1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
47 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
48 #include "elf/dwarf.h"
51 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
53 #include "complaints.h"
57 #include <sys/types.h>
63 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
68 /* Some macros to provide DIE info for complaints. */
70 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
71 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
73 /* Complaints that can be issued during DWARF debug info reading. */
75 struct complaint no_bfd_get_N =
77 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 struct complaint malformed_die =
82 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 struct complaint bad_die_ref =
87 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 struct complaint unknown_attribute_form =
92 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 struct complaint unknown_attribute_length =
97 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 struct complaint unexpected_fund_type =
102 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 struct complaint unknown_type_modifier =
107 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 struct complaint volatile_ignored =
112 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 struct complaint const_ignored =
117 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 struct complaint botched_modified_type =
122 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 struct complaint op_deref2 =
127 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 struct complaint op_deref4 =
132 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 struct complaint basereg_not_handled =
137 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 struct complaint dup_user_type_allocation =
142 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 struct complaint dup_user_type_definition =
147 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 struct complaint missing_tag =
152 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 struct complaint bad_array_element_type =
157 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 struct complaint subscript_data_items =
162 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 struct complaint unhandled_array_subscript_format =
167 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 struct complaint unknown_array_subscript_format =
172 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 struct complaint not_row_major =
177 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 typedef unsigned int DIE_REF; /* Reference to a DIE */
183 #define GCC_PRODUCER "GNU C "
186 #ifndef GPLUS_PRODUCER
187 #define GPLUS_PRODUCER "GNU C++ "
191 #define LCC_PRODUCER "NCR C/C++"
194 #ifndef CHILL_PRODUCER
195 #define CHILL_PRODUCER "GNU Chill "
198 /* Flags to target_to_host() that tell whether or not the data object is
199 expected to be signed. Used, for example, when fetching a signed
200 integer in the target environment which is used as a signed integer
201 in the host environment, and the two environments have different sized
202 ints. In this case, *somebody* has to sign extend the smaller sized
205 #define GET_UNSIGNED 0 /* No sign extension required */
206 #define GET_SIGNED 1 /* Sign extension required */
208 /* Defines for things which are specified in the document "DWARF Debugging
209 Information Format" published by UNIX International, Programming Languages
210 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
212 #define SIZEOF_DIE_LENGTH 4
213 #define SIZEOF_DIE_TAG 2
214 #define SIZEOF_ATTRIBUTE 2
215 #define SIZEOF_FORMAT_SPECIFIER 1
216 #define SIZEOF_FMT_FT 2
217 #define SIZEOF_LINETBL_LENGTH 4
218 #define SIZEOF_LINETBL_LINENO 4
219 #define SIZEOF_LINETBL_STMT 2
220 #define SIZEOF_LINETBL_DELTA 4
221 #define SIZEOF_LOC_ATOM_CODE 1
223 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
225 /* Macros that return the sizes of various types of data in the target
228 FIXME: Currently these are just compile time constants (as they are in
229 other parts of gdb as well). They need to be able to get the right size
230 either from the bfd or possibly from the DWARF info. It would be nice if
231 the DWARF producer inserted DIES that describe the fundamental types in
232 the target environment into the DWARF info, similar to the way dbx stabs
233 producers produce information about their fundamental types. */
235 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
236 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
238 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
239 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
240 However, the Issue 2 DWARF specification from AT&T defines it as
241 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
242 For backwards compatibility with the AT&T compiler produced executables
243 we define AT_short_element_list for this variant. */
245 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
247 /* External variables referenced. */
249 extern int info_verbose; /* From main.c; nonzero => verbose */
250 extern char *warning_pre_print; /* From utils.c */
252 /* The DWARF debugging information consists of two major pieces,
253 one is a block of DWARF Information Entries (DIE's) and the other
254 is a line number table. The "struct dieinfo" structure contains
255 the information for a single DIE, the one currently being processed.
257 In order to make it easier to randomly access the attribute fields
258 of the current DIE, which are specifically unordered within the DIE,
259 each DIE is scanned and an instance of the "struct dieinfo"
260 structure is initialized.
262 Initialization is done in two levels. The first, done by basicdieinfo(),
263 just initializes those fields that are vital to deciding whether or not
264 to use this DIE, how to skip past it, etc. The second, done by the
265 function completedieinfo(), fills in the rest of the information.
267 Attributes which have block forms are not interpreted at the time
268 the DIE is scanned, instead we just save pointers to the start
269 of their value fields.
271 Some fields have a flag <name>_p that is set when the value of the
272 field is valid (I.E. we found a matching attribute in the DIE). Since
273 we may want to test for the presence of some attributes in the DIE,
274 such as AT_low_pc, without restricting the values of the field,
275 we need someway to note that we found such an attribute.
282 char * die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
290 unsigned short at_fund_type;
291 BLOCK * at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK * at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK * at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK * at_element_list;
300 unsigned long at_stmt_list;
301 unsigned long at_low_pc;
302 unsigned long at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK * at_discr_value;
307 BLOCK * at_string_length;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char * at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
320 static int diecount; /* Approximate count of dies for compilation unit */
321 static struct dieinfo *curdie; /* For warnings and such */
323 static char *dbbase; /* Base pointer to dwarf info */
324 static int dbsize; /* Size of dwarf info in bytes */
325 static int dbroff; /* Relative offset from start of .debug section */
326 static char *lnbase; /* Base pointer to line section */
327 static int isreg; /* Kludge to identify register variables */
328 /* Kludge to identify basereg references. Nonzero if we have an offset
329 relative to a basereg. */
331 /* Which base register is it relative to? */
334 /* This value is added to each symbol value. FIXME: Generalize to
335 the section_offsets structure used by dbxread (once this is done,
336 pass the appropriate section number to end_symtab). */
337 static CORE_ADDR baseaddr; /* Add to each symbol value */
339 /* The section offsets used in the current psymtab or symtab. FIXME,
340 only used to pass one value (baseaddr) at the moment. */
341 static struct section_offsets *base_section_offsets;
343 /* Each partial symbol table entry contains a pointer to private data for the
344 read_symtab() function to use when expanding a partial symbol table entry
345 to a full symbol table entry. For DWARF debugging info, this data is
346 contained in the following structure and macros are provided for easy
347 access to the members given a pointer to a partial symbol table entry.
349 dbfoff Always the absolute file offset to the start of the ".debug"
350 section for the file containing the DIE's being accessed.
352 dbroff Relative offset from the start of the ".debug" access to the
353 first DIE to be accessed. When building the partial symbol
354 table, this value will be zero since we are accessing the
355 entire ".debug" section. When expanding a partial symbol
356 table entry, this value will be the offset to the first
357 DIE for the compilation unit containing the symbol that
358 triggers the expansion.
360 dblength The size of the chunk of DIE's being examined, in bytes.
362 lnfoff The absolute file offset to the line table fragment. Ignored
363 when building partial symbol tables, but used when expanding
364 them, and contains the absolute file offset to the fragment
365 of the ".line" section containing the line numbers for the
366 current compilation unit.
370 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
371 int dbroff; /* Relative offset from start of .debug section */
372 int dblength; /* Size of the chunk of DIE's being examined */
373 file_ptr lnfoff; /* Absolute file offset to line table fragment */
376 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
377 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
378 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
379 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
381 /* The generic symbol table building routines have separate lists for
382 file scope symbols and all all other scopes (local scopes). So
383 we need to select the right one to pass to add_symbol_to_list().
384 We do it by keeping a pointer to the correct list in list_in_scope.
386 FIXME: The original dwarf code just treated the file scope as the first
387 local scope, and all other local scopes as nested local scopes, and worked
388 fine. Check to see if we really need to distinguish these in buildsym.c */
390 struct pending **list_in_scope = &file_symbols;
392 /* DIES which have user defined types or modified user defined types refer to
393 other DIES for the type information. Thus we need to associate the offset
394 of a DIE for a user defined type with a pointer to the type information.
396 Originally this was done using a simple but expensive algorithm, with an
397 array of unsorted structures, each containing an offset/type-pointer pair.
398 This array was scanned linearly each time a lookup was done. The result
399 was that gdb was spending over half it's startup time munging through this
400 array of pointers looking for a structure that had the right offset member.
402 The second attempt used the same array of structures, but the array was
403 sorted using qsort each time a new offset/type was recorded, and a binary
404 search was used to find the type pointer for a given DIE offset. This was
405 even slower, due to the overhead of sorting the array each time a new
406 offset/type pair was entered.
408 The third attempt uses a fixed size array of type pointers, indexed by a
409 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
410 we can divide any DIE offset by 4 to obtain a unique index into this fixed
411 size array. Since each element is a 4 byte pointer, it takes exactly as
412 much memory to hold this array as to hold the DWARF info for a given
413 compilation unit. But it gets freed as soon as we are done with it.
414 This has worked well in practice, as a reasonable tradeoff between memory
415 consumption and speed, without having to resort to much more complicated
418 static struct type **utypes; /* Pointer to array of user type pointers */
419 static int numutypes; /* Max number of user type pointers */
421 /* Maintain an array of referenced fundamental types for the current
422 compilation unit being read. For DWARF version 1, we have to construct
423 the fundamental types on the fly, since no information about the
424 fundamental types is supplied. Each such fundamental type is created by
425 calling a language dependent routine to create the type, and then a
426 pointer to that type is then placed in the array at the index specified
427 by it's FT_<TYPENAME> value. The array has a fixed size set by the
428 FT_NUM_MEMBERS compile time constant, which is the number of predefined
429 fundamental types gdb knows how to construct. */
431 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
433 /* Record the language for the compilation unit which is currently being
434 processed. We know it once we have seen the TAG_compile_unit DIE,
435 and we need it while processing the DIE's for that compilation unit.
