is in the second
627 section, that is RELA. */
628 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
629 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
630 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
631 > (bfd_vma)(rel_idx)) \
632 == (elf_section_data (sec)->rel_hdr.sh_entsize \
633 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
634 : sizeof (Elf32_External_Rela))))
636 /* The name of the dynamic relocation section. */
637 #define MIPS_ELF_REL_DYN_NAME(INFO) \
638 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
640 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
641 from smaller values. Start with zero, widen, *then* decrement. */
642 #define MINUS_ONE (((bfd_vma)0) - 1)
643 #define MINUS_TWO (((bfd_vma)0) - 2)
645 /* The number of local .got entries we reserve. */
646 #define MIPS_RESERVED_GOTNO(INFO) \
647 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
649 /* The value to write into got[1] for SVR4 targets, to identify it is
650 a GNU object. The dynamic linker can then use got[1] to store the
652 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
653 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
655 /* The offset of $gp from the beginning of the .got section. */
656 #define ELF_MIPS_GP_OFFSET(INFO) \
657 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
659 /* The maximum size of the GOT for it to be addressable using 16-bit
661 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
663 /* Instructions which appear in a stub. */
664 #define STUB_LW(abfd) \
666 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
667 : 0x8f998010)) /* lw t9,0x8010(gp) */
668 #define STUB_MOVE(abfd) \
670 ? 0x03e0782d /* daddu t7,ra */ \
671 : 0x03e07821)) /* addu t7,ra */
672 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
673 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
674 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
675 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
676 #define STUB_LI16S(abfd, VAL) \
678 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
679 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
681 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
682 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
684 /* The name of the dynamic interpreter. This is put in the .interp
687 #define ELF_DYNAMIC_INTERPRETER(abfd) \
688 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
689 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
690 : "/usr/lib/libc.so.1")
693 #define MNAME(bfd,pre,pos) \
694 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
695 #define ELF_R_SYM(bfd, i) \
696 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
697 #define ELF_R_TYPE(bfd, i) \
698 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
699 #define ELF_R_INFO(bfd, s, t) \
700 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
702 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
703 #define ELF_R_SYM(bfd, i) \
705 #define ELF_R_TYPE(bfd, i) \
707 #define ELF_R_INFO(bfd, s, t) \
708 (ELF32_R_INFO (s, t))
711 /* The mips16 compiler uses a couple of special sections to handle
712 floating point arguments.
714 Section names that look like .mips16.fn.FNNAME contain stubs that
715 copy floating point arguments from the fp regs to the gp regs and
716 then jump to FNNAME. If any 32 bit function calls FNNAME, the
717 call should be redirected to the stub instead. If no 32 bit
718 function calls FNNAME, the stub should be discarded. We need to
719 consider any reference to the function, not just a call, because
720 if the address of the function is taken we will need the stub,
721 since the address might be passed to a 32 bit function.
723 Section names that look like .mips16.call.FNNAME contain stubs
724 that copy floating point arguments from the gp regs to the fp
725 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
726 then any 16 bit function that calls FNNAME should be redirected
727 to the stub instead. If FNNAME is not a 32 bit function, the
728 stub should be discarded.
730 .mips16.call.fp.FNNAME sections are similar, but contain stubs
731 which call FNNAME and then copy the return value from the fp regs
732 to the gp regs. These stubs store the return value in $18 while
733 calling FNNAME; any function which might call one of these stubs
734 must arrange to save $18 around the call. (This case is not
735 needed for 32 bit functions that call 16 bit functions, because
736 16 bit functions always return floating point values in both
739 Note that in all cases FNNAME might be defined statically.
740 Therefore, FNNAME is not used literally. Instead, the relocation
741 information will indicate which symbol the section is for.
743 We record any stubs that we find in the symbol table. */
745 #define FN_STUB ".mips16.fn."
746 #define CALL_STUB ".mips16.call."
747 #define CALL_FP_STUB ".mips16.call.fp."
749 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
750 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
751 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
753 /* The format of the first PLT entry in a VxWorks executable. */
754 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
755 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
756 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
757 0x8f390008, /* lw t9, 8(t9) */
758 0x00000000, /* nop */
759 0x03200008, /* jr t9 */
763 /* The format of subsequent PLT entries. */
764 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
765 0x10000000, /* b .PLT_resolver */
766 0x24180000, /* li t8, <pltindex> */
767 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
768 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
769 0x8f390000, /* lw t9, 0(t9) */
770 0x00000000, /* nop */
771 0x03200008, /* jr t9 */
775 /* The format of the first PLT entry in a VxWorks shared object. */
776 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
777 0x8f990008, /* lw t9, 8(gp) */
778 0x00000000, /* nop */
779 0x03200008, /* jr t9 */
780 0x00000000, /* nop */
781 0x00000000, /* nop */
785 /* The format of subsequent PLT entries. */
786 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
787 0x10000000, /* b .PLT_resolver */
788 0x24180000 /* li t8, <pltindex> */
791 /* Look up an entry in a MIPS ELF linker hash table. */
793 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
794 ((struct mips_elf_link_hash_entry *) \
795 elf_link_hash_lookup (&(table)->root, (string), (create), \
798 /* Traverse a MIPS ELF linker hash table. */
800 #define mips_elf_link_hash_traverse(table, func, info) \
801 (elf_link_hash_traverse \
803 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
806 /* Get the MIPS ELF linker hash table from a link_info structure. */
808 #define mips_elf_hash_table(p) \
809 ((struct mips_elf_link_hash_table *) ((p)->hash))
811 /* Find the base offsets for thread-local storage in this object,
812 for GD/LD and IE/LE respectively. */
814 #define TP_OFFSET 0x7000
815 #define DTP_OFFSET 0x8000
818 dtprel_base (struct bfd_link_info *info)
820 /* If tls_sec is NULL, we should have signalled an error already. */
821 if (elf_hash_table (info)->tls_sec == NULL)
823 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
827 tprel_base (struct bfd_link_info *info)
829 /* If tls_sec is NULL, we should have signalled an error already. */
830 if (elf_hash_table (info)->tls_sec == NULL)
832 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
835 /* Create an entry in a MIPS ELF linker hash table. */
837 static struct bfd_hash_entry *
838 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
839 struct bfd_hash_table *table, const char *string)
841 struct mips_elf_link_hash_entry *ret =
842 (struct mips_elf_link_hash_entry *) entry;
844 /* Allocate the structure if it has not already been allocated by a
847 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
849 return (struct bfd_hash_entry *) ret;
851 /* Call the allocation method of the superclass. */
852 ret = ((struct mips_elf_link_hash_entry *)
853 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
857 /* Set local fields. */
858 memset (&ret->esym, 0, sizeof (EXTR));
859 /* We use -2 as a marker to indicate that the information has
860 not been set. -1 means there is no associated ifd. */
862 ret->possibly_dynamic_relocs = 0;
863 ret->readonly_reloc = FALSE;
864 ret->no_fn_stub = FALSE;
866 ret->need_fn_stub = FALSE;
867 ret->call_stub = NULL;
868 ret->call_fp_stub = NULL;
869 ret->forced_local = FALSE;
870 ret->is_branch_target = FALSE;
871 ret->is_relocation_target = FALSE;
872 ret->tls_type = GOT_NORMAL;
875 return (struct bfd_hash_entry *) ret;
879 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
881 if (!sec->used_by_bfd)
883 struct _mips_elf_section_data *sdata;
884 bfd_size_type amt = sizeof (*sdata);
886 sdata = bfd_zalloc (abfd, amt);
889 sec->used_by_bfd = sdata;
892 return _bfd_elf_new_section_hook (abfd, sec);
895 /* Read ECOFF debugging information from a .mdebug section into a
896 ecoff_debug_info structure. */
899 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
900 struct ecoff_debug_info *debug)
903 const struct ecoff_debug_swap *swap;
906 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
907 memset (debug, 0, sizeof (*debug));
909 ext_hdr = bfd_malloc (swap->external_hdr_size);
910 if (ext_hdr == NULL && swap->external_hdr_size != 0)
913 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
914 swap->external_hdr_size))
917 symhdr = &debug->symbolic_header;
918 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
920 /* The symbolic header contains absolute file offsets and sizes to
922 #define READ(ptr, offset, count, size, type) \
923 if (symhdr->count == 0) \
927 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
928 debug->ptr = bfd_malloc (amt); \
929 if (debug->ptr == NULL) \
931 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
932 || bfd_bread (debug->ptr, amt, abfd) != amt) \
936 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
937 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
938 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
939 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
940 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
941 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
943 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
944 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
945 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
946 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
947 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
957 if (debug->line != NULL)
959 if (debug->external_dnr != NULL)
960 free (debug->external_dnr);
961 if (debug->external_pdr != NULL)
962 free (debug->external_pdr);
963 if (debug->external_sym != NULL)
964 free (debug->external_sym);
965 if (debug->external_opt != NULL)
966 free (debug->external_opt);
967 if (debug->external_aux != NULL)
968 free (debug->external_aux);
969 if (debug->ss != NULL)
971 if (debug->ssext != NULL)
973 if (debug->external_fdr != NULL)
974 free (debug->external_fdr);
975 if (debug->external_rfd != NULL)
976 free (debug->external_rfd);
977 if (debug->external_ext != NULL)
978 free (debug->external_ext);
982 /* Swap RPDR (runtime procedure table entry) for output. */
985 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
987 H_PUT_S32 (abfd, in->adr, ex->p_adr);
988 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
989 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
990 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
991 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
992 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
994 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
995 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
997 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1000 /* Create a runtime procedure table from the .mdebug section. */
1003 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1004 struct bfd_link_info *info, asection *s,
1005 struct ecoff_debug_info *debug)
1007 const struct ecoff_debug_swap *swap;
1008 HDRR *hdr = &debug->symbolic_header;
1010 struct rpdr_ext *erp;
1012 struct pdr_ext *epdr;
1013 struct sym_ext *esym;
1017 bfd_size_type count;
1018 unsigned long sindex;
1022 const char *no_name_func = _("static procedure (no name)");
1030 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1032 sindex = strlen (no_name_func) + 1;
1033 count = hdr->ipdMax;
1036 size = swap->external_pdr_size;
1038 epdr = bfd_malloc (size * count);
1042 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1045 size = sizeof (RPDR);
1046 rp = rpdr = bfd_malloc (size * count);
1050 size = sizeof (char *);
1051 sv = bfd_malloc (size * count);
1055 count = hdr->isymMax;
1056 size = swap->external_sym_size;
1057 esym = bfd_malloc (size * count);
1061 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1064 count = hdr->issMax;
1065 ss = bfd_malloc (count);
1068 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1071 count = hdr->ipdMax;
1072 for (i = 0; i < (unsigned long) count; i++, rp++)
1074 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1075 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1076 rp->adr = sym.value;
1077 rp->regmask = pdr.regmask;
1078 rp->regoffset = pdr.regoffset;
1079 rp->fregmask = pdr.fregmask;
1080 rp->fregoffset = pdr.fregoffset;
1081 rp->frameoffset = pdr.frameoffset;
1082 rp->framereg = pdr.framereg;
1083 rp->pcreg = pdr.pcreg;
1085 sv[i] = ss + sym.iss;
1086 sindex += strlen (sv[i]) + 1;
1090 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1091 size = BFD_ALIGN (size, 16);
1092 rtproc = bfd_alloc (abfd, size);
1095 mips_elf_hash_table (info)->procedure_count = 0;
1099 mips_elf_hash_table (info)->procedure_count = count + 2;
1102 memset (erp, 0, sizeof (struct rpdr_ext));
1104 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1105 strcpy (str, no_name_func);
1106 str += strlen (no_name_func) + 1;
1107 for (i = 0; i < count; i++)
1109 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1110 strcpy (str, sv[i]);
1111 str += strlen (sv[i]) + 1;
1113 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1115 /* Set the size and contents of .rtproc section. */
1117 s->contents = rtproc;
1119 /* Skip this section later on (I don't think this currently
1120 matters, but someday it might). */
1121 s->map_head.link_order = NULL;
1150 /* We're about to redefine H. Create a symbol to represent H's
1151 current value and size, to help make the disassembly easier
1155 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1156 struct mips_elf_link_hash_entry *h,
1159 struct bfd_link_hash_entry *bh;
1160 struct elf_link_hash_entry *elfh;
1165 /* Read the symbol's value. */
1166 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1167 || h->root.root.type == bfd_link_hash_defweak);
1168 s = h->root.root.u.def.section;
1169 value = h->root.root.u.def.value;
1171 /* Create a new symbol. */
1172 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1174 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1175 BSF_LOCAL, s, value, NULL,
1179 /* Make it local and copy the other attributes from H. */
1180 elfh = (struct elf_link_hash_entry *) bh;
1181 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1182 elfh->other = h->root.other;
1183 elfh->size = h->root.size;
1184 elfh->forced_local = 1;
1188 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1189 function rather than to a hard-float stub. */
1192 section_allows_mips16_refs_p (asection *section)
1196 name = bfd_get_section_name (section->owner, section);
1197 return (FN_STUB_P (name)
1198 || CALL_STUB_P (name)
1199 || CALL_FP_STUB_P (name)
1200 || strcmp (name, ".pdr") == 0);
1203 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1204 stub section of some kind. Return the R_SYMNDX of the target
1205 function, or 0 if we can't decide which function that is. */
1207 static unsigned long
1208 mips16_stub_symndx (asection *sec, const Elf_Internal_Rela *relocs,
1209 const Elf_Internal_Rela *relend)
1211 const Elf_Internal_Rela *rel;
1213 /* Trust the first R_MIPS_NONE relocation, if any. */
1214 for (rel = relocs; rel < relend; rel++)
1215 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1216 return ELF_R_SYM (sec->owner, rel->r_info);
1218 /* Otherwise trust the first relocation, whatever its kind. This is
1219 the traditional behavior. */
1220 if (relocs < relend)
1221 return ELF_R_SYM (sec->owner, relocs->r_info);
1226 /* Check the mips16 stubs for a particular symbol, and see if we can
1230 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, void *data)
1232 struct bfd_link_info *info;
1234 info = (struct bfd_link_info *) data;
1235 if (h->root.root.type == bfd_link_hash_warning)
1236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1238 /* Dynamic symbols must use the standard call interface, in case other
1239 objects try to call them. */
1240 if (h->fn_stub != NULL
1241 && h->root.dynindx != -1)
1243 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1244 h->need_fn_stub = TRUE;
1247 if (h->fn_stub != NULL
1248 && ! h->need_fn_stub)
1250 /* We don't need the fn_stub; the only references to this symbol
1251 are 16 bit calls. Clobber the size to 0 to prevent it from
1252 being included in the link. */
1253 h->fn_stub->size = 0;
1254 h->fn_stub->flags &= ~SEC_RELOC;
1255 h->fn_stub->reloc_count = 0;
1256 h->fn_stub->flags |= SEC_EXCLUDE;
1259 if (h->call_stub != NULL
1260 && ELF_ST_IS_MIPS16 (h->root.other))
1262 /* We don't need the call_stub; this is a 16 bit function, so
1263 calls from other 16 bit functions are OK. Clobber the size
1264 to 0 to prevent it from being included in the link. */
1265 h->call_stub->size = 0;
1266 h->call_stub->flags &= ~SEC_RELOC;
1267 h->call_stub->reloc_count = 0;
1268 h->call_stub->flags |= SEC_EXCLUDE;
1271 if (h->call_fp_stub != NULL
1272 && ELF_ST_IS_MIPS16 (h->root.other))
1274 /* We don't need the call_stub; this is a 16 bit function, so
1275 calls from other 16 bit functions are OK. Clobber the size
1276 to 0 to prevent it from being included in the link. */
1277 h->call_fp_stub->size = 0;
1278 h->call_fp_stub->flags &= ~SEC_RELOC;
1279 h->call_fp_stub->reloc_count = 0;
1280 h->call_fp_stub->flags |= SEC_EXCLUDE;
1286 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1287 Most mips16 instructions are 16 bits, but these instructions
1290 The format of these instructions is:
1292 +--------------+--------------------------------+
1293 | JALX | X| Imm 20:16 | Imm 25:21 |
1294 +--------------+--------------------------------+
1296 +-----------------------------------------------+
1298 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1299 Note that the immediate value in the first word is swapped.
1301 When producing a relocatable object file, R_MIPS16_26 is
1302 handled mostly like R_MIPS_26. In particular, the addend is
1303 stored as a straight 26-bit value in a 32-bit instruction.
1304 (gas makes life simpler for itself by never adjusting a
1305 R_MIPS16_26 reloc to be against a section, so the addend is
1306 always zero). However, the 32 bit instruction is stored as 2
1307 16-bit values, rather than a single 32-bit value. In a
1308 big-endian file, the result is the same; in a little-endian
1309 file, the two 16-bit halves of the 32 bit value are swapped.
1310 This is so that a disassembler can recognize the jal
1313 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1314 instruction stored as two 16-bit values. The addend A is the
1315 contents of the targ26 field. The calculation is the same as
1316 R_MIPS_26. When storing the calculated value, reorder the
1317 immediate value as shown above, and don't forget to store the
1318 value as two 16-bit values.
1320 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1324 +--------+----------------------+
1328 +--------+----------------------+
1331 +----------+------+-------------+
1335 +----------+--------------------+
1336 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1337 ((sub1 << 16) | sub2)).
1339 When producing a relocatable object file, the calculation is
1340 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1341 When producing a fully linked file, the calculation is
1342 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1343 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1345 The table below lists the other MIPS16 instruction relocations.
1346 Each one is calculated in the same way as the non-MIPS16 relocation
1347 given on the right, but using the extended MIPS16 layout of 16-bit
1350 R_MIPS16_GPREL R_MIPS_GPREL16
1351 R_MIPS16_GOT16 R_MIPS_GOT16
1352 R_MIPS16_CALL16 R_MIPS_CALL16
1353 R_MIPS16_HI16 R_MIPS_HI16
1354 R_MIPS16_LO16 R_MIPS_LO16
1356 A typical instruction will have a format like this:
1358 +--------------+--------------------------------+
1359 | EXTEND | Imm 10:5 | Imm 15:11 |
1360 +--------------+--------------------------------+
1361 | Major | rx | ry | Imm 4:0 |
1362 +--------------+--------------------------------+
1364 EXTEND is the five bit value 11110. Major is the instruction
1367 All we need to do here is shuffle the bits appropriately.
1368 As above, the two 16-bit halves must be swapped on a
1369 little-endian system. */
1371 static inline bfd_boolean
1372 mips16_reloc_p (int r_type)
1377 case R_MIPS16_GPREL:
1378 case R_MIPS16_GOT16:
1379 case R_MIPS16_CALL16:
1389 static inline bfd_boolean
1390 got16_reloc_p (int r_type)
1392 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1395 static inline bfd_boolean
1396 call16_reloc_p (int r_type)
1398 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1401 static inline bfd_boolean
1402 hi16_reloc_p (int r_type)
1404 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1407 static inline bfd_boolean
1408 lo16_reloc_p (int r_type)
1410 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1413 static inline bfd_boolean
1414 mips16_call_reloc_p (int r_type)
1416 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1420 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1421 bfd_boolean jal_shuffle, bfd_byte *data)
1423 bfd_vma extend, insn, val;
1425 if (!mips16_reloc_p (r_type))
1428 /* Pick up the mips16 extend instruction and the real instruction. */
1429 extend = bfd_get_16 (abfd, data);
1430 insn = bfd_get_16 (abfd, data + 2);
1431 if (r_type == R_MIPS16_26)
1434 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1435 | ((extend & 0x1f) << 21) | insn;
1437 val = extend << 16 | insn;
1440 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1441 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1442 bfd_put_32 (abfd, val, data);
1446 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1447 bfd_boolean jal_shuffle, bfd_byte *data)
1449 bfd_vma extend, insn, val;
1451 if (!mips16_reloc_p (r_type))
1454 val = bfd_get_32 (abfd, data);
1455 if (r_type == R_MIPS16_26)
1459 insn = val & 0xffff;
1460 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1461 | ((val >> 21) & 0x1f);
1465 insn = val & 0xffff;
1471 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1472 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1474 bfd_put_16 (abfd, insn, data + 2);
1475 bfd_put_16 (abfd, extend, data);
1478 bfd_reloc_status_type
1479 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1480 arelent *reloc_entry, asection *input_section,
1481 bfd_boolean relocatable, void *data, bfd_vma gp)
1485 bfd_reloc_status_type status;
1487 if (bfd_is_com_section (symbol->section))
1490 relocation = symbol->value;
1492 relocation += symbol->section->output_section->vma;
1493 relocation += symbol->section->output_offset;
1495 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1496 return bfd_reloc_outofrange;
1498 /* Set val to the offset into the section or symbol. */
1499 val = reloc_entry->addend;
1501 _bfd_mips_elf_sign_extend (val, 16);
1503 /* Adjust val for the final section location and GP value. If we
1504 are producing relocatable output, we don't want to do this for
1505 an external symbol. */
1507 || (symbol->flags & BSF_SECTION_SYM) != 0)
1508 val += relocation - gp;
1510 if (reloc_entry->howto->partial_inplace)
1512 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1514 + reloc_entry->address);
1515 if (status != bfd_reloc_ok)
1519 reloc_entry->addend = val;
1522 reloc_entry->address += input_section->output_offset;
1524 return bfd_reloc_ok;
1527 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1528 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1529 that contains the relocation field and DATA points to the start of
1534 struct mips_hi16 *next;
1536 asection *input_section;
1540 /* FIXME: This should not be a static variable. */
1542 static struct mips_hi16 *mips_hi16_list;
1544 /* A howto special_function for REL *HI16 relocations. We can only
1545 calculate the correct value once we've seen the partnering
1546 *LO16 relocation, so just save the information for later.
1548 The ABI requires that the *LO16 immediately follow the *HI16.
1549 However, as a GNU extension, we permit an arbitrary number of
1550 *HI16s to be associated with a single *LO16. This significantly
1551 simplies the relocation handling in gcc. */
1553 bfd_reloc_status_type
1554 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1555 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1556 asection *input_section, bfd *output_bfd,
1557 char **error_message ATTRIBUTE_UNUSED)
1559 struct mips_hi16 *n;
1561 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1562 return bfd_reloc_outofrange;
1564 n = bfd_malloc (sizeof *n);
1566 return bfd_reloc_outofrange;
1568 n->next = mips_hi16_list;
1570 n->input_section = input_section;
1571 n->rel = *reloc_entry;
1574 if (output_bfd != NULL)
1575 reloc_entry->address += input_section->output_offset;
1577 return bfd_reloc_ok;
1580 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
1581 like any other 16-bit relocation when applied to global symbols, but is
1582 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1584 bfd_reloc_status_type
1585 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1586 void *data, asection *input_section,
1587 bfd *output_bfd, char **error_message)
1589 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1590 || bfd_is_und_section (bfd_get_section (symbol))
1591 || bfd_is_com_section (bfd_get_section (symbol)))
1592 /* The relocation is against a global symbol. */
1593 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1594 input_section, output_bfd,
1597 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1598 input_section, output_bfd, error_message);
1601 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1602 is a straightforward 16 bit inplace relocation, but we must deal with
1603 any partnering high-part relocations as well. */
1605 bfd_reloc_status_type
1606 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1607 void *data, asection *input_section,
1608 bfd *output_bfd, char **error_message)
1611 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1613 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1614 return bfd_reloc_outofrange;
1616 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1618 vallo = bfd_get_32 (abfd, location);
1619 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1622 while (mips_hi16_list != NULL)
1624 bfd_reloc_status_type ret;
1625 struct mips_hi16 *hi;
1627 hi = mips_hi16_list;
1629 /* R_MIPS*_GOT16 relocations are something of a special case. We
1630 want to install the addend in the same way as for a R_MIPS*_HI16
1631 relocation (with a rightshift of 16). However, since GOT16
1632 relocations can also be used with global symbols, their howto
1633 has a rightshift of 0. */
1634 if (hi->rel.howto->type == R_MIPS_GOT16)
1635 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1636 else if (hi->rel.howto->type == R_MIPS16_GOT16)
1637 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
1639 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1640 carry or borrow will induce a change of +1 or -1 in the high part. */
1641 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1643 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1644 hi->input_section, output_bfd,
1646 if (ret != bfd_reloc_ok)
1649 mips_hi16_list = hi->next;
1653 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1654 input_section, output_bfd,
1658 /* A generic howto special_function. This calculates and installs the
1659 relocation itself, thus avoiding the oft-discussed problems in
1660 bfd_perform_relocation and bfd_install_relocation. */
1662 bfd_reloc_status_type
1663 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1664 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1665 asection *input_section, bfd *output_bfd,
1666 char **error_message ATTRIBUTE_UNUSED)
1669 bfd_reloc_status_type status;
1670 bfd_boolean relocatable;
1672 relocatable = (output_bfd != NULL);
1674 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1675 return bfd_reloc_outofrange;
1677 /* Build up the field adjustment in VAL. */
1679 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1681 /* Either we're calculating the final field value or we have a
1682 relocation against a section symbol. Add in the section's
1683 offset or address. */
1684 val += symbol->section->output_section->vma;
1685 val += symbol->section->output_offset;
1690 /* We're calculating the final field value. Add in the symbol's value
1691 and, if pc-relative, subtract the address of the field itself. */
1692 val += symbol->value;
1693 if (reloc_entry->howto->pc_relative)
1695 val -= input_section->output_section->vma;
1696 val -= input_section->output_offset;
1697 val -= reloc_entry->address;
1701 /* VAL is now the final adjustment. If we're keeping this relocation
1702 in the output file, and if the relocation uses a separate addend,
1703 we just need to add VAL to that addend. Otherwise we need to add
1704 VAL to the relocation field itself. */
1705 if (relocatable && !reloc_entry->howto->partial_inplace)
1706 reloc_entry->addend += val;
1709 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1711 /* Add in the separate addend, if any. */
1712 val += reloc_entry->addend;
1714 /* Add VAL to the relocation field. */
1715 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1717 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1719 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1722 if (status != bfd_reloc_ok)
1727 reloc_entry->address += input_section->output_offset;
1729 return bfd_reloc_ok;
1732 /* Swap an entry in a .gptab section. Note that these routines rely
1733 on the equivalence of the two elements of the union. */
1736 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1739 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1740 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1744 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1745 Elf32_External_gptab *ex)
1747 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1748 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1752 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1753 Elf32_External_compact_rel *ex)
1755 H_PUT_32 (abfd, in->id1, ex->id1);
1756 H_PUT_32 (abfd, in->num, ex->num);
1757 H_PUT_32 (abfd, in->id2, ex->id2);
1758 H_PUT_32 (abfd, in->offset, ex->offset);
1759 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1760 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1764 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1765 Elf32_External_crinfo *ex)
1769 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1770 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1771 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1772 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1773 H_PUT_32 (abfd, l, ex->info);
1774 H_PUT_32 (abfd, in->konst, ex->konst);
1775 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1778 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1779 routines swap this structure in and out. They are used outside of
1780 BFD, so they are globally visible. */
1783 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1786 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1787 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1788 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1789 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1790 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1791 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1795 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1796 Elf32_External_RegInfo *ex)
1798 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1799 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1800 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1801 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1802 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1803 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1806 /* In the 64 bit ABI, the .MIPS.options section holds register
1807 information in an Elf64_Reginfo structure. These routines swap
1808 them in and out. They are globally visible because they are used
1809 outside of BFD. These routines are here so that gas can call them
1810 without worrying about whether the 64 bit ABI has been included. */
1813 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1814 Elf64_Internal_RegInfo *in)
1816 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1817 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1818 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1819 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1820 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1821 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1822 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1826 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1827 Elf64_External_RegInfo *ex)
1829 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1830 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1831 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1832 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1833 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1834 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1835 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1838 /* Swap in an options header. */
1841 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1842 Elf_Internal_Options *in)
1844 in->kind = H_GET_8 (abfd, ex->kind);
1845 in->size = H_GET_8 (abfd, ex->size);
1846 in->section = H_GET_16 (abfd, ex->section);
1847 in->info = H_GET_32 (abfd, ex->info);
1850 /* Swap out an options header. */
1853 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1854 Elf_External_Options *ex)
1856 H_PUT_8 (abfd, in->kind, ex->kind);
1857 H_PUT_8 (abfd, in->size, ex->size);
1858 H_PUT_16 (abfd, in->section, ex->section);
1859 H_PUT_32 (abfd, in->info, ex->info);
1862 /* This function is called via qsort() to sort the dynamic relocation
1863 entries by increasing r_symndx value. */
1866 sort_dynamic_relocs (const void *arg1, const void *arg2)
1868 Elf_Internal_Rela int_reloc1;
1869 Elf_Internal_Rela int_reloc2;
1872 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1873 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1875 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1879 if (int_reloc1.r_offset < int_reloc2.r_offset)
1881 if (int_reloc1.r_offset > int_reloc2.r_offset)
1886 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1889 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1890 const void *arg2 ATTRIBUTE_UNUSED)
1893 Elf_Internal_Rela int_reloc1[3];
1894 Elf_Internal_Rela int_reloc2[3];
1896 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1897 (reldyn_sorting_bfd, arg1, int_reloc1);
1898 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1899 (reldyn_sorting_bfd, arg2, int_reloc2);
1901 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1903 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1906 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1908 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1917 /* This routine is used to write out ECOFF debugging external symbol
1918 information. It is called via mips_elf_link_hash_traverse. The
1919 ECOFF external symbol information must match the ELF external
1920 symbol information. Unfortunately, at this point we don't know
1921 whether a symbol is required by reloc information, so the two
1922 tables may wind up being different. We must sort out the external
1923 symbol information before we can set the final size of the .mdebug
1924 section, and we must set the size of the .mdebug section before we
1925 can relocate any sections, and we can't know which symbols are
1926 required by relocation until we relocate the sections.
