1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
7 Contributed by the Center for Software Science at the
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
31 #include "completer.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
45 #include "hppa-tdep.h"
47 static int hppa_debug = 0;
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
61 /* Get at various relevent fields of an instruction word. */
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74 int hppa_instruction_nullified (void);
76 /* Handle 32/64-bit struct return conventions. */
78 static enum return_value_convention
79 hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
83 if (TYPE_LENGTH (type) <= 2 * 4)
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
96 regcache_cooked_read_part (regcache, reg, 4 - part,
99 regcache_cooked_write_part (regcache, reg, 4 - part,
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
112 return RETURN_VALUE_REGISTER_CONVENTION;
115 return RETURN_VALUE_STRUCT_CONVENTION;
118 static enum return_value_convention
119 hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
130 /* Floats are right aligned? */
131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
142 /* Integrals are right aligned. */
143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
152 else if (TYPE_LENGTH (type) <= 2 * 8)
154 /* Composite values are left aligned. */
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
158 int part = min (8, TYPE_LENGTH (type) - b);
160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
161 (char *) readbuf + b);
162 if (writebuf != NULL)
163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
164 (const char *) writebuf + b);
166 return RETURN_VALUE_REGISTER_CONVENTION;
169 return RETURN_VALUE_STRUCT_CONVENTION;
172 /* Routines to extract various sized constants out of hppa
175 /* This assumes that no garbage lies outside of the lower bits of
179 hppa_sign_extend (unsigned val, unsigned bits)
181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
184 /* For many immediate values the sign bit is the low bit! */
187 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
192 /* Extract the bits at positions between FROM and TO, using HP's numbering
196 hppa_get_field (unsigned word, int from, int to)
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
201 /* extract the immediate field from a ld{bhw}s instruction */
204 hppa_extract_5_load (unsigned word)
206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
209 /* extract the immediate field from a break instruction */
212 hppa_extract_5r_store (unsigned word)
214 return (word & MASK_5);
217 /* extract the immediate field from a {sr}sm instruction */
220 hppa_extract_5R_store (unsigned word)
222 return (word >> 16 & MASK_5);
225 /* extract a 14 bit immediate field */
228 hppa_extract_14 (unsigned word)
230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
233 /* extract a 21 bit constant */
236 hppa_extract_21 (unsigned word)
242 val = hppa_get_field (word, 20, 20);
244 val |= hppa_get_field (word, 9, 19);
246 val |= hppa_get_field (word, 5, 6);
248 val |= hppa_get_field (word, 0, 4);
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
258 hppa_extract_17 (unsigned word)
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
267 /* Compare the start address for two unwind entries returning 1 if
268 the first address is larger than the second, -1 if the second is
269 larger than the first, and zero if they are equal. */
272 compare_unwind_entries (const void *arg1, const void *arg2)
274 const struct unwind_table_entry *a = arg1;
275 const struct unwind_table_entry *b = arg2;
277 if (a->region_start > b->region_start)
279 else if (a->region_start < b->region_start)
286 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
288 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
289 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
291 bfd_vma value = section->vma - section->filepos;
292 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
294 if (value < *low_text_segment_address)
295 *low_text_segment_address = value;
300 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
301 asection *section, unsigned int entries, unsigned int size,
302 CORE_ADDR text_offset)
304 /* We will read the unwind entries into temporary memory, then
305 fill in the actual unwind table. */
311 char *buf = alloca (size);
312 CORE_ADDR low_text_segment_address;
314 /* For ELF targets, then unwinds are supposed to
315 be segment relative offsets instead of absolute addresses.
317 Note that when loading a shared library (text_offset != 0) the
318 unwinds are already relative to the text_offset that will be
320 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
322 low_text_segment_address = -1;
324 bfd_map_over_sections (objfile->obfd,
325 record_text_segment_lowaddr,
326 &low_text_segment_address);
328 text_offset = low_text_segment_address;
331 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
333 /* Now internalize the information being careful to handle host/target
335 for (i = 0; i < entries; i++)
337 table[i].region_start = bfd_get_32 (objfile->obfd,
339 table[i].region_start += text_offset;
341 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
342 table[i].region_end += text_offset;
344 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
346 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
347 table[i].Millicode = (tmp >> 30) & 0x1;
348 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
349 table[i].Region_description = (tmp >> 27) & 0x3;
350 table[i].reserved1 = (tmp >> 26) & 0x1;
351 table[i].Entry_SR = (tmp >> 25) & 0x1;
352 table[i].Entry_FR = (tmp >> 21) & 0xf;
353 table[i].Entry_GR = (tmp >> 16) & 0x1f;
354 table[i].Args_stored = (tmp >> 15) & 0x1;
355 table[i].Variable_Frame = (tmp >> 14) & 0x1;
356 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
357 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
358 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
359 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
360 table[i].Ada_Region = (tmp >> 9) & 0x1;
361 table[i].cxx_info = (tmp >> 8) & 0x1;
362 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
363 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
364 table[i].reserved2 = (tmp >> 5) & 0x1;
365 table[i].Save_SP = (tmp >> 4) & 0x1;
366 table[i].Save_RP = (tmp >> 3) & 0x1;
367 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
368 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
369 table[i].Cleanup_defined = tmp & 0x1;
370 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
372 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
373 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
374 table[i].Large_frame = (tmp >> 29) & 0x1;
375 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
376 table[i].reserved4 = (tmp >> 27) & 0x1;
377 table[i].Total_frame_size = tmp & 0x7ffffff;
379 /* Stub unwinds are handled elsewhere. */
380 table[i].stub_unwind.stub_type = 0;
381 table[i].stub_unwind.padding = 0;
386 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
387 the object file. This info is used mainly by find_unwind_entry() to find
388 out the stack frame size and frame pointer used by procedures. We put
389 everything on the psymbol obstack in the objfile so that it automatically
390 gets freed when the objfile is destroyed. */
393 read_unwind_info (struct objfile *objfile)
395 asection *unwind_sec, *stub_unwind_sec;
396 unsigned unwind_size, stub_unwind_size, total_size;
397 unsigned index, unwind_entries;
398 unsigned stub_entries, total_entries;
399 CORE_ADDR text_offset;
400 struct hppa_unwind_info *ui;
401 struct hppa_objfile_private *obj_private;
403 text_offset = ANOFFSET (objfile->section_offsets, 0);
404 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
405 sizeof (struct hppa_unwind_info));
411 /* For reasons unknown the HP PA64 tools generate multiple unwinder
412 sections in a single executable. So we just iterate over every
413 section in the BFD looking for unwinder sections intead of trying
414 to do a lookup with bfd_get_section_by_name.