436 It is eventually saved in the symtab structure, but we don't finalize
437 the symtab struct until we have processed all the DIE's for the
438 compilation unit. We also need to get and save a pointer to the
439 language struct for this language, so we can call the language
440 dependent routines for doing things such as creating fundamental
443 static enum language cu_language;
444 static const struct language_defn *cu_language_defn;
446 /* Forward declarations of static functions so we don't have to worry
447 about ordering within this file. */
450 attribute_size PARAMS ((unsigned int));
453 target_to_host PARAMS ((char *, int, int, struct objfile *));
456 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459 handle_producer PARAMS ((char *));
462 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
472 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
475 scan_compilation_units PARAMS ((char *, char *, file_ptr,
476 file_ptr, struct objfile *));
479 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
482 init_psymbol_list PARAMS ((struct objfile *, int));
485 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497 read_ofile_symtab PARAMS ((struct partial_symtab *));
500 process_dies PARAMS ((char *, char *, struct objfile *));
503 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
507 decode_array_element_type PARAMS ((char *));
510 decode_subscript_data_item PARAMS ((char *, char *));
513 dwarf_read_array_type PARAMS ((struct dieinfo *));
516 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519 read_tag_string_type PARAMS ((struct dieinfo *dip));
522 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534 decode_line_numbers PARAMS ((char *));
537 decode_die_type PARAMS ((struct dieinfo *));
540 decode_mod_fund_type PARAMS ((char *));
543 decode_mod_u_d_type PARAMS ((char *));
546 decode_modified_type PARAMS ((char *, unsigned int, int));
549 decode_fund_type PARAMS ((unsigned int));
552 create_name PARAMS ((char *, struct obstack *));
555 lookup_utype PARAMS ((DIE_REF));
558 alloc_utype PARAMS ((DIE_REF, struct type *));
560 static struct symbol *
561 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
568 locval PARAMS ((char *));
571 set_cu_language PARAMS ((struct dieinfo *));
574 dwarf_fundamental_type PARAMS ((struct objfile *, int));
581 dwarf_fundamental_type -- lookup or create a fundamental type
586 dwarf_fundamental_type (struct objfile *objfile, int typeid)
590 DWARF version 1 doesn't supply any fundamental type information,
591 so gdb has to construct such types. It has a fixed number of
592 fundamental types that it knows how to construct, which is the
593 union of all types that it knows how to construct for all languages
594 that it knows about. These are enumerated in gdbtypes.h.
596 As an example, assume we find a DIE that references a DWARF
597 fundamental type of FT_integer. We first look in the ftypes
598 array to see if we already have such a type, indexed by the
599 gdb internal value of FT_INTEGER. If so, we simply return a
600 pointer to that type. If not, then we ask an appropriate
601 language dependent routine to create a type FT_INTEGER, using
602 defaults reasonable for the current target machine, and install
603 that type in ftypes for future reference.
607 Pointer to a fundamental type.
612 dwarf_fundamental_type (objfile, typeid)
613 struct objfile *objfile;
616 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
618 error ("internal error - invalid fundamental type id %d", typeid);
621 /* Look for this particular type in the fundamental type vector. If one is
622 not found, create and install one appropriate for the current language
623 and the current target machine. */
625 if (ftypes[typeid] == NULL)
627 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 return (ftypes[typeid]);
637 set_cu_language -- set local copy of language for compilation unit
642 set_cu_language (struct dieinfo *dip)
646 Decode the language attribute for a compilation unit DIE and
647 remember what the language was. We use this at various times
648 when processing DIE's for a given compilation unit.
657 set_cu_language (dip)
660 switch (dip -> at_language)
664 cu_language = language_c;
666 case LANG_C_PLUS_PLUS:
667 cu_language = language_cplus;
670 cu_language = language_chill;
673 cu_language = language_m2;
681 /* We don't know anything special about these yet. */
682 cu_language = language_unknown;
685 /* If no at_language, try to deduce one from the filename */
686 cu_language = deduce_language_from_filename (dip -> at_name);
689 cu_language_defn = language_def (cu_language);
696 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
700 void dwarf_build_psymtabs (struct objfile *objfile,
701 struct section_offsets *section_offsets,
702 int mainline, file_ptr dbfoff, unsigned int dbfsize,
703 file_ptr lnoffset, unsigned int lnsize)
707 This function is called upon to build partial symtabs from files
708 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
710 It is passed a bfd* containing the DIES
711 and line number information, the corresponding filename for that
712 file, a base address for relocating the symbols, a flag indicating
713 whether or not this debugging information is from a "main symbol
714 table" rather than a shared library or dynamically linked file,
715 and file offset/size pairs for the DIE information and line number
725 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
727 struct objfile *objfile;
728 struct section_offsets *section_offsets;
731 unsigned int dbfsize;
735 bfd *abfd = objfile->obfd;
736 struct cleanup *back_to;
738 current_objfile = objfile;
740 dbbase = xmalloc (dbsize);
742 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
743 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
746 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
748 back_to = make_cleanup (free, dbbase);
750 /* If we are reinitializing, or if we have never loaded syms yet, init.
751 Since we have no idea how many DIES we are looking at, we just guess
752 some arbitrary value. */
754 if (mainline || objfile -> global_psymbols.size == 0 ||
755 objfile -> static_psymbols.size == 0)
757 init_psymbol_list (objfile, 1024);
760 /* Save the relocation factor where everybody can see it. */
762 base_section_offsets = section_offsets;
763 baseaddr = ANOFFSET (section_offsets, 0);
765 /* Follow the compilation unit sibling chain, building a partial symbol
766 table entry for each one. Save enough information about each compilation
767 unit to locate the full DWARF information later. */
769 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
771 do_cleanups (back_to);
772 current_objfile = NULL;
779 read_lexical_block_scope -- process all dies in a lexical block
783 static void read_lexical_block_scope (struct dieinfo *dip,
784 char *thisdie, char *enddie)
788 Process all the DIES contained within a lexical block scope.
789 Start a new scope, process the dies, and then close the scope.
794 read_lexical_block_scope (dip, thisdie, enddie, objfile)
798 struct objfile *objfile;
800 register struct context_stack *new;
802 push_context (0, dip -> at_low_pc);
803 process_dies (thisdie + dip -> die_length, enddie, objfile);
804 new = pop_context ();
805 if (local_symbols != NULL)
807 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
808 dip -> at_high_pc, objfile);
810 local_symbols = new -> locals;
817 lookup_utype -- look up a user defined type from die reference
821 static type *lookup_utype (DIE_REF die_ref)
825 Given a DIE reference, lookup the user defined type associated with
826 that DIE, if it has been registered already. If not registered, then
827 return NULL. Alloc_utype() can be called to register an empty
828 type for this reference, which will be filled in later when the
829 actual referenced DIE is processed.
833 lookup_utype (die_ref)
836 struct type *type = NULL;
839 utypeidx = (die_ref - dbroff) / 4;
840 if ((utypeidx < 0) || (utypeidx >= numutypes))
842 complain (&bad_die_ref, DIE_ID, DIE_NAME);
846 type = *(utypes + utypeidx);
856 alloc_utype -- add a user defined type for die reference
860 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
864 Given a die reference DIE_REF, and a possible pointer to a user
865 defined type UTYPEP, register that this reference has a user
866 defined type and either use the specified type in UTYPEP or
867 make a new empty type that will be filled in later.
869 We should only be called after calling lookup_utype() to verify that
870 there is not currently a type registered for DIE_REF.
874 alloc_utype (die_ref, utypep)
881 utypeidx = (die_ref - dbroff) / 4;
882 typep = utypes + utypeidx;
883 if ((utypeidx < 0) || (utypeidx >= numutypes))
885 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
886 complain (&bad_die_ref, DIE_ID, DIE_NAME);
888 else if (*typep != NULL)
891 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
897 utypep = alloc_type (current_objfile);
908 decode_die_type -- return a type for a specified die
912 static struct type *decode_die_type (struct dieinfo *dip)
916 Given a pointer to a die information structure DIP, decode the
917 type of the die and return a pointer to the decoded type. All
918 dies without specific types default to type int.
922 decode_die_type (dip)
925 struct type *type = NULL;
927 if (dip -> at_fund_type != 0)
929 type = decode_fund_type (dip -> at_fund_type);
931 else if (dip -> at_mod_fund_type != NULL)
933 type = decode_mod_fund_type (dip -> at_mod_fund_type);
935 else if (dip -> at_user_def_type)
937 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
939 type = alloc_utype (dip -> at_user_def_type, NULL);
942 else if (dip -> at_mod_u_d_type)
944 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
948 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
957 struct_type -- compute and return the type for a struct or union
961 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
962 char *enddie, struct objfile *objfile)
966 Given pointer to a die information structure for a die which
967 defines a union or structure (and MUST define one or the other),
968 and pointers to the raw die data that define the range of dies which
969 define the members, compute and return the user defined type for the
974 struct_type (dip, thisdie, enddie, objfile)
978 struct objfile *objfile;
982 struct nextfield *next;
985 struct nextfield *list = NULL;
986 struct nextfield *new;
995 if ((type = lookup_utype (dip -> die_ref)) == NULL)
997 /* No forward references created an empty type, so install one now */
998 type = alloc_utype (dip -> die_ref, NULL);
1000 INIT_CPLUS_SPECIFIC(type);
1001 switch (dip -> die_tag)
1003 case TAG_class_type:
1004 TYPE_CODE (type) = TYPE_CODE_CLASS;
1006 case TAG_structure_type:
1007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1009 case TAG_union_type:
1010 TYPE_CODE (type) = TYPE_CODE_UNION;
1013 /* Should never happen */
1014 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1015 complain (&missing_tag, DIE_ID, DIE_NAME);
1018 /* Some compilers try to be helpful by inventing "fake" names for
1019 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1020 Thanks, but no thanks... */
1021 if (dip -> at_name != NULL
1022 && *dip -> at_name != '~'
1023 && *dip -> at_name != '.')
