1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2002.
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 #include "gdb_string.h"
36 #include "gdb_assert.h"
38 /* Prototypes for exported functions. */
40 void _initialize_values (void);
42 /* Prototypes for local functions. */
44 static void show_values (char *, int);
46 static void show_convenience (char *, int);
49 /* The value-history records all the values printed
50 by print commands during this session. Each chunk
51 records 60 consecutive values. The first chunk on
52 the chain records the most recent values.
53 The total number of values is in value_history_count. */
55 #define VALUE_HISTORY_CHUNK 60
57 struct value_history_chunk
59 struct value_history_chunk *next;
60 struct value *values[VALUE_HISTORY_CHUNK];
63 /* Chain of chunks now in use. */
65 static struct value_history_chunk *value_history_chain;
67 static int value_history_count; /* Abs number of last entry stored */
69 /* List of all value objects currently allocated
70 (except for those released by calls to release_value)
71 This is so they can be freed after each command. */
73 static struct value *all_values;
75 /* Allocate a value that has the correct length for type TYPE. */
78 allocate_value (struct type *type)
81 struct type *atype = check_typedef (type);
83 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
84 VALUE_NEXT (val) = all_values;
86 VALUE_TYPE (val) = type;
87 VALUE_ENCLOSING_TYPE (val) = type;
88 VALUE_LVAL (val) = not_lval;
89 VALUE_ADDRESS (val) = 0;
90 VALUE_FRAME (val) = 0;
91 VALUE_OFFSET (val) = 0;
92 VALUE_BITPOS (val) = 0;
93 VALUE_BITSIZE (val) = 0;
94 VALUE_REGNO (val) = -1;
96 VALUE_OPTIMIZED_OUT (val) = 0;
97 VALUE_BFD_SECTION (val) = NULL;
98 VALUE_EMBEDDED_OFFSET (val) = 0;
99 VALUE_POINTED_TO_OFFSET (val) = 0;
104 /* Allocate a value that has the correct length
105 for COUNT repetitions type TYPE. */
108 allocate_repeat_value (struct type *type, int count)
110 int low_bound = current_language->string_lower_bound; /* ??? */
111 /* FIXME-type-allocation: need a way to free this type when we are
113 struct type *range_type
114 = create_range_type ((struct type *) NULL, builtin_type_int,
115 low_bound, count + low_bound - 1);
116 /* FIXME-type-allocation: need a way to free this type when we are
118 return allocate_value (create_array_type ((struct type *) NULL,
122 /* Return a mark in the value chain. All values allocated after the
123 mark is obtained (except for those released) are subject to being freed
124 if a subsequent value_free_to_mark is passed the mark. */
131 /* Free all values allocated since MARK was obtained by value_mark
132 (except for those released). */
134 value_free_to_mark (struct value *mark)
139 for (val = all_values; val && val != mark; val = next)
141 next = VALUE_NEXT (val);
147 /* Free all the values that have been allocated (except for those released).
148 Called after each command, successful or not. */
151 free_all_values (void)
156 for (val = all_values; val; val = next)
158 next = VALUE_NEXT (val);
165 /* Remove VAL from the chain all_values
166 so it will not be freed automatically. */
169 release_value (struct value *val)
173 if (all_values == val)
175 all_values = val->next;
179 for (v = all_values; v; v = v->next)
189 /* Release all values up to mark */
191 value_release_to_mark (struct value *mark)
196 for (val = next = all_values; next; next = VALUE_NEXT (next))
197 if (VALUE_NEXT (next) == mark)
199 all_values = VALUE_NEXT (next);
200 VALUE_NEXT (next) = 0;
207 /* Return a copy of the value ARG.
208 It contains the same contents, for same memory address,
209 but it's a different block of storage. */
212 value_copy (struct value *arg)
214 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
215 struct value *val = allocate_value (encl_type);
216 VALUE_TYPE (val) = VALUE_TYPE (arg);
217 VALUE_LVAL (val) = VALUE_LVAL (arg);
218 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
219 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
220 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
221 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
222 VALUE_FRAME (val) = VALUE_FRAME (arg);
223 VALUE_REGNO (val) = VALUE_REGNO (arg);
224 VALUE_LAZY (val) = VALUE_LAZY (arg);
225 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
226 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
227 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
228 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
229 val->modifiable = arg->modifiable;
230 if (!VALUE_LAZY (val))
232 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
233 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
239 /* Access to the value history. */
241 /* Record a new value in the value history.
