1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
37 #include "dictionary.h"
38 #include "cp-support.h"
40 #include "user-regs.h"
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
50 extern int overload_debug;
51 /* Local functions. */
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
56 static struct value *search_struct_field (const char *, struct value *,
57 int, struct type *, int);
59 static struct value *search_struct_method (const char *, struct value **,
61 int, int *, struct type *);
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
66 struct badness_vector **,
70 int find_oload_champ_namespace_loop (struct type **, int,
71 const char *, const char *,
72 int, struct symbol ***,
73 struct badness_vector **, int *,
76 static int find_oload_champ (struct type **, int, int, int,
77 struct fn_field *, struct symbol **,
78 struct badness_vector **);
80 static int oload_method_static (int, struct fn_field *, int);
82 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
85 oload_classification classify_oload_match (struct badness_vector *,
88 static struct value *value_struct_elt_for_reference (struct type *,
94 static struct value *value_namespace_elt (const struct type *,
95 char *, int , enum noside);
97 static struct value *value_maybe_namespace_elt (const struct type *,
101 static CORE_ADDR allocate_space_in_inferior (int);
103 static struct value *cast_into_complex (struct type *, struct value *);
105 static struct fn_field *find_method_list (struct value **, const char *,
106 int, struct type *, int *,
107 struct type **, int *);
109 void _initialize_valops (void);
112 /* Flag for whether we want to abandon failed expression evals by
115 static int auto_abandon = 0;
118 int overload_resolution = 0;
120 show_overload_resolution (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
124 fprintf_filtered (file, _("\
125 Overload resolution in evaluating C++ functions is %s.\n"),
129 /* Find the address of function name NAME in the inferior. If OBJF_P
130 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
134 find_function_in_inferior (const char *name, struct objfile **objf_p)
138 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
141 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 error (_("\"%s\" exists in this program but is not a function."),
148 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150 return value_of_variable (sym, NULL);
154 struct minimal_symbol *msymbol =
155 lookup_minimal_symbol (name, NULL, NULL);
159 struct objfile *objfile = msymbol_objfile (msymbol);
160 struct gdbarch *gdbarch = get_objfile_arch (objfile);
164 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
165 type = lookup_function_type (type);
166 type = lookup_pointer_type (type);
167 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
172 return value_from_pointer (type, maddr);
176 if (!target_has_execution)
177 error (_("evaluation of this expression requires the target program to be active"));
179 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
184 /* Allocate NBYTES of space in the inferior using the inferior's
185 malloc and return a value that is a pointer to the allocated
189 value_allocate_space_in_inferior (int len)
191 struct objfile *objf;
192 struct value *val = find_function_in_inferior ("malloc", &objf);
193 struct gdbarch *gdbarch = get_objfile_arch (objf);
194 struct value *blocklen;
196 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
197 val = call_function_by_hand (val, 1, &blocklen);
198 if (value_logical_not (val))
200 if (!target_has_execution)
201 error (_("No memory available to program now: you need to start the target first"));
203 error (_("No memory available to program: call to malloc failed"));
209 allocate_space_in_inferior (int len)
211 return value_as_long (value_allocate_space_in_inferior (len));
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
226 gdb_assert (type != NULL && v2 != NULL);
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
249 v = search_struct_field (type_name_no_tag (t1),
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. Returns the new pointer or reference. */
304 value_cast_pointers (struct type *type, struct value *arg2)
306 struct type *type1 = check_typedef (type);
307 struct type *type2 = check_typedef (value_type (arg2));
308 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
309 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
311 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
312 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
313 && !value_logical_not (arg2))
317 if (TYPE_CODE (type2) == TYPE_CODE_REF)
318 v2 = coerce_ref (arg2);
320 v2 = value_ind (arg2);
321 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
322 && !!"Why did coercion fail?");
323 v2 = value_cast_structs (t1, v2);
324 /* At this point we have what we can have, un-dereference if needed. */
327 struct value *v = value_addr (v2);
329 deprecated_set_value_type (v, type);
334 /* No superclass found, just change the pointer type. */
335 arg2 = value_copy (arg2);
336 deprecated_set_value_type (arg2, type);
337 arg2 = value_change_enclosing_type (arg2, type);
338 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
342 /* Cast value ARG2 to type TYPE and return as a value.
343 More general than a C cast: accepts any two types of the same length,
344 and if ARG2 is an lvalue it can be cast into anything at all. */
345 /* In C++, casts may change pointer or object representations. */
348 value_cast (struct type *type, struct value *arg2)
350 enum type_code code1;
351 enum type_code code2;
355 int convert_to_boolean = 0;
357 if (value_type (arg2) == type)
360 code1 = TYPE_CODE (check_typedef (type));
362 /* Check if we are casting struct reference to struct reference. */
363 if (code1 == TYPE_CODE_REF)
365 /* We dereference type; then we recurse and finally
366 we generate value of the given reference. Nothing wrong with
368 struct type *t1 = check_typedef (type);
369 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
370 struct value *val = value_cast (dereftype, arg2);
372 return value_ref (val);
375 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
377 if (code2 == TYPE_CODE_REF)
378 /* We deref the value and then do the cast. */
379 return value_cast (type, coerce_ref (arg2));
381 CHECK_TYPEDEF (type);
382 code1 = TYPE_CODE (type);
383 arg2 = coerce_ref (arg2);
384 type2 = check_typedef (value_type (arg2));
386 /* You can't cast to a reference type. See value_cast_pointers
388 gdb_assert (code1 != TYPE_CODE_REF);
390 /* A cast to an undetermined-length array_type, such as
391 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
392 where N is sizeof(OBJECT)/sizeof(TYPE). */
393 if (code1 == TYPE_CODE_ARRAY)
395 struct type *element_type = TYPE_TARGET_TYPE (type);
396 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
398 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
400 struct type *range_type = TYPE_INDEX_TYPE (type);
401 int val_length = TYPE_LENGTH (type2);
402 LONGEST low_bound, high_bound, new_length;
404 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
405 low_bound = 0, high_bound = 0;
406 new_length = val_length / element_length;
407 if (val_length % element_length != 0)
408 warning (_("array element type size does not divide object size in cast"));
409 /* FIXME-type-allocation: need a way to free this type when
410 we are done with it. */
411 range_type = create_range_type ((struct type *) NULL,
412 TYPE_TARGET_TYPE (range_type),
414 new_length + low_bound - 1);
415 deprecated_set_value_type (arg2,
416 create_array_type ((struct type *) NULL,
423 if (current_language->c_style_arrays
424 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
425 arg2 = value_coerce_array (arg2);
427 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
428 arg2 = value_coerce_function (arg2);
430 type2 = check_typedef (value_type (arg2));
431 code2 = TYPE_CODE (type2);
433 if (code1 == TYPE_CODE_COMPLEX)
434 return cast_into_complex (type, arg2);
435 if (code1 == TYPE_CODE_BOOL)
437 code1 = TYPE_CODE_INT;
438 convert_to_boolean = 1;
440 if (code1 == TYPE_CODE_CHAR)
441 code1 = TYPE_CODE_INT;
442 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
443 code2 = TYPE_CODE_INT;
445 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
446 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
447 || code2 == TYPE_CODE_RANGE);
449 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
450 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
451 && TYPE_NAME (type) != 0)
453 struct value *v = value_cast_structs (type, arg2);
459 if (code1 == TYPE_CODE_FLT && scalar)
460 return value_from_double (type, value_as_double (arg2));
461 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
463 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
464 int dec_len = TYPE_LENGTH (type);
467 if (code2 == TYPE_CODE_FLT)
468 decimal_from_floating (arg2, dec, dec_len, byte_order);
469 else if (code2 == TYPE_CODE_DECFLOAT)
470 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
471 byte_order, dec, dec_len, byte_order);
473 /* The only option left is an integral type. */
474 decimal_from_integral (arg2, dec, dec_len, byte_order);
476 return value_from_decfloat (type, dec);
478 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
479 || code1 == TYPE_CODE_RANGE)
480 && (scalar || code2 == TYPE_CODE_PTR
481 || code2 == TYPE_CODE_MEMBERPTR))
485 /* When we cast pointers to integers, we mustn't use
486 gdbarch_pointer_to_address to find the address the pointer
487 represents, as value_as_long would. GDB should evaluate
488 expressions just as the compiler would --- and the compiler
489 sees a cast as a simple reinterpretation of the pointer's
491 if (code2 == TYPE_CODE_PTR)
492 longest = extract_unsigned_integer
493 (value_contents (arg2), TYPE_LENGTH (type2),
494 gdbarch_byte_order (get_type_arch (type2)));
496 longest = value_as_long (arg2);
497 return value_from_longest (type, convert_to_boolean ?
498 (LONGEST) (longest ? 1 : 0) : longest);
500 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
501 || code2 == TYPE_CODE_ENUM
502 || code2 == TYPE_CODE_RANGE))
504 /* TYPE_LENGTH (type) is the length of a pointer, but we really
505 want the length of an address! -- we are really dealing with
506 addresses (i.e., gdb representations) not pointers (i.e.,
507 target representations) here.
