1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #include <sys/ioctl.h>
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
50 /*#include <sys/user.h> After a.out.h */
53 #include <machine/psl.h>
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
67 /* Routines to extract various sized constants out of hppa
70 /* This assumes that no garbage lies outside of the lower bits of
74 sign_extend (val, bits)
77 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
80 /* For many immediate values the sign bit is the low bit! */
83 low_sign_extend (val, bits)
86 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 /* extract the immediate field from a ld{bhw}s instruction */
91 get_field (val, from, to)
92 unsigned val, from, to;
95 return val & ((1 << 32 - from) - 1);
99 set_field (val, from, to, new_val)
100 unsigned *val, from, to;
102 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
103 return *val = *val & mask | (new_val << (31 - from));
106 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
111 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
114 extract_5_load (word)
117 return low_sign_extend (word >> 16 & MASK_5, 5);
120 /* extract the immediate field from a st{bhw}s instruction */
123 extract_5_store (word)
126 return low_sign_extend (word & MASK_5, 5);
129 /* extract the immediate field from a break instruction */
132 extract_5r_store (word)
135 return (word & MASK_5);
138 /* extract the immediate field from a {sr}sm instruction */
141 extract_5R_store (word)
144 return (word >> 16 & MASK_5);
147 /* extract an 11 bit immediate field */
153 return low_sign_extend (word & MASK_11, 11);
156 /* extract a 14 bit immediate field */
162 return low_sign_extend (word & MASK_14, 14);
165 /* deposit a 14 bit constant in a word */
168 deposit_14 (opnd, word)
172 unsigned sign = (opnd < 0 ? 1 : 0);
174 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
177 /* extract a 21 bit constant */
187 val = GET_FIELD (word, 20, 20);
189 val |= GET_FIELD (word, 9, 19);
191 val |= GET_FIELD (word, 5, 6);
193 val |= GET_FIELD (word, 0, 4);
195 val |= GET_FIELD (word, 7, 8);
196 return sign_extend (val, 21) << 11;
199 /* deposit a 21 bit constant in a word. Although 21 bit constants are
200 usually the top 21 bits of a 32 bit constant, we assume that only
201 the low 21 bits of opnd are relevant */
204 deposit_21 (opnd, word)
209 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
211 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
213 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
215 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
217 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
221 /* extract a 12 bit constant from branch instructions */
227 return sign_extend (GET_FIELD (word, 19, 28) |
228 GET_FIELD (word, 29, 29) << 10 |
229 (word & 0x1) << 11, 12) << 2;
232 /* extract a 17 bit constant from branch instructions, returning the
233 19 bit signed value. */
239 return sign_extend (GET_FIELD (word, 19, 28) |
240 GET_FIELD (word, 29, 29) << 10 |
241 GET_FIELD (word, 11, 15) << 11 |
242 (word & 0x1) << 16, 17) << 2;
245 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
246 of the objfiles seeking the unwind table entry for this PC. Each objfile
247 contains a sorted list of struct unwind_table_entry. Since we do a binary
248 search of the unwind tables, we depend upon them to be sorted. */
250 static struct unwind_table_entry *
251 find_unwind_entry(pc)
254 int first, middle, last;
255 struct objfile *objfile;
257 ALL_OBJFILES (objfile)
259 struct obj_unwind_info *ui;
261 ui = OBJ_UNWIND_INFO (objfile);
266 /* First, check the cache */
269 && pc >= ui->cache->region_start
270 && pc <= ui->cache->region_end)
273 /* Not in the cache, do a binary search */
278 while (first <= last)
280 middle = (first + last) / 2;
281 if (pc >= ui->table[middle].region_start
282 && pc <= ui->table[middle].region_end)
284 ui->cache = &ui->table[middle];
285 return &ui->table[middle];
288 if (pc < ui->table[middle].region_start)
293 } /* ALL_OBJFILES() */
297 /* Called when no unwind descriptor was found for PC. Returns 1 if it
298 appears that PC is in a linker stub. */
299 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
302 pc_in_linker_stub (pc)
305 int found_magic_instruction = 0;
309 /* If unable to read memory, assume pc is not in a linker stub. */
310 if (target_read_memory (pc, buf, 4) != 0)
313 /* We are looking for something like