416 First determine the total size of the unwind tables so that we
417 can allocate memory in a nice big hunk. */
419 for (unwind_sec = objfile->obfd->sections;
421 unwind_sec = unwind_sec->next)
423 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
424 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
426 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
427 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
429 total_entries += unwind_entries;
433 /* Now compute the size of the stub unwinds. Note the ELF tools do not
434 use stub unwinds at the curren time. */
435 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
439 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
440 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
444 stub_unwind_size = 0;
448 /* Compute total number of unwind entries and their total size. */
449 total_entries += stub_entries;
450 total_size = total_entries * sizeof (struct unwind_table_entry);
452 /* Allocate memory for the unwind table. */
453 ui->table = (struct unwind_table_entry *)
454 obstack_alloc (&objfile->objfile_obstack, total_size);
455 ui->last = total_entries - 1;
457 /* Now read in each unwind section and internalize the standard unwind
460 for (unwind_sec = objfile->obfd->sections;
462 unwind_sec = unwind_sec->next)
464 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
465 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
467 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
468 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
470 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
471 unwind_entries, unwind_size, text_offset);
472 index += unwind_entries;
476 /* Now read in and internalize the stub unwind entries. */
477 if (stub_unwind_size > 0)
480 char *buf = alloca (stub_unwind_size);
482 /* Read in the stub unwind entries. */
483 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
484 0, stub_unwind_size);
486 /* Now convert them into regular unwind entries. */
487 for (i = 0; i < stub_entries; i++, index++)
489 /* Clear out the next unwind entry. */
490 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
492 /* Convert offset & size into region_start and region_end.
493 Stuff away the stub type into "reserved" fields. */
494 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
496 ui->table[index].region_start += text_offset;
498 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
501 ui->table[index].region_end
502 = ui->table[index].region_start + 4 *
503 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
509 /* Unwind table needs to be kept sorted. */
510 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
511 compare_unwind_entries);
513 /* Keep a pointer to the unwind information. */
514 obj_private = (struct hppa_objfile_private *)
515 objfile_data (objfile, hppa_objfile_priv_data);
516 if (obj_private == NULL)
518 obj_private = (struct hppa_objfile_private *)
519 obstack_alloc (&objfile->objfile_obstack,
520 sizeof (struct hppa_objfile_private));
521 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
522 obj_private->unwind_info = NULL;
523 obj_private->so_info = NULL;
526 obj_private->unwind_info = ui;
529 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
530 of the objfiles seeking the unwind table entry for this PC. Each objfile
531 contains a sorted list of struct unwind_table_entry. Since we do a binary
532 search of the unwind tables, we depend upon them to be sorted. */
534 struct unwind_table_entry *
535 find_unwind_entry (CORE_ADDR pc)
537 int first, middle, last;
538 struct objfile *objfile;
539 struct hppa_objfile_private *priv;
542 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
545 /* A function at address 0? Not in HP-UX! */
546 if (pc == (CORE_ADDR) 0)
549 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
553 ALL_OBJFILES (objfile)
555 struct hppa_unwind_info *ui;
557 priv = objfile_data (objfile, hppa_objfile_priv_data);
559 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
563 read_unwind_info (objfile);
564 priv = objfile_data (objfile, hppa_objfile_priv_data);
566 error ("Internal error reading unwind information.");
567 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
570 /* First, check the cache */
573 && pc >= ui->cache->region_start
574 && pc <= ui->cache->region_end)
577 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
578 paddr_nz ((CORE_ADDR) ui->cache));
582 /* Not in the cache, do a binary search */
587 while (first <= last)
589 middle = (first + last) / 2;
590 if (pc >= ui->table[middle].region_start
591 && pc <= ui->table[middle].region_end)
593 ui->cache = &ui->table[middle];
595 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
596 paddr_nz ((CORE_ADDR) ui->cache));
597 return &ui->table[middle];
600 if (pc < ui->table[middle].region_start)
605 } /* ALL_OBJFILES() */
608 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
613 static const unsigned char *
614 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
616 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
617 (*len) = sizeof (breakpoint);
621 /* Return the name of a register. */
624 hppa32_register_name (int i)
626 static char *names[] = {
627 "flags", "r1", "rp", "r3",
628 "r4", "r5", "r6", "r7",
629 "r8", "r9", "r10", "r11",
630 "r12", "r13", "r14", "r15",
631 "r16", "r17", "r18", "r19",
632 "r20", "r21", "r22", "r23",
633 "r24", "r25", "r26", "dp",
634 "ret0", "ret1", "sp", "r31",
635 "sar", "pcoqh", "pcsqh", "pcoqt",
636 "pcsqt", "eiem", "iir", "isr",
637 "ior", "ipsw", "goto", "sr4",
638 "sr0", "sr1", "sr2", "sr3",
639 "sr5", "sr6", "sr7", "cr0",
640 "cr8", "cr9", "ccr", "cr12",
641 "cr13", "cr24", "cr25", "cr26",
642 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
643 "fpsr", "fpe1", "fpe2", "fpe3",
644 "fpe4", "fpe5", "fpe6", "fpe7",
645 "fr4", "fr4R", "fr5", "fr5R",
646 "fr6", "fr6R", "fr7", "fr7R",
647 "fr8", "fr8R", "fr9", "fr9R",
648 "fr10", "fr10R", "fr11", "fr11R",
649 "fr12", "fr12R", "fr13", "fr13R",
650 "fr14", "fr14R", "fr15", "fr15R",
651 "fr16", "fr16R", "fr17", "fr17R",
652 "fr18", "fr18R", "fr19", "fr19R",
653 "fr20", "fr20R", "fr21", "fr21R",
654 "fr22", "fr22R", "fr23", "fr23R",
655 "fr24", "fr24R", "fr25", "fr25R",
656 "fr26", "fr26R", "fr27", "fr27R",
657 "fr28", "fr28R", "fr29", "fr29R",
658 "fr30", "fr30R", "fr31", "fr31R"
660 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
667 hppa64_register_name (int i)
669 static char *names[] = {
670 "flags", "r1", "rp", "r3",
671 "r4", "r5", "r6", "r7",
672 "r8", "r9", "r10", "r11",
673 "r12", "r13", "r14", "r15",
674 "r16", "r17", "r18", "r19",
675 "r20", "r21", "r22", "r23",
676 "r24", "r25", "r26", "dp",
677 "ret0", "ret1", "sp", "r31",
678 "sar", "pcoqh", "pcsqh", "pcoqt",
679 "pcsqt", "eiem", "iir", "isr",
680 "ior", "ipsw", "goto", "sr4",
681 "sr0", "sr1", "sr2", "sr3",
682 "sr5", "sr6", "sr7", "cr0",
683 "cr8", "cr9", "ccr", "cr12",
684 "cr13", "cr24", "cr25", "cr26",
685 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
686 "fpsr", "fpe1", "fpe2", "fpe3",
687 "fr4", "fr5", "fr6", "fr7",
688 "fr8", "fr9", "fr10", "fr11",
689 "fr12", "fr13", "fr14", "fr15",
690 "fr16", "fr17", "fr18", "fr19",
691 "fr20", "fr21", "fr22", "fr23",
692 "fr24", "fr25", "fr26", "fr27",
693 "fr28", "fr29", "fr30", "fr31"
695 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
701 /* This function pushes a stack frame with arguments as part of the
702 inferior function calling mechanism.
704 This is the version of the function for the 32-bit PA machines, in
705 which later arguments appear at lower addresses. (The stack always
706 grows towards higher addresses.)