509 This allows things like "print *(int *)0x01000234" to work
510 without printing a misleading message -- which would
511 otherwise occur when dealing with a target having two byte
512 pointers and four byte addresses. */
514 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
515 LONGEST longest = value_as_long (arg2);
517 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
519 if (longest >= ((LONGEST) 1 << addr_bit)
520 || longest <= -((LONGEST) 1 << addr_bit))
521 warning (_("value truncated"));
523 return value_from_longest (type, longest);
525 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
526 && value_as_long (arg2) == 0)
528 struct value *result = allocate_value (type);
530 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
533 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
536 /* The Itanium C++ ABI represents NULL pointers to members as
537 minus one, instead of biasing the normal case. */
538 return value_from_longest (type, -1);
540 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
542 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
543 return value_cast_pointers (type, arg2);
545 arg2 = value_copy (arg2);
546 deprecated_set_value_type (arg2, type);
547 arg2 = value_change_enclosing_type (arg2, type);
548 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
551 else if (VALUE_LVAL (arg2) == lval_memory)
552 return value_at_lazy (type, value_address (arg2));
553 else if (code1 == TYPE_CODE_VOID)
555 return value_zero (type, not_lval);
559 error (_("Invalid cast."));
564 /* The C++ reinterpret_cast operator. */
567 value_reinterpret_cast (struct type *type, struct value *arg)
569 struct value *result;
570 struct type *real_type = check_typedef (type);
571 struct type *arg_type, *dest_type;
573 enum type_code dest_code, arg_code;
575 /* Do reference, function, and array conversion. */
576 arg = coerce_array (arg);
578 /* Attempt to preserve the type the user asked for. */
581 /* If we are casting to a reference type, transform
582 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
583 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
586 arg = value_addr (arg);
587 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
588 real_type = lookup_pointer_type (real_type);
591 arg_type = value_type (arg);
593 dest_code = TYPE_CODE (real_type);
594 arg_code = TYPE_CODE (arg_type);
596 /* We can convert pointer types, or any pointer type to int, or int
598 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
599 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
600 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
601 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
602 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
603 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
604 || (dest_code == arg_code
605 && (dest_code == TYPE_CODE_PTR
606 || dest_code == TYPE_CODE_METHODPTR
607 || dest_code == TYPE_CODE_MEMBERPTR)))
608 result = value_cast (dest_type, arg);
610 error (_("Invalid reinterpret_cast"));
613 result = value_cast (type, value_ref (value_ind (result)));
618 /* A helper for value_dynamic_cast. This implements the first of two
619 runtime checks: we iterate over all the base classes of the value's
620 class which are equal to the desired class; if only one of these
621 holds the value, then it is the answer. */
624 dynamic_cast_check_1 (struct type *desired_type,
625 const bfd_byte *contents,
627 struct type *search_type,
629 struct type *arg_type,
630 struct value **result)
632 int i, result_count = 0;
634 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
636 int offset = baseclass_offset (search_type, i, contents, address);
639 error (_("virtual baseclass botch"));
640 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
642 if (address + offset >= arg_addr
643 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
647 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
652 result_count += dynamic_cast_check_1 (desired_type,
655 TYPE_BASECLASS (search_type, i),
664 /* A helper for value_dynamic_cast. This implements the second of two
665 runtime checks: we look for a unique public sibling class of the
666 argument's declared class. */
669 dynamic_cast_check_2 (struct type *desired_type,
670 const bfd_byte *contents,
672 struct type *search_type,
673 struct value **result)
675 int i, result_count = 0;
677 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
681 if (! BASETYPE_VIA_PUBLIC (search_type, i))
684 offset = baseclass_offset (search_type, i, contents, address);
686 error (_("virtual baseclass botch"));
687 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
691 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
695 result_count += dynamic_cast_check_2 (desired_type,
698 TYPE_BASECLASS (search_type, i),
705 /* The C++ dynamic_cast operator. */
708 value_dynamic_cast (struct type *type, struct value *arg)
710 int full, top, using_enc;
711 struct type *resolved_type = check_typedef (type);
712 struct type *arg_type = check_typedef (value_type (arg));
713 struct type *class_type, *rtti_type;
714 struct value *result, *tem, *original_arg = arg;
716 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
718 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
719 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
720 error (_("Argument to dynamic_cast must be a pointer or reference type"));
721 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
722 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
723 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
725 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
726 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
728 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
729 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
730 && value_as_long (arg) == 0))
731 error (_("Argument to dynamic_cast does not have pointer type"));
732 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
734 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
735 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
736 error (_("Argument to dynamic_cast does not have pointer to class type"));
739 /* Handle NULL pointers. */
740 if (value_as_long (arg) == 0)
741 return value_zero (type, not_lval);
743 arg = value_ind (arg);
747 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
748 error (_("Argument to dynamic_cast does not have class type"));
751 /* If the classes are the same, just return the argument. */
752 if (class_types_same_p (class_type, arg_type))
753 return value_cast (type, arg);
755 /* If the target type is a unique base class of the argument's
756 declared type, just cast it. */
757 if (is_ancestor (class_type, arg_type))
759 if (is_unique_ancestor (class_type, arg))
760 return value_cast (type, original_arg);
761 error (_("Ambiguous dynamic_cast"));
764 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
766 error (_("Couldn't determine value's most derived type for dynamic_cast"));
768 /* Compute the most derived object's address. */
769 addr = value_address (arg);
777 addr += top + value_embedded_offset (arg);
779 /* dynamic_cast<void *> means to return a pointer to the
780 most-derived object. */
781 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
782 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
783 return value_at_lazy (type, addr);
785 tem = value_at (type, addr);
787 /* The first dynamic check specified in 5.2.7. */
788 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
790 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
793 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
794 value_contents (tem), value_address (tem),
798 return value_cast (type,
799 is_ref ? value_ref (result) : value_addr (result));
802 /* The second dynamic check specified in 5.2.7. */
804 if (is_public_ancestor (arg_type, rtti_type)
805 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
806 value_contents (tem), value_address (tem),
807 rtti_type, &result) == 1)
808 return value_cast (type,
809 is_ref ? value_ref (result) : value_addr (result));
811 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
812 return value_zero (type, not_lval);
814 error (_("dynamic_cast failed"));
817 /* Create a value of type TYPE that is zero, and return it. */
820 value_zero (struct type *type, enum lval_type lv)
822 struct value *val = allocate_value (type);
824 VALUE_LVAL (val) = lv;
828 /* Create a value of numeric type TYPE that is one, and return it. */
831 value_one (struct type *type, enum lval_type lv)
833 struct type *type1 = check_typedef (type);
836 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
838 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
841 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
842 val = value_from_decfloat (type, v);
844 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
846 val = value_from_double (type, (DOUBLEST) 1);
848 else if (is_integral_type (type1))
850 val = value_from_longest (type, (LONGEST) 1);
854 error (_("Not a numeric type."));
857 VALUE_LVAL (val) = lv;
861 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
863 static struct value *
864 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
868 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
869 error (_("Attempt to dereference a generic pointer."));
873 val = allocate_value_lazy (type);
877 val = allocate_value (type);
878 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
881 VALUE_LVAL (val) = lval_memory;
882 set_value_address (val, addr);
887 /* Return a value with type TYPE located at ADDR.
889 Call value_at only if the data needs to be fetched immediately;
890 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
891 value_at_lazy instead. value_at_lazy simply records the address of
892 the data and sets the lazy-evaluation-required flag. The lazy flag
893 is tested in the value_contents macro, which is used if and when
894 the contents are actually required.
896 Note: value_at does *NOT* handle embedded offsets; perform such
897 adjustments before or after calling it. */
900 value_at (struct type *type, CORE_ADDR addr)
902 return get_value_at (type, addr, 0);
905 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
908 value_at_lazy (struct type *type, CORE_ADDR addr)
910 return get_value_at (type, addr, 1);
913 /* Called only from the value_contents and value_contents_all()
914 macros, if the current data for a variable needs to be loaded into
915 value_contents(VAL). Fetches the data from the user's process, and
916 clears the lazy flag to indicate that the data in the buffer is
919 If the value is zero-length, we avoid calling read_memory, which
920 would abort. We mark the value as fetched anyway -- all 0 bytes of
923 This function returns a value because it is used in the
924 value_contents macro as part of an expression, where a void would
925 not work. The value is ignored. */
928 value_fetch_lazy (struct value *val)
930 gdb_assert (value_lazy (val));
931 allocate_value_contents (val);
932 if (value_bitsize (val))
934 /* To read a lazy bitfield, read the entire enclosing value. This
935 prevents reading the same block of (possibly volatile) memory once
936 per bitfield. It would be even better to read only the containing
937 word, but we have no way to record that just specific bits of a
938 value have been fetched. */
939 struct type *type = check_typedef (value_type (val));
940 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
941 struct value *parent = value_parent (val);
942 LONGEST offset = value_offset (val);
943 LONGEST num = unpack_bits_as_long (value_type (val),
944 (value_contents_for_printing (parent)
947 value_bitsize (val));
948 int length = TYPE_LENGTH (type);
950 if (!value_bits_valid (val,
951 TARGET_CHAR_BIT * offset + value_bitpos (val),
952 value_bitsize (val)))
953 error (_("value has been optimized out"));
955 store_signed_integer (value_contents_raw (val), length, byte_order, num);
957 else if (VALUE_LVAL (val) == lval_memory)
959 CORE_ADDR addr = value_address (val);
960 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
964 if (value_stack (val))
965 read_stack (addr, value_contents_all_raw (val), length);
967 read_memory (addr, value_contents_all_raw (val), length);
970 else if (VALUE_LVAL (val) == lval_register)
972 struct frame_info *frame;
974 struct type *type = check_typedef (value_type (val));
975 struct value *new_val = val, *mark = value_mark ();
977 /* Offsets are not supported here; lazy register values must
978 refer to the entire register. */
979 gdb_assert (value_offset (val) == 0);
981 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
983 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
984 regnum = VALUE_REGNUM (new_val);
986 gdb_assert (frame != NULL);
988 /* Convertible register routines are used for multi-register
989 values and for interpretation in different types
990 (e.g. float or int from a double register). Lazy
991 register values should have the register's natural type,
992 so they do not apply. */
993 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
996 new_val = get_frame_register_value (frame, regnum);
999 /* If it's still lazy (for instance, a saved register on the
1000 stack), fetch it. */
1001 if (value_lazy (new_val))
1002 value_fetch_lazy (new_val);
1004 /* If the register was not saved, mark it unavailable. */
1005 if (value_optimized_out (new_val))
1006 set_value_optimized_out (val, 1);
1008 memcpy (value_contents_raw (val), value_contents (new_val),
1009 TYPE_LENGTH (type));
1013 struct gdbarch *gdbarch;
1014 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1015 regnum = VALUE_REGNUM (val);
1016 gdbarch = get_frame_arch (frame);
1018 fprintf_unfiltered (gdb_stdlog, "\
1019 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1020 frame_relative_level (frame), regnum,
1021 user_reg_map_regnum_to_name (gdbarch, regnum));
1023 fprintf_unfiltered (gdb_stdlog, "->");
1024 if (value_optimized_out (new_val))
1025 fprintf_unfiltered (gdb_stdlog, " optimized out");
1029 const gdb_byte *buf = value_contents (new_val);
1031 if (VALUE_LVAL (new_val) == lval_register)
1032 fprintf_unfiltered (gdb_stdlog, " register=%d",
1033 VALUE_REGNUM (new_val));
1034 else if (VALUE_LVAL (new_val) == lval_memory)
1035 fprintf_unfiltered (gdb_stdlog, " address=%s",
1037 value_address (new_val)));
1039 fprintf_unfiltered (gdb_stdlog, " computed");
1041 fprintf_unfiltered (gdb_stdlog, " bytes=");
1042 fprintf_unfiltered (gdb_stdlog, "[");
1043 for (i = 0; i < register_size (gdbarch, regnum); i++)
1044 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1045 fprintf_unfiltered (gdb_stdlog, "]");
1048 fprintf_unfiltered (gdb_stdlog, " }\n");
1051 /* Dispose of the intermediate values. This prevents
1052 watchpoints from trying to watch the saved frame pointer. */
1053 value_free_to_mark (mark);
1055 else if (VALUE_LVAL (val) == lval_computed)
1056 value_computed_funcs (val)->read (val);
1058 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1060 set_value_lazy (val, 0);
1065 /* Store the contents of FROMVAL into the location of TOVAL.
