1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
22 #include "gdb_string.h"
33 #include "gdb_assert.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
43 #include "tracepoint.h"
46 /* Prototypes for exported functions. */
48 void _initialize_values (void);
50 /* Definition of a user function. */
51 struct internal_function
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
59 internal_function_fn handler;
61 /* User data for the handler. */
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
69 /* Lowest offset in the range. */
72 /* Length of the range. */
76 typedef struct range range_s;
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
84 ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
100 range_lessthan (const range_s *r1, const range_s *r2)
102 return r1->offset < r2->offset;
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
109 ranges_contain (VEC(range_s) *ranges, int offset, int length)
114 what.offset = offset;
115 what.length = length;
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
127 |---| |---| |------| ... |--|
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
137 Then we need to check if the I range overlaps the I range itself.
142 |---| |---| |-------| ... |--|
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
158 if (i < VEC_length (range_s, ranges))
160 struct range *r = VEC_index (range_s, ranges, i);
162 if (ranges_overlap (r->offset, r->length, offset, length))
169 static struct cmd_list_element *functionlist;
171 /* Note that the fields in this structure are arranged to save a bit
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable : 1;
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
210 /* If the value has been released. */
211 unsigned int released : 1;
213 /* Location of value (if lval). */
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
232 /* Closure for those functions to use. */
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
244 /* Only used for bitfields; number of bits contained in them. */
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
262 struct value *parent;
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
268 /* Type of the value. */
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
311 struct type *enclosing_type;
313 int pointed_to_offset;
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
321 /* Register number if the value is from a register. */
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
335 value_bytes_available (const struct value *value, int offset, int length)
337 gdb_assert (!value->lazy);
339 return !ranges_contain (value->unavailable, offset, length);
343 value_entirely_available (struct value *value)
345 /* We can only tell whether the whole value is available when we try
348 value_fetch_lazy (value);
350 if (VEC_empty (range_s, value->unavailable))
356 mark_value_bytes_unavailable (struct value *value, int offset, int length)
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
364 newr.offset = offset;
365 newr.length = length;
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
373 #1 - overlaps with previous
377 |---| |---| |------| ... |--|
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
390 #2 - contiguous with previous
394 |--| |---| |------| ... |--|
399 If there's no overlap with the previous range, as in:
401 #3 - not overlapping and not contiguous
405 |--| |---| |------| ... |--|
412 #4 - R is the range with lowest offset
416 |--| |---| |------| ... |--|
421 ... we just push the new range to I.
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
427 #5 - overlapping following ranges
430 |------------------------|
431 |--| |---| |------| ... |--|
440 |--| |---| |------| ... |--|
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
462 else if (offset == bef->offset + bef->length)
465 bef->length += length;
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
516 VEC_block_remove (range_s, value->unavailable, next, removed);
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
526 find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
540 value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
544 int idx1 = 0, idx2 = 0;
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
567 /* The contents only match equal if the available set matches as
569 else if (idx1 == -1 || idx2 == -1)
572 gdb_assert (idx1 != -1 && idx2 != -1);
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
598 /* Compare the _available_ contents. */
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
612 /* Prototypes for local functions. */
614 static void show_values (char *, int);
616 static void show_convenience (char *, int);
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
625 #define VALUE_HISTORY_CHUNK 60
627 struct value_history_chunk
629 struct value_history_chunk *next;
630 struct value *values[VALUE_HISTORY_CHUNK];
633 /* Chain of chunks now in use. */
635 static struct value_history_chunk *value_history_chain;
637 static int value_history_count; /* Abs number of last entry stored. */
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
644 static struct value *all_values;
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
651 allocate_value_lazy (struct type *type)
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
665 val->next = all_values;
668 val->enclosing_type = type;
669 VALUE_LVAL (val) = not_lval;
670 val->location.address = 0;
671 VALUE_FRAME_ID (val) = null_frame_id;
675 VALUE_REGNUM (val) = -1;
677 val->optimized_out = 0;
678 val->embedded_offset = 0;
679 val->pointed_to_offset = 0;
681 val->initialized = 1; /* Default to initialized. */
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
689 /* Allocate the contents of VAL if it has not been allocated yet. */
692 allocate_value_contents (struct value *val)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
698 /* Allocate a value and its contents for type TYPE. */
701 allocate_value (struct type *type)
703 struct value *val = allocate_value_lazy (type);
705 allocate_value_contents (val);
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
714 allocate_repeat_value (struct type *type, int count)
716 int low_bound = current_language->string_lower_bound; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
722 return allocate_value (array_type);
726 allocate_computed_value (struct type *type,
727 const struct lval_funcs *funcs,
730 struct value *v = allocate_value_lazy (type);
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
742 allocate_optimized_out_value (struct type *type)
744 struct value *retval = allocate_value_lazy (type);
746 set_value_optimized_out (retval, 1);
751 /* Accessor methods. */
754 value_next (struct value *value)
760 value_type (const struct value *value)
765 deprecated_set_value_type (struct value *value, struct type *type)
771 value_offset (const struct value *value)
773 return value->offset;
776 set_value_offset (struct value *value, int offset)
778 value->offset = offset;
782 value_bitpos (const struct value *value)
784 return value->bitpos;
787 set_value_bitpos (struct value *value, int bit)
793 value_bitsize (const struct value *value)
795 return value->bitsize;
798 set_value_bitsize (struct value *value, int bit)
800 value->bitsize = bit;
804 value_parent (struct value *value)
806 return value->parent;
812 set_value_parent (struct value *value, struct value *parent)
814 value->parent = parent;
818 value_contents_raw (struct value *value)
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
825 value_contents_all_raw (struct value *value)
827 allocate_value_contents (value);
828 return value->contents;
832 value_enclosing_type (struct value *value)
834 return value->enclosing_type;
837 /* Look at value.h for description. */
840 value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
843 struct value_print_options opts;
846 get_user_print_options (&opts);
849 *real_type_found = 0;
850 result = value_type (value);
851 if (opts.objectprint)
853 /* If result's target type is TYPE_CODE_STRUCT, proceed to
854 fetch its rtti type. */
855 if ((TYPE_CODE (result) == TYPE_CODE_PTR
856 || TYPE_CODE (result) == TYPE_CODE_REF)
857 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
860 struct type *real_type;
862 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
866 *real_type_found = 1;
870 else if (resolve_simple_types)
873 *real_type_found = 1;
874 result = value_enclosing_type (value);
882 require_not_optimized_out (const struct value *value)
884 if (value->optimized_out)
885 error (_("value has been optimized out"));
889 require_available (const struct value *value)
891 if (!VEC_empty (range_s, value->unavailable))
892 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
896 value_contents_for_printing (struct value *value)
899 value_fetch_lazy (value);
900 return value->contents;
904 value_contents_for_printing_const (const struct value *value)
906 gdb_assert (!value->lazy);
907 return value->contents;
911 value_contents_all (struct value *value)
913 const gdb_byte *result = value_contents_for_printing (value);
914 require_not_optimized_out (value);
915 require_available (value);
919 /* Copy LENGTH bytes of SRC value's (all) contents
920 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
921 contents, starting at DST_OFFSET. If unavailable contents are
922 being copied from SRC, the corresponding DST contents are marked
923 unavailable accordingly. Neither DST nor SRC may be lazy
926 It is assumed the contents of DST in the [DST_OFFSET,
927 DST_OFFSET+LENGTH) range are wholly available. */
930 value_contents_copy_raw (struct value *dst, int dst_offset,
931 struct value *src, int src_offset, int length)
936 /* A lazy DST would make that this copy operation useless, since as
937 soon as DST's contents were un-lazied (by a later value_contents
938 call, say), the contents would be overwritten. A lazy SRC would
939 mean we'd be copying garbage. */
940 gdb_assert (!dst->lazy && !src->lazy);
942 /* The overwritten DST range gets unavailability ORed in, not
943 replaced. Make sure to remember to implement replacing if it
944 turns out actually necessary. */
945 gdb_assert (value_bytes_available (dst, dst_offset, length));
948 memcpy (value_contents_all_raw (dst) + dst_offset,
949 value_contents_all_raw (src) + src_offset,
952 /* Copy the meta-data, adjusted. */
953 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
957 l = max (r->offset, src_offset);
958 h = min (r->offset + r->length, src_offset + length);
961 mark_value_bytes_unavailable (dst,
962 dst_offset + (l - src_offset),
967 /* Copy LENGTH bytes of SRC value's (all) contents
968 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
969 (all) contents, starting at DST_OFFSET. If unavailable contents
970 are being copied from SRC, the corresponding DST contents are
971 marked unavailable accordingly. DST must not be lazy. If SRC is
972 lazy, it will be fetched now. If SRC is not valid (is optimized
973 out), an error is thrown.