1927 Fortunately, it is relatively unlikely that any symbol will be
1928 stripped but required by a reloc. In particular, it can not happen
1929 when generating a final executable. */
1932 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1934 struct extsym_info *einfo = data;
1936 asection *sec, *output_section;
1938 if (h->root.root.type == bfd_link_hash_warning)
1939 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1941 if (h->root.indx == -2)
1943 else if ((h->root.def_dynamic
1944 || h->root.ref_dynamic
1945 || h->root.type == bfd_link_hash_new)
1946 && !h->root.def_regular
1947 && !h->root.ref_regular)
1949 else if (einfo->info->strip == strip_all
1950 || (einfo->info->strip == strip_some
1951 && bfd_hash_lookup (einfo->info->keep_hash,
1952 h->root.root.root.string,
1953 FALSE, FALSE) == NULL))
1961 if (h->esym.ifd == -2)
1964 h->esym.cobol_main = 0;
1965 h->esym.weakext = 0;
1966 h->esym.reserved = 0;
1967 h->esym.ifd = ifdNil;
1968 h->esym.asym.value = 0;
1969 h->esym.asym.st = stGlobal;
1971 if (h->root.root.type == bfd_link_hash_undefined
1972 || h->root.root.type == bfd_link_hash_undefweak)
1976 /* Use undefined class. Also, set class and type for some
1978 name = h->root.root.root.string;
1979 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1980 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1982 h->esym.asym.sc = scData;
1983 h->esym.asym.st = stLabel;
1984 h->esym.asym.value = 0;
1986 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1988 h->esym.asym.sc = scAbs;
1989 h->esym.asym.st = stLabel;
1990 h->esym.asym.value =
1991 mips_elf_hash_table (einfo->info)->procedure_count;
1993 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1995 h->esym.asym.sc = scAbs;
1996 h->esym.asym.st = stLabel;
1997 h->esym.asym.value = elf_gp (einfo->abfd);
2000 h->esym.asym.sc = scUndefined;
2002 else if (h->root.root.type != bfd_link_hash_defined
2003 && h->root.root.type != bfd_link_hash_defweak)
2004 h->esym.asym.sc = scAbs;
2009 sec = h->root.root.u.def.section;
2010 output_section = sec->output_section;
2012 /* When making a shared library and symbol h is the one from
2013 the another shared library, OUTPUT_SECTION may be null. */
2014 if (output_section == NULL)
2015 h->esym.asym.sc = scUndefined;
2018 name = bfd_section_name (output_section->owner, output_section);
2020 if (strcmp (name, ".text") == 0)
2021 h->esym.asym.sc = scText;
2022 else if (strcmp (name, ".data") == 0)
2023 h->esym.asym.sc = scData;
2024 else if (strcmp (name, ".sdata") == 0)
2025 h->esym.asym.sc = scSData;
2026 else if (strcmp (name, ".rodata") == 0
2027 || strcmp (name, ".rdata") == 0)
2028 h->esym.asym.sc = scRData;
2029 else if (strcmp (name, ".bss") == 0)
2030 h->esym.asym.sc = scBss;
2031 else if (strcmp (name, ".sbss") == 0)
2032 h->esym.asym.sc = scSBss;
2033 else if (strcmp (name, ".init") == 0)
2034 h->esym.asym.sc = scInit;
2035 else if (strcmp (name, ".fini") == 0)
2036 h->esym.asym.sc = scFini;
2038 h->esym.asym.sc = scAbs;
2042 h->esym.asym.reserved = 0;
2043 h->esym.asym.index = indexNil;
2046 if (h->root.root.type == bfd_link_hash_common)
2047 h->esym.asym.value = h->root.root.u.c.size;
2048 else if (h->root.root.type == bfd_link_hash_defined
2049 || h->root.root.type == bfd_link_hash_defweak)
2051 if (h->esym.asym.sc == scCommon)
2052 h->esym.asym.sc = scBss;
2053 else if (h->esym.asym.sc == scSCommon)
2054 h->esym.asym.sc = scSBss;
2056 sec = h->root.root.u.def.section;
2057 output_section = sec->output_section;
2058 if (output_section != NULL)
2059 h->esym.asym.value = (h->root.root.u.def.value
2060 + sec->output_offset
2061 + output_section->vma);
2063 h->esym.asym.value = 0;
2065 else if (h->root.needs_plt)
2067 struct mips_elf_link_hash_entry *hd = h;
2068 bfd_boolean no_fn_stub = h->no_fn_stub;
2070 while (hd->root.root.type == bfd_link_hash_indirect)
2072 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2073 no_fn_stub = no_fn_stub || hd->no_fn_stub;
2078 /* Set type and value for a symbol with a function stub. */
2079 h->esym.asym.st = stProc;
2080 sec = hd->root.root.u.def.section;
2082 h->esym.asym.value = 0;
2085 output_section = sec->output_section;
2086 if (output_section != NULL)
2087 h->esym.asym.value = (hd->root.plt.offset
2088 + sec->output_offset
2089 + output_section->vma);
2091 h->esym.asym.value = 0;
2096 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2097 h->root.root.root.string,
2100 einfo->failed = TRUE;
2107 /* A comparison routine used to sort .gptab entries. */
2110 gptab_compare (const void *p1, const void *p2)
2112 const Elf32_gptab *a1 = p1;
2113 const Elf32_gptab *a2 = p2;
2115 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2118 /* Functions to manage the got entry hash table. */
2120 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2123 static INLINE hashval_t
2124 mips_elf_hash_bfd_vma (bfd_vma addr)
2127 return addr + (addr >> 32);
2133 /* got_entries only match if they're identical, except for gotidx, so
2134 use all fields to compute the hash, and compare the appropriate
2138 mips_elf_got_entry_hash (const void *entry_)
2140 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2142 return entry->symndx
2143 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2144 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2146 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2147 : entry->d.h->root.root.root.hash));
2151 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2153 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2154 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2156 /* An LDM entry can only match another LDM entry. */
2157 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2160 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2161 && (! e1->abfd ? e1->d.address == e2->d.address
2162 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2163 : e1->d.h == e2->d.h);
2166 /* multi_got_entries are still a match in the case of global objects,
2167 even if the input bfd in which they're referenced differs, so the
2168 hash computation and compare functions are adjusted
2172 mips_elf_multi_got_entry_hash (const void *entry_)
2174 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2176 return entry->symndx
2178 ? mips_elf_hash_bfd_vma (entry->d.address)
2179 : entry->symndx >= 0
2180 ? ((entry->tls_type & GOT_TLS_LDM)
2181 ? (GOT_TLS_LDM << 17)
2183 + mips_elf_hash_bfd_vma (entry->d.addend)))
2184 : entry->d.h->root.root.root.hash);
2188 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2190 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2191 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2193 /* Any two LDM entries match. */
2194 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2197 /* Nothing else matches an LDM entry. */
2198 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2201 return e1->symndx == e2->symndx
2202 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2203 : e1->abfd == NULL || e2->abfd == NULL
2204 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2205 : e1->d.h == e2->d.h);
2209 mips_got_page_entry_hash (const void *entry_)
2211 const struct mips_got_page_entry *entry;
2213 entry = (const struct mips_got_page_entry *) entry_;
2214 return entry->abfd->id + entry->symndx;
2218 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2220 const struct mips_got_page_entry *entry1, *entry2;
2222 entry1 = (const struct mips_got_page_entry *) entry1_;
2223 entry2 = (const struct mips_got_page_entry *) entry2_;
2224 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2227 /* Return the dynamic relocation section. If it doesn't exist, try to
2228 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2229 if creation fails. */
2232 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2238 dname = MIPS_ELF_REL_DYN_NAME (info);
2239 dynobj = elf_hash_table (info)->dynobj;
2240 sreloc = bfd_get_section_by_name (dynobj, dname);
2241 if (sreloc == NULL && create_p)
2243 sreloc = bfd_make_section_with_flags (dynobj, dname,
2248 | SEC_LINKER_CREATED
2251 || ! bfd_set_section_alignment (dynobj, sreloc,
2252 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2258 /* Returns the GOT section for ABFD. */
2261 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2263 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2265 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2270 /* Returns the GOT information associated with the link indicated by
2271 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2274 static struct mips_got_info *
2275 mips_elf_got_info (bfd *abfd, asection **sgotp)
2278 struct mips_got_info *g;
2280 sgot = mips_elf_got_section (abfd, TRUE);
2281 BFD_ASSERT (sgot != NULL);
2282 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2283 g = mips_elf_section_data (sgot)->u.got_info;
2284 BFD_ASSERT (g != NULL);
2287 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2292 /* Count the number of relocations needed for a TLS GOT entry, with
2293 access types from TLS_TYPE, and symbol H (or a local symbol if H
2297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2298 struct elf_link_hash_entry *h)
2302 bfd_boolean need_relocs = FALSE;
2303 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2305 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2306 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2309 if ((info->shared || indx != 0)
2311 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2312 || h->root.type != bfd_link_hash_undefweak))
2318 if (tls_type & GOT_TLS_GD)
2325 if (tls_type & GOT_TLS_IE)
2328 if ((tls_type & GOT_TLS_LDM) && info->shared)
2334 /* Count the number of TLS relocations required for the GOT entry in
2335 ARG1, if it describes a local symbol. */
2338 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2340 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2341 struct mips_elf_count_tls_arg *arg = arg2;
2343 if (entry->abfd != NULL && entry->symndx != -1)
2344 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2349 /* Count the number of TLS GOT entries required for the global (or
2350 forced-local) symbol in ARG1. */
2353 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2355 struct mips_elf_link_hash_entry *hm
2356 = (struct mips_elf_link_hash_entry *) arg1;
2357 struct mips_elf_count_tls_arg *arg = arg2;
2359 if (hm->tls_type & GOT_TLS_GD)
2361 if (hm->tls_type & GOT_TLS_IE)
2367 /* Count the number of TLS relocations required for the global (or
2368 forced-local) symbol in ARG1. */
2371 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2373 struct mips_elf_link_hash_entry *hm
2374 = (struct mips_elf_link_hash_entry *) arg1;
2375 struct mips_elf_count_tls_arg *arg = arg2;
2377 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2382 /* Output a simple dynamic relocation into SRELOC. */
2385 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2391 Elf_Internal_Rela rel[3];
2393 memset (rel, 0, sizeof (rel));
2395 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2396 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2398 if (ABI_64_P (output_bfd))
2400 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2401 (output_bfd, &rel[0],
2403 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2406 bfd_elf32_swap_reloc_out
2407 (output_bfd, &rel[0],
2409 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2410 ++sreloc->reloc_count;
2413 /* Initialize a set of TLS GOT entries for one symbol. */
2416 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2417 unsigned char *tls_type_p,
2418 struct bfd_link_info *info,
2419 struct mips_elf_link_hash_entry *h,
2423 asection *sreloc, *sgot;
2424 bfd_vma offset, offset2;
2426 bfd_boolean need_relocs = FALSE;
2428 dynobj = elf_hash_table (info)->dynobj;
2429 sgot = mips_elf_got_section (dynobj, FALSE);
2434 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2436 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2437 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2438 indx = h->root.dynindx;
2441 if (*tls_type_p & GOT_TLS_DONE)
2444 if ((info->shared || indx != 0)
2446 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2447 || h->root.type != bfd_link_hash_undefweak))
2450 /* MINUS_ONE means the symbol is not defined in this object. It may not
2451 be defined at all; assume that the value doesn't matter in that
2452 case. Otherwise complain if we would use the value. */
2453 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2454 || h->root.root.type == bfd_link_hash_undefweak);
2456 /* Emit necessary relocations. */
2457 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2459 /* General Dynamic. */
2460 if (*tls_type_p & GOT_TLS_GD)
2462 offset = got_offset;
2463 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2467 mips_elf_output_dynamic_relocation
2468 (abfd, sreloc, indx,
2469 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2470 sgot->output_offset + sgot->output_section->vma + offset);
2473 mips_elf_output_dynamic_relocation
2474 (abfd, sreloc, indx,
2475 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2476 sgot->output_offset + sgot->output_section->vma + offset2);
2478 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2479 sgot->contents + offset2);
2483 MIPS_ELF_PUT_WORD (abfd, 1,
2484 sgot->contents + offset);
2485 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2486 sgot->contents + offset2);
2489 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2492 /* Initial Exec model. */
2493 if (*tls_type_p & GOT_TLS_IE)
2495 offset = got_offset;
2500 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2501 sgot->contents + offset);
2503 MIPS_ELF_PUT_WORD (abfd, 0,
2504 sgot->contents + offset);
2506 mips_elf_output_dynamic_relocation
2507 (abfd, sreloc, indx,
2508 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2509 sgot->output_offset + sgot->output_section->vma + offset);
2512 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2513 sgot->contents + offset);
2516 if (*tls_type_p & GOT_TLS_LDM)
2518 /* The initial offset is zero, and the LD offsets will include the
2519 bias by DTP_OFFSET. */
2520 MIPS_ELF_PUT_WORD (abfd, 0,
2521 sgot->contents + got_offset
2522 + MIPS_ELF_GOT_SIZE (abfd));
2525 MIPS_ELF_PUT_WORD (abfd, 1,
2526 sgot->contents + got_offset);
2528 mips_elf_output_dynamic_relocation
2529 (abfd, sreloc, indx,
2530 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2531 sgot->output_offset + sgot->output_section->vma + got_offset);
2534 *tls_type_p |= GOT_TLS_DONE;
2537 /* Return the GOT index to use for a relocation of type R_TYPE against
2538 a symbol accessed using TLS_TYPE models. The GOT entries for this
2539 symbol in this GOT start at GOT_INDEX. This function initializes the
2540 GOT entries and corresponding relocations. */
2543 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2544 int r_type, struct bfd_link_info *info,
2545 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2547 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2548 || r_type == R_MIPS_TLS_LDM);
2550 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2552 if (r_type == R_MIPS_TLS_GOTTPREL)
2554 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2555 if (*tls_type & GOT_TLS_GD)
2556 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2561 if (r_type == R_MIPS_TLS_GD)
2563 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2567 if (r_type == R_MIPS_TLS_LDM)
2569 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2576 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2577 for global symbol H. .got.plt comes before the GOT, so the offset
2578 will be negative. */
2581 mips_elf_gotplt_index (struct bfd_link_info *info,
2582 struct elf_link_hash_entry *h)
2584 bfd_vma plt_index, got_address, got_value;
2585 struct mips_elf_link_hash_table *htab;
2587 htab = mips_elf_hash_table (info);
2588 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2590 /* Calculate the index of the symbol's PLT entry. */
2591 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2593 /* Calculate the address of the associated .got.plt entry. */
2594 got_address = (htab->sgotplt->output_section->vma
2595 + htab->sgotplt->output_offset
2598 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2599 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2600 + htab->root.hgot->root.u.def.section->output_offset
2601 + htab->root.hgot->root.u.def.value);
2603 return got_address - got_value;
2606 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2607 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2608 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2609 offset can be found. */
2612 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2613 bfd_vma value, unsigned long r_symndx,
2614 struct mips_elf_link_hash_entry *h, int r_type)
2617 struct mips_got_info *g;
2618 struct mips_got_entry *entry;
2620 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2622 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2623 value, r_symndx, h, r_type);
2627 if (TLS_RELOC_P (r_type))
2629 if (entry->symndx == -1 && g->next == NULL)
2630 /* A type (3) entry in the single-GOT case. We use the symbol's
2631 hash table entry to track the index. */
2632 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2633 r_type, info, h, value);
2635 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2636 r_type, info, h, value);
2639 return entry->gotidx;
2642 /* Returns the GOT index for the global symbol indicated by H. */
2645 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2646 int r_type, struct bfd_link_info *info)
2650 struct mips_got_info *g, *gg;
2651 long global_got_dynindx = 0;
2653 gg = g = mips_elf_got_info (abfd, &sgot);
2654 if (g->bfd2got && ibfd)
2656 struct mips_got_entry e, *p;
2658 BFD_ASSERT (h->dynindx >= 0);
2660 g = mips_elf_got_for_ibfd (g, ibfd);
2661 if (g->next != gg || TLS_RELOC_P (r_type))
2665 e.d.h = (struct mips_elf_link_hash_entry *)h;
2668 p = htab_find (g->got_entries, &e);
2670 BFD_ASSERT (p->gotidx > 0);
2672 if (TLS_RELOC_P (r_type))
2674 bfd_vma value = MINUS_ONE;
2675 if ((h->root.type == bfd_link_hash_defined
2676 || h->root.type == bfd_link_hash_defweak)
2677 && h->root.u.def.section->output_section)
2678 value = (h->root.u.def.value
2679 + h->root.u.def.section->output_offset
2680 + h->root.u.def.section->output_section->vma);
2682 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2683 info, e.d.h, value);
2690 if (gg->global_gotsym != NULL)
2691 global_got_dynindx = gg->global_gotsym->dynindx;
2693 if (TLS_RELOC_P (r_type))
2695 struct mips_elf_link_hash_entry *hm
2696 = (struct mips_elf_link_hash_entry *) h;
2697 bfd_vma value = MINUS_ONE;
2699 if ((h->root.type == bfd_link_hash_defined
2700 || h->root.type == bfd_link_hash_defweak)
2701 && h->root.u.def.section->output_section)
2702 value = (h->root.u.def.value
2703 + h->root.u.def.section->output_offset
2704 + h->root.u.def.section->output_section->vma);
2706 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2707 r_type, info, hm, value);
2711 /* Once we determine the global GOT entry with the lowest dynamic
2712 symbol table index, we must put all dynamic symbols with greater
2713 indices into the GOT. That makes it easy to calculate the GOT
2715 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2716 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2717 * MIPS_ELF_GOT_SIZE (abfd));
2719 BFD_ASSERT (index < sgot->size);
2724 /* Find a GOT page entry that points to within 32KB of VALUE. These
2725 entries are supposed to be placed at small offsets in the GOT, i.e.,
2726 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2727 entry could be created. If OFFSETP is nonnull, use it to return the
2728 offset of the GOT entry from VALUE. */
2731 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2732 bfd_vma value, bfd_vma *offsetp)
2735 struct mips_got_info *g;
2736 bfd_vma page, index;
2737 struct mips_got_entry *entry;
2739 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2741 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2742 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2743 page, 0, NULL, R_MIPS_GOT_PAGE);
2748 index = entry->gotidx;
2751 *offsetp = value - entry->d.address;
2756 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
2757 EXTERNAL is true if the relocation was against a global symbol
2758 that has been forced local. */
2761 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2762 bfd_vma value, bfd_boolean external)
2765 struct mips_got_info *g;
2766 struct mips_got_entry *entry;
2768 /* GOT16 relocations against local symbols are followed by a LO16
2769 relocation; those against global symbols are not. Thus if the
2770 symbol was originally local, the GOT16 relocation should load the
2771 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2773 value = mips_elf_high (value) << 16;
2775 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2777 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
2778 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
2779 same in all cases. */
2780 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2781 value, 0, NULL, R_MIPS_GOT16);
2783 return entry->gotidx;
2788 /* Returns the offset for the entry at the INDEXth position
2792 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2793 bfd *input_bfd, bfd_vma index)
2797 struct mips_got_info *g;
2799 g = mips_elf_got_info (dynobj, &sgot);
2800 gp = _bfd_get_gp_value (output_bfd)
2801 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2803 return sgot->output_section->vma + sgot->output_offset + index - gp;
2806 /* Create and return a local GOT entry for VALUE, which was calculated
2807 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2808 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2811 static struct mips_got_entry *
2812 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2813 bfd *ibfd, struct mips_got_info *gg,
2814 asection *sgot, bfd_vma value,
2815 unsigned long r_symndx,
2816 struct mips_elf_link_hash_entry *h,
2819 struct mips_got_entry entry, **loc;
2820 struct mips_got_info *g;
2821 struct mips_elf_link_hash_table *htab;
2823 htab = mips_elf_hash_table (info);
2827 entry.d.address = value;
2830 g = mips_elf_got_for_ibfd (gg, ibfd);
2833 g = mips_elf_got_for_ibfd (gg, abfd);
2834 BFD_ASSERT (g != NULL);
2837 /* We might have a symbol, H, if it has been forced local. Use the
2838 global entry then. It doesn't matter whether an entry is local
2839 or global for TLS, since the dynamic linker does not
2840 automatically relocate TLS GOT entries. */
2841 BFD_ASSERT (h == NULL || h->root.forced_local);
2842 if (TLS_RELOC_P (r_type))
2844 struct mips_got_entry *p;
2847 if (r_type == R_MIPS_TLS_LDM)
2849 entry.tls_type = GOT_TLS_LDM;
2855 entry.symndx = r_symndx;
2861 p = (struct mips_got_entry *)
2862 htab_find (g->got_entries, &entry);
2868 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2873 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2876 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2881 memcpy (*loc, &entry, sizeof entry);
2883 if (g->assigned_gotno > g->local_gotno)
2885 (*loc)->gotidx = -1;
2886 /* We didn't allocate enough space in the GOT. */
2887 (*_bfd_error_handler)
2888 (_("not enough GOT space for local GOT entries"));
2889 bfd_set_error (bfd_error_bad_value);
2893 MIPS_ELF_PUT_WORD (abfd, value,
2894 (sgot->contents + entry.gotidx));
2896 /* These GOT entries need a dynamic relocation on VxWorks. */
2897 if (htab->is_vxworks)
2899 Elf_Internal_Rela outrel;
2902 bfd_vma got_address;
2904 s = mips_elf_rel_dyn_section (info, FALSE);
2905 got_address = (sgot->output_section->vma
2906 + sgot->output_offset
2909 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2910 outrel.r_offset = got_address;
2911 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2912 outrel.r_addend = value;
2913 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2919 /* Sort the dynamic symbol table so that symbols that need GOT entries
2920 appear towards the end. This reduces the amount of GOT space
2921 required. MAX_LOCAL is used to set the number of local symbols
2922 known to be in the dynamic symbol table. During
2923 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2924 section symbols are added and the count is higher. */
2927 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2929 struct mips_elf_hash_sort_data hsd;
2930 struct mips_got_info *g;
2933 dynobj = elf_hash_table (info)->dynobj;
2935 g = mips_elf_got_info (dynobj, NULL);
2938 hsd.max_unref_got_dynindx =
2939 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2940 /* In the multi-got case, assigned_gotno of the master got_info
2941 indicate the number of entries that aren't referenced in the
2942 primary GOT, but that must have entries because there are
2943 dynamic relocations that reference it. Since they aren't
2944 referenced, we move them to the end of the GOT, so that they
2945 don't prevent other entries that are referenced from getting
2946 too large offsets. */
2947 - (g->next ? g->assigned_gotno : 0);
2948 hsd.max_non_got_dynindx = max_local;
2949 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2950 elf_hash_table (info)),
2951 mips_elf_sort_hash_table_f,
2954 /* There should have been enough room in the symbol table to
2955 accommodate both the GOT and non-GOT symbols. */
2956 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2957 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2958 <= elf_hash_table (info)->dynsymcount);
2960 /* Now we know which dynamic symbol has the lowest dynamic symbol
2961 table index in the GOT. */
2962 g->global_gotsym = hsd.low;
2967 /* If H needs a GOT entry, assign it the highest available dynamic
2968 index. Otherwise, assign it the lowest available dynamic
2972 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2974 struct mips_elf_hash_sort_data *hsd = data;
2976 if (h->root.root.type == bfd_link_hash_warning)
2977 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2979 /* Symbols without dynamic symbol table entries aren't interesting
2981 if (h->root.dynindx == -1)
2984 /* Global symbols that need GOT entries that are not explicitly
2985 referenced are marked with got offset 2. Those that are
2986 referenced get a 1, and those that don't need GOT entries get
2987 -1. Forced local symbols may also be marked with got offset 1,
2988 but are never given global GOT entries. */
2989 if (h->root.got.offset == 2)
2991 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2993 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2994 hsd->low = (struct elf_link_hash_entry *) h;
2995 h->root.dynindx = hsd->max_unref_got_dynindx++;
2997 else if (h->root.got.offset != 1 || h->forced_local)
2998 h->root.dynindx = hsd->max_non_got_dynindx++;
3001 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3003 h->root.dynindx = --hsd->min_got_dynindx;
3004 hsd->low = (struct elf_link_hash_entry *) h;
3010 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3011 symbol table index lower than any we've seen to date, record it for
3015 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3016 bfd *abfd, struct bfd_link_info *info,
3017 struct mips_got_info *g,
3018 unsigned char tls_flag)
3020 struct mips_got_entry entry, **loc;
3022 /* A global symbol in the GOT must also be in the dynamic symbol
3024 if (h->dynindx == -1)
3026 switch (ELF_ST_VISIBILITY (h->other))
3030 _bfd_mips_elf_hide_symbol (info, h, TRUE);
3033 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3037 /* Make sure we have a GOT to put this entry into. */
3038 BFD_ASSERT (g != NULL);
3042 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3045 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3048 /* If we've already marked this entry as needing GOT space, we don't
3049 need to do it again. */
3052 (*loc)->tls_type |= tls_flag;
3056 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3062 entry.tls_type = tls_flag;
3064 memcpy (*loc, &entry, sizeof entry);
3066 if (h->got.offset != MINUS_ONE)
3071 /* By setting this to a value other than -1, we are indicating that
3072 there needs to be a GOT entry for H. Avoid using zero, as the
3073 generic ELF copy_indirect_symbol tests for <= 0. */
3075 if (h->forced_local)
3082 /* Reserve space in G for a GOT entry containing the value of symbol
3083 SYMNDX in input bfd ABDF, plus ADDEND. */
3086 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3087 struct mips_got_info *g,
3088 unsigned char tls_flag)
3090 struct mips_got_entry entry, **loc;
3093 entry.symndx = symndx;
3094 entry.d.addend = addend;
3095 entry.tls_type = tls_flag;
3096 loc = (struct mips_got_entry **)
3097 htab_find_slot (g->got_entries, &entry, INSERT);
3101 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3104 (*loc)->tls_type |= tls_flag;
3106 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3109 (*loc)->tls_type |= tls_flag;
3117 entry.tls_type = tls_flag;
3118 if (tls_flag == GOT_TLS_IE)
3120 else if (tls_flag == GOT_TLS_GD)
3122 else if (g->tls_ldm_offset == MINUS_ONE)
3124 g->tls_ldm_offset = MINUS_TWO;
3130 entry.gotidx = g->local_gotno++;
3134 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3139 memcpy (*loc, &entry, sizeof entry);
3144 /* Return the maximum number of GOT page entries required for RANGE. */
3147 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3149 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3152 /* Record that ABFD has a page relocation against symbol SYMNDX and
3153 that ADDEND is the addend for that relocation. G is the GOT
3154 information. This function creates an upper bound on the number of
3155 GOT slots required; no attempt is made to combine references to
3156 non-overridable global symbols across multiple input files. */
3159 mips_elf_record_got_page_entry (bfd *abfd, long symndx, bfd_signed_vma addend,
3160 struct mips_got_info *g)
3162 struct mips_got_page_entry lookup, *entry;
3163 struct mips_got_page_range **range_ptr, *range;
3164 bfd_vma old_pages, new_pages;
3167 /* Find the mips_got_page_entry hash table entry for this symbol. */
3169 lookup.symndx = symndx;
3170 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3174 /* Create a mips_got_page_entry if this is the first time we've
3176 entry = (struct mips_got_page_entry *) *loc;
3179 entry = bfd_alloc (abfd, sizeof (*entry));
3184 entry->symndx = symndx;
3185 entry->ranges = NULL;
3186 entry->num_pages = 0;
3190 /* Skip over ranges whose maximum extent cannot share a page entry
3192 range_ptr = &entry->ranges;
3193 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3194 range_ptr = &(*range_ptr)->next;
3196 /* If we scanned to the end of the list, or found a range whose
3197 minimum extent cannot share a page entry with ADDEND, create
3198 a new singleton range. */
3200 if (!range || addend < range->min_addend - 0xffff)
3202 range = bfd_alloc (abfd, sizeof (*range));
3206 range->next = *range_ptr;
3207 range->min_addend = addend;
3208 range->max_addend = addend;
3216 /* Remember how many pages the old range contributed. */
3217 old_pages = mips_elf_pages_for_range (range);
3219 /* Update the ranges. */
3220 if (addend < range->min_addend)
3221 range->min_addend = addend;
3222 else if (addend > range->max_addend)
3224 if (range->next && addend >= range->next->min_addend - 0xffff)
3226 old_pages += mips_elf_pages_for_range (range->next);
3227 range->max_addend = range->next->max_addend;
3228 range->next = range->next->next;
3231 range->max_addend = addend;
3234 /* Record any change in the total estimate. */
3235 new_pages = mips_elf_pages_for_range (range);
3236 if (old_pages != new_pages)
3238 entry->num_pages += new_pages - old_pages;
3239 g->page_gotno += new_pages - old_pages;
3245 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3248 mips_elf_bfd2got_entry_hash (const void *entry_)
3250 const struct mips_elf_bfd2got_hash *entry
3251 = (struct mips_elf_bfd2got_hash *)entry_;
3253 return entry->bfd->id;
3256 /* Check whether two hash entries have the same bfd. */
3259 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3261 const struct mips_elf_bfd2got_hash *e1
3262 = (const struct mips_elf_bfd2got_hash *)entry1;
3263 const struct mips_elf_bfd2got_hash *e2
3264 = (const struct mips_elf_bfd2got_hash *)entry2;
3266 return e1->bfd == e2->bfd;
3269 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3270 be the master GOT data. */
3272 static struct mips_got_info *
3273 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3275 struct mips_elf_bfd2got_hash e, *p;
3281 p = htab_find (g->bfd2got, &e);
3282 return p ? p->g : NULL;
3285 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3286 Return NULL if an error occured. */
3288 static struct mips_got_info *
3289 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3292 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3293 struct mips_got_info *g;
3296 bfdgot_entry.bfd = input_bfd;
3297 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3298 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3302 bfdgot = ((struct mips_elf_bfd2got_hash *)
3303 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3309 g = ((struct mips_got_info *)
3310 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3314 bfdgot->bfd = input_bfd;
3317 g->global_gotsym = NULL;
3318 g->global_gotno = 0;
3321 g->assigned_gotno = -1;
3323 g->tls_assigned_gotno = 0;
3324 g->tls_ldm_offset = MINUS_ONE;
3325 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3326 mips_elf_multi_got_entry_eq, NULL);
3327 if (g->got_entries == NULL)
3330 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3331 mips_got_page_entry_eq, NULL);
3332 if (g->got_page_entries == NULL)
3342 /* A htab_traverse callback for the entries in the master got.
3343 Create one separate got for each bfd that has entries in the global
3344 got, such that we can tell how many local and global entries each
3348 mips_elf_make_got_per_bfd (void **entryp, void *p)
3350 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3351 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3352 struct mips_got_info *g;
3354 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3361 /* Insert the GOT entry in the bfd's got entry hash table. */
3362 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3363 if (*entryp != NULL)
3368 if (entry->tls_type)
3370 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3372 if (entry->tls_type & GOT_TLS_IE)
3375 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3383 /* A htab_traverse callback for the page entries in the master got.
3384 Associate each page entry with the bfd's got. */
3387 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3389 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3390 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3391 struct mips_got_info *g;
3393 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3400 /* Insert the GOT entry in the bfd's got entry hash table. */
3401 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3402 if (*entryp != NULL)
3406 g->page_gotno += entry->num_pages;
3410 /* Consider merging the got described by BFD2GOT with TO, using the
3411 information given by ARG. Return -1 if this would lead to overflow,
3412 1 if they were merged successfully, and 0 if a merge failed due to
3413 lack of memory. (These values are chosen so that nonnegative return
3414 values can be returned by a htab_traverse callback.) */
3417 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3418 struct mips_got_info *to,
3419 struct mips_elf_got_per_bfd_arg *arg)
3421 struct mips_got_info *from = bfd2got->g;
3422 unsigned int estimate;
3424 /* Work out how many page entries we would need for the combined GOT. */
3425 estimate = arg->max_pages;
3426 if (estimate >= from->page_gotno + to->page_gotno)
3427 estimate = from->page_gotno + to->page_gotno;
3429 /* And conservatively estimate how many local, global and TLS entries
3431 estimate += (from->local_gotno
3432 + from->global_gotno
3438 /* Bail out if the combined GOT might be too big. */
3439 if (estimate > arg->max_count)
3442 /* Commit to the merge. Record that TO is now the bfd for this got. */
3445 /* Transfer the bfd's got information from FROM to TO. */
3446 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3447 if (arg->obfd == NULL)
3450 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3451 if (arg->obfd == NULL)
3454 /* We don't have to worry about releasing memory of the actual
3455 got entries, since they're all in the master got_entries hash
3457 htab_delete (from->got_entries);
3458 htab_delete (from->got_page_entries);
3462 /* Attempt to merge gots of different input bfds. Try to use as much
3463 as possible of the primary got, since it doesn't require explicit
3464 dynamic relocations, but don't use bfds that would reference global
3465 symbols out of the addressable range. Failing the primary got,
3466 attempt to merge with the current got, or finish the current got
3467 and then make make the new got current. */
3470 mips_elf_merge_gots (void **bfd2got_, void *p)
3472 struct mips_elf_bfd2got_hash *bfd2got
3473 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3474 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3475 struct mips_got_info *g;
3476 unsigned int estimate;
3481 /* Work out the number of page, local and TLS entries. */
3482 estimate = arg->max_pages;
3483 if (estimate > g->page_gotno)
3484 estimate = g->page_gotno;
3485 estimate += g->local_gotno + g->tls_gotno;
3487 /* We place TLS GOT entries after both locals and globals. The globals
3488 for the primary GOT may overflow the normal GOT size limit, so be
3489 sure not to merge a GOT which requires TLS with the primary GOT in that
3490 case. This doesn't affect non-primary GOTs. */
3491 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
3493 if (estimate <= arg->max_count)
3495 /* If we don't have a primary GOT, use it as
3496 a starting point for the primary GOT. */
3499 arg->primary = bfd2got->g;
3503 /* Try merging with the primary GOT. */
3504 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3509 /* If we can merge with the last-created got, do it. */
3512 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3517 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3518 fits; if it turns out that it doesn't, we'll get relocation
3519 overflows anyway. */
3520 g->next = arg->current;
3526 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3527 is null iff there is just a single GOT. */
3530 mips_elf_initialize_tls_index (void **entryp, void *p)
3532 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3533 struct mips_got_info *g = p;
3535 unsigned char tls_type;
3537 /* We're only interested in TLS symbols. */
3538 if (entry->tls_type == 0)
3541 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3543 if (entry->symndx == -1 && g->next == NULL)
3545 /* A type (3) got entry in the single-GOT case. We use the symbol's
3546 hash table entry to track its index. */
3547 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3549 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3550 entry->d.h->tls_got_offset = next_index;
3551 tls_type = entry->d.h->tls_type;
3555 if (entry->tls_type & GOT_TLS_LDM)
3557 /* There are separate mips_got_entry objects for each input bfd
3558 that requires an LDM entry. Make sure that all LDM entries in
3559 a GOT resolve to the same index. */
3560 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3562 entry->gotidx = g->tls_ldm_offset;
3565 g->tls_ldm_offset = next_index;
3567 entry->gotidx = next_index;
3568 tls_type = entry->tls_type;
3571 /* Account for the entries we've just allocated. */
3572 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3573 g->tls_assigned_gotno += 2;
3574 if (tls_type & GOT_TLS_IE)
3575 g->tls_assigned_gotno += 1;
3580 /* If passed a NULL mips_got_info in the argument, set the marker used
3581 to tell whether a global symbol needs a got entry (in the primary
3582 got) to the given VALUE.