708 We simply allocate the appropriate amount of stack space and put
709 arguments into their proper slots. */
712 hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
713 struct regcache *regcache, CORE_ADDR bp_addr,
714 int nargs, struct value **args, CORE_ADDR sp,
715 int struct_return, CORE_ADDR struct_addr)
717 /* Stack base address at which any pass-by-reference parameters are
719 CORE_ADDR struct_end = 0;
720 /* Stack base address at which the first parameter is stored. */
721 CORE_ADDR param_end = 0;
723 /* The inner most end of the stack after all the parameters have
725 CORE_ADDR new_sp = 0;
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
730 for (write_pass = 0; write_pass < 2; write_pass++)
732 CORE_ADDR struct_ptr = 0;
733 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
734 struct_ptr is adjusted for each argument below, so the first
735 argument will end up at sp-36. */
736 CORE_ADDR param_ptr = 32;
738 int small_struct = 0;
740 for (i = 0; i < nargs; i++)
742 struct value *arg = args[i];
743 struct type *type = check_typedef (VALUE_TYPE (arg));
744 /* The corresponding parameter that is pushed onto the
745 stack, and [possibly] passed in a register. */
748 memset (param_val, 0, sizeof param_val);
749 if (TYPE_LENGTH (type) > 8)
751 /* Large parameter, pass by reference. Store the value
752 in "struct" area and then pass its address. */
754 struct_ptr += align_up (TYPE_LENGTH (type), 8);
756 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
758 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
760 else if (TYPE_CODE (type) == TYPE_CODE_INT
761 || TYPE_CODE (type) == TYPE_CODE_ENUM)
763 /* Integer value store, right aligned. "unpack_long"
764 takes care of any sign-extension problems. */
765 param_len = align_up (TYPE_LENGTH (type), 4);
766 store_unsigned_integer (param_val, param_len,
768 VALUE_CONTENTS (arg)));
770 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
772 /* Floating point value store, right aligned. */
773 param_len = align_up (TYPE_LENGTH (type), 4);
774 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
778 param_len = align_up (TYPE_LENGTH (type), 4);
780 /* Small struct value are stored right-aligned. */
781 memcpy (param_val + param_len - TYPE_LENGTH (type),
782 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
784 /* Structures of size 5, 6 and 7 bytes are special in that
785 the higher-ordered word is stored in the lower-ordered
786 argument, and even though it is a 8-byte quantity the
787 registers need not be 8-byte aligned. */
788 if (param_len > 4 && param_len < 8)
792 param_ptr += param_len;
793 if (param_len == 8 && !small_struct)
794 param_ptr = align_up (param_ptr, 8);
796 /* First 4 non-FP arguments are passed in gr26-gr23.
797 First 4 32-bit FP arguments are passed in fr4L-fr7L.
798 First 2 64-bit FP arguments are passed in fr5 and fr7.
800 The rest go on the stack, starting at sp-36, towards lower
801 addresses. 8-byte arguments must be aligned to a 8-byte
805 write_memory (param_end - param_ptr, param_val, param_len);
807 /* There are some cases when we don't know the type
808 expected by the callee (e.g. for variadic functions), so
809 pass the parameters in both general and fp regs. */
812 int grreg = 26 - (param_ptr - 36) / 4;
813 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
814 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
816 regcache_cooked_write (regcache, grreg, param_val);
817 regcache_cooked_write (regcache, fpLreg, param_val);
821 regcache_cooked_write (regcache, grreg + 1,
824 regcache_cooked_write (regcache, fpreg, param_val);
825 regcache_cooked_write (regcache, fpreg + 1,
832 /* Update the various stack pointers. */
835 struct_end = sp + align_up (struct_ptr, 64);
836 /* PARAM_PTR already accounts for all the arguments passed
837 by the user. However, the ABI mandates minimum stack
838 space allocations for outgoing arguments. The ABI also
839 mandates minimum stack alignments which we must
841 param_end = struct_end + align_up (param_ptr, 64);
845 /* If a structure has to be returned, set up register 28 to hold its
848 write_register (28, struct_addr);
850 /* Set the return address. */
851 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
853 /* Update the Stack Pointer. */
854 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
859 /* This function pushes a stack frame with arguments as part of the
860 inferior function calling mechanism.
862 This is the version for the PA64, in which later arguments appear
863 at higher addresses. (The stack always grows towards higher
866 We simply allocate the appropriate amount of stack space and put
867 arguments into their proper slots.
869 This ABI also requires that the caller provide an argument pointer
870 to the callee, so we do that too. */
873 hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
874 struct regcache *regcache, CORE_ADDR bp_addr,
875 int nargs, struct value **args, CORE_ADDR sp,
876 int struct_return, CORE_ADDR struct_addr)
878 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
879 reverse engineering testsuite failures. */
881 /* Stack base address at which any pass-by-reference parameters are
883 CORE_ADDR struct_end = 0;
884 /* Stack base address at which the first parameter is stored. */
885 CORE_ADDR param_end = 0;
887 /* The inner most end of the stack after all the parameters have
889 CORE_ADDR new_sp = 0;
891 /* Two passes. First pass computes the location of everything,
892 second pass writes the bytes out. */
894 for (write_pass = 0; write_pass < 2; write_pass++)
896 CORE_ADDR struct_ptr = 0;
897 CORE_ADDR param_ptr = 0;
899 for (i = 0; i < nargs; i++)
901 struct value *arg = args[i];
902 struct type *type = check_typedef (VALUE_TYPE (arg));
903 if ((TYPE_CODE (type) == TYPE_CODE_INT
904 || TYPE_CODE (type) == TYPE_CODE_ENUM)
905 && TYPE_LENGTH (type) <= 8)
907 /* Integer value store, right aligned. "unpack_long"
908 takes care of any sign-extension problems. */
912 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
913 int reg = 27 - param_ptr / 8;
914 write_memory_unsigned_integer (param_end - param_ptr,
917 regcache_cooked_write_unsigned (regcache, reg, val);
922 /* Small struct value, store left aligned? */
924 if (TYPE_LENGTH (type) > 8)
926 param_ptr = align_up (param_ptr, 16);
927 reg = 26 - param_ptr / 8;
928 param_ptr += align_up (TYPE_LENGTH (type), 16);
932 param_ptr = align_up (param_ptr, 8);
933 reg = 26 - param_ptr / 8;
934 param_ptr += align_up (TYPE_LENGTH (type), 8);
939 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
941 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
945 int len = min (8, TYPE_LENGTH (type) - byte);
946 regcache_cooked_write_part (regcache, reg, 0, len,
947 VALUE_CONTENTS (arg) + byte);
954 /* Update the various stack pointers. */
957 struct_end = sp + struct_ptr;
958 /* PARAM_PTR already accounts for all the arguments passed
959 by the user. However, the ABI mandates minimum stack
960 space allocations for outgoing arguments. The ABI also
961 mandates minimum stack alignments which we must
963 param_end = struct_end + max (align_up (param_ptr, 16), 64);
967 /* If a structure has to be returned, set up register 28 to hold its
970 write_register (28, struct_addr);
972 /* Set the return address. */
973 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
975 /* Update the Stack Pointer. */
976 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
978 /* The stack will have 32 bytes of additional space for a frame marker. */
979 return param_end + 64;
983 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
985 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
987 return align_up (addr, 64);
990 /* Force all frames to 16-byte alignment. Better safe than sorry. */
993 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
995 /* Just always 16-byte align. */
996 return align_up (addr, 16);
1000 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1004 hppa_target_read_pc (ptid_t ptid)
1006 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1008 /* The following test does not belong here. It is OS-specific, and belongs
1010 /* Test SS_INSYSCALL */
1012 return read_register_pid (31, ptid) & ~0x3;
1014 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1017 /* Write out the PC. If currently in a syscall, then also write the new
1018 PC value into %r31. */
1021 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1023 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1025 /* The following test does not belong here. It is OS-specific, and belongs
1027 /* If in a syscall, then set %r31. Also make sure to get the
1028 privilege bits set correctly. */
1029 /* Test SS_INSYSCALL */
1031 write_register_pid (31, v | 0x3, ptid);
1033 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1034 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1037 /* return the alignment of a type in bytes. Structures have the maximum
1038 alignment required by their fields. */
1041 hppa_alignof (struct type *type)
1043 int max_align, align, i;
1044 CHECK_TYPEDEF (type);
1045 switch (TYPE_CODE (type))
1050 return TYPE_LENGTH (type);
1051 case TYPE_CODE_ARRAY:
1052 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1053 case TYPE_CODE_STRUCT:
1054 case TYPE_CODE_UNION:
1056 for (i = 0; i < TYPE_NFIELDS (type); i++)
1058 /* Bit fields have no real alignment. */
1059 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1060 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1062 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1063 max_align = max (max_align, align);
1072 /* For the given instruction (INST), return any adjustment it makes
1073 to the stack pointer or zero for no adjustment.