975 It is assumed the contents of DST in the [DST_OFFSET,
976 DST_OFFSET+LENGTH) range are wholly available. */
979 value_contents_copy (struct value *dst, int dst_offset,
980 struct value *src, int src_offset, int length)
982 require_not_optimized_out (src);
985 value_fetch_lazy (src);
987 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
991 value_lazy (struct value *value)
997 set_value_lazy (struct value *value, int val)
1003 value_stack (struct value *value)
1005 return value->stack;
1009 set_value_stack (struct value *value, int val)
1015 value_contents (struct value *value)
1017 const gdb_byte *result = value_contents_writeable (value);
1018 require_not_optimized_out (value);
1019 require_available (value);
1024 value_contents_writeable (struct value *value)
1027 value_fetch_lazy (value);
1028 return value_contents_raw (value);
1031 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1032 this function is different from value_equal; in C the operator ==
1033 can return 0 even if the two values being compared are equal. */
1036 value_contents_equal (struct value *val1, struct value *val2)
1041 type1 = check_typedef (value_type (val1));
1042 type2 = check_typedef (value_type (val2));
1043 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1046 return (memcmp (value_contents (val1), value_contents (val2),
1047 TYPE_LENGTH (type1)) == 0);
1051 value_optimized_out (struct value *value)
1053 return value->optimized_out;
1057 set_value_optimized_out (struct value *value, int val)
1059 value->optimized_out = val;
1063 value_entirely_optimized_out (const struct value *value)
1065 if (!value->optimized_out)
1067 if (value->lval != lval_computed
1068 || !value->location.computed.funcs->check_any_valid)
1070 return !value->location.computed.funcs->check_any_valid (value);
1074 value_bits_valid (const struct value *value, int offset, int length)
1076 if (!value->optimized_out)
1078 if (value->lval != lval_computed
1079 || !value->location.computed.funcs->check_validity)
1081 return value->location.computed.funcs->check_validity (value, offset,
1086 value_bits_synthetic_pointer (const struct value *value,
1087 int offset, int length)
1089 if (value->lval != lval_computed
1090 || !value->location.computed.funcs->check_synthetic_pointer)
1092 return value->location.computed.funcs->check_synthetic_pointer (value,
1098 value_embedded_offset (struct value *value)
1100 return value->embedded_offset;
1104 set_value_embedded_offset (struct value *value, int val)
1106 value->embedded_offset = val;
1110 value_pointed_to_offset (struct value *value)
1112 return value->pointed_to_offset;
1116 set_value_pointed_to_offset (struct value *value, int val)
1118 value->pointed_to_offset = val;
1121 const struct lval_funcs *
1122 value_computed_funcs (const struct value *v)
1124 gdb_assert (value_lval_const (v) == lval_computed);
1126 return v->location.computed.funcs;
1130 value_computed_closure (const struct value *v)
1132 gdb_assert (v->lval == lval_computed);
1134 return v->location.computed.closure;
1138 deprecated_value_lval_hack (struct value *value)
1140 return &value->lval;
1144 value_lval_const (const struct value *value)
1150 value_address (const struct value *value)
1152 if (value->lval == lval_internalvar
1153 || value->lval == lval_internalvar_component)
1155 if (value->parent != NULL)
1156 return value_address (value->parent) + value->offset;
1158 return value->location.address + value->offset;
1162 value_raw_address (struct value *value)
1164 if (value->lval == lval_internalvar
1165 || value->lval == lval_internalvar_component)
1167 return value->location.address;
1171 set_value_address (struct value *value, CORE_ADDR addr)
1173 gdb_assert (value->lval != lval_internalvar
1174 && value->lval != lval_internalvar_component);
1175 value->location.address = addr;
1178 struct internalvar **
1179 deprecated_value_internalvar_hack (struct value *value)
1181 return &value->location.internalvar;
1185 deprecated_value_frame_id_hack (struct value *value)
1187 return &value->frame_id;
1191 deprecated_value_regnum_hack (struct value *value)
1193 return &value->regnum;
1197 deprecated_value_modifiable (struct value *value)
1199 return value->modifiable;
1202 /* Return a mark in the value chain. All values allocated after the
1203 mark is obtained (except for those released) are subject to being freed
1204 if a subsequent value_free_to_mark is passed the mark. */
1211 /* Take a reference to VAL. VAL will not be deallocated until all
1212 references are released. */
1215 value_incref (struct value *val)
1217 val->reference_count++;
1220 /* Release a reference to VAL, which was acquired with value_incref.
1221 This function is also called to deallocate values from the value
1225 value_free (struct value *val)
1229 gdb_assert (val->reference_count > 0);
1230 val->reference_count--;
1231 if (val->reference_count > 0)
1234 /* If there's an associated parent value, drop our reference to
1236 if (val->parent != NULL)
1237 value_free (val->parent);
1239 if (VALUE_LVAL (val) == lval_computed)
1241 const struct lval_funcs *funcs = val->location.computed.funcs;
1243 if (funcs->free_closure)
1244 funcs->free_closure (val);
1247 xfree (val->contents);
1248 VEC_free (range_s, val->unavailable);
1253 /* Free all values allocated since MARK was obtained by value_mark
1254 (except for those released). */
1256 value_free_to_mark (struct value *mark)
1261 for (val = all_values; val && val != mark; val = next)
1270 /* Free all the values that have been allocated (except for those released).
1271 Call after each command, successful or not.
1272 In practice this is called before each command, which is sufficient. */
1275 free_all_values (void)
1280 for (val = all_values; val; val = next)
1290 /* Frees all the elements in a chain of values. */
1293 free_value_chain (struct value *v)
1299 next = value_next (v);
1304 /* Remove VAL from the chain all_values
1305 so it will not be freed automatically. */
1308 release_value (struct value *val)
1312 if (all_values == val)
1314 all_values = val->next;
1320 for (v = all_values; v; v = v->next)
1324 v->next = val->next;
1332 /* If the value is not already released, release it.
1333 If the value is already released, increment its reference count.
1334 That is, this function ensures that the value is released from the
1335 value chain and that the caller owns a reference to it. */
1338 release_value_or_incref (struct value *val)
1343 release_value (val);
1346 /* Release all values up to mark */
1348 value_release_to_mark (struct value *mark)
1353 for (val = next = all_values; next; next = next->next)
1355 if (next->next == mark)
1357 all_values = next->next;
1367 /* Return a copy of the value ARG.