3584 If passed a pointer G to a mips_got_info in the argument (it must
3585 not be the primary GOT), compute the offset from the beginning of
3586 the (primary) GOT section to the entry in G corresponding to the
3587 global symbol. G's assigned_gotno must contain the index of the
3588 first available global GOT entry in G. VALUE must contain the size
3589 of a GOT entry in bytes. For each global GOT entry that requires a
3590 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3591 marked as not eligible for lazy resolution through a function
3594 mips_elf_set_global_got_offset (void **entryp, void *p)
3596 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3597 struct mips_elf_set_global_got_offset_arg *arg
3598 = (struct mips_elf_set_global_got_offset_arg *)p;
3599 struct mips_got_info *g = arg->g;
3601 if (g && entry->tls_type != GOT_NORMAL)
3602 arg->needed_relocs +=
3603 mips_tls_got_relocs (arg->info, entry->tls_type,
3604 entry->symndx == -1 ? &entry->d.h->root : NULL);
3606 if (entry->abfd != NULL && entry->symndx == -1
3607 && entry->d.h->root.dynindx != -1
3608 && !entry->d.h->forced_local
3609 && entry->d.h->tls_type == GOT_NORMAL)
3613 BFD_ASSERT (g->global_gotsym == NULL);
3615 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3616 if (arg->info->shared
3617 || (elf_hash_table (arg->info)->dynamic_sections_created
3618 && entry->d.h->root.def_dynamic
3619 && !entry->d.h->root.def_regular))
3620 ++arg->needed_relocs;
3623 entry->d.h->root.got.offset = arg->value;
3629 /* Mark any global symbols referenced in the GOT we are iterating over
3630 as inelligible for lazy resolution stubs. */
3632 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3634 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3636 if (entry->abfd != NULL
3637 && entry->symndx == -1
3638 && entry->d.h->root.dynindx != -1)
3639 entry->d.h->no_fn_stub = TRUE;
3644 /* Follow indirect and warning hash entries so that each got entry
3645 points to the final symbol definition. P must point to a pointer
3646 to the hash table we're traversing. Since this traversal may
3647 modify the hash table, we set this pointer to NULL to indicate
3648 we've made a potentially-destructive change to the hash table, so
3649 the traversal must be restarted. */
3651 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3653 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3654 htab_t got_entries = *(htab_t *)p;
3656 if (entry->abfd != NULL && entry->symndx == -1)
3658 struct mips_elf_link_hash_entry *h = entry->d.h;
3660 while (h->root.root.type == bfd_link_hash_indirect
3661 || h->root.root.type == bfd_link_hash_warning)
3662 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3664 if (entry->d.h == h)
3669 /* If we can't find this entry with the new bfd hash, re-insert
3670 it, and get the traversal restarted. */
3671 if (! htab_find (got_entries, entry))
3673 htab_clear_slot (got_entries, entryp);
3674 entryp = htab_find_slot (got_entries, entry, INSERT);
3677 /* Abort the traversal, since the whole table may have
3678 moved, and leave it up to the parent to restart the
3680 *(htab_t *)p = NULL;
3683 /* We might want to decrement the global_gotno count, but it's
3684 either too early or too late for that at this point. */
3690 /* Turn indirect got entries in a got_entries table into their final
3693 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3699 got_entries = g->got_entries;
3701 htab_traverse (got_entries,
3702 mips_elf_resolve_final_got_entry,
3705 while (got_entries == NULL);
3708 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3711 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3713 if (g->bfd2got == NULL)
3716 g = mips_elf_got_for_ibfd (g, ibfd);
3720 BFD_ASSERT (g->next);
3724 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3725 * MIPS_ELF_GOT_SIZE (abfd);
3728 /* Turn a single GOT that is too big for 16-bit addressing into
3729 a sequence of GOTs, each one 16-bit addressable. */
3732 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3733 struct mips_got_info *g, asection *got,
3734 bfd_size_type pages)
3736 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3737 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3738 struct mips_got_info *gg;
3739 unsigned int assign;
3741 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3742 mips_elf_bfd2got_entry_eq, NULL);
3743 if (g->bfd2got == NULL)
3746 got_per_bfd_arg.bfd2got = g->bfd2got;
3747 got_per_bfd_arg.obfd = abfd;
3748 got_per_bfd_arg.info = info;
3750 /* Count how many GOT entries each input bfd requires, creating a
3751 map from bfd to got info while at that. */
3752 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3753 if (got_per_bfd_arg.obfd == NULL)
3756 /* Also count how many page entries each input bfd requires. */
3757 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3759 if (got_per_bfd_arg.obfd == NULL)
3762 got_per_bfd_arg.current = NULL;
3763 got_per_bfd_arg.primary = NULL;
3764 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3765 / MIPS_ELF_GOT_SIZE (abfd))
3766 - MIPS_RESERVED_GOTNO (info));
3767 got_per_bfd_arg.max_pages = pages;
3768 /* The number of globals that will be included in the primary GOT.
3769 See the calls to mips_elf_set_global_got_offset below for more
3771 got_per_bfd_arg.global_count = g->global_gotno;
3773 /* Try to merge the GOTs of input bfds together, as long as they
3774 don't seem to exceed the maximum GOT size, choosing one of them
3775 to be the primary GOT. */
3776 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3777 if (got_per_bfd_arg.obfd == NULL)
3780 /* If we do not find any suitable primary GOT, create an empty one. */
3781 if (got_per_bfd_arg.primary == NULL)
3783 g->next = (struct mips_got_info *)
3784 bfd_alloc (abfd, sizeof (struct mips_got_info));
3785 if (g->next == NULL)
3788 g->next->global_gotsym = NULL;
3789 g->next->global_gotno = 0;
3790 g->next->local_gotno = 0;
3791 g->next->page_gotno = 0;
3792 g->next->tls_gotno = 0;
3793 g->next->assigned_gotno = 0;
3794 g->next->tls_assigned_gotno = 0;
3795 g->next->tls_ldm_offset = MINUS_ONE;
3796 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3797 mips_elf_multi_got_entry_eq,
3799 if (g->next->got_entries == NULL)
3801 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3802 mips_got_page_entry_eq,
3804 if (g->next->got_page_entries == NULL)
3806 g->next->bfd2got = NULL;
3809 g->next = got_per_bfd_arg.primary;
3810 g->next->next = got_per_bfd_arg.current;
3812 /* GG is now the master GOT, and G is the primary GOT. */
3816 /* Map the output bfd to the primary got. That's what we're going
3817 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3818 didn't mark in check_relocs, and we want a quick way to find it.
3819 We can't just use gg->next because we're going to reverse the
3822 struct mips_elf_bfd2got_hash *bfdgot;
3825 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3826 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3833 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3835 BFD_ASSERT (*bfdgotp == NULL);
3839 /* The IRIX dynamic linker requires every symbol that is referenced
3840 in a dynamic relocation to be present in the primary GOT, so
3841 arrange for them to appear after those that are actually
3844 GNU/Linux could very well do without it, but it would slow down
3845 the dynamic linker, since it would have to resolve every dynamic
3846 symbol referenced in other GOTs more than once, without help from
3847 the cache. Also, knowing that every external symbol has a GOT
3848 helps speed up the resolution of local symbols too, so GNU/Linux
3849 follows IRIX's practice.
3851 The number 2 is used by mips_elf_sort_hash_table_f to count
3852 global GOT symbols that are unreferenced in the primary GOT, with
3853 an initial dynamic index computed from gg->assigned_gotno, where
3854 the number of unreferenced global entries in the primary GOT is
3858 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3859 g->global_gotno = gg->global_gotno;
3860 set_got_offset_arg.value = 2;
3864 /* This could be used for dynamic linkers that don't optimize
3865 symbol resolution while applying relocations so as to use
3866 primary GOT entries or assuming the symbol is locally-defined.
3867 With this code, we assign lower dynamic indices to global
3868 symbols that are not referenced in the primary GOT, so that
3869 their entries can be omitted. */
3870 gg->assigned_gotno = 0;
3871 set_got_offset_arg.value = -1;
3874 /* Reorder dynamic symbols as described above (which behavior
3875 depends on the setting of VALUE). */
3876 set_got_offset_arg.g = NULL;
3877 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3878 &set_got_offset_arg);
3879 set_got_offset_arg.value = 1;
3880 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3881 &set_got_offset_arg);
3882 if (! mips_elf_sort_hash_table (info, 1))
3885 /* Now go through the GOTs assigning them offset ranges.
3886 [assigned_gotno, local_gotno[ will be set to the range of local
3887 entries in each GOT. We can then compute the end of a GOT by
3888 adding local_gotno to global_gotno. We reverse the list and make
3889 it circular since then we'll be able to quickly compute the
3890 beginning of a GOT, by computing the end of its predecessor. To
3891 avoid special cases for the primary GOT, while still preserving
3892 assertions that are valid for both single- and multi-got links,
3893 we arrange for the main got struct to have the right number of
3894 global entries, but set its local_gotno such that the initial
3895 offset of the primary GOT is zero. Remember that the primary GOT
3896 will become the last item in the circular linked list, so it
3897 points back to the master GOT. */
3898 gg->local_gotno = -g->global_gotno;
3899 gg->global_gotno = g->global_gotno;
3906 struct mips_got_info *gn;
3908 assign += MIPS_RESERVED_GOTNO (info);
3909 g->assigned_gotno = assign;
3910 g->local_gotno += assign;
3911 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
3912 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3914 /* Take g out of the direct list, and push it onto the reversed
3915 list that gg points to. g->next is guaranteed to be nonnull after
3916 this operation, as required by mips_elf_initialize_tls_index. */
3921 /* Set up any TLS entries. We always place the TLS entries after
3922 all non-TLS entries. */
3923 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3924 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3926 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3929 /* Mark global symbols in every non-primary GOT as ineligible for
3932 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3936 got->size = (gg->next->local_gotno
3937 + gg->next->global_gotno
3938 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3944 /* Returns the first relocation of type r_type found, beginning with
3945 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3947 static const Elf_Internal_Rela *
3948 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3949 const Elf_Internal_Rela *relocation,
3950 const Elf_Internal_Rela *relend)
3952 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3954 while (relocation < relend)
3956 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3957 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3963 /* We didn't find it. */
3967 /* Return whether a relocation is against a local symbol. */
3970 mips_elf_local_relocation_p (bfd *input_bfd,
3971 const Elf_Internal_Rela *relocation,
3972 asection **local_sections,
3973 bfd_boolean check_forced)
3975 unsigned long r_symndx;
3976 Elf_Internal_Shdr *symtab_hdr;
3977 struct mips_elf_link_hash_entry *h;
3980 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3982 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3984 if (r_symndx < extsymoff)
3986 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3991 /* Look up the hash table to check whether the symbol
3992 was forced local. */
3993 h = (struct mips_elf_link_hash_entry *)
3994 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3995 /* Find the real hash-table entry for this symbol. */
3996 while (h->root.root.type == bfd_link_hash_indirect
3997 || h->root.root.type == bfd_link_hash_warning)
3998 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3999 if (h->root.forced_local)
4006 /* Sign-extend VALUE, which has the indicated number of BITS. */
4009 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4011 if (value & ((bfd_vma) 1 << (bits - 1)))
4012 /* VALUE is negative. */
4013 value |= ((bfd_vma) - 1) << bits;
4018 /* Return non-zero if the indicated VALUE has overflowed the maximum
4019 range expressible by a signed number with the indicated number of
4023 mips_elf_overflow_p (bfd_vma value, int bits)
4025 bfd_signed_vma svalue = (bfd_signed_vma) value;
4027 if (svalue > (1 << (bits - 1)) - 1)
4028 /* The value is too big. */
4030 else if (svalue < -(1 << (bits - 1)))
4031 /* The value is too small. */
4038 /* Calculate the %high function. */
4041 mips_elf_high (bfd_vma value)
4043 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4046 /* Calculate the %higher function. */
4049 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4052 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4059 /* Calculate the %highest function. */
4062 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4065 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4072 /* Create the .compact_rel section. */
4075 mips_elf_create_compact_rel_section
4076 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4079 register asection *s;
4081 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4083 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4086 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4088 || ! bfd_set_section_alignment (abfd, s,
4089 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4092 s->size = sizeof (Elf32_External_compact_rel);
4098 /* Create the .got section to hold the global offset table. */
4101 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
4102 bfd_boolean maybe_exclude)
4105 register asection *s;
4106 struct elf_link_hash_entry *h;
4107 struct bfd_link_hash_entry *bh;
4108 struct mips_got_info *g;
4110 struct mips_elf_link_hash_table *htab;
4112 htab = mips_elf_hash_table (info);
4114 /* This function may be called more than once. */
4115 s = mips_elf_got_section (abfd, TRUE);
4118 if (! maybe_exclude)
4119 s->flags &= ~SEC_EXCLUDE;
4123 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4124 | SEC_LINKER_CREATED);
4127 flags |= SEC_EXCLUDE;
4129 /* We have to use an alignment of 2**4 here because this is hardcoded
4130 in the function stub generation and in the linker script. */
4131 s = bfd_make_section_with_flags (abfd, ".got", flags);
4133 || ! bfd_set_section_alignment (abfd, s, 4))
4136 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4137 linker script because we don't want to define the symbol if we
4138 are not creating a global offset table. */
4140 if (! (_bfd_generic_link_add_one_symbol
4141 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4142 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4145 h = (struct elf_link_hash_entry *) bh;
4148 h->type = STT_OBJECT;
4149 elf_hash_table (info)->hgot = h;
4152 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4155 amt = sizeof (struct mips_got_info);
4156 g = bfd_alloc (abfd, amt);
4159 g->global_gotsym = NULL;
4160 g->global_gotno = 0;
4162 g->local_gotno = MIPS_RESERVED_GOTNO (info);
4164 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
4167 g->tls_ldm_offset = MINUS_ONE;
4168 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4169 mips_elf_got_entry_eq, NULL);
4170 if (g->got_entries == NULL)
4172 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4173 mips_got_page_entry_eq, NULL);
4174 if (g->got_page_entries == NULL)
4176 mips_elf_section_data (s)->u.got_info = g;
4177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4180 /* VxWorks also needs a .got.plt section. */
4181 if (htab->is_vxworks)
4183 s = bfd_make_section_with_flags (abfd, ".got.plt",
4184 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4185 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4186 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4194 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4195 __GOTT_INDEX__ symbols. These symbols are only special for
4196 shared objects; they are not used in executables. */
4199 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4201 return (mips_elf_hash_table (info)->is_vxworks
4203 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4204 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4207 /* Calculate the value produced by the RELOCATION (which comes from
4208 the INPUT_BFD). The ADDEND is the addend to use for this
4209 RELOCATION; RELOCATION->R_ADDEND is ignored.
4211 The result of the relocation calculation is stored in VALUEP.
4212 REQUIRE_JALXP indicates whether or not the opcode used with this
4213 relocation must be JALX.
4215 This function returns bfd_reloc_continue if the caller need take no
4216 further action regarding this relocation, bfd_reloc_notsupported if
4217 something goes dramatically wrong, bfd_reloc_overflow if an
4218 overflow occurs, and bfd_reloc_ok to indicate success. */
4220 static bfd_reloc_status_type
4221 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4222 asection *input_section,
4223 struct bfd_link_info *info,
4224 const Elf_Internal_Rela *relocation,
4225 bfd_vma addend, reloc_howto_type *howto,
4226 Elf_Internal_Sym *local_syms,
4227 asection **local_sections, bfd_vma *valuep,
4228 const char **namep, bfd_boolean *require_jalxp,
4229 bfd_boolean save_addend)
4231 /* The eventual value we will return. */
4233 /* The address of the symbol against which the relocation is
4236 /* The final GP value to be used for the relocatable, executable, or
4237 shared object file being produced. */
4239 /* The place (section offset or address) of the storage unit being
4242 /* The value of GP used to create the relocatable object. */
4244 /* The offset into the global offset table at which the address of
4245 the relocation entry symbol, adjusted by the addend, resides
4246 during execution. */
4247 bfd_vma g = MINUS_ONE;
4248 /* The section in which the symbol referenced by the relocation is
4250 asection *sec = NULL;
4251 struct mips_elf_link_hash_entry *h = NULL;
4252 /* TRUE if the symbol referred to by this relocation is a local
4254 bfd_boolean local_p, was_local_p;
4255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4256 bfd_boolean gp_disp_p = FALSE;
4257 /* TRUE if the symbol referred to by this relocation is
4258 "__gnu_local_gp". */
4259 bfd_boolean gnu_local_gp_p = FALSE;
4260 Elf_Internal_Shdr *symtab_hdr;
4262 unsigned long r_symndx;
4264 /* TRUE if overflow occurred during the calculation of the
4265 relocation value. */
4266 bfd_boolean overflowed_p;
4267 /* TRUE if this relocation refers to a MIPS16 function. */
4268 bfd_boolean target_is_16_bit_code_p = FALSE;
4269 struct mips_elf_link_hash_table *htab;
4272 dynobj = elf_hash_table (info)->dynobj;
4273 htab = mips_elf_hash_table (info);
4275 /* Parse the relocation. */
4276 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4277 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4278 p = (input_section->output_section->vma
4279 + input_section->output_offset
4280 + relocation->r_offset);
4282 /* Assume that there will be no overflow. */
4283 overflowed_p = FALSE;
4285 /* Figure out whether or not the symbol is local, and get the offset
4286 used in the array of hash table entries. */
4287 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4288 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4289 local_sections, FALSE);
4290 was_local_p = local_p;
4291 if (! elf_bad_symtab (input_bfd))
4292 extsymoff = symtab_hdr->sh_info;
4295 /* The symbol table does not follow the rule that local symbols
4296 must come before globals. */
4300 /* Figure out the value of the symbol. */
4303 Elf_Internal_Sym *sym;
4305 sym = local_syms + r_symndx;
4306 sec = local_sections[r_symndx];
4308 symbol = sec->output_section->vma + sec->output_offset;
4309 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4310 || (sec->flags & SEC_MERGE))
4311 symbol += sym->st_value;
4312 if ((sec->flags & SEC_MERGE)
4313 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4315 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4317 addend += sec->output_section->vma + sec->output_offset;
4320 /* MIPS16 text labels should be treated as odd. */
4321 if (ELF_ST_IS_MIPS16 (sym->st_other))
4324 /* Record the name of this symbol, for our caller. */
4325 *namep = bfd_elf_string_from_elf_section (input_bfd,
4326 symtab_hdr->sh_link,
4329 *namep = bfd_section_name (input_bfd, sec);
4331 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4335 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4337 /* For global symbols we look up the symbol in the hash-table. */
4338 h = ((struct mips_elf_link_hash_entry *)
4339 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4340 /* Find the real hash-table entry for this symbol. */
4341 while (h->root.root.type == bfd_link_hash_indirect
4342 || h->root.root.type == bfd_link_hash_warning)
4343 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4345 /* Record the name of this symbol, for our caller. */
4346 *namep = h->root.root.root.string;
4348 /* See if this is the special _gp_disp symbol. Note that such a
4349 symbol must always be a global symbol. */
4350 if (strcmp (*namep, "_gp_disp") == 0
4351 && ! NEWABI_P (input_bfd))
4353 /* Relocations against _gp_disp are permitted only with
4354 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4355 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4356 return bfd_reloc_notsupported;
4360 /* See if this is the special _gp symbol. Note that such a
4361 symbol must always be a global symbol. */
4362 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4363 gnu_local_gp_p = TRUE;
4366 /* If this symbol is defined, calculate its address. Note that
4367 _gp_disp is a magic symbol, always implicitly defined by the
4368 linker, so it's inappropriate to check to see whether or not
4370 else if ((h->root.root.type == bfd_link_hash_defined
4371 || h->root.root.type == bfd_link_hash_defweak)
4372 && h->root.root.u.def.section)
4374 sec = h->root.root.u.def.section;
4375 if (sec->output_section)
4376 symbol = (h->root.root.u.def.value
4377 + sec->output_section->vma
4378 + sec->output_offset);
4380 symbol = h->root.root.u.def.value;
4382 else if (h->root.root.type == bfd_link_hash_undefweak)
4383 /* We allow relocations against undefined weak symbols, giving
4384 it the value zero, so that you can undefined weak functions
4385 and check to see if they exist by looking at their
4388 else if (info->unresolved_syms_in_objects == RM_IGNORE
4389 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4391 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4392 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4394 /* If this is a dynamic link, we should have created a
4395 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4396 in in _bfd_mips_elf_create_dynamic_sections.
4397 Otherwise, we should define the symbol with a value of 0.
4398 FIXME: It should probably get into the symbol table
4400 BFD_ASSERT (! info->shared);
4401 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4404 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4406 /* This is an optional symbol - an Irix specific extension to the
4407 ELF spec. Ignore it for now.
4408 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4409 than simply ignoring them, but we do not handle this for now.
4410 For information see the "64-bit ELF Object File Specification"
4411 which is available from here:
4412 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4417 if (! ((*info->callbacks->undefined_symbol)
4418 (info, h->root.root.root.string, input_bfd,
4419 input_section, relocation->r_offset,
4420 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4421 || ELF_ST_VISIBILITY (h->root.other))))
4422 return bfd_reloc_undefined;
4426 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4429 /* If this is a reference to a 16-bit function with a stub, we need
4430 to redirect the relocation to the stub unless:
4432 (a) the relocation is for a MIPS16 JAL;
4434 (b) the relocation is for a MIPS16 PIC call, and there are no
4435 non-MIPS16 uses of the GOT slot; or
4437 (c) the section allows direct references to MIPS16 functions. */
4438 if (r_type != R_MIPS16_26
4439 && !info->relocatable
4441 && h->fn_stub != NULL
4442 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
4444 && elf_tdata (input_bfd)->local_stubs != NULL
4445 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4446 && !section_allows_mips16_refs_p (input_section))
4448 /* This is a 32- or 64-bit call to a 16-bit function. We should
4449 have already noticed that we were going to need the
4452 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4455 BFD_ASSERT (h->need_fn_stub);
4459 symbol = sec->output_section->vma + sec->output_offset;
4460 /* The target is 16-bit, but the stub isn't. */
4461 target_is_16_bit_code_p = FALSE;
4463 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4464 need to redirect the call to the stub. Note that we specifically
4465 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
4466 use an indirect stub instead. */
4467 else if (r_type == R_MIPS16_26 && !info->relocatable
4468 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4470 && elf_tdata (input_bfd)->local_call_stubs != NULL
4471 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4472 && !target_is_16_bit_code_p)
4475 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4478 /* If both call_stub and call_fp_stub are defined, we can figure
4479 out which one to use by checking which one appears in the input
4481 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4486 for (o = input_bfd->sections; o != NULL; o = o->next)
4488 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4490 sec = h->call_fp_stub;
4497 else if (h->call_stub != NULL)
4500 sec = h->call_fp_stub;
4503 BFD_ASSERT (sec->size > 0);
4504 symbol = sec->output_section->vma + sec->output_offset;
4507 /* Calls from 16-bit code to 32-bit code and vice versa require the
4508 special jalx instruction. */
4509 *require_jalxp = (!info->relocatable
4510 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4511 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4513 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4514 local_sections, TRUE);
4516 gp0 = _bfd_get_gp_value (input_bfd);
4517 gp = _bfd_get_gp_value (abfd);
4519 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4525 /* If we haven't already determined the GOT offset, oand we're going
4526 to need it, get it now. */
4529 case R_MIPS_GOT_PAGE:
4530 case R_MIPS_GOT_OFST:
4531 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4533 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4534 if (local_p || r_type == R_MIPS_GOT_OFST)
4538 case R_MIPS16_CALL16:
4539 case R_MIPS16_GOT16:
4542 case R_MIPS_GOT_DISP:
4543 case R_MIPS_GOT_HI16:
4544 case R_MIPS_CALL_HI16:
4545 case R_MIPS_GOT_LO16:
4546 case R_MIPS_CALL_LO16:
4548 case R_MIPS_TLS_GOTTPREL:
4549 case R_MIPS_TLS_LDM:
4550 /* Find the index into the GOT where this value is located. */
4551 if (r_type == R_MIPS_TLS_LDM)
4553 g = mips_elf_local_got_index (abfd, input_bfd, info,
4554 0, 0, NULL, r_type);
4556 return bfd_reloc_outofrange;
4560 /* On VxWorks, CALL relocations should refer to the .got.plt
4561 entry, which is initialized to point at the PLT stub. */
4562 if (htab->is_vxworks
4563 && (r_type == R_MIPS_CALL_HI16
4564 || r_type == R_MIPS_CALL_LO16
4565 || call16_reloc_p (r_type)))
4567 BFD_ASSERT (addend == 0);
4568 BFD_ASSERT (h->root.needs_plt);
4569 g = mips_elf_gotplt_index (info, &h->root);
4573 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4574 GOT_PAGE relocation that decays to GOT_DISP because the
4575 symbol turns out to be global. The addend is then added
4577 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4578 g = mips_elf_global_got_index (dynobj, input_bfd,
4579 &h->root, r_type, info);
4580 if (h->tls_type == GOT_NORMAL
4581 && (! elf_hash_table(info)->dynamic_sections_created
4583 && (info->symbolic || h->root.forced_local)
4584 && h->root.def_regular)))
4586 /* This is a static link or a -Bsymbolic link. The
4587 symbol is defined locally, or was forced to be local.
4588 We must initialize this entry in the GOT. */
4589 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4590 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4594 else if (!htab->is_vxworks
4595 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
4596 /* The calculation below does not involve "g". */
4600 g = mips_elf_local_got_index (abfd, input_bfd, info,
4601 symbol + addend, r_symndx, h, r_type);
4603 return bfd_reloc_outofrange;
4606 /* Convert GOT indices to actual offsets. */
4607 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4611 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4612 symbols are resolved by the loader. Add them to .rela.dyn. */
4613 if (h != NULL && is_gott_symbol (info, &h->root))
4615 Elf_Internal_Rela outrel;
4619 s = mips_elf_rel_dyn_section (info, FALSE);
4620 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4622 outrel.r_offset = (input_section->output_section->vma
4623 + input_section->output_offset
4624 + relocation->r_offset);
4625 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4626 outrel.r_addend = addend;
4627 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4629 /* If we've written this relocation for a readonly section,
4630 we need to set DF_TEXTREL again, so that we do not delete the
4632 if (MIPS_ELF_READONLY_SECTION (input_section))
4633 info->flags |= DF_TEXTREL;
4636 return bfd_reloc_ok;
4639 /* Figure out what kind of relocation is being performed. */
4643 return bfd_reloc_continue;
4646 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4647 overflowed_p = mips_elf_overflow_p (value, 16);
4654 || (!htab->is_vxworks
4655 && htab->root.dynamic_sections_created
4657 && h->root.def_dynamic
4658 && !h->root.def_regular))
4661 || h->root.root.type != bfd_link_hash_undefweak
4662 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4663 && (input_section->flags & SEC_ALLOC) != 0)
4665 /* If we're creating a shared library, or this relocation is
4666 against a symbol in a shared library, then we can't know
4667 where the symbol will end up. So, we create a relocation
4668 record in the output, and leave the job up to the dynamic
4671 In VxWorks executables, references to external symbols
4672 are handled using copy relocs or PLT stubs, so there's
4673 no need to add a dynamic relocation here. */
4675 if (!mips_elf_create_dynamic_relocation (abfd,
4683 return bfd_reloc_undefined;
4687 if (r_type != R_MIPS_REL32)
4688 value = symbol + addend;
4692 value &= howto->dst_mask;
4696 value = symbol + addend - p;
4697 value &= howto->dst_mask;
4701 /* The calculation for R_MIPS16_26 is just the same as for an
4702 R_MIPS_26. It's only the storage of the relocated field into
4703 the output file that's different. That's handled in
4704 mips_elf_perform_relocation. So, we just fall through to the
4705 R_MIPS_26 case here. */
4708 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4711 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4712 if (h->root.root.type != bfd_link_hash_undefweak)
4713 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4715 value &= howto->dst_mask;
4718 case R_MIPS_TLS_DTPREL_HI16:
4719 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4723 case R_MIPS_TLS_DTPREL_LO16:
4724 case R_MIPS_TLS_DTPREL32:
4725 case R_MIPS_TLS_DTPREL64:
4726 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4729 case R_MIPS_TLS_TPREL_HI16:
4730 value = (mips_elf_high (addend + symbol - tprel_base (info))
4734 case R_MIPS_TLS_TPREL_LO16:
4735 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4742 value = mips_elf_high (addend + symbol);
4743 value &= howto->dst_mask;
4747 /* For MIPS16 ABI code we generate this sequence
4748 0: li $v0,%hi(_gp_disp)
4749 4: addiupc $v1,%lo(_gp_disp)
4753 So the offsets of hi and lo relocs are the same, but the
4754 $pc is four higher than $t9 would be, so reduce
4755 both reloc addends by 4. */
4756 if (r_type == R_MIPS16_HI16)
4757 value = mips_elf_high (addend + gp - p - 4);
4759 value = mips_elf_high (addend + gp - p);
4760 overflowed_p = mips_elf_overflow_p (value, 16);
4767 value = (symbol + addend) & howto->dst_mask;
4770 /* See the comment for R_MIPS16_HI16 above for the reason
4771 for this conditional. */
4772 if (r_type == R_MIPS16_LO16)
4773 value = addend + gp - p;
4775 value = addend + gp - p + 4;
4776 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4777 for overflow. But, on, say, IRIX5, relocations against
4778 _gp_disp are normally generated from the .cpload
4779 pseudo-op. It generates code that normally looks like
4782 lui $gp,%hi(_gp_disp)
4783 addiu $gp,$gp,%lo(_gp_disp)
4786 Here $t9 holds the address of the function being called,
4787 as required by the MIPS ELF ABI. The R_MIPS_LO16
4788 relocation can easily overflow in this situation, but the
4789 R_MIPS_HI16 relocation will handle the overflow.
4790 Therefore, we consider this a bug in the MIPS ABI, and do
4791 not check for overflow here. */
4795 case R_MIPS_LITERAL:
4796 /* Because we don't merge literal sections, we can handle this
4797 just like R_MIPS_GPREL16. In the long run, we should merge
4798 shared literals, and then we will need to additional work
4803 case R_MIPS16_GPREL:
4804 /* The R_MIPS16_GPREL performs the same calculation as
4805 R_MIPS_GPREL16, but stores the relocated bits in a different
4806 order. We don't need to do anything special here; the
4807 differences are handled in mips_elf_perform_relocation. */
4808 case R_MIPS_GPREL16:
4809 /* Only sign-extend the addend if it was extracted from the
4810 instruction. If the addend was separate, leave it alone,
4811 otherwise we may lose significant bits. */
4812 if (howto->partial_inplace)
4813 addend = _bfd_mips_elf_sign_extend (addend, 16);
4814 value = symbol + addend - gp;
4815 /* If the symbol was local, any earlier relocatable links will
4816 have adjusted its addend with the gp offset, so compensate
4817 for that now. Don't do it for symbols forced local in this
4818 link, though, since they won't have had the gp offset applied
4822 overflowed_p = mips_elf_overflow_p (value, 16);
4825 case R_MIPS16_GOT16:
4826 case R_MIPS16_CALL16:
4829 /* VxWorks does not have separate local and global semantics for
4830 R_MIPS*_GOT16; every relocation evaluates to "G". */
4831 if (!htab->is_vxworks && local_p)
4835 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4836 local_sections, FALSE);
4837 value = mips_elf_got16_entry (abfd, input_bfd, info,
4838 symbol + addend, forced);
4839 if (value == MINUS_ONE)
4840 return bfd_reloc_outofrange;
4842 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4843 overflowed_p = mips_elf_overflow_p (value, 16);
4850 case R_MIPS_TLS_GOTTPREL:
4851 case R_MIPS_TLS_LDM:
4852 case R_MIPS_GOT_DISP:
4855 overflowed_p = mips_elf_overflow_p (value, 16);
4858 case R_MIPS_GPREL32:
4859 value = (addend + symbol + gp0 - gp);
4861 value &= howto->dst_mask;
4865 case R_MIPS_GNU_REL16_S2:
4866 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4867 overflowed_p = mips_elf_overflow_p (value, 18);
4868 value >>= howto->rightshift;
4869 value &= howto->dst_mask;
4872 case R_MIPS_GOT_HI16:
4873 case R_MIPS_CALL_HI16:
4874 /* We're allowed to handle these two relocations identically.
4875 The dynamic linker is allowed to handle the CALL relocations
4876 differently by creating a lazy evaluation stub. */
4878 value = mips_elf_high (value);
4879 value &= howto->dst_mask;
4882 case R_MIPS_GOT_LO16:
4883 case R_MIPS_CALL_LO16:
4884 value = g & howto->dst_mask;
4887 case R_MIPS_GOT_PAGE:
4888 /* GOT_PAGE relocations that reference non-local symbols decay
4889 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4893 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4894 if (value == MINUS_ONE)
4895 return bfd_reloc_outofrange;
4896 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4897 overflowed_p = mips_elf_overflow_p (value, 16);
4900 case R_MIPS_GOT_OFST:
4902 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4905 overflowed_p = mips_elf_overflow_p (value, 16);
4909 value = symbol - addend;
4910 value &= howto->dst_mask;
4914 value = mips_elf_higher (addend + symbol);
4915 value &= howto->dst_mask;
4918 case R_MIPS_HIGHEST:
4919 value = mips_elf_highest (addend + symbol);
4920 value &= howto->dst_mask;
4923 case R_MIPS_SCN_DISP:
4924 value = symbol + addend - sec->output_offset;
4925 value &= howto->dst_mask;
4929 /* This relocation is only a hint. In some cases, we optimize
4930 it into a bal instruction. But we don't try to optimize
4931 branches to the PLT; that will wind up wasting time. */
4932 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4933 return bfd_reloc_continue;
4934 value = symbol + addend;
4938 case R_MIPS_GNU_VTINHERIT:
4939 case R_MIPS_GNU_VTENTRY:
4940 /* We don't do anything with these at present. */
4941 return bfd_reloc_continue;
4944 /* An unrecognized relocation type. */
4945 return bfd_reloc_notsupported;
4948 /* Store the VALUE for our caller. */
4950 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4953 /* Obtain the field relocated by RELOCATION. */
4956 mips_elf_obtain_contents (reloc_howto_type *howto,
4957 const Elf_Internal_Rela *relocation,
4958 bfd *input_bfd, bfd_byte *contents)
4961 bfd_byte *location = contents + relocation->r_offset;
4963 /* Obtain the bytes. */
4964 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4969 /* It has been determined that the result of the RELOCATION is the
4970 VALUE. Use HOWTO to place VALUE into the output file at the
4971 appropriate position. The SECTION is the section to which the
4972 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4973 for the relocation must be either JAL or JALX, and it is
4974 unconditionally converted to JALX.