1075 This only handles instructions commonly found in prologues. */
1078 prologue_inst_adjust_sp (unsigned long inst)
1080 /* This must persist across calls. */
1081 static int save_high21;
1083 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1084 if ((inst & 0xffffc000) == 0x37de0000)
1085 return hppa_extract_14 (inst);
1088 if ((inst & 0xffe00000) == 0x6fc00000)
1089 return hppa_extract_14 (inst);
1091 /* std,ma X,D(sp) */
1092 if ((inst & 0xffe00008) == 0x73c00008)
1093 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1095 /* addil high21,%r1; ldo low11,(%r1),%r30)
1096 save high bits in save_high21 for later use. */
1097 if ((inst & 0xffe00000) == 0x28200000)
1099 save_high21 = hppa_extract_21 (inst);
1103 if ((inst & 0xffff0000) == 0x343e0000)
1104 return save_high21 + hppa_extract_14 (inst);
1106 /* fstws as used by the HP compilers. */
1107 if ((inst & 0xffffffe0) == 0x2fd01220)
1108 return hppa_extract_5_load (inst);
1110 /* No adjustment. */
1114 /* Return nonzero if INST is a branch of some kind, else return zero. */
1117 is_branch (unsigned long inst)
1146 /* Return the register number for a GR which is saved by INST or
1147 zero it INST does not save a GR. */
1150 inst_saves_gr (unsigned long inst)
1152 /* Does it look like a stw? */
1153 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1154 || (inst >> 26) == 0x1f
1155 || ((inst >> 26) == 0x1f
1156 && ((inst >> 6) == 0xa)))
1157 return hppa_extract_5R_store (inst);
1159 /* Does it look like a std? */
1160 if ((inst >> 26) == 0x1c
1161 || ((inst >> 26) == 0x03
1162 && ((inst >> 6) & 0xf) == 0xb))
1163 return hppa_extract_5R_store (inst);
1165 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1166 if ((inst >> 26) == 0x1b)
1167 return hppa_extract_5R_store (inst);
1169 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1171 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1172 || ((inst >> 26) == 0x3
1173 && (((inst >> 6) & 0xf) == 0x8
1174 || (inst >> 6) & 0xf) == 0x9))
1175 return hppa_extract_5R_store (inst);
1180 /* Return the register number for a FR which is saved by INST or
1181 zero it INST does not save a FR.
1183 Note we only care about full 64bit register stores (that's the only
1184 kind of stores the prologue will use).
1186 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1189 inst_saves_fr (unsigned long inst)
1191 /* is this an FSTD ? */
1192 if ((inst & 0xfc00dfc0) == 0x2c001200)
1193 return hppa_extract_5r_store (inst);
1194 if ((inst & 0xfc000002) == 0x70000002)
1195 return hppa_extract_5R_store (inst);
1196 /* is this an FSTW ? */
1197 if ((inst & 0xfc00df80) == 0x24001200)
1198 return hppa_extract_5r_store (inst);
1199 if ((inst & 0xfc000002) == 0x7c000000)
1200 return hppa_extract_5R_store (inst);
1204 /* Advance PC across any function entry prologue instructions
1205 to reach some "real" code.
1207 Use information in the unwind table to determine what exactly should
1208 be in the prologue. */
1212 skip_prologue_hard_way (CORE_ADDR pc)
1215 CORE_ADDR orig_pc = pc;
1216 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1217 unsigned long args_stored, status, i, restart_gr, restart_fr;
1218 struct unwind_table_entry *u;
1224 u = find_unwind_entry (pc);
1228 /* If we are not at the beginning of a function, then return now. */
1229 if ((pc & ~0x3) != u->region_start)
1232 /* This is how much of a frame adjustment we need to account for. */
1233 stack_remaining = u->Total_frame_size << 3;
1235 /* Magic register saves we want to know about. */
1236 save_rp = u->Save_RP;
1237 save_sp = u->Save_SP;
1239 /* An indication that args may be stored into the stack. Unfortunately
1240 the HPUX compilers tend to set this in cases where no args were
1244 /* Turn the Entry_GR field into a bitmask. */
1246 for (i = 3; i < u->Entry_GR + 3; i++)
1248 /* Frame pointer gets saved into a special location. */
1249 if (u->Save_SP && i == HPPA_FP_REGNUM)
1252 save_gr |= (1 << i);
1254 save_gr &= ~restart_gr;
1256 /* Turn the Entry_FR field into a bitmask too. */
1258 for (i = 12; i < u->Entry_FR + 12; i++)
1259 save_fr |= (1 << i);
1260 save_fr &= ~restart_fr;
1262 /* Loop until we find everything of interest or hit a branch.
1264 For unoptimized GCC code and for any HP CC code this will never ever
1265 examine any user instructions.
1267 For optimzied GCC code we're faced with problems. GCC will schedule
1268 its prologue and make prologue instructions available for delay slot
1269 filling. The end result is user code gets mixed in with the prologue
1270 and a prologue instruction may be in the delay slot of the first branch
1273 Some unexpected things are expected with debugging optimized code, so
1274 we allow this routine to walk past user instructions in optimized
1276 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1279 unsigned int reg_num;
1280 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1281 unsigned long old_save_rp, old_save_sp, next_inst;
1283 /* Save copies of all the triggers so we can compare them later
1285 old_save_gr = save_gr;
1286 old_save_fr = save_fr;
1287 old_save_rp = save_rp;
1288 old_save_sp = save_sp;
1289 old_stack_remaining = stack_remaining;
1291 status = read_memory_nobpt (pc, buf, 4);
1292 inst = extract_unsigned_integer (buf, 4);
1298 /* Note the interesting effects of this instruction. */
1299 stack_remaining -= prologue_inst_adjust_sp (inst);
1301 /* There are limited ways to store the return pointer into the
1303 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1306 /* These are the only ways we save SP into the stack. At this time
1307 the HP compilers never bother to save SP into the stack. */
1308 if ((inst & 0xffffc000) == 0x6fc10000
1309 || (inst & 0xffffc00c) == 0x73c10008)
1312 /* Are we loading some register with an offset from the argument
1314 if ((inst & 0xffe00000) == 0x37a00000
1315 || (inst & 0xffffffe0) == 0x081d0240)
1321 /* Account for general and floating-point register saves. */
1322 reg_num = inst_saves_gr (inst);
1323 save_gr &= ~(1 << reg_num);
1325 /* Ugh. Also account for argument stores into the stack.