242 Returns the absolute history index of the entry.
243 Result of -1 indicates the value was not saved; otherwise it is the
244 value history index of this new item. */
247 record_latest_value (struct value *val)
251 /* We don't want this value to have anything to do with the inferior anymore.
252 In particular, "set $1 = 50" should not affect the variable from which
253 the value was taken, and fast watchpoints should be able to assume that
254 a value on the value history never changes. */
255 if (VALUE_LAZY (val))
256 value_fetch_lazy (val);
257 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
258 from. This is a bit dubious, because then *&$1 does not just return $1
259 but the current contents of that location. c'est la vie... */
263 /* Here we treat value_history_count as origin-zero
264 and applying to the value being stored now. */
266 i = value_history_count % VALUE_HISTORY_CHUNK;
269 struct value_history_chunk *new
270 = (struct value_history_chunk *)
271 xmalloc (sizeof (struct value_history_chunk));
272 memset (new->values, 0, sizeof new->values);
273 new->next = value_history_chain;
274 value_history_chain = new;
277 value_history_chain->values[i] = val;
279 /* Now we regard value_history_count as origin-one
280 and applying to the value just stored. */
282 return ++value_history_count;
285 /* Return a copy of the value in the history with sequence number NUM. */
288 access_value_history (int num)
290 struct value_history_chunk *chunk;
292 register int absnum = num;
295 absnum += value_history_count;
300 error ("The history is empty.");
302 error ("There is only one value in the history.");
304 error ("History does not go back to $$%d.", -num);
306 if (absnum > value_history_count)
307 error ("History has not yet reached $%d.", absnum);
311 /* Now absnum is always absolute and origin zero. */
313 chunk = value_history_chain;
314 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
318 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
321 /* Clear the value history entirely.
322 Must be done when new symbol tables are loaded,
323 because the type pointers become invalid. */
326 clear_value_history (void)
328 struct value_history_chunk *next;
332 while (value_history_chain)
334 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
335 if ((val = value_history_chain->values[i]) != NULL)
337 next = value_history_chain->next;
338 xfree (value_history_chain);
339 value_history_chain = next;
341 value_history_count = 0;
345 show_values (char *num_exp, int from_tty)
353 /* "info history +" should print from the stored position.
354 "info history <exp>" should print around value number <exp>. */
355 if (num_exp[0] != '+' || num_exp[1] != '\0')
356 num = parse_and_eval_long (num_exp) - 5;
360 /* "info history" means print the last 10 values. */
361 num = value_history_count - 9;
367 for (i = num; i < num + 10 && i <= value_history_count; i++)
369 val = access_value_history (i);
370 printf_filtered ("$%d = ", i);
371 value_print (val, gdb_stdout, 0, Val_pretty_default);
372 printf_filtered ("\n");
375 /* The next "info history +" should start after what we just printed. */
378 /* Hitting just return after this command should do the same thing as
379 "info history +". If num_exp is null, this is unnecessary, since
380 "info history +" is not useful after "info history". */
381 if (from_tty && num_exp)
388 /* Internal variables. These are variables within the debugger
389 that hold values assigned by debugger commands.
390 The user refers to them with a '$' prefix
391 that does not appear in the variable names stored internally. */
393 static struct internalvar *internalvars;
395 /* Look up an internal variable with name NAME. NAME should not
396 normally include a dollar sign.
398 If the specified internal variable does not exist,
399 one is created, with a void value. */
402 lookup_internalvar (char *name)
404 register struct internalvar *var;
406 for (var = internalvars; var; var = var->next)
407 if (STREQ (var->name, name))
410 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
411 var->name = concat (name, NULL);
412 var->value = allocate_value (builtin_type_void);
413 release_value (var->value);
414 var->next = internalvars;
420 value_of_internalvar (struct internalvar *var)
424 #ifdef IS_TRAPPED_INTERNALVAR
425 if (IS_TRAPPED_INTERNALVAR (var->name))
426 return VALUE_OF_TRAPPED_INTERNALVAR (var);
429 val = value_copy (var->value);
430 if (VALUE_LAZY (val))
431 value_fetch_lazy (val);
432 VALUE_LVAL (val) = lval_internalvar;
433 VALUE_INTERNALVAR (val) = var;
438 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
439 int bitsize, struct value *newval)
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
449 modify_field (addr, value_as_long (newval),
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
456 set_internalvar (struct internalvar *var, struct value *val)
458 struct value *newval;
460 #ifdef IS_TRAPPED_INTERNALVAR
461 if (IS_TRAPPED_INTERNALVAR (var->name))
462 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 newval = value_copy (val);
466 newval->modifiable = 1;
468 /* Force the value to be fetched from the target now, to avoid problems
469 later when this internalvar is referenced and the target is gone or
471 if (VALUE_LAZY (newval))
472 value_fetch_lazy (newval);
474 /* Begin code which must not call error(). If var->value points to
475 something free'd, an error() obviously leaves a dangling pointer.