4976 Returns FALSE if anything goes wrong. */
4979 mips_elf_perform_relocation (struct bfd_link_info *info,
4980 reloc_howto_type *howto,
4981 const Elf_Internal_Rela *relocation,
4982 bfd_vma value, bfd *input_bfd,
4983 asection *input_section, bfd_byte *contents,
4984 bfd_boolean require_jalx)
4988 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4990 /* Figure out where the relocation is occurring. */
4991 location = contents + relocation->r_offset;
4993 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4995 /* Obtain the current value. */
4996 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4998 /* Clear the field we are setting. */
4999 x &= ~howto->dst_mask;
5001 /* Set the field. */
5002 x |= (value & howto->dst_mask);
5004 /* If required, turn JAL into JALX. */
5008 bfd_vma opcode = x >> 26;
5009 bfd_vma jalx_opcode;
5011 /* Check to see if the opcode is already JAL or JALX. */
5012 if (r_type == R_MIPS16_26)
5014 ok = ((opcode == 0x6) || (opcode == 0x7));
5019 ok = ((opcode == 0x3) || (opcode == 0x1d));
5023 /* If the opcode is not JAL or JALX, there's a problem. */
5026 (*_bfd_error_handler)
5027 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5030 (unsigned long) relocation->r_offset);
5031 bfd_set_error (bfd_error_bad_value);
5035 /* Make this the JALX opcode. */
5036 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5039 /* On the RM9000, bal is faster than jal, because bal uses branch
5040 prediction hardware. If we are linking for the RM9000, and we
5041 see jal, and bal fits, use it instead. Note that this
5042 transformation should be safe for all architectures. */
5043 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
5044 && !info->relocatable
5046 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
5047 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
5053 addr = (input_section->output_section->vma
5054 + input_section->output_offset
5055 + relocation->r_offset
5057 if (r_type == R_MIPS_26)
5058 dest = (value << 2) | ((addr >> 28) << 28);
5062 if (off <= 0x1ffff && off >= -0x20000)
5063 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5066 /* Put the value into the output. */
5067 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5069 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5075 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
5078 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
5082 struct mips_elf_link_hash_table *htab;
5084 htab = mips_elf_hash_table (info);
5085 s = mips_elf_rel_dyn_section (info, FALSE);
5086 BFD_ASSERT (s != NULL);
5088 if (htab->is_vxworks)
5089 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
5094 /* Make room for a null element. */
5095 s->size += MIPS_ELF_REL_SIZE (abfd);
5098 s->size += n * MIPS_ELF_REL_SIZE (abfd);
5102 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5103 is the original relocation, which is now being transformed into a
5104 dynamic relocation. The ADDENDP is adjusted if necessary; the
5105 caller should store the result in place of the original addend. */
5108 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5109 struct bfd_link_info *info,
5110 const Elf_Internal_Rela *rel,
5111 struct mips_elf_link_hash_entry *h,
5112 asection *sec, bfd_vma symbol,
5113 bfd_vma *addendp, asection *input_section)
5115 Elf_Internal_Rela outrel[3];
5120 bfd_boolean defined_p;
5121 struct mips_elf_link_hash_table *htab;
5123 htab = mips_elf_hash_table (info);
5124 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5125 dynobj = elf_hash_table (info)->dynobj;
5126 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5127 BFD_ASSERT (sreloc != NULL);
5128 BFD_ASSERT (sreloc->contents != NULL);
5129 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5132 outrel[0].r_offset =
5133 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5134 if (ABI_64_P (output_bfd))
5136 outrel[1].r_offset =
5137 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5138 outrel[2].r_offset =
5139 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5142 if (outrel[0].r_offset == MINUS_ONE)
5143 /* The relocation field has been deleted. */
5146 if (outrel[0].r_offset == MINUS_TWO)
5148 /* The relocation field has been converted into a relative value of
5149 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5150 the field to be fully relocated, so add in the symbol's value. */
5155 /* We must now calculate the dynamic symbol table index to use
5156 in the relocation. */
5158 && (!h->root.def_regular
5159 || (info->shared && !info->symbolic && !h->root.forced_local)))
5161 indx = h->root.dynindx;
5162 if (SGI_COMPAT (output_bfd))
5163 defined_p = h->root.def_regular;
5165 /* ??? glibc's ld.so just adds the final GOT entry to the
5166 relocation field. It therefore treats relocs against
5167 defined symbols in the same way as relocs against
5168 undefined symbols. */
5173 if (sec != NULL && bfd_is_abs_section (sec))
5175 else if (sec == NULL || sec->owner == NULL)
5177 bfd_set_error (bfd_error_bad_value);
5182 indx = elf_section_data (sec->output_section)->dynindx;
5185 asection *osec = htab->root.text_index_section;
5186 indx = elf_section_data (osec)->dynindx;
5192 /* Instead of generating a relocation using the section
5193 symbol, we may as well make it a fully relative
5194 relocation. We want to avoid generating relocations to
5195 local symbols because we used to generate them
5196 incorrectly, without adding the original symbol value,
5197 which is mandated by the ABI for section symbols. In
5198 order to give dynamic loaders and applications time to
5199 phase out the incorrect use, we refrain from emitting
5200 section-relative relocations. It's not like they're
5201 useful, after all. This should be a bit more efficient
5203 /* ??? Although this behavior is compatible with glibc's ld.so,
5204 the ABI says that relocations against STN_UNDEF should have
5205 a symbol value of 0. Irix rld honors this, so relocations
5206 against STN_UNDEF have no effect. */
5207 if (!SGI_COMPAT (output_bfd))
5212 /* If the relocation was previously an absolute relocation and
5213 this symbol will not be referred to by the relocation, we must
5214 adjust it by the value we give it in the dynamic symbol table.
5215 Otherwise leave the job up to the dynamic linker. */
5216 if (defined_p && r_type != R_MIPS_REL32)
5219 if (htab->is_vxworks)
5220 /* VxWorks uses non-relative relocations for this. */
5221 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5223 /* The relocation is always an REL32 relocation because we don't
5224 know where the shared library will wind up at load-time. */
5225 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5228 /* For strict adherence to the ABI specification, we should
5229 generate a R_MIPS_64 relocation record by itself before the
5230 _REL32/_64 record as well, such that the addend is read in as
5231 a 64-bit value (REL32 is a 32-bit relocation, after all).
5232 However, since none of the existing ELF64 MIPS dynamic
5233 loaders seems to care, we don't waste space with these
5234 artificial relocations. If this turns out to not be true,
5235 mips_elf_allocate_dynamic_relocation() should be tweaked so
5236 as to make room for a pair of dynamic relocations per
5237 invocation if ABI_64_P, and here we should generate an
5238 additional relocation record with R_MIPS_64 by itself for a
5239 NULL symbol before this relocation record. */
5240 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5241 ABI_64_P (output_bfd)
5244 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5246 /* Adjust the output offset of the relocation to reference the
5247 correct location in the output file. */
5248 outrel[0].r_offset += (input_section->output_section->vma
5249 + input_section->output_offset);
5250 outrel[1].r_offset += (input_section->output_section->vma
5251 + input_section->output_offset);
5252 outrel[2].r_offset += (input_section->output_section->vma
5253 + input_section->output_offset);
5255 /* Put the relocation back out. We have to use the special
5256 relocation outputter in the 64-bit case since the 64-bit
5257 relocation format is non-standard. */
5258 if (ABI_64_P (output_bfd))
5260 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5261 (output_bfd, &outrel[0],
5263 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5265 else if (htab->is_vxworks)
5267 /* VxWorks uses RELA rather than REL dynamic relocations. */
5268 outrel[0].r_addend = *addendp;
5269 bfd_elf32_swap_reloca_out
5270 (output_bfd, &outrel[0],
5272 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5275 bfd_elf32_swap_reloc_out
5276 (output_bfd, &outrel[0],
5277 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5279 /* We've now added another relocation. */
5280 ++sreloc->reloc_count;
5282 /* Make sure the output section is writable. The dynamic linker
5283 will be writing to it. */
5284 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5287 /* On IRIX5, make an entry of compact relocation info. */
5288 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5290 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5295 Elf32_crinfo cptrel;
5297 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5298 cptrel.vaddr = (rel->r_offset
5299 + input_section->output_section->vma
5300 + input_section->output_offset);
5301 if (r_type == R_MIPS_REL32)
5302 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5304 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5305 mips_elf_set_cr_dist2to (cptrel, 0);
5306 cptrel.konst = *addendp;
5308 cr = (scpt->contents
5309 + sizeof (Elf32_External_compact_rel));
5310 mips_elf_set_cr_relvaddr (cptrel, 0);
5311 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5312 ((Elf32_External_crinfo *) cr
5313 + scpt->reloc_count));
5314 ++scpt->reloc_count;
5318 /* If we've written this relocation for a readonly section,
5319 we need to set DF_TEXTREL again, so that we do not delete the
5321 if (MIPS_ELF_READONLY_SECTION (input_section))
5322 info->flags |= DF_TEXTREL;
5327 /* Return the MACH for a MIPS e_flags value. */
5330 _bfd_elf_mips_mach (flagword flags)
5332 switch (flags & EF_MIPS_MACH)
5334 case E_MIPS_MACH_3900:
5335 return bfd_mach_mips3900;
5337 case E_MIPS_MACH_4010:
5338 return bfd_mach_mips4010;
5340 case E_MIPS_MACH_4100:
5341 return bfd_mach_mips4100;
5343 case E_MIPS_MACH_4111:
5344 return bfd_mach_mips4111;
5346 case E_MIPS_MACH_4120:
5347 return bfd_mach_mips4120;
5349 case E_MIPS_MACH_4650:
5350 return bfd_mach_mips4650;
5352 case E_MIPS_MACH_5400:
5353 return bfd_mach_mips5400;
5355 case E_MIPS_MACH_5500:
5356 return bfd_mach_mips5500;
5358 case E_MIPS_MACH_9000:
5359 return bfd_mach_mips9000;
5361 case E_MIPS_MACH_SB1:
5362 return bfd_mach_mips_sb1;
5364 case E_MIPS_MACH_LS2E:
5365 return bfd_mach_mips_loongson_2e;
5367 case E_MIPS_MACH_LS2F:
5368 return bfd_mach_mips_loongson_2f;
5370 case E_MIPS_MACH_OCTEON:
5371 return bfd_mach_mips_octeon;
5374 switch (flags & EF_MIPS_ARCH)
5378 return bfd_mach_mips3000;
5381 return bfd_mach_mips6000;
5384 return bfd_mach_mips4000;
5387 return bfd_mach_mips8000;
5390 return bfd_mach_mips5;
5392 case E_MIPS_ARCH_32:
5393 return bfd_mach_mipsisa32;
5395 case E_MIPS_ARCH_64:
5396 return bfd_mach_mipsisa64;
5398 case E_MIPS_ARCH_32R2:
5399 return bfd_mach_mipsisa32r2;
5401 case E_MIPS_ARCH_64R2:
5402 return bfd_mach_mipsisa64r2;
5409 /* Return printable name for ABI. */
5411 static INLINE char *
5412 elf_mips_abi_name (bfd *abfd)
5416 flags = elf_elfheader (abfd)->e_flags;
5417 switch (flags & EF_MIPS_ABI)
5420 if (ABI_N32_P (abfd))
5422 else if (ABI_64_P (abfd))
5426 case E_MIPS_ABI_O32:
5428 case E_MIPS_ABI_O64:
5430 case E_MIPS_ABI_EABI32:
5432 case E_MIPS_ABI_EABI64:
5435 return "unknown abi";
5439 /* MIPS ELF uses two common sections. One is the usual one, and the
5440 other is for small objects. All the small objects are kept
5441 together, and then referenced via the gp pointer, which yields
5442 faster assembler code. This is what we use for the small common
5443 section. This approach is copied from ecoff.c. */
5444 static asection mips_elf_scom_section;
5445 static asymbol mips_elf_scom_symbol;
5446 static asymbol *mips_elf_scom_symbol_ptr;
5448 /* MIPS ELF also uses an acommon section, which represents an
5449 allocated common symbol which may be overridden by a
5450 definition in a shared library. */
5451 static asection mips_elf_acom_section;
5452 static asymbol mips_elf_acom_symbol;
5453 static asymbol *mips_elf_acom_symbol_ptr;
5455 /* This is used for both the 32-bit and the 64-bit ABI. */
5458 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5460 elf_symbol_type *elfsym;
5462 /* Handle the special MIPS section numbers that a symbol may use. */
5463 elfsym = (elf_symbol_type *) asym;
5464 switch (elfsym->internal_elf_sym.st_shndx)
5466 case SHN_MIPS_ACOMMON:
5467 /* This section is used in a dynamically linked executable file.
5468 It is an allocated common section. The dynamic linker can
5469 either resolve these symbols to something in a shared
5470 library, or it can just leave them here. For our purposes,
5471 we can consider these symbols to be in a new section. */
5472 if (mips_elf_acom_section.name == NULL)
5474 /* Initialize the acommon section. */
5475 mips_elf_acom_section.name = ".acommon";
5476 mips_elf_acom_section.flags = SEC_ALLOC;
5477 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5478 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5479 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5480 mips_elf_acom_symbol.name = ".acommon";
5481 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5482 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5483 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5485 asym->section = &mips_elf_acom_section;
5489 /* Common symbols less than the GP size are automatically
5490 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5491 if (asym->value > elf_gp_size (abfd)
5492 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5493 || IRIX_COMPAT (abfd) == ict_irix6)
5496 case SHN_MIPS_SCOMMON:
5497 if (mips_elf_scom_section.name == NULL)
5499 /* Initialize the small common section. */
5500 mips_elf_scom_section.name = ".scommon";
5501 mips_elf_scom_section.flags = SEC_IS_COMMON;
5502 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5503 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5504 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5505 mips_elf_scom_symbol.name = ".scommon";
5506 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5507 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5508 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5510 asym->section = &mips_elf_scom_section;
5511 asym->value = elfsym->internal_elf_sym.st_size;
5514 case SHN_MIPS_SUNDEFINED:
5515 asym->section = bfd_und_section_ptr;
5520 asection *section = bfd_get_section_by_name (abfd, ".text");
5522 BFD_ASSERT (SGI_COMPAT (abfd));
5523 if (section != NULL)
5525 asym->section = section;
5526 /* MIPS_TEXT is a bit special, the address is not an offset
5527 to the base of the .text section. So substract the section
5528 base address to make it an offset. */
5529 asym->value -= section->vma;
5536 asection *section = bfd_get_section_by_name (abfd, ".data");
5538 BFD_ASSERT (SGI_COMPAT (abfd));
5539 if (section != NULL)
5541 asym->section = section;
5542 /* MIPS_DATA is a bit special, the address is not an offset
5543 to the base of the .data section. So substract the section
5544 base address to make it an offset. */
5545 asym->value -= section->vma;
5551 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
5552 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
5553 && (asym->value & 1) != 0)
5556 elfsym->internal_elf_sym.st_other
5557 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
5561 /* Implement elf_backend_eh_frame_address_size. This differs from
5562 the default in the way it handles EABI64.
5564 EABI64 was originally specified as an LP64 ABI, and that is what
5565 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5566 historically accepted the combination of -mabi=eabi and -mlong32,
5567 and this ILP32 variation has become semi-official over time.
5568 Both forms use elf32 and have pointer-sized FDE addresses.
5570 If an EABI object was generated by GCC 4.0 or above, it will have
5571 an empty .gcc_compiled_longXX section, where XX is the size of longs
5572 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5573 have no special marking to distinguish them from LP64 objects.
5575 We don't want users of the official LP64 ABI to be punished for the
5576 existence of the ILP32 variant, but at the same time, we don't want
5577 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5578 We therefore take the following approach:
5580 - If ABFD contains a .gcc_compiled_longXX section, use it to
5581 determine the pointer size.
5583 - Otherwise check the type of the first relocation. Assume that
5584 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5588 The second check is enough to detect LP64 objects generated by pre-4.0
5589 compilers because, in the kind of output generated by those compilers,
5590 the first relocation will be associated with either a CIE personality
5591 routine or an FDE start address. Furthermore, the compilers never
5592 used a special (non-pointer) encoding for this ABI.
5594 Checking the relocation type should also be safe because there is no
5595 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5599 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5601 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5603 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5605 bfd_boolean long32_p, long64_p;
5607 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5608 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5609 if (long32_p && long64_p)
5616 if (sec->reloc_count > 0
5617 && elf_section_data (sec)->relocs != NULL
5618 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5627 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5628 relocations against two unnamed section symbols to resolve to the
5629 same address. For example, if we have code like:
5631 lw $4,%got_disp(.data)($gp)
5632 lw $25,%got_disp(.text)($gp)
5635 then the linker will resolve both relocations to .data and the program
5636 will jump there rather than to .text.
5638 We can work around this problem by giving names to local section symbols.
5639 This is also what the MIPSpro tools do. */
5642 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5644 return SGI_COMPAT (abfd);
5647 /* Work over a section just before writing it out. This routine is
5648 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5649 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5653 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5655 if (hdr->sh_type == SHT_MIPS_REGINFO
5656 && hdr->sh_size > 0)
5660 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5661 BFD_ASSERT (hdr->contents == NULL);
5664 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5667 H_PUT_32 (abfd, elf_gp (abfd), buf);
5668 if (bfd_bwrite (buf, 4, abfd) != 4)
5672 if (hdr->sh_type == SHT_MIPS_OPTIONS
5673 && hdr->bfd_section != NULL
5674 && mips_elf_section_data (hdr->bfd_section) != NULL
5675 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5677 bfd_byte *contents, *l, *lend;
5679 /* We stored the section contents in the tdata field in the
5680 set_section_contents routine. We save the section contents
5681 so that we don't have to read them again.
5682 At this point we know that elf_gp is set, so we can look
5683 through the section contents to see if there is an
5684 ODK_REGINFO structure. */
5686 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5688 lend = contents + hdr->sh_size;
5689 while (l + sizeof (Elf_External_Options) <= lend)
5691 Elf_Internal_Options intopt;
5693 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5695 if (intopt.size < sizeof (Elf_External_Options))
5697 (*_bfd_error_handler)
5698 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5699 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5702 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5709 + sizeof (Elf_External_Options)
5710 + (sizeof (Elf64_External_RegInfo) - 8)),
5713 H_PUT_64 (abfd, elf_gp (abfd), buf);
5714 if (bfd_bwrite (buf, 8, abfd) != 8)
5717 else if (intopt.kind == ODK_REGINFO)
5724 + sizeof (Elf_External_Options)
5725 + (sizeof (Elf32_External_RegInfo) - 4)),
5728 H_PUT_32 (abfd, elf_gp (abfd), buf);
5729 if (bfd_bwrite (buf, 4, abfd) != 4)
5736 if (hdr->bfd_section != NULL)
5738 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5740 if (strcmp (name, ".sdata") == 0
5741 || strcmp (name, ".lit8") == 0
5742 || strcmp (name, ".lit4") == 0)
5744 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5745 hdr->sh_type = SHT_PROGBITS;
5747 else if (strcmp (name, ".sbss") == 0)
5749 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5750 hdr->sh_type = SHT_NOBITS;
5752 else if (strcmp (name, ".srdata") == 0)
5754 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5755 hdr->sh_type = SHT_PROGBITS;
5757 else if (strcmp (name, ".compact_rel") == 0)
5760 hdr->sh_type = SHT_PROGBITS;
5762 else if (strcmp (name, ".rtproc") == 0)
5764 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5766 unsigned int adjust;
5768 adjust = hdr->sh_size % hdr->sh_addralign;
5770 hdr->sh_size += hdr->sh_addralign - adjust;
5778 /* Handle a MIPS specific section when reading an object file. This
5779 is called when elfcode.h finds a section with an unknown type.
5780 This routine supports both the 32-bit and 64-bit ELF ABI.
5782 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5786 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5787 Elf_Internal_Shdr *hdr,
5793 /* There ought to be a place to keep ELF backend specific flags, but
5794 at the moment there isn't one. We just keep track of the
5795 sections by their name, instead. Fortunately, the ABI gives
5796 suggested names for all the MIPS specific sections, so we will
5797 probably get away with this. */
5798 switch (hdr->sh_type)
5800 case SHT_MIPS_LIBLIST:
5801 if (strcmp (name, ".liblist") != 0)
5805 if (strcmp (name, ".msym") != 0)
5808 case SHT_MIPS_CONFLICT:
5809 if (strcmp (name, ".conflict") != 0)
5812 case SHT_MIPS_GPTAB:
5813 if (! CONST_STRNEQ (name, ".gptab."))
5816 case SHT_MIPS_UCODE:
5817 if (strcmp (name, ".ucode") != 0)
5820 case SHT_MIPS_DEBUG:
5821 if (strcmp (name, ".mdebug") != 0)
5823 flags = SEC_DEBUGGING;
5825 case SHT_MIPS_REGINFO:
5826 if (strcmp (name, ".reginfo") != 0
5827 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5829 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5831 case SHT_MIPS_IFACE:
5832 if (strcmp (name, ".MIPS.interfaces") != 0)
5835 case SHT_MIPS_CONTENT:
5836 if (! CONST_STRNEQ (name, ".MIPS.content"))
5839 case SHT_MIPS_OPTIONS:
5840 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5843 case SHT_MIPS_DWARF:
5844 if (! CONST_STRNEQ (name, ".debug_")
5845 && ! CONST_STRNEQ (name, ".zdebug_"))
5848 case SHT_MIPS_SYMBOL_LIB:
5849 if (strcmp (name, ".MIPS.symlib") != 0)
5852 case SHT_MIPS_EVENTS:
5853 if (! CONST_STRNEQ (name, ".MIPS.events")
5854 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5861 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5866 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5867 (bfd_get_section_flags (abfd,
5873 /* FIXME: We should record sh_info for a .gptab section. */
5875 /* For a .reginfo section, set the gp value in the tdata information
5876 from the contents of this section. We need the gp value while
5877 processing relocs, so we just get it now. The .reginfo section
5878 is not used in the 64-bit MIPS ELF ABI. */
5879 if (hdr->sh_type == SHT_MIPS_REGINFO)
5881 Elf32_External_RegInfo ext;
5884 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5885 &ext, 0, sizeof ext))
5887 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5888 elf_gp (abfd) = s.ri_gp_value;
5891 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5892 set the gp value based on what we find. We may see both
5893 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5894 they should agree. */
5895 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5897 bfd_byte *contents, *l, *lend;
5899 contents = bfd_malloc (hdr->sh_size);
5900 if (contents == NULL)
5902 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5909 lend = contents + hdr->sh_size;
5910 while (l + sizeof (Elf_External_Options) <= lend)
5912 Elf_Internal_Options intopt;
5914 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5916 if (intopt.size < sizeof (Elf_External_Options))
5918 (*_bfd_error_handler)
5919 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5920 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5923 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5925 Elf64_Internal_RegInfo intreg;
5927 bfd_mips_elf64_swap_reginfo_in
5929 ((Elf64_External_RegInfo *)
5930 (l + sizeof (Elf_External_Options))),
5932 elf_gp (abfd) = intreg.ri_gp_value;
5934 else if (intopt.kind == ODK_REGINFO)
5936 Elf32_RegInfo intreg;
5938 bfd_mips_elf32_swap_reginfo_in
5940 ((Elf32_External_RegInfo *)
5941 (l + sizeof (Elf_External_Options))),
5943 elf_gp (abfd) = intreg.ri_gp_value;
5953 /* Set the correct type for a MIPS ELF section. We do this by the
5954 section name, which is a hack, but ought to work. This routine is
5955 used by both the 32-bit and the 64-bit ABI. */
5958 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5960 const char *name = bfd_get_section_name (abfd, sec);
5962 if (strcmp (name, ".liblist") == 0)
5964 hdr->sh_type = SHT_MIPS_LIBLIST;
5965 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5966 /* The sh_link field is set in final_write_processing. */
5968 else if (strcmp (name, ".conflict") == 0)
5969 hdr->sh_type = SHT_MIPS_CONFLICT;
5970 else if (CONST_STRNEQ (name, ".gptab."))
5972 hdr->sh_type = SHT_MIPS_GPTAB;
5973 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5974 /* The sh_info field is set in final_write_processing. */
5976 else if (strcmp (name, ".ucode") == 0)
5977 hdr->sh_type = SHT_MIPS_UCODE;
5978 else if (strcmp (name, ".mdebug") == 0)
5980 hdr->sh_type = SHT_MIPS_DEBUG;
5981 /* In a shared object on IRIX 5.3, the .mdebug section has an
5982 entsize of 0. FIXME: Does this matter? */
5983 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5984 hdr->sh_entsize = 0;
5986 hdr->sh_entsize = 1;
5988 else if (strcmp (name, ".reginfo") == 0)
5990 hdr->sh_type = SHT_MIPS_REGINFO;
5991 /* In a shared object on IRIX 5.3, the .reginfo section has an
5992 entsize of 0x18. FIXME: Does this matter? */
5993 if (SGI_COMPAT (abfd))
5995 if ((abfd->flags & DYNAMIC) != 0)
5996 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5998 hdr->sh_entsize = 1;
6001 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6003 else if (SGI_COMPAT (abfd)
6004 && (strcmp (name, ".hash") == 0
6005 || strcmp (name, ".dynamic") == 0
6006 || strcmp (name, ".dynstr") == 0))
6008 if (SGI_COMPAT (abfd))
6009 hdr->sh_entsize = 0;
6011 /* This isn't how the IRIX6 linker behaves. */
6012 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6015 else if (strcmp (name, ".got") == 0
6016 || strcmp (name, ".srdata") == 0
6017 || strcmp (name, ".sdata") == 0
6018 || strcmp (name, ".sbss") == 0
6019 || strcmp (name, ".lit4") == 0
6020 || strcmp (name, ".lit8") == 0)
6021 hdr->sh_flags |= SHF_MIPS_GPREL;
6022 else if (strcmp (name, ".MIPS.interfaces") == 0)
6024 hdr->sh_type = SHT_MIPS_IFACE;
6025 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6027 else if (CONST_STRNEQ (name, ".MIPS.content"))
6029 hdr->sh_type = SHT_MIPS_CONTENT;
6030 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6031 /* The sh_info field is set in final_write_processing. */
6033 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6035 hdr->sh_type = SHT_MIPS_OPTIONS;
6036 hdr->sh_entsize = 1;
6037 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6039 else if (CONST_STRNEQ (name, ".debug_")
6040 || CONST_STRNEQ (name, ".zdebug_"))
6042 hdr->sh_type = SHT_MIPS_DWARF;
6044 /* Irix facilities such as libexc expect a single .debug_frame
6045 per executable, the system ones have NOSTRIP set and the linker
6046 doesn't merge sections with different flags so ... */
6047 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6048 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6050 else if (strcmp (name, ".MIPS.symlib") == 0)
6052 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6053 /* The sh_link and sh_info fields are set in
6054 final_write_processing. */
6056 else if (CONST_STRNEQ (name, ".MIPS.events")
6057 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6059 hdr->sh_type = SHT_MIPS_EVENTS;
6060 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6061 /* The sh_link field is set in final_write_processing. */
6063 else if (strcmp (name, ".msym") == 0)
6065 hdr->sh_type = SHT_MIPS_MSYM;
6066 hdr->sh_flags |= SHF_ALLOC;
6067 hdr->sh_entsize = 8;
6070 /* The generic elf_fake_sections will set up REL_HDR using the default
6071 kind of relocations. We used to set up a second header for the
6072 non-default kind of relocations here, but only NewABI would use
6073 these, and the IRIX ld doesn't like resulting empty RELA sections.
6074 Thus we create those header only on demand now. */
6079 /* Given a BFD section, try to locate the corresponding ELF section
6080 index. This is used by both the 32-bit and the 64-bit ABI.
6081 Actually, it's not clear to me that the 64-bit ABI supports these,
6082 but for non-PIC objects we will certainly want support for at least
6083 the .scommon section. */
6086 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6087 asection *sec, int *retval)
6089 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6091 *retval = SHN_MIPS_SCOMMON;
6094 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6096 *retval = SHN_MIPS_ACOMMON;
6102 /* Hook called by the linker routine which adds symbols from an object
6103 file. We must handle the special MIPS section numbers here. */
6106 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6107 Elf_Internal_Sym *sym, const char **namep,
6108 flagword *flagsp ATTRIBUTE_UNUSED,
6109 asection **secp, bfd_vma *valp)
6111 if (SGI_COMPAT (abfd)
6112 && (abfd->flags & DYNAMIC) != 0
6113 && strcmp (*namep, "_rld_new_interface") == 0)
6115 /* Skip IRIX5 rld entry name. */
6120 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6121 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6122 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6123 a magic symbol resolved by the linker, we ignore this bogus definition
6124 of _gp_disp. New ABI objects do not suffer from this problem so this
6125 is not done for them. */
6127 && (sym->st_shndx == SHN_ABS)
6128 && (strcmp (*namep, "_gp_disp") == 0))
6134 switch (sym->st_shndx)
6137 /* Common symbols less than the GP size are automatically
6138 treated as SHN_MIPS_SCOMMON symbols. */
6139 if (sym->st_size > elf_gp_size (abfd)
6140 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6141 || IRIX_COMPAT (abfd) == ict_irix6)
6144 case SHN_MIPS_SCOMMON:
6145 *secp = bfd_make_section_old_way (abfd, ".scommon");
6146 (*secp)->flags |= SEC_IS_COMMON;
6147 *valp = sym->st_size;
6151 /* This section is used in a shared object. */
6152 if (elf_tdata (abfd)->elf_text_section == NULL)
6154 asymbol *elf_text_symbol;
6155 asection *elf_text_section;
6156 bfd_size_type amt = sizeof (asection);
6158 elf_text_section = bfd_zalloc (abfd, amt);
6159 if (elf_text_section == NULL)
6162 amt = sizeof (asymbol);
6163 elf_text_symbol = bfd_zalloc (abfd, amt);
6164 if (elf_text_symbol == NULL)
6167 /* Initialize the section. */
6169 elf_tdata (abfd)->elf_text_section = elf_text_section;
6170 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6172 elf_text_section->symbol = elf_text_symbol;
6173 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6175 elf_text_section->name = ".text";
6176 elf_text_section->flags = SEC_NO_FLAGS;
6177 elf_text_section->output_section = NULL;
6178 elf_text_section->owner = abfd;
6179 elf_text_symbol->name = ".text";
6180 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6181 elf_text_symbol->section = elf_text_section;
6183 /* This code used to do *secp = bfd_und_section_ptr if
6184 info->shared. I don't know why, and that doesn't make sense,
6185 so I took it out. */
6186 *secp = elf_tdata (abfd)->elf_text_section;
6189 case SHN_MIPS_ACOMMON:
6190 /* Fall through. XXX Can we treat this as allocated data? */
6192 /* This section is used in a shared object. */
6193 if (elf_tdata (abfd)->elf_data_section == NULL)
6195 asymbol *elf_data_symbol;
6196 asection *elf_data_section;
6197 bfd_size_type amt = sizeof (asection);
6199 elf_data_section = bfd_zalloc (abfd, amt);
6200 if (elf_data_section == NULL)
6203 amt = sizeof (asymbol);
6204 elf_data_symbol = bfd_zalloc (abfd, amt);
6205 if (elf_data_symbol == NULL)
6208 /* Initialize the section. */
6210 elf_tdata (abfd)->elf_data_section = elf_data_section;
6211 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6213 elf_data_section->symbol = elf_data_symbol;
6214 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6216 elf_data_section->name = ".data";
6217 elf_data_section->flags = SEC_NO_FLAGS;
6218 elf_data_section->output_section = NULL;
6219 elf_data_section->owner = abfd;
6220 elf_data_symbol->name = ".data";
6221 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6222 elf_data_symbol->section = elf_data_section;
6224 /* This code used to do *secp = bfd_und_section_ptr if
6225 info->shared. I don't know why, and that doesn't make sense,
6226 so I took it out. */
6227 *secp = elf_tdata (abfd)->elf_data_section;
6230 case SHN_MIPS_SUNDEFINED:
6231 *secp = bfd_und_section_ptr;
6235 if (SGI_COMPAT (abfd)
6237 && info->output_bfd->xvec == abfd->xvec
6238 && strcmp (*namep, "__rld_obj_head") == 0)
6240 struct elf_link_hash_entry *h;
6241 struct bfd_link_hash_entry *bh;
6243 /* Mark __rld_obj_head as dynamic. */
6245 if (! (_bfd_generic_link_add_one_symbol
6246 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6247 get_elf_backend_data (abfd)->collect, &bh)))
6250 h = (struct elf_link_hash_entry *) bh;
6253 h->type = STT_OBJECT;
6255 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6258 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6261 /* If this is a mips16 text symbol, add 1 to the value to make it
6262 odd. This will cause something like .word SYM to come up with
6263 the right value when it is loaded into the PC. */
6264 if (ELF_ST_IS_MIPS16 (sym->st_other))
6270 /* This hook function is called before the linker writes out a global
6271 symbol. We mark symbols as small common if appropriate. This is
6272 also where we undo the increment of the value for a mips16 symbol. */
6275 _bfd_mips_elf_link_output_symbol_hook
6276 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6277 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6278 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6280 /* If we see a common symbol, which implies a relocatable link, then
6281 if a symbol was small common in an input file, mark it as small
6282 common in the output file. */
6283 if (sym->st_shndx == SHN_COMMON
6284 && strcmp (input_sec->name, ".scommon") == 0)
6285 sym->st_shndx = SHN_MIPS_SCOMMON;
6287 if (ELF_ST_IS_MIPS16 (sym->st_other))
6288 sym->st_value &= ~1;
6293 /* Functions for the dynamic linker. */
6295 /* Create dynamic sections when linking against a dynamic object. */
6298 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6300 struct elf_link_hash_entry *h;
6301 struct bfd_link_hash_entry *bh;
6303 register asection *s;
6304 const char * const *namep;
6305 struct mips_elf_link_hash_table *htab;
6307 htab = mips_elf_hash_table (info);
6308 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6309 | SEC_LINKER_CREATED | SEC_READONLY);
6311 /* The psABI requires a read-only .dynamic section, but the VxWorks
6313 if (!htab->is_vxworks)
6315 s = bfd_get_section_by_name (abfd, ".dynamic");
6318 if (! bfd_set_section_flags (abfd, s, flags))
6323 /* We need to create .got section. */
6324 if (! mips_elf_create_got_section (abfd, info, FALSE))
6327 if (! mips_elf_rel_dyn_section (info, TRUE))
6330 /* Create .stub section. */
6331 if (bfd_get_section_by_name (abfd,
6332 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6334 s = bfd_make_section_with_flags (abfd,
6335 MIPS_ELF_STUB_SECTION_NAME (abfd),
6338 || ! bfd_set_section_alignment (abfd, s,
6339 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6343 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6345 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6347 s = bfd_make_section_with_flags (abfd, ".rld_map",
6348 flags &~ (flagword) SEC_READONLY);
6350 || ! bfd_set_section_alignment (abfd, s,
6351 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6355 /* On IRIX5, we adjust add some additional symbols and change the
6356 alignments of several sections. There is no ABI documentation
6357 indicating that this is necessary on IRIX6, nor any evidence that
6358 the linker takes such action. */
6359 if (IRIX_COMPAT (abfd) == ict_irix5)
6361 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6364 if (! (_bfd_generic_link_add_one_symbol
6365 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6366 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6369 h = (struct elf_link_hash_entry *) bh;
6372 h->type = STT_SECTION;
6374 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6378 /* We need to create a .compact_rel section. */
6379 if (SGI_COMPAT (abfd))
6381 if (!mips_elf_create_compact_rel_section (abfd, info))
6385 /* Change alignments of some sections. */
6386 s = bfd_get_section_by_name (abfd, ".hash");
6388 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6389 s = bfd_get_section_by_name (abfd, ".dynsym");
6391 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6392 s = bfd_get_section_by_name (abfd, ".dynstr");
6394 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6395 s = bfd_get_section_by_name (abfd, ".reginfo");
6397 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6398 s = bfd_get_section_by_name (abfd, ".dynamic");
6400 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6407 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6409 if (!(_bfd_generic_link_add_one_symbol
6410 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6411 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6414 h = (struct elf_link_hash_entry *) bh;
6417 h->type = STT_SECTION;
6419 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6422 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6424 /* __rld_map is a four byte word located in the .data section
6425 and is filled in by the rtld to contain a pointer to
6426 the _r_debug structure. Its symbol value will be set in
6427 _bfd_mips_elf_finish_dynamic_symbol. */
6428 s = bfd_get_section_by_name (abfd, ".rld_map");
6429 BFD_ASSERT (s != NULL);
6431 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6433 if (!(_bfd_generic_link_add_one_symbol
6434 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6435 get_elf_backend_data (abfd)->collect, &bh)))
6438 h = (struct elf_link_hash_entry *) bh;
6441 h->type = STT_OBJECT;
6443 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6448 if (htab->is_vxworks)
6450 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6451 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6452 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6455 /* Cache the sections created above. */
6456 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6457 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6458 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6459 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6461 || (!htab->srelbss && !info->shared)
6466 /* Do the usual VxWorks handling. */
6467 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6470 /* Work out the PLT sizes. */
6473 htab->plt_header_size
6474 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6475 htab->plt_entry_size
6476 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6480 htab->plt_header_size
6481 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6482 htab->plt_entry_size
6483 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6490 /* Return true if relocation REL against section SEC is a REL rather than
6491 RELA relocation. RELOCS is the first relocation in the section and
6492 ABFD is the bfd that contains SEC. */
6495 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6496 const Elf_Internal_Rela *relocs,
6497 const Elf_Internal_Rela *rel)
6499 Elf_Internal_Shdr *rel_hdr;
6500 const struct elf_backend_data *bed;
6502 /* To determine which flavor or relocation this is, we depend on the
6503 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6504 rel_hdr = &elf_section_data (sec)->rel_hdr;
6505 bed = get_elf_backend_data (abfd);
6506 if ((size_t) (rel - relocs)
6507 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6508 rel_hdr = elf_section_data (sec)->rel_hdr2;
6509 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6512 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6513 HOWTO is the relocation's howto and CONTENTS points to the contents
6514 of the section that REL is against. */
6517 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6518 reloc_howto_type *howto, bfd_byte *contents)
6521 unsigned int r_type;
6524 r_type = ELF_R_TYPE (abfd, rel->r_info);
6525 location = contents + rel->r_offset;
6527 /* Get the addend, which is stored in the input file. */
6528 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6529 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6530 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6532 return addend & howto->src_mask;
6535 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
6536 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6537 and update *ADDEND with the final addend. Return true on success
6538 or false if the LO16 could not be found. RELEND is the exclusive
6539 upper bound on the relocations for REL's section. */
6542 mips_elf_add_lo16_rel_addend (bfd *abfd,
6543 const Elf_Internal_Rela *rel,
6544 const Elf_Internal_Rela *relend,
6545 bfd_byte *contents, bfd_vma *addend)
6547 unsigned int r_type, lo16_type;
6548 const Elf_Internal_Rela *lo16_relocation;
6549 reloc_howto_type *lo16_howto;
6552 r_type = ELF_R_TYPE (abfd, rel->r_info);
6553 if (mips16_reloc_p (r_type))
6554 lo16_type = R_MIPS16_LO16;
6556 lo16_type = R_MIPS_LO16;
6558 /* The combined value is the sum of the HI16 addend, left-shifted by
6559 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6560 code does a `lui' of the HI16 value, and then an `addiu' of the