1368 It contains the same contents, for same memory address,
1369 but it's a different block of storage. */
1372 value_copy (struct value *arg)
1374 struct type *encl_type = value_enclosing_type (arg);
1377 if (value_lazy (arg))
1378 val = allocate_value_lazy (encl_type);
1380 val = allocate_value (encl_type);
1381 val->type = arg->type;
1382 VALUE_LVAL (val) = VALUE_LVAL (arg);
1383 val->location = arg->location;
1384 val->offset = arg->offset;
1385 val->bitpos = arg->bitpos;
1386 val->bitsize = arg->bitsize;
1387 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1388 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1389 val->lazy = arg->lazy;
1390 val->optimized_out = arg->optimized_out;
1391 val->embedded_offset = value_embedded_offset (arg);
1392 val->pointed_to_offset = arg->pointed_to_offset;
1393 val->modifiable = arg->modifiable;
1394 if (!value_lazy (val))
1396 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1397 TYPE_LENGTH (value_enclosing_type (arg)));
1400 val->unavailable = VEC_copy (range_s, arg->unavailable);
1401 val->parent = arg->parent;
1403 value_incref (val->parent);
1404 if (VALUE_LVAL (val) == lval_computed)
1406 const struct lval_funcs *funcs = val->location.computed.funcs;
1408 if (funcs->copy_closure)
1409 val->location.computed.closure = funcs->copy_closure (val);
1414 /* Return a version of ARG that is non-lvalue. */
1417 value_non_lval (struct value *arg)
1419 if (VALUE_LVAL (arg) != not_lval)
1421 struct type *enc_type = value_enclosing_type (arg);
1422 struct value *val = allocate_value (enc_type);
1424 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1425 TYPE_LENGTH (enc_type));
1426 val->type = arg->type;
1427 set_value_embedded_offset (val, value_embedded_offset (arg));
1428 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1435 set_value_component_location (struct value *component,
1436 const struct value *whole)
1438 if (whole->lval == lval_internalvar)
1439 VALUE_LVAL (component) = lval_internalvar_component;
1441 VALUE_LVAL (component) = whole->lval;
1443 component->location = whole->location;
1444 if (whole->lval == lval_computed)
1446 const struct lval_funcs *funcs = whole->location.computed.funcs;
1448 if (funcs->copy_closure)
1449 component->location.computed.closure = funcs->copy_closure (whole);
1454 /* Access to the value history. */
1456 /* Record a new value in the value history.
1457 Returns the absolute history index of the entry.
1458 Result of -1 indicates the value was not saved; otherwise it is the
1459 value history index of this new item. */
1462 record_latest_value (struct value *val)
1466 /* We don't want this value to have anything to do with the inferior anymore.
1467 In particular, "set $1 = 50" should not affect the variable from which
1468 the value was taken, and fast watchpoints should be able to assume that
1469 a value on the value history never changes. */
1470 if (value_lazy (val))
1471 value_fetch_lazy (val);
1472 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1473 from. This is a bit dubious, because then *&$1 does not just return $1
1474 but the current contents of that location. c'est la vie... */
1475 val->modifiable = 0;
1476 release_value (val);
1478 /* Here we treat value_history_count as origin-zero
1479 and applying to the value being stored now. */
1481 i = value_history_count % VALUE_HISTORY_CHUNK;
1484 struct value_history_chunk *new
1485 = (struct value_history_chunk *)
1487 xmalloc (sizeof (struct value_history_chunk));
1488 memset (new->values, 0, sizeof new->values);
1489 new->next = value_history_chain;
1490 value_history_chain = new;
1493 value_history_chain->values[i] = val;
1495 /* Now we regard value_history_count as origin-one
1496 and applying to the value just stored. */
1498 return ++value_history_count;
1501 /* Return a copy of the value in the history with sequence number NUM. */
1504 access_value_history (int num)
1506 struct value_history_chunk *chunk;
1511 absnum += value_history_count;
1516 error (_("The history is empty."));
1518 error (_("There is only one value in the history."));
1520 error (_("History does not go back to $$%d."), -num);
1522 if (absnum > value_history_count)
1523 error (_("History has not yet reached $%d."), absnum);
1527 /* Now absnum is always absolute and origin zero. */
1529 chunk = value_history_chain;
1530 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1531 - absnum / VALUE_HISTORY_CHUNK;
1533 chunk = chunk->next;
1535 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1539 show_values (char *num_exp, int from_tty)
1547 /* "show values +" should print from the stored position.
1548 "show values <exp>" should print around value number <exp>. */
1549 if (num_exp[0] != '+' || num_exp[1] != '\0')
1550 num = parse_and_eval_long (num_exp) - 5;
1554 /* "show values" means print the last 10 values. */
1555 num = value_history_count - 9;
1561 for (i = num; i < num + 10 && i <= value_history_count; i++)
1563 struct value_print_options opts;
1565 val = access_value_history (i);
1566 printf_filtered (("$%d = "), i);
1567 get_user_print_options (&opts);
1568 value_print (val, gdb_stdout, &opts);
1569 printf_filtered (("\n"));
1572 /* The next "show values +" should start after what we just printed. */
1575 /* Hitting just return after this command should do the same thing as
1576 "show values +". If num_exp is null, this is unnecessary, since
1577 "show values +" is not useful after "show values". */
1578 if (from_tty && num_exp)
1585 /* Internal variables. These are variables within the debugger
1586 that hold values assigned by debugger commands.
1587 The user refers to them with a '$' prefix
1588 that does not appear in the variable names stored internally. */
1592 struct internalvar *next;
1595 /* We support various different kinds of content of an internal variable.
1596 enum internalvar_kind specifies the kind, and union internalvar_data
1597 provides the data associated with this particular kind. */
1599 enum internalvar_kind
1601 /* The internal variable is empty. */
1604 /* The value of the internal variable is provided directly as
1605 a GDB value object. */
1608 /* A fresh value is computed via a call-back routine on every
1609 access to the internal variable. */
1610 INTERNALVAR_MAKE_VALUE,
1612 /* The internal variable holds a GDB internal convenience function. */
1613 INTERNALVAR_FUNCTION,
1615 /* The variable holds an integer value. */
1616 INTERNALVAR_INTEGER,
1618 /* The variable holds a GDB-provided string. */
1623 union internalvar_data
1625 /* A value object used with INTERNALVAR_VALUE. */
1626 struct value *value;
1628 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1631 /* The functions to call. */
1632 const struct internalvar_funcs *functions;
1634 /* The function's user-data. */
1638 /* The internal function used with INTERNALVAR_FUNCTION. */
1641 struct internal_function *function;
1642 /* True if this is the canonical name for the function. */
1646 /* An integer value used with INTERNALVAR_INTEGER. */
1649 /* If type is non-NULL, it will be used as the type to generate
1650 a value for this internal variable. If type is NULL, a default
1651 integer type for the architecture is used. */
1656 /* A string value used with INTERNALVAR_STRING. */
1661 static struct internalvar *internalvars;
1663 /* If the variable does not already exist create it and give it the
1664 value given. If no value is given then the default is zero. */
1666 init_if_undefined_command (char* args, int from_tty)
1668 struct internalvar* intvar;
1670 /* Parse the expression - this is taken from set_command(). */
1671 struct expression *expr = parse_expression (args);
1672 register struct cleanup *old_chain =
1673 make_cleanup (free_current_contents, &expr);
1675 /* Validate the expression.
1676 Was the expression an assignment?
1677 Or even an expression at all? */
1678 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1679 error (_("Init-if-undefined requires an assignment expression."));
1681 /* Extract the variable from the parsed expression.
1682 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1683 if (expr->elts[1].opcode != OP_INTERNALVAR)
1684 error (_("The first parameter to init-if-undefined "
1685 "should be a GDB variable."));
1686 intvar = expr->elts[2].internalvar;
1688 /* Only evaluate the expression if the lvalue is void.
1689 This may still fail if the expresssion is invalid. */
1690 if (intvar->kind == INTERNALVAR_VOID)
1691 evaluate_expression (expr);
1693 do_cleanups (old_chain);
1697 /* Look up an internal variable with name NAME. NAME should not
1698 normally include a dollar sign.