1066 Return a new value with the location of TOVAL and contents of FROMVAL. */
1069 value_assign (struct value *toval, struct value *fromval)
1073 struct frame_id old_frame;
1075 if (!deprecated_value_modifiable (toval))
1076 error (_("Left operand of assignment is not a modifiable lvalue."));
1078 toval = coerce_ref (toval);
1080 type = value_type (toval);
1081 if (VALUE_LVAL (toval) != lval_internalvar)
1082 fromval = value_cast (type, fromval);
1085 /* Coerce arrays and functions to pointers, except for arrays
1086 which only live in GDB's storage. */
1087 if (!value_must_coerce_to_target (fromval))
1088 fromval = coerce_array (fromval);
1091 CHECK_TYPEDEF (type);
1093 /* Since modifying a register can trash the frame chain, and
1094 modifying memory can trash the frame cache, we save the old frame
1095 and then restore the new frame afterwards. */
1096 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1098 switch (VALUE_LVAL (toval))
1100 case lval_internalvar:
1101 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1102 val = value_copy (fromval);
1103 val = value_change_enclosing_type (val,
1104 value_enclosing_type (fromval));
1105 set_value_embedded_offset (val, value_embedded_offset (fromval));
1106 set_value_pointed_to_offset (val,
1107 value_pointed_to_offset (fromval));
1110 case lval_internalvar_component:
1111 set_internalvar_component (VALUE_INTERNALVAR (toval),
1112 value_offset (toval),
1113 value_bitpos (toval),
1114 value_bitsize (toval),
1120 const gdb_byte *dest_buffer;
1121 CORE_ADDR changed_addr;
1123 gdb_byte buffer[sizeof (LONGEST)];
1125 if (value_bitsize (toval))
1127 struct value *parent = value_parent (toval);
1129 changed_addr = value_address (parent) + value_offset (toval);
1130 changed_len = (value_bitpos (toval)
1131 + value_bitsize (toval)
1132 + HOST_CHAR_BIT - 1)
1135 /* If we can read-modify-write exactly the size of the
1136 containing type (e.g. short or int) then do so. This
1137 is safer for volatile bitfields mapped to hardware
1139 if (changed_len < TYPE_LENGTH (type)
1140 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1141 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1142 changed_len = TYPE_LENGTH (type);
1144 if (changed_len > (int) sizeof (LONGEST))
1145 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1146 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1148 read_memory (changed_addr, buffer, changed_len);
1149 modify_field (type, buffer, value_as_long (fromval),
1150 value_bitpos (toval), value_bitsize (toval));
1151 dest_buffer = buffer;
1155 changed_addr = value_address (toval);
1156 changed_len = TYPE_LENGTH (type);
1157 dest_buffer = value_contents (fromval);
1160 write_memory (changed_addr, dest_buffer, changed_len);
1161 observer_notify_memory_changed (changed_addr, changed_len,
1168 struct frame_info *frame;
1169 struct gdbarch *gdbarch;
1172 /* Figure out which frame this is in currently. */
1173 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1174 value_reg = VALUE_REGNUM (toval);
1177 error (_("Value being assigned to is no longer active."));
1179 gdbarch = get_frame_arch (frame);
1180 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1182 /* If TOVAL is a special machine register requiring
1183 conversion of program values to a special raw
1185 gdbarch_value_to_register (gdbarch, frame,
1186 VALUE_REGNUM (toval), type,
1187 value_contents (fromval));
1191 if (value_bitsize (toval))
1193 struct value *parent = value_parent (toval);
1194 int offset = value_offset (parent) + value_offset (toval);
1196 gdb_byte buffer[sizeof (LONGEST)];
1198 changed_len = (value_bitpos (toval)
1199 + value_bitsize (toval)
1200 + HOST_CHAR_BIT - 1)
1203 if (changed_len > (int) sizeof (LONGEST))
1204 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1205 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1207 get_frame_register_bytes (frame, value_reg, offset,
1208 changed_len, buffer);
1210 modify_field (type, buffer, value_as_long (fromval),
1211 value_bitpos (toval), value_bitsize (toval));
1213 put_frame_register_bytes (frame, value_reg, offset,
1214 changed_len, buffer);
1218 put_frame_register_bytes (frame, value_reg,
1219 value_offset (toval),
1221 value_contents (fromval));
1225 if (deprecated_register_changed_hook)
1226 deprecated_register_changed_hook (-1);
1227 observer_notify_target_changed (¤t_target);
1233 struct lval_funcs *funcs = value_computed_funcs (toval);
1235 funcs->write (toval, fromval);
1240 error (_("Left operand of assignment is not an lvalue."));
1243 /* Assigning to the stack pointer, frame pointer, and other
1244 (architecture and calling convention specific) registers may
1245 cause the frame cache to be out of date. Assigning to memory
1246 also can. We just do this on all assignments to registers or
1247 memory, for simplicity's sake; I doubt the slowdown matters. */
1248 switch (VALUE_LVAL (toval))
1254 reinit_frame_cache ();
1256 /* Having destroyed the frame cache, restore the selected
1259 /* FIXME: cagney/2002-11-02: There has to be a better way of
1260 doing this. Instead of constantly saving/restoring the
1261 frame. Why not create a get_selected_frame() function that,
1262 having saved the selected frame's ID can automatically
1263 re-find the previously selected frame automatically. */
1266 struct frame_info *fi = frame_find_by_id (old_frame);
1277 /* If the field does not entirely fill a LONGEST, then zero the sign
1278 bits. If the field is signed, and is negative, then sign
1280 if ((value_bitsize (toval) > 0)
1281 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1283 LONGEST fieldval = value_as_long (fromval);
1284 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1286 fieldval &= valmask;
1287 if (!TYPE_UNSIGNED (type)
1288 && (fieldval & (valmask ^ (valmask >> 1))))
1289 fieldval |= ~valmask;
1291 fromval = value_from_longest (type, fieldval);
1294 val = value_copy (toval);
1295 memcpy (value_contents_raw (val), value_contents (fromval),
1296 TYPE_LENGTH (type));
1297 deprecated_set_value_type (val, type);
1298 val = value_change_enclosing_type (val,
1299 value_enclosing_type (fromval));
1300 set_value_embedded_offset (val, value_embedded_offset (fromval));
1301 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1306 /* Extend a value VAL to COUNT repetitions of its type. */
1309 value_repeat (struct value *arg1, int count)
1313 if (VALUE_LVAL (arg1) != lval_memory)
1314 error (_("Only values in memory can be extended with '@'."));
1316 error (_("Invalid number %d of repetitions."), count);
1318 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1320 read_memory (value_address (arg1),
1321 value_contents_all_raw (val),
1322 TYPE_LENGTH (value_enclosing_type (val)));
1323 VALUE_LVAL (val) = lval_memory;
1324 set_value_address (val, value_address (arg1));
1330 value_of_variable (struct symbol *var, struct block *b)
1333 struct frame_info *frame;
1335 if (!symbol_read_needs_frame (var))
1338 frame = get_selected_frame (_("No frame selected."));
1341 frame = block_innermost_frame (b);
1344 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1345 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1346 error (_("No frame is currently executing in block %s."),
1347 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1349 error (_("No frame is currently executing in specified block"));
1353 val = read_var_value (var, frame);
1355 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1361 address_of_variable (struct symbol *var, struct block *b)
1363 struct type *type = SYMBOL_TYPE (var);
1366 /* Evaluate it first; if the result is a memory address, we're fine.
1367 Lazy evaluation pays off here. */
1369 val = value_of_variable (var, b);
1371 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1372 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1374 CORE_ADDR addr = value_address (val);
1376 return value_from_pointer (lookup_pointer_type (type), addr);
1379 /* Not a memory address; check what the problem was. */
1380 switch (VALUE_LVAL (val))
1384 struct frame_info *frame;
1385 const char *regname;
1387 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1390 regname = gdbarch_register_name (get_frame_arch (frame),
1391 VALUE_REGNUM (val));
1392 gdb_assert (regname && *regname);
1394 error (_("Address requested for identifier "
1395 "\"%s\" which is in register $%s"),
1396 SYMBOL_PRINT_NAME (var), regname);
1401 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1402 SYMBOL_PRINT_NAME (var));
1409 /* Return one if VAL does not live in target memory, but should in order
1410 to operate on it. Otherwise return zero. */
1413 value_must_coerce_to_target (struct value *val)
1415 struct type *valtype;
1417 /* The only lval kinds which do not live in target memory. */
1418 if (VALUE_LVAL (val) != not_lval
1419 && VALUE_LVAL (val) != lval_internalvar)
1422 valtype = check_typedef (value_type (val));
1424 switch (TYPE_CODE (valtype))
1426 case TYPE_CODE_ARRAY:
1427 return TYPE_VECTOR (valtype) ? 0 : 1;
1428 case TYPE_CODE_STRING:
1435 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1436 strings are constructed as character arrays in GDB's storage, and this
1437 function copies them to the target. */
1440 value_coerce_to_target (struct value *val)
1445 if (!value_must_coerce_to_target (val))
1448 length = TYPE_LENGTH (check_typedef (value_type (val)));
1449 addr = allocate_space_in_inferior (length);
1450 write_memory (addr, value_contents (val), length);
1451 return value_at_lazy (value_type (val), addr);
1454 /* Given a value which is an array, return a value which is a pointer
1455 to its first element, regardless of whether or not the array has a
1456 nonzero lower bound.