6563 Scan ahead to find a matching LO16 relocation.
6565 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6566 be immediately following. However, for the IRIX6 ABI, the next
6567 relocation may be a composed relocation consisting of several
6568 relocations for the same address. In that case, the R_MIPS_LO16
6569 relocation may occur as one of these. We permit a similar
6570 extension in general, as that is useful for GCC.
6572 In some cases GCC dead code elimination removes the LO16 but keeps
6573 the corresponding HI16. This is strictly speaking a violation of
6574 the ABI but not immediately harmful. */
6575 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6576 if (lo16_relocation == NULL)
6579 /* Obtain the addend kept there. */
6580 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6581 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6583 l <<= lo16_howto->rightshift;
6584 l = _bfd_mips_elf_sign_extend (l, 16);
6591 /* Try to read the contents of section SEC in bfd ABFD. Return true and
6592 store the contents in *CONTENTS on success. Assume that *CONTENTS
6593 already holds the contents if it is nonull on entry. */
6596 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6601 /* Get cached copy if it exists. */
6602 if (elf_section_data (sec)->this_hdr.contents != NULL)
6604 *contents = elf_section_data (sec)->this_hdr.contents;
6608 return bfd_malloc_and_get_section (abfd, sec, contents);
6611 /* Look through the relocs for a section during the first phase, and
6612 allocate space in the global offset table. */
6615 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6616 asection *sec, const Elf_Internal_Rela *relocs)
6620 Elf_Internal_Shdr *symtab_hdr;
6621 struct elf_link_hash_entry **sym_hashes;
6622 struct mips_got_info *g;
6624 const Elf_Internal_Rela *rel;
6625 const Elf_Internal_Rela *rel_end;
6628 const struct elf_backend_data *bed;
6629 struct mips_elf_link_hash_table *htab;
6632 reloc_howto_type *howto;
6634 if (info->relocatable)
6637 htab = mips_elf_hash_table (info);
6638 dynobj = elf_hash_table (info)->dynobj;
6639 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6640 sym_hashes = elf_sym_hashes (abfd);
6641 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6643 bed = get_elf_backend_data (abfd);
6644 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6646 /* Check for the mips16 stub sections. */
6648 name = bfd_get_section_name (abfd, sec);
6649 if (FN_STUB_P (name))
6651 unsigned long r_symndx;
6653 /* Look at the relocation information to figure out which symbol
6656 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6659 (*_bfd_error_handler)
6660 (_("%B: Warning: cannot determine the target function for"
6661 " stub section `%s'"),
6663 bfd_set_error (bfd_error_bad_value);
6667 if (r_symndx < extsymoff
6668 || sym_hashes[r_symndx - extsymoff] == NULL)
6672 /* This stub is for a local symbol. This stub will only be
6673 needed if there is some relocation in this BFD, other
6674 than a 16 bit function call, which refers to this symbol. */
6675 for (o = abfd->sections; o != NULL; o = o->next)
6677 Elf_Internal_Rela *sec_relocs;
6678 const Elf_Internal_Rela *r, *rend;
6680 /* We can ignore stub sections when looking for relocs. */
6681 if ((o->flags & SEC_RELOC) == 0
6682 || o->reloc_count == 0
6683 || section_allows_mips16_refs_p (o))
6687 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6689 if (sec_relocs == NULL)
6692 rend = sec_relocs + o->reloc_count;
6693 for (r = sec_relocs; r < rend; r++)
6694 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6695 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
6698 if (elf_section_data (o)->relocs != sec_relocs)
6707 /* There is no non-call reloc for this stub, so we do
6708 not need it. Since this function is called before
6709 the linker maps input sections to output sections, we
6710 can easily discard it by setting the SEC_EXCLUDE
6712 sec->flags |= SEC_EXCLUDE;
6716 /* Record this stub in an array of local symbol stubs for
6718 if (elf_tdata (abfd)->local_stubs == NULL)
6720 unsigned long symcount;
6724 if (elf_bad_symtab (abfd))
6725 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6727 symcount = symtab_hdr->sh_info;
6728 amt = symcount * sizeof (asection *);
6729 n = bfd_zalloc (abfd, amt);
6732 elf_tdata (abfd)->local_stubs = n;
6735 sec->flags |= SEC_KEEP;
6736 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6738 /* We don't need to set mips16_stubs_seen in this case.
6739 That flag is used to see whether we need to look through
6740 the global symbol table for stubs. We don't need to set
6741 it here, because we just have a local stub. */
6745 struct mips_elf_link_hash_entry *h;
6747 h = ((struct mips_elf_link_hash_entry *)
6748 sym_hashes[r_symndx - extsymoff]);
6750 while (h->root.root.type == bfd_link_hash_indirect
6751 || h->root.root.type == bfd_link_hash_warning)
6752 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6754 /* H is the symbol this stub is for. */
6756 /* If we already have an appropriate stub for this function, we
6757 don't need another one, so we can discard this one. Since
6758 this function is called before the linker maps input sections
6759 to output sections, we can easily discard it by setting the
6760 SEC_EXCLUDE flag. */
6761 if (h->fn_stub != NULL)
6763 sec->flags |= SEC_EXCLUDE;
6767 sec->flags |= SEC_KEEP;
6769 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6772 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6774 unsigned long r_symndx;
6775 struct mips_elf_link_hash_entry *h;
6778 /* Look at the relocation information to figure out which symbol
6781 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6784 (*_bfd_error_handler)
6785 (_("%B: Warning: cannot determine the target function for"
6786 " stub section `%s'"),
6788 bfd_set_error (bfd_error_bad_value);
6792 if (r_symndx < extsymoff
6793 || sym_hashes[r_symndx - extsymoff] == NULL)
6797 /* This stub is for a local symbol. This stub will only be
6798 needed if there is some relocation (R_MIPS16_26) in this BFD
6799 that refers to this symbol. */
6800 for (o = abfd->sections; o != NULL; o = o->next)
6802 Elf_Internal_Rela *sec_relocs;
6803 const Elf_Internal_Rela *r, *rend;
6805 /* We can ignore stub sections when looking for relocs. */
6806 if ((o->flags & SEC_RELOC) == 0
6807 || o->reloc_count == 0
6808 || section_allows_mips16_refs_p (o))
6812 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6814 if (sec_relocs == NULL)
6817 rend = sec_relocs + o->reloc_count;
6818 for (r = sec_relocs; r < rend; r++)
6819 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6820 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6823 if (elf_section_data (o)->relocs != sec_relocs)
6832 /* There is no non-call reloc for this stub, so we do
6833 not need it. Since this function is called before
6834 the linker maps input sections to output sections, we
6835 can easily discard it by setting the SEC_EXCLUDE
6837 sec->flags |= SEC_EXCLUDE;
6841 /* Record this stub in an array of local symbol call_stubs for
6843 if (elf_tdata (abfd)->local_call_stubs == NULL)
6845 unsigned long symcount;
6849 if (elf_bad_symtab (abfd))
6850 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6852 symcount = symtab_hdr->sh_info;
6853 amt = symcount * sizeof (asection *);
6854 n = bfd_zalloc (abfd, amt);
6857 elf_tdata (abfd)->local_call_stubs = n;
6860 sec->flags |= SEC_KEEP;
6861 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6863 /* We don't need to set mips16_stubs_seen in this case.
6864 That flag is used to see whether we need to look through
6865 the global symbol table for stubs. We don't need to set
6866 it here, because we just have a local stub. */
6870 h = ((struct mips_elf_link_hash_entry *)
6871 sym_hashes[r_symndx - extsymoff]);
6873 /* H is the symbol this stub is for. */
6875 if (CALL_FP_STUB_P (name))
6876 loc = &h->call_fp_stub;
6878 loc = &h->call_stub;
6880 /* If we already have an appropriate stub for this function, we
6881 don't need another one, so we can discard this one. Since
6882 this function is called before the linker maps input sections
6883 to output sections, we can easily discard it by setting the
6884 SEC_EXCLUDE flag. */
6887 sec->flags |= SEC_EXCLUDE;
6891 sec->flags |= SEC_KEEP;
6893 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6904 sgot = mips_elf_got_section (dynobj, FALSE);
6909 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6910 g = mips_elf_section_data (sgot)->u.got_info;
6911 BFD_ASSERT (g != NULL);
6917 for (rel = relocs; rel < rel_end; ++rel)
6919 unsigned long r_symndx;
6920 unsigned int r_type;
6921 struct elf_link_hash_entry *h;
6923 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6924 r_type = ELF_R_TYPE (abfd, rel->r_info);
6926 if (r_symndx < extsymoff)
6928 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6930 (*_bfd_error_handler)
6931 (_("%B: Malformed reloc detected for section %s"),
6933 bfd_set_error (bfd_error_bad_value);
6938 h = sym_hashes[r_symndx - extsymoff];
6940 /* This may be an indirect symbol created because of a version. */
6943 while (h->root.type == bfd_link_hash_indirect)
6944 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6948 /* Some relocs require a global offset table. */
6949 if (dynobj == NULL || sgot == NULL)
6953 case R_MIPS16_GOT16:
6954 case R_MIPS16_CALL16:
6957 case R_MIPS_CALL_HI16:
6958 case R_MIPS_CALL_LO16:
6959 case R_MIPS_GOT_HI16:
6960 case R_MIPS_GOT_LO16:
6961 case R_MIPS_GOT_PAGE:
6962 case R_MIPS_GOT_OFST:
6963 case R_MIPS_GOT_DISP:
6964 case R_MIPS_TLS_GOTTPREL:
6966 case R_MIPS_TLS_LDM:
6968 elf_hash_table (info)->dynobj = dynobj = abfd;
6969 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6971 g = mips_elf_got_info (dynobj, &sgot);
6972 if (htab->is_vxworks && !info->shared)
6974 (*_bfd_error_handler)
6975 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6976 abfd, (unsigned long) rel->r_offset);
6977 bfd_set_error (bfd_error_bad_value);
6985 /* In VxWorks executables, references to external symbols
6986 are handled using copy relocs or PLT stubs, so there's
6987 no need to add a dynamic relocation here. */
6989 && (info->shared || (h != NULL && !htab->is_vxworks))
6990 && (sec->flags & SEC_ALLOC) != 0)
6991 elf_hash_table (info)->dynobj = dynobj = abfd;
7001 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
7003 /* Relocations against the special VxWorks __GOTT_BASE__ and
7004 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7005 room for them in .rela.dyn. */
7006 if (is_gott_symbol (info, h))
7010 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7014 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7015 if (MIPS_ELF_READONLY_SECTION (sec))
7016 /* We tell the dynamic linker that there are
7017 relocations against the text segment. */
7018 info->flags |= DF_TEXTREL;
7021 else if (r_type == R_MIPS_CALL_LO16
7022 || r_type == R_MIPS_GOT_LO16
7023 || r_type == R_MIPS_GOT_DISP
7024 || (got16_reloc_p (r_type) && htab->is_vxworks))
7026 /* We may need a local GOT entry for this relocation. We
7027 don't count R_MIPS_GOT_PAGE because we can estimate the
7028 maximum number of pages needed by looking at the size of
7029 the segment. Similar comments apply to R_MIPS*_GOT16 and
7030 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7031 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7032 R_MIPS_CALL_HI16 because these are always followed by an
7033 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7034 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
7035 rel->r_addend, g, 0))
7042 case R_MIPS16_CALL16:
7045 (*_bfd_error_handler)
7046 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7047 abfd, (unsigned long) rel->r_offset);
7048 bfd_set_error (bfd_error_bad_value);
7053 case R_MIPS_CALL_HI16:
7054 case R_MIPS_CALL_LO16:
7057 /* VxWorks call relocations point the function's .got.plt
7058 entry, which will be allocated by adjust_dynamic_symbol.
7059 Otherwise, this symbol requires a global GOT entry. */
7060 if ((!htab->is_vxworks || h->forced_local)
7061 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
7064 /* We need a stub, not a plt entry for the undefined
7065 function. But we record it as if it needs plt. See
7066 _bfd_elf_adjust_dynamic_symbol. */
7072 case R_MIPS_GOT_PAGE:
7073 /* If this is a global, overridable symbol, GOT_PAGE will
7074 decay to GOT_DISP, so we'll need a GOT entry for it. */
7077 struct mips_elf_link_hash_entry *hmips =
7078 (struct mips_elf_link_hash_entry *) h;
7080 while (hmips->root.root.type == bfd_link_hash_indirect
7081 || hmips->root.root.type == bfd_link_hash_warning)
7082 hmips = (struct mips_elf_link_hash_entry *)
7083 hmips->root.root.u.i.link;
7085 /* This symbol is definitely not overridable. */
7086 if (hmips->root.def_regular
7087 && ! (info->shared && ! info->symbolic
7088 && ! hmips->root.forced_local))
7093 case R_MIPS16_GOT16:
7095 case R_MIPS_GOT_HI16:
7096 case R_MIPS_GOT_LO16:
7097 if (!h || r_type == R_MIPS_GOT_PAGE)
7099 /* This relocation needs (or may need, if h != NULL) a
7100 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7101 know for sure until we know whether the symbol is
7103 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7105 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7107 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7108 addend = mips_elf_read_rel_addend (abfd, rel,
7110 if (r_type == R_MIPS_GOT16)
7111 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7114 addend <<= howto->rightshift;
7117 addend = rel->r_addend;
7118 if (!mips_elf_record_got_page_entry (abfd, r_symndx, addend, g))
7124 case R_MIPS_GOT_DISP:
7125 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
7129 case R_MIPS_TLS_GOTTPREL:
7131 info->flags |= DF_STATIC_TLS;
7134 case R_MIPS_TLS_LDM:
7135 if (r_type == R_MIPS_TLS_LDM)
7143 /* This symbol requires a global offset table entry, or two
7144 for TLS GD relocations. */
7146 unsigned char flag = (r_type == R_MIPS_TLS_GD
7148 : r_type == R_MIPS_TLS_LDM
7153 struct mips_elf_link_hash_entry *hmips =
7154 (struct mips_elf_link_hash_entry *) h;
7155 hmips->tls_type |= flag;
7157 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
7162 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7164 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
7165 rel->r_addend, g, flag))
7174 /* In VxWorks executables, references to external symbols
7175 are handled using copy relocs or PLT stubs, so there's
7176 no need to add a .rela.dyn entry for this relocation. */
7177 if ((info->shared || (h != NULL && !htab->is_vxworks))
7178 && !(h && strcmp (h->root.root.string, "__gnu_local_gp") == 0)
7179 && (sec->flags & SEC_ALLOC) != 0)
7183 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7187 if (info->shared && h == NULL)
7189 /* When creating a shared object, we must copy these
7190 reloc types into the output file as R_MIPS_REL32
7191 relocs. Make room for this reloc in .rel(a).dyn. */
7192 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7193 if (MIPS_ELF_READONLY_SECTION (sec))
7194 /* We tell the dynamic linker that there are
7195 relocations against the text segment. */
7196 info->flags |= DF_TEXTREL;
7200 struct mips_elf_link_hash_entry *hmips;
7202 /* For a shared object, we must copy this relocation
7203 unless the symbol turns out to be undefined and
7204 weak with non-default visibility, in which case
7205 it will be left as zero.
7207 We could elide R_MIPS_REL32 for locally binding symbols
7208 in shared libraries, but do not yet do so.
7210 For an executable, we only need to copy this
7211 reloc if the symbol is defined in a dynamic
7213 hmips = (struct mips_elf_link_hash_entry *) h;
7214 ++hmips->possibly_dynamic_relocs;
7215 if (MIPS_ELF_READONLY_SECTION (sec))
7216 /* We need it to tell the dynamic linker if there
7217 are relocations against the text segment. */
7218 hmips->readonly_reloc = TRUE;
7221 /* Even though we don't directly need a GOT entry for
7222 this symbol, a symbol must have a dynamic symbol
7223 table index greater that DT_MIPS_GOTSYM if there are
7224 dynamic relocations against it. This does not apply
7225 to VxWorks, which does not have the usual coupling
7226 between global GOT entries and .dynsym entries. */
7227 if (h != NULL && !htab->is_vxworks)
7230 elf_hash_table (info)->dynobj = dynobj = abfd;
7231 if (! mips_elf_create_got_section (dynobj, info, TRUE))
7233 g = mips_elf_got_info (dynobj, &sgot);
7234 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
7239 if (SGI_COMPAT (abfd))
7240 mips_elf_hash_table (info)->compact_rel_size +=
7241 sizeof (Elf32_External_crinfo);
7246 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7251 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7254 case R_MIPS_GPREL16:
7255 case R_MIPS_LITERAL:
7256 case R_MIPS_GPREL32:
7257 if (SGI_COMPAT (abfd))
7258 mips_elf_hash_table (info)->compact_rel_size +=
7259 sizeof (Elf32_External_crinfo);
7262 /* This relocation describes the C++ object vtable hierarchy.
7263 Reconstruct it for later use during GC. */
7264 case R_MIPS_GNU_VTINHERIT:
7265 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7269 /* This relocation describes which C++ vtable entries are actually
7270 used. Record for later use during GC. */
7271 case R_MIPS_GNU_VTENTRY:
7272 BFD_ASSERT (h != NULL);
7274 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7282 /* We must not create a stub for a symbol that has relocations
7283 related to taking the function's address. This doesn't apply to
7284 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7285 a normal .got entry. */
7286 if (!htab->is_vxworks && h != NULL)
7290 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7292 case R_MIPS16_CALL16:
7294 case R_MIPS_CALL_HI16:
7295 case R_MIPS_CALL_LO16:
7300 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7301 if there is one. We only need to handle global symbols here;
7302 we decide whether to keep or delete stubs for local symbols
7303 when processing the stub's relocations. */
7305 && !mips16_call_reloc_p (r_type)
7306 && !section_allows_mips16_refs_p (sec))
7308 struct mips_elf_link_hash_entry *mh;
7310 mh = (struct mips_elf_link_hash_entry *) h;
7311 mh->need_fn_stub = TRUE;
7319 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7320 struct bfd_link_info *link_info,
7323 Elf_Internal_Rela *internal_relocs;
7324 Elf_Internal_Rela *irel, *irelend;
7325 Elf_Internal_Shdr *symtab_hdr;
7326 bfd_byte *contents = NULL;
7328 bfd_boolean changed_contents = FALSE;
7329 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7330 Elf_Internal_Sym *isymbuf = NULL;
7332 /* We are not currently changing any sizes, so only one pass. */
7335 if (link_info->relocatable)
7338 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7339 link_info->keep_memory);
7340 if (internal_relocs == NULL)
7343 irelend = internal_relocs + sec->reloc_count
7344 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7345 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7346 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7348 for (irel = internal_relocs; irel < irelend; irel++)
7351 bfd_signed_vma sym_offset;
7352 unsigned int r_type;
7353 unsigned long r_symndx;
7355 unsigned long instruction;
7357 /* Turn jalr into bgezal, and jr into beq, if they're marked
7358 with a JALR relocation, that indicate where they jump to.
7359 This saves some pipeline bubbles. */
7360 r_type = ELF_R_TYPE (abfd, irel->r_info);
7361 if (r_type != R_MIPS_JALR)
7364 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7365 /* Compute the address of the jump target. */
7366 if (r_symndx >= extsymoff)
7368 struct mips_elf_link_hash_entry *h
7369 = ((struct mips_elf_link_hash_entry *)
7370 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7372 while (h->root.root.type == bfd_link_hash_indirect
7373 || h->root.root.type == bfd_link_hash_warning)
7374 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7376 /* If a symbol is undefined, or if it may be overridden,
7378 if (! ((h->root.root.type == bfd_link_hash_defined
7379 || h->root.root.type == bfd_link_hash_defweak)
7380 && h->root.root.u.def.section)
7381 || (link_info->shared && ! link_info->symbolic
7382 && !h->root.forced_local))
7385 sym_sec = h->root.root.u.def.section;
7386 if (sym_sec->output_section)
7387 symval = (h->root.root.u.def.value
7388 + sym_sec->output_section->vma
7389 + sym_sec->output_offset);
7391 symval = h->root.root.u.def.value;
7395 Elf_Internal_Sym *isym;
7397 /* Read this BFD's symbols if we haven't done so already. */
7398 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7400 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7401 if (isymbuf == NULL)
7402 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7403 symtab_hdr->sh_info, 0,
7405 if (isymbuf == NULL)
7409 isym = isymbuf + r_symndx;
7410 if (isym->st_shndx == SHN_UNDEF)
7412 else if (isym->st_shndx == SHN_ABS)
7413 sym_sec = bfd_abs_section_ptr;
7414 else if (isym->st_shndx == SHN_COMMON)
7415 sym_sec = bfd_com_section_ptr;
7418 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7419 symval = isym->st_value
7420 + sym_sec->output_section->vma
7421 + sym_sec->output_offset;
7424 /* Compute branch offset, from delay slot of the jump to the
7426 sym_offset = (symval + irel->r_addend)
7427 - (sec_start + irel->r_offset + 4);
7429 /* Branch offset must be properly aligned. */
7430 if ((sym_offset & 3) != 0)
7435 /* Check that it's in range. */
7436 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7439 /* Get the section contents if we haven't done so already. */
7440 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7443 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7445 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7446 if ((instruction & 0xfc1fffff) == 0x0000f809)
7447 instruction = 0x04110000;
7448 /* If it was jr <reg>, turn it into b <target>. */
7449 else if ((instruction & 0xfc1fffff) == 0x00000008)
7450 instruction = 0x10000000;
7454 instruction |= (sym_offset & 0xffff);
7455 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7456 changed_contents = TRUE;
7459 if (contents != NULL
7460 && elf_section_data (sec)->this_hdr.contents != contents)
7462 if (!changed_contents && !link_info->keep_memory)
7466 /* Cache the section contents for elf_link_input_bfd. */
7467 elf_section_data (sec)->this_hdr.contents = contents;
7473 if (contents != NULL
7474 && elf_section_data (sec)->this_hdr.contents != contents)
7479 /* Allocate space for global sym dynamic relocs. */
7482 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7484 struct bfd_link_info *info = inf;
7486 struct mips_elf_link_hash_entry *hmips;
7487 struct mips_elf_link_hash_table *htab;
7489 htab = mips_elf_hash_table (info);
7490 dynobj = elf_hash_table (info)->dynobj;
7491 hmips = (struct mips_elf_link_hash_entry *) h;
7493 /* VxWorks executables are handled elsewhere; we only need to
7494 allocate relocations in shared objects. */
7495 if (htab->is_vxworks && !info->shared)
7498 /* If this symbol is defined in a dynamic object, or we are creating
7499 a shared library, we will need to copy any R_MIPS_32 or
7500 R_MIPS_REL32 relocs against it into the output file. */
7501 if (! info->relocatable
7502 && hmips->possibly_dynamic_relocs != 0
7503 && (h->root.type == bfd_link_hash_defweak
7507 bfd_boolean do_copy = TRUE;
7509 if (h->root.type == bfd_link_hash_undefweak)
7511 /* Do not copy relocations for undefined weak symbols with
7512 non-default visibility. */
7513 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7516 /* Make sure undefined weak symbols are output as a dynamic
7518 else if (h->dynindx == -1 && !h->forced_local)
7520 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7527 mips_elf_allocate_dynamic_relocations
7528 (dynobj, info, hmips->possibly_dynamic_relocs);
7529 if (hmips->readonly_reloc)
7530 /* We tell the dynamic linker that there are relocations
7531 against the text segment. */
7532 info->flags |= DF_TEXTREL;
7539 /* Adjust a symbol defined by a dynamic object and referenced by a
7540 regular object. The current definition is in some section of the
7541 dynamic object, but we're not including those sections. We have to
7542 change the definition to something the rest of the link can
7546 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7547 struct elf_link_hash_entry *h)
7550 struct mips_elf_link_hash_entry *hmips;
7552 struct mips_elf_link_hash_table *htab;
7554 htab = mips_elf_hash_table (info);
7555 dynobj = elf_hash_table (info)->dynobj;
7557 /* Make sure we know what is going on here. */
7558 BFD_ASSERT (dynobj != NULL
7560 || h->u.weakdef != NULL
7563 && !h->def_regular)));
7565 hmips = (struct mips_elf_link_hash_entry *) h;
7567 /* For a function, create a stub, if allowed. */
7568 if (! hmips->no_fn_stub
7571 if (! elf_hash_table (info)->dynamic_sections_created)
7574 /* If this symbol is not defined in a regular file, then set
7575 the symbol to the stub location. This is required to make
7576 function pointers compare as equal between the normal
7577 executable and the shared library. */
7578 if (!h->def_regular)
7580 /* We need .stub section. */
7581 s = bfd_get_section_by_name (dynobj,
7582 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7583 BFD_ASSERT (s != NULL);
7585 h->root.u.def.section = s;
7586 h->root.u.def.value = s->size;
7588 /* XXX Write this stub address somewhere. */
7589 h->plt.offset = s->size;
7591 /* Make room for this stub code. */
7592 s->size += htab->function_stub_size;
7594 /* The last half word of the stub will be filled with the index
7595 of this symbol in .dynsym section. */
7599 else if ((h->type == STT_FUNC)
7602 /* This will set the entry for this symbol in the GOT to 0, and
7603 the dynamic linker will take care of this. */
7604 h->root.u.def.value = 0;
7608 /* If this is a weak symbol, and there is a real definition, the
7609 processor independent code will have arranged for us to see the
7610 real definition first, and we can just use the same value. */
7611 if (h->u.weakdef != NULL)
7613 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7614 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7615 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7616 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7620 /* This is a reference to a symbol defined by a dynamic object which
7621 is not a function. */
7626 /* Likewise, for VxWorks. */
7629 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7630 struct elf_link_hash_entry *h)
7633 struct mips_elf_link_hash_entry *hmips;
7634 struct mips_elf_link_hash_table *htab;
7636 htab = mips_elf_hash_table (info);
7637 dynobj = elf_hash_table (info)->dynobj;
7638 hmips = (struct mips_elf_link_hash_entry *) h;
7640 /* Make sure we know what is going on here. */
7641 BFD_ASSERT (dynobj != NULL
7644 || h->u.weakdef != NULL
7647 && !h->def_regular)));
7649 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7650 either (a) we want to branch to the symbol or (b) we're linking an
7651 executable that needs a canonical function address. In the latter
7652 case, the canonical address will be the address of the executable's
7654 if ((hmips->is_branch_target
7656 && h->type == STT_FUNC
7657 && hmips->is_relocation_target))
7661 && !h->forced_local)
7664 /* Locally-binding symbols do not need a PLT stub; we can refer to
7665 the functions directly. */
7666 else if (h->needs_plt
7667 && (SYMBOL_CALLS_LOCAL (info, h)
7668 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7669 && h->root.type == bfd_link_hash_undefweak)))
7677 /* If this is the first symbol to need a PLT entry, allocate room
7678 for the header, and for the header's .rela.plt.unloaded entries. */
7679 if (htab->splt->size == 0)
7681 htab->splt->size += htab->plt_header_size;
7683 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7686 /* Assign the next .plt entry to this symbol. */
7687 h->plt.offset = htab->splt->size;
7688 htab->splt->size += htab->plt_entry_size;
7690 /* If the output file has no definition of the symbol, set the
7691 symbol's value to the address of the stub. Point at the PLT
7692 load stub rather than the lazy resolution stub; this stub
7693 will become the canonical function address. */
7694 if (!info->shared && !h->def_regular)
7696 h->root.u.def.section = htab->splt;
7697 h->root.u.def.value = h->plt.offset;
7698 h->root.u.def.value += 8;
7701 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7702 htab->sgotplt->size += 4;
7703 htab->srelplt->size += sizeof (Elf32_External_Rela);
7705 /* Make room for the .rela.plt.unloaded relocations. */
7707 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7712 /* If a function symbol is defined by a dynamic object, and we do not
7713 need a PLT stub for it, the symbol's value should be zero. */
7714 if (h->type == STT_FUNC
7719 h->root.u.def.value = 0;
7723 /* If this is a weak symbol, and there is a real definition, the
7724 processor independent code will have arranged for us to see the
7725 real definition first, and we can just use the same value. */
7726 if (h->u.weakdef != NULL)
7728 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7729 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7730 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7731 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7735 /* This is a reference to a symbol defined by a dynamic object which
7736 is not a function. */
7740 /* We must allocate the symbol in our .dynbss section, which will
7741 become part of the .bss section of the executable. There will be
7742 an entry for this symbol in the .dynsym section. The dynamic
7743 object will contain position independent code, so all references
7744 from the dynamic object to this symbol will go through the global
7745 offset table. The dynamic linker will use the .dynsym entry to
7746 determine the address it must put in the global offset table, so
7747 both the dynamic object and the regular object will refer to the
7748 same memory location for the variable. */
7750 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7752 htab->srelbss->size += sizeof (Elf32_External_Rela);
7756 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7759 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7760 The number might be exact or a worst-case estimate, depending on how
7761 much information is available to elf_backend_omit_section_dynsym at
7762 the current linking stage. */
7764 static bfd_size_type
7765 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7767 bfd_size_type count;
7770 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7773 const struct elf_backend_data *bed;
7775 bed = get_elf_backend_data (output_bfd);
7776 for (p = output_bfd->sections; p ; p = p->next)
7777 if ((p->flags & SEC_EXCLUDE) == 0
7778 && (p->flags & SEC_ALLOC) != 0
7779 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7785 /* This function is called after all the input files have been read,
7786 and the input sections have been assigned to output sections. We
7787 check for any mips16 stub sections that we can discard. */
7790 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7791 struct bfd_link_info *info)
7797 struct mips_got_info *g;
7799 bfd_size_type loadable_size = 0;
7800 bfd_size_type page_gotno;
7801 bfd_size_type dynsymcount;
7803 struct mips_elf_count_tls_arg count_tls_arg;
7804 struct mips_elf_link_hash_table *htab;
7806 htab = mips_elf_hash_table (info);
7808 /* The .reginfo section has a fixed size. */
7809 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7811 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7813 if (! (info->relocatable
7814 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7815 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7816 mips_elf_check_mips16_stubs, info);
7818 dynobj = elf_hash_table (info)->dynobj;
7820 /* Relocatable links don't have it. */
7823 g = mips_elf_got_info (dynobj, &s);
7827 /* Calculate the total loadable size of the output. That
7828 will give us the maximum number of GOT_PAGE entries
7830 for (sub = info->input_bfds; sub; sub = sub->link_next)
7832 asection *subsection;
7834 for (subsection = sub->sections;
7836 subsection = subsection->next)
7838 if ((subsection->flags & SEC_ALLOC) == 0)
7840 loadable_size += ((subsection->size + 0xf)
7841 &~ (bfd_size_type) 0xf);
7845 /* There has to be a global GOT entry for every symbol with
7846 a dynamic symbol table index of DT_MIPS_GOTSYM or
7847 higher. Therefore, it make sense to put those symbols
7848 that need GOT entries at the end of the symbol table. We
7850 if (! mips_elf_sort_hash_table (info, 1))
7853 if (g->global_gotsym != NULL)
7854 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7856 /* If there are no global symbols, or none requiring
7857 relocations, then GLOBAL_GOTSYM will be NULL. */
7860 /* Get a worst-case estimate of the number of dynamic symbols needed.