1700 If the specified internal variable does not exist,
1701 the return value is NULL. */
1703 struct internalvar *
1704 lookup_only_internalvar (const char *name)
1706 struct internalvar *var;
1708 for (var = internalvars; var; var = var->next)
1709 if (strcmp (var->name, name) == 0)
1715 /* Complete NAME by comparing it to the names of internal variables.
1716 Returns a vector of newly allocated strings, or NULL if no matches
1720 complete_internalvar (const char *name)
1722 VEC (char_ptr) *result = NULL;
1723 struct internalvar *var;
1726 len = strlen (name);
1728 for (var = internalvars; var; var = var->next)
1729 if (strncmp (var->name, name, len) == 0)
1731 char *r = xstrdup (var->name);
1733 VEC_safe_push (char_ptr, result, r);
1739 /* Create an internal variable with name NAME and with a void value.
1740 NAME should not normally include a dollar sign. */
1742 struct internalvar *
1743 create_internalvar (const char *name)
1745 struct internalvar *var;
1747 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1748 var->name = concat (name, (char *)NULL);
1749 var->kind = INTERNALVAR_VOID;
1750 var->next = internalvars;
1755 /* Create an internal variable with name NAME and register FUN as the
1756 function that value_of_internalvar uses to create a value whenever
1757 this variable is referenced. NAME should not normally include a
1758 dollar sign. DATA is passed uninterpreted to FUN when it is
1759 called. CLEANUP, if not NULL, is called when the internal variable
1760 is destroyed. It is passed DATA as its only argument. */
1762 struct internalvar *
1763 create_internalvar_type_lazy (const char *name,
1764 const struct internalvar_funcs *funcs,
1767 struct internalvar *var = create_internalvar (name);
1769 var->kind = INTERNALVAR_MAKE_VALUE;
1770 var->u.make_value.functions = funcs;
1771 var->u.make_value.data = data;
1775 /* See documentation in value.h. */
1778 compile_internalvar_to_ax (struct internalvar *var,
1779 struct agent_expr *expr,
1780 struct axs_value *value)
1782 if (var->kind != INTERNALVAR_MAKE_VALUE
1783 || var->u.make_value.functions->compile_to_ax == NULL)
1786 var->u.make_value.functions->compile_to_ax (var, expr, value,
1787 var->u.make_value.data);
1791 /* Look up an internal variable with name NAME. NAME should not
1792 normally include a dollar sign.
1794 If the specified internal variable does not exist,
1795 one is created, with a void value. */
1797 struct internalvar *
1798 lookup_internalvar (const char *name)
1800 struct internalvar *var;
1802 var = lookup_only_internalvar (name);
1806 return create_internalvar (name);
1809 /* Return current value of internal variable VAR. For variables that
1810 are not inherently typed, use a value type appropriate for GDBARCH. */
1813 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1816 struct trace_state_variable *tsv;
1818 /* If there is a trace state variable of the same name, assume that
1819 is what we really want to see. */
1820 tsv = find_trace_state_variable (var->name);
1823 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1825 if (tsv->value_known)
1826 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1829 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1835 case INTERNALVAR_VOID:
1836 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1839 case INTERNALVAR_FUNCTION:
1840 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1843 case INTERNALVAR_INTEGER:
1844 if (!var->u.integer.type)
1845 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1846 var->u.integer.val);
1848 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1851 case INTERNALVAR_STRING:
1852 val = value_cstring (var->u.string, strlen (var->u.string),
1853 builtin_type (gdbarch)->builtin_char);
1856 case INTERNALVAR_VALUE:
1857 val = value_copy (var->u.value);
1858 if (value_lazy (val))
1859 value_fetch_lazy (val);
1862 case INTERNALVAR_MAKE_VALUE:
1863 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1864 var->u.make_value.data);
1868 internal_error (__FILE__, __LINE__, _("bad kind"));
1871 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1872 on this value go back to affect the original internal variable.
1874 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1875 no underlying modifyable state in the internal variable.
1877 Likewise, if the variable's value is a computed lvalue, we want
1878 references to it to produce another computed lvalue, where
1879 references and assignments actually operate through the
1880 computed value's functions.
1882 This means that internal variables with computed values
1883 behave a little differently from other internal variables:
1884 assignments to them don't just replace the previous value
1885 altogether. At the moment, this seems like the behavior we
1888 if (var->kind != INTERNALVAR_MAKE_VALUE
1889 && val->lval != lval_computed)
1891 VALUE_LVAL (val) = lval_internalvar;
1892 VALUE_INTERNALVAR (val) = var;
1899 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1901 if (var->kind == INTERNALVAR_INTEGER)
1903 *result = var->u.integer.val;
1907 if (var->kind == INTERNALVAR_VALUE)
1909 struct type *type = check_typedef (value_type (var->u.value));
1911 if (TYPE_CODE (type) == TYPE_CODE_INT)
1913 *result = value_as_long (var->u.value);
1922 get_internalvar_function (struct internalvar *var,
1923 struct internal_function **result)
1927 case INTERNALVAR_FUNCTION:
1928 *result = var->u.fn.function;
1937 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1938 int bitsize, struct value *newval)
1944 case INTERNALVAR_VALUE:
1945 addr = value_contents_writeable (var->u.value);
1948 modify_field (value_type (var->u.value), addr + offset,
1949 value_as_long (newval), bitpos, bitsize);
1951 memcpy (addr + offset, value_contents (newval),
1952 TYPE_LENGTH (value_type (newval)));
1956 /* We can never get a component of any other kind. */
1957 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1962 set_internalvar (struct internalvar *var, struct value *val)
1964 enum internalvar_kind new_kind;
1965 union internalvar_data new_data = { 0 };
1967 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1968 error (_("Cannot overwrite convenience function %s"), var->name);
1970 /* Prepare new contents. */
1971 switch (TYPE_CODE (check_typedef (value_type (val))))
1973 case TYPE_CODE_VOID:
1974 new_kind = INTERNALVAR_VOID;
1977 case TYPE_CODE_INTERNAL_FUNCTION:
1978 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1979 new_kind = INTERNALVAR_FUNCTION;
1980 get_internalvar_function (VALUE_INTERNALVAR (val),
1981 &new_data.fn.function);
1982 /* Copies created here are never canonical. */
1986 new_kind = INTERNALVAR_VALUE;
1987 new_data.value = value_copy (val);
1988 new_data.value->modifiable = 1;
1990 /* Force the value to be fetched from the target now, to avoid problems
1991 later when this internalvar is referenced and the target is gone or
1993 if (value_lazy (new_data.value))
1994 value_fetch_lazy (new_data.value);
1996 /* Release the value from the value chain to prevent it from being
1997 deleted by free_all_values. From here on this function should not
1998 call error () until new_data is installed into the var->u to avoid
2000 release_value (new_data.value);
2004 /* Clean up old contents. */
2005 clear_internalvar (var);
2008 var->kind = new_kind;
2010 /* End code which must not call error(). */
2014 set_internalvar_integer (struct internalvar *var, LONGEST l)
2016 /* Clean up old contents. */
2017 clear_internalvar (var);
2019 var->kind = INTERNALVAR_INTEGER;
2020 var->u.integer.type = NULL;
2021 var->u.integer.val = l;
2025 set_internalvar_string (struct internalvar *var, const char *string)
2027 /* Clean up old contents. */
2028 clear_internalvar (var);
2030 var->kind = INTERNALVAR_STRING;
2031 var->u.string = xstrdup (string);
2035 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2037 /* Clean up old contents. */
2038 clear_internalvar (var);
2040 var->kind = INTERNALVAR_FUNCTION;
2041 var->u.fn.function = f;
2042 var->u.fn.canonical = 1;
2043 /* Variables installed here are always the canonical version. */
2047 clear_internalvar (struct internalvar *var)
2049 /* Clean up old contents. */
2052 case INTERNALVAR_VALUE:
2053 value_free (var->u.value);
2056 case INTERNALVAR_STRING:
2057 xfree (var->u.string);
2060 case INTERNALVAR_MAKE_VALUE:
2061 if (var->u.make_value.functions->destroy != NULL)
2062 var->u.make_value.functions->destroy (var->u.make_value.data);
2069 /* Reset to void kind. */
2070 var->kind = INTERNALVAR_VOID;
2074 internalvar_name (struct internalvar *var)
2079 static struct internal_function *
2080 create_internal_function (const char *name,
2081 internal_function_fn handler, void *cookie)
2083 struct internal_function *ifn = XNEW (struct internal_function);
2085 ifn->name = xstrdup (name);
2086 ifn->handler = handler;
2087 ifn->cookie = cookie;