1326 Unfortunately args_stored only tells us that some arguments
1327 where stored into the stack. Not how many or what kind!
1329 This is a kludge as on the HP compiler sets this bit and it
1330 never does prologue scheduling. So once we see one, skip past
1331 all of them. We have similar code for the fp arg stores below.
1333 FIXME. Can still die if we have a mix of GR and FR argument
1335 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1337 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1340 status = read_memory_nobpt (pc, buf, 4);
1341 inst = extract_unsigned_integer (buf, 4);
1344 reg_num = inst_saves_gr (inst);
1350 reg_num = inst_saves_fr (inst);
1351 save_fr &= ~(1 << reg_num);
1353 status = read_memory_nobpt (pc + 4, buf, 4);
1354 next_inst = extract_unsigned_integer (buf, 4);
1360 /* We've got to be read to handle the ldo before the fp register
1362 if ((inst & 0xfc000000) == 0x34000000
1363 && inst_saves_fr (next_inst) >= 4
1364 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1366 /* So we drop into the code below in a reasonable state. */
1367 reg_num = inst_saves_fr (next_inst);
1371 /* Ugh. Also account for argument stores into the stack.
1372 This is a kludge as on the HP compiler sets this bit and it
1373 never does prologue scheduling. So once we see one, skip past
1375 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1377 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1380 status = read_memory_nobpt (pc, buf, 4);
1381 inst = extract_unsigned_integer (buf, 4);
1384 if ((inst & 0xfc000000) != 0x34000000)
1386 status = read_memory_nobpt (pc + 4, buf, 4);
1387 next_inst = extract_unsigned_integer (buf, 4);
1390 reg_num = inst_saves_fr (next_inst);
1396 /* Quit if we hit any kind of branch. This can happen if a prologue
1397 instruction is in the delay slot of the first call/branch. */
1398 if (is_branch (inst))
1401 /* What a crock. The HP compilers set args_stored even if no
1402 arguments were stored into the stack (boo hiss). This could
1403 cause this code to then skip a bunch of user insns (up to the
1406 To combat this we try to identify when args_stored was bogusly
1407 set and clear it. We only do this when args_stored is nonzero,
1408 all other resources are accounted for, and nothing changed on
1411 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1412 && old_save_gr == save_gr && old_save_fr == save_fr
1413 && old_save_rp == save_rp && old_save_sp == save_sp
1414 && old_stack_remaining == stack_remaining)
1421 /* We've got a tenative location for the end of the prologue. However
1422 because of limitations in the unwind descriptor mechanism we may
1423 have went too far into user code looking for the save of a register
1424 that does not exist. So, if there registers we expected to be saved
1425 but never were, mask them out and restart.
1427 This should only happen in optimized code, and should be very rare. */
1428 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1431 restart_gr = save_gr;
1432 restart_fr = save_fr;
1440 /* Return the address of the PC after the last prologue instruction if
1441 we can determine it from the debug symbols. Else return zero. */
1444 after_prologue (CORE_ADDR pc)
1446 struct symtab_and_line sal;
1447 CORE_ADDR func_addr, func_end;
1450 /* If we can not find the symbol in the partial symbol table, then
1451 there is no hope we can determine the function's start address
1453 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1456 /* Get the line associated with FUNC_ADDR. */
1457 sal = find_pc_line (func_addr, 0);
1459 /* There are only two cases to consider. First, the end of the source line
1460 is within the function bounds. In that case we return the end of the
1461 source line. Second is the end of the source line extends beyond the
1462 bounds of the current function. We need to use the slow code to
1463 examine instructions in that case.
1465 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1466 the wrong thing to do. In fact, it should be entirely possible for this
1467 function to always return zero since the slow instruction scanning code
1468 is supposed to *always* work. If it does not, then it is a bug. */
1469 if (sal.end < func_end)
1475 /* To skip prologues, I use this predicate. Returns either PC itself
1476 if the code at PC does not look like a function prologue; otherwise
1477 returns an address that (if we're lucky) follows the prologue. If
1478 LENIENT, then we must skip everything which is involved in setting
1479 up the frame (it's OK to skip more, just so long as we don't skip
1480 anything which might clobber the registers which are being saved.
1481 Currently we must not skip more on the alpha, but we might the lenient
1485 hppa_skip_prologue (CORE_ADDR pc)
1489 CORE_ADDR post_prologue_pc;
1492 /* See if we can determine the end of the prologue via the symbol table.
1493 If so, then return either PC, or the PC after the prologue, whichever
1496 post_prologue_pc = after_prologue (pc);
1498 /* If after_prologue returned a useful address, then use it. Else
1499 fall back on the instruction skipping code.
1501 Some folks have claimed this causes problems because the breakpoint
1502 may be the first instruction of the prologue. If that happens, then
1503 the instruction skipping code has a bug that needs to be fixed. */
1504 if (post_prologue_pc != 0)
1505 return max (pc, post_prologue_pc);
1507 return (skip_prologue_hard_way (pc));
1510 struct hppa_frame_cache
1513 struct trad_frame_saved_reg *saved_regs;
1516 static struct hppa_frame_cache *
1517 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1519 struct hppa_frame_cache *cache;
1524 struct unwind_table_entry *u;
1525 CORE_ADDR prologue_end;
1529 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1530 frame_relative_level(next_frame));
1532 if ((*this_cache) != NULL)
1535 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1536 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1537 return (*this_cache);
1539 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1540 (*this_cache) = cache;
1541 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1544 u = find_unwind_entry (frame_func_unwind (next_frame));
1548 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1549 return (*this_cache);
1552 /* Turn the Entry_GR field into a bitmask. */
1554 for (i = 3; i < u->Entry_GR + 3; i++)
1556 /* Frame pointer gets saved into a special location. */
1557 if (u->Save_SP && i == HPPA_FP_REGNUM)
1560 saved_gr_mask |= (1 << i);
1563 /* Turn the Entry_FR field into a bitmask too. */
1565 for (i = 12; i < u->Entry_FR + 12; i++)
1566 saved_fr_mask |= (1 << i);
1568 /* Loop until we find everything of interest or hit a branch.
1570 For unoptimized GCC code and for any HP CC code this will never ever
1571 examine any user instructions.