7861 At this point, dynsymcount does not account for section symbols
7862 and count_section_dynsyms may overestimate the number that will
7864 dynsymcount = (elf_hash_table (info)->dynsymcount
7865 + count_section_dynsyms (output_bfd, info));
7867 /* Determine the size of one stub entry. */
7868 htab->function_stub_size = (dynsymcount > 0x10000
7869 ? MIPS_FUNCTION_STUB_BIG_SIZE
7870 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7872 /* In the worst case, we'll get one stub per dynamic symbol, plus
7873 one to account for the dummy entry at the end required by IRIX
7875 loadable_size += htab->function_stub_size * (i + 1);
7877 if (htab->is_vxworks)
7878 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
7879 relocations against local symbols evaluate to "G", and the EABI does
7880 not include R_MIPS_GOT_PAGE. */
7883 /* Assume there are two loadable segments consisting of contiguous
7884 sections. Is 5 enough? */
7885 page_gotno = (loadable_size >> 16) + 5;
7887 /* Choose the smaller of the two estimates; both are intended to be
7889 if (page_gotno > g->page_gotno)
7890 page_gotno = g->page_gotno;
7892 g->local_gotno += page_gotno;
7893 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7895 g->global_gotno = i;
7896 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7898 /* We need to calculate tls_gotno for global symbols at this point
7899 instead of building it up earlier, to avoid doublecounting
7900 entries for one global symbol from multiple input files. */
7901 count_tls_arg.info = info;
7902 count_tls_arg.needed = 0;
7903 elf_link_hash_traverse (elf_hash_table (info),
7904 mips_elf_count_global_tls_entries,
7906 g->tls_gotno += count_tls_arg.needed;
7907 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7909 mips_elf_resolve_final_got_entries (g);
7911 /* VxWorks does not support multiple GOTs. It initializes $gp to
7912 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7914 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7916 if (! mips_elf_multi_got (output_bfd, info, g, s, page_gotno))
7921 /* Set up TLS entries for the first GOT. */
7922 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7923 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7925 htab->computed_got_sizes = TRUE;
7930 /* Set the sizes of the dynamic sections. */
7933 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7934 struct bfd_link_info *info)
7937 asection *s, *sreldyn;
7938 bfd_boolean reltext;
7939 struct mips_elf_link_hash_table *htab;
7941 htab = mips_elf_hash_table (info);
7942 dynobj = elf_hash_table (info)->dynobj;
7943 BFD_ASSERT (dynobj != NULL);
7945 if (elf_hash_table (info)->dynamic_sections_created)
7947 /* Set the contents of the .interp section to the interpreter. */
7948 if (info->executable)
7950 s = bfd_get_section_by_name (dynobj, ".interp");
7951 BFD_ASSERT (s != NULL);
7953 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7955 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7959 /* Allocate space for global sym dynamic relocs. */
7960 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
7962 /* The check_relocs and adjust_dynamic_symbol entry points have
7963 determined the sizes of the various dynamic sections. Allocate
7967 for (s = dynobj->sections; s != NULL; s = s->next)
7971 /* It's OK to base decisions on the section name, because none
7972 of the dynobj section names depend upon the input files. */
7973 name = bfd_get_section_name (dynobj, s);
7975 if ((s->flags & SEC_LINKER_CREATED) == 0)
7978 if (CONST_STRNEQ (name, ".rel"))
7982 const char *outname;
7985 /* If this relocation section applies to a read only
7986 section, then we probably need a DT_TEXTREL entry.
7987 If the relocation section is .rel(a).dyn, we always
7988 assert a DT_TEXTREL entry rather than testing whether
7989 there exists a relocation to a read only section or
7991 outname = bfd_get_section_name (output_bfd,
7993 target = bfd_get_section_by_name (output_bfd, outname + 4);
7995 && (target->flags & SEC_READONLY) != 0
7996 && (target->flags & SEC_ALLOC) != 0)
7997 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8000 /* We use the reloc_count field as a counter if we need
8001 to copy relocs into the output file. */
8002 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8005 /* If combreloc is enabled, elf_link_sort_relocs() will
8006 sort relocations, but in a different way than we do,
8007 and before we're done creating relocations. Also, it
8008 will move them around between input sections'
8009 relocation's contents, so our sorting would be
8010 broken, so don't let it run. */
8011 info->combreloc = 0;
8014 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
8016 /* Executables do not need a GOT. */
8019 /* Allocate relocations for all but the reserved entries. */
8020 struct mips_got_info *g;
8023 g = mips_elf_got_info (dynobj, NULL);
8024 count = (g->global_gotno
8026 - MIPS_RESERVED_GOTNO (info));
8027 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8030 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
8032 /* _bfd_mips_elf_always_size_sections() has already done
8033 most of the work, but some symbols may have been mapped
8034 to versions that we must now resolve in the got_entries
8036 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
8037 struct mips_got_info *g = gg;
8038 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
8039 unsigned int needed_relocs = 0;
8043 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
8044 set_got_offset_arg.info = info;
8046 /* NOTE 2005-02-03: How can this call, or the next, ever
8047 find any indirect entries to resolve? They were all
8048 resolved in mips_elf_multi_got. */
8049 mips_elf_resolve_final_got_entries (gg);
8050 for (g = gg->next; g && g->next != gg; g = g->next)
8052 unsigned int save_assign;
8054 mips_elf_resolve_final_got_entries (g);
8056 /* Assign offsets to global GOT entries. */
8057 save_assign = g->assigned_gotno;
8058 g->assigned_gotno = g->local_gotno;
8059 set_got_offset_arg.g = g;
8060 set_got_offset_arg.needed_relocs = 0;
8061 htab_traverse (g->got_entries,
8062 mips_elf_set_global_got_offset,
8063 &set_got_offset_arg);
8064 needed_relocs += set_got_offset_arg.needed_relocs;
8065 BFD_ASSERT (g->assigned_gotno - g->local_gotno
8066 <= g->global_gotno);
8068 g->assigned_gotno = save_assign;
8071 needed_relocs += g->local_gotno - g->assigned_gotno;
8072 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
8073 + g->next->global_gotno
8074 + g->next->tls_gotno
8075 + MIPS_RESERVED_GOTNO (info));
8081 struct mips_elf_count_tls_arg arg;
8085 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
8087 elf_link_hash_traverse (elf_hash_table (info),
8088 mips_elf_count_global_tls_relocs,
8091 needed_relocs += arg.needed;
8095 mips_elf_allocate_dynamic_relocations (dynobj, info,
8098 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8100 /* IRIX rld assumes that the function stub isn't at the end
8101 of .text section. So put a dummy. XXX */
8102 s->size += htab->function_stub_size;
8104 else if (! info->shared
8105 && ! mips_elf_hash_table (info)->use_rld_obj_head
8106 && CONST_STRNEQ (name, ".rld_map"))
8108 /* We add a room for __rld_map. It will be filled in by the
8109 rtld to contain a pointer to the _r_debug structure. */
8112 else if (SGI_COMPAT (output_bfd)
8113 && CONST_STRNEQ (name, ".compact_rel"))
8114 s->size += mips_elf_hash_table (info)->compact_rel_size;
8115 else if (! CONST_STRNEQ (name, ".init")
8116 && s != htab->sgotplt
8119 /* It's not one of our sections, so don't allocate space. */
8125 s->flags |= SEC_EXCLUDE;
8129 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8132 /* Allocate memory for this section last, since we may increase its
8134 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8140 /* Allocate memory for the section contents. */
8141 s->contents = bfd_zalloc (dynobj, s->size);
8142 if (s->contents == NULL)
8144 bfd_set_error (bfd_error_no_memory);
8149 /* Allocate memory for the .rel(a).dyn section. */
8150 if (sreldyn != NULL)
8152 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
8153 if (sreldyn->contents == NULL)
8155 bfd_set_error (bfd_error_no_memory);
8160 if (elf_hash_table (info)->dynamic_sections_created)
8162 /* Add some entries to the .dynamic section. We fill in the
8163 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8164 must add the entries now so that we get the correct size for
8165 the .dynamic section. */
8167 /* SGI object has the equivalence of DT_DEBUG in the
8168 DT_MIPS_RLD_MAP entry. This must come first because glibc
8169 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8170 looks at the first one it sees. */
8172 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8175 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8176 used by the debugger. */
8177 if (info->executable
8178 && !SGI_COMPAT (output_bfd)
8179 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8182 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8183 info->flags |= DF_TEXTREL;
8185 if ((info->flags & DF_TEXTREL) != 0)
8187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8190 /* Clear the DF_TEXTREL flag. It will be set again if we
8191 write out an actual text relocation; we may not, because
8192 at this point we do not know whether e.g. any .eh_frame
8193 absolute relocations have been converted to PC-relative. */
8194 info->flags &= ~DF_TEXTREL;
8197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8200 if (htab->is_vxworks)
8202 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8203 use any of the DT_MIPS_* tags. */
8204 if (mips_elf_rel_dyn_section (info, FALSE))
8206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8215 if (htab->splt->size > 0)
8217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8229 if (mips_elf_rel_dyn_section (info, FALSE))
8231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8241 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8244 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8247 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8250 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8253 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8256 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8259 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8262 if (IRIX_COMPAT (dynobj) == ict_irix5
8263 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8266 if (IRIX_COMPAT (dynobj) == ict_irix6
8267 && (bfd_get_section_by_name
8268 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8269 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8272 if (htab->is_vxworks
8273 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8280 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8281 Adjust its R_ADDEND field so that it is correct for the output file.
8282 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8283 and sections respectively; both use symbol indexes. */
8286 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8287 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8288 asection **local_sections, Elf_Internal_Rela *rel)
8290 unsigned int r_type, r_symndx;
8291 Elf_Internal_Sym *sym;
8294 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8296 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8297 if (r_type == R_MIPS16_GPREL
8298 || r_type == R_MIPS_GPREL16
8299 || r_type == R_MIPS_GPREL32
8300 || r_type == R_MIPS_LITERAL)
8302 rel->r_addend += _bfd_get_gp_value (input_bfd);
8303 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8306 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8307 sym = local_syms + r_symndx;
8309 /* Adjust REL's addend to account for section merging. */
8310 if (!info->relocatable)
8312 sec = local_sections[r_symndx];
8313 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8316 /* This would normally be done by the rela_normal code in elflink.c. */
8317 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8318 rel->r_addend += local_sections[r_symndx]->output_offset;
8322 /* Relocate a MIPS ELF section. */
8325 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8326 bfd *input_bfd, asection *input_section,
8327 bfd_byte *contents, Elf_Internal_Rela *relocs,
8328 Elf_Internal_Sym *local_syms,
8329 asection **local_sections)
8331 Elf_Internal_Rela *rel;
8332 const Elf_Internal_Rela *relend;
8334 bfd_boolean use_saved_addend_p = FALSE;
8335 const struct elf_backend_data *bed;
8337 bed = get_elf_backend_data (output_bfd);
8338 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8339 for (rel = relocs; rel < relend; ++rel)
8343 reloc_howto_type *howto;
8344 bfd_boolean require_jalx;
8345 /* TRUE if the relocation is a RELA relocation, rather than a
8347 bfd_boolean rela_relocation_p = TRUE;
8348 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8350 unsigned long r_symndx;
8352 Elf_Internal_Shdr *symtab_hdr;
8353 struct elf_link_hash_entry *h;
8355 /* Find the relocation howto for this relocation. */
8356 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8357 NEWABI_P (input_bfd)
8358 && (MIPS_RELOC_RELA_P
8359 (input_bfd, input_section,
8362 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8363 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8364 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8366 sec = local_sections[r_symndx];
8371 unsigned long extsymoff;
8374 if (!elf_bad_symtab (input_bfd))
8375 extsymoff = symtab_hdr->sh_info;
8376 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8377 while (h->root.type == bfd_link_hash_indirect
8378 || h->root.type == bfd_link_hash_warning)
8379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8382 if (h->root.type == bfd_link_hash_defined
8383 || h->root.type == bfd_link_hash_defweak)
8384 sec = h->root.u.def.section;
8387 if (sec != NULL && elf_discarded_section (sec))
8389 /* For relocs against symbols from removed linkonce sections,
8390 or sections discarded by a linker script, we just want the
8391 section contents zeroed. Avoid any special processing. */
8392 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8398 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8400 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8401 64-bit code, but make sure all their addresses are in the
8402 lowermost or uppermost 32-bit section of the 64-bit address
8403 space. Thus, when they use an R_MIPS_64 they mean what is
8404 usually meant by R_MIPS_32, with the exception that the
8405 stored value is sign-extended to 64 bits. */
8406 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8408 /* On big-endian systems, we need to lie about the position
8410 if (bfd_big_endian (input_bfd))
8414 if (!use_saved_addend_p)
8416 /* If these relocations were originally of the REL variety,
8417 we must pull the addend out of the field that will be
8418 relocated. Otherwise, we simply use the contents of the
8420 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8423 rela_relocation_p = FALSE;
8424 addend = mips_elf_read_rel_addend (input_bfd, rel,
8426 if (hi16_reloc_p (r_type)
8427 || (got16_reloc_p (r_type)
8428 && mips_elf_local_relocation_p (input_bfd, rel,
8429 local_sections, FALSE)))
8431 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8437 name = h->root.root.string;
8439 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8440 local_syms + r_symndx,
8442 (*_bfd_error_handler)
8443 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8444 input_bfd, input_section, name, howto->name,
8449 addend <<= howto->rightshift;
8452 addend = rel->r_addend;
8453 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8454 local_syms, local_sections, rel);
8457 if (info->relocatable)
8459 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8460 && bfd_big_endian (input_bfd))
8463 if (!rela_relocation_p && rel->r_addend)
8465 addend += rel->r_addend;
8466 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
8467 addend = mips_elf_high (addend);
8468 else if (r_type == R_MIPS_HIGHER)
8469 addend = mips_elf_higher (addend);
8470 else if (r_type == R_MIPS_HIGHEST)
8471 addend = mips_elf_highest (addend);
8473 addend >>= howto->rightshift;
8475 /* We use the source mask, rather than the destination
8476 mask because the place to which we are writing will be
8477 source of the addend in the final link. */
8478 addend &= howto->src_mask;
8480 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8481 /* See the comment above about using R_MIPS_64 in the 32-bit
8482 ABI. Here, we need to update the addend. It would be
8483 possible to get away with just using the R_MIPS_32 reloc
8484 but for endianness. */
8490 if (addend & ((bfd_vma) 1 << 31))
8492 sign_bits = ((bfd_vma) 1 << 32) - 1;
8499 /* If we don't know that we have a 64-bit type,
8500 do two separate stores. */
8501 if (bfd_big_endian (input_bfd))
8503 /* Store the sign-bits (which are most significant)
8505 low_bits = sign_bits;
8511 high_bits = sign_bits;
8513 bfd_put_32 (input_bfd, low_bits,
8514 contents + rel->r_offset);
8515 bfd_put_32 (input_bfd, high_bits,
8516 contents + rel->r_offset + 4);
8520 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8521 input_bfd, input_section,
8526 /* Go on to the next relocation. */
8530 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8531 relocations for the same offset. In that case we are
8532 supposed to treat the output of each relocation as the addend
8534 if (rel + 1 < relend
8535 && rel->r_offset == rel[1].r_offset
8536 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8537 use_saved_addend_p = TRUE;
8539 use_saved_addend_p = FALSE;
8541 /* Figure out what value we are supposed to relocate. */
8542 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8543 input_section, info, rel,
8544 addend, howto, local_syms,
8545 local_sections, &value,
8546 &name, &require_jalx,
8547 use_saved_addend_p))
8549 case bfd_reloc_continue:
8550 /* There's nothing to do. */
8553 case bfd_reloc_undefined:
8554 /* mips_elf_calculate_relocation already called the
8555 undefined_symbol callback. There's no real point in
8556 trying to perform the relocation at this point, so we
8557 just skip ahead to the next relocation. */
8560 case bfd_reloc_notsupported:
8561 msg = _("internal error: unsupported relocation error");
8562 info->callbacks->warning
8563 (info, msg, name, input_bfd, input_section, rel->r_offset);
8566 case bfd_reloc_overflow:
8567 if (use_saved_addend_p)
8568 /* Ignore overflow until we reach the last relocation for
8569 a given location. */
8573 struct mips_elf_link_hash_table *htab;
8575 htab = mips_elf_hash_table (info);
8576 BFD_ASSERT (name != NULL);
8577 if (!htab->small_data_overflow_reported
8578 && (howto->type == R_MIPS_GPREL16
8579 || howto->type == R_MIPS_LITERAL))
8582 _("small-data section exceeds 64KB;"
8583 " lower small-data size limit (see option -G)");
8585 htab->small_data_overflow_reported = TRUE;
8586 (*info->callbacks->einfo) ("%P: %s\n", msg);
8588 if (! ((*info->callbacks->reloc_overflow)
8589 (info, NULL, name, howto->name, (bfd_vma) 0,
8590 input_bfd, input_section, rel->r_offset)))
8603 /* If we've got another relocation for the address, keep going
8604 until we reach the last one. */
8605 if (use_saved_addend_p)
8611 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8612 /* See the comment above about using R_MIPS_64 in the 32-bit
8613 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8614 that calculated the right value. Now, however, we
8615 sign-extend the 32-bit result to 64-bits, and store it as a
8616 64-bit value. We are especially generous here in that we
8617 go to extreme lengths to support this usage on systems with
8618 only a 32-bit VMA. */
8624 if (value & ((bfd_vma) 1 << 31))
8626 sign_bits = ((bfd_vma) 1 << 32) - 1;
8633 /* If we don't know that we have a 64-bit type,
8634 do two separate stores. */
8635 if (bfd_big_endian (input_bfd))
8637 /* Undo what we did above. */
8639 /* Store the sign-bits (which are most significant)
8641 low_bits = sign_bits;
8647 high_bits = sign_bits;
8649 bfd_put_32 (input_bfd, low_bits,
8650 contents + rel->r_offset);
8651 bfd_put_32 (input_bfd, high_bits,
8652 contents + rel->r_offset + 4);
8656 /* Actually perform the relocation. */
8657 if (! mips_elf_perform_relocation (info, howto, rel, value,
8658 input_bfd, input_section,
8659 contents, require_jalx))
8666 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8667 adjust it appropriately now. */
8670 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8671 const char *name, Elf_Internal_Sym *sym)
8673 /* The linker script takes care of providing names and values for
8674 these, but we must place them into the right sections. */
8675 static const char* const text_section_symbols[] = {
8678 "__dso_displacement",
8680 "__program_header_table",
8684 static const char* const data_section_symbols[] = {
8692 const char* const *p;
8695 for (i = 0; i < 2; ++i)
8696 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8699 if (strcmp (*p, name) == 0)
8701 /* All of these symbols are given type STT_SECTION by the
8703 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8704 sym->st_other = STO_PROTECTED;
8706 /* The IRIX linker puts these symbols in special sections. */
8708 sym->st_shndx = SHN_MIPS_TEXT;
8710 sym->st_shndx = SHN_MIPS_DATA;
8716 /* Finish up dynamic symbol handling. We set the contents of various
8717 dynamic sections here. */
8720 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8721 struct bfd_link_info *info,
8722 struct elf_link_hash_entry *h,
8723 Elf_Internal_Sym *sym)
8727 struct mips_got_info *g, *gg;
8730 struct mips_elf_link_hash_table *htab;
8731 struct mips_elf_link_hash_entry *hmips;
8733 htab = mips_elf_hash_table (info);
8734 dynobj = elf_hash_table (info)->dynobj;
8735 hmips = (struct mips_elf_link_hash_entry *) h;
8737 if (h->plt.offset != MINUS_ONE)
8740 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8742 /* This symbol has a stub. Set it up. */
8744 BFD_ASSERT (h->dynindx != -1);
8746 s = bfd_get_section_by_name (dynobj,
8747 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8748 BFD_ASSERT (s != NULL);
8750 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8751 || (h->dynindx <= 0xffff));
8753 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8754 sign extension at runtime in the stub, resulting in a negative
8756 if (h->dynindx & ~0x7fffffff)
8759 /* Fill the stub. */
8761 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8763 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8765 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8767 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8771 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8774 /* If a large stub is not required and sign extension is not a
8775 problem, then use legacy code in the stub. */
8776 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8777 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8778 else if (h->dynindx & ~0x7fff)
8779 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8781 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8784 BFD_ASSERT (h->plt.offset <= s->size);
8785 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8787 /* Mark the symbol as undefined. plt.offset != -1 occurs
8788 only for the referenced symbol. */
8789 sym->st_shndx = SHN_UNDEF;
8791 /* The run-time linker uses the st_value field of the symbol
8792 to reset the global offset table entry for this external
8793 to its stub address when unlinking a shared object. */
8794 sym->st_value = (s->output_section->vma + s->output_offset
8798 /* If we have a MIPS16 function with a stub, the dynamic symbol must
8799 refer to the stub, since only the stub uses the standard calling
8801 if (h->dynindx != -1 && hmips->fn_stub != NULL)
8803 BFD_ASSERT (hmips->need_fn_stub);
8804 sym->st_value = (hmips->fn_stub->output_section->vma
8805 + hmips->fn_stub->output_offset);
8806 sym->st_size = hmips->fn_stub->size;
8807 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
8810 BFD_ASSERT (h->dynindx != -1
8811 || h->forced_local);
8813 sgot = mips_elf_got_section (dynobj, FALSE);
8814 BFD_ASSERT (sgot != NULL);
8815 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8816 g = mips_elf_section_data (sgot)->u.got_info;
8817 BFD_ASSERT (g != NULL);
8819 /* Run through the global symbol table, creating GOT entries for all
8820 the symbols that need them. */
8821 if (g->global_gotsym != NULL
8822 && h->dynindx >= g->global_gotsym->dynindx)
8827 value = sym->st_value;
8828 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8829 R_MIPS_GOT16, info);
8830 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8833 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8835 struct mips_got_entry e, *p;
8841 e.abfd = output_bfd;
8846 for (g = g->next; g->next != gg; g = g->next)
8849 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8854 || (elf_hash_table (info)->dynamic_sections_created
8856 && p->d.h->root.def_dynamic
8857 && !p->d.h->root.def_regular))
8859 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8860 the various compatibility problems, it's easier to mock
8861 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8862 mips_elf_create_dynamic_relocation to calculate the
8863 appropriate addend. */
8864 Elf_Internal_Rela rel[3];
8866 memset (rel, 0, sizeof (rel));
8867 if (ABI_64_P (output_bfd))
8868 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8870 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8871 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8874 if (! (mips_elf_create_dynamic_relocation
8875 (output_bfd, info, rel,
8876 e.d.h, NULL, sym->st_value, &entry, sgot)))
8880 entry = sym->st_value;
8881 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8886 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8887 name = h->root.root.string;
8888 if (strcmp (name, "_DYNAMIC") == 0
8889 || h == elf_hash_table (info)->hgot)
8890 sym->st_shndx = SHN_ABS;
8891 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8892 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8894 sym->st_shndx = SHN_ABS;
8895 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8898 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8900 sym->st_shndx = SHN_ABS;
8901 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8902 sym->st_value = elf_gp (output_bfd);
8904 else if (SGI_COMPAT (output_bfd))
8906 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8907 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8909 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8910 sym->st_other = STO_PROTECTED;
8912 sym->st_shndx = SHN_MIPS_DATA;
8914 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8916 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8917 sym->st_other = STO_PROTECTED;
8918 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8919 sym->st_shndx = SHN_ABS;
8921 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8923 if (h->type == STT_FUNC)
8924 sym->st_shndx = SHN_MIPS_TEXT;
8925 else if (h->type == STT_OBJECT)
8926 sym->st_shndx = SHN_MIPS_DATA;
8930 /* Handle the IRIX6-specific symbols. */
8931 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8932 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8936 if (! mips_elf_hash_table (info)->use_rld_obj_head
8937 && (strcmp (name, "__rld_map") == 0
8938 || strcmp (name, "__RLD_MAP") == 0))
8940 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8941 BFD_ASSERT (s != NULL);
8942 sym->st_value = s->output_section->vma + s->output_offset;
8943 bfd_put_32 (output_bfd, 0, s->contents);
8944 if (mips_elf_hash_table (info)->rld_value == 0)
8945 mips_elf_hash_table (info)->rld_value = sym->st_value;
8947 else if (mips_elf_hash_table (info)->use_rld_obj_head
8948 && strcmp (name, "__rld_obj_head") == 0)
8950 /* IRIX6 does not use a .rld_map section. */
8951 if (IRIX_COMPAT (output_bfd) == ict_irix5
8952 || IRIX_COMPAT (output_bfd) == ict_none)
8953 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8955 mips_elf_hash_table (info)->rld_value = sym->st_value;
8959 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
8960 treat MIPS16 symbols like any other. */
8961 if (ELF_ST_IS_MIPS16 (sym->st_other))
8963 BFD_ASSERT (sym->st_value & 1);
8964 sym->st_other -= STO_MIPS16;
8970 /* Likewise, for VxWorks. */
8973 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8974 struct bfd_link_info *info,
8975 struct elf_link_hash_entry *h,
8976 Elf_Internal_Sym *sym)
8980 struct mips_got_info *g;
8981 struct mips_elf_link_hash_table *htab;
8983 htab = mips_elf_hash_table (info);
8984 dynobj = elf_hash_table (info)->dynobj;
8986 if (h->plt.offset != (bfd_vma) -1)
8989 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8990 Elf_Internal_Rela rel;
8991 static const bfd_vma *plt_entry;
8993 BFD_ASSERT (h->dynindx != -1);
8994 BFD_ASSERT (htab->splt != NULL);
8995 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8997 /* Calculate the address of the .plt entry. */
8998 plt_address = (htab->splt->output_section->vma
8999 + htab->splt->output_offset
9002 /* Calculate the index of the entry. */
9003 plt_index = ((h->plt.offset - htab->plt_header_size)
9004 / htab->plt_entry_size);
9006 /* Calculate the address of the .got.plt entry. */
9007 got_address = (htab->sgotplt->output_section->vma
9008 + htab->sgotplt->output_offset
9011 /* Calculate the offset of the .got.plt entry from
9012 _GLOBAL_OFFSET_TABLE_. */
9013 got_offset = mips_elf_gotplt_index (info, h);
9015 /* Calculate the offset for the branch at the start of the PLT
9016 entry. The branch jumps to the beginning of .plt. */
9017 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9019 /* Fill in the initial value of the .got.plt entry. */
9020 bfd_put_32 (output_bfd, plt_address,
9021 htab->sgotplt->contents + plt_index * 4);
9023 /* Find out where the .plt entry should go. */
9024 loc = htab->splt->contents + h->plt.offset;
9028 plt_entry = mips_vxworks_shared_plt_entry;
9029 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9030 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9034 bfd_vma got_address_high, got_address_low;
9036 plt_entry = mips_vxworks_exec_plt_entry;
9037 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9038 got_address_low = got_address & 0xffff;
9040 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9041 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9042 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9043 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9044 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9045 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9046 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9047 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9049 loc = (htab->srelplt2->contents
9050 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9052 /* Emit a relocation for the .got.plt entry. */
9053 rel.r_offset = got_address;
9054 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9055 rel.r_addend = h->plt.offset;
9056 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9058 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9059 loc += sizeof (Elf32_External_Rela);
9060 rel.r_offset = plt_address + 8;
9061 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9062 rel.r_addend = got_offset;
9063 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9065 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9066 loc += sizeof (Elf32_External_Rela);
9068 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9069 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9072 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9073 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9074 rel.r_offset = got_address;
9075 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9077 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9079 if (!h->def_regular)
9080 sym->st_shndx = SHN_UNDEF;
9083 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9085 sgot = mips_elf_got_section (dynobj, FALSE);
9086 BFD_ASSERT (sgot != NULL);
9087 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
9088 g = mips_elf_section_data (sgot)->u.got_info;
9089 BFD_ASSERT (g != NULL);
9091 /* See if this symbol has an entry in the GOT. */
9092 if (g->global_gotsym != NULL
9093 && h->dynindx >= g->global_gotsym->dynindx)
9096 Elf_Internal_Rela outrel;
9100 /* Install the symbol value in the GOT. */
9101 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9102 R_MIPS_GOT16, info);
9103 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9105 /* Add a dynamic relocation for it. */
9106 s = mips_elf_rel_dyn_section (info, FALSE);
9107 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9108 outrel.r_offset = (sgot->output_section->vma
9109 + sgot->output_offset
9111 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9112 outrel.r_addend = 0;
9113 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9116 /* Emit a copy reloc, if needed. */
9119 Elf_Internal_Rela rel;
9121 BFD_ASSERT (h->dynindx != -1);
9123 rel.r_offset = (h->root.u.def.section->output_section->vma
9124 + h->root.u.def.section->output_offset
9125 + h->root.u.def.value);
9126 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9128 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9129 htab->srelbss->contents
9130 + (htab->srelbss->reloc_count
9131 * sizeof (Elf32_External_Rela)));
9132 ++htab->srelbss->reloc_count;
9135 /* If this is a mips16 symbol, force the value to be even. */
9136 if (ELF_ST_IS_MIPS16 (sym->st_other))
9137 sym->st_value &= ~1;
9142 /* Install the PLT header for a VxWorks executable and finalize the
9143 contents of .rela.plt.unloaded. */
9146 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9148 Elf_Internal_Rela rela;
9150 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9151 static const bfd_vma *plt_entry;
9152 struct mips_elf_link_hash_table *htab;
9154 htab = mips_elf_hash_table (info);
9155 plt_entry = mips_vxworks_exec_plt0_entry;
9157 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9158 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9159 + htab->root.hgot->root.u.def.section->output_offset
9160 + htab->root.hgot->root.u.def.value);
9162 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9163 got_value_low = got_value & 0xffff;
9165 /* Calculate the address of the PLT header. */
9166 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9168 /* Install the PLT header. */
9169 loc = htab->splt->contents;
9170 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9171 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9172 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9173 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9174 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9175 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9177 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9178 loc = htab->srelplt2->contents;
9179 rela.r_offset = plt_address;
9180 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9182 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9183 loc += sizeof (Elf32_External_Rela);
9185 /* Output the relocation for the following addiu of
9186 %lo(_GLOBAL_OFFSET_TABLE_). */
9188 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9189 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9190 loc += sizeof (Elf32_External_Rela);
9192 /* Fix up the remaining relocations. They may have the wrong
9193 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9194 in which symbols were output. */
9195 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9197 Elf_Internal_Rela rel;
9199 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9200 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9201 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9202 loc += sizeof (Elf32_External_Rela);
9204 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9205 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9206 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9207 loc += sizeof (Elf32_External_Rela);
9209 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9210 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9211 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9212 loc += sizeof (Elf32_External_Rela);
9216 /* Install the PLT header for a VxWorks shared library. */
9219 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9222 struct mips_elf_link_hash_table *htab;
9224 htab = mips_elf_hash_table (info);
9226 /* We just need to copy the entry byte-by-byte. */
9227 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9228 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9229 htab->splt->contents + i * 4);
9232 /* Finish up the dynamic sections. */
9235 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9236 struct bfd_link_info *info)
9241 struct mips_got_info *gg, *g;
9242 struct mips_elf_link_hash_table *htab;
9244 htab = mips_elf_hash_table (info);
9245 dynobj = elf_hash_table (info)->dynobj;
9247 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9249 sgot = mips_elf_got_section (dynobj, FALSE);
9254 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
9255 gg = mips_elf_section_data (sgot)->u.got_info;
9256 BFD_ASSERT (gg != NULL);
9257 g = mips_elf_got_for_ibfd (gg, output_bfd);
9258 BFD_ASSERT (g != NULL);
9261 if (elf_hash_table (info)->dynamic_sections_created)
9264 int dyn_to_skip = 0, dyn_skipped = 0;
9266 BFD_ASSERT (sdyn != NULL);
9267 BFD_ASSERT (g != NULL);
9269 for (b = sdyn->contents;
9270 b < sdyn->contents + sdyn->size;
9271 b += MIPS_ELF_DYN_SIZE (dynobj))
9273 Elf_Internal_Dyn dyn;
9277 bfd_boolean swap_out_p;
9279 /* Read in the current dynamic entry. */
9280 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9282 /* Assume that we're going to modify it and write it out. */
9288 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9292 BFD_ASSERT (htab->is_vxworks);
9293 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9297 /* Rewrite DT_STRSZ. */
9299 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9304 if (htab->is_vxworks)
9306 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9307 of the ".got" section in DYNOBJ. */
9308 s = bfd_get_section_by_name (dynobj, name);
9309 BFD_ASSERT (s != NULL);
9310 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9314 s = bfd_get_section_by_name (output_bfd, name);
9315 BFD_ASSERT (s != NULL);
9316 dyn.d_un.d_ptr = s->vma;
9320 case DT_MIPS_RLD_VERSION:
9321 dyn.d_un.d_val = 1; /* XXX */
9325 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9328 case DT_MIPS_TIME_STAMP:
9336 case DT_MIPS_ICHECKSUM:
9341 case DT_MIPS_IVERSION:
9346 case DT_MIPS_BASE_ADDRESS:
9347 s = output_bfd->sections;
9348 BFD_ASSERT (s != NULL);
9349 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9352 case DT_MIPS_LOCAL_GOTNO:
9353 dyn.d_un.d_val = g->local_gotno;
9356 case DT_MIPS_UNREFEXTNO:
9357 /* The index into the dynamic symbol table which is the
9358 entry of the first external symbol that is not
9359 referenced within the same object. */
9360 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9363 case DT_MIPS_GOTSYM:
9364 if (gg->global_gotsym)
9366 dyn.d_un.d_val = gg->global_gotsym->dynindx;
9369 /* In case if we don't have global got symbols we default
9370 to setting DT_MIPS_GOTSYM to the same value as
9371 DT_MIPS_SYMTABNO, so we just fall through. */
9373 case DT_MIPS_SYMTABNO:
9375 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9376 s = bfd_get_section_by_name (output_bfd, name);
9377 BFD_ASSERT (s != NULL);
9379 dyn.d_un.d_val = s->size / elemsize;
9382 case DT_MIPS_HIPAGENO:
9383 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
9386 case DT_MIPS_RLD_MAP:
9387 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9390 case DT_MIPS_OPTIONS:
9391 s = (bfd_get_section_by_name
9392 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9393 dyn.d_un.d_ptr = s->vma;
9397 BFD_ASSERT (htab->is_vxworks);
9398 /* The count does not include the JUMP_SLOT relocations. */
9400 dyn.d_un.d_val -= htab->srelplt->size;
9404 BFD_ASSERT (htab->is_vxworks);
9405 dyn.d_un.d_val = DT_RELA;
9409 BFD_ASSERT (htab->is_vxworks);
9410 dyn.d_un.d_val = htab->srelplt->size;
9414 BFD_ASSERT (htab->is_vxworks);
9415 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9416 + htab->srelplt->output_offset);
9420 /* If we didn't need any text relocations after all, delete
9422 if (!(info->flags & DF_TEXTREL))
9424 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9430 /* If we didn't need any text relocations after all, clear
9431 DF_TEXTREL from DT_FLAGS. */
9432 if (!(info->flags & DF_TEXTREL))
9433 dyn.d_un.d_val &= ~DF_TEXTREL;
9440 if (htab->is_vxworks
9441 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9446 if (swap_out_p || dyn_skipped)
9447 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9448 (dynobj, &dyn, b - dyn_skipped);
9452 dyn_skipped += dyn_to_skip;
9457 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9458 if (dyn_skipped > 0)
9459 memset (b - dyn_skipped, 0, dyn_skipped);
9462 if (sgot != NULL && sgot->size > 0
9463 && !bfd_is_abs_section (sgot->output_section))
9465 if (htab->is_vxworks)
9467 /* The first entry of the global offset table points to the
9468 ".dynamic" section. The second is initialized by the
9469 loader and contains the shared library identifier.