315 ; $$dyncall jams RP into this special spot in the frame (RP')
316 ; before calling the "call stub"
319 ldsid (rp),r1 ; Get space associated with RP into r1
320 mtsp r1,sp ; Move it into space register 0
321 be,n 0(sr0),rp) ; back to your regularly scheduled program
324 /* Maximum known linker stub size is 4 instructions. Search forward
325 from the given PC, then backward. */
326 for (i = 0; i < 4; i++)
328 /* If we hit something with an unwind, stop searching this direction. */
330 if (find_unwind_entry (pc + i * 4) != 0)
333 /* Check for ldsid (rp),r1 which is the magic instruction for a
334 return from a cross-space function call. */
335 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
337 found_magic_instruction = 1;
340 /* Add code to handle long call/branch and argument relocation stubs
344 if (found_magic_instruction != 0)
347 /* Now look backward. */
348 for (i = 0; i < 4; i++)
350 /* If we hit something with an unwind, stop searching this direction. */
352 if (find_unwind_entry (pc - i * 4) != 0)
355 /* Check for ldsid (rp),r1 which is the magic instruction for a
356 return from a cross-space function call. */
357 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
359 found_magic_instruction = 1;
362 /* Add code to handle long call/branch and argument relocation stubs
365 return found_magic_instruction;
369 find_return_regnum(pc)
372 struct unwind_table_entry *u;
374 u = find_unwind_entry (pc);
385 /* Return size of frame, or -1 if we should use a frame pointer. */
387 find_proc_framesize(pc)
390 struct unwind_table_entry *u;
392 u = find_unwind_entry (pc);
396 if (pc_in_linker_stub (pc))
397 /* Linker stubs have a zero size frame. */
404 /* If this bit is set, it means there is a frame pointer and we should
408 return u->Total_frame_size << 3;
411 /* Return offset from sp at which rp is saved, or 0 if not saved. */
412 static int rp_saved PARAMS ((CORE_ADDR));
418 struct unwind_table_entry *u;
420 u = find_unwind_entry (pc);
424 if (pc_in_linker_stub (pc))
425 /* This is the so-called RP'. */
438 frameless_function_invocation (frame)
441 struct unwind_table_entry *u;
443 u = find_unwind_entry (frame->pc);
446 return frameless_look_for_prologue (frame);
448 return (u->Total_frame_size == 0);
452 saved_pc_after_call (frame)
457 ret_regnum = find_return_regnum (get_frame_pc (frame));
459 return read_register (ret_regnum) & ~0x3;
463 frame_saved_pc (frame)
466 CORE_ADDR pc = get_frame_pc (frame);
468 if (frameless_function_invocation (frame))
472 ret_regnum = find_return_regnum (pc);
474 return read_register (ret_regnum) & ~0x3;
478 int rp_offset = rp_saved (pc);
481 return read_register (RP_REGNUM) & ~0x3;
483 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
487 /* We need to correct the PC and the FP for the outermost frame when we are
491 init_extra_frame_info (fromleaf, frame)
493 struct frame_info *frame;
498 if (frame->next) /* Only do this for outermost frame */
501 flags = read_register (FLAGS_REGNUM);
502 if (flags & 2) /* In system call? */
503 frame->pc = read_register (31) & ~0x3;
505 /* The outermost frame is always derived from PC-framesize */
506 framesize = find_proc_framesize(frame->pc);
508 frame->frame = read_register (FP_REGNUM);
510 frame->frame = read_register (SP_REGNUM) - framesize;
512 if (!frameless_function_invocation (frame)) /* Frameless? */
513 return; /* No, quit now */
515 /* For frameless functions, we need to look at the caller's frame */
516 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
518 frame->frame -= framesize;
523 struct frame_info *frame;
527 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
530 return frame->frame - framesize;
532 return read_memory_integer (frame->frame, 4);
535 /* To see if a frame chain is valid, see if the caller looks like it
536 was compiled with gcc. */
539 frame_chain_valid (chain, thisframe)
543 struct minimal_symbol *msym;
548 struct unwind_table_entry *u;
550 u = find_unwind_entry (thisframe->pc);
552 msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
554 && (strcmp (SYMBOL_NAME (msym), "_start") == 0))
560 if (u->Save_SP || u->Total_frame_size)
563 if (pc_in_linker_stub (thisframe->pc))
570 * These functions deal with saving and restoring register state
571 * around a function call in the inferior. They keep the stack
572 * double-word aligned; eventually, on an hp700, the stack will have
573 * to be aligned to a 64-byte boundary.