1573 For optimized GCC code we're faced with problems. GCC will schedule
1574 its prologue and make prologue instructions available for delay slot
1575 filling. The end result is user code gets mixed in with the prologue
1576 and a prologue instruction may be in the delay slot of the first branch
1579 Some unexpected things are expected with debugging optimized code, so
1580 we allow this routine to walk past user instructions in optimized
1583 int final_iteration = 0;
1584 CORE_ADDR pc, end_pc;
1585 int looking_for_sp = u->Save_SP;
1586 int looking_for_rp = u->Save_RP;
1589 /* We have to use hppa_skip_prologue instead of just
1590 skip_prologue_using_sal, in case we stepped into a function without
1591 symbol information. hppa_skip_prologue also bounds the returned
1592 pc by the passed in pc, so it will not return a pc in the next
1594 prologue_end = hppa_skip_prologue (frame_func_unwind (next_frame));
1595 end_pc = frame_pc_unwind (next_frame);
1597 if (prologue_end != 0 && end_pc > prologue_end)
1598 end_pc = prologue_end;
1602 for (pc = frame_func_unwind (next_frame);
1603 ((saved_gr_mask || saved_fr_mask
1604 || looking_for_sp || looking_for_rp
1605 || frame_size < (u->Total_frame_size << 3))
1611 long status = read_memory_nobpt (pc, buf4, sizeof buf4);
1612 long inst = extract_unsigned_integer (buf4, sizeof buf4);
1614 /* Note the interesting effects of this instruction. */
1615 frame_size += prologue_inst_adjust_sp (inst);
1617 /* There are limited ways to store the return pointer into the
1619 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1622 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1624 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1627 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1630 /* Check to see if we saved SP into the stack. This also
1631 happens to indicate the location of the saved frame
1633 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1634 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1637 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1640 /* Account for general and floating-point register saves. */
1641 reg = inst_saves_gr (inst);
1642 if (reg >= 3 && reg <= 18
1643 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1645 saved_gr_mask &= ~(1 << reg);
1646 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1647 /* stwm with a positive displacement is a _post_
1649 cache->saved_regs[reg].addr = 0;
1650 else if ((inst & 0xfc00000c) == 0x70000008)
1651 /* A std has explicit post_modify forms. */
1652 cache->saved_regs[reg].addr = 0;
1657 if ((inst >> 26) == 0x1c)
1658 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1659 else if ((inst >> 26) == 0x03)
1660 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1662 offset = hppa_extract_14 (inst);
1664 /* Handle code with and without frame pointers. */
1666 cache->saved_regs[reg].addr = offset;
1668 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1672 /* GCC handles callee saved FP regs a little differently.
1674 It emits an instruction to put the value of the start of
1675 the FP store area into %r1. It then uses fstds,ma with a
1676 basereg of %r1 for the stores.
1678 HP CC emits them at the current stack pointer modifying the
1679 stack pointer as it stores each register. */
1681 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1682 if ((inst & 0xffffc000) == 0x34610000
1683 || (inst & 0xffffc000) == 0x37c10000)
1684 fp_loc = hppa_extract_14 (inst);
1686 reg = inst_saves_fr (inst);
1687 if (reg >= 12 && reg <= 21)
1689 /* Note +4 braindamage below is necessary because the FP
1690 status registers are internally 8 registers rather than
1691 the expected 4 registers. */
1692 saved_fr_mask &= ~(1 << reg);
1695 /* 1st HP CC FP register store. After this
1696 instruction we've set enough state that the GCC and
1697 HPCC code are both handled in the same manner. */
1698 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1703 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1708 /* Quit if we hit any kind of branch the previous iteration. */
1709 if (final_iteration)
1711 /* We want to look precisely one instruction beyond the branch
1712 if we have not found everything yet. */
1713 if (is_branch (inst))
1714 final_iteration = 1;
1719 /* The frame base always represents the value of %sp at entry to
1720 the current function (and is thus equivalent to the "saved"
1722 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1726 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1727 "prologue_end=0x%s) ",
1729 paddr_nz (frame_pc_unwind (next_frame)),
1730 paddr_nz (prologue_end));
1732 /* Check to see if a frame pointer is available, and use it for
1733 frame unwinding if it is.
1735 There are some situations where we need to rely on the frame
1736 pointer to do stack unwinding. For example, if a function calls
1737 alloca (), the stack pointer can get adjusted inside the body of
1738 the function. In this case, the ABI requires that the compiler
1739 maintain a frame pointer for the function.
1741 The unwind record has a flag (alloca_frame) that indicates that
1742 a function has a variable frame; unfortunately, gcc/binutils
1743 does not set this flag. Instead, whenever a frame pointer is used
1744 and saved on the stack, the Save_SP flag is set. We use this to
1745 decide whether to use the frame pointer for unwinding.
1747 fp should never be zero here; checking just in case.
1749 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1750 instead of Save_SP. */
1752 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1754 if (frame_pc_unwind (next_frame) >= prologue_end
1755 && u->Save_SP && fp != 0)
1760 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1761 paddr_nz (cache->base));
1763 else if (frame_pc_unwind (next_frame) >= prologue_end)
1765 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1767 /* Both we're expecting the SP to be saved and the SP has been
1768 saved. The entry SP value is saved at this frame's SP
1770 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1773 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1774 paddr_nz (cache->base));
1778 /* The prologue has been slowly allocating stack space. Adjust
1780 cache->base = this_sp - frame_size;
1782 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1783 paddr_nz (cache->base));
1789 /* This frame has not yet been created. */
1790 cache->base = this_sp;
1793 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [before prologue] } ",
1794 paddr_nz (cache->base));
1798 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1801 /* The PC is found in the "return register", "Millicode" uses "r31"
1802 as the return register while normal code uses "rp". */
1805 if (trad_frame_addr_p (cache->saved_regs, 31))
1806 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1809 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1810 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1815 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1816 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1819 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1820 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1825 /* Convert all the offsets into addresses. */
1827 for (reg = 0; reg < NUM_REGS; reg++)
1829 if (trad_frame_addr_p (cache->saved_regs, reg))
1830 cache->saved_regs[reg].addr += cache->base;
1835 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1836 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1837 return (*this_cache);
1841 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1842 struct frame_id *this_id)
1844 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1845 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1849 hppa_frame_prev_register (struct frame_info *next_frame,
1851 int regnum, int *optimizedp,
1852 enum lval_type *lvalp, CORE_ADDR *addrp,
1853 int *realnump, void *valuep)
1855 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1856 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1857 optimizedp, lvalp, addrp, realnump, valuep);
1860 static const struct frame_unwind hppa_frame_unwind =
1864 hppa_frame_prev_register
1867 static const struct frame_unwind *
1868 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1870 CORE_ADDR pc = frame_pc_unwind (next_frame);
1872 if (find_unwind_entry (pc))
1873 return &hppa_frame_unwind;
1878 /* This is a generic fallback frame unwinder that kicks in if we fail all
1879 the other ones. Normally we would expect the stub and regular unwinder
1880 to work, but in some cases we might hit a function that just doesn't
1881 have any unwind information available. In this case we try to do
1882 unwinding solely based on code reading. This is obviously going to be
1883 slow, so only use this as a last resort. Currently this will only