9470 The third is also initialized by the loader and points
9471 to the lazy resolution stub. */
9472 MIPS_ELF_PUT_WORD (output_bfd,
9473 sdyn->output_offset + sdyn->output_section->vma,
9475 MIPS_ELF_PUT_WORD (output_bfd, 0,
9476 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9477 MIPS_ELF_PUT_WORD (output_bfd, 0,
9479 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9483 /* The first entry of the global offset table will be filled at
9484 runtime. The second entry will be used by some runtime loaders.
9485 This isn't the case of IRIX rld. */
9486 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9487 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9488 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9491 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9492 = MIPS_ELF_GOT_SIZE (output_bfd);
9495 /* Generate dynamic relocations for the non-primary gots. */
9496 if (gg != NULL && gg->next)
9498 Elf_Internal_Rela rel[3];
9501 memset (rel, 0, sizeof (rel));
9502 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9504 for (g = gg->next; g->next != gg; g = g->next)
9506 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9507 + g->next->tls_gotno;
9509 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
9510 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9511 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9513 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9518 while (index < g->assigned_gotno)
9520 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9521 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9522 if (!(mips_elf_create_dynamic_relocation
9523 (output_bfd, info, rel, NULL,
9524 bfd_abs_section_ptr,
9527 BFD_ASSERT (addend == 0);
9532 /* The generation of dynamic relocations for the non-primary gots
9533 adds more dynamic relocations. We cannot count them until
9536 if (elf_hash_table (info)->dynamic_sections_created)
9539 bfd_boolean swap_out_p;
9541 BFD_ASSERT (sdyn != NULL);
9543 for (b = sdyn->contents;
9544 b < sdyn->contents + sdyn->size;
9545 b += MIPS_ELF_DYN_SIZE (dynobj))
9547 Elf_Internal_Dyn dyn;
9550 /* Read in the current dynamic entry. */
9551 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9553 /* Assume that we're going to modify it and write it out. */
9559 /* Reduce DT_RELSZ to account for any relocations we
9560 decided not to make. This is for the n64 irix rld,
9561 which doesn't seem to apply any relocations if there
9562 are trailing null entries. */
9563 s = mips_elf_rel_dyn_section (info, FALSE);
9564 dyn.d_un.d_val = (s->reloc_count
9565 * (ABI_64_P (output_bfd)
9566 ? sizeof (Elf64_Mips_External_Rel)
9567 : sizeof (Elf32_External_Rel)));
9568 /* Adjust the section size too. Tools like the prelinker
9569 can reasonably expect the values to the same. */
9570 elf_section_data (s->output_section)->this_hdr.sh_size
9580 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9587 Elf32_compact_rel cpt;
9589 if (SGI_COMPAT (output_bfd))
9591 /* Write .compact_rel section out. */
9592 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9596 cpt.num = s->reloc_count;
9598 cpt.offset = (s->output_section->filepos
9599 + sizeof (Elf32_External_compact_rel));
9602 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9603 ((Elf32_External_compact_rel *)
9606 /* Clean up a dummy stub function entry in .text. */
9607 s = bfd_get_section_by_name (dynobj,
9608 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9611 file_ptr dummy_offset;
9613 BFD_ASSERT (s->size >= htab->function_stub_size);
9614 dummy_offset = s->size - htab->function_stub_size;
9615 memset (s->contents + dummy_offset, 0,
9616 htab->function_stub_size);
9621 /* The psABI says that the dynamic relocations must be sorted in
9622 increasing order of r_symndx. The VxWorks EABI doesn't require
9623 this, and because the code below handles REL rather than RELA
9624 relocations, using it for VxWorks would be outright harmful. */
9625 if (!htab->is_vxworks)
9627 s = mips_elf_rel_dyn_section (info, FALSE);
9629 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9631 reldyn_sorting_bfd = output_bfd;
9633 if (ABI_64_P (output_bfd))
9634 qsort ((Elf64_External_Rel *) s->contents + 1,
9635 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9636 sort_dynamic_relocs_64);
9638 qsort ((Elf32_External_Rel *) s->contents + 1,
9639 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9640 sort_dynamic_relocs);
9645 if (htab->is_vxworks && htab->splt->size > 0)
9648 mips_vxworks_finish_shared_plt (output_bfd, info);
9650 mips_vxworks_finish_exec_plt (output_bfd, info);
9656 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9659 mips_set_isa_flags (bfd *abfd)
9663 switch (bfd_get_mach (abfd))
9666 case bfd_mach_mips3000:
9667 val = E_MIPS_ARCH_1;
9670 case bfd_mach_mips3900:
9671 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9674 case bfd_mach_mips6000:
9675 val = E_MIPS_ARCH_2;
9678 case bfd_mach_mips4000:
9679 case bfd_mach_mips4300:
9680 case bfd_mach_mips4400:
9681 case bfd_mach_mips4600:
9682 val = E_MIPS_ARCH_3;
9685 case bfd_mach_mips4010:
9686 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9689 case bfd_mach_mips4100:
9690 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9693 case bfd_mach_mips4111:
9694 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9697 case bfd_mach_mips4120:
9698 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9701 case bfd_mach_mips4650:
9702 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9705 case bfd_mach_mips5400:
9706 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9709 case bfd_mach_mips5500:
9710 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9713 case bfd_mach_mips9000:
9714 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9717 case bfd_mach_mips5000:
9718 case bfd_mach_mips7000:
9719 case bfd_mach_mips8000:
9720 case bfd_mach_mips10000:
9721 case bfd_mach_mips12000:
9722 val = E_MIPS_ARCH_4;
9725 case bfd_mach_mips5:
9726 val = E_MIPS_ARCH_5;
9729 case bfd_mach_mips_loongson_2e:
9730 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9733 case bfd_mach_mips_loongson_2f:
9734 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9737 case bfd_mach_mips_sb1:
9738 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9741 case bfd_mach_mips_octeon:
9742 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9745 case bfd_mach_mipsisa32:
9746 val = E_MIPS_ARCH_32;
9749 case bfd_mach_mipsisa64:
9750 val = E_MIPS_ARCH_64;
9753 case bfd_mach_mipsisa32r2:
9754 val = E_MIPS_ARCH_32R2;
9757 case bfd_mach_mipsisa64r2:
9758 val = E_MIPS_ARCH_64R2;
9761 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9762 elf_elfheader (abfd)->e_flags |= val;
9767 /* The final processing done just before writing out a MIPS ELF object
9768 file. This gets the MIPS architecture right based on the machine
9769 number. This is used by both the 32-bit and the 64-bit ABI. */
9772 _bfd_mips_elf_final_write_processing (bfd *abfd,
9773 bfd_boolean linker ATTRIBUTE_UNUSED)
9776 Elf_Internal_Shdr **hdrpp;
9780 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9781 is nonzero. This is for compatibility with old objects, which used
9782 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9783 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9784 mips_set_isa_flags (abfd);
9786 /* Set the sh_info field for .gptab sections and other appropriate
9787 info for each special section. */
9788 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9789 i < elf_numsections (abfd);
9792 switch ((*hdrpp)->sh_type)
9795 case SHT_MIPS_LIBLIST:
9796 sec = bfd_get_section_by_name (abfd, ".dynstr");
9798 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9801 case SHT_MIPS_GPTAB:
9802 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9803 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9804 BFD_ASSERT (name != NULL
9805 && CONST_STRNEQ (name, ".gptab."));
9806 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9807 BFD_ASSERT (sec != NULL);
9808 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9811 case SHT_MIPS_CONTENT:
9812 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9813 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9814 BFD_ASSERT (name != NULL
9815 && CONST_STRNEQ (name, ".MIPS.content"));
9816 sec = bfd_get_section_by_name (abfd,
9817 name + sizeof ".MIPS.content" - 1);
9818 BFD_ASSERT (sec != NULL);
9819 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9822 case SHT_MIPS_SYMBOL_LIB:
9823 sec = bfd_get_section_by_name (abfd, ".dynsym");
9825 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9826 sec = bfd_get_section_by_name (abfd, ".liblist");
9828 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9831 case SHT_MIPS_EVENTS:
9832 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9833 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9834 BFD_ASSERT (name != NULL);
9835 if (CONST_STRNEQ (name, ".MIPS.events"))
9836 sec = bfd_get_section_by_name (abfd,
9837 name + sizeof ".MIPS.events" - 1);
9840 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9841 sec = bfd_get_section_by_name (abfd,
9843 + sizeof ".MIPS.post_rel" - 1));
9845 BFD_ASSERT (sec != NULL);
9846 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9853 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9857 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9858 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9863 /* See if we need a PT_MIPS_REGINFO segment. */
9864 s = bfd_get_section_by_name (abfd, ".reginfo");
9865 if (s && (s->flags & SEC_LOAD))
9868 /* See if we need a PT_MIPS_OPTIONS segment. */
9869 if (IRIX_COMPAT (abfd) == ict_irix6
9870 && bfd_get_section_by_name (abfd,
9871 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9874 /* See if we need a PT_MIPS_RTPROC segment. */
9875 if (IRIX_COMPAT (abfd) == ict_irix5
9876 && bfd_get_section_by_name (abfd, ".dynamic")
9877 && bfd_get_section_by_name (abfd, ".mdebug"))
9880 /* Allocate a PT_NULL header in dynamic objects. See
9881 _bfd_mips_elf_modify_segment_map for details. */
9882 if (!SGI_COMPAT (abfd)
9883 && bfd_get_section_by_name (abfd, ".dynamic"))
9889 /* Modify the segment map for an IRIX5 executable. */
9892 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9893 struct bfd_link_info *info)
9896 struct elf_segment_map *m, **pm;
9899 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9901 s = bfd_get_section_by_name (abfd, ".reginfo");
9902 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9904 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9905 if (m->p_type == PT_MIPS_REGINFO)
9910 m = bfd_zalloc (abfd, amt);
9914 m->p_type = PT_MIPS_REGINFO;
9918 /* We want to put it after the PHDR and INTERP segments. */
9919 pm = &elf_tdata (abfd)->segment_map;
9921 && ((*pm)->p_type == PT_PHDR
9922 || (*pm)->p_type == PT_INTERP))
9930 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9931 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9932 PT_MIPS_OPTIONS segment immediately following the program header
9935 /* On non-IRIX6 new abi, we'll have already created a segment
9936 for this section, so don't create another. I'm not sure this
9937 is not also the case for IRIX 6, but I can't test it right
9939 && IRIX_COMPAT (abfd) == ict_irix6)
9941 for (s = abfd->sections; s; s = s->next)
9942 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9947 struct elf_segment_map *options_segment;
9949 pm = &elf_tdata (abfd)->segment_map;
9951 && ((*pm)->p_type == PT_PHDR
9952 || (*pm)->p_type == PT_INTERP))
9955 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9957 amt = sizeof (struct elf_segment_map);
9958 options_segment = bfd_zalloc (abfd, amt);
9959 options_segment->next = *pm;
9960 options_segment->p_type = PT_MIPS_OPTIONS;
9961 options_segment->p_flags = PF_R;
9962 options_segment->p_flags_valid = TRUE;
9963 options_segment->count = 1;
9964 options_segment->sections[0] = s;
9965 *pm = options_segment;
9971 if (IRIX_COMPAT (abfd) == ict_irix5)
9973 /* If there are .dynamic and .mdebug sections, we make a room
9974 for the RTPROC header. FIXME: Rewrite without section names. */
9975 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9976 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9977 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9979 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9980 if (m->p_type == PT_MIPS_RTPROC)
9985 m = bfd_zalloc (abfd, amt);
9989 m->p_type = PT_MIPS_RTPROC;
9991 s = bfd_get_section_by_name (abfd, ".rtproc");
9996 m->p_flags_valid = 1;
10001 m->sections[0] = s;
10004 /* We want to put it after the DYNAMIC segment. */
10005 pm = &elf_tdata (abfd)->segment_map;
10006 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10016 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10017 .dynstr, .dynsym, and .hash sections, and everything in
10019 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10021 if ((*pm)->p_type == PT_DYNAMIC)
10024 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10026 /* For a normal mips executable the permissions for the PT_DYNAMIC
10027 segment are read, write and execute. We do that here since
10028 the code in elf.c sets only the read permission. This matters
10029 sometimes for the dynamic linker. */
10030 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10032 m->p_flags = PF_R | PF_W | PF_X;
10033 m->p_flags_valid = 1;
10036 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10037 glibc's dynamic linker has traditionally derived the number of
10038 tags from the p_filesz field, and sometimes allocates stack
10039 arrays of that size. An overly-big PT_DYNAMIC segment can
10040 be actively harmful in such cases. Making PT_DYNAMIC contain
10041 other sections can also make life hard for the prelinker,
10042 which might move one of the other sections to a different
10043 PT_LOAD segment. */
10044 if (SGI_COMPAT (abfd)
10047 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10049 static const char *sec_names[] =
10051 ".dynamic", ".dynstr", ".dynsym", ".hash"
10055 struct elf_segment_map *n;
10057 low = ~(bfd_vma) 0;
10059 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10061 s = bfd_get_section_by_name (abfd, sec_names[i]);
10062 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10069 if (high < s->vma + sz)
10070 high = s->vma + sz;
10075 for (s = abfd->sections; s != NULL; s = s->next)
10076 if ((s->flags & SEC_LOAD) != 0
10078 && s->vma + s->size <= high)
10081 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10082 n = bfd_zalloc (abfd, amt);
10089 for (s = abfd->sections; s != NULL; s = s->next)
10091 if ((s->flags & SEC_LOAD) != 0
10093 && s->vma + s->size <= high)
10095 n->sections[i] = s;
10104 /* Allocate a spare program header in dynamic objects so that tools
10105 like the prelinker can add an extra PT_LOAD entry.
10107 If the prelinker needs to make room for a new PT_LOAD entry, its
10108 standard procedure is to move the first (read-only) sections into
10109 the new (writable) segment. However, the MIPS ABI requires
10110 .dynamic to be in a read-only segment, and the section will often
10111 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10113 Although the prelinker could in principle move .dynamic to a
10114 writable segment, it seems better to allocate a spare program
10115 header instead, and avoid the need to move any sections.
10116 There is a long tradition of allocating spare dynamic tags,
10117 so allocating a spare program header seems like a natural
10120 If INFO is NULL, we may be copying an already prelinked binary
10121 with objcopy or strip, so do not add this header. */
10123 && !SGI_COMPAT (abfd)
10124 && bfd_get_section_by_name (abfd, ".dynamic"))
10126 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10127 if ((*pm)->p_type == PT_NULL)
10131 m = bfd_zalloc (abfd, sizeof (*m));
10135 m->p_type = PT_NULL;
10143 /* Return the section that should be marked against GC for a given
10147 _bfd_mips_elf_gc_mark_hook (asection *sec,
10148 struct bfd_link_info *info,
10149 Elf_Internal_Rela *rel,
10150 struct elf_link_hash_entry *h,
10151 Elf_Internal_Sym *sym)
10153 /* ??? Do mips16 stub sections need to be handled special? */
10156 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10158 case R_MIPS_GNU_VTINHERIT:
10159 case R_MIPS_GNU_VTENTRY:
10163 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10166 /* Update the got entry reference counts for the section being removed. */
10169 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10170 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10171 asection *sec ATTRIBUTE_UNUSED,
10172 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10175 Elf_Internal_Shdr *symtab_hdr;
10176 struct elf_link_hash_entry **sym_hashes;
10177 bfd_signed_vma *local_got_refcounts;
10178 const Elf_Internal_Rela *rel, *relend;
10179 unsigned long r_symndx;
10180 struct elf_link_hash_entry *h;
10182 if (info->relocatable)
10185 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10186 sym_hashes = elf_sym_hashes (abfd);
10187 local_got_refcounts = elf_local_got_refcounts (abfd);
10189 relend = relocs + sec->reloc_count;
10190 for (rel = relocs; rel < relend; rel++)
10191 switch (ELF_R_TYPE (abfd, rel->r_info))
10193 case R_MIPS16_GOT16:
10194 case R_MIPS16_CALL16:
10196 case R_MIPS_CALL16:
10197 case R_MIPS_CALL_HI16:
10198 case R_MIPS_CALL_LO16:
10199 case R_MIPS_GOT_HI16:
10200 case R_MIPS_GOT_LO16:
10201 case R_MIPS_GOT_DISP:
10202 case R_MIPS_GOT_PAGE:
10203 case R_MIPS_GOT_OFST:
10204 /* ??? It would seem that the existing MIPS code does no sort
10205 of reference counting or whatnot on its GOT and PLT entries,
10206 so it is not possible to garbage collect them at this time. */
10217 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10218 hiding the old indirect symbol. Process additional relocation
10219 information. Also called for weakdefs, in which case we just let
10220 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10223 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
10224 struct elf_link_hash_entry *dir,
10225 struct elf_link_hash_entry *ind)
10227 struct mips_elf_link_hash_entry *dirmips, *indmips;
10229 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
10231 if (ind->root.type != bfd_link_hash_indirect)
10234 dirmips = (struct mips_elf_link_hash_entry *) dir;
10235 indmips = (struct mips_elf_link_hash_entry *) ind;
10236 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10237 if (indmips->readonly_reloc)
10238 dirmips->readonly_reloc = TRUE;
10239 if (indmips->no_fn_stub)
10240 dirmips->no_fn_stub = TRUE;
10242 if (dirmips->tls_type == 0)
10243 dirmips->tls_type = indmips->tls_type;
10247 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
10248 struct elf_link_hash_entry *entry,
10249 bfd_boolean force_local)
10253 struct mips_got_info *g;
10254 struct mips_elf_link_hash_entry *h;
10255 struct mips_elf_link_hash_table *htab;
10257 h = (struct mips_elf_link_hash_entry *) entry;
10258 if (h->forced_local)
10260 h->forced_local = force_local;
10262 dynobj = elf_hash_table (info)->dynobj;
10263 htab = mips_elf_hash_table (info);
10264 if (dynobj != NULL && force_local && h->root.type != STT_TLS
10265 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
10266 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
10270 struct mips_got_entry e;
10271 struct mips_got_info *gg = g;
10273 /* Since we're turning what used to be a global symbol into a
10274 local one, bump up the number of local entries of each GOT
10275 that had an entry for it. This will automatically decrease
10276 the number of global entries, since global_gotno is actually
10277 the upper limit of global entries. */
10283 for (g = g->next; g != gg; g = g->next)
10284 if (htab_find (g->got_entries, &e))
10286 BFD_ASSERT (g->global_gotno > 0);
10291 /* If this was a global symbol forced into the primary GOT, we
10292 no longer need an entry for it. We can't release the entry
10293 at this point, but we must at least stop counting it as one
10294 of the symbols that required a forced got entry. */
10295 if (h->root.got.offset == 2)
10297 BFD_ASSERT (gg->assigned_gotno > 0);
10298 gg->assigned_gotno--;
10301 else if (h->root.got.offset == 1)
10303 /* check_relocs didn't know that this symbol would be
10304 forced-local, so add an extra local got entry. */
10306 if (htab->computed_got_sizes)
10308 /* We'll have treated this symbol as global rather
10310 BFD_ASSERT (g->global_gotno > 0);
10314 else if (htab->is_vxworks && h->root.needs_plt)
10316 /* check_relocs didn't know that this symbol would be
10317 forced-local, so add an extra local got entry. */
10319 if (htab->computed_got_sizes)
10320 /* The symbol is only used in call relocations, so we'll
10321 have assumed it only needs a .got.plt entry. Increase
10322 the size of .got accordingly. */
10323 got->size += MIPS_ELF_GOT_SIZE (dynobj);
10327 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
10330 #define PDR_SIZE 32
10333 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10334 struct bfd_link_info *info)
10337 bfd_boolean ret = FALSE;
10338 unsigned char *tdata;
10341 o = bfd_get_section_by_name (abfd, ".pdr");
10346 if (o->size % PDR_SIZE != 0)
10348 if (o->output_section != NULL
10349 && bfd_is_abs_section (o->output_section))
10352 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10356 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10357 info->keep_memory);
10364 cookie->rel = cookie->rels;
10365 cookie->relend = cookie->rels + o->reloc_count;
10367 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
10369 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
10378 mips_elf_section_data (o)->u.tdata = tdata;
10379 o->size -= skip * PDR_SIZE;
10385 if (! info->keep_memory)
10386 free (cookie->rels);
10392 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
10394 if (strcmp (sec->name, ".pdr") == 0)
10400 _bfd_mips_elf_write_section (bfd *output_bfd,
10401 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10402 asection *sec, bfd_byte *contents)
10404 bfd_byte *to, *from, *end;
10407 if (strcmp (sec->name, ".pdr") != 0)
10410 if (mips_elf_section_data (sec)->u.tdata == NULL)
10414 end = contents + sec->size;
10415 for (from = contents, i = 0;
10417 from += PDR_SIZE, i++)
10419 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
10422 memcpy (to, from, PDR_SIZE);
10425 bfd_set_section_contents (output_bfd, sec->output_section, contents,
10426 sec->output_offset, sec->size);
10430 /* MIPS ELF uses a special find_nearest_line routine in order the
10431 handle the ECOFF debugging information. */
10433 struct mips_elf_find_line
10435 struct ecoff_debug_info d;
10436 struct ecoff_find_line i;
10440 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10441 asymbol **symbols, bfd_vma offset,
10442 const char **filename_ptr,
10443 const char **functionname_ptr,
10444 unsigned int *line_ptr)
10448 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10449 filename_ptr, functionname_ptr,
10453 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10454 filename_ptr, functionname_ptr,
10455 line_ptr, ABI_64_P (abfd) ? 8 : 0,
10456 &elf_tdata (abfd)->dwarf2_find_line_info))
10459 msec = bfd_get_section_by_name (abfd, ".mdebug");
10462 flagword origflags;
10463 struct mips_elf_find_line *fi;
10464 const struct ecoff_debug_swap * const swap =
10465 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10467 /* If we are called during a link, mips_elf_final_link may have
10468 cleared the SEC_HAS_CONTENTS field. We force it back on here
10469 if appropriate (which it normally will be). */
10470 origflags = msec->flags;
10471 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10472 msec->flags |= SEC_HAS_CONTENTS;
10474 fi = elf_tdata (abfd)->find_line_info;
10477 bfd_size_type external_fdr_size;
10480 struct fdr *fdr_ptr;
10481 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10483 fi = bfd_zalloc (abfd, amt);
10486 msec->flags = origflags;
10490 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10492 msec->flags = origflags;
10496 /* Swap in the FDR information. */
10497 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
10498 fi->d.fdr = bfd_alloc (abfd, amt);
10499 if (fi->d.fdr == NULL)
10501 msec->flags = origflags;
10504 external_fdr_size = swap->external_fdr_size;
10505 fdr_ptr = fi->d.fdr;
10506 fraw_src = (char *) fi->d.external_fdr;
10507 fraw_end = (fraw_src
10508 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10509 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
10510 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
10512 elf_tdata (abfd)->find_line_info = fi;
10514 /* Note that we don't bother to ever free this information.
10515 find_nearest_line is either called all the time, as in
10516 objdump -l, so the information should be saved, or it is
10517 rarely called, as in ld error messages, so the memory
10518 wasted is unimportant. Still, it would probably be a
10519 good idea for free_cached_info to throw it away. */
10522 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10523 &fi->i, filename_ptr, functionname_ptr,
10526 msec->flags = origflags;
10530 msec->flags = origflags;
10533 /* Fall back on the generic ELF find_nearest_line routine. */
10535 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10536 filename_ptr, functionname_ptr,
10541 _bfd_mips_elf_find_inliner_info (bfd *abfd,
10542 const char **filename_ptr,
10543 const char **functionname_ptr,
10544 unsigned int *line_ptr)
10547 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10548 functionname_ptr, line_ptr,
10549 & elf_tdata (abfd)->dwarf2_find_line_info);
10554 /* When are writing out the .options or .MIPS.options section,
10555 remember the bytes we are writing out, so that we can install the
10556 GP value in the section_processing routine. */
10559 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10560 const void *location,
10561 file_ptr offset, bfd_size_type count)
10563 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
10567 if (elf_section_data (section) == NULL)
10569 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10570 section->used_by_bfd = bfd_zalloc (abfd, amt);
10571 if (elf_section_data (section) == NULL)
10574 c = mips_elf_section_data (section)->u.tdata;
10577 c = bfd_zalloc (abfd, section->size);
10580 mips_elf_section_data (section)->u.tdata = c;
10583 memcpy (c + offset, location, count);
10586 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10590 /* This is almost identical to bfd_generic_get_... except that some
10591 MIPS relocations need to be handled specially. Sigh. */
10594 _bfd_elf_mips_get_relocated_section_contents
10596 struct bfd_link_info *link_info,
10597 struct bfd_link_order *link_order,
10599 bfd_boolean relocatable,
10602 /* Get enough memory to hold the stuff */
10603 bfd *input_bfd = link_order->u.indirect.section->owner;
10604 asection *input_section = link_order->u.indirect.section;
10607 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10608 arelent **reloc_vector = NULL;
10611 if (reloc_size < 0)
10614 reloc_vector = bfd_malloc (reloc_size);
10615 if (reloc_vector == NULL && reloc_size != 0)
10618 /* read in the section */
10619 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10620 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10623 reloc_count = bfd_canonicalize_reloc (input_bfd,
10627 if (reloc_count < 0)
10630 if (reloc_count > 0)
10635 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10638 struct bfd_hash_entry *h;
10639 struct bfd_link_hash_entry *lh;
10640 /* Skip all this stuff if we aren't mixing formats. */
10641 if (abfd && input_bfd
10642 && abfd->xvec == input_bfd->xvec)
10646 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10647 lh = (struct bfd_link_hash_entry *) h;
10654 case bfd_link_hash_undefined:
10655 case bfd_link_hash_undefweak:
10656 case bfd_link_hash_common:
10659 case bfd_link_hash_defined:
10660 case bfd_link_hash_defweak:
10662 gp = lh->u.def.value;
10664 case bfd_link_hash_indirect:
10665 case bfd_link_hash_warning:
10667 /* @@FIXME ignoring warning for now */
10669 case bfd_link_hash_new:
10678 for (parent = reloc_vector; *parent != NULL; parent++)
10680 char *error_message = NULL;
10681 bfd_reloc_status_type r;
10683 /* Specific to MIPS: Deal with relocation types that require
10684 knowing the gp of the output bfd. */
10685 asymbol *sym = *(*parent)->sym_ptr_ptr;
10687 /* If we've managed to find the gp and have a special
10688 function for the relocation then go ahead, else default
10689 to the generic handling. */
10691 && (*parent)->howto->special_function
10692 == _bfd_mips_elf32_gprel16_reloc)
10693 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10694 input_section, relocatable,
10697 r = bfd_perform_relocation (input_bfd, *parent, data,
10699 relocatable ? abfd : NULL,
10704 asection *os = input_section->output_section;
10706 /* A partial link, so keep the relocs */
10707 os->orelocation[os->reloc_count] = *parent;
10711 if (r != bfd_reloc_ok)
10715 case bfd_reloc_undefined:
10716 if (!((*link_info->callbacks->undefined_symbol)
10717 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10718 input_bfd, input_section, (*parent)->address, TRUE)))
10721 case bfd_reloc_dangerous:
10722 BFD_ASSERT (error_message != NULL);
10723 if (!((*link_info->callbacks->reloc_dangerous)
10724 (link_info, error_message, input_bfd, input_section,
10725 (*parent)->address)))
10728 case bfd_reloc_overflow:
10729 if (!((*link_info->callbacks->reloc_overflow)
10731 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10732 (*parent)->howto->name, (*parent)->addend,
10733 input_bfd, input_section, (*parent)->address)))
10736 case bfd_reloc_outofrange:
10745 if (reloc_vector != NULL)
10746 free (reloc_vector);
10750 if (reloc_vector != NULL)
10751 free (reloc_vector);
10755 /* Create a MIPS ELF linker hash table. */
10757 struct bfd_link_hash_table *
10758 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10760 struct mips_elf_link_hash_table *ret;
10761 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10763 ret = bfd_malloc (amt);
10767 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10768 mips_elf_link_hash_newfunc,
10769 sizeof (struct mips_elf_link_hash_entry)))
10776 /* We no longer use this. */
10777 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10778 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10780 ret->procedure_count = 0;
10781 ret->compact_rel_size = 0;
10782 ret->use_rld_obj_head = FALSE;
10783 ret->rld_value = 0;
10784 ret->mips16_stubs_seen = FALSE;
10785 ret->computed_got_sizes = FALSE;
10786 ret->is_vxworks = FALSE;
10787 ret->small_data_overflow_reported = FALSE;
10788 ret->srelbss = NULL;
10789 ret->sdynbss = NULL;
10790 ret->srelplt = NULL;
10791 ret->srelplt2 = NULL;
10792 ret->sgotplt = NULL;
10794 ret->plt_header_size = 0;
10795 ret->plt_entry_size = 0;
10796 ret->function_stub_size = 0;
10798 return &ret->root.root;
10801 /* Likewise, but indicate that the target is VxWorks. */
10803 struct bfd_link_hash_table *
10804 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10806 struct bfd_link_hash_table *ret;
10808 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10811 struct mips_elf_link_hash_table *htab;
10813 htab = (struct mips_elf_link_hash_table *) ret;
10814 htab->is_vxworks = 1;
10819 /* We need to use a special link routine to handle the .reginfo and
10820 the .mdebug sections. We need to merge all instances of these
10821 sections together, not write them all out sequentially. */
10824 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10827 struct bfd_link_order *p;
10828 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10829 asection *rtproc_sec;
10830 Elf32_RegInfo reginfo;
10831 struct ecoff_debug_info debug;
10832 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10833 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10834 HDRR *symhdr = &debug.symbolic_header;
10835 void *mdebug_handle = NULL;
10840 struct mips_elf_link_hash_table *htab;
10842 static const char * const secname[] =
10844 ".text", ".init", ".fini", ".data",
10845 ".rodata", ".sdata", ".sbss", ".bss"
10847 static const int sc[] =
10849 scText, scInit, scFini, scData,
10850 scRData, scSData, scSBss, scBss
10853 /* We'd carefully arranged the dynamic symbol indices, and then the
10854 generic size_dynamic_sections renumbered them out from under us.