1025 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1026 "", "", dip -> at_name);
1028 /* Use whatever size is known. Zero is a valid size. We might however
1029 wish to check has_at_byte_size to make sure that some byte size was
1030 given explicitly, but DWARF doesn't specify that explicit sizes of
1031 zero have to present, so complaining about missing sizes should
1032 probably not be the default. */
1033 TYPE_LENGTH (type) = dip -> at_byte_size;
1034 thisdie += dip -> die_length;
1035 while (thisdie < enddie)
1037 basicdieinfo (&mbr, thisdie, objfile);
1038 completedieinfo (&mbr, objfile);
1039 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1043 else if (mbr.at_sibling != 0)
1045 nextdie = dbbase + mbr.at_sibling - dbroff;
1049 nextdie = thisdie + mbr.die_length;
1051 switch (mbr.die_tag)
1054 /* Get space to record the next field's data. */
1055 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1058 /* Save the data. */
1059 list -> field.name =
1060 obsavestring (mbr.at_name, strlen (mbr.at_name),
1061 &objfile -> type_obstack);
1062 list -> field.type = decode_die_type (&mbr);
1063 list -> field.bitpos = 8 * locval (mbr.at_location);
1064 /* Handle bit fields. */
1065 list -> field.bitsize = mbr.at_bit_size;
1067 /* For big endian bits, the at_bit_offset gives the additional
1068 bit offset from the MSB of the containing anonymous object to
1069 the MSB of the field. We don't have to do anything special
1070 since we don't need to know the size of the anonymous object. */
1071 list -> field.bitpos += mbr.at_bit_offset;
1073 /* For little endian bits, we need to have a non-zero at_bit_size,
1074 so that we know we are in fact dealing with a bitfield. Compute
1075 the bit offset to the MSB of the anonymous object, subtract off
1076 the number of bits from the MSB of the field to the MSB of the
1077 object, and then subtract off the number of bits of the field
1078 itself. The result is the bit offset of the LSB of the field. */
1079 if (mbr.at_bit_size > 0)
1081 if (mbr.has_at_byte_size)
1083 /* The size of the anonymous object containing the bit field
1084 is explicit, so use the indicated size (in bytes). */
1085 anonymous_size = mbr.at_byte_size;
1089 /* The size of the anonymous object containing the bit field
1090 matches the size of an object of the bit field's type.
1091 DWARF allows at_byte_size to be left out in such cases,
1092 as a debug information size optimization. */
1093 anonymous_size = TYPE_LENGTH (list -> field.type);
1095 list -> field.bitpos +=
1096 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1102 process_dies (thisdie, nextdie, objfile);
1107 /* Now create the vector of fields, and record how big it is. We may
1108 not even have any fields, if this DIE was generated due to a reference
1109 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1110 set, which clues gdb in to the fact that it needs to search elsewhere
1111 for the full structure definition. */
1114 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1118 TYPE_NFIELDS (type) = nfields;
1119 TYPE_FIELDS (type) = (struct field *)
1120 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1121 /* Copy the saved-up fields into the field vector. */
1122 for (n = nfields; list; list = list -> next)
1124 TYPE_FIELD (type, --n) = list -> field;
1134 read_structure_scope -- process all dies within struct or union
1138 static void read_structure_scope (struct dieinfo *dip,
1139 char *thisdie, char *enddie, struct objfile *objfile)
1143 Called when we find the DIE that starts a structure or union
1144 scope (definition) to process all dies that define the members
1145 of the structure or union. DIP is a pointer to the die info
1146 struct for the DIE that names the structure or union.
1150 Note that we need to call struct_type regardless of whether or not
1151 the DIE has an at_name attribute, since it might be an anonymous
1152 structure or union. This gets the type entered into our set of
1155 However, if the structure is incomplete (an opaque struct/union)
1156 then suppress creating a symbol table entry for it since gdb only
1157 wants to find the one with the complete definition. Note that if
1158 it is complete, we just call new_symbol, which does it's own
1159 checking about whether the struct/union is anonymous or not (and
1160 suppresses creating a symbol table entry itself).
1165 read_structure_scope (dip, thisdie, enddie, objfile)
1166 struct dieinfo *dip;
1169 struct objfile *objfile;
1174 type = struct_type (dip, thisdie, enddie, objfile);
1175 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1177 sym = new_symbol (dip, objfile);
1180 SYMBOL_TYPE (sym) = type;
1181 if (cu_language == language_cplus)
1183 synthesize_typedef (dip, objfile, type);
1193 decode_array_element_type -- decode type of the array elements
1197 static struct type *decode_array_element_type (char *scan, char *end)
1201 As the last step in decoding the array subscript information for an
1202 array DIE, we need to decode the type of the array elements. We are
1203 passed a pointer to this last part of the subscript information and
1204 must return the appropriate type. If the type attribute is not
1205 recognized, just warn about the problem and return type int.
1208 static struct type *
1209 decode_array_element_type (scan)
1214 unsigned short attribute;
1215 unsigned short fundtype;
1218 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1220 scan += SIZEOF_ATTRIBUTE;
1221 if ((nbytes = attribute_size (attribute)) == -1)
1223 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1224 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1231 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1233 typep = decode_fund_type (fundtype);
1235 case AT_mod_fund_type:
1236 typep = decode_mod_fund_type (scan);
1238 case AT_user_def_type:
1239 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1241 if ((typep = lookup_utype (die_ref)) == NULL)
1243 typep = alloc_utype (die_ref, NULL);
1246 case AT_mod_u_d_type:
1247 typep = decode_mod_u_d_type (scan);
1250 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1251 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1262 decode_subscript_data_item -- decode array subscript item
1266 static struct type *
1267 decode_subscript_data_item (char *scan, char *end)
1271 The array subscripts and the data type of the elements of an
1272 array are described by a list of data items, stored as a block
1273 of contiguous bytes. There is a data item describing each array
1274 dimension, and a final data item describing the element type.
1275 The data items are ordered the same as their appearance in the
1276 source (I.E. leftmost dimension first, next to leftmost second,
1279 The data items describing each array dimension consist of four
1280 parts: (1) a format specifier, (2) type type of the subscript
1281 index, (3) a description of the low bound of the array dimension,
1282 and (4) a description of the high bound of the array dimension.
1284 The last data item is the description of the type of each of
1287 We are passed a pointer to the start of the block of bytes
1288 containing the remaining data items, and a pointer to the first
1289 byte past the data. This function recursively decodes the
1290 remaining data items and returns a type.
1292 If we somehow fail to decode some data, we complain about it
1293 and return a type "array of int".
1296 FIXME: This code only implements the forms currently used
1297 by the AT&T and GNU C compilers.
1299 The end pointer is supplied for error checking, maybe we should
1303 static struct type *
1304 decode_subscript_data_item (scan, end)
1308 struct type *typep = NULL; /* Array type we are building */
1309 struct type *nexttype; /* Type of each element (may be array) */
1310 struct type *indextype; /* Type of this index */
1311 struct type *rangetype;
1312 unsigned int format;
1313 unsigned short fundtype;
1314 unsigned long lowbound;
1315 unsigned long highbound;
1318 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1320 scan += SIZEOF_FORMAT_SPECIFIER;
1324 typep = decode_array_element_type (scan);
1327 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1329 indextype = decode_fund_type (fundtype);
1330 scan += SIZEOF_FMT_FT;
1331 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1332 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1334 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1336 nexttype = decode_subscript_data_item (scan, end);
1337 if (nexttype == NULL)
1339 /* Munged subscript data or other problem, fake it. */
1340 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1341 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1343 rangetype = create_range_type ((struct type *) NULL, indextype,
1344 lowbound, highbound);
1345 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1354 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1355 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1356 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1357 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1360 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1361 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1362 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1363 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1373 dwarf_read_array_type -- read TAG_array_type DIE
1377 static void dwarf_read_array_type (struct dieinfo *dip)
1381 Extract all information from a TAG_array_type DIE and add to
1382 the user defined type vector.
1386 dwarf_read_array_type (dip)
1387 struct dieinfo *dip;
1393 unsigned short blocksz;
1396 if (dip -> at_ordering != ORD_row_major)
1398 /* FIXME: Can gdb even handle column major arrays? */
1399 complain (¬_row_major, DIE_ID, DIE_NAME);
1401 if ((sub = dip -> at_subscr_data) != NULL)
1403 nbytes = attribute_size (AT_subscr_data);
1404 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1405 subend = sub + nbytes + blocksz;
1407 type = decode_subscript_data_item (sub, subend);
1408 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1410 /* Install user defined type that has not been referenced yet. */
1411 alloc_utype (dip -> die_ref, type);
1413 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1415 /* Ick! A forward ref has already generated a blank type in our
1416 slot, and this type probably already has things pointing to it
1417 (which is what caused it to be created in the first place).
1418 If it's just a place holder we can plop our fully defined type
1419 on top of it. We can't recover the space allocated for our
1420 new type since it might be on an obstack, but we could reuse
1421 it if we kept a list of them, but it might not be worth it
1427 /* Double ick! Not only is a type already in our slot, but
1428 someone has decorated it. Complain and leave it alone. */
1429 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1438 read_tag_pointer_type -- read TAG_pointer_type DIE
1442 static void read_tag_pointer_type (struct dieinfo *dip)
1446 Extract all information from a TAG_pointer_type DIE and add to
1447 the user defined type vector.