1458 FIXME: A previous comment here indicated that this routine should
1459 be substracting the array's lower bound. It's not clear to me that
1460 this is correct. Given an array subscripting operation, it would
1461 certainly work to do the adjustment here, essentially computing:
1463 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1465 However I believe a more appropriate and logical place to account
1466 for the lower bound is to do so in value_subscript, essentially
1469 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1471 As further evidence consider what would happen with operations
1472 other than array subscripting, where the caller would get back a
1473 value that had an address somewhere before the actual first element
1474 of the array, and the information about the lower bound would be
1475 lost because of the coercion to pointer type.
1479 value_coerce_array (struct value *arg1)
1481 struct type *type = check_typedef (value_type (arg1));
1483 /* If the user tries to do something requiring a pointer with an
1484 array that has not yet been pushed to the target, then this would
1485 be a good time to do so. */
1486 arg1 = value_coerce_to_target (arg1);
1488 if (VALUE_LVAL (arg1) != lval_memory)
1489 error (_("Attempt to take address of value not located in memory."));
1491 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1492 value_address (arg1));
1495 /* Given a value which is a function, return a value which is a pointer
1499 value_coerce_function (struct value *arg1)
1501 struct value *retval;
1503 if (VALUE_LVAL (arg1) != lval_memory)
1504 error (_("Attempt to take address of value not located in memory."));
1506 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1507 value_address (arg1));
1511 /* Return a pointer value for the object for which ARG1 is the
1515 value_addr (struct value *arg1)
1518 struct type *type = check_typedef (value_type (arg1));
1520 if (TYPE_CODE (type) == TYPE_CODE_REF)
1522 /* Copy the value, but change the type from (T&) to (T*). We
1523 keep the same location information, which is efficient, and
1524 allows &(&X) to get the location containing the reference. */
1525 arg2 = value_copy (arg1);
1526 deprecated_set_value_type (arg2,
1527 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1530 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1531 return value_coerce_function (arg1);
1533 /* If this is an array that has not yet been pushed to the target,
1534 then this would be a good time to force it to memory. */
1535 arg1 = value_coerce_to_target (arg1);
1537 if (VALUE_LVAL (arg1) != lval_memory)
1538 error (_("Attempt to take address of value not located in memory."));
1540 /* Get target memory address */
1541 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1542 (value_address (arg1)
1543 + value_embedded_offset (arg1)));
1545 /* This may be a pointer to a base subobject; so remember the
1546 full derived object's type ... */
1547 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1548 /* ... and also the relative position of the subobject in the full
1550 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1554 /* Return a reference value for the object for which ARG1 is the
1558 value_ref (struct value *arg1)
1561 struct type *type = check_typedef (value_type (arg1));
1563 if (TYPE_CODE (type) == TYPE_CODE_REF)
1566 arg2 = value_addr (arg1);
1567 deprecated_set_value_type (arg2, lookup_reference_type (type));
1571 /* Given a value of a pointer type, apply the C unary * operator to
1575 value_ind (struct value *arg1)
1577 struct type *base_type;
1580 arg1 = coerce_array (arg1);
1582 base_type = check_typedef (value_type (arg1));
1584 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1586 struct type *enc_type;
1588 /* We may be pointing to something embedded in a larger object.
1589 Get the real type of the enclosing object. */
1590 enc_type = check_typedef (value_enclosing_type (arg1));
1591 enc_type = TYPE_TARGET_TYPE (enc_type);
1593 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1594 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1595 /* For functions, go through find_function_addr, which knows
1596 how to handle function descriptors. */
1597 arg2 = value_at_lazy (enc_type,
1598 find_function_addr (arg1, NULL));
1600 /* Retrieve the enclosing object pointed to */
1601 arg2 = value_at_lazy (enc_type,
1602 (value_as_address (arg1)
1603 - value_pointed_to_offset (arg1)));
1605 /* Re-adjust type. */
1606 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1607 /* Add embedding info. */
1608 arg2 = value_change_enclosing_type (arg2, enc_type);
1609 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1611 /* We may be pointing to an object of some derived type. */
1612 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1616 error (_("Attempt to take contents of a non-pointer value."));
1617 return 0; /* For lint -- never reached. */
1620 /* Create a value for an array by allocating space in GDB, copying
1621 copying the data into that space, and then setting up an array
1624 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1625 is populated from the values passed in ELEMVEC.
1627 The element type of the array is inherited from the type of the
1628 first element, and all elements must have the same size (though we
1629 don't currently enforce any restriction on their types). */
1632 value_array (int lowbound, int highbound, struct value **elemvec)
1636 unsigned int typelength;
1638 struct type *arraytype;
1640 /* Validate that the bounds are reasonable and that each of the
1641 elements have the same size. */
1643 nelem = highbound - lowbound + 1;
1646 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1648 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1649 for (idx = 1; idx < nelem; idx++)
1651 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1653 error (_("array elements must all be the same size"));
1657 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1658 lowbound, highbound);
1660 if (!current_language->c_style_arrays)
1662 val = allocate_value (arraytype);
1663 for (idx = 0; idx < nelem; idx++)
1665 memcpy (value_contents_all_raw (val) + (idx * typelength),
1666 value_contents_all (elemvec[idx]),
1672 /* Allocate space to store the array, and then initialize it by
1673 copying in each element. */
1675 val = allocate_value (arraytype);
1676 for (idx = 0; idx < nelem; idx++)
1677 memcpy (value_contents_writeable (val) + (idx * typelength),
1678 value_contents_all (elemvec[idx]),
1684 value_cstring (char *ptr, int len, struct type *char_type)
1687 int lowbound = current_language->string_lower_bound;
1688 int highbound = len / TYPE_LENGTH (char_type);
1689 struct type *stringtype
1690 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1692 val = allocate_value (stringtype);
1693 memcpy (value_contents_raw (val), ptr, len);
1697 /* Create a value for a string constant by allocating space in the
1698 inferior, copying the data into that space, and returning the
1699 address with type TYPE_CODE_STRING. PTR points to the string
1700 constant data; LEN is number of characters.
1702 Note that string types are like array of char types with a lower
1703 bound of zero and an upper bound of LEN - 1. Also note that the
1704 string may contain embedded null bytes. */
1707 value_string (char *ptr, int len, struct type *char_type)
1710 int lowbound = current_language->string_lower_bound;
1711 int highbound = len / TYPE_LENGTH (char_type);
1712 struct type *stringtype
1713 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1715 val = allocate_value (stringtype);
1716 memcpy (value_contents_raw (val), ptr, len);
1721 value_bitstring (char *ptr, int len, struct type *index_type)
1724 struct type *domain_type
1725 = create_range_type (NULL, index_type, 0, len - 1);
1726 struct type *type = create_set_type (NULL, domain_type);
1728 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1729 val = allocate_value (type);
1730 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1734 /* See if we can pass arguments in T2 to a function which takes
1735 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1736 a NULL-terminated vector. If some arguments need coercion of some
1737 sort, then the coerced values are written into T2. Return value is
1738 0 if the arguments could be matched, or the position at which they
1741 STATICP is nonzero if the T1 argument list came from a static
1742 member function. T2 will still include the ``this'' pointer, but
1745 For non-static member functions, we ignore the first argument,
1746 which is the type of the instance variable. This is because we
1747 want to handle calls with objects from derived classes. This is
1748 not entirely correct: we should actually check to make sure that a
1749 requested operation is type secure, shouldn't we? FIXME. */
1752 typecmp (int staticp, int varargs, int nargs,
1753 struct field t1[], struct value *t2[])
1758 internal_error (__FILE__, __LINE__,
1759 _("typecmp: no argument list"));
1761 /* Skip ``this'' argument if applicable. T2 will always include
1767 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1770 struct type *tt1, *tt2;
1775 tt1 = check_typedef (t1[i].type);
1776 tt2 = check_typedef (value_type (t2[i]));
1778 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1779 /* We should be doing hairy argument matching, as below. */
1780 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1782 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1783 t2[i] = value_coerce_array (t2[i]);
1785 t2[i] = value_ref (t2[i]);
1789 /* djb - 20000715 - Until the new type structure is in the
1790 place, and we can attempt things like implicit conversions,
1791 we need to do this so you can take something like a map<const
1792 char *>, and properly access map["hello"], because the
1793 argument to [] will be a reference to a pointer to a char,
1794 and the argument will be a pointer to a char. */
1795 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1796 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1798 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1800 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1801 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1802 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1804 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1806 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1808 /* Array to pointer is a `trivial conversion' according to the
1811 /* We should be doing much hairier argument matching (see
1812 section 13.2 of the ARM), but as a quick kludge, just check
1813 for the same type code. */
1814 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1817 if (varargs || t2[i] == NULL)
1822 /* Helper function used by value_struct_elt to recurse through
1823 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1824 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1825 TYPE. If found, return value, else return NULL.