2092 value_internal_function_name (struct value *val)
2094 struct internal_function *ifn;
2097 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2098 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2099 gdb_assert (result);
2105 call_internal_function (struct gdbarch *gdbarch,
2106 const struct language_defn *language,
2107 struct value *func, int argc, struct value **argv)
2109 struct internal_function *ifn;
2112 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2113 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2114 gdb_assert (result);
2116 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2119 /* The 'function' command. This does nothing -- it is just a
2120 placeholder to let "help function NAME" work. This is also used as
2121 the implementation of the sub-command that is created when
2122 registering an internal function. */
2124 function_command (char *command, int from_tty)
2129 /* Clean up if an internal function's command is destroyed. */
2131 function_destroyer (struct cmd_list_element *self, void *ignore)
2133 xfree ((char *) self->name);
2137 /* Add a new internal function. NAME is the name of the function; DOC
2138 is a documentation string describing the function. HANDLER is
2139 called when the function is invoked. COOKIE is an arbitrary
2140 pointer which is passed to HANDLER and is intended for "user
2143 add_internal_function (const char *name, const char *doc,
2144 internal_function_fn handler, void *cookie)
2146 struct cmd_list_element *cmd;
2147 struct internal_function *ifn;
2148 struct internalvar *var = lookup_internalvar (name);
2150 ifn = create_internal_function (name, handler, cookie);
2151 set_internalvar_function (var, ifn);
2153 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2155 cmd->destroyer = function_destroyer;
2158 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2159 prevent cycles / duplicates. */
2162 preserve_one_value (struct value *value, struct objfile *objfile,
2163 htab_t copied_types)
2165 if (TYPE_OBJFILE (value->type) == objfile)
2166 value->type = copy_type_recursive (objfile, value->type, copied_types);
2168 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2169 value->enclosing_type = copy_type_recursive (objfile,
2170 value->enclosing_type,
2174 /* Likewise for internal variable VAR. */
2177 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2178 htab_t copied_types)
2182 case INTERNALVAR_INTEGER:
2183 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2185 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2188 case INTERNALVAR_VALUE:
2189 preserve_one_value (var->u.value, objfile, copied_types);
2194 /* Update the internal variables and value history when OBJFILE is
2195 discarded; we must copy the types out of the objfile. New global types
2196 will be created for every convenience variable which currently points to
2197 this objfile's types, and the convenience variables will be adjusted to
2198 use the new global types. */
2201 preserve_values (struct objfile *objfile)
2203 htab_t copied_types;
2204 struct value_history_chunk *cur;
2205 struct internalvar *var;
2208 /* Create the hash table. We allocate on the objfile's obstack, since
2209 it is soon to be deleted. */
2210 copied_types = create_copied_types_hash (objfile);
2212 for (cur = value_history_chain; cur; cur = cur->next)
2213 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2215 preserve_one_value (cur->values[i], objfile, copied_types);
2217 for (var = internalvars; var; var = var->next)
2218 preserve_one_internalvar (var, objfile, copied_types);
2220 preserve_python_values (objfile, copied_types);
2222 htab_delete (copied_types);
2226 show_convenience (char *ignore, int from_tty)
2228 struct gdbarch *gdbarch = get_current_arch ();
2229 struct internalvar *var;
2231 struct value_print_options opts;
2233 get_user_print_options (&opts);
2234 for (var = internalvars; var; var = var->next)
2236 volatile struct gdb_exception ex;
2242 printf_filtered (("$%s = "), var->name);
2244 TRY_CATCH (ex, RETURN_MASK_ERROR)
2248 val = value_of_internalvar (gdbarch, var);
2249 value_print (val, gdb_stdout, &opts);
2252 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2253 printf_filtered (("\n"));
2257 /* This text does not mention convenience functions on purpose.
2258 The user can't create them except via Python, and if Python support
2259 is installed this message will never be printed ($_streq will
2261 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2262 "Convenience variables have "
2263 "names starting with \"$\";\n"
2264 "use \"set\" as in \"set "
2265 "$foo = 5\" to define them.\n"));
2269 /* Extract a value as a C number (either long or double).
2270 Knows how to convert fixed values to double, or
2271 floating values to long.
2272 Does not deallocate the value. */
2275 value_as_long (struct value *val)
2277 /* This coerces arrays and functions, which is necessary (e.g.
2278 in disassemble_command). It also dereferences references, which
2279 I suspect is the most logical thing to do. */
2280 val = coerce_array (val);
2281 return unpack_long (value_type (val), value_contents (val));
2285 value_as_double (struct value *val)
2290 foo = unpack_double (value_type (val), value_contents (val), &inv);
2292 error (_("Invalid floating value found in program."));
2296 /* Extract a value as a C pointer. Does not deallocate the value.
2297 Note that val's type may not actually be a pointer; value_as_long
2298 handles all the cases. */
2300 value_as_address (struct value *val)
2302 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2304 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2305 whether we want this to be true eventually. */
2307 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2308 non-address (e.g. argument to "signal", "info break", etc.), or
2309 for pointers to char, in which the low bits *are* significant. */
2310 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2313 /* There are several targets (IA-64, PowerPC, and others) which
2314 don't represent pointers to functions as simply the address of
2315 the function's entry point. For example, on the IA-64, a
2316 function pointer points to a two-word descriptor, generated by
2317 the linker, which contains the function's entry point, and the
2318 value the IA-64 "global pointer" register should have --- to
2319 support position-independent code. The linker generates
2320 descriptors only for those functions whose addresses are taken.
2322 On such targets, it's difficult for GDB to convert an arbitrary
2323 function address into a function pointer; it has to either find
2324 an existing descriptor for that function, or call malloc and
2325 build its own. On some targets, it is impossible for GDB to
2326 build a descriptor at all: the descriptor must contain a jump
2327 instruction; data memory cannot be executed; and code memory
2330 Upon entry to this function, if VAL is a value of type `function'
2331 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2332 value_address (val) is the address of the function. This is what
2333 you'll get if you evaluate an expression like `main'. The call
2334 to COERCE_ARRAY below actually does all the usual unary
2335 conversions, which includes converting values of type `function'
2336 to `pointer to function'. This is the challenging conversion
2337 discussed above. Then, `unpack_long' will convert that pointer
2338 back into an address.
2340 So, suppose the user types `disassemble foo' on an architecture
2341 with a strange function pointer representation, on which GDB
2342 cannot build its own descriptors, and suppose further that `foo'
2343 has no linker-built descriptor. The address->pointer conversion
2344 will signal an error and prevent the command from running, even
2345 though the next step would have been to convert the pointer
2346 directly back into the same address.
2348 The following shortcut avoids this whole mess. If VAL is a
2349 function, just return its address directly. */
2350 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2351 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2352 return value_address (val);
2354 val = coerce_array (val);
2356 /* Some architectures (e.g. Harvard), map instruction and data
2357 addresses onto a single large unified address space. For
2358 instance: An architecture may consider a large integer in the
2359 range 0x10000000 .. 0x1000ffff to already represent a data
2360 addresses (hence not need a pointer to address conversion) while
2361 a small integer would still need to be converted integer to
2362 pointer to address. Just assume such architectures handle all
2363 integer conversions in a single function. */
2367 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2368 must admonish GDB hackers to make sure its behavior matches the
2369 compiler's, whenever possible.