1451 read_tag_pointer_type (dip)
1452 struct dieinfo *dip;
1457 type = decode_die_type (dip);
1458 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1460 utype = lookup_pointer_type (type);
1461 alloc_utype (dip -> die_ref, utype);
1465 TYPE_TARGET_TYPE (utype) = type;
1466 TYPE_POINTER_TYPE (type) = utype;
1468 /* We assume the machine has only one representation for pointers! */
1469 /* FIXME: This confuses host<->target data representations, and is a
1470 poor assumption besides. */
1472 TYPE_LENGTH (utype) = sizeof (char *);
1473 TYPE_CODE (utype) = TYPE_CODE_PTR;
1481 read_tag_string_type -- read TAG_string_type DIE
1485 static void read_tag_string_type (struct dieinfo *dip)
1489 Extract all information from a TAG_string_type DIE and add to
1490 the user defined type vector. It isn't really a user defined
1491 type, but it behaves like one, with other DIE's using an
1492 AT_user_def_type attribute to reference it.
1496 read_tag_string_type (dip)
1497 struct dieinfo *dip;
1500 struct type *indextype;
1501 struct type *rangetype;
1502 unsigned long lowbound = 0;
1503 unsigned long highbound;
1505 if (dip -> has_at_byte_size)
1507 /* A fixed bounds string */
1508 highbound = dip -> at_byte_size - 1;
1512 /* A varying length string. Stub for now. (FIXME) */
1515 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1516 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1519 utype = lookup_utype (dip -> die_ref);
1522 /* No type defined, go ahead and create a blank one to use. */
1523 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1527 /* Already a type in our slot due to a forward reference. Make sure it
1528 is a blank one. If not, complain and leave it alone. */
1529 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1531 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1536 /* Create the string type using the blank type we either found or created. */
1537 utype = create_string_type (utype, rangetype);
1544 read_subroutine_type -- process TAG_subroutine_type dies
1548 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1553 Handle DIES due to C code like:
1556 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1562 The parameter DIES are currently ignored. See if gdb has a way to
1563 include this info in it's type system, and decode them if so. Is
1564 this what the type structure's "arg_types" field is for? (FIXME)
1568 read_subroutine_type (dip, thisdie, enddie)
1569 struct dieinfo *dip;
1573 struct type *type; /* Type that this function returns */
1574 struct type *ftype; /* Function that returns above type */
1576 /* Decode the type that this subroutine returns */
1578 type = decode_die_type (dip);
1580 /* Check to see if we already have a partially constructed user
1581 defined type for this DIE, from a forward reference. */
1583 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1585 /* This is the first reference to one of these types. Make
1586 a new one and place it in the user defined types. */
1587 ftype = lookup_function_type (type);
1588 alloc_utype (dip -> die_ref, ftype);
1590 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1592 /* We have an existing partially constructed type, so bash it
1593 into the correct type. */
1594 TYPE_TARGET_TYPE (ftype) = type;
1595 TYPE_FUNCTION_TYPE (type) = ftype;
1596 TYPE_LENGTH (ftype) = 1;
1597 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1601 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1609 read_enumeration -- process dies which define an enumeration
1613 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1614 char *enddie, struct objfile *objfile)
1618 Given a pointer to a die which begins an enumeration, process all
1619 the dies that define the members of the enumeration.
1623 Note that we need to call enum_type regardless of whether or not we
1624 have a symbol, since we might have an enum without a tag name (thus
1625 no symbol for the tagname).
1629 read_enumeration (dip, thisdie, enddie, objfile)
1630 struct dieinfo *dip;
1633 struct objfile *objfile;
1638 type = enum_type (dip, objfile);
1639 sym = new_symbol (dip, objfile);
1642 SYMBOL_TYPE (sym) = type;
1643 if (cu_language == language_cplus)
1645 synthesize_typedef (dip, objfile, type);
1654 enum_type -- decode and return a type for an enumeration
1658 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1662 Given a pointer to a die information structure for the die which
1663 starts an enumeration, process all the dies that define the members
1664 of the enumeration and return a type pointer for the enumeration.
1666 At the same time, for each member of the enumeration, create a
1667 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1668 and give it the type of the enumeration itself.
1672 Note that the DWARF specification explicitly mandates that enum
1673 constants occur in reverse order from the source program order,
1674 for "consistency" and because this ordering is easier for many
1675 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1676 Entries). Because gdb wants to see the enum members in program
1677 source order, we have to ensure that the order gets reversed while
1678 we are processing them.
1681 static struct type *
1682 enum_type (dip, objfile)
1683 struct dieinfo *dip;
1684 struct objfile *objfile;
1688 struct nextfield *next;
1691 struct nextfield *list = NULL;
1692 struct nextfield *new;
1697 unsigned short blocksz;
1701 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1703 /* No forward references created an empty type, so install one now */
1704 type = alloc_utype (dip -> die_ref, NULL);
1706 TYPE_CODE (type) = TYPE_CODE_ENUM;
1707 /* Some compilers try to be helpful by inventing "fake" names for
1708 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1709 Thanks, but no thanks... */
1710 if (dip -> at_name != NULL
1711 && *dip -> at_name != '~'
1712 && *dip -> at_name != '.')
1714 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1715 "", "", dip -> at_name);
1717 if (dip -> at_byte_size != 0)
1719 TYPE_LENGTH (type) = dip -> at_byte_size;
1721 if ((scan = dip -> at_element_list) != NULL)
1723 if (dip -> short_element_list)
1725 nbytes = attribute_size (AT_short_element_list);
1729 nbytes = attribute_size (AT_element_list);
1731 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1732 listend = scan + nbytes + blocksz;
1734 while (scan < listend)
1736 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1739 list -> field.type = NULL;
1740 list -> field.bitsize = 0;
1741 list -> field.bitpos =
1742 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1744 scan += TARGET_FT_LONG_SIZE (objfile);
1745 list -> field.name = obsavestring (scan, strlen (scan),
1746 &objfile -> type_obstack);
1747 scan += strlen (scan) + 1;
1749 /* Handcraft a new symbol for this enum member. */
1750 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1751 sizeof (struct symbol));
1752 memset (sym, 0, sizeof (struct symbol));
1753 SYMBOL_NAME (sym) = create_name (list -> field.name,
1754 &objfile->symbol_obstack);
1755 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1756 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1757 SYMBOL_CLASS (sym) = LOC_CONST;
1758 SYMBOL_TYPE (sym) = type;
1759 SYMBOL_VALUE (sym) = list -> field.bitpos;
1760 add_symbol_to_list (sym, list_in_scope);
1762 /* Now create the vector of fields, and record how big it is. This is
1763 where we reverse the order, by pulling the members off the list in
1764 reverse order from how they were inserted. If we have no fields
1765 (this is apparently possible in C++) then skip building a field
1769 TYPE_NFIELDS (type) = nfields;
1770 TYPE_FIELDS (type) = (struct field *)
1771 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1772 /* Copy the saved-up fields into the field vector. */
1773 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1775 TYPE_FIELD (type, n++) = list -> field;
1786 read_func_scope -- process all dies within a function scope
1790 Process all dies within a given function scope. We are passed
1791 a die information structure pointer DIP for the die which
1792 starts the function scope, and pointers into the raw die data
1793 that define the dies within the function scope.
1795 For now, we ignore lexical block scopes within the function.
1796 The problem is that AT&T cc does not define a DWARF lexical
1797 block scope for the function itself, while gcc defines a
1798 lexical block scope for the function. We need to think about
1799 how to handle this difference, or if it is even a problem.
1804 read_func_scope (dip, thisdie, enddie, objfile)
1805 struct dieinfo *dip;
1808 struct objfile *objfile;
1810 register struct context_stack *new;
1812 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1813 objfile -> ei.entry_point < dip -> at_high_pc)
1815 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1816 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1818 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1820 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1821 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1823 new = push_context (0, dip -> at_low_pc);
1824 new -> name = new_symbol (dip, objfile);
1825 list_in_scope = &local_symbols;
1826 process_dies (thisdie + dip -> die_length, enddie, objfile);
1827 new = pop_context ();
1828 /* Make a block for the local symbols within. */
1829 finish_block (new -> name, &local_symbols, new -> old_blocks,
1830 new -> start_addr, dip -> at_high_pc, objfile);
1831 list_in_scope = &file_symbols;
1839 handle_producer -- process the AT_producer attribute
1843 Perform any operations that depend on finding a particular
1844 AT_producer attribute.
1849 handle_producer (producer)
1853 /* If this compilation unit was compiled with g++ or gcc, then set the
1854 processing_gcc_compilation flag. */
1856 processing_gcc_compilation =
1857 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1858 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1859 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1861 /* Select a demangling style if we can identify the producer and if
1862 the current style is auto. We leave the current style alone if it
1863 is not auto. We also leave the demangling style alone if we find a
1864 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1866 if (AUTO_DEMANGLING)
1868 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1870 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1872 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1874 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1884 read_file_scope -- process all dies within a file scope
1888 Process all dies within a given file scope. We are passed a
1889 pointer to the die information structure for the die which
1890 starts the file scope, and pointers into the raw die data which
1891 mark the range of dies within the file scope.