1827 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1828 fields, look for a baseclass named NAME. */
1830 static struct value *
1831 search_struct_field (const char *name, struct value *arg1, int offset,
1832 struct type *type, int looking_for_baseclass)
1837 CHECK_TYPEDEF (type);
1838 nbases = TYPE_N_BASECLASSES (type);
1840 if (!looking_for_baseclass)
1841 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1843 char *t_field_name = TYPE_FIELD_NAME (type, i);
1845 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1849 if (field_is_static (&TYPE_FIELD (type, i)))
1851 v = value_static_field (type, i);
1853 error (_("field %s is nonexistent or has been optimized out"),
1858 v = value_primitive_field (arg1, offset, i, type);
1860 error (_("there is no field named %s"), name);
1866 && (t_field_name[0] == '\0'
1867 || (TYPE_CODE (type) == TYPE_CODE_UNION
1868 && (strcmp_iw (t_field_name, "else") == 0))))
1870 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1872 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1873 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1875 /* Look for a match through the fields of an anonymous
1876 union, or anonymous struct. C++ provides anonymous
1879 In the GNU Chill (now deleted from GDB)
1880 implementation of variant record types, each
1881 <alternative field> has an (anonymous) union type,
1882 each member of the union represents a <variant
1883 alternative>. Each <variant alternative> is
1884 represented as a struct, with a member for each
1888 int new_offset = offset;
1890 /* This is pretty gross. In G++, the offset in an
1891 anonymous union is relative to the beginning of the
1892 enclosing struct. In the GNU Chill (now deleted
1893 from GDB) implementation of variant records, the
1894 bitpos is zero in an anonymous union field, so we
1895 have to add the offset of the union here. */
1896 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1897 || (TYPE_NFIELDS (field_type) > 0
1898 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1899 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1901 v = search_struct_field (name, arg1, new_offset,
1903 looking_for_baseclass);
1910 for (i = 0; i < nbases; i++)
1913 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1914 /* If we are looking for baseclasses, this is what we get when
1915 we hit them. But it could happen that the base part's member
1916 name is not yet filled in. */
1917 int found_baseclass = (looking_for_baseclass
1918 && TYPE_BASECLASS_NAME (type, i) != NULL
1919 && (strcmp_iw (name,
1920 TYPE_BASECLASS_NAME (type,
1923 if (BASETYPE_VIA_VIRTUAL (type, i))
1928 boffset = baseclass_offset (type, i,
1929 value_contents (arg1) + offset,
1930 value_address (arg1)
1931 + value_embedded_offset (arg1)
1934 error (_("virtual baseclass botch"));
1936 /* The virtual base class pointer might have been clobbered
1937 by the user program. Make sure that it still points to a
1938 valid memory location. */
1940 boffset += value_embedded_offset (arg1) + offset;
1942 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1944 CORE_ADDR base_addr;
1946 v2 = allocate_value (basetype);
1947 base_addr = value_address (arg1) + boffset;
1948 if (target_read_memory (base_addr,
1949 value_contents_raw (v2),
1950 TYPE_LENGTH (basetype)) != 0)
1951 error (_("virtual baseclass botch"));
1952 VALUE_LVAL (v2) = lval_memory;
1953 set_value_address (v2, base_addr);
1957 v2 = value_copy (arg1);
1958 deprecated_set_value_type (v2, basetype);
1959 set_value_embedded_offset (v2, boffset);
1962 if (found_baseclass)
1964 v = search_struct_field (name, v2, 0,
1965 TYPE_BASECLASS (type, i),
1966 looking_for_baseclass);
1968 else if (found_baseclass)
1969 v = value_primitive_field (arg1, offset, i, type);
1971 v = search_struct_field (name, arg1,
1972 offset + TYPE_BASECLASS_BITPOS (type,
1974 basetype, looking_for_baseclass);
1981 /* Helper function used by value_struct_elt to recurse through
1982 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1983 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1986 If found, return value, else if name matched and args not return
1987 (value) -1, else return NULL. */
1989 static struct value *
1990 search_struct_method (const char *name, struct value **arg1p,
1991 struct value **args, int offset,
1992 int *static_memfuncp, struct type *type)
1996 int name_matched = 0;
1997 char dem_opname[64];
1999 CHECK_TYPEDEF (type);
2000 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2002 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2004 /* FIXME! May need to check for ARM demangling here */
2005 if (strncmp (t_field_name, "__", 2) == 0 ||
2006 strncmp (t_field_name, "op", 2) == 0 ||
2007 strncmp (t_field_name, "type", 4) == 0)
2009 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2010 t_field_name = dem_opname;
2011 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2012 t_field_name = dem_opname;
2014 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2016 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2017 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2020 check_stub_method_group (type, i);
2021 if (j > 0 && args == 0)
2022 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
2023 else if (j == 0 && args == 0)
2025 v = value_fn_field (arg1p, f, j, type, offset);
2032 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2033 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2034 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2035 TYPE_FN_FIELD_ARGS (f, j), args))
2037 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2038 return value_virtual_fn_field (arg1p, f, j,
2040 if (TYPE_FN_FIELD_STATIC_P (f, j)
2042 *static_memfuncp = 1;
2043 v = value_fn_field (arg1p, f, j, type, offset);
2052 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2056 if (BASETYPE_VIA_VIRTUAL (type, i))
2058 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2059 const gdb_byte *base_valaddr;
2061 /* The virtual base class pointer might have been
2062 clobbered by the user program. Make sure that it
2063 still points to a valid memory location. */
2065 if (offset < 0 || offset >= TYPE_LENGTH (type))
2067 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2069 if (target_read_memory (value_address (*arg1p) + offset,
2070 tmp, TYPE_LENGTH (baseclass)) != 0)
2071 error (_("virtual baseclass botch"));
2075 base_valaddr = value_contents (*arg1p) + offset;
2077 base_offset = baseclass_offset (type, i, base_valaddr,
2078 value_address (*arg1p) + offset);
2079 if (base_offset == -1)
2080 error (_("virtual baseclass botch"));
2084 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2086 v = search_struct_method (name, arg1p, args, base_offset + offset,
2087 static_memfuncp, TYPE_BASECLASS (type, i));
2088 if (v == (struct value *) - 1)
2094 /* FIXME-bothner: Why is this commented out? Why is it here? */
2095 /* *arg1p = arg1_tmp; */
2100 return (struct value *) - 1;
2105 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2106 extract the component named NAME from the ultimate target
2107 structure/union and return it as a value with its appropriate type.
2108 ERR is used in the error message if *ARGP's type is wrong.
2110 C++: ARGS is a list of argument types to aid in the selection of
2111 an appropriate method. Also, handle derived types.
2113 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2114 where the truthvalue of whether the function that was resolved was
2115 a static member function or not is stored.
2117 ERR is an error message to be printed in case the field is not
2121 value_struct_elt (struct value **argp, struct value **args,
2122 const char *name, int *static_memfuncp, const char *err)
2127 *argp = coerce_array (*argp);
2129 t = check_typedef (value_type (*argp));
2131 /* Follow pointers until we get to a non-pointer. */
2133 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2135 *argp = value_ind (*argp);
2136 /* Don't coerce fn pointer to fn and then back again! */
2137 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2138 *argp = coerce_array (*argp);
2139 t = check_typedef (value_type (*argp));
2142 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2143 && TYPE_CODE (t) != TYPE_CODE_UNION)
2144 error (_("Attempt to extract a component of a value that is not a %s."), err);
2146 /* Assume it's not, unless we see that it is. */
2147 if (static_memfuncp)
2148 *static_memfuncp = 0;
2152 /* if there are no arguments ...do this... */
2154 /* Try as a field first, because if we succeed, there is less
2156 v = search_struct_field (name, *argp, 0, t, 0);
2160 /* C++: If it was not found as a data field, then try to
2161 return it as a pointer to a method. */
2162 v = search_struct_method (name, argp, args, 0,
2163 static_memfuncp, t);
2165 if (v == (struct value *) - 1)
2166 error (_("Cannot take address of method %s."), name);
2169 if (TYPE_NFN_FIELDS (t))
2170 error (_("There is no member or method named %s."), name);
2172 error (_("There is no member named %s."), name);
2177 v = search_struct_method (name, argp, args, 0,
2178 static_memfuncp, t);
2180 if (v == (struct value *) - 1)
2182 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2186 /* See if user tried to invoke data as function. If so, hand it
2187 back. If it's not callable (i.e., a pointer to function),
2188 gdb should give an error. */
2189 v = search_struct_field (name, *argp, 0, t, 0);
2190 /* If we found an ordinary field, then it is not a method call.
2191 So, treat it as if it were a static member function. */
2192 if (v && static_memfuncp)
2193 *static_memfuncp = 1;
2197 error (_("Structure has no component named %s."), name);
2201 /* Search through the methods of an object (and its bases) to find a
2202 specified method. Return the pointer to the fn_field list of
2203 overloaded instances.
2205 Helper function for value_find_oload_list.
2206 ARGP is a pointer to a pointer to a value (the object).
2207 METHOD is a string containing the method name.
2208 OFFSET is the offset within the value.
2209 TYPE is the assumed type of the object.
2210 NUM_FNS is the number of overloaded instances.
2211 BASETYPE is set to the actual type of the subobject where the
2213 BOFFSET is the offset of the base subobject where the method is found.
2216 static struct fn_field *
2217 find_method_list (struct value **argp, const char *method,
2218 int offset, struct type *type, int *num_fns,
2219 struct type **basetype, int *boffset)
2223 CHECK_TYPEDEF (type);
2227 /* First check in object itself. */
2228 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2230 /* pai: FIXME What about operators and type conversions? */
2231 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2233 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2235 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2236 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2242 /* Resolve any stub methods. */
2243 check_stub_method_group (type, i);
2249 /* Not found in object, check in base subobjects. */
2250 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2254 if (BASETYPE_VIA_VIRTUAL (type, i))
2256 base_offset = value_offset (*argp) + offset;
2257 base_offset = baseclass_offset (type, i,
2258 value_contents (*argp) + base_offset,
2259 value_address (*argp) + base_offset);
2260 if (base_offset == -1)
2261 error (_("virtual baseclass botch"));
2263 else /* Non-virtual base, simply use bit position from debug
2266 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2268 f = find_method_list (argp, method, base_offset + offset,
2269 TYPE_BASECLASS (type, i), num_fns,
2277 /* Return the list of overloaded methods of a specified name.