476 But we also get a danling pointer if var->value points to
477 something in the value chain (i.e., before release_value is
478 called), because after the error free_all_values will get called before
482 release_value (newval);
483 /* End code which must not call error(). */
487 internalvar_name (struct internalvar *var)
492 /* Free all internalvars. Done when new symtabs are loaded,
493 because that makes the values invalid. */
496 clear_internalvars (void)
498 register struct internalvar *var;
503 internalvars = var->next;
511 show_convenience (char *ignore, int from_tty)
513 register struct internalvar *var;
516 for (var = internalvars; var; var = var->next)
518 #ifdef IS_TRAPPED_INTERNALVAR
519 if (IS_TRAPPED_INTERNALVAR (var->name))
526 printf_filtered ("$%s = ", var->name);
527 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
528 printf_filtered ("\n");
531 printf_unfiltered ("No debugger convenience variables now defined.\n\
532 Convenience variables have names starting with \"$\";\n\
533 use \"set\" as in \"set $foo = 5\" to define them.\n");
536 /* Extract a value as a C number (either long or double).
537 Knows how to convert fixed values to double, or
538 floating values to long.
539 Does not deallocate the value. */
542 value_as_long (struct value *val)
544 /* This coerces arrays and functions, which is necessary (e.g.
545 in disassemble_command). It also dereferences references, which
546 I suspect is the most logical thing to do. */
548 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
552 value_as_double (struct value *val)
557 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
559 error ("Invalid floating value found in program.");
562 /* Extract a value as a C pointer. Does not deallocate the value.
563 Note that val's type may not actually be a pointer; value_as_long
564 handles all the cases. */
566 value_as_address (struct value *val)
568 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
569 whether we want this to be true eventually. */
571 /* ADDR_BITS_REMOVE is wrong if we are being called for a
572 non-address (e.g. argument to "signal", "info break", etc.), or
573 for pointers to char, in which the low bits *are* significant. */
574 return ADDR_BITS_REMOVE (value_as_long (val));
577 /* There are several targets (IA-64, PowerPC, and others) which
578 don't represent pointers to functions as simply the address of
579 the function's entry point. For example, on the IA-64, a
580 function pointer points to a two-word descriptor, generated by
581 the linker, which contains the function's entry point, and the
582 value the IA-64 "global pointer" register should have --- to
583 support position-independent code. The linker generates
584 descriptors only for those functions whose addresses are taken.
586 On such targets, it's difficult for GDB to convert an arbitrary
587 function address into a function pointer; it has to either find
588 an existing descriptor for that function, or call malloc and
589 build its own. On some targets, it is impossible for GDB to
590 build a descriptor at all: the descriptor must contain a jump
591 instruction; data memory cannot be executed; and code memory
594 Upon entry to this function, if VAL is a value of type `function'
595 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
596 VALUE_ADDRESS (val) is the address of the function. This is what
597 you'll get if you evaluate an expression like `main'. The call
598 to COERCE_ARRAY below actually does all the usual unary
599 conversions, which includes converting values of type `function'
600 to `pointer to function'. This is the challenging conversion
601 discussed above. Then, `unpack_long' will convert that pointer
602 back into an address.
604 So, suppose the user types `disassemble foo' on an architecture
605 with a strange function pointer representation, on which GDB
606 cannot build its own descriptors, and suppose further that `foo'
607 has no linker-built descriptor. The address->pointer conversion
608 will signal an error and prevent the command from running, even
609 though the next step would have been to convert the pointer
610 directly back into the same address.