1893 When the partial symbol table is built, the file offset for the line
1894 number table for each compilation unit is saved in the partial symbol
1895 table entry for that compilation unit. As the symbols for each
1896 compilation unit are read, the line number table is read into memory
1897 and the variable lnbase is set to point to it. Thus all we have to
1898 do is use lnbase to access the line number table for the current
1903 read_file_scope (dip, thisdie, enddie, objfile)
1904 struct dieinfo *dip;
1907 struct objfile *objfile;
1909 struct cleanup *back_to;
1910 struct symtab *symtab;
1912 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1913 objfile -> ei.entry_point < dip -> at_high_pc)
1915 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1916 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1918 set_cu_language (dip);
1919 if (dip -> at_producer != NULL)
1921 handle_producer (dip -> at_producer);
1923 numutypes = (enddie - thisdie) / 4;
1924 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1925 back_to = make_cleanup (free, utypes);
1926 memset (utypes, 0, numutypes * sizeof (struct type *));
1927 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1928 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1929 decode_line_numbers (lnbase);
1930 process_dies (thisdie + dip -> die_length, enddie, objfile);
1932 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1935 symtab -> language = cu_language;
1937 do_cleanups (back_to);
1946 process_dies -- process a range of DWARF Information Entries
1950 static void process_dies (char *thisdie, char *enddie,
1951 struct objfile *objfile)
1955 Process all DIE's in a specified range. May be (and almost
1956 certainly will be) called recursively.
1960 process_dies (thisdie, enddie, objfile)
1963 struct objfile *objfile;
1968 while (thisdie < enddie)
1970 basicdieinfo (&di, thisdie, objfile);
1971 if (di.die_length < SIZEOF_DIE_LENGTH)
1975 else if (di.die_tag == TAG_padding)
1977 nextdie = thisdie + di.die_length;
1981 completedieinfo (&di, objfile);
1982 if (di.at_sibling != 0)
1984 nextdie = dbbase + di.at_sibling - dbroff;
1988 nextdie = thisdie + di.die_length;
1992 case TAG_compile_unit:
1993 read_file_scope (&di, thisdie, nextdie, objfile);
1995 case TAG_global_subroutine:
1996 case TAG_subroutine:
1997 if (di.has_at_low_pc)
1999 read_func_scope (&di, thisdie, nextdie, objfile);
2002 case TAG_lexical_block:
2003 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2005 case TAG_class_type:
2006 case TAG_structure_type:
2007 case TAG_union_type:
2008 read_structure_scope (&di, thisdie, nextdie, objfile);
2010 case TAG_enumeration_type:
2011 read_enumeration (&di, thisdie, nextdie, objfile);
2013 case TAG_subroutine_type:
2014 read_subroutine_type (&di, thisdie, nextdie);
2016 case TAG_array_type:
2017 dwarf_read_array_type (&di);
2019 case TAG_pointer_type:
2020 read_tag_pointer_type (&di);
2022 case TAG_string_type:
2023 read_tag_string_type (&di);
2026 new_symbol (&di, objfile);
2038 decode_line_numbers -- decode a line number table fragment
2042 static void decode_line_numbers (char *tblscan, char *tblend,
2043 long length, long base, long line, long pc)
2047 Translate the DWARF line number information to gdb form.
2049 The ".line" section contains one or more line number tables, one for
2050 each ".line" section from the objects that were linked.
2052 The AT_stmt_list attribute for each TAG_source_file entry in the
2053 ".debug" section contains the offset into the ".line" section for the
2054 start of the table for that file.
2056 The table itself has the following structure:
2058 <table length><base address><source statement entry>
2059 4 bytes 4 bytes 10 bytes
2061 The table length is the total size of the table, including the 4 bytes
2062 for the length information.
2064 The base address is the address of the first instruction generated
2065 for the source file.
2067 Each source statement entry has the following structure:
2069 <line number><statement position><address delta>
2070 4 bytes 2 bytes 4 bytes
2072 The line number is relative to the start of the file, starting with
2075 The statement position either -1 (0xFFFF) or the number of characters
2076 from the beginning of the line to the beginning of the statement.
2078 The address delta is the difference between the base address and
2079 the address of the first instruction for the statement.
2081 Note that we must copy the bytes from the packed table to our local
2082 variables before attempting to use them, to avoid alignment problems
2083 on some machines, particularly RISC processors.
2087 Does gdb expect the line numbers to be sorted? They are now by
2088 chance/luck, but are not required to be. (FIXME)
2090 The line with number 0 is unused, gdb apparently can discover the
2091 span of the last line some other way. How? (FIXME)
2095 decode_line_numbers (linetable)
2100 unsigned long length;
2105 if (linetable != NULL)
2107 tblscan = tblend = linetable;
2108 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2110 tblscan += SIZEOF_LINETBL_LENGTH;
2112 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2113 GET_UNSIGNED, current_objfile);
2114 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2116 while (tblscan < tblend)
2118 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2120 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2121 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2123 tblscan += SIZEOF_LINETBL_DELTA;
2127 record_line (current_subfile, line, pc);
2137 locval -- compute the value of a location attribute
2141 static int locval (char *loc)
2145 Given pointer to a string of bytes that define a location, compute
2146 the location and return the value.
2148 When computing values involving the current value of the frame pointer,
2149 the value zero is used, which results in a value relative to the frame
2150 pointer, rather than the absolute value. This is what GDB wants
2153 When the result is a register number, the global isreg flag is set,
2154 otherwise it is cleared. This is a kludge until we figure out a better
2155 way to handle the problem. Gdb's design does not mesh well with the
2156 DWARF notion of a location computing interpreter, which is a shame
2157 because the flexibility goes unused.
2161 Note that stack[0] is unused except as a default error return.
2162 Note that stack overflow is not yet handled.
2169 unsigned short nbytes;
2170 unsigned short locsize;
2171 auto long stack[64];
2177 nbytes = attribute_size (AT_location);
2178 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2180 end = loc + locsize;
2185 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2188 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2190 loc += SIZEOF_LOC_ATOM_CODE;
2191 switch (loc_atom_code)
2198 /* push register (number) */
2199 stack[++stacki] = target_to_host (loc, loc_value_size,
2200 GET_UNSIGNED, current_objfile);
2201 loc += loc_value_size;
2205 /* push value of register (number) */
2206 /* Actually, we compute the value as if register has 0, so the
2207 value ends up being the offset from that register. */
2209 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2211 loc += loc_value_size;
2212 stack[++stacki] = 0;
2215 /* push address (relocated address) */
2216 stack[++stacki] = target_to_host (loc, loc_value_size,
2217 GET_UNSIGNED, current_objfile);
2218 loc += loc_value_size;
2221 /* push constant (number) FIXME: signed or unsigned! */
2222 stack[++stacki] = target_to_host (loc, loc_value_size,
2223 GET_SIGNED, current_objfile);
2224 loc += loc_value_size;
2227 /* pop, deref and push 2 bytes (as a long) */
2228 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2230 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2231 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2233 case OP_ADD: /* pop top 2 items, add, push result */
2234 stack[stacki - 1] += stack[stacki];
2239 return (stack[stacki]);
2246 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2250 static void read_ofile_symtab (struct partial_symtab *pst)
2254 When expanding a partial symbol table entry to a full symbol table
2255 entry, this is the function that gets called to read in the symbols
2256 for the compilation unit. A pointer to the newly constructed symtab,
2257 which is now the new first one on the objfile's symtab list, is
2258 stashed in the partial symbol table entry.
2262 read_ofile_symtab (pst)
2263 struct partial_symtab *pst;
2265 struct cleanup *back_to;
2266 unsigned long lnsize;
2269 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2271 abfd = pst -> objfile -> obfd;
2272 current_objfile = pst -> objfile;
2274 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2275 unit, seek to the location in the file, and read in all the DIE's. */
2278 dbsize = DBLENGTH (pst);
2279 dbbase = xmalloc (dbsize);
2280 dbroff = DBROFF(pst);
2281 foffset = DBFOFF(pst) + dbroff;
2282 base_section_offsets = pst->section_offsets;
2283 baseaddr = ANOFFSET (pst->section_offsets, 0);
2284 if (bfd_seek (abfd, foffset, L_SET) ||
2285 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2288 error ("can't read DWARF data");
2290 back_to = make_cleanup (free, dbbase);
2292 /* If there is a line number table associated with this compilation unit
2293 then read the size of this fragment in bytes, from the fragment itself.
2294 Allocate a buffer for the fragment and read it in for future
2300 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2301 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2302 sizeof (lnsizedata)))
2304 error ("can't read DWARF line number table size");
2306 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2307 GET_UNSIGNED, pst -> objfile);
2308 lnbase = xmalloc (lnsize);
2309 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2310 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2313 error ("can't read DWARF line numbers");
2315 make_cleanup (free, lnbase);
2318 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2319 do_cleanups (back_to);
2320 current_objfile = NULL;
2321 pst -> symtab = pst -> objfile -> symtabs;
2328 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2332 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2336 Called once for each partial symbol table entry that needs to be
2337 expanded into a full symbol table entry.
2342 psymtab_to_symtab_1 (pst)
2343 struct partial_symtab *pst;
2346 struct cleanup *old_chain;
2352 warning ("psymtab for %s already read in. Shouldn't happen.",
2357 /* Read in all partial symtabs on which this one is dependent */
2358 for (i = 0; i < pst -> number_of_dependencies; i++)
2360 if (!pst -> dependencies[i] -> readin)
2362 /* Inform about additional files that need to be read in. */
2365 fputs_filtered (" ", stdout);
2367 fputs_filtered ("and ", stdout);
2369 printf_filtered ("%s...",
2370 pst -> dependencies[i] -> filename);
2372 fflush (stdout); /* Flush output */
2374 psymtab_to_symtab_1 (pst -> dependencies[i]);
2377 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2380 old_chain = make_cleanup (really_free_pendings, 0);
2381 read_ofile_symtab (pst);
2384 printf_filtered ("%d DIE's, sorting...", diecount);
2388 sort_symtab_syms (pst -> symtab);
2389 do_cleanups (old_chain);
2400 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2404 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2408 This is the DWARF support entry point for building a full symbol
2409 table entry from a partial symbol table entry. We are passed a
2410 pointer to the partial symbol table entry that needs to be expanded.