2279 ARGP is a pointer to a pointer to a value (the object).
2280 METHOD is the method name.
2281 OFFSET is the offset within the value contents.
2282 NUM_FNS is the number of overloaded instances.
2283 BASETYPE is set to the type of the base subobject that defines the
2285 BOFFSET is the offset of the base subobject which defines the method.
2289 value_find_oload_method_list (struct value **argp, const char *method,
2290 int offset, int *num_fns,
2291 struct type **basetype, int *boffset)
2295 t = check_typedef (value_type (*argp));
2297 /* Code snarfed from value_struct_elt. */
2298 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2300 *argp = value_ind (*argp);
2301 /* Don't coerce fn pointer to fn and then back again! */
2302 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2303 *argp = coerce_array (*argp);
2304 t = check_typedef (value_type (*argp));
2307 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2308 && TYPE_CODE (t) != TYPE_CODE_UNION)
2309 error (_("Attempt to extract a component of a value that is not a struct or union"));
2311 return find_method_list (argp, method, 0, t, num_fns,
2315 /* Given an array of argument types (ARGTYPES) (which includes an
2316 entry for "this" in the case of C++ methods), the number of
2317 arguments NARGS, the NAME of a function whether it's a method or
2318 not (METHOD), and the degree of laxness (LAX) in conforming to
2319 overload resolution rules in ANSI C++, find the best function that
2320 matches on the argument types according to the overload resolution
2323 METHOD can be one of three values:
2324 NON_METHOD for non-member functions.
2325 METHOD: for member functions.
2326 BOTH: used for overload resolution of operators where the
2327 candidates are expected to be either member or non member
2328 functions. In this case the first argument ARGTYPES
2329 (representing 'this') is expected to be a reference to the
2330 target object, and will be dereferenced when attempting the
2333 In the case of class methods, the parameter OBJ is an object value
2334 in which to search for overloaded methods.
2336 In the case of non-method functions, the parameter FSYM is a symbol
2337 corresponding to one of the overloaded functions.
2339 Return value is an integer: 0 -> good match, 10 -> debugger applied
2340 non-standard coercions, 100 -> incompatible.
2342 If a method is being searched for, VALP will hold the value.
2343 If a non-method is being searched for, SYMP will hold the symbol
2346 If a method is being searched for, and it is a static method,
2347 then STATICP will point to a non-zero value.
2349 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2350 ADL overload candidates when performing overload resolution for a fully
2353 Note: This function does *not* check the value of
2354 overload_resolution. Caller must check it to see whether overload
2355 resolution is permitted.
2359 find_overload_match (struct type **arg_types, int nargs,
2360 const char *name, enum oload_search_type method,
2361 int lax, struct value **objp, struct symbol *fsym,
2362 struct value **valp, struct symbol **symp,
2363 int *staticp, const int no_adl)
2365 struct value *obj = (objp ? *objp : NULL);
2366 /* Index of best overloaded function. */
2367 int func_oload_champ = -1;
2368 int method_oload_champ = -1;
2370 /* The measure for the current best match. */
2371 struct badness_vector *method_badness = NULL;
2372 struct badness_vector *func_badness = NULL;
2374 struct value *temp = obj;
2375 /* For methods, the list of overloaded methods. */
2376 struct fn_field *fns_ptr = NULL;
2377 /* For non-methods, the list of overloaded function symbols. */
2378 struct symbol **oload_syms = NULL;
2379 /* Number of overloaded instances being considered. */
2381 struct type *basetype = NULL;
2384 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2386 const char *obj_type_name = NULL;
2387 const char *func_name = NULL;
2388 enum oload_classification match_quality;
2389 enum oload_classification method_match_quality = INCOMPATIBLE;
2390 enum oload_classification func_match_quality = INCOMPATIBLE;
2392 /* Get the list of overloaded methods or functions. */
2393 if (method == METHOD || method == BOTH)
2397 /* OBJ may be a pointer value rather than the object itself. */
2398 obj = coerce_ref (obj);
2399 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2400 obj = coerce_ref (value_ind (obj));
2401 obj_type_name = TYPE_NAME (value_type (obj));
2403 /* First check whether this is a data member, e.g. a pointer to
2405 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2407 *valp = search_struct_field (name, obj, 0,
2408 check_typedef (value_type (obj)), 0);
2416 /* Retrieve the list of methods with the name NAME. */
2417 fns_ptr = value_find_oload_method_list (&temp, name,
2419 &basetype, &boffset);
2420 /* If this is a method only search, and no methods were found
2421 the search has faild. */
2422 if (method == METHOD && (!fns_ptr || !num_fns))
2423 error (_("Couldn't find method %s%s%s"),
2425 (obj_type_name && *obj_type_name) ? "::" : "",
2427 /* If we are dealing with stub method types, they should have
2428 been resolved by find_method_list via
2429 value_find_oload_method_list above. */
2432 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2433 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2435 oload_syms, &method_badness);
2437 method_match_quality =
2438 classify_oload_match (method_badness, nargs,
2439 oload_method_static (method, fns_ptr,
2440 method_oload_champ));
2442 make_cleanup (xfree, method_badness);
2447 if (method == NON_METHOD || method == BOTH)
2449 const char *qualified_name = NULL;
2451 /* If the the overload match is being search for both
2452 as a method and non member function, the first argument
2453 must now be dereferenced. */
2455 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2459 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2461 /* If we have a function with a C++ name, try to extract just
2462 the function part. Do not try this for non-functions (e.g.
2463 function pointers). */
2465 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2469 temp = cp_func_name (qualified_name);
2471 /* If cp_func_name did not remove anything, the name of the
2472 symbol did not include scope or argument types - it was
2473 probably a C-style function. */
2476 make_cleanup (xfree, temp);
2477 if (strcmp (temp, qualified_name) == 0)
2487 qualified_name = name;
2490 /* If there was no C++ name, this must be a C-style function or
2491 not a function at all. Just return the same symbol. Do the
2492 same if cp_func_name fails for some reason. */
2493 if (func_name == NULL)
2499 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2506 if (func_oload_champ >= 0)
2507 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2509 make_cleanup (xfree, oload_syms);
2510 make_cleanup (xfree, func_badness);
2513 /* Did we find a match ? */
2514 if (method_oload_champ == -1 && func_oload_champ == -1)
2515 error (_("No symbol \"%s\" in current context."), name);
2517 /* If we have found both a method match and a function
2518 match, find out which one is better, and calculate match
2520 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2522 switch (compare_badness (func_badness, method_badness))
2524 case 0: /* Top two contenders are equally good. */
2525 /* FIXME: GDB does not support the general ambiguous
2526 case. All candidates should be collected and presented
2528 error (_("Ambiguous overload resolution"));
2530 case 1: /* Incomparable top contenders. */
2531 /* This is an error incompatible candidates
2532 should not have been proposed. */
2533 error (_("Internal error: incompatible overload candidates proposed"));
2535 case 2: /* Function champion. */
2536 method_oload_champ = -1;
2537 match_quality = func_match_quality;
2539 case 3: /* Method champion. */
2540 func_oload_champ = -1;
2541 match_quality = method_match_quality;
2544 error (_("Internal error: unexpected overload comparison result"));
2550 /* We have either a method match or a function match. */
2551 if (method_oload_champ >= 0)
2552 match_quality = method_match_quality;
2554 match_quality = func_match_quality;
2557 if (match_quality == INCOMPATIBLE)
2559 if (method == METHOD)
2560 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2562 (obj_type_name && *obj_type_name) ? "::" : "",
2565 error (_("Cannot resolve function %s to any overloaded instance"),
2568 else if (match_quality == NON_STANDARD)
2570 if (method == METHOD)
2571 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2573 (obj_type_name && *obj_type_name) ? "::" : "",
2576 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2580 if (staticp != NULL)
2581 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2583 if (method_oload_champ >= 0)
2585 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2586 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2589 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2593 *symp = oload_syms[func_oload_champ];
2597 struct type *temp_type = check_typedef (value_type (temp));
2598 struct type *obj_type = check_typedef (value_type (*objp));
2600 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2601 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2602 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2604 temp = value_addr (temp);
2609 do_cleanups (all_cleanups);
2611 switch (match_quality)
2617 default: /* STANDARD */
2622 /* Find the best overload match, searching for FUNC_NAME in namespaces
2623 contained in QUALIFIED_NAME until it either finds a good match or
2624 runs out of namespaces. It stores the overloaded functions in
2625 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2626 calling function is responsible for freeing *OLOAD_SYMS and
2627 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2631 find_oload_champ_namespace (struct type **arg_types, int nargs,
2632 const char *func_name,
2633 const char *qualified_name,
2634 struct symbol ***oload_syms,
2635 struct badness_vector **oload_champ_bv,
2640 find_oload_champ_namespace_loop (arg_types, nargs,
2643 oload_syms, oload_champ_bv,
2650 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2651 how deep we've looked for namespaces, and the champ is stored in
2652 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2653 if it isn't. Other arguments are the same as in
2654 find_oload_champ_namespace
2656 It is the caller's responsibility to free *OLOAD_SYMS and
2660 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2661 const char *func_name,
2662 const char *qualified_name,
2664 struct symbol ***oload_syms,
2665 struct badness_vector **oload_champ_bv,
2669 int next_namespace_len = namespace_len;
2670 int searched_deeper = 0;
2672 struct cleanup *old_cleanups;
2673 int new_oload_champ;
2674 struct symbol **new_oload_syms;
2675 struct badness_vector *new_oload_champ_bv;
2676 char *new_namespace;
2678 if (next_namespace_len != 0)
2680 gdb_assert (qualified_name[next_namespace_len] == ':');
2681 next_namespace_len += 2;
2683 next_namespace_len +=
2684 cp_find_first_component (qualified_name + next_namespace_len);
2686 /* Initialize these to values that can safely be xfree'd. */
2688 *oload_champ_bv = NULL;
2690 /* First, see if we have a deeper namespace we can search in.