612 The following shortcut avoids this whole mess. If VAL is a
613 function, just return its address directly. */
614 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
615 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
616 return VALUE_ADDRESS (val);
620 /* Some architectures (e.g. Harvard), map instruction and data
621 addresses onto a single large unified address space. For
622 instance: An architecture may consider a large integer in the
623 range 0x10000000 .. 0x1000ffff to already represent a data
624 addresses (hence not need a pointer to address conversion) while
625 a small integer would still need to be converted integer to
626 pointer to address. Just assume such architectures handle all
627 integer conversions in a single function. */
631 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
632 must admonish GDB hackers to make sure its behavior matches the
633 compiler's, whenever possible.
635 In general, I think GDB should evaluate expressions the same way
636 the compiler does. When the user copies an expression out of
637 their source code and hands it to a `print' command, they should
638 get the same value the compiler would have computed. Any
639 deviation from this rule can cause major confusion and annoyance,
640 and needs to be justified carefully. In other words, GDB doesn't
641 really have the freedom to do these conversions in clever and
644 AndrewC pointed out that users aren't complaining about how GDB
645 casts integers to pointers; they are complaining that they can't
646 take an address from a disassembly listing and give it to `x/i'.
647 This is certainly important.
649 Adding an architecture method like INTEGER_TO_ADDRESS certainly
650 makes it possible for GDB to "get it right" in all circumstances
651 --- the target has complete control over how things get done, so
652 people can Do The Right Thing for their target without breaking
653 anyone else. The standard doesn't specify how integers get
654 converted to pointers; usually, the ABI doesn't either, but
655 ABI-specific code is a more reasonable place to handle it. */
657 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
658 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
659 && INTEGER_TO_ADDRESS_P ())
660 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
662 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
666 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
667 as a long, or as a double, assuming the raw data is described
668 by type TYPE. Knows how to convert different sizes of values
669 and can convert between fixed and floating point. We don't assume
670 any alignment for the raw data. Return value is in host byte order.
672 If you want functions and arrays to be coerced to pointers, and
673 references to be dereferenced, call value_as_long() instead.
675 C++: It is assumed that the front-end has taken care of
676 all matters concerning pointers to members. A pointer
677 to member which reaches here is considered to be equivalent
678 to an INT (or some size). After all, it is only an offset. */
681 unpack_long (struct type *type, char *valaddr)
683 register enum type_code code = TYPE_CODE (type);
684 register int len = TYPE_LENGTH (type);
685 register int nosign = TYPE_UNSIGNED (type);
687 if (current_language->la_language == language_scm
688 && is_scmvalue_type (type))
689 return scm_unpack (type, valaddr, TYPE_CODE_INT);
693 case TYPE_CODE_TYPEDEF:
694 return unpack_long (check_typedef (type), valaddr);
699 case TYPE_CODE_RANGE:
701 return extract_unsigned_integer (valaddr, len);
703 return extract_signed_integer (valaddr, len);
706 return extract_typed_floating (valaddr, type);
710 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
711 whether we want this to be true eventually. */
712 return extract_typed_address (valaddr, type);
714 case TYPE_CODE_MEMBER:
715 error ("not implemented: member types in unpack_long");
718 error ("Value can't be converted to integer.");
720 return 0; /* Placate lint. */
723 /* Return a double value from the specified type and address.
724 INVP points to an int which is set to 0 for valid value,
725 1 for invalid value (bad float format). In either case,
726 the returned double is OK to use. Argument is in target
727 format, result is in host format. */
730 unpack_double (struct type *type, char *valaddr, int *invp)
736 *invp = 0; /* Assume valid. */
737 CHECK_TYPEDEF (type);
738 code = TYPE_CODE (type);
739 len = TYPE_LENGTH (type);
740 nosign = TYPE_UNSIGNED (type);
741 if (code == TYPE_CODE_FLT)
743 /* NOTE: cagney/2002-02-19: There was a test here to see if the
744 floating-point value was valid (using the macro
745 INVALID_FLOAT). That test/macro have been removed.
747 It turns out that only the VAX defined this macro and then
748 only in a non-portable way. Fixing the portability problem
749 wouldn't help since the VAX floating-point code is also badly
750 bit-rotten. The target needs to add definitions for the
751 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
752 exactly describe the target floating-point format. The
753 problem here is that the corresponding floatformat_vax_f and
754 floatformat_vax_d values these methods should be set to are
755 also not defined either. Oops!