2415 dwarf_psymtab_to_symtab (pst)
2416 struct partial_symtab *pst;
2423 warning ("psymtab for %s already read in. Shouldn't happen.",
2428 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2430 /* Print the message now, before starting serious work, to avoid
2431 disconcerting pauses. */
2434 printf_filtered ("Reading in symbols for %s...",
2439 psymtab_to_symtab_1 (pst);
2441 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2442 we need to do an equivalent or is this something peculiar to
2444 Match with global symbols. This only needs to be done once,
2445 after all of the symtabs and dependencies have been read in.
2447 scan_file_globals (pst -> objfile);
2450 /* Finish up the verbose info message. */
2453 printf_filtered ("done.\n");
2465 init_psymbol_list -- initialize storage for partial symbols
2469 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2473 Initializes storage for all of the partial symbols that will be
2474 created by dwarf_build_psymtabs and subsidiaries.
2478 init_psymbol_list (objfile, total_symbols)
2479 struct objfile *objfile;
2482 /* Free any previously allocated psymbol lists. */
2484 if (objfile -> global_psymbols.list)
2486 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2488 if (objfile -> static_psymbols.list)
2490 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2493 /* Current best guess is that there are approximately a twentieth
2494 of the total symbols (in a debugging file) are global or static
2497 objfile -> global_psymbols.size = total_symbols / 10;
2498 objfile -> static_psymbols.size = total_symbols / 10;
2499 objfile -> global_psymbols.next =
2500 objfile -> global_psymbols.list = (struct partial_symbol *)
2501 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2502 * sizeof (struct partial_symbol));
2503 objfile -> static_psymbols.next =
2504 objfile -> static_psymbols.list = (struct partial_symbol *)
2505 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2506 * sizeof (struct partial_symbol));
2513 add_enum_psymbol -- add enumeration members to partial symbol table
2517 Given pointer to a DIE that is known to be for an enumeration,
2518 extract the symbolic names of the enumeration members and add
2519 partial symbols for them.
2523 add_enum_psymbol (dip, objfile)
2524 struct dieinfo *dip;
2525 struct objfile *objfile;
2529 unsigned short blocksz;
2532 if ((scan = dip -> at_element_list) != NULL)
2534 if (dip -> short_element_list)
2536 nbytes = attribute_size (AT_short_element_list);
2540 nbytes = attribute_size (AT_element_list);
2542 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2544 listend = scan + blocksz;
2545 while (scan < listend)
2547 scan += TARGET_FT_LONG_SIZE (objfile);
2548 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2549 objfile -> static_psymbols, 0, cu_language,
2551 scan += strlen (scan) + 1;
2560 add_partial_symbol -- add symbol to partial symbol table
2564 Given a DIE, if it is one of the types that we want to
2565 add to a partial symbol table, finish filling in the die info
2566 and then add a partial symbol table entry for it.
2570 The caller must ensure that the DIE has a valid name attribute.
2574 add_partial_symbol (dip, objfile)
2575 struct dieinfo *dip;
2576 struct objfile *objfile;
2578 switch (dip -> die_tag)
2580 case TAG_global_subroutine:
2581 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2582 VAR_NAMESPACE, LOC_BLOCK,
2583 objfile -> global_psymbols,
2584 dip -> at_low_pc, cu_language, objfile);
2586 case TAG_global_variable:
2587 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2588 VAR_NAMESPACE, LOC_STATIC,
2589 objfile -> global_psymbols,
2590 0, cu_language, objfile);
2592 case TAG_subroutine:
2593 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2594 VAR_NAMESPACE, LOC_BLOCK,
2595 objfile -> static_psymbols,
2596 dip -> at_low_pc, cu_language, objfile);
2598 case TAG_local_variable:
2599 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2600 VAR_NAMESPACE, LOC_STATIC,
2601 objfile -> static_psymbols,
2602 0, cu_language, objfile);
2605 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2606 VAR_NAMESPACE, LOC_TYPEDEF,
2607 objfile -> static_psymbols,
2608 0, cu_language, objfile);
2610 case TAG_class_type:
2611 case TAG_structure_type:
2612 case TAG_union_type:
2613 case TAG_enumeration_type:
2614 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2615 STRUCT_NAMESPACE, LOC_TYPEDEF,
2616 objfile -> static_psymbols,
2617 0, cu_language, objfile);
2618 if (cu_language == language_cplus)
2620 /* For C++, these implicitly act as typedefs as well. */
2621 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2622 VAR_NAMESPACE, LOC_TYPEDEF,
2623 objfile -> static_psymbols,
2624 0, cu_language, objfile);
2634 scan_partial_symbols -- scan DIE's within a single compilation unit
2638 Process the DIE's within a single compilation unit, looking for
2639 interesting DIE's that contribute to the partial symbol table entry
2640 for this compilation unit.
2644 There are some DIE's that may appear both at file scope and within
2645 the scope of a function. We are only interested in the ones at file
2646 scope, and the only way to tell them apart is to keep track of the
2647 scope. For example, consider the test case:
2652 for which the relevant DWARF segment has the structure:
2655 0x23 global subrtn sibling 0x9b
2657 fund_type FT_integer
2662 0x23 local var sibling 0x97
2664 fund_type FT_integer
2665 location OP_BASEREG 0xe
2672 0x1d local var sibling 0xb8
2674 fund_type FT_integer
2675 location OP_ADDR 0x800025dc
2680 We want to include the symbol 'i' in the partial symbol table, but
2681 not the symbol 'j'. In essence, we want to skip all the dies within
2682 the scope of a TAG_global_subroutine DIE.
2684 Don't attempt to add anonymous structures or unions since they have
2685 no name. Anonymous enumerations however are processed, because we
2686 want to extract their member names (the check for a tag name is
2689 Also, for variables and subroutines, check that this is the place
2690 where the actual definition occurs, rather than just a reference
2695 scan_partial_symbols (thisdie, enddie, objfile)
2698 struct objfile *objfile;
2704 while (thisdie < enddie)
2706 basicdieinfo (&di, thisdie, objfile);
2707 if (di.die_length < SIZEOF_DIE_LENGTH)
2713 nextdie = thisdie + di.die_length;
2714 /* To avoid getting complete die information for every die, we
2715 only do it (below) for the cases we are interested in. */
2718 case TAG_global_subroutine:
2719 case TAG_subroutine:
2720 completedieinfo (&di, objfile);
2721 if (di.at_name && (di.has_at_low_pc || di.at_location))
2723 add_partial_symbol (&di, objfile);
2724 /* If there is a sibling attribute, adjust the nextdie
2725 pointer to skip the entire scope of the subroutine.
2726 Apply some sanity checking to make sure we don't
2727 overrun or underrun the range of remaining DIE's */
2728 if (di.at_sibling != 0)
2730 temp = dbbase + di.at_sibling - dbroff;
2731 if ((temp < thisdie) || (temp >= enddie))
2733 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2743 case TAG_global_variable:
2744 case TAG_local_variable:
2745 completedieinfo (&di, objfile);
2746 if (di.at_name && (di.has_at_low_pc || di.at_location))
2748 add_partial_symbol (&di, objfile);
2752 case TAG_class_type:
2753 case TAG_structure_type:
2754 case TAG_union_type:
2755 completedieinfo (&di, objfile);
2758 add_partial_symbol (&di, objfile);
2761 case TAG_enumeration_type:
2762 completedieinfo (&di, objfile);
2765 add_partial_symbol (&di, objfile);
2767 add_enum_psymbol (&di, objfile);
2779 scan_compilation_units -- build a psymtab entry for each compilation
2783 This is the top level dwarf parsing routine for building partial
2786 It scans from the beginning of the DWARF table looking for the first
2787 TAG_compile_unit DIE, and then follows the sibling chain to locate
2788 each additional TAG_compile_unit DIE.
2790 For each TAG_compile_unit DIE it creates a partial symtab structure,
2791 calls a subordinate routine to collect all the compilation unit's
2792 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2793 new partial symtab structure into the partial symbol table. It also
2794 records the appropriate information in the partial symbol table entry
2795 to allow the chunk of DIE's and line number table for this compilation
2796 unit to be located and re-read later, to generate a complete symbol
2797 table entry for the compilation unit.
2799 Thus it effectively partitions up a chunk of DIE's for multiple
2800 compilation units into smaller DIE chunks and line number tables,
2801 and associates them with a partial symbol table entry.