1884 identify the stack and pc for the frame. */
1886 static struct hppa_frame_cache *
1887 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1889 struct hppa_frame_cache *cache;
1890 unsigned int frame_size;
1891 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1893 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1894 (*this_cache) = cache;
1895 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1897 pc = frame_func_unwind (next_frame);
1898 cur_pc = frame_pc_unwind (next_frame);
1901 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1903 if (start_pc == 0 || end_pc == 0)
1905 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1906 "fail.", paddr_nz (pc));
1910 if (end_pc > cur_pc)
1913 for (pc = start_pc; pc < end_pc; pc += 4)
1917 insn = read_memory_unsigned_integer (pc, 4);
1919 frame_size += prologue_inst_adjust_sp (insn);
1921 /* There are limited ways to store the return pointer into the
1923 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1924 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1925 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1926 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1929 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
1930 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1932 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1934 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
1935 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1939 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1940 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1947 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
1948 struct frame_id *this_id)
1950 struct hppa_frame_cache *info =
1951 hppa_fallback_frame_cache (next_frame, this_cache);
1952 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1956 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
1958 int regnum, int *optimizedp,
1959 enum lval_type *lvalp, CORE_ADDR *addrp,
1960 int *realnump, void *valuep)
1962 struct hppa_frame_cache *info =
1963 hppa_fallback_frame_cache (next_frame, this_cache);
1964 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1965 optimizedp, lvalp, addrp, realnump, valuep);
1968 static const struct frame_unwind hppa_fallback_frame_unwind =
1971 hppa_fallback_frame_this_id,
1972 hppa_fallback_frame_prev_register
1975 static const struct frame_unwind *
1976 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
1978 return &hppa_fallback_frame_unwind;
1982 hppa_frame_base_address (struct frame_info *next_frame,
1985 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
1990 static const struct frame_base hppa_frame_base = {
1992 hppa_frame_base_address,
1993 hppa_frame_base_address,
1994 hppa_frame_base_address
1997 static const struct frame_base *
1998 hppa_frame_base_sniffer (struct frame_info *next_frame)
2000 return &hppa_frame_base;
2003 /* Stub frames, used for all kinds of call stubs. */
2004 struct hppa_stub_unwind_cache
2007 struct trad_frame_saved_reg *saved_regs;
2010 static struct hppa_stub_unwind_cache *
2011 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2014 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2015 struct hppa_stub_unwind_cache *info;
2016 struct unwind_table_entry *u;
2021 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2023 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2025 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2027 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2029 /* HPUX uses export stubs in function calls; the export stub clobbers
2030 the return value of the caller, and, later restores it from the
2032 u = find_unwind_entry (frame_pc_unwind (next_frame));
2034 if (u && u->stub_unwind.stub_type == EXPORT)
2036 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2042 /* By default we assume that stubs do not change the rp. */
2043 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2049 hppa_stub_frame_this_id (struct frame_info *next_frame,
2050 void **this_prologue_cache,
2051 struct frame_id *this_id)
2053 struct hppa_stub_unwind_cache *info
2054 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2055 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2059 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2060 void **this_prologue_cache,
2061 int regnum, int *optimizedp,
2062 enum lval_type *lvalp, CORE_ADDR *addrp,
2063 int *realnump, void *valuep)
2065 struct hppa_stub_unwind_cache *info
2066 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2067 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2068 optimizedp, lvalp, addrp, realnump, valuep);
2071 static const struct frame_unwind hppa_stub_frame_unwind = {
2073 hppa_stub_frame_this_id,
2074 hppa_stub_frame_prev_register
2077 static const struct frame_unwind *
2078 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2080 CORE_ADDR pc = frame_pc_unwind (next_frame);
2083 || IN_SOLIB_CALL_TRAMPOLINE (pc, NULL)
2084 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2085 return &hppa_stub_frame_unwind;
2089 static struct frame_id
2090 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2092 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2094 frame_pc_unwind (next_frame));
2098 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2100 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2103 /* Instead of this nasty cast, add a method pvoid() that prints out a
2104 host VOID data type (remember %p isn't portable). */
2107 hppa_pointer_to_address_hack (void *ptr)
2109 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2110 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2114 unwind_command (char *exp, int from_tty)
2117 struct unwind_table_entry *u;
2119 /* If we have an expression, evaluate it and use it as the address. */
2121 if (exp != 0 && *exp != 0)
2122 address = parse_and_eval_address (exp);
2126 u = find_unwind_entry (address);
2130 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2134 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2135 paddr_nz (hppa_pointer_to_address_hack (u)));
2137 printf_unfiltered ("\tregion_start = ");
2138 print_address (u->region_start, gdb_stdout);
2140 printf_unfiltered ("\n\tregion_end = ");
2141 print_address (u->region_end, gdb_stdout);
2143 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2145 printf_unfiltered ("\n\tflags =");
2146 pif (Cannot_unwind);
2148 pif (Millicode_save_sr0);
2151 pif (Variable_Frame);
2152 pif (Separate_Package_Body);
2153 pif (Frame_Extension_Millicode);
2154 pif (Stack_Overflow_Check);
2155 pif (Two_Instruction_SP_Increment);
2159 pif (Save_MRP_in_frame);
2160 pif (extn_ptr_defined);
2161 pif (Cleanup_defined);
2162 pif (MPE_XL_interrupt_marker);
2163 pif (HP_UX_interrupt_marker);
2166 putchar_unfiltered ('\n');
2168 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2170 pin (Region_description);
2173 pin (Total_frame_size);
2177 hppa_skip_permanent_breakpoint (void)
2179 /* To step over a breakpoint instruction on the PA takes some
2180 fiddling with the instruction address queue.
2182 When we stop at a breakpoint, the IA queue front (the instruction
2183 we're executing now) points at the breakpoint instruction, and
2184 the IA queue back (the next instruction to execute) points to
2185 whatever instruction we would execute after the breakpoint, if it
2186 were an ordinary instruction. This is the case even if the
2187 breakpoint is in the delay slot of a branch instruction.
2189 Clearly, to step past the breakpoint, we need to set the queue
2190 front to the back. But what do we put in the back? What
2191 instruction comes after that one? Because of the branch delay
2192 slot, the next insn is always at the back + 4. */
2193 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2194 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
2196 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
2197 /* We can leave the tail's space the same, since there's no jump. */
2201 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2203 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2205 An example of this occurs when an a.out is linked against a foo.sl.
2206 The foo.sl defines a global bar(), and the a.out declares a signature
2207 for bar(). However, the a.out doesn't directly call bar(), but passes
2208 its address in another call.
2210 If you have this scenario and attempt to "break bar" before running,
2211 gdb will find a minimal symbol for bar() in the a.out. But that
2212 symbol's address will be negative. What this appears to denote is
2213 an index backwards from the base of the procedure linkage table (PLT)
2214 into the data linkage table (DLT), the end of which is contiguous
2215 with the start of the PLT. This is clearly not a valid address for
2216 us to set a breakpoint on.