10855 Rather than trying somehow to prevent the renumbering, just do
10857 htab = mips_elf_hash_table (info);
10858 if (elf_hash_table (info)->dynamic_sections_created)
10862 struct mips_got_info *g;
10863 bfd_size_type dynsecsymcount;
10865 /* When we resort, we must tell mips_elf_sort_hash_table what
10866 the lowest index it may use is. That's the number of section
10867 symbols we're going to add. The generic ELF linker only
10868 adds these symbols when building a shared object. Note that
10869 we count the sections after (possibly) removing the .options
10872 dynsecsymcount = count_section_dynsyms (abfd, info);
10873 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10876 /* Make sure we didn't grow the global .got region. */
10877 dynobj = elf_hash_table (info)->dynobj;
10878 got = mips_elf_got_section (dynobj, FALSE);
10879 g = mips_elf_section_data (got)->u.got_info;
10881 if (g->global_gotsym != NULL)
10882 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10883 - g->global_gotsym->dynindx)
10884 <= g->global_gotno);
10887 /* Get a value for the GP register. */
10888 if (elf_gp (abfd) == 0)
10890 struct bfd_link_hash_entry *h;
10892 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10893 if (h != NULL && h->type == bfd_link_hash_defined)
10894 elf_gp (abfd) = (h->u.def.value
10895 + h->u.def.section->output_section->vma
10896 + h->u.def.section->output_offset);
10897 else if (htab->is_vxworks
10898 && (h = bfd_link_hash_lookup (info->hash,
10899 "_GLOBAL_OFFSET_TABLE_",
10900 FALSE, FALSE, TRUE))
10901 && h->type == bfd_link_hash_defined)
10902 elf_gp (abfd) = (h->u.def.section->output_section->vma
10903 + h->u.def.section->output_offset
10905 else if (info->relocatable)
10907 bfd_vma lo = MINUS_ONE;
10909 /* Find the GP-relative section with the lowest offset. */
10910 for (o = abfd->sections; o != NULL; o = o->next)
10912 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10915 /* And calculate GP relative to that. */
10916 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10920 /* If the relocate_section function needs to do a reloc
10921 involving the GP value, it should make a reloc_dangerous
10922 callback to warn that GP is not defined. */
10926 /* Go through the sections and collect the .reginfo and .mdebug
10928 reginfo_sec = NULL;
10930 gptab_data_sec = NULL;
10931 gptab_bss_sec = NULL;
10932 for (o = abfd->sections; o != NULL; o = o->next)
10934 if (strcmp (o->name, ".reginfo") == 0)
10936 memset (®info, 0, sizeof reginfo);
10938 /* We have found the .reginfo section in the output file.
10939 Look through all the link_orders comprising it and merge
10940 the information together. */
10941 for (p = o->map_head.link_order; p != NULL; p = p->next)
10943 asection *input_section;
10945 Elf32_External_RegInfo ext;
10948 if (p->type != bfd_indirect_link_order)
10950 if (p->type == bfd_data_link_order)
10955 input_section = p->u.indirect.section;
10956 input_bfd = input_section->owner;
10958 if (! bfd_get_section_contents (input_bfd, input_section,
10959 &ext, 0, sizeof ext))
10962 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10964 reginfo.ri_gprmask |= sub.ri_gprmask;
10965 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10966 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10967 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10968 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10970 /* ri_gp_value is set by the function
10971 mips_elf32_section_processing when the section is
10972 finally written out. */
10974 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10975 elf_link_input_bfd ignores this section. */
10976 input_section->flags &= ~SEC_HAS_CONTENTS;
10979 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10980 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10982 /* Skip this section later on (I don't think this currently
10983 matters, but someday it might). */
10984 o->map_head.link_order = NULL;
10989 if (strcmp (o->name, ".mdebug") == 0)
10991 struct extsym_info einfo;
10994 /* We have found the .mdebug section in the output file.
10995 Look through all the link_orders comprising it and merge
10996 the information together. */
10997 symhdr->magic = swap->sym_magic;
10998 /* FIXME: What should the version stamp be? */
10999 symhdr->vstamp = 0;
11000 symhdr->ilineMax = 0;
11001 symhdr->cbLine = 0;
11002 symhdr->idnMax = 0;
11003 symhdr->ipdMax = 0;
11004 symhdr->isymMax = 0;
11005 symhdr->ioptMax = 0;
11006 symhdr->iauxMax = 0;
11007 symhdr->issMax = 0;
11008 symhdr->issExtMax = 0;
11009 symhdr->ifdMax = 0;
11011 symhdr->iextMax = 0;
11013 /* We accumulate the debugging information itself in the
11014 debug_info structure. */
11016 debug.external_dnr = NULL;
11017 debug.external_pdr = NULL;
11018 debug.external_sym = NULL;
11019 debug.external_opt = NULL;
11020 debug.external_aux = NULL;
11022 debug.ssext = debug.ssext_end = NULL;
11023 debug.external_fdr = NULL;
11024 debug.external_rfd = NULL;
11025 debug.external_ext = debug.external_ext_end = NULL;
11027 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11028 if (mdebug_handle == NULL)
11032 esym.cobol_main = 0;
11036 esym.asym.iss = issNil;
11037 esym.asym.st = stLocal;
11038 esym.asym.reserved = 0;
11039 esym.asym.index = indexNil;
11041 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11043 esym.asym.sc = sc[i];
11044 s = bfd_get_section_by_name (abfd, secname[i]);
11047 esym.asym.value = s->vma;
11048 last = s->vma + s->size;
11051 esym.asym.value = last;
11052 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11053 secname[i], &esym))
11057 for (p = o->map_head.link_order; p != NULL; p = p->next)
11059 asection *input_section;
11061 const struct ecoff_debug_swap *input_swap;
11062 struct ecoff_debug_info input_debug;
11066 if (p->type != bfd_indirect_link_order)
11068 if (p->type == bfd_data_link_order)
11073 input_section = p->u.indirect.section;
11074 input_bfd = input_section->owner;
11076 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
11077 || (get_elf_backend_data (input_bfd)
11078 ->elf_backend_ecoff_debug_swap) == NULL)
11080 /* I don't know what a non MIPS ELF bfd would be
11081 doing with a .mdebug section, but I don't really
11082 want to deal with it. */
11086 input_swap = (get_elf_backend_data (input_bfd)
11087 ->elf_backend_ecoff_debug_swap);
11089 BFD_ASSERT (p->size == input_section->size);
11091 /* The ECOFF linking code expects that we have already
11092 read in the debugging information and set up an
11093 ecoff_debug_info structure, so we do that now. */
11094 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11098 if (! (bfd_ecoff_debug_accumulate
11099 (mdebug_handle, abfd, &debug, swap, input_bfd,
11100 &input_debug, input_swap, info)))
11103 /* Loop through the external symbols. For each one with
11104 interesting information, try to find the symbol in
11105 the linker global hash table and save the information
11106 for the output external symbols. */
11107 eraw_src = input_debug.external_ext;
11108 eraw_end = (eraw_src
11109 + (input_debug.symbolic_header.iextMax
11110 * input_swap->external_ext_size));
11112 eraw_src < eraw_end;
11113 eraw_src += input_swap->external_ext_size)
11117 struct mips_elf_link_hash_entry *h;
11119 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11120 if (ext.asym.sc == scNil
11121 || ext.asym.sc == scUndefined
11122 || ext.asym.sc == scSUndefined)
11125 name = input_debug.ssext + ext.asym.iss;
11126 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11127 name, FALSE, FALSE, TRUE);
11128 if (h == NULL || h->esym.ifd != -2)
11133 BFD_ASSERT (ext.ifd
11134 < input_debug.symbolic_header.ifdMax);
11135 ext.ifd = input_debug.ifdmap[ext.ifd];
11141 /* Free up the information we just read. */
11142 free (input_debug.line);
11143 free (input_debug.external_dnr);
11144 free (input_debug.external_pdr);
11145 free (input_debug.external_sym);
11146 free (input_debug.external_opt);
11147 free (input_debug.external_aux);
11148 free (input_debug.ss);
11149 free (input_debug.ssext);
11150 free (input_debug.external_fdr);
11151 free (input_debug.external_rfd);
11152 free (input_debug.external_ext);
11154 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11155 elf_link_input_bfd ignores this section. */
11156 input_section->flags &= ~SEC_HAS_CONTENTS;
11159 if (SGI_COMPAT (abfd) && info->shared)
11161 /* Create .rtproc section. */
11162 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11163 if (rtproc_sec == NULL)
11165 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11166 | SEC_LINKER_CREATED | SEC_READONLY);
11168 rtproc_sec = bfd_make_section_with_flags (abfd,
11171 if (rtproc_sec == NULL
11172 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11176 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11182 /* Build the external symbol information. */
11185 einfo.debug = &debug;
11187 einfo.failed = FALSE;
11188 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11189 mips_elf_output_extsym, &einfo);
11193 /* Set the size of the .mdebug section. */
11194 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11196 /* Skip this section later on (I don't think this currently
11197 matters, but someday it might). */
11198 o->map_head.link_order = NULL;
11203 if (CONST_STRNEQ (o->name, ".gptab."))
11205 const char *subname;
11208 Elf32_External_gptab *ext_tab;
11211 /* The .gptab.sdata and .gptab.sbss sections hold
11212 information describing how the small data area would
11213 change depending upon the -G switch. These sections
11214 not used in executables files. */
11215 if (! info->relocatable)
11217 for (p = o->map_head.link_order; p != NULL; p = p->next)
11219 asection *input_section;
11221 if (p->type != bfd_indirect_link_order)
11223 if (p->type == bfd_data_link_order)
11228 input_section = p->u.indirect.section;
11230 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11231 elf_link_input_bfd ignores this section. */
11232 input_section->flags &= ~SEC_HAS_CONTENTS;
11235 /* Skip this section later on (I don't think this
11236 currently matters, but someday it might). */
11237 o->map_head.link_order = NULL;
11239 /* Really remove the section. */
11240 bfd_section_list_remove (abfd, o);
11241 --abfd->section_count;
11246 /* There is one gptab for initialized data, and one for
11247 uninitialized data. */
11248 if (strcmp (o->name, ".gptab.sdata") == 0)
11249 gptab_data_sec = o;
11250 else if (strcmp (o->name, ".gptab.sbss") == 0)
11254 (*_bfd_error_handler)
11255 (_("%s: illegal section name `%s'"),
11256 bfd_get_filename (abfd), o->name);
11257 bfd_set_error (bfd_error_nonrepresentable_section);
11261 /* The linker script always combines .gptab.data and
11262 .gptab.sdata into .gptab.sdata, and likewise for
11263 .gptab.bss and .gptab.sbss. It is possible that there is
11264 no .sdata or .sbss section in the output file, in which
11265 case we must change the name of the output section. */
11266 subname = o->name + sizeof ".gptab" - 1;
11267 if (bfd_get_section_by_name (abfd, subname) == NULL)
11269 if (o == gptab_data_sec)
11270 o->name = ".gptab.data";
11272 o->name = ".gptab.bss";
11273 subname = o->name + sizeof ".gptab" - 1;
11274 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11277 /* Set up the first entry. */
11279 amt = c * sizeof (Elf32_gptab);
11280 tab = bfd_malloc (amt);
11283 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11284 tab[0].gt_header.gt_unused = 0;
11286 /* Combine the input sections. */
11287 for (p = o->map_head.link_order; p != NULL; p = p->next)
11289 asection *input_section;
11291 bfd_size_type size;
11292 unsigned long last;
11293 bfd_size_type gpentry;
11295 if (p->type != bfd_indirect_link_order)
11297 if (p->type == bfd_data_link_order)
11302 input_section = p->u.indirect.section;
11303 input_bfd = input_section->owner;
11305 /* Combine the gptab entries for this input section one
11306 by one. We know that the input gptab entries are
11307 sorted by ascending -G value. */
11308 size = input_section->size;
11310 for (gpentry = sizeof (Elf32_External_gptab);
11312 gpentry += sizeof (Elf32_External_gptab))
11314 Elf32_External_gptab ext_gptab;
11315 Elf32_gptab int_gptab;
11321 if (! (bfd_get_section_contents
11322 (input_bfd, input_section, &ext_gptab, gpentry,
11323 sizeof (Elf32_External_gptab))))
11329 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11331 val = int_gptab.gt_entry.gt_g_value;
11332 add = int_gptab.gt_entry.gt_bytes - last;
11335 for (look = 1; look < c; look++)
11337 if (tab[look].gt_entry.gt_g_value >= val)
11338 tab[look].gt_entry.gt_bytes += add;
11340 if (tab[look].gt_entry.gt_g_value == val)
11346 Elf32_gptab *new_tab;
11349 /* We need a new table entry. */
11350 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11351 new_tab = bfd_realloc (tab, amt);
11352 if (new_tab == NULL)
11358 tab[c].gt_entry.gt_g_value = val;
11359 tab[c].gt_entry.gt_bytes = add;
11361 /* Merge in the size for the next smallest -G
11362 value, since that will be implied by this new
11365 for (look = 1; look < c; look++)
11367 if (tab[look].gt_entry.gt_g_value < val
11369 || (tab[look].gt_entry.gt_g_value
11370 > tab[max].gt_entry.gt_g_value)))
11374 tab[c].gt_entry.gt_bytes +=
11375 tab[max].gt_entry.gt_bytes;
11380 last = int_gptab.gt_entry.gt_bytes;
11383 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11384 elf_link_input_bfd ignores this section. */
11385 input_section->flags &= ~SEC_HAS_CONTENTS;
11388 /* The table must be sorted by -G value. */
11390 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11392 /* Swap out the table. */
11393 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
11394 ext_tab = bfd_alloc (abfd, amt);
11395 if (ext_tab == NULL)
11401 for (j = 0; j < c; j++)
11402 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11405 o->size = c * sizeof (Elf32_External_gptab);
11406 o->contents = (bfd_byte *) ext_tab;
11408 /* Skip this section later on (I don't think this currently
11409 matters, but someday it might). */
11410 o->map_head.link_order = NULL;
11414 /* Invoke the regular ELF backend linker to do all the work. */
11415 if (!bfd_elf_final_link (abfd, info))
11418 /* Now write out the computed sections. */
11420 if (reginfo_sec != NULL)
11422 Elf32_External_RegInfo ext;
11424 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
11425 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
11429 if (mdebug_sec != NULL)
11431 BFD_ASSERT (abfd->output_has_begun);
11432 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11434 mdebug_sec->filepos))
11437 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11440 if (gptab_data_sec != NULL)
11442 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11443 gptab_data_sec->contents,
11444 0, gptab_data_sec->size))
11448 if (gptab_bss_sec != NULL)
11450 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11451 gptab_bss_sec->contents,
11452 0, gptab_bss_sec->size))
11456 if (SGI_COMPAT (abfd))
11458 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11459 if (rtproc_sec != NULL)
11461 if (! bfd_set_section_contents (abfd, rtproc_sec,
11462 rtproc_sec->contents,
11463 0, rtproc_sec->size))
11471 /* Structure for saying that BFD machine EXTENSION extends BASE. */
11473 struct mips_mach_extension {
11474 unsigned long extension, base;
11478 /* An array describing how BFD machines relate to one another. The entries
11479 are ordered topologically with MIPS I extensions listed last. */
11481 static const struct mips_mach_extension mips_mach_extensions[] = {
11482 /* MIPS64r2 extensions. */
11483 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
11485 /* MIPS64 extensions. */
11486 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
11487 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11489 /* MIPS V extensions. */
11490 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11492 /* R10000 extensions. */
11493 { bfd_mach_mips12000, bfd_mach_mips10000 },
11495 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11496 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11497 better to allow vr5400 and vr5500 code to be merged anyway, since
11498 many libraries will just use the core ISA. Perhaps we could add
11499 some sort of ASE flag if this ever proves a problem. */
11500 { bfd_mach_mips5500, bfd_mach_mips5400 },
11501 { bfd_mach_mips5400, bfd_mach_mips5000 },
11503 /* MIPS IV extensions. */
11504 { bfd_mach_mips5, bfd_mach_mips8000 },
11505 { bfd_mach_mips10000, bfd_mach_mips8000 },
11506 { bfd_mach_mips5000, bfd_mach_mips8000 },
11507 { bfd_mach_mips7000, bfd_mach_mips8000 },
11508 { bfd_mach_mips9000, bfd_mach_mips8000 },
11510 /* VR4100 extensions. */
11511 { bfd_mach_mips4120, bfd_mach_mips4100 },
11512 { bfd_mach_mips4111, bfd_mach_mips4100 },
11514 /* MIPS III extensions. */
11515 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11516 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
11517 { bfd_mach_mips8000, bfd_mach_mips4000 },
11518 { bfd_mach_mips4650, bfd_mach_mips4000 },
11519 { bfd_mach_mips4600, bfd_mach_mips4000 },
11520 { bfd_mach_mips4400, bfd_mach_mips4000 },
11521 { bfd_mach_mips4300, bfd_mach_mips4000 },
11522 { bfd_mach_mips4100, bfd_mach_mips4000 },
11523 { bfd_mach_mips4010, bfd_mach_mips4000 },
11525 /* MIPS32 extensions. */
11526 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11528 /* MIPS II extensions. */
11529 { bfd_mach_mips4000, bfd_mach_mips6000 },
11530 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11532 /* MIPS I extensions. */
11533 { bfd_mach_mips6000, bfd_mach_mips3000 },
11534 { bfd_mach_mips3900, bfd_mach_mips3000 }
11538 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11541 mips_mach_extends_p (unsigned long base, unsigned long extension)
11545 if (extension == base)
11548 if (base == bfd_mach_mipsisa32
11549 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11552 if (base == bfd_mach_mipsisa32r2
11553 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11556 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
11557 if (extension == mips_mach_extensions[i].extension)
11559 extension = mips_mach_extensions[i].base;
11560 if (extension == base)
11568 /* Return true if the given ELF header flags describe a 32-bit binary. */
11571 mips_32bit_flags_p (flagword flags)
11573 return ((flags & EF_MIPS_32BITMODE) != 0
11574 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11575 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11576 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11577 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11578 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11579 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11583 /* Merge object attributes from IBFD into OBFD. Raise an error if
11584 there are conflicting attributes. */
11586 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11588 obj_attribute *in_attr;
11589 obj_attribute *out_attr;
11591 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11593 /* This is the first object. Copy the attributes. */
11594 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11596 /* Use the Tag_null value to indicate the attributes have been
11598 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11603 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11604 non-conflicting ones. */
11605 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11606 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11607 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11609 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11610 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11611 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11612 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11614 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11616 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11617 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11618 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11620 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11621 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11623 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11626 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11630 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11636 (_("Warning: %B uses hard float, %B uses soft float"),
11642 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11652 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11656 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11662 (_("Warning: %B uses hard float, %B uses soft float"),
11668 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11678 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11684 (_("Warning: %B uses hard float, %B uses soft float"),
11694 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11698 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11704 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11710 (_("Warning: %B uses hard float, %B uses soft float"),
11724 /* Merge Tag_compatibility attributes and any common GNU ones. */
11725 _bfd_elf_merge_object_attributes (ibfd, obfd);
11730 /* Merge backend specific data from an object file to the output
11731 object file when linking. */
11734 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11736 flagword old_flags;
11737 flagword new_flags;
11739 bfd_boolean null_input_bfd = TRUE;
11742 /* Check if we have the same endianess */
11743 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11745 (*_bfd_error_handler)
11746 (_("%B: endianness incompatible with that of the selected emulation"),
11751 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11752 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11755 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11757 (*_bfd_error_handler)
11758 (_("%B: ABI is incompatible with that of the selected emulation"),
11763 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11766 new_flags = elf_elfheader (ibfd)->e_flags;
11767 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11768 old_flags = elf_elfheader (obfd)->e_flags;
11770 if (! elf_flags_init (obfd))
11772 elf_flags_init (obfd) = TRUE;
11773 elf_elfheader (obfd)->e_flags = new_flags;
11774 elf_elfheader (obfd)->e_ident[EI_CLASS]
11775 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11777 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11778 && (bfd_get_arch_info (obfd)->the_default
11779 || mips_mach_extends_p (bfd_get_mach (obfd),
11780 bfd_get_mach (ibfd))))
11782 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11783 bfd_get_mach (ibfd)))
11790 /* Check flag compatibility. */
11792 new_flags &= ~EF_MIPS_NOREORDER;
11793 old_flags &= ~EF_MIPS_NOREORDER;
11795 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11796 doesn't seem to matter. */
11797 new_flags &= ~EF_MIPS_XGOT;
11798 old_flags &= ~EF_MIPS_XGOT;
11800 /* MIPSpro generates ucode info in n64 objects. Again, we should
11801 just be able to ignore this. */
11802 new_flags &= ~EF_MIPS_UCODE;
11803 old_flags &= ~EF_MIPS_UCODE;
11805 /* Don't care about the PIC flags from dynamic objects; they are
11807 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11808 && (ibfd->flags & DYNAMIC) != 0)
11809 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11811 if (new_flags == old_flags)
11814 /* Check to see if the input BFD actually contains any sections.
11815 If not, its flags may not have been initialised either, but it cannot
11816 actually cause any incompatibility. */
11817 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11819 /* Ignore synthetic sections and empty .text, .data and .bss sections
11820 which are automatically generated by gas. */
11821 if (strcmp (sec->name, ".reginfo")
11822 && strcmp (sec->name, ".mdebug")
11824 || (strcmp (sec->name, ".text")
11825 && strcmp (sec->name, ".data")
11826 && strcmp (sec->name, ".bss"))))
11828 null_input_bfd = FALSE;
11832 if (null_input_bfd)
11837 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11838 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11840 (*_bfd_error_handler)
11841 (_("%B: warning: linking PIC files with non-PIC files"),
11846 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11847 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11848 if (! (new_flags & EF_MIPS_PIC))
11849 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11851 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11852 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11854 /* Compare the ISAs. */
11855 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11857 (*_bfd_error_handler)
11858 (_("%B: linking 32-bit code with 64-bit code"),
11862 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11864 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11865 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11867 /* Copy the architecture info from IBFD to OBFD. Also copy
11868 the 32-bit flag (if set) so that we continue to recognise
11869 OBFD as a 32-bit binary. */
11870 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11871 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11872 elf_elfheader (obfd)->e_flags
11873 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11875 /* Copy across the ABI flags if OBFD doesn't use them
11876 and if that was what caused us to treat IBFD as 32-bit. */
11877 if ((old_flags & EF_MIPS_ABI) == 0
11878 && mips_32bit_flags_p (new_flags)
11879 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11880 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11884 /* The ISAs aren't compatible. */
11885 (*_bfd_error_handler)
11886 (_("%B: linking %s module with previous %s modules"),
11888 bfd_printable_name (ibfd),
11889 bfd_printable_name (obfd));
11894 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11895 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11897 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11898 does set EI_CLASS differently from any 32-bit ABI. */
11899 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11900 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11901 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11903 /* Only error if both are set (to different values). */
11904 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11905 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11906 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11908 (*_bfd_error_handler)
11909 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11911 elf_mips_abi_name (ibfd),
11912 elf_mips_abi_name (obfd));
11915 new_flags &= ~EF_MIPS_ABI;
11916 old_flags &= ~EF_MIPS_ABI;
11919 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11920 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11922 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11924 new_flags &= ~ EF_MIPS_ARCH_ASE;
11925 old_flags &= ~ EF_MIPS_ARCH_ASE;
11928 /* Warn about any other mismatches */
11929 if (new_flags != old_flags)
11931 (*_bfd_error_handler)
11932 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11933 ibfd, (unsigned long) new_flags,
11934 (unsigned long) old_flags);
11940 bfd_set_error (bfd_error_bad_value);
11947 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11950 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11952 BFD_ASSERT (!elf_flags_init (abfd)
11953 || elf_elfheader (abfd)->e_flags == flags);
11955 elf_elfheader (abfd)->e_flags = flags;
11956 elf_flags_init (abfd) = TRUE;
11961 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
11965 default: return "";
11966 case DT_MIPS_RLD_VERSION:
11967 return "MIPS_RLD_VERSION";
11968 case DT_MIPS_TIME_STAMP:
11969 return "MIPS_TIME_STAMP";
11970 case DT_MIPS_ICHECKSUM:
11971 return "MIPS_ICHECKSUM";
11972 case DT_MIPS_IVERSION:
11973 return "MIPS_IVERSION";
11974 case DT_MIPS_FLAGS:
11975 return "MIPS_FLAGS";
11976 case DT_MIPS_BASE_ADDRESS:
11977 return "MIPS_BASE_ADDRESS";
11979 return "MIPS_MSYM";
11980 case DT_MIPS_CONFLICT:
11981 return "MIPS_CONFLICT";
11982 case DT_MIPS_LIBLIST:
11983 return "MIPS_LIBLIST";
11984 case DT_MIPS_LOCAL_GOTNO:
11985 return "MIPS_LOCAL_GOTNO";
11986 case DT_MIPS_CONFLICTNO:
11987 return "MIPS_CONFLICTNO";
11988 case DT_MIPS_LIBLISTNO:
11989 return "MIPS_LIBLISTNO";
11990 case DT_MIPS_SYMTABNO:
11991 return "MIPS_SYMTABNO";
11992 case DT_MIPS_UNREFEXTNO:
11993 return "MIPS_UNREFEXTNO";
11994 case DT_MIPS_GOTSYM:
11995 return "MIPS_GOTSYM";
11996 case DT_MIPS_HIPAGENO:
11997 return "MIPS_HIPAGENO";
11998 case DT_MIPS_RLD_MAP:
11999 return "MIPS_RLD_MAP";
12000 case DT_MIPS_DELTA_CLASS:
12001 return "MIPS_DELTA_CLASS";
12002 case DT_MIPS_DELTA_CLASS_NO:
12003 return "MIPS_DELTA_CLASS_NO";
12004 case DT_MIPS_DELTA_INSTANCE:
12005 return "MIPS_DELTA_INSTANCE";
12006 case DT_MIPS_DELTA_INSTANCE_NO:
12007 return "MIPS_DELTA_INSTANCE_NO";
12008 case DT_MIPS_DELTA_RELOC:
12009 return "MIPS_DELTA_RELOC";
12010 case DT_MIPS_DELTA_RELOC_NO:
12011 return "MIPS_DELTA_RELOC_NO";
12012 case DT_MIPS_DELTA_SYM:
12013 return "MIPS_DELTA_SYM";
12014 case DT_MIPS_DELTA_SYM_NO:
12015 return "MIPS_DELTA_SYM_NO";
12016 case DT_MIPS_DELTA_CLASSSYM:
12017 return "MIPS_DELTA_CLASSSYM";
12018 case DT_MIPS_DELTA_CLASSSYM_NO:
12019 return "MIPS_DELTA_CLASSSYM_NO";
12020 case DT_MIPS_CXX_FLAGS:
12021 return "MIPS_CXX_FLAGS";
12022 case DT_MIPS_PIXIE_INIT:
12023 return "MIPS_PIXIE_INIT";
12024 case DT_MIPS_SYMBOL_LIB:
12025 return "MIPS_SYMBOL_LIB";
12026 case DT_MIPS_LOCALPAGE_GOTIDX:
12027 return "MIPS_LOCALPAGE_GOTIDX";
12028 case DT_MIPS_LOCAL_GOTIDX:
12029 return "MIPS_LOCAL_GOTIDX";
12030 case DT_MIPS_HIDDEN_GOTIDX:
12031 return "MIPS_HIDDEN_GOTIDX";
12032 case DT_MIPS_PROTECTED_GOTIDX:
12033 return "MIPS_PROTECTED_GOT_IDX";
12034 case DT_MIPS_OPTIONS:
12035 return "MIPS_OPTIONS";
12036 case DT_MIPS_INTERFACE:
12037 return "MIPS_INTERFACE";
12038 case DT_MIPS_DYNSTR_ALIGN:
12039 return "DT_MIPS_DYNSTR_ALIGN";
12040 case DT_MIPS_INTERFACE_SIZE:
12041 return "DT_MIPS_INTERFACE_SIZE";
12042 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12043 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12044 case DT_MIPS_PERF_SUFFIX:
12045 return "DT_MIPS_PERF_SUFFIX";
12046 case DT_MIPS_COMPACT_SIZE:
12047 return "DT_MIPS_COMPACT_SIZE";
12048 case DT_MIPS_GP_VALUE:
12049 return "DT_MIPS_GP_VALUE";
12050 case DT_MIPS_AUX_DYNAMIC:
12051 return "DT_MIPS_AUX_DYNAMIC";
12056 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12060 BFD_ASSERT (abfd != NULL && ptr != NULL);
12062 /* Print normal ELF private data. */
12063 _bfd_elf_print_private_bfd_data (abfd, ptr);
12065 /* xgettext:c-format */
12066 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12068 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12069 fprintf (file, _(" [abi=O32]"));
12070 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12071 fprintf (file, _(" [abi=O64]"));
12072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12073 fprintf (file, _(" [abi=EABI32]"));
12074 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12075 fprintf (file, _(" [abi=EABI64]"));
12076 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12077 fprintf (file, _(" [abi unknown]"));
12078 else if (ABI_N32_P (abfd))
12079 fprintf (file, _(" [abi=N32]"));
12080 else if (ABI_64_P (abfd))
12081 fprintf (file, _(" [abi=64]"));
12083 fprintf (file, _(" [no abi set]"));
12085 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12086 fprintf (file, " [mips1]");
12087 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12088 fprintf (file, " [mips2]");
12089 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12090 fprintf (file, " [mips3]");
12091 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12092 fprintf (file, " [mips4]");
12093 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12094 fprintf (file, " [mips5]");
12095 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12096 fprintf (file, " [mips32]");
12097 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12098 fprintf (file, " [mips64]");
12099 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12100 fprintf (file, " [mips32r2]");
12101 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12102 fprintf (file, " [mips64r2]");
12104 fprintf (file, _(" [unknown ISA]"));
12106 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12107 fprintf (file, " [mdmx]");
12109 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12110 fprintf (file, " [mips16]");
12112 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12113 fprintf (file, " [32bitmode]");
12115 fprintf (file, _(" [not 32bitmode]"));
12117 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12118 fprintf (file, " [noreorder]");
12120 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12121 fprintf (file, " [PIC]");
12123 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12124 fprintf (file, " [CPIC]");
12126 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12127 fprintf (file, " [XGOT]");
12129 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12130 fprintf (file, " [UCODE]");
12132 fputc ('\n', file);
12137 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12139 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12140 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12141 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12142 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12143 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12144 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12145 { NULL, 0, 0, 0, 0 }
12148 /* Merge non visibility st_other attributes. Ensure that the
12149 STO_OPTIONAL flag is copied into h->other, even if this is not a
12150 definiton of the symbol. */
12152 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12153 const Elf_Internal_Sym *isym,
12154 bfd_boolean definition,
12155 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12157 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12159 unsigned char other;
12161 other = (definition ? isym->st_other : h->other);
12162 other &= ~ELF_ST_VISIBILITY (-1);
12163 h->other = other | ELF_ST_VISIBILITY (h->other);
12167 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12168 h->other |= STO_OPTIONAL;
12171 /* Decide whether an undefined symbol is special and can be ignored.
12172 This is the case for OPTIONAL symbols on IRIX. */
12174 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12176 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12180 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12182 return (sym->st_shndx == SHN_COMMON
12183 || sym->st_shndx == SHN_MIPS_ACOMMON
12184 || sym->st_shndx == SHN_MIPS_SCOMMON);