2805 If any compilation unit has no line number table associated with
2806 it for some reason (a missing at_stmt_list attribute, rather than
2807 just one with a value of zero, which is valid) then we ensure that
2808 the recorded file offset is zero so that the routine which later
2809 reads line number table fragments knows that there is no fragment
2819 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2824 struct objfile *objfile;
2828 struct partial_symtab *pst;
2831 file_ptr curlnoffset;
2833 while (thisdie < enddie)
2835 basicdieinfo (&di, thisdie, objfile);
2836 if (di.die_length < SIZEOF_DIE_LENGTH)
2840 else if (di.die_tag != TAG_compile_unit)
2842 nextdie = thisdie + di.die_length;
2846 completedieinfo (&di, objfile);
2847 set_cu_language (&di);
2848 if (di.at_sibling != 0)
2850 nextdie = dbbase + di.at_sibling - dbroff;
2854 nextdie = thisdie + di.die_length;
2856 curoff = thisdie - dbbase;
2857 culength = nextdie - thisdie;
2858 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2860 /* First allocate a new partial symbol table structure */
2862 pst = start_psymtab_common (objfile, base_section_offsets,
2863 di.at_name, di.at_low_pc,
2864 objfile -> global_psymbols.next,
2865 objfile -> static_psymbols.next);
2867 pst -> texthigh = di.at_high_pc;
2868 pst -> read_symtab_private = (char *)
2869 obstack_alloc (&objfile -> psymbol_obstack,
2870 sizeof (struct dwfinfo));
2871 DBFOFF (pst) = dbfoff;
2872 DBROFF (pst) = curoff;
2873 DBLENGTH (pst) = culength;
2874 LNFOFF (pst) = curlnoffset;
2875 pst -> read_symtab = dwarf_psymtab_to_symtab;
2877 /* Now look for partial symbols */
2879 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2881 pst -> n_global_syms = objfile -> global_psymbols.next -
2882 (objfile -> global_psymbols.list + pst -> globals_offset);
2883 pst -> n_static_syms = objfile -> static_psymbols.next -
2884 (objfile -> static_psymbols.list + pst -> statics_offset);
2885 sort_pst_symbols (pst);
2886 /* If there is already a psymtab or symtab for a file of this name,
2887 remove it. (If there is a symtab, more drastic things also
2888 happen.) This happens in VxWorks. */
2889 free_named_symtabs (pst -> filename);
2899 new_symbol -- make a symbol table entry for a new symbol
2903 static struct symbol *new_symbol (struct dieinfo *dip,
2904 struct objfile *objfile)
2908 Given a pointer to a DWARF information entry, figure out if we need
2909 to make a symbol table entry for it, and if so, create a new entry
2910 and return a pointer to it.
2913 static struct symbol *
2914 new_symbol (dip, objfile)
2915 struct dieinfo *dip;
2916 struct objfile *objfile;
2918 struct symbol *sym = NULL;
2920 if (dip -> at_name != NULL)
2922 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2923 sizeof (struct symbol));
2924 memset (sym, 0, sizeof (struct symbol));
2925 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2926 &objfile->symbol_obstack);
2927 /* default assumptions */
2928 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2929 SYMBOL_CLASS (sym) = LOC_STATIC;
2930 SYMBOL_TYPE (sym) = decode_die_type (dip);
2932 /* If this symbol is from a C++ compilation, then attempt to cache the
2933 demangled form for future reference. This is a typical time versus
2934 space tradeoff, that was decided in favor of time because it sped up
2935 C++ symbol lookups by a factor of about 20. */
2937 SYMBOL_LANGUAGE (sym) = cu_language;
2938 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2939 switch (dip -> die_tag)
2942 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2943 SYMBOL_CLASS (sym) = LOC_LABEL;
2945 case TAG_global_subroutine:
2946 case TAG_subroutine:
2947 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2948 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2949 SYMBOL_CLASS (sym) = LOC_BLOCK;
2950 if (dip -> die_tag == TAG_global_subroutine)
2952 add_symbol_to_list (sym, &global_symbols);
2956 add_symbol_to_list (sym, list_in_scope);
2959 case TAG_global_variable:
2960 if (dip -> at_location != NULL)
2962 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2963 add_symbol_to_list (sym, &global_symbols);
2964 SYMBOL_CLASS (sym) = LOC_STATIC;
2965 SYMBOL_VALUE (sym) += baseaddr;
2968 case TAG_local_variable:
2969 if (dip -> at_location != NULL)
2971 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2972 add_symbol_to_list (sym, list_in_scope);
2975 SYMBOL_CLASS (sym) = LOC_REGISTER;
2979 SYMBOL_CLASS (sym) = LOC_BASEREG;
2980 SYMBOL_BASEREG (sym) = basereg;
2984 SYMBOL_CLASS (sym) = LOC_STATIC;
2985 SYMBOL_VALUE (sym) += baseaddr;
2989 case TAG_formal_parameter:
2990 if (dip -> at_location != NULL)
2992 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2994 add_symbol_to_list (sym, list_in_scope);
2997 SYMBOL_CLASS (sym) = LOC_REGPARM;
3001 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3002 SYMBOL_BASEREG (sym) = basereg;
3006 SYMBOL_CLASS (sym) = LOC_ARG;
3009 case TAG_unspecified_parameters:
3010 /* From varargs functions; gdb doesn't seem to have any interest in
3011 this information, so just ignore it for now. (FIXME?) */
3013 case TAG_class_type:
3014 case TAG_structure_type:
3015 case TAG_union_type:
3016 case TAG_enumeration_type:
3017 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3018 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3019 add_symbol_to_list (sym, list_in_scope);
3022 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3023 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3024 add_symbol_to_list (sym, list_in_scope);
3027 /* Not a tag we recognize. Hopefully we aren't processing trash
3028 data, but since we must specifically ignore things we don't
3029 recognize, there is nothing else we should do at this point. */
3040 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3044 static void synthesize_typedef (struct dieinfo *dip,
3045 struct objfile *objfile,
3050 Given a pointer to a DWARF information entry, synthesize a typedef
3051 for the name in the DIE, using the specified type.
3053 This is used for C++ class, structs, unions, and enumerations to
3054 set up the tag name as a type.
3059 synthesize_typedef (dip, objfile, type)
3060 struct dieinfo *dip;
3061 struct objfile *objfile;
3064 struct symbol *sym = NULL;
3066 if (dip -> at_name != NULL)
3068 sym = (struct symbol *)
3069 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3070 memset (sym, 0, sizeof (struct symbol));
3071 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3072 &objfile->symbol_obstack);
3073 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3074 SYMBOL_TYPE (sym) = type;
3075 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3076 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3077 add_symbol_to_list (sym, list_in_scope);
3085 decode_mod_fund_type -- decode a modified fundamental type
3089 static struct type *decode_mod_fund_type (char *typedata)
3093 Decode a block of data containing a modified fundamental
3094 type specification. TYPEDATA is a pointer to the block,
3095 which starts with a length containing the size of the rest
3096 of the block. At the end of the block is a fundmental type
3097 code value that gives the fundamental type. Everything
3098 in between are type modifiers.
3100 We simply compute the number of modifiers and call the general
3101 function decode_modified_type to do the actual work.
3104 static struct type *
3105 decode_mod_fund_type (typedata)
3108 struct type *typep = NULL;
3109 unsigned short modcount;
3112 /* Get the total size of the block, exclusive of the size itself */
3114 nbytes = attribute_size (AT_mod_fund_type);
3115 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3118 /* Deduct the size of the fundamental type bytes at the end of the block. */
3120 modcount -= attribute_size (AT_fund_type);
3122 /* Now do the actual decoding */
3124 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3132 decode_mod_u_d_type -- decode a modified user defined type
3136 static struct type *decode_mod_u_d_type (char *typedata)
3140 Decode a block of data containing a modified user defined
3141 type specification. TYPEDATA is a pointer to the block,
3142 which consists of a two byte length, containing the size
3143 of the rest of the block. At the end of the block is a
3144 four byte value that gives a reference to a user defined type.
3145 Everything in between are type modifiers.
3147 We simply compute the number of modifiers and call the general
3148 function decode_modified_type to do the actual work.
3151 static struct type *
3152 decode_mod_u_d_type (typedata)
3155 struct type *typep = NULL;
3156 unsigned short modcount;
3159 /* Get the total size of the block, exclusive of the size itself */
3161 nbytes = attribute_size (AT_mod_u_d_type);
3162 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3165 /* Deduct the size of the reference type bytes at the end of the block. */
3167 modcount -= attribute_size (AT_user_def_type);
3169 /* Now do the actual decoding */
3171 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3179 decode_modified_type -- decode modified user or fundamental type
3183 static struct type *decode_modified_type (char *modifiers,
3184 unsigned short modcount, int mtype)
3188 Decode a modified type, either a modified fundamental type or
3189 a modified user defined type. MODIFIERS is a pointer to the
3190 block of bytes that define MODCOUNT modifiers. Immediately
3191 following the last modifier is a short containing the fundamental
3192 type or a long containing the reference to the user defined
3193 type. Which one is determined by MTYPE, which is either
3194 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3195 type we are generating.
3197 We call ourself recursively to generate each modified type,`
3198 until MODCOUNT reaches zero, at which point we have consumed
3199 all the modifiers and generate either the fundamental type or
3200 user defined type. When the recursion unwinds, each modifier
3201 is applied in turn to generate the full modified type.
3205 If we find a modifier that we don't recognize, and it is not one
3206 of those reserved for application specific use, then we issue a
3207 warning and simply ignore the modifier.
3211 We currently ignore MOD_const and MOD_volatile. (FIXME)
3215 static struct type *
3216 decode_modified_type (modifiers, modcount, mtype)
3218 unsigned int modcount;
3221 struct type *typep = NULL;
3222 unsigned short fundtype;
3231 case AT_mod_fund_type:
3232 nbytes = attribute_size (AT_fund_type);
3233 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3235 typep = decode_fund_type (fundtype);
3237 case AT_mod_u_d_type:
3238 nbytes = attribute_size (AT_user_def_type);
3239 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3241 if ((typep = lookup_utype (die_ref)) == NULL)
3243 typep = alloc_utype (die_ref, NULL);
3247 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3248 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3254 modifier = *modifiers++;
3255 typep = decode_modified_type (modifiers, --modcount, mtype);
3258 case MOD_pointer_to:
3259 typep = lookup_pointer_type (typep);
3261 case MOD_reference_to:
3262 typep = lookup_reference_type (typep);
3265 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3268 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3271 if (!(MOD_lo_user <= (unsigned char) modifier
3272 && (unsigned char) modifier <= MOD_hi_user))
3274 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3286 decode_fund_type -- translate basic DWARF type to gdb base type
3290 Given an integer that is one of the fundamental DWARF types,
3291 translate it to one of the basic internal gdb types and return
3292 a pointer to the appropriate gdb type (a "struct type *").