757 Hopefully someone will add both the missing floatformat
758 definitions and floatformat_is_invalid() function. */
759 return extract_typed_floating (valaddr, type);
763 /* Unsigned -- be sure we compensate for signed LONGEST. */
764 return (ULONGEST) unpack_long (type, valaddr);
768 /* Signed -- we are OK with unpack_long. */
769 return unpack_long (type, valaddr);
773 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
774 as a CORE_ADDR, assuming the raw data is described by type TYPE.
775 We don't assume any alignment for the raw data. Return value is in
778 If you want functions and arrays to be coerced to pointers, and
779 references to be dereferenced, call value_as_address() instead.
781 C++: It is assumed that the front-end has taken care of
782 all matters concerning pointers to members. A pointer
783 to member which reaches here is considered to be equivalent
784 to an INT (or some size). After all, it is only an offset. */
787 unpack_pointer (struct type *type, char *valaddr)
789 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
790 whether we want this to be true eventually. */
791 return unpack_long (type, valaddr);
795 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
798 value_static_field (struct type *type, int fieldno)
802 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
804 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
809 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
810 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
813 /* With some compilers, e.g. HP aCC, static data members are reported
814 as non-debuggable symbols */
815 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
820 addr = SYMBOL_VALUE_ADDRESS (msym);
821 sect = SYMBOL_BFD_SECTION (msym);
826 /* Anything static that isn't a constant, has an address */
827 if (SYMBOL_CLASS (sym) != LOC_CONST)
829 addr = SYMBOL_VALUE_ADDRESS (sym);
830 sect = SYMBOL_BFD_SECTION (sym);
832 /* However, static const's do not, the value is already known. */
835 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
838 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
840 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
843 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
844 You have to be careful here, since the size of the data area for the value
845 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
846 than the old enclosing type, you have to allocate more space for the data.
847 The return value is a pointer to the new version of this value structure. */
850 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
852 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
854 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
859 struct value *new_val;
862 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
864 /* We have to make sure this ends up in the same place in the value
865 chain as the original copy, so it's clean-up behavior is the same.
866 If the value has been released, this is a waste of time, but there
867 is no way to tell that in advance, so... */
869 if (val != all_values)
871 for (prev = all_values; prev != NULL; prev = prev->next)
873 if (prev->next == val)
875 prev->next = new_val;
885 /* Given a value ARG1 (offset by OFFSET bytes)
886 of a struct or union type ARG_TYPE,
887 extract and return the value of one of its (non-static) fields.
888 FIELDNO says which field. */
891 value_primitive_field (struct value *arg1, int offset,
892 register int fieldno, register struct type *arg_type)
895 register struct type *type;
897 CHECK_TYPEDEF (arg_type);
898 type = TYPE_FIELD_TYPE (arg_type, fieldno);
900 /* Handle packed fields */
902 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
904 v = value_from_longest (type,
905 unpack_field_as_long (arg_type,
906 VALUE_CONTENTS (arg1)
909 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
910 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
911 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
912 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
914 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
916 /* This field is actually a base subobject, so preserve the
917 entire object's contents for later references to virtual
919 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
920 VALUE_TYPE (v) = type;
921 if (VALUE_LAZY (arg1))
924 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
925 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
926 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
927 VALUE_EMBEDDED_OFFSET (v)
929 VALUE_EMBEDDED_OFFSET (arg1) +
930 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
934 /* Plain old data member */
935 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
936 v = allocate_value (type);
937 if (VALUE_LAZY (arg1))
940 memcpy (VALUE_CONTENTS_RAW (v),
941 VALUE_CONTENTS_RAW (arg1) + offset,
943 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
944 + VALUE_EMBEDDED_OFFSET (arg1);
946 VALUE_LVAL (v) = VALUE_LVAL (arg1);
947 if (VALUE_LVAL (arg1) == lval_internalvar)
948 VALUE_LVAL (v) = lval_internalvar_component;
949 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
950 VALUE_REGNO (v) = VALUE_REGNO (arg1);
951 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
952 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
956 /* Given a value ARG1 of a struct or union type,
957 extract and return the value of one of its (non-static) fields.
958 FIELDNO says which field. */
961 value_field (struct value *arg1, register int fieldno)
963 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
966 /* Return a non-virtual function as a value.
967 F is the list of member functions which contains the desired method.
968 J is an index into F which provides the desired method.
970 We only use the symbol for its address, so be happy with either a
971 full symbol or a minimal symbol.