579 register CORE_ADDR sp;
584 /* Space for "arguments"; the RP goes in here. */
585 sp = read_register (SP_REGNUM) + 48;
586 int_buffer = read_register (RP_REGNUM) | 0x3;
587 write_memory (sp - 20, (char *)&int_buffer, 4);
589 int_buffer = read_register (FP_REGNUM);
590 write_memory (sp, (char *)&int_buffer, 4);
592 write_register (FP_REGNUM, sp);
596 for (regnum = 1; regnum < 32; regnum++)
597 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
598 sp = push_word (sp, read_register (regnum));
602 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
604 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
605 sp = push_bytes (sp, (char *)&freg_buffer, 8);
607 sp = push_word (sp, read_register (IPSW_REGNUM));
608 sp = push_word (sp, read_register (SAR_REGNUM));
609 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
610 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
611 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
612 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
613 write_register (SP_REGNUM, sp);
616 find_dummy_frame_regs (frame, frame_saved_regs)
617 struct frame_info *frame;
618 struct frame_saved_regs *frame_saved_regs;
620 CORE_ADDR fp = frame->frame;
623 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
624 frame_saved_regs->regs[FP_REGNUM] = fp;
625 frame_saved_regs->regs[1] = fp + 8;
627 for (fp += 12, i = 3; i < 32; i++)
631 frame_saved_regs->regs[i] = fp;
637 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
638 frame_saved_regs->regs[i] = fp;
640 frame_saved_regs->regs[IPSW_REGNUM] = fp;
641 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
642 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
643 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
644 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
645 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
651 register FRAME frame = get_current_frame ();
652 register CORE_ADDR fp;
654 struct frame_saved_regs fsr;
655 struct frame_info *fi;
658 fi = get_frame_info (frame);
660 get_frame_saved_regs (fi, &fsr);
662 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
663 restore_pc_queue (&fsr);
665 for (regnum = 31; regnum > 0; regnum--)
666 if (fsr.regs[regnum])
667 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
669 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
670 if (fsr.regs[regnum])
672 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
673 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
676 if (fsr.regs[IPSW_REGNUM])
677 write_register (IPSW_REGNUM,
678 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
680 if (fsr.regs[SAR_REGNUM])
681 write_register (SAR_REGNUM,
682 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
684 if (fsr.regs[PCOQ_TAIL_REGNUM])
685 write_register (PCOQ_TAIL_REGNUM,
686 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
688 write_register (FP_REGNUM, read_memory_integer (fp, 4));
690 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
691 write_register (SP_REGNUM, fp - 48);
693 write_register (SP_REGNUM, fp);
695 flush_cached_frames ();
696 set_current_frame (create_new_frame (read_register (FP_REGNUM),
701 * After returning to a dummy on the stack, restore the instruction
702 * queue space registers. */
705 restore_pc_queue (fsr)
706 struct frame_saved_regs *fsr;
708 CORE_ADDR pc = read_pc ();
709 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
714 /* Advance past break instruction in the call dummy. */
715 write_register (PCOQ_HEAD_REGNUM, pc + 4);
716 write_register (PCOQ_TAIL_REGNUM, pc + 8);
719 * HPUX doesn't let us set the space registers or the space
720 * registers of the PC queue through ptrace. Boo, hiss.
721 * Conveniently, the call dummy has this sequence of instructions
726 * So, load up the registers and single step until we are in the
730 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
731 write_register (22, new_pc);
733 for (insn_count = 0; insn_count < 3; insn_count++)
740 stop_signal = WTERMSIG (w);
741 terminal_ours_for_output ();
742 printf ("\nProgram terminated with signal %d, %s\n",
743 stop_signal, safe_strsignal (stop_signal));
748 fetch_inferior_registers (-1);
753 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
758 CORE_ADDR struct_addr;
760 /* array of arguments' offsets */
761 int *offset = (int *)alloca(nargs * sizeof (int));
765 for (i = 0; i < nargs; i++)
767 /* Coerce chars to int & float to double if necessary */
768 args[i] = value_arg_coerce (args[i]);
770 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
772 /* value must go at proper alignment. Assume alignment is a
774 alignment = hppa_alignof (VALUE_TYPE (args[i]));
776 cum = (cum + alignment) & -alignment;
779 sp += max ((cum + 7) & -8, 16);
781 for (i = 0; i < nargs; i++)
782 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
783 TYPE_LENGTH (VALUE_TYPE (args[i])));
786 write_register (28, struct_addr);
791 * Insert the specified number of args and function address
792 * into a call sequence of the above form stored at DUMMYNAME.