2691 If we get a good match there, use it. */
2693 if (qualified_name[next_namespace_len] == ':')
2695 searched_deeper = 1;
2697 if (find_oload_champ_namespace_loop (arg_types, nargs,
2698 func_name, qualified_name,
2700 oload_syms, oload_champ_bv,
2701 oload_champ, no_adl))
2707 /* If we reach here, either we're in the deepest namespace or we
2708 didn't find a good match in a deeper namespace. But, in the
2709 latter case, we still have a bad match in a deeper namespace;
2710 note that we might not find any match at all in the current
2711 namespace. (There's always a match in the deepest namespace,
2712 because this overload mechanism only gets called if there's a
2713 function symbol to start off with.) */
2715 old_cleanups = make_cleanup (xfree, *oload_syms);
2716 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2717 new_namespace = alloca (namespace_len + 1);
2718 strncpy (new_namespace, qualified_name, namespace_len);
2719 new_namespace[namespace_len] = '\0';
2720 new_oload_syms = make_symbol_overload_list (func_name,
2723 /* If we have reached the deepest level perform argument
2724 determined lookup. */
2725 if (!searched_deeper && !no_adl)
2726 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2728 while (new_oload_syms[num_fns])
2731 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2732 NULL, new_oload_syms,
2733 &new_oload_champ_bv);
2735 /* Case 1: We found a good match. Free earlier matches (if any),
2736 and return it. Case 2: We didn't find a good match, but we're
2737 not the deepest function. Then go with the bad match that the
2738 deeper function found. Case 3: We found a bad match, and we're
2739 the deepest function. Then return what we found, even though
2740 it's a bad match. */
2742 if (new_oload_champ != -1
2743 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2745 *oload_syms = new_oload_syms;
2746 *oload_champ = new_oload_champ;
2747 *oload_champ_bv = new_oload_champ_bv;
2748 do_cleanups (old_cleanups);
2751 else if (searched_deeper)
2753 xfree (new_oload_syms);
2754 xfree (new_oload_champ_bv);
2755 discard_cleanups (old_cleanups);
2760 *oload_syms = new_oload_syms;
2761 *oload_champ = new_oload_champ;
2762 *oload_champ_bv = new_oload_champ_bv;
2763 discard_cleanups (old_cleanups);
2768 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2769 the best match from among the overloaded methods or functions
2770 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2771 The number of methods/functions in the list is given by NUM_FNS.
2772 Return the index of the best match; store an indication of the
2773 quality of the match in OLOAD_CHAMP_BV.
2775 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2778 find_oload_champ (struct type **arg_types, int nargs, int method,
2779 int num_fns, struct fn_field *fns_ptr,
2780 struct symbol **oload_syms,
2781 struct badness_vector **oload_champ_bv)
2784 /* A measure of how good an overloaded instance is. */
2785 struct badness_vector *bv;
2786 /* Index of best overloaded function. */
2787 int oload_champ = -1;
2788 /* Current ambiguity state for overload resolution. */
2789 int oload_ambiguous = 0;
2790 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2792 *oload_champ_bv = NULL;
2794 /* Consider each candidate in turn. */
2795 for (ix = 0; ix < num_fns; ix++)
2798 int static_offset = oload_method_static (method, fns_ptr, ix);
2800 struct type **parm_types;
2804 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2808 /* If it's not a method, this is the proper place. */
2809 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2812 /* Prepare array of parameter types. */
2813 parm_types = (struct type **)
2814 xmalloc (nparms * (sizeof (struct type *)));
2815 for (jj = 0; jj < nparms; jj++)
2816 parm_types[jj] = (method
2817 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2818 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2821 /* Compare parameter types to supplied argument types. Skip
2822 THIS for static methods. */
2823 bv = rank_function (parm_types, nparms,
2824 arg_types + static_offset,
2825 nargs - static_offset);
2827 if (!*oload_champ_bv)
2829 *oload_champ_bv = bv;
2832 else /* See whether current candidate is better or worse than
2834 switch (compare_badness (bv, *oload_champ_bv))
2836 case 0: /* Top two contenders are equally good. */
2837 oload_ambiguous = 1;
2839 case 1: /* Incomparable top contenders. */
2840 oload_ambiguous = 2;
2842 case 2: /* New champion, record details. */
2843 *oload_champ_bv = bv;
2844 oload_ambiguous = 0;
2855 fprintf_filtered (gdb_stderr,
2856 "Overloaded method instance %s, # of parms %d\n",
2857 fns_ptr[ix].physname, nparms);
2859 fprintf_filtered (gdb_stderr,
2860 "Overloaded function instance %s # of parms %d\n",
2861 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2863 for (jj = 0; jj < nargs - static_offset; jj++)
2864 fprintf_filtered (gdb_stderr,
2865 "...Badness @ %d : %d\n",
2867 fprintf_filtered (gdb_stderr,
2868 "Overload resolution champion is %d, ambiguous? %d\n",
2869 oload_champ, oload_ambiguous);
2876 /* Return 1 if we're looking at a static method, 0 if we're looking at
2877 a non-static method or a function that isn't a method. */
2880 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2882 if (method && fns_ptr && index >= 0
2883 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2889 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2891 static enum oload_classification
2892 classify_oload_match (struct badness_vector *oload_champ_bv,
2898 for (ix = 1; ix <= nargs - static_offset; ix++)
2900 if (oload_champ_bv->rank[ix] >= 100)
2901 return INCOMPATIBLE; /* Truly mismatched types. */
2902 else if (oload_champ_bv->rank[ix] >= 10)
2903 return NON_STANDARD; /* Non-standard type conversions
2907 return STANDARD; /* Only standard conversions needed. */
2910 /* C++: return 1 is NAME is a legitimate name for the destructor of
2911 type TYPE. If TYPE does not have a destructor, or if NAME is
2912 inappropriate for TYPE, an error is signaled. */
2914 destructor_name_p (const char *name, const struct type *type)
2918 char *dname = type_name_no_tag (type);
2919 char *cp = strchr (dname, '<');
2922 /* Do not compare the template part for template classes. */
2924 len = strlen (dname);
2927 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2928 error (_("name of destructor must equal name of class"));
2935 /* Given TYPE, a structure/union,
2936 return 1 if the component named NAME from the ultimate target
2937 structure/union is defined, otherwise, return 0. */
2940 check_field (struct type *type, const char *name)
2944 /* The type may be a stub. */
2945 CHECK_TYPEDEF (type);
2947 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2949 char *t_field_name = TYPE_FIELD_NAME (type, i);
2951 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2955 /* C++: If it was not found as a data field, then try to return it
2956 as a pointer to a method. */
2958 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2960 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2964 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2965 if (check_field (TYPE_BASECLASS (type, i), name))
2971 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2972 return the appropriate member (or the address of the member, if
2973 WANT_ADDRESS). This function is used to resolve user expressions
2974 of the form "DOMAIN::NAME". For more details on what happens, see
2975 the comment before value_struct_elt_for_reference. */
2978 value_aggregate_elt (struct type *curtype, char *name,
2979 struct type *expect_type, int want_address,
2982 switch (TYPE_CODE (curtype))
2984 case TYPE_CODE_STRUCT:
2985 case TYPE_CODE_UNION:
2986 return value_struct_elt_for_reference (curtype, 0, curtype,
2988 want_address, noside);
2989 case TYPE_CODE_NAMESPACE:
2990 return value_namespace_elt (curtype, name,
2991 want_address, noside);
2993 internal_error (__FILE__, __LINE__,
2994 _("non-aggregate type in value_aggregate_elt"));
2998 /* Compares the two method/function types T1 and T2 for "equality"
2999 with respect to the the methods' parameters. If the types of the
3000 two parameter lists are the same, returns 1; 0 otherwise. This
3001 comparison may ignore any artificial parameters in T1 if
3002 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3003 the first artificial parameter in T1, assumed to be a 'this' pointer.
3005 The type T2 is expected to have come from make_params (in eval.c). */
3008 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3012 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
3015 /* If skipping artificial fields, find the first real field
3017 if (skip_artificial)
3019 while (start < TYPE_NFIELDS (t1)
3020 && TYPE_FIELD_ARTIFICIAL (t1, start))
3024 /* Now compare parameters */
3026 /* Special case: a method taking void. T1 will contain no
3027 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3028 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3029 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3032 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3036 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3038 if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3039 TYPE_FIELD_TYPE (t2, i))
3050 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3051 return the address of this member as a "pointer to member" type.