975 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
979 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
980 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
982 struct minimal_symbol *msym;
984 sym = lookup_symbol (physname, 0, VAR_NAMESPACE, 0, NULL);
991 gdb_assert (sym == NULL);
992 msym = lookup_minimal_symbol (physname, NULL, NULL);
997 v = allocate_value (ftype);
1000 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1004 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1009 if (type != VALUE_TYPE (*arg1p))
1010 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1011 value_addr (*arg1p)));
1013 /* Move the `this' pointer according to the offset.
1014 VALUE_OFFSET (*arg1p) += offset;
1022 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1025 Extracting bits depends on endianness of the machine. Compute the
1026 number of least significant bits to discard. For big endian machines,
1027 we compute the total number of bits in the anonymous object, subtract
1028 off the bit count from the MSB of the object to the MSB of the
1029 bitfield, then the size of the bitfield, which leaves the LSB discard
1030 count. For little endian machines, the discard count is simply the
1031 number of bits from the LSB of the anonymous object to the LSB of the
1034 If the field is signed, we also do sign extension. */
1037 unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1041 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1042 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1044 struct type *field_type;
1046 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1047 field_type = TYPE_FIELD_TYPE (type, fieldno);
1048 CHECK_TYPEDEF (field_type);
1050 /* Extract bits. See comment above. */
1052 if (BITS_BIG_ENDIAN)
1053 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1055 lsbcount = (bitpos % 8);
1058 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1059 If the field is signed, and is negative, then sign extend. */
1061 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1063 valmask = (((ULONGEST) 1) << bitsize) - 1;
1065 if (!TYPE_UNSIGNED (field_type))
1067 if (val & (valmask ^ (valmask >> 1)))
1076 /* Modify the value of a bitfield. ADDR points to a block of memory in
1077 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1078 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1079 indicate which bits (in target bit order) comprise the bitfield. */
1082 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1086 /* If a negative fieldval fits in the field in question, chop
1087 off the sign extension bits. */
1088 if (bitsize < (8 * (int) sizeof (fieldval))
1089 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1090 fieldval = fieldval & ((1 << bitsize) - 1);
1092 /* Warn if value is too big to fit in the field in question. */
1093 if (bitsize < (8 * (int) sizeof (fieldval))
1094 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1096 /* FIXME: would like to include fieldval in the message, but
1097 we don't have a sprintf_longest. */
1098 warning ("Value does not fit in %d bits.", bitsize);
1100 /* Truncate it, otherwise adjoining fields may be corrupted. */
1101 fieldval = fieldval & ((1 << bitsize) - 1);
1104 oword = extract_signed_integer (addr, sizeof oword);
1106 /* Shifting for bit field depends on endianness of the target machine. */
1107 if (BITS_BIG_ENDIAN)
1108 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1110 /* Mask out old value, while avoiding shifts >= size of oword */
1111 if (bitsize < 8 * (int) sizeof (oword))
1112 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1114 oword &= ~((~(ULONGEST) 0) << bitpos);
1115 oword |= fieldval << bitpos;
1117 store_signed_integer (addr, sizeof oword, oword);
1120 /* Convert C numbers into newly allocated values */
1123 value_from_longest (struct type *type, register LONGEST num)
1125 struct value *val = allocate_value (type);
1126 register enum type_code code;
1129 code = TYPE_CODE (type);
1130 len = TYPE_LENGTH (type);
1134 case TYPE_CODE_TYPEDEF:
1135 type = check_typedef (type);
1138 case TYPE_CODE_CHAR:
1139 case TYPE_CODE_ENUM:
1140 case TYPE_CODE_BOOL:
1141 case TYPE_CODE_RANGE:
1142 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1147 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1151 error ("Unexpected type (%d) encountered for integer constant.", code);
1157 /* Create a value representing a pointer of type TYPE to the address
1160 value_from_pointer (struct type *type, CORE_ADDR addr)
1162 struct value *val = allocate_value (type);
1163 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1168 /* Create a value for a string constant to be stored locally
1169 (not in the inferior's memory space, but in GDB memory).