3296 For robustness, if we are asked to translate a fundamental
3297 type that we are unprepared to deal with, we return int so
3298 callers can always depend upon a valid type being returned,
3299 and so gdb may at least do something reasonable by default.
3300 If the type is not in the range of those types defined as
3301 application specific types, we also issue a warning.
3304 static struct type *
3305 decode_fund_type (fundtype)
3306 unsigned int fundtype;
3308 struct type *typep = NULL;
3314 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3317 case FT_boolean: /* Was FT_set in AT&T version */
3318 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3321 case FT_pointer: /* (void *) */
3322 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3323 typep = lookup_pointer_type (typep);
3327 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3330 case FT_signed_char:
3331 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3334 case FT_unsigned_char:
3335 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3339 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3342 case FT_signed_short:
3343 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3346 case FT_unsigned_short:
3347 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3351 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3354 case FT_signed_integer:
3355 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3358 case FT_unsigned_integer:
3359 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3363 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3366 case FT_signed_long:
3367 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3370 case FT_unsigned_long:
3371 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3375 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3378 case FT_signed_long_long:
3379 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3382 case FT_unsigned_long_long:
3383 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3387 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3390 case FT_dbl_prec_float:
3391 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3394 case FT_ext_prec_float:
3395 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3399 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3402 case FT_dbl_prec_complex:
3403 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3406 case FT_ext_prec_complex:
3407 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3414 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3415 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3417 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3428 create_name -- allocate a fresh copy of a string on an obstack
3432 Given a pointer to a string and a pointer to an obstack, allocates
3433 a fresh copy of the string on the specified obstack.
3438 create_name (name, obstackp)
3440 struct obstack *obstackp;
3445 length = strlen (name) + 1;
3446 newname = (char *) obstack_alloc (obstackp, length);
3447 strcpy (newname, name);
3455 basicdieinfo -- extract the minimal die info from raw die data
3459 void basicdieinfo (char *diep, struct dieinfo *dip,
3460 struct objfile *objfile)
3464 Given a pointer to raw DIE data, and a pointer to an instance of a
3465 die info structure, this function extracts the basic information
3466 from the DIE data required to continue processing this DIE, along
3467 with some bookkeeping information about the DIE.
3469 The information we absolutely must have includes the DIE tag,
3470 and the DIE length. If we need the sibling reference, then we
3471 will have to call completedieinfo() to process all the remaining
3474 Note that since there is no guarantee that the data is properly
3475 aligned in memory for the type of access required (indirection
3476 through anything other than a char pointer), and there is no
3477 guarantee that it is in the same byte order as the gdb host,
3478 we call a function which deals with both alignment and byte
3479 swapping issues. Possibly inefficient, but quite portable.
3481 We also take care of some other basic things at this point, such
3482 as ensuring that the instance of the die info structure starts
3483 out completely zero'd and that curdie is initialized for use
3484 in error reporting if we have a problem with the current die.
3488 All DIE's must have at least a valid length, thus the minimum
3489 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3490 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3491 are forced to be TAG_padding DIES.
3493 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3494 that if a padding DIE is used for alignment and the amount needed is
3495 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3496 enough to align to the next alignment boundry.
3498 We do some basic sanity checking here, such as verifying that the
3499 length of the die would not cause it to overrun the recorded end of
3500 the buffer holding the DIE info. If we find a DIE that is either
3501 too small or too large, we force it's length to zero which should
3502 cause the caller to take appropriate action.
3506 basicdieinfo (dip, diep, objfile)
3507 struct dieinfo *dip;
3509 struct objfile *objfile;
3512 memset (dip, 0, sizeof (struct dieinfo));
3514 dip -> die_ref = dbroff + (diep - dbbase);
3515 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3517 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3518 ((diep + dip -> die_length) > (dbbase + dbsize)))
3520 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3521 dip -> die_length = 0;
3523 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3525 dip -> die_tag = TAG_padding;
3529 diep += SIZEOF_DIE_LENGTH;
3530 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3539 completedieinfo -- finish reading the information for a given DIE
3543 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3547 Given a pointer to an already partially initialized die info structure,
3548 scan the raw DIE data and finish filling in the die info structure
3549 from the various attributes found.
3551 Note that since there is no guarantee that the data is properly
3552 aligned in memory for the type of access required (indirection
3553 through anything other than a char pointer), and there is no
3554 guarantee that it is in the same byte order as the gdb host,
3555 we call a function which deals with both alignment and byte
3556 swapping issues. Possibly inefficient, but quite portable.
3560 Each time we are called, we increment the diecount variable, which
3561 keeps an approximate count of the number of dies processed for
3562 each compilation unit. This information is presented to the user
3563 if the info_verbose flag is set.
3568 completedieinfo (dip, objfile)
3569 struct dieinfo *dip;
3570 struct objfile *objfile;
3572 char *diep; /* Current pointer into raw DIE data */
3573 char *end; /* Terminate DIE scan here */
3574 unsigned short attr; /* Current attribute being scanned */
3575 unsigned short form; /* Form of the attribute */
3576 int nbytes; /* Size of next field to read */
3580 end = diep + dip -> die_length;
3581 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3584 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3585 diep += SIZEOF_ATTRIBUTE;
3586 if ((nbytes = attribute_size (attr)) == -1)
3588 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3595 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3599 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3603 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3607 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3611 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 dip -> has_at_stmt_list = 1;
3616 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 dip -> at_low_pc += baseaddr;
3619 dip -> has_at_low_pc = 1;
3622 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 dip -> at_high_pc += baseaddr;
3627 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 case AT_user_def_type:
3631 dip -> at_user_def_type = target_to_host (diep, nbytes,
3632 GET_UNSIGNED, objfile);
3635 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 dip -> has_at_byte_size = 1;
3640 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3644 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 dip -> at_location = diep;
3654 case AT_mod_fund_type:
3655 dip -> at_mod_fund_type = diep;
3657 case AT_subscr_data:
3658 dip -> at_subscr_data = diep;
3660 case AT_mod_u_d_type:
3661 dip -> at_mod_u_d_type = diep;
3663 case AT_element_list:
3664 dip -> at_element_list = diep;
3665 dip -> short_element_list = 0;
3667 case AT_short_element_list:
3668 dip -> at_element_list = diep;
3669 dip -> short_element_list = 1;
3671 case AT_discr_value:
3672 dip -> at_discr_value = diep;
3674 case AT_string_length:
3675 dip -> at_string_length = diep;
3678 dip -> at_name = diep;
3681 /* For now, ignore any "hostname:" portion, since gdb doesn't
3682 know how to deal with it. (FIXME). */
3683 dip -> at_comp_dir = strrchr (diep, ':');
3684 if (dip -> at_comp_dir != NULL)
3686 dip -> at_comp_dir++;
3690 dip -> at_comp_dir = diep;
3694 dip -> at_producer = diep;
3696 case AT_start_scope:
3697 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3700 case AT_stride_size:
3701 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3705 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3709 dip -> at_prototyped = diep;
3712 /* Found an attribute that we are unprepared to handle. However
3713 it is specifically one of the design goals of DWARF that
3714 consumers should ignore unknown attributes. As long as the
3715 form is one that we recognize (so we know how to skip it),
3716 we can just ignore the unknown attribute. */
3719 form = FORM_FROM_ATTR (attr);
3733 diep += TARGET_FT_POINTER_SIZE (objfile);
3736 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3739 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3742 diep += strlen (diep) + 1;
3745 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3756 target_to_host -- swap in target data to host
3760 target_to_host (char *from, int nbytes, int signextend,
3761 struct objfile *objfile)
3765 Given pointer to data in target format in FROM, a byte count for
3766 the size of the data in NBYTES, a flag indicating whether or not
3767 the data is signed in SIGNEXTEND, and a pointer to the current
3768 objfile in OBJFILE, convert the data to host format and return
3769 the converted value.
3773 FIXME: If we read data that is known to be signed, and expect to
3774 use it as signed data, then we need to explicitly sign extend the
3775 result until the bfd library is able to do this for us.
3779 static unsigned long
3780 target_to_host (from, nbytes, signextend, objfile)
3783 int signextend; /* FIXME: Unused */
3784 struct objfile *objfile;
3786 unsigned long rtnval;
3791 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3794 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3797 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3800 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3803 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3814 attribute_size -- compute size of data for a DWARF attribute
3818 static int attribute_size (unsigned int attr)
3822 Given a DWARF attribute in ATTR, compute the size of the first
3823 piece of data associated with this attribute and return that
3826 Returns -1 for unrecognized attributes.
3831 attribute_size (attr)
3834 int nbytes; /* Size of next data for this attribute */
3835 unsigned short form; /* Form of the attribute */
3837 form = FORM_FROM_ATTR (attr);
3840 case FORM_STRING: /* A variable length field is next */
3843 case FORM_DATA2: /* Next 2 byte field is the data itself */
3844 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3847 case FORM_DATA4: /* Next 4 byte field is the data itself */
3848 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3849 case FORM_REF: /* Next 4 byte field is a DIE offset */
3852 case FORM_DATA8: /* Next 8 byte field is the data itself */
3855 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3856 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3859 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);