3052 If INTYPE is non-null, then it will be the type of the member we
3053 are looking for. This will help us resolve "pointers to member
3054 functions". This function is used to resolve user expressions of
3055 the form "DOMAIN::NAME". */
3057 static struct value *
3058 value_struct_elt_for_reference (struct type *domain, int offset,
3059 struct type *curtype, char *name,
3060 struct type *intype,
3064 struct type *t = curtype;
3066 struct value *v, *result;
3068 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3069 && TYPE_CODE (t) != TYPE_CODE_UNION)
3070 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
3072 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3074 char *t_field_name = TYPE_FIELD_NAME (t, i);
3076 if (t_field_name && strcmp (t_field_name, name) == 0)
3078 if (field_is_static (&TYPE_FIELD (t, i)))
3080 v = value_static_field (t, i);
3082 error (_("static field %s has been optimized out"),
3088 if (TYPE_FIELD_PACKED (t, i))
3089 error (_("pointers to bitfield members not allowed"));
3092 return value_from_longest
3093 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3094 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3096 return allocate_value (TYPE_FIELD_TYPE (t, i));
3098 error (_("Cannot reference non-static field \"%s\""), name);
3102 /* C++: If it was not found as a data field, then try to return it
3103 as a pointer to a method. */
3105 /* Perform all necessary dereferencing. */
3106 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3107 intype = TYPE_TARGET_TYPE (intype);
3109 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3111 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3112 char dem_opname[64];
3114 if (strncmp (t_field_name, "__", 2) == 0
3115 || strncmp (t_field_name, "op", 2) == 0
3116 || strncmp (t_field_name, "type", 4) == 0)
3118 if (cplus_demangle_opname (t_field_name,
3119 dem_opname, DMGL_ANSI))
3120 t_field_name = dem_opname;
3121 else if (cplus_demangle_opname (t_field_name,
3123 t_field_name = dem_opname;
3125 if (t_field_name && strcmp (t_field_name, name) == 0)
3128 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3129 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3131 check_stub_method_group (t, i);
3135 for (j = 0; j < len; ++j)
3137 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3138 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3143 error (_("no member function matches that type instantiation"));
3150 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3153 /* Skip artificial methods. This is necessary if,
3154 for example, the user wants to "print
3155 subclass::subclass" with only one user-defined
3156 constructor. There is no ambiguity in this
3158 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3161 /* Desired method is ambiguous if more than one
3162 method is defined. */
3164 error (_("non-unique member `%s' requires type instantiation"), name);
3170 if (TYPE_FN_FIELD_STATIC_P (f, j))
3173 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3180 return value_addr (read_var_value (s, 0));
3182 return read_var_value (s, 0);
3185 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3189 result = allocate_value
3190 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3191 cplus_make_method_ptr (value_type (result),
3192 value_contents_writeable (result),
3193 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3195 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3196 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3198 error (_("Cannot reference virtual member function \"%s\""),
3204 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3210 v = read_var_value (s, 0);
3215 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3216 cplus_make_method_ptr (value_type (result),
3217 value_contents_writeable (result),
3218 value_address (v), 0);
3224 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3229 if (BASETYPE_VIA_VIRTUAL (t, i))
3232 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3233 v = value_struct_elt_for_reference (domain,
3234 offset + base_offset,
3235 TYPE_BASECLASS (t, i),
3237 want_address, noside);
3242 /* As a last chance, pretend that CURTYPE is a namespace, and look
3243 it up that way; this (frequently) works for types nested inside
3246 return value_maybe_namespace_elt (curtype, name,
3247 want_address, noside);
3250 /* C++: Return the member NAME of the namespace given by the type
3253 static struct value *
3254 value_namespace_elt (const struct type *curtype,
3255 char *name, int want_address,
3258 struct value *retval = value_maybe_namespace_elt (curtype, name,
3263 error (_("No symbol \"%s\" in namespace \"%s\"."),
3264 name, TYPE_TAG_NAME (curtype));
3269 /* A helper function used by value_namespace_elt and
3270 value_struct_elt_for_reference. It looks up NAME inside the
3271 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3272 is a class and NAME refers to a type in CURTYPE itself (as opposed
3273 to, say, some base class of CURTYPE). */
3275 static struct value *
3276 value_maybe_namespace_elt (const struct type *curtype,
3277 char *name, int want_address,
3280 const char *namespace_name = TYPE_TAG_NAME (curtype);
3282 struct value *result;
3284 sym = cp_lookup_symbol_namespace (namespace_name, name,
3285 get_selected_block (0), VAR_DOMAIN);
3289 char *concatenated_name = alloca (strlen (namespace_name) + 2
3290 + strlen (name) + 1);
3292 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3293 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3298 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3299 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3300 result = allocate_value (SYMBOL_TYPE (sym));
3302 result = value_of_variable (sym, get_selected_block (0));
3304 if (result && want_address)
3305 result = value_addr (result);
3310 /* Given a pointer value V, find the real (RTTI) type of the object it
3313 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3314 and refer to the values computed for the object pointed to. */
3317 value_rtti_target_type (struct value *v, int *full,
3318 int *top, int *using_enc)
3320 struct value *target;
3322 target = value_ind (v);
3324 return value_rtti_type (target, full, top, using_enc);
3327 /* Given a value pointed to by ARGP, check its real run-time type, and
3328 if that is different from the enclosing type, create a new value
3329 using the real run-time type as the enclosing type (and of the same
3330 type as ARGP) and return it, with the embedded offset adjusted to
3331 be the correct offset to the enclosed object. RTYPE is the type,
3332 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3333 by value_rtti_type(). If these are available, they can be supplied
3334 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3335 NULL if they're not available. */
3338 value_full_object (struct value *argp,
3340 int xfull, int xtop,
3343 struct type *real_type;
3347 struct value *new_val;
3354 using_enc = xusing_enc;
3357 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3359 /* If no RTTI data, or if object is already complete, do nothing. */
3360 if (!real_type || real_type == value_enclosing_type (argp))
3363 /* If we have the full object, but for some reason the enclosing
3364 type is wrong, set it. */
3365 /* pai: FIXME -- sounds iffy */
3368 argp = value_change_enclosing_type (argp, real_type);
3372 /* Check if object is in memory */
3373 if (VALUE_LVAL (argp) != lval_memory)
3375 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3376 TYPE_NAME (real_type));
3381 /* All other cases -- retrieve the complete object. */
3382 /* Go back by the computed top_offset from the beginning of the
3383 object, adjusting for the embedded offset of argp if that's what
3384 value_rtti_type used for its computation. */
3385 new_val = value_at_lazy (real_type, value_address (argp) - top +
3386 (using_enc ? 0 : value_embedded_offset (argp)));
3387 deprecated_set_value_type (new_val, value_type (argp));
3388 set_value_embedded_offset (new_val, (using_enc
3389 ? top + value_embedded_offset (argp)
3395 /* Return the value of the local variable, if one exists.
3396 Flag COMPLAIN signals an error if the request is made in an
3397 inappropriate context. */
3400 value_of_local (const char *name, int complain)
3402 struct symbol *func, *sym;
3405 struct frame_info *frame;
3408 frame = get_selected_frame (_("no frame selected"));
3411 frame = deprecated_safe_get_selected_frame ();
3416 func = get_frame_function (frame);
3420 error (_("no `%s' in nameless context"), name);
3425 b = SYMBOL_BLOCK_VALUE (func);
3426 if (dict_empty (BLOCK_DICT (b)))
3429 error (_("no args, no `%s'"), name);
3434 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3435 symbol instead of the LOC_ARG one (if both exist). */
3436 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3440 error (_("current stack frame does not contain a variable named `%s'"),
3446 ret = read_var_value (sym, frame);
3447 if (ret == 0 && complain)
3448 error (_("`%s' argument unreadable"), name);
3452 /* C++/Objective-C: return the value of the class instance variable,
3453 if one exists. Flag COMPLAIN signals an error if the request is
3454 made in an inappropriate context. */
3457 value_of_this (int complain)
3459 if (!current_language->la_name_of_this)
3461 return value_of_local (current_language->la_name_of_this, complain);
3464 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3465 elements long, starting at LOWBOUND. The result has the same lower
3466 bound as the original ARRAY. */
3469 value_slice (struct value *array, int lowbound, int length)
3471 struct type *slice_range_type, *slice_type, *range_type;
3472 LONGEST lowerbound, upperbound;
3473 struct value *slice;
3474 struct type *array_type;
3476 array_type = check_typedef (value_type (array));
3477 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3478 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3479 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3480 error (_("cannot take slice of non-array"));
3482 range_type = TYPE_INDEX_TYPE (array_type);
3483 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3484 error (_("slice from bad array or bitstring"));
3486 if (lowbound < lowerbound || length < 0
3487 || lowbound + length - 1 > upperbound)
3488 error (_("slice out of range"));
3490 /* FIXME-type-allocation: need a way to free this type when we are
3492 slice_range_type = create_range_type ((struct type *) NULL,
3493 TYPE_TARGET_TYPE (range_type),
3495 lowbound + length - 1);
3496 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3500 slice_type = create_set_type ((struct type *) NULL,
3502 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3503 slice = value_zero (slice_type, not_lval);
3505 for (i = 0; i < length; i++)
3507 int element = value_bit_index (array_type,
3508 value_contents (array),
3512 error (_("internal error accessing bitstring"));
3513 else if (element > 0)
3515 int j = i % TARGET_CHAR_BIT;
3517 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3518 j = TARGET_CHAR_BIT - 1 - j;
3519 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3522 /* We should set the address, bitssize, and bitspos, so the
3523 slice can be used on the LHS, but that may require extensions
3524 to value_assign. For now, just leave as a non_lval.
3529 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3531 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3533 slice_type = create_array_type ((struct type *) NULL,
3536 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3538 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3539 slice = allocate_value_lazy (slice_type);
3542 slice = allocate_value (slice_type);
3543 memcpy (value_contents_writeable (slice),
3544 value_contents (array) + offset,
3545 TYPE_LENGTH (slice_type));
3548 set_value_component_location (slice, array);
3549 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3550 set_value_offset (slice, value_offset (array) + offset);
3555 /* Create a value for a FORTRAN complex number. Currently most of the
3556 time values are coerced to COMPLEX*16 (i.e. a complex number
3557 composed of 2 doubles. This really should be a smarter routine
3558 that figures out precision inteligently as opposed to assuming
3559 doubles. FIXME: fmb */
3562 value_literal_complex (struct value *arg1,
3567 struct type *real_type = TYPE_TARGET_TYPE (type);
3569 val = allocate_value (type);
3570 arg1 = value_cast (real_type, arg1);
3571 arg2 = value_cast (real_type, arg2);
3573 memcpy (value_contents_raw (val),
3574 value_contents (arg1), TYPE_LENGTH (real_type));
3575 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3576 value_contents (arg2), TYPE_LENGTH (real_type));
3580 /* Cast a value into the appropriate complex data type. */
3582 static struct value *
3583 cast_into_complex (struct type *type, struct value *val)
3585 struct type *real_type = TYPE_TARGET_TYPE (type);
3587 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3589 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3590 struct value *re_val = allocate_value (val_real_type);
3591 struct value *im_val = allocate_value (val_real_type);
3593 memcpy (value_contents_raw (re_val),
3594 value_contents (val), TYPE_LENGTH (val_real_type));
3595 memcpy (value_contents_raw (im_val),
3596 value_contents (val) + TYPE_LENGTH (val_real_type),
3597 TYPE_LENGTH (val_real_type));
3599 return value_literal_complex (re_val, im_val, type);
3601 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3602 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3603 return value_literal_complex (val,
3604 value_zero (real_type, not_lval),
3607 error (_("cannot cast non-number to complex"));
3611 _initialize_valops (void)
3613 add_setshow_boolean_cmd ("overload-resolution", class_support,
3614 &overload_resolution, _("\
3615 Set overload resolution in evaluating C++ functions."), _("\
3616 Show overload resolution in evaluating C++ functions."),
3618 show_overload_resolution,
3619 &setlist, &showlist);
3620 overload_resolution = 1;