2218 Note that one must be careful in how one checks for a negative address.
2219 0xc0000000 is a legitimate address of something in a shared text
2220 segment, for example. Since I don't know what the possible range
2221 is of these "really, truly negative" addresses that come from the
2222 minimal symbols, I'm resorting to the gross hack of checking the
2223 top byte of the address for all 1's. Sigh. */
2225 return (!target_has_stack && (pc & 0xFF000000));
2229 hppa_instruction_nullified (void)
2231 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2232 avoid the type cast. I'm leaving it as is for now as I'm doing
2233 semi-mechanical multiarching-related changes. */
2234 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2235 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2237 return ((ipsw & 0x00200000) && !(flags & 0x2));
2240 /* Return the GDB type object for the "standard" data type of data
2243 static struct type *
2244 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2246 if (reg_nr < HPPA_FP4_REGNUM)
2247 return builtin_type_uint32;
2249 return builtin_type_ieee_single_big;
2252 /* Return the GDB type object for the "standard" data type of data
2253 in register N. hppa64 version. */
2255 static struct type *
2256 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2258 if (reg_nr < HPPA_FP4_REGNUM)
2259 return builtin_type_uint64;
2261 return builtin_type_ieee_double_big;
2264 /* Return True if REGNUM is not a register available to the user
2265 through ptrace(). */
2268 hppa_cannot_store_register (int regnum)
2271 || regnum == HPPA_PCSQ_HEAD_REGNUM
2272 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2273 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2278 hppa_smash_text_address (CORE_ADDR addr)
2280 /* The low two bits of the PC on the PA contain the privilege level.
2281 Some genius implementing a (non-GCC) compiler apparently decided
2282 this means that "addresses" in a text section therefore include a
2283 privilege level, and thus symbol tables should contain these bits.
2284 This seems like a bonehead thing to do--anyway, it seems to work
2285 for our purposes to just ignore those bits. */
2287 return (addr &= ~0x3);
2290 /* Get the ith function argument for the current function. */
2292 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2296 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2301 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2302 int regnum, void *buf)
2306 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2307 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2309 store_unsigned_integer (buf, sizeof(tmp), tmp);
2313 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2314 struct trad_frame_saved_reg saved_regs[],
2315 int regnum, int *optimizedp,
2316 enum lval_type *lvalp, CORE_ADDR *addrp,
2317 int *realnump, void *valuep)
2319 int pcoqt = (regnum == HPPA_PCOQ_TAIL_REGNUM);
2320 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2321 int regsize = register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM);
2324 regnum = HPPA_PCOQ_HEAD_REGNUM;
2326 trad_frame_prev_register (next_frame, saved_regs, regnum,
2327 optimizedp, lvalp, addrp, realnump, valuep);
2330 store_unsigned_integer (valuep, regsize,
2331 extract_unsigned_integer (valuep, regsize) + 4);
2334 /* Here is a table of C type sizes on hppa with various compiles
2335 and options. I measured this on PA 9000/800 with HP-UX 11.11
2336 and these compilers:
2338 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2339 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2340 /opt/aCC/bin/aCC B3910B A.03.45
2341 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2343 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2344 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2345 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2346 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2347 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2348 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2349 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2350 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2354 compiler and options
2355 char, short, int, long, long long
2356 float, double, long double
2359 So all these compilers use either ILP32 or LP64 model.
2360 TODO: gcc has more options so it needs more investigation.
2362 For floating point types, see:
2364 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2365 HP-UX floating-point guide, hpux 11.00
2367 -- chastain 2003-12-18 */
2369 static struct gdbarch *
2370 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2372 struct gdbarch_tdep *tdep;
2373 struct gdbarch *gdbarch;
2375 /* Try to determine the ABI of the object we are loading. */
2376 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2378 /* If it's a SOM file, assume it's HP/UX SOM. */
2379 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2380 info.osabi = GDB_OSABI_HPUX_SOM;
2383 /* find a candidate among the list of pre-declared architectures. */
2384 arches = gdbarch_list_lookup_by_info (arches, &info);
2386 return (arches->gdbarch);
2388 /* If none found, then allocate and initialize one. */
2389 tdep = XZALLOC (struct gdbarch_tdep);
2390 gdbarch = gdbarch_alloc (&info, tdep);
2392 /* Determine from the bfd_arch_info structure if we are dealing with
2393 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2394 then default to a 32bit machine. */
2395 if (info.bfd_arch_info != NULL)
2396 tdep->bytes_per_address =
2397 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2399 tdep->bytes_per_address = 4;
2401 /* Some parts of the gdbarch vector depend on whether we are running
2402 on a 32 bits or 64 bits target. */
2403 switch (tdep->bytes_per_address)
2406 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2407 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2408 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2411 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2412 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2413 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2416 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2417 tdep->bytes_per_address);
2420 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2421 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2423 /* The following gdbarch vector elements are the same in both ILP32
2424 and LP64, but might show differences some day. */
2425 set_gdbarch_long_long_bit (gdbarch, 64);
2426 set_gdbarch_long_double_bit (gdbarch, 128);
2427 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2429 /* The following gdbarch vector elements do not depend on the address
2430 size, or in any other gdbarch element previously set. */
2431 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2432 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2433 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2434 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2435 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2436 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2437 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2438 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2439 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2440 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2441 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2443 /* Helper for function argument information. */
2444 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2446 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2448 /* When a hardware watchpoint triggers, we'll move the inferior past
2449 it by removing all eventpoints; stepping past the instruction
2450 that caused the trigger; reinserting eventpoints; and checking
2451 whether any watched location changed. */
2452 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2454 /* Inferior function call methods. */
2455 switch (tdep->bytes_per_address)
2458 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2459 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2462 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2463 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2466 internal_error (__FILE__, __LINE__, "bad switch");
2469 /* Struct return methods. */
2470 switch (tdep->bytes_per_address)
2473 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2476 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2479 internal_error (__FILE__, __LINE__, "bad switch");
2482 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2483 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2485 /* Frame unwind methods. */
2486 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2487 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2489 /* Hook in ABI-specific overrides, if they have been registered. */
2490 gdbarch_init_osabi (info, gdbarch);
2492 /* Hook in the default unwinders. */
2493 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2494 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2495 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2496 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
2502 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2504 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2506 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2507 tdep->bytes_per_address);
2508 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2512 _initialize_hppa_tdep (void)
2514 struct cmd_list_element *c;
2515 void break_at_finish_command (char *arg, int from_tty);
2516 void tbreak_at_finish_command (char *arg, int from_tty);
2517 void break_at_finish_at_depth_command (char *arg, int from_tty);
2519 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2521 hppa_objfile_priv_data = register_objfile_data ();
2523 add_cmd ("unwind", class_maintenance, unwind_command,
2524 "Print unwind table entry at given address.",
2525 &maintenanceprintlist);
2527 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2528 break_at_finish_command,
2529 concat ("Set breakpoint at procedure exit. \n\
2530 Argument may be function name, or \"*\" and an address.\n\
2531 If function is specified, break at end of code for that function.\n\
2532 If an address is specified, break at the end of the function that contains \n\
2533 that exact address.\n",
2534 "With no arg, uses current execution address of selected stack frame.\n\
2535 This is useful for breaking on return to a stack frame.\n\
2537 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2539 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2540 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2541 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2542 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2543 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2545 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2546 tbreak_at_finish_command,
2547 "Set temporary breakpoint at procedure exit. Either there should\n\
2548 be no argument or the argument must be a depth.\n"), NULL);
2549 set_cmd_completer (c, location_completer);
2552 deprecate_cmd (add_com ("bx", class_breakpoint,
2553 break_at_finish_at_depth_command,
2554 "Set breakpoint at procedure exit. Either there should\n\
2555 be no argument or the argument must be a depth.\n"), NULL);
2557 /* Debug this files internals. */
2558 add_show_from_set (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2559 &hppa_debug, "Set hppa debugging.\n\
2560 When non-zero, hppa specific debugging is enabled.", &setdebuglist), &showdebuglist);