794 * On the hppa we need to call the stack dummy through $$dyncall.
795 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
796 * real_pc, which is the location where gdb should start up the
797 * inferior to do the function call.
801 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
802 REGISTER_TYPE *dummy;
810 CORE_ADDR dyncall_addr, sr4export_addr;
811 struct minimal_symbol *msymbol;
813 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
815 error ("Can't find an address for $$dyncall trampoline");
817 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
819 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
821 error ("Can't find an address for _sr4export trampoline");
823 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
825 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
826 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
827 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
828 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
830 write_register (22, pc);
835 /* return the alignment of a type in bytes. Structures have the maximum
836 alignment required by their fields. */
842 int max_align, align, i;
843 switch (TYPE_CODE (arg))
848 return TYPE_LENGTH (arg);
849 case TYPE_CODE_ARRAY:
850 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
851 case TYPE_CODE_STRUCT:
852 case TYPE_CODE_UNION:
854 for (i = 0; i < TYPE_NFIELDS (arg); i++)
856 /* Bit fields have no real alignment. */
857 if (!TYPE_FIELD_BITPOS (arg, i))
859 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
860 max_align = max (max_align, align);
869 /* Print the register regnum, or all registers if regnum is -1 */
871 pa_do_registers_info (regnum, fpregs)
875 char raw_regs [REGISTER_BYTES];
878 for (i = 0; i < NUM_REGS; i++)
879 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
881 pa_print_registers (raw_regs, regnum, fpregs);
882 else if (regnum < FP0_REGNUM)
883 printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
884 REGISTER_BYTE (regnum)));
886 pa_print_fp_reg (regnum);
889 pa_print_registers (raw_regs, regnum, fpregs)
896 for (i = 0; i < 18; i++)
897 printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
899 *(int *)(raw_regs + REGISTER_BYTE (i)),
901 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
903 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
905 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
908 for (i = 72; i < NUM_REGS; i++)
915 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
916 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
919 /* Get the data in raw format, then convert also to virtual format. */
920 read_relative_register_raw_bytes (i, raw_buffer);
921 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
923 fputs_filtered (reg_names[i], stdout);
924 print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
926 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
927 1, 0, Val_pretty_default);
928 printf_filtered ("\n");
931 /* Function calls that pass into a new compilation unit must pass through a
932 small piece of code that does long format (`external' in HPPA parlance)
933 jumps. We figure out where the trampoline is going to end up, and return
934 the PC of the final destination. If we aren't in a trampoline, we just
937 For computed calls, we just extract the new PC from r22. */
940 skip_trampoline_code (pc, name)
945 static CORE_ADDR dyncall = 0;
946 struct minimal_symbol *msym;
948 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
952 msym = lookup_minimal_symbol ("$$dyncall", NULL);
954 dyncall = SYMBOL_VALUE_ADDRESS (msym);
960 return (CORE_ADDR)(read_register (22) & ~0x3);
962 inst0 = read_memory_integer (pc, 4);
963 inst1 = read_memory_integer (pc+4, 4);
965 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
966 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
967 pc = extract_21 (inst0) + extract_17 (inst1);
969 pc = (CORE_ADDR)NULL;
974 /* Advance PC across any function entry prologue instructions
975 to reach some "real" code. */
977 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
978 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
988 status = target_read_memory (pc, buf, 4);
989 inst = extract_unsigned_integer (buf, 4);
993 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
995 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
997 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1000 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
1002 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1009 unwind_command (exp, from_tty)
1017 struct unwind_table_entry *u;
1020 /* If we have an expression, evaluate it and use it as the address. */
1022 if (exp != 0 && *exp != 0)
1023 address = parse_and_eval_address (exp);
1027 xxx.u = find_unwind_entry (address);
1031 printf ("Can't find unwind table entry for PC 0x%x\n", address);
1035 printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],