2371 In general, I think GDB should evaluate expressions the same way
2372 the compiler does. When the user copies an expression out of
2373 their source code and hands it to a `print' command, they should
2374 get the same value the compiler would have computed. Any
2375 deviation from this rule can cause major confusion and annoyance,
2376 and needs to be justified carefully. In other words, GDB doesn't
2377 really have the freedom to do these conversions in clever and
2380 AndrewC pointed out that users aren't complaining about how GDB
2381 casts integers to pointers; they are complaining that they can't
2382 take an address from a disassembly listing and give it to `x/i'.
2383 This is certainly important.
2385 Adding an architecture method like integer_to_address() certainly
2386 makes it possible for GDB to "get it right" in all circumstances
2387 --- the target has complete control over how things get done, so
2388 people can Do The Right Thing for their target without breaking
2389 anyone else. The standard doesn't specify how integers get
2390 converted to pointers; usually, the ABI doesn't either, but
2391 ABI-specific code is a more reasonable place to handle it. */
2393 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2394 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2395 && gdbarch_integer_to_address_p (gdbarch))
2396 return gdbarch_integer_to_address (gdbarch, value_type (val),
2397 value_contents (val));
2399 return unpack_long (value_type (val), value_contents (val));
2403 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2404 as a long, or as a double, assuming the raw data is described
2405 by type TYPE. Knows how to convert different sizes of values
2406 and can convert between fixed and floating point. We don't assume
2407 any alignment for the raw data. Return value is in host byte order.
2409 If you want functions and arrays to be coerced to pointers, and
2410 references to be dereferenced, call value_as_long() instead.
2412 C++: It is assumed that the front-end has taken care of
2413 all matters concerning pointers to members. A pointer
2414 to member which reaches here is considered to be equivalent
2415 to an INT (or some size). After all, it is only an offset. */
2418 unpack_long (struct type *type, const gdb_byte *valaddr)
2420 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2421 enum type_code code = TYPE_CODE (type);
2422 int len = TYPE_LENGTH (type);
2423 int nosign = TYPE_UNSIGNED (type);
2427 case TYPE_CODE_TYPEDEF:
2428 return unpack_long (check_typedef (type), valaddr);
2429 case TYPE_CODE_ENUM:
2430 case TYPE_CODE_FLAGS:
2431 case TYPE_CODE_BOOL:
2433 case TYPE_CODE_CHAR:
2434 case TYPE_CODE_RANGE:
2435 case TYPE_CODE_MEMBERPTR:
2437 return extract_unsigned_integer (valaddr, len, byte_order);
2439 return extract_signed_integer (valaddr, len, byte_order);
2442 return extract_typed_floating (valaddr, type);
2444 case TYPE_CODE_DECFLOAT:
2445 /* libdecnumber has a function to convert from decimal to integer, but
2446 it doesn't work when the decimal number has a fractional part. */
2447 return decimal_to_doublest (valaddr, len, byte_order);
2451 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2452 whether we want this to be true eventually. */
2453 return extract_typed_address (valaddr, type);
2456 error (_("Value can't be converted to integer."));
2458 return 0; /* Placate lint. */
2461 /* Return a double value from the specified type and address.
2462 INVP points to an int which is set to 0 for valid value,
2463 1 for invalid value (bad float format). In either case,
2464 the returned double is OK to use. Argument is in target
2465 format, result is in host format. */
2468 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2471 enum type_code code;
2475 *invp = 0; /* Assume valid. */
2476 CHECK_TYPEDEF (type);
2477 code = TYPE_CODE (type);
2478 len = TYPE_LENGTH (type);
2479 nosign = TYPE_UNSIGNED (type);
2480 if (code == TYPE_CODE_FLT)
2482 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2483 floating-point value was valid (using the macro
2484 INVALID_FLOAT). That test/macro have been removed.
2486 It turns out that only the VAX defined this macro and then
2487 only in a non-portable way. Fixing the portability problem
2488 wouldn't help since the VAX floating-point code is also badly
2489 bit-rotten. The target needs to add definitions for the
2490 methods gdbarch_float_format and gdbarch_double_format - these
2491 exactly describe the target floating-point format. The
2492 problem here is that the corresponding floatformat_vax_f and
2493 floatformat_vax_d values these methods should be set to are
2494 also not defined either. Oops!
2496 Hopefully someone will add both the missing floatformat
2497 definitions and the new cases for floatformat_is_valid (). */
2499 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2505 return extract_typed_floating (valaddr, type);
2507 else if (code == TYPE_CODE_DECFLOAT)
2508 return decimal_to_doublest (valaddr, len, byte_order);
2511 /* Unsigned -- be sure we compensate for signed LONGEST. */
2512 return (ULONGEST) unpack_long (type, valaddr);
2516 /* Signed -- we are OK with unpack_long. */
2517 return unpack_long (type, valaddr);
2521 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2522 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2523 We don't assume any alignment for the raw data. Return value is in
2526 If you want functions and arrays to be coerced to pointers, and
2527 references to be dereferenced, call value_as_address() instead.
2529 C++: It is assumed that the front-end has taken care of
2530 all matters concerning pointers to members. A pointer
2531 to member which reaches here is considered to be equivalent
2532 to an INT (or some size). After all, it is only an offset. */
2535 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2537 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2538 whether we want this to be true eventually. */
2539 return unpack_long (type, valaddr);
2543 /* Get the value of the FIELDNO'th field (which must be static) of
2544 TYPE. Return NULL if the field doesn't exist or has been
2548 value_static_field (struct type *type, int fieldno)
2550 struct value *retval;
2552 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2554 case FIELD_LOC_KIND_PHYSADDR:
2555 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2556 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2558 case FIELD_LOC_KIND_PHYSNAME:
2560 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2561 /* TYPE_FIELD_NAME (type, fieldno); */
2562 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2566 /* With some compilers, e.g. HP aCC, static data members are
2567 reported as non-debuggable symbols. */
2568 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2575 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2576 SYMBOL_VALUE_ADDRESS (msym));
2580 retval = value_of_variable (sym, NULL);
2584 gdb_assert_not_reached ("unexpected field location kind");
2590 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2591 You have to be careful here, since the size of the data area for the value
2592 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2593 than the old enclosing type, you have to allocate more space for the
2597 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2599 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2601 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2603 val->enclosing_type = new_encl_type;
2606 /* Given a value ARG1 (offset by OFFSET bytes)
2607 of a struct or union type ARG_TYPE,
2608 extract and return the value of one of its (non-static) fields.
2609 FIELDNO says which field. */
2612 value_primitive_field (struct value *arg1, int offset,
2613 int fieldno, struct type *arg_type)
2618 CHECK_TYPEDEF (arg_type);
2619 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2621 /* Call check_typedef on our type to make sure that, if TYPE
2622 is a TYPE_CODE_TYPEDEF, its length is set to the length
2623 of the target type instead of zero. However, we do not
2624 replace the typedef type by the target type, because we want
2625 to keep the typedef in order to be able to print the type
2626 description correctly. */
2627 check_typedef (type);
2629 if (value_optimized_out (arg1))
2630 v = allocate_optimized_out_value (type);
2631 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2633 /* Handle packed fields.
2635 Create a new value for the bitfield, with bitpos and bitsize
2636 set. If possible, arrange offset and bitpos so that we can
2637 do a single aligned read of the size of the containing type.