1170 This is analogous to value_from_longest, which also does not
1171 use inferior memory. String shall NOT contain embedded nulls. */
1174 value_from_string (char *ptr)
1177 int len = strlen (ptr);
1178 int lowbound = current_language->string_lower_bound;
1179 struct type *rangetype =
1180 create_range_type ((struct type *) NULL,
1182 lowbound, len + lowbound - 1);
1183 struct type *stringtype =
1184 create_array_type ((struct type *) NULL,
1185 *current_language->string_char_type,
1188 val = allocate_value (stringtype);
1189 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1194 value_from_double (struct type *type, DOUBLEST num)
1196 struct value *val = allocate_value (type);
1197 struct type *base_type = check_typedef (type);
1198 register enum type_code code = TYPE_CODE (base_type);
1199 register int len = TYPE_LENGTH (base_type);
1201 if (code == TYPE_CODE_FLT)
1203 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1206 error ("Unexpected type encountered for floating constant.");
1211 /* Deal with the value that is "about to be returned". */
1213 /* Return the value that a function returning now
1214 would be returning to its caller, assuming its type is VALTYPE.
1215 RETBUF is where we look for what ought to be the contents
1216 of the registers (in raw form). This is because it is often
1217 desirable to restore old values to those registers
1218 after saving the contents of interest, and then call
1219 this function using the saved values.
1220 struct_return is non-zero when the function in question is
1221 using the structure return conventions on the machine in question;
1222 0 when it is using the value returning conventions (this often
1223 means returning pointer to where structure is vs. returning value). */
1227 value_being_returned (struct type *valtype, char *retbuf, int struct_return)
1233 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1234 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1237 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1239 error ("Function return value unknown.");
1240 return value_at (valtype, addr, NULL);
1244 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1245 if (DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1248 addr = DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1250 error ("Function return value unknown.");
1251 return value_at (valtype, addr, NULL);
1254 val = allocate_value (valtype);
1255 CHECK_TYPEDEF (valtype);
1256 #define EXTRACT_RETURN_VALUE DEPRECATED_EXTRACT_RETURN_VALUE
1257 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1262 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1263 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1264 and TYPE is the type (which is known to be struct, union or array).
1266 On most machines, the struct convention is used unless we are
1267 using gcc and the type is of a special size. */
1268 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1269 native compiler. GCC 2.3.3 was the last release that did it the
1270 old way. Since gcc2_compiled was not changed, we have no
1271 way to correctly win in all cases, so we just do the right thing
1272 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1273 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1274 would cause more chaos than dealing with some struct returns being
1278 generic_use_struct_convention (int gcc_p, struct type *value_type)
1280 return !((gcc_p == 1)
1281 && (TYPE_LENGTH (value_type) == 1
1282 || TYPE_LENGTH (value_type) == 2
1283 || TYPE_LENGTH (value_type) == 4
1284 || TYPE_LENGTH (value_type) == 8));
1287 /* Return true if the function specified is using the structure returning
1288 convention on this machine to return arguments, or 0 if it is using
1289 the value returning convention. FUNCTION is the value representing
1290 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1291 is the type returned by the function. GCC_P is nonzero if compiled
1296 using_struct_return (struct value *function, CORE_ADDR funcaddr,
1297 struct type *value_type, int gcc_p)
1299 register enum type_code code = TYPE_CODE (value_type);
1301 if (code == TYPE_CODE_ERROR)
1302 error ("Function return type unknown.");
1304 if (code == TYPE_CODE_STRUCT
1305 || code == TYPE_CODE_UNION
1306 || code == TYPE_CODE_ARRAY
1307 || RETURN_VALUE_ON_STACK (value_type))
1308 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1313 /* Store VAL so it will be returned if a function returns now.
1314 Does not verify that VAL's type matches what the current
1315 function wants to return. */
1318 set_return_value (struct value *val)
1320 struct type *type = check_typedef (VALUE_TYPE (val));
1321 register enum type_code code = TYPE_CODE (type);
1323 if (code == TYPE_CODE_ERROR)
1324 error ("Function return type unknown.");
1326 if (code == TYPE_CODE_STRUCT
1327 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1328 error ("GDB does not support specifying a struct or union return value.");
1330 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1334 _initialize_values (void)
1336 add_cmd ("convenience", no_class, show_convenience,
1337 "Debugger convenience (\"$foo\") variables.\n\
1338 These variables are created when you assign them values;\n\
1339 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1340 A few convenience variables are given values automatically:\n\
1341 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1342 \"$__\" holds the contents of the last address examined with \"x\".",
1345 add_cmd ("values", no_class, show_values,
1346 "Elements of value history around item number IDX (or last ten).",