2638 Otherwise, adjust offset to the byte containing the first
2639 bit. Assume that the address, offset, and embedded offset
2640 are sufficiently aligned. */
2642 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2643 int container_bitsize = TYPE_LENGTH (type) * 8;
2645 v = allocate_value_lazy (type);
2646 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2647 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2648 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2649 v->bitpos = bitpos % container_bitsize;
2651 v->bitpos = bitpos % 8;
2652 v->offset = (value_embedded_offset (arg1)
2654 + (bitpos - v->bitpos) / 8);
2656 value_incref (v->parent);
2657 if (!value_lazy (arg1))
2658 value_fetch_lazy (v);
2660 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2662 /* This field is actually a base subobject, so preserve the
2663 entire object's contents for later references to virtual
2667 /* Lazy register values with offsets are not supported. */
2668 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2669 value_fetch_lazy (arg1);
2671 /* We special case virtual inheritance here because this
2672 requires access to the contents, which we would rather avoid
2673 for references to ordinary fields of unavailable values. */
2674 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2675 boffset = baseclass_offset (arg_type, fieldno,
2676 value_contents (arg1),
2677 value_embedded_offset (arg1),
2678 value_address (arg1),
2681 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2683 if (value_lazy (arg1))
2684 v = allocate_value_lazy (value_enclosing_type (arg1));
2687 v = allocate_value (value_enclosing_type (arg1));
2688 value_contents_copy_raw (v, 0, arg1, 0,
2689 TYPE_LENGTH (value_enclosing_type (arg1)));
2692 v->offset = value_offset (arg1);
2693 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2697 /* Plain old data member */
2698 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2700 /* Lazy register values with offsets are not supported. */
2701 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2702 value_fetch_lazy (arg1);
2704 if (value_lazy (arg1))
2705 v = allocate_value_lazy (type);
2708 v = allocate_value (type);
2709 value_contents_copy_raw (v, value_embedded_offset (v),
2710 arg1, value_embedded_offset (arg1) + offset,
2711 TYPE_LENGTH (type));
2713 v->offset = (value_offset (arg1) + offset
2714 + value_embedded_offset (arg1));
2716 set_value_component_location (v, arg1);
2717 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2718 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2722 /* Given a value ARG1 of a struct or union type,
2723 extract and return the value of one of its (non-static) fields.
2724 FIELDNO says which field. */
2727 value_field (struct value *arg1, int fieldno)
2729 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2732 /* Return a non-virtual function as a value.
2733 F is the list of member functions which contains the desired method.
2734 J is an index into F which provides the desired method.
2736 We only use the symbol for its address, so be happy with either a
2737 full symbol or a minimal symbol. */
2740 value_fn_field (struct value **arg1p, struct fn_field *f,
2741 int j, struct type *type,
2745 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2746 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2748 struct minimal_symbol *msym;
2750 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2757 gdb_assert (sym == NULL);
2758 msym = lookup_minimal_symbol (physname, NULL, NULL);
2763 v = allocate_value (ftype);
2766 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2770 /* The minimal symbol might point to a function descriptor;
2771 resolve it to the actual code address instead. */
2772 struct objfile *objfile = msymbol_objfile (msym);
2773 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2775 set_value_address (v,
2776 gdbarch_convert_from_func_ptr_addr
2777 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target));
2782 if (type != value_type (*arg1p))
2783 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2784 value_addr (*arg1p)));
2786 /* Move the `this' pointer according to the offset.
2787 VALUE_OFFSET (*arg1p) += offset; */
2795 /* Helper function for both unpack_value_bits_as_long and
2796 unpack_bits_as_long. See those functions for more details on the
2797 interface; the only difference is that this function accepts either
2798 a NULL or a non-NULL ORIGINAL_VALUE. */
2801 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2802 int embedded_offset, int bitpos, int bitsize,
2803 const struct value *original_value,
2806 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2813 /* Read the minimum number of bytes required; there may not be
2814 enough bytes to read an entire ULONGEST. */
2815 CHECK_TYPEDEF (field_type);
2817 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2819 bytes_read = TYPE_LENGTH (field_type);
2821 read_offset = bitpos / 8;
2823 if (original_value != NULL
2824 && !value_bytes_available (original_value, embedded_offset + read_offset,
2828 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2829 bytes_read, byte_order);
2831 /* Extract bits. See comment above. */
2833 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2834 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2836 lsbcount = (bitpos % 8);
2839 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2840 If the field is signed, and is negative, then sign extend. */
2842 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2844 valmask = (((ULONGEST) 1) << bitsize) - 1;
2846 if (!TYPE_UNSIGNED (field_type))
2848 if (val & (valmask ^ (valmask >> 1)))
2859 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2860 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2861 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2862 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2865 Returns false if the value contents are unavailable, otherwise
2866 returns true, indicating a valid value has been stored in *RESULT.
2868 Extracting bits depends on endianness of the machine. Compute the
2869 number of least significant bits to discard. For big endian machines,
2870 we compute the total number of bits in the anonymous object, subtract
2871 off the bit count from the MSB of the object to the MSB of the
2872 bitfield, then the size of the bitfield, which leaves the LSB discard
2873 count. For little endian machines, the discard count is simply the
2874 number of bits from the LSB of the anonymous object to the LSB of the
2877 If the field is signed, we also do sign extension. */
2880 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2881 int embedded_offset, int bitpos, int bitsize,
2882 const struct value *original_value,
2885 gdb_assert (original_value != NULL);
2887 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2888 bitpos, bitsize, original_value, result);
2892 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2893 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2894 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2898 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2899 int embedded_offset, int fieldno,
2900 const struct value *val, LONGEST *result)
2902 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2903 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2904 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2906 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2907 bitpos, bitsize, val,
2911 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2912 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2913 ORIGINAL_VALUE, which must not be NULL. See
2914 unpack_value_bits_as_long for more details. */
2917 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2918 int embedded_offset, int fieldno,
2919 const struct value *val, LONGEST *result)
2921 gdb_assert (val != NULL);
2923 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2924 fieldno, val, result);
2927 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2928 object at VALADDR. See unpack_value_bits_as_long for more details.
2929 This function differs from unpack_value_field_as_long in that it
2930 operates without a struct value object. */
2933 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2937 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2941 /* Return a new value with type TYPE, which is FIELDNO field of the
2942 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2943 of VAL. If the VAL's contents required to extract the bitfield
2944 from are unavailable, the new value is correspondingly marked as
2948 value_field_bitfield (struct type *type, int fieldno,
2949 const gdb_byte *valaddr,
2950 int embedded_offset, const struct value *val)
2954 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2957 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2958 struct value *retval = allocate_value (field_type);
2959 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2964 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2968 /* Modify the value of a bitfield. ADDR points to a block of memory in
2969 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2970 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2971 indicate which bits (in target bit order) comprise the bitfield.
2972 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2973 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2976 modify_field (struct type *type, gdb_byte *addr,
2977 LONGEST fieldval, int bitpos, int bitsize)
2979 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2981 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2984 /* Normalize BITPOS. */
2988 /* If a negative fieldval fits in the field in question, chop
2989 off the sign extension bits. */
2990 if ((~fieldval & ~(mask >> 1)) == 0)
2993 /* Warn if value is too big to fit in the field in question. */
2994 if (0 != (fieldval & ~mask))
2996 /* FIXME: would like to include fieldval in the message, but
2997 we don't have a sprintf_longest. */
2998 warning (_("Value does not fit in %d bits."), bitsize);
3000 /* Truncate it, otherwise adjoining fields may be corrupted. */
3004 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3005 false valgrind reports. */
3007 bytesize = (bitpos + bitsize + 7) / 8;
3008 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3010 /* Shifting for bit field depends on endianness of the target machine. */
3011 if (gdbarch_bits_big_endian (get_type_arch (type)))
3012 bitpos = bytesize * 8 - bitpos - bitsize;
3014 oword &= ~(mask << bitpos);
3015 oword |= fieldval << bitpos;
3017 store_unsigned_integer (addr, bytesize, byte_order, oword);
3020 /* Pack NUM into BUF using a target format of TYPE. */
3023 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3025 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3028 type = check_typedef (type);
3029 len = TYPE_LENGTH (type);
3031 switch (TYPE_CODE (type))
3034 case TYPE_CODE_CHAR:
3035 case TYPE_CODE_ENUM:
3036 case TYPE_CODE_FLAGS:
3037 case TYPE_CODE_BOOL:
3038 case TYPE_CODE_RANGE:
3039 case TYPE_CODE_MEMBERPTR:
3040 store_signed_integer (buf, len, byte_order, num);
3045 store_typed_address (buf, type, (CORE_ADDR) num);
3049 error (_("Unexpected type (%d) encountered for integer constant."),
3055 /* Pack NUM into BUF using a target format of TYPE. */
3058 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3061 enum bfd_endian byte_order;
3063 type = check_typedef (type);
3064 len = TYPE_LENGTH (type);
3065 byte_order = gdbarch_byte_order (get_type_arch (type));
3067 switch (TYPE_CODE (type))
3070 case TYPE_CODE_CHAR:
3071 case TYPE_CODE_ENUM:
3072 case TYPE_CODE_FLAGS:
3073 case TYPE_CODE_BOOL:
3074 case TYPE_CODE_RANGE:
3075 case TYPE_CODE_MEMBERPTR:
3076 store_unsigned_integer (buf, len, byte_order, num);
3081 store_typed_address (buf, type, (CORE_ADDR) num);
3085 error (_("Unexpected type (%d) encountered "
3086 "for unsigned integer constant."),
3092 /* Convert C numbers into newly allocated values. */
3095 value_from_longest (struct type *type, LONGEST num)
3097 struct value *val = allocate_value (type);
3099 pack_long (value_contents_raw (val), type, num);
3104 /* Convert C unsigned numbers into newly allocated values. */
3107 value_from_ulongest (struct type *type, ULONGEST num)
3109 struct value *val = allocate_value (type);
3111 pack_unsigned_long (value_contents_raw (val), type, num);
3117 /* Create a value representing a pointer of type TYPE to the address
3120 value_from_pointer (struct type *type, CORE_ADDR addr)
3122 struct value *val = allocate_value (type);
3124 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3129 /* Create a value of type TYPE whose contents come from VALADDR, if it
3130 is non-null, and whose memory address (in the inferior) is
3134 value_from_contents_and_address (struct type *type,
3135 const gdb_byte *valaddr,
3140 if (valaddr == NULL)
3141 v = allocate_value_lazy (type);
3144 v = allocate_value (type);
3145 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3147 set_value_address (v, address);
3148 VALUE_LVAL (v) = lval_memory;
3152 /* Create a value of type TYPE holding the contents CONTENTS.
3153 The new value is `not_lval'. */
3156 value_from_contents (struct type *type, const gdb_byte *contents)
3158 struct value *result;
3160 result = allocate_value (type);
3161 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3166 value_from_double (struct type *type, DOUBLEST num)
3168 struct value *val = allocate_value (type);
3169 struct type *base_type = check_typedef (type);
3170 enum type_code code = TYPE_CODE (base_type);
3172 if (code == TYPE_CODE_FLT)
3174 store_typed_floating (value_contents_raw (val), base_type, num);
3177 error (_("Unexpected type encountered for floating constant."));
3183 value_from_decfloat (struct type *type, const gdb_byte *dec)
3185 struct value *val = allocate_value (type);
3187 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3191 /* Extract a value from the history file. Input will be of the form
3192 $digits or $$digits. See block comment above 'write_dollar_variable'
3196 value_from_history_ref (char *h, char **endp)
3208 /* Find length of numeral string. */
3209 for (; isdigit (h[len]); len++)
3212 /* Make sure numeral string is not part of an identifier. */
3213 if (h[len] == '_' || isalpha (h[len]))
3216 /* Now collect the index value. */
3221 /* For some bizarre reason, "$$" is equivalent to "$$1",
3222 rather than to "$$0" as it ought to be! */
3227 index = -strtol (&h[2], endp, 10);
3233 /* "$" is equivalent to "$0". */
3238 index = strtol (&h[1], endp, 10);
3241 return access_value_history (index);
3245 coerce_ref_if_computed (const struct value *arg)
3247 const struct lval_funcs *funcs;
3249 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3252 if (value_lval_const (arg) != lval_computed)
3255 funcs = value_computed_funcs (arg);
3256 if (funcs->coerce_ref == NULL)
3259 return funcs->coerce_ref (arg);
3262 /* Look at value.h for description. */
3265 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3266 struct type *original_type,
3267 struct value *original_value)
3269 /* Re-adjust type. */
3270 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3272 /* Add embedding info. */
3273 set_value_enclosing_type (value, enc_type);
3274 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3276 /* We may be pointing to an object of some derived type. */
3277 return value_full_object (value, NULL, 0, 0, 0);
3281 coerce_ref (struct value *arg)
3283 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3284 struct value *retval;
3285 struct type *enc_type;
3287 retval = coerce_ref_if_computed (arg);
3291 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3294 enc_type = check_typedef (value_enclosing_type (arg));
3295 enc_type = TYPE_TARGET_TYPE (enc_type);
3297 retval = value_at_lazy (enc_type,
3298 unpack_pointer (value_type (arg),
3299 value_contents (arg)));
3300 return readjust_indirect_value_type (retval, enc_type,
3301 value_type_arg_tmp, arg);
3305 coerce_array (struct value *arg)
3309 arg = coerce_ref (arg);
3310 type = check_typedef (value_type (arg));
3312 switch (TYPE_CODE (type))
3314 case TYPE_CODE_ARRAY:
3315 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3316 arg = value_coerce_array (arg);
3318 case TYPE_CODE_FUNC:
3319 arg = value_coerce_function (arg);
3326 /* Return the return value convention that will be used for the
3329 enum return_value_convention
3330 struct_return_convention (struct gdbarch *gdbarch,
3331 struct value *function, struct type *value_type)
3333 enum type_code code = TYPE_CODE (value_type);
3335 if (code == TYPE_CODE_ERROR)
3336 error (_("Function return type unknown."));
3338 /* Probe the architecture for the return-value convention. */
3339 return gdbarch_return_value (gdbarch, function, value_type,
3343 /* Return true if the function returning the specified type is using
3344 the convention of returning structures in memory (passing in the
3345 address as a hidden first parameter). */
3348 using_struct_return (struct gdbarch *gdbarch,
3349 struct value *function, struct type *value_type)
3351 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3352 /* A void return value is never in memory. See also corresponding
3353 code in "print_return_value". */
3356 return (struct_return_convention (gdbarch, function, value_type)
3357 != RETURN_VALUE_REGISTER_CONVENTION);
3360 /* Set the initialized field in a value struct. */
3363 set_value_initialized (struct value *val, int status)
3365 val->initialized = status;
3368 /* Return the initialized field in a value struct. */
3371 value_initialized (struct value *val)
3373 return val->initialized;
3377 _initialize_values (void)
3379 add_cmd ("convenience", no_class, show_convenience, _("\
3380 Debugger convenience (\"$foo\") variables and functions.\n\
3381 Convenience variables are created when you assign them values;\n\
3382 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3384 A few convenience variables are given values automatically:\n\
3385 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3386 \"$__\" holds the contents of the last address examined with \"x\"."
3389 Convenience functions are defined via the Python API."
3392 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3394 add_cmd ("values", no_set_class, show_values, _("\
3395 Elements of value history around item number IDX (or last ten)."),
3398 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3399 Initialize a convenience variable if necessary.\n\
3400 init-if-undefined VARIABLE = EXPRESSION\n\
3401 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3402 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3403 VARIABLE is already initialized."));
3405 add_prefix_cmd ("function", no_class, function_command, _("\
3406 Placeholder command for showing help on convenience functions."),
3407 &functionlist, "function ", 0, &